Fix typo
[deliverable/binutils-gdb.git] / gdb / objfiles.c
... / ...
CommitLineData
1/* GDB routines for manipulating objfiles.
2 Copyright 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22/* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25#include "defs.h"
26#include "bfd.h" /* Binary File Description */
27#include "symtab.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdb-stabs.h"
31#include "target.h"
32
33#include <sys/types.h>
34#include "gdb_stat.h"
35#include <fcntl.h>
36#include "obstack.h"
37#include "gdb_string.h"
38
39#include "breakpoint.h"
40
41/* Prototypes for local functions */
42
43#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
44
45static int open_existing_mapped_file (char *, long, int);
46
47static int open_mapped_file (char *filename, long mtime, int flags);
48
49static PTR map_to_file (int);
50
51#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
52
53static void add_to_objfile_sections (bfd *, sec_ptr, PTR);
54
55/* Externally visible variables that are owned by this module.
56 See declarations in objfile.h for more info. */
57
58struct objfile *object_files; /* Linked list of all objfiles */
59struct objfile *current_objfile; /* For symbol file being read in */
60struct objfile *symfile_objfile; /* Main symbol table loaded from */
61struct objfile *rt_common_objfile; /* For runtime common symbols */
62
63int mapped_symbol_files; /* Try to use mapped symbol files */
64
65/* Locate all mappable sections of a BFD file.
66 objfile_p_char is a char * to get it through
67 bfd_map_over_sections; we cast it back to its proper type. */
68
69#ifndef TARGET_KEEP_SECTION
70#define TARGET_KEEP_SECTION(ASECT) 0
71#endif
72
73/* Called via bfd_map_over_sections to build up the section table that
74 the objfile references. The objfile contains pointers to the start
75 of the table (objfile->sections) and to the first location after
76 the end of the table (objfile->sections_end). */
77
78static void
79add_to_objfile_sections (bfd *abfd, sec_ptr asect, PTR objfile_p_char)
80{
81 struct objfile *objfile = (struct objfile *) objfile_p_char;
82 struct obj_section section;
83 flagword aflag;
84
85 aflag = bfd_get_section_flags (abfd, asect);
86
87 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
88 return;
89
90 if (0 == bfd_section_size (abfd, asect))
91 return;
92 section.offset = 0;
93 section.objfile = objfile;
94 section.the_bfd_section = asect;
95 section.ovly_mapped = 0;
96 section.addr = bfd_section_vma (abfd, asect);
97 section.endaddr = section.addr + bfd_section_size (abfd, asect);
98 obstack_grow (&objfile->psymbol_obstack, (char *) &section, sizeof (section));
99 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
100}
101
102/* Builds a section table for OBJFILE.
103 Returns 0 if OK, 1 on error (in which case bfd_error contains the
104 error).
105
106 Note that while we are building the table, which goes into the
107 psymbol obstack, we hijack the sections_end pointer to instead hold
108 a count of the number of sections. When bfd_map_over_sections
109 returns, this count is used to compute the pointer to the end of
110 the sections table, which then overwrites the count.
111
112 Also note that the OFFSET and OVLY_MAPPED in each table entry
113 are initialized to zero.
114
115 Also note that if anything else writes to the psymbol obstack while
116 we are building the table, we're pretty much hosed. */
117
118int
119build_objfile_section_table (struct objfile *objfile)
120{
121 /* objfile->sections can be already set when reading a mapped symbol
122 file. I believe that we do need to rebuild the section table in
123 this case (we rebuild other things derived from the bfd), but we
124 can't free the old one (it's in the psymbol_obstack). So we just
125 waste some memory. */
126
127 objfile->sections_end = 0;
128 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
129 objfile->sections = (struct obj_section *)
130 obstack_finish (&objfile->psymbol_obstack);
131 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
132 return (0);
133}
134
135/* Given a pointer to an initialized bfd (ABFD) and some flag bits
136 allocate a new objfile struct, fill it in as best we can, link it
137 into the list of all known objfiles, and return a pointer to the
138 new objfile struct.
139
140 The FLAGS word contains various bits (OBJF_*) that can be taken as
141 requests for specific operations, like trying to open a mapped
142 version of the objfile (OBJF_MAPPED). Other bits like
143 OBJF_SHARED are simply copied through to the new objfile flags
144 member. */
145
146struct objfile *
147allocate_objfile (bfd *abfd, int flags)
148{
149 struct objfile *objfile = NULL;
150 struct objfile *last_one = NULL;
151
152 if (mapped_symbol_files)
153 flags |= OBJF_MAPPED;
154
155#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
156 if (abfd != NULL)
157 {
158
159 /* If we can support mapped symbol files, try to open/reopen the
160 mapped file that corresponds to the file from which we wish to
161 read symbols. If the objfile is to be mapped, we must malloc
162 the structure itself using the mmap version, and arrange that
163 all memory allocation for the objfile uses the mmap routines.
164 If we are reusing an existing mapped file, from which we get
165 our objfile pointer, we have to make sure that we update the
166 pointers to the alloc/free functions in the obstack, in case
167 these functions have moved within the current gdb. */
168
169 int fd;
170
171 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
172 flags);
173 if (fd >= 0)
174 {
175 PTR md;
176
177 if ((md = map_to_file (fd)) == NULL)
178 {
179 close (fd);
180 }
181 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
182 {
183 /* Update memory corruption handler function addresses. */
184 init_malloc (md);
185 objfile->md = md;
186 objfile->mmfd = fd;
187 /* Update pointers to functions to *our* copies */
188 obstack_chunkfun (&objfile->psymbol_cache.cache, xmmalloc);
189 obstack_freefun (&objfile->psymbol_cache.cache, mfree);
190 obstack_chunkfun (&objfile->psymbol_obstack, xmmalloc);
191 obstack_freefun (&objfile->psymbol_obstack, mfree);
192 obstack_chunkfun (&objfile->symbol_obstack, xmmalloc);
193 obstack_freefun (&objfile->symbol_obstack, mfree);
194 obstack_chunkfun (&objfile->type_obstack, xmmalloc);
195 obstack_freefun (&objfile->type_obstack, mfree);
196 /* If already in objfile list, unlink it. */
197 unlink_objfile (objfile);
198 /* Forget things specific to a particular gdb, may have changed. */
199 objfile->sf = NULL;
200 }
201 else
202 {
203
204 /* Set up to detect internal memory corruption. MUST be
205 done before the first malloc. See comments in
206 init_malloc() and mmcheck(). */
207
208 init_malloc (md);
209
210 objfile = (struct objfile *)
211 xmmalloc (md, sizeof (struct objfile));
212 memset (objfile, 0, sizeof (struct objfile));
213 objfile->md = md;
214 objfile->mmfd = fd;
215 objfile->flags |= OBJF_MAPPED;
216 mmalloc_setkey (objfile->md, 0, objfile);
217 obstack_specify_allocation_with_arg (&objfile->psymbol_cache.cache,
218 0, 0, xmmalloc, mfree,
219 objfile->md);
220 obstack_specify_allocation_with_arg (&objfile->psymbol_obstack,
221 0, 0, xmmalloc, mfree,
222 objfile->md);
223 obstack_specify_allocation_with_arg (&objfile->symbol_obstack,
224 0, 0, xmmalloc, mfree,
225 objfile->md);
226 obstack_specify_allocation_with_arg (&objfile->type_obstack,
227 0, 0, xmmalloc, mfree,
228 objfile->md);
229 }
230 }
231
232 if ((flags & OBJF_MAPPED) && (objfile == NULL))
233 {
234 warning ("symbol table for '%s' will not be mapped",
235 bfd_get_filename (abfd));
236 flags &= ~OBJF_MAPPED;
237 }
238 }
239#else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */
240
241 if (flags & OBJF_MAPPED)
242 {
243 warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
244
245 /* Turn off the global flag so we don't try to do mapped symbol tables
246 any more, which shuts up gdb unless the user specifically gives the
247 "mapped" keyword again. */
248
249 mapped_symbol_files = 0;
250 flags &= ~OBJF_MAPPED;
251 }
252
253#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
254
255 /* If we don't support mapped symbol files, didn't ask for the file to be
256 mapped, or failed to open the mapped file for some reason, then revert
257 back to an unmapped objfile. */
258
259 if (objfile == NULL)
260 {
261 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
262 memset (objfile, 0, sizeof (struct objfile));
263 objfile->md = NULL;
264 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
265 xmalloc, free);
266 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
267 free);
268 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
269 free);
270 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
271 free);
272 flags &= ~OBJF_MAPPED;
273 }
274
275 /* Update the per-objfile information that comes from the bfd, ensuring
276 that any data that is reference is saved in the per-objfile data
277 region. */
278
279 objfile->obfd = abfd;
280 if (objfile->name != NULL)
281 {
282 mfree (objfile->md, objfile->name);
283 }
284 if (abfd != NULL)
285 {
286 objfile->name = mstrsave (objfile->md, bfd_get_filename (abfd));
287 objfile->mtime = bfd_get_mtime (abfd);
288
289 /* Build section table. */
290
291 if (build_objfile_section_table (objfile))
292 {
293 error ("Can't find the file sections in `%s': %s",
294 objfile->name, bfd_errmsg (bfd_get_error ()));
295 }
296 }
297
298 /* Initialize the section indexes for this objfile, so that we can
299 later detect if they are used w/o being properly assigned to. */
300
301 objfile->sect_index_text = -1;
302 objfile->sect_index_data = -1;
303 objfile->sect_index_bss = -1;
304 objfile->sect_index_rodata = -1;
305
306 /* Add this file onto the tail of the linked list of other such files. */
307
308 objfile->next = NULL;
309 if (object_files == NULL)
310 object_files = objfile;
311 else
312 {
313 for (last_one = object_files;
314 last_one->next;
315 last_one = last_one->next);
316 last_one->next = objfile;
317 }
318
319 /* Save passed in flag bits. */
320 objfile->flags |= flags;
321
322 return (objfile);
323}
324
325/* Put OBJFILE at the front of the list. */
326
327void
328objfile_to_front (struct objfile *objfile)
329{
330 struct objfile **objp;
331 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
332 {
333 if (*objp == objfile)
334 {
335 /* Unhook it from where it is. */
336 *objp = objfile->next;
337 /* Put it in the front. */
338 objfile->next = object_files;
339 object_files = objfile;
340 break;
341 }
342 }
343}
344
345/* Unlink OBJFILE from the list of known objfiles, if it is found in the
346 list.
347
348 It is not a bug, or error, to call this function if OBJFILE is not known
349 to be in the current list. This is done in the case of mapped objfiles,
350 for example, just to ensure that the mapped objfile doesn't appear twice
351 in the list. Since the list is threaded, linking in a mapped objfile
352 twice would create a circular list.
353
354 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
355 unlinking it, just to ensure that we have completely severed any linkages
356 between the OBJFILE and the list. */
357
358void
359unlink_objfile (struct objfile *objfile)
360{
361 struct objfile **objpp;
362
363 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
364 {
365 if (*objpp == objfile)
366 {
367 *objpp = (*objpp)->next;
368 objfile->next = NULL;
369 return;
370 }
371 }
372
373 internal_error ("objfiles.c (unlink_objfile): objfile already unlinked");
374}
375
376
377/* Destroy an objfile and all the symtabs and psymtabs under it. Note
378 that as much as possible is allocated on the symbol_obstack and
379 psymbol_obstack, so that the memory can be efficiently freed.
380
381 Things which we do NOT free because they are not in malloc'd memory
382 or not in memory specific to the objfile include:
383
384 objfile -> sf
385
386 FIXME: If the objfile is using reusable symbol information (via mmalloc),
387 then we need to take into account the fact that more than one process
388 may be using the symbol information at the same time (when mmalloc is
389 extended to support cooperative locking). When more than one process
390 is using the mapped symbol info, we need to be more careful about when
391 we free objects in the reusable area. */
392
393void
394free_objfile (struct objfile *objfile)
395{
396 /* First do any symbol file specific actions required when we are
397 finished with a particular symbol file. Note that if the objfile
398 is using reusable symbol information (via mmalloc) then each of
399 these routines is responsible for doing the correct thing, either
400 freeing things which are valid only during this particular gdb
401 execution, or leaving them to be reused during the next one. */
402
403 if (objfile->sf != NULL)
404 {
405 (*objfile->sf->sym_finish) (objfile);
406 }
407
408 /* We always close the bfd. */
409
410 if (objfile->obfd != NULL)
411 {
412 char *name = bfd_get_filename (objfile->obfd);
413 if (!bfd_close (objfile->obfd))
414 warning ("cannot close \"%s\": %s",
415 name, bfd_errmsg (bfd_get_error ()));
416 free (name);
417 }
418
419 /* Remove it from the chain of all objfiles. */
420
421 unlink_objfile (objfile);
422
423 /* If we are going to free the runtime common objfile, mark it
424 as unallocated. */
425
426 if (objfile == rt_common_objfile)
427 rt_common_objfile = NULL;
428
429 /* Before the symbol table code was redone to make it easier to
430 selectively load and remove information particular to a specific
431 linkage unit, gdb used to do these things whenever the monolithic
432 symbol table was blown away. How much still needs to be done
433 is unknown, but we play it safe for now and keep each action until
434 it is shown to be no longer needed. */
435
436 /* I *think* all our callers call clear_symtab_users. If so, no need
437 to call this here. */
438 clear_pc_function_cache ();
439
440 /* The last thing we do is free the objfile struct itself for the
441 non-reusable case, or detach from the mapped file for the reusable
442 case. Note that the mmalloc_detach or the mfree is the last thing
443 we can do with this objfile. */
444
445#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
446
447 if (objfile->flags & OBJF_MAPPED)
448 {
449 /* Remember the fd so we can close it. We can't close it before
450 doing the detach, and after the detach the objfile is gone. */
451 int mmfd;
452
453 mmfd = objfile->mmfd;
454 mmalloc_detach (objfile->md);
455 objfile = NULL;
456 close (mmfd);
457 }
458
459#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
460
461 /* If we still have an objfile, then either we don't support reusable
462 objfiles or this one was not reusable. So free it normally. */
463
464 if (objfile != NULL)
465 {
466 if (objfile->name != NULL)
467 {
468 mfree (objfile->md, objfile->name);
469 }
470 if (objfile->global_psymbols.list)
471 mfree (objfile->md, objfile->global_psymbols.list);
472 if (objfile->static_psymbols.list)
473 mfree (objfile->md, objfile->static_psymbols.list);
474 /* Free the obstacks for non-reusable objfiles */
475 free_bcache (&objfile->psymbol_cache);
476 obstack_free (&objfile->psymbol_obstack, 0);
477 obstack_free (&objfile->symbol_obstack, 0);
478 obstack_free (&objfile->type_obstack, 0);
479 mfree (objfile->md, objfile);
480 objfile = NULL;
481 }
482}
483
484static void
485do_free_objfile_cleanup (void *obj)
486{
487 free_objfile (obj);
488}
489
490struct cleanup *
491make_cleanup_free_objfile (struct objfile *obj)
492{
493 return make_cleanup (do_free_objfile_cleanup, obj);
494}
495
496/* Free all the object files at once and clean up their users. */
497
498void
499free_all_objfiles (void)
500{
501 struct objfile *objfile, *temp;
502
503 ALL_OBJFILES_SAFE (objfile, temp)
504 {
505 free_objfile (objfile);
506 }
507 clear_symtab_users ();
508}
509\f
510/* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
511 entries in new_offsets. */
512void
513objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
514{
515 struct section_offsets *delta =
516 (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
517
518 {
519 int i;
520 int something_changed = 0;
521 for (i = 0; i < objfile->num_sections; ++i)
522 {
523 ANOFFSET (delta, i) =
524 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
525 if (ANOFFSET (delta, i) != 0)
526 something_changed = 1;
527 }
528 if (!something_changed)
529 return;
530 }
531
532 /* OK, get all the symtabs. */
533 {
534 struct symtab *s;
535
536 ALL_OBJFILE_SYMTABS (objfile, s)
537 {
538 struct linetable *l;
539 struct blockvector *bv;
540 int i;
541
542 /* First the line table. */
543 l = LINETABLE (s);
544 if (l)
545 {
546 for (i = 0; i < l->nitems; ++i)
547 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
548 }
549
550 /* Don't relocate a shared blockvector more than once. */
551 if (!s->primary)
552 continue;
553
554 bv = BLOCKVECTOR (s);
555 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
556 {
557 struct block *b;
558 int j;
559
560 b = BLOCKVECTOR_BLOCK (bv, i);
561 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
562 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
563
564 for (j = 0; j < BLOCK_NSYMS (b); ++j)
565 {
566 struct symbol *sym = BLOCK_SYM (b, j);
567 /* The RS6000 code from which this was taken skipped
568 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
569 But I'm leaving out that test, on the theory that
570 they can't possibly pass the tests below. */
571 if ((SYMBOL_CLASS (sym) == LOC_LABEL
572 || SYMBOL_CLASS (sym) == LOC_STATIC
573 || SYMBOL_CLASS (sym) == LOC_INDIRECT)
574 && SYMBOL_SECTION (sym) >= 0)
575 {
576 SYMBOL_VALUE_ADDRESS (sym) +=
577 ANOFFSET (delta, SYMBOL_SECTION (sym));
578 }
579#ifdef MIPS_EFI_SYMBOL_NAME
580 /* Relocate Extra Function Info for ecoff. */
581
582 else if (SYMBOL_CLASS (sym) == LOC_CONST
583 && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
584 && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
585 ecoff_relocate_efi (sym, ANOFFSET (delta,
586 s->block_line_section));
587#endif
588 }
589 }
590 }
591 }
592
593 {
594 struct partial_symtab *p;
595
596 ALL_OBJFILE_PSYMTABS (objfile, p)
597 {
598 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
599 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
600 }
601 }
602
603 {
604 struct partial_symbol **psym;
605
606 for (psym = objfile->global_psymbols.list;
607 psym < objfile->global_psymbols.next;
608 psym++)
609 if (SYMBOL_SECTION (*psym) >= 0)
610 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
611 SYMBOL_SECTION (*psym));
612 for (psym = objfile->static_psymbols.list;
613 psym < objfile->static_psymbols.next;
614 psym++)
615 if (SYMBOL_SECTION (*psym) >= 0)
616 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
617 SYMBOL_SECTION (*psym));
618 }
619
620 {
621 struct minimal_symbol *msym;
622 ALL_OBJFILE_MSYMBOLS (objfile, msym)
623 if (SYMBOL_SECTION (msym) >= 0)
624 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
625 }
626 /* Relocating different sections by different amounts may cause the symbols
627 to be out of order. */
628 msymbols_sort (objfile);
629
630 {
631 int i;
632 for (i = 0; i < objfile->num_sections; ++i)
633 ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i);
634 }
635
636 {
637 struct obj_section *s;
638 bfd *abfd;
639
640 abfd = objfile->obfd;
641
642 ALL_OBJFILE_OSECTIONS (objfile, s)
643 {
644 flagword flags;
645
646 flags = bfd_get_section_flags (abfd, s->the_bfd_section);
647
648 if (flags & SEC_CODE)
649 {
650 s->addr += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
651 s->endaddr += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
652 }
653 else if (flags & (SEC_DATA | SEC_LOAD))
654 {
655 s->addr += ANOFFSET (delta, SECT_OFF_DATA (objfile));
656 s->endaddr += ANOFFSET (delta, SECT_OFF_DATA (objfile));
657 }
658 else if (flags & SEC_ALLOC)
659 {
660 s->addr += ANOFFSET (delta, SECT_OFF_BSS (objfile));
661 s->endaddr += ANOFFSET (delta, SECT_OFF_BSS (objfile));
662 }
663 }
664 }
665
666 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
667 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
668
669 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
670 {
671 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
672 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
673 }
674
675 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
676 {
677 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
678 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
679 }
680
681 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
682 {
683 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
684 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
685 }
686
687 /* Relocate breakpoints as necessary, after things are relocated. */
688 breakpoint_re_set ();
689}
690\f
691/* Many places in gdb want to test just to see if we have any partial
692 symbols available. This function returns zero if none are currently
693 available, nonzero otherwise. */
694
695int
696have_partial_symbols (void)
697{
698 struct objfile *ofp;
699
700 ALL_OBJFILES (ofp)
701 {
702 if (ofp->psymtabs != NULL)
703 {
704 return 1;
705 }
706 }
707 return 0;
708}
709
710/* Many places in gdb want to test just to see if we have any full
711 symbols available. This function returns zero if none are currently
712 available, nonzero otherwise. */
713
714int
715have_full_symbols (void)
716{
717 struct objfile *ofp;
718
719 ALL_OBJFILES (ofp)
720 {
721 if (ofp->symtabs != NULL)
722 {
723 return 1;
724 }
725 }
726 return 0;
727}
728
729
730/* This operations deletes all objfile entries that represent solibs that
731 weren't explicitly loaded by the user, via e.g., the add-symbol-file
732 command.
733 */
734void
735objfile_purge_solibs (void)
736{
737 struct objfile *objf;
738 struct objfile *temp;
739
740 ALL_OBJFILES_SAFE (objf, temp)
741 {
742 /* We assume that the solib package has been purged already, or will
743 be soon.
744 */
745 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
746 free_objfile (objf);
747 }
748}
749
750
751/* Many places in gdb want to test just to see if we have any minimal
752 symbols available. This function returns zero if none are currently
753 available, nonzero otherwise. */
754
755int
756have_minimal_symbols (void)
757{
758 struct objfile *ofp;
759
760 ALL_OBJFILES (ofp)
761 {
762 if (ofp->msymbols != NULL)
763 {
764 return 1;
765 }
766 }
767 return 0;
768}
769
770#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
771
772/* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
773 of the corresponding symbol file in MTIME, try to open an existing file
774 with the name SYMSFILENAME and verify it is more recent than the base
775 file by checking it's timestamp against MTIME.
776
777 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
778
779 If SYMSFILENAME does exist, but is out of date, we check to see if the
780 user has specified creation of a mapped file. If so, we don't issue
781 any warning message because we will be creating a new mapped file anyway,
782 overwriting the old one. If not, then we issue a warning message so that
783 the user will know why we aren't using this existing mapped symbol file.
784 In either case, we return -1.
785
786 If SYMSFILENAME does exist and is not out of date, but can't be opened for
787 some reason, then prints an appropriate system error message and returns -1.
788
789 Otherwise, returns the open file descriptor. */
790
791static int
792open_existing_mapped_file (char *symsfilename, long mtime, int flags)
793{
794 int fd = -1;
795 struct stat sbuf;
796
797 if (stat (symsfilename, &sbuf) == 0)
798 {
799 if (sbuf.st_mtime < mtime)
800 {
801 if (!(flags & OBJF_MAPPED))
802 {
803 warning ("mapped symbol file `%s' is out of date, ignored it",
804 symsfilename);
805 }
806 }
807 else if ((fd = open (symsfilename, O_RDWR)) < 0)
808 {
809 if (error_pre_print)
810 {
811 printf_unfiltered (error_pre_print);
812 }
813 print_sys_errmsg (symsfilename, errno);
814 }
815 }
816 return (fd);
817}
818
819/* Look for a mapped symbol file that corresponds to FILENAME and is more
820 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
821 use a mapped symbol file for this file, so create a new one if one does
822 not currently exist.
823
824 If found, then return an open file descriptor for the file, otherwise
825 return -1.
826
827 This routine is responsible for implementing the policy that generates
828 the name of the mapped symbol file from the name of a file containing
829 symbols that gdb would like to read. Currently this policy is to append
830 ".syms" to the name of the file.
831
832 This routine is also responsible for implementing the policy that
833 determines where the mapped symbol file is found (the search path).
834 This policy is that when reading an existing mapped file, a file of
835 the correct name in the current directory takes precedence over a
836 file of the correct name in the same directory as the symbol file.
837 When creating a new mapped file, it is always created in the current
838 directory. This helps to minimize the chances of a user unknowingly
839 creating big mapped files in places like /bin and /usr/local/bin, and
840 allows a local copy to override a manually installed global copy (in
841 /bin for example). */
842
843static int
844open_mapped_file (char *filename, long mtime, int flags)
845{
846 int fd;
847 char *symsfilename;
848
849 /* First try to open an existing file in the current directory, and
850 then try the directory where the symbol file is located. */
851
852 symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
853 if ((fd = open_existing_mapped_file (symsfilename, mtime, flags)) < 0)
854 {
855 free (symsfilename);
856 symsfilename = concat (filename, ".syms", (char *) NULL);
857 fd = open_existing_mapped_file (symsfilename, mtime, flags);
858 }
859
860 /* If we don't have an open file by now, then either the file does not
861 already exist, or the base file has changed since it was created. In
862 either case, if the user has specified use of a mapped file, then
863 create a new mapped file, truncating any existing one. If we can't
864 create one, print a system error message saying why we can't.
865
866 By default the file is rw for everyone, with the user's umask taking
867 care of turning off the permissions the user wants off. */
868
869 if ((fd < 0) && (flags & OBJF_MAPPED))
870 {
871 free (symsfilename);
872 symsfilename = concat ("./", basename (filename), ".syms",
873 (char *) NULL);
874 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
875 {
876 if (error_pre_print)
877 {
878 printf_unfiltered (error_pre_print);
879 }
880 print_sys_errmsg (symsfilename, errno);
881 }
882 }
883
884 free (symsfilename);
885 return (fd);
886}
887
888static PTR
889map_to_file (int fd)
890{
891 PTR md;
892 CORE_ADDR mapto;
893
894 md = mmalloc_attach (fd, (PTR) 0);
895 if (md != NULL)
896 {
897 mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
898 md = mmalloc_detach (md);
899 if (md != NULL)
900 {
901 /* FIXME: should figure out why detach failed */
902 md = NULL;
903 }
904 else if (mapto != (CORE_ADDR) NULL)
905 {
906 /* This mapping file needs to be remapped at "mapto" */
907 md = mmalloc_attach (fd, (PTR) mapto);
908 }
909 else
910 {
911 /* This is a freshly created mapping file. */
912 mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
913 if (mapto != 0)
914 {
915 /* To avoid reusing the freshly created mapping file, at the
916 address selected by mmap, we must truncate it before trying
917 to do an attach at the address we want. */
918 ftruncate (fd, 0);
919 md = mmalloc_attach (fd, (PTR) mapto);
920 if (md != NULL)
921 {
922 mmalloc_setkey (md, 1, (PTR) mapto);
923 }
924 }
925 }
926 }
927 return (md);
928}
929
930#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
931
932/* Returns a section whose range includes PC and SECTION,
933 or NULL if none found. Note the distinction between the return type,
934 struct obj_section (which is defined in gdb), and the input type
935 struct sec (which is a bfd-defined data type). The obj_section
936 contains a pointer to the bfd struct sec section. */
937
938struct obj_section *
939find_pc_sect_section (CORE_ADDR pc, struct sec *section)
940{
941 struct obj_section *s;
942 struct objfile *objfile;
943
944 ALL_OBJSECTIONS (objfile, s)
945 if ((section == 0 || section == s->the_bfd_section) &&
946 s->addr <= pc && pc < s->endaddr)
947 return (s);
948
949 return (NULL);
950}
951
952/* Returns a section whose range includes PC or NULL if none found.
953 Backward compatibility, no section. */
954
955struct obj_section *
956find_pc_section (CORE_ADDR pc)
957{
958 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
959}
960
961
962/* In SVR4, we recognize a trampoline by it's section name.
963 That is, if the pc is in a section named ".plt" then we are in
964 a trampoline. */
965
966int
967in_plt_section (CORE_ADDR pc, char *name)
968{
969 struct obj_section *s;
970 int retval = 0;
971
972 s = find_pc_section (pc);
973
974 retval = (s != NULL
975 && s->the_bfd_section->name != NULL
976 && STREQ (s->the_bfd_section->name, ".plt"));
977 return (retval);
978}
979
980/* Return nonzero if NAME is in the import list of OBJFILE. Else
981 return zero. */
982
983int
984is_in_import_list (char *name, struct objfile *objfile)
985{
986 register int i;
987
988 if (!objfile || !name || !*name)
989 return 0;
990
991 for (i = 0; i < objfile->import_list_size; i++)
992 if (objfile->import_list[i] && STREQ (name, objfile->import_list[i]))
993 return 1;
994 return 0;
995}
996
This page took 0.028604 seconds and 4 git commands to generate.