*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / objfiles.c
... / ...
CommitLineData
1/* GDB routines for manipulating objfiles.
2
3 Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25/* This file contains support routines for creating, manipulating, and
26 destroying objfile structures. */
27
28#include "defs.h"
29#include "bfd.h" /* Binary File Description */
30#include "symtab.h"
31#include "symfile.h"
32#include "objfiles.h"
33#include "gdb-stabs.h"
34#include "target.h"
35#include "bcache.h"
36
37#include <sys/types.h>
38#include "gdb_stat.h"
39#include <fcntl.h>
40#include "gdb_obstack.h"
41#include "gdb_string.h"
42#include "hashtab.h"
43
44#include "breakpoint.h"
45
46/* Prototypes for local functions */
47
48#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
49
50#include "mmalloc.h"
51
52static int open_existing_mapped_file (char *, long, int);
53
54static int open_mapped_file (char *filename, long mtime, int flags);
55
56static void *map_to_file (int);
57
58#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
59
60static void add_to_objfile_sections (bfd *, sec_ptr, void *);
61
62/* Externally visible variables that are owned by this module.
63 See declarations in objfile.h for more info. */
64
65struct objfile *object_files; /* Linked list of all objfiles */
66struct objfile *current_objfile; /* For symbol file being read in */
67struct objfile *symfile_objfile; /* Main symbol table loaded from */
68struct objfile *rt_common_objfile; /* For runtime common symbols */
69
70int mapped_symbol_files; /* Try to use mapped symbol files */
71
72/* Locate all mappable sections of a BFD file.
73 objfile_p_char is a char * to get it through
74 bfd_map_over_sections; we cast it back to its proper type. */
75
76#ifndef TARGET_KEEP_SECTION
77#define TARGET_KEEP_SECTION(ASECT) 0
78#endif
79
80/* Called via bfd_map_over_sections to build up the section table that
81 the objfile references. The objfile contains pointers to the start
82 of the table (objfile->sections) and to the first location after
83 the end of the table (objfile->sections_end). */
84
85static void
86add_to_objfile_sections (bfd *abfd, sec_ptr asect, void *objfile_p_char)
87{
88 struct objfile *objfile = (struct objfile *) objfile_p_char;
89 struct obj_section section;
90 flagword aflag;
91
92 aflag = bfd_get_section_flags (abfd, asect);
93
94 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
95 return;
96
97 if (0 == bfd_section_size (abfd, asect))
98 return;
99 section.offset = 0;
100 section.objfile = objfile;
101 section.the_bfd_section = asect;
102 section.ovly_mapped = 0;
103 section.addr = bfd_section_vma (abfd, asect);
104 section.endaddr = section.addr + bfd_section_size (abfd, asect);
105 obstack_grow (&objfile->psymbol_obstack, (char *) &section, sizeof (section));
106 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
107}
108
109/* Builds a section table for OBJFILE.
110 Returns 0 if OK, 1 on error (in which case bfd_error contains the
111 error).
112
113 Note that while we are building the table, which goes into the
114 psymbol obstack, we hijack the sections_end pointer to instead hold
115 a count of the number of sections. When bfd_map_over_sections
116 returns, this count is used to compute the pointer to the end of
117 the sections table, which then overwrites the count.
118
119 Also note that the OFFSET and OVLY_MAPPED in each table entry
120 are initialized to zero.
121
122 Also note that if anything else writes to the psymbol obstack while
123 we are building the table, we're pretty much hosed. */
124
125int
126build_objfile_section_table (struct objfile *objfile)
127{
128 /* objfile->sections can be already set when reading a mapped symbol
129 file. I believe that we do need to rebuild the section table in
130 this case (we rebuild other things derived from the bfd), but we
131 can't free the old one (it's in the psymbol_obstack). So we just
132 waste some memory. */
133
134 objfile->sections_end = 0;
135 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
136 objfile->sections = (struct obj_section *)
137 obstack_finish (&objfile->psymbol_obstack);
138 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
139 return (0);
140}
141
142/* Given a pointer to an initialized bfd (ABFD) and some flag bits
143 allocate a new objfile struct, fill it in as best we can, link it
144 into the list of all known objfiles, and return a pointer to the
145 new objfile struct.
146
147 The FLAGS word contains various bits (OBJF_*) that can be taken as
148 requests for specific operations, like trying to open a mapped
149 version of the objfile (OBJF_MAPPED). Other bits like
150 OBJF_SHARED are simply copied through to the new objfile flags
151 member. */
152
153/* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
154 by jv-lang.c, to create an artificial objfile used to hold
155 information about dynamically-loaded Java classes. Unfortunately,
156 that branch of this function doesn't get tested very frequently, so
157 it's prone to breakage. (E.g. at one time the name was set to NULL
158 in that situation, which broke a loop over all names in the dynamic
159 library loader.) If you change this function, please try to leave
160 things in a consistent state even if abfd is NULL. */
161
162struct objfile *
163allocate_objfile (bfd *abfd, int flags)
164{
165 struct objfile *objfile = NULL;
166 struct objfile *last_one = NULL;
167
168 if (mapped_symbol_files)
169 flags |= OBJF_MAPPED;
170
171#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
172 if (abfd != NULL)
173 {
174
175 /* If we can support mapped symbol files, try to open/reopen the
176 mapped file that corresponds to the file from which we wish to
177 read symbols. If the objfile is to be mapped, we must malloc
178 the structure itself using the mmap version, and arrange that
179 all memory allocation for the objfile uses the mmap routines.
180 If we are reusing an existing mapped file, from which we get
181 our objfile pointer, we have to make sure that we update the
182 pointers to the alloc/free functions in the obstack, in case
183 these functions have moved within the current gdb. */
184
185 int fd;
186
187 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
188 flags);
189 if (fd >= 0)
190 {
191 void *md;
192
193 if ((md = map_to_file (fd)) == NULL)
194 {
195 close (fd);
196 }
197 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
198 {
199 /* Update memory corruption handler function addresses. */
200 init_malloc (md);
201 objfile->md = md;
202 objfile->mmfd = fd;
203 /* Update pointers to functions to *our* copies */
204 if (objfile->demangled_names_hash)
205 htab_set_functions_ex
206 (objfile->demangled_names_hash, htab_hash_string,
207 (int (*) (const void *, const void *)) streq, NULL,
208 objfile->md, xmcalloc, xmfree);
209 obstack_chunkfun (&objfile->psymbol_cache.cache, xmmalloc);
210 obstack_freefun (&objfile->psymbol_cache.cache, xmfree);
211 obstack_chunkfun (&objfile->macro_cache.cache, xmmalloc);
212 obstack_freefun (&objfile->macro_cache.cache, xmfree);
213 obstack_chunkfun (&objfile->psymbol_obstack, xmmalloc);
214 obstack_freefun (&objfile->psymbol_obstack, xmfree);
215 obstack_chunkfun (&objfile->symbol_obstack, xmmalloc);
216 obstack_freefun (&objfile->symbol_obstack, xmfree);
217 obstack_chunkfun (&objfile->type_obstack, xmmalloc);
218 obstack_freefun (&objfile->type_obstack, xmfree);
219 /* If already in objfile list, unlink it. */
220 unlink_objfile (objfile);
221 /* Forget things specific to a particular gdb, may have changed. */
222 objfile->sf = NULL;
223 }
224 else
225 {
226
227 /* Set up to detect internal memory corruption. MUST be
228 done before the first malloc. See comments in
229 init_malloc() and mmcheck(). */
230
231 init_malloc (md);
232
233 objfile = (struct objfile *)
234 xmmalloc (md, sizeof (struct objfile));
235 memset (objfile, 0, sizeof (struct objfile));
236 objfile->md = md;
237 objfile->mmfd = fd;
238 objfile->flags |= OBJF_MAPPED;
239 mmalloc_setkey (objfile->md, 0, objfile);
240 obstack_specify_allocation_with_arg (&objfile->psymbol_cache.cache,
241 0, 0, xmmalloc, xmfree,
242 objfile->md);
243 obstack_specify_allocation_with_arg (&objfile->macro_cache.cache,
244 0, 0, xmmalloc, xmfree,
245 objfile->md);
246 obstack_specify_allocation_with_arg (&objfile->psymbol_obstack,
247 0, 0, xmmalloc, xmfree,
248 objfile->md);
249 obstack_specify_allocation_with_arg (&objfile->symbol_obstack,
250 0, 0, xmmalloc, xmfree,
251 objfile->md);
252 obstack_specify_allocation_with_arg (&objfile->type_obstack,
253 0, 0, xmmalloc, xmfree,
254 objfile->md);
255 }
256 }
257
258 if ((flags & OBJF_MAPPED) && (objfile == NULL))
259 {
260 warning ("symbol table for '%s' will not be mapped",
261 bfd_get_filename (abfd));
262 flags &= ~OBJF_MAPPED;
263 }
264 }
265#else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */
266
267 if (flags & OBJF_MAPPED)
268 {
269 warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
270
271 /* Turn off the global flag so we don't try to do mapped symbol tables
272 any more, which shuts up gdb unless the user specifically gives the
273 "mapped" keyword again. */
274
275 mapped_symbol_files = 0;
276 flags &= ~OBJF_MAPPED;
277 }
278
279#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
280
281 /* If we don't support mapped symbol files, didn't ask for the file to be
282 mapped, or failed to open the mapped file for some reason, then revert
283 back to an unmapped objfile. */
284
285 if (objfile == NULL)
286 {
287 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
288 memset (objfile, 0, sizeof (struct objfile));
289 objfile->md = NULL;
290 objfile->psymbol_cache = bcache_xmalloc ();
291 objfile->macro_cache = bcache_xmalloc ();
292 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
293 xfree);
294 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
295 xfree);
296 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
297 xfree);
298 flags &= ~OBJF_MAPPED;
299
300 terminate_minimal_symbol_table (objfile);
301 }
302
303 /* Update the per-objfile information that comes from the bfd, ensuring
304 that any data that is reference is saved in the per-objfile data
305 region. */
306
307 objfile->obfd = abfd;
308 if (objfile->name != NULL)
309 {
310 xmfree (objfile->md, objfile->name);
311 }
312 if (abfd != NULL)
313 {
314 objfile->name = mstrsave (objfile->md, bfd_get_filename (abfd));
315 objfile->mtime = bfd_get_mtime (abfd);
316
317 /* Build section table. */
318
319 if (build_objfile_section_table (objfile))
320 {
321 error ("Can't find the file sections in `%s': %s",
322 objfile->name, bfd_errmsg (bfd_get_error ()));
323 }
324 }
325 else
326 {
327 objfile->name = "<<anonymous objfile>>";
328 }
329
330 /* Initialize the section indexes for this objfile, so that we can
331 later detect if they are used w/o being properly assigned to. */
332
333 objfile->sect_index_text = -1;
334 objfile->sect_index_data = -1;
335 objfile->sect_index_bss = -1;
336 objfile->sect_index_rodata = -1;
337
338 /* Add this file onto the tail of the linked list of other such files. */
339
340 objfile->next = NULL;
341 if (object_files == NULL)
342 object_files = objfile;
343 else
344 {
345 for (last_one = object_files;
346 last_one->next;
347 last_one = last_one->next);
348 last_one->next = objfile;
349 }
350
351 /* Save passed in flag bits. */
352 objfile->flags |= flags;
353
354 return (objfile);
355}
356
357
358/* Create the terminating entry of OBJFILE's minimal symbol table.
359 If OBJFILE->msymbols is zero, allocate a single entry from
360 OBJFILE->symbol_obstack; otherwise, just initialize
361 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
362void
363terminate_minimal_symbol_table (struct objfile *objfile)
364{
365 if (! objfile->msymbols)
366 objfile->msymbols = ((struct minimal_symbol *)
367 obstack_alloc (&objfile->symbol_obstack,
368 sizeof (objfile->msymbols[0])));
369
370 {
371 struct minimal_symbol *m
372 = &objfile->msymbols[objfile->minimal_symbol_count];
373
374 memset (m, 0, sizeof (*m));
375 SYMBOL_NAME (m) = NULL;
376 SYMBOL_VALUE_ADDRESS (m) = 0;
377 MSYMBOL_INFO (m) = NULL;
378 MSYMBOL_TYPE (m) = mst_unknown;
379 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
380 }
381}
382
383
384/* Put one object file before a specified on in the global list.
385 This can be used to make sure an object file is destroyed before
386 another when using ALL_OBJFILES_SAFE to free all objfiles. */
387void
388put_objfile_before (struct objfile *objfile, struct objfile *before_this)
389{
390 struct objfile **objp;
391
392 unlink_objfile (objfile);
393
394 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
395 {
396 if (*objp == before_this)
397 {
398 objfile->next = *objp;
399 *objp = objfile;
400 return;
401 }
402 }
403
404 internal_error (__FILE__, __LINE__,
405 "put_objfile_before: before objfile not in list");
406}
407
408/* Put OBJFILE at the front of the list. */
409
410void
411objfile_to_front (struct objfile *objfile)
412{
413 struct objfile **objp;
414 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
415 {
416 if (*objp == objfile)
417 {
418 /* Unhook it from where it is. */
419 *objp = objfile->next;
420 /* Put it in the front. */
421 objfile->next = object_files;
422 object_files = objfile;
423 break;
424 }
425 }
426}
427
428/* Unlink OBJFILE from the list of known objfiles, if it is found in the
429 list.
430
431 It is not a bug, or error, to call this function if OBJFILE is not known
432 to be in the current list. This is done in the case of mapped objfiles,
433 for example, just to ensure that the mapped objfile doesn't appear twice
434 in the list. Since the list is threaded, linking in a mapped objfile
435 twice would create a circular list.
436
437 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
438 unlinking it, just to ensure that we have completely severed any linkages
439 between the OBJFILE and the list. */
440
441void
442unlink_objfile (struct objfile *objfile)
443{
444 struct objfile **objpp;
445
446 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
447 {
448 if (*objpp == objfile)
449 {
450 *objpp = (*objpp)->next;
451 objfile->next = NULL;
452 return;
453 }
454 }
455
456 internal_error (__FILE__, __LINE__,
457 "unlink_objfile: objfile already unlinked");
458}
459
460
461/* Destroy an objfile and all the symtabs and psymtabs under it. Note
462 that as much as possible is allocated on the symbol_obstack and
463 psymbol_obstack, so that the memory can be efficiently freed.
464
465 Things which we do NOT free because they are not in malloc'd memory
466 or not in memory specific to the objfile include:
467
468 objfile -> sf
469
470 FIXME: If the objfile is using reusable symbol information (via mmalloc),
471 then we need to take into account the fact that more than one process
472 may be using the symbol information at the same time (when mmalloc is
473 extended to support cooperative locking). When more than one process
474 is using the mapped symbol info, we need to be more careful about when
475 we free objects in the reusable area. */
476
477void
478free_objfile (struct objfile *objfile)
479{
480 if (objfile->separate_debug_objfile)
481 {
482 free_objfile (objfile->separate_debug_objfile);
483 }
484
485 if (objfile->separate_debug_objfile_backlink)
486 {
487 /* We freed the separate debug file, make sure the base objfile
488 doesn't reference it. */
489 objfile->separate_debug_objfile_backlink->separate_debug_objfile = NULL;
490 }
491
492 /* First do any symbol file specific actions required when we are
493 finished with a particular symbol file. Note that if the objfile
494 is using reusable symbol information (via mmalloc) then each of
495 these routines is responsible for doing the correct thing, either
496 freeing things which are valid only during this particular gdb
497 execution, or leaving them to be reused during the next one. */
498
499 if (objfile->sf != NULL)
500 {
501 (*objfile->sf->sym_finish) (objfile);
502 }
503
504 /* We always close the bfd. */
505
506 if (objfile->obfd != NULL)
507 {
508 char *name = bfd_get_filename (objfile->obfd);
509 if (!bfd_close (objfile->obfd))
510 warning ("cannot close \"%s\": %s",
511 name, bfd_errmsg (bfd_get_error ()));
512 xfree (name);
513 }
514
515 /* Remove it from the chain of all objfiles. */
516
517 unlink_objfile (objfile);
518
519 /* If we are going to free the runtime common objfile, mark it
520 as unallocated. */
521
522 if (objfile == rt_common_objfile)
523 rt_common_objfile = NULL;
524
525 /* Before the symbol table code was redone to make it easier to
526 selectively load and remove information particular to a specific
527 linkage unit, gdb used to do these things whenever the monolithic
528 symbol table was blown away. How much still needs to be done
529 is unknown, but we play it safe for now and keep each action until
530 it is shown to be no longer needed. */
531
532 /* I *think* all our callers call clear_symtab_users. If so, no need
533 to call this here. */
534 clear_pc_function_cache ();
535
536 /* The last thing we do is free the objfile struct itself for the
537 non-reusable case, or detach from the mapped file for the
538 reusable case. Note that the mmalloc_detach or the xmfree() is
539 the last thing we can do with this objfile. */
540
541#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
542
543 if (objfile->flags & OBJF_MAPPED)
544 {
545 /* Remember the fd so we can close it. We can't close it before
546 doing the detach, and after the detach the objfile is gone. */
547 int mmfd;
548
549 mmfd = objfile->mmfd;
550 mmalloc_detach (objfile->md);
551 objfile = NULL;
552 close (mmfd);
553 }
554
555#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
556
557 /* If we still have an objfile, then either we don't support reusable
558 objfiles or this one was not reusable. So free it normally. */
559
560 if (objfile != NULL)
561 {
562 if (objfile->name != NULL)
563 {
564 xmfree (objfile->md, objfile->name);
565 }
566 if (objfile->global_psymbols.list)
567 xmfree (objfile->md, objfile->global_psymbols.list);
568 if (objfile->static_psymbols.list)
569 xmfree (objfile->md, objfile->static_psymbols.list);
570 /* Free the obstacks for non-reusable objfiles */
571 bcache_xfree (objfile->psymbol_cache);
572 bcache_xfree (objfile->macro_cache);
573 if (objfile->demangled_names_hash)
574 htab_delete (objfile->demangled_names_hash);
575 obstack_free (&objfile->psymbol_obstack, 0);
576 obstack_free (&objfile->symbol_obstack, 0);
577 obstack_free (&objfile->type_obstack, 0);
578 xmfree (objfile->md, objfile);
579 objfile = NULL;
580 }
581}
582
583static void
584do_free_objfile_cleanup (void *obj)
585{
586 free_objfile (obj);
587}
588
589struct cleanup *
590make_cleanup_free_objfile (struct objfile *obj)
591{
592 return make_cleanup (do_free_objfile_cleanup, obj);
593}
594
595/* Free all the object files at once and clean up their users. */
596
597void
598free_all_objfiles (void)
599{
600 struct objfile *objfile, *temp;
601
602 ALL_OBJFILES_SAFE (objfile, temp)
603 {
604 free_objfile (objfile);
605 }
606 clear_symtab_users ();
607}
608\f
609/* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
610 entries in new_offsets. */
611void
612objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
613{
614 struct section_offsets *delta =
615 (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
616
617 {
618 int i;
619 int something_changed = 0;
620 for (i = 0; i < objfile->num_sections; ++i)
621 {
622 delta->offsets[i] =
623 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
624 if (ANOFFSET (delta, i) != 0)
625 something_changed = 1;
626 }
627 if (!something_changed)
628 return;
629 }
630
631 /* OK, get all the symtabs. */
632 {
633 struct symtab *s;
634
635 ALL_OBJFILE_SYMTABS (objfile, s)
636 {
637 struct linetable *l;
638 struct blockvector *bv;
639 int i;
640
641 /* First the line table. */
642 l = LINETABLE (s);
643 if (l)
644 {
645 for (i = 0; i < l->nitems; ++i)
646 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
647 }
648
649 /* Don't relocate a shared blockvector more than once. */
650 if (!s->primary)
651 continue;
652
653 bv = BLOCKVECTOR (s);
654 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
655 {
656 struct block *b;
657 struct symbol *sym;
658 int j;
659
660 b = BLOCKVECTOR_BLOCK (bv, i);
661 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
662 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
663
664 ALL_BLOCK_SYMBOLS (b, j, sym)
665 {
666 fixup_symbol_section (sym, objfile);
667
668 /* The RS6000 code from which this was taken skipped
669 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
670 But I'm leaving out that test, on the theory that
671 they can't possibly pass the tests below. */
672 if ((SYMBOL_CLASS (sym) == LOC_LABEL
673 || SYMBOL_CLASS (sym) == LOC_STATIC
674 || SYMBOL_CLASS (sym) == LOC_INDIRECT)
675 && SYMBOL_SECTION (sym) >= 0)
676 {
677 SYMBOL_VALUE_ADDRESS (sym) +=
678 ANOFFSET (delta, SYMBOL_SECTION (sym));
679 }
680#ifdef MIPS_EFI_SYMBOL_NAME
681 /* Relocate Extra Function Info for ecoff. */
682
683 else if (SYMBOL_CLASS (sym) == LOC_CONST
684 && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
685 && strcmp (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
686 ecoff_relocate_efi (sym, ANOFFSET (delta,
687 s->block_line_section));
688#endif
689 }
690 }
691 }
692 }
693
694 {
695 struct partial_symtab *p;
696
697 ALL_OBJFILE_PSYMTABS (objfile, p)
698 {
699 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
700 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
701 }
702 }
703
704 {
705 struct partial_symbol **psym;
706
707 for (psym = objfile->global_psymbols.list;
708 psym < objfile->global_psymbols.next;
709 psym++)
710 {
711 fixup_psymbol_section (*psym, objfile);
712 if (SYMBOL_SECTION (*psym) >= 0)
713 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
714 SYMBOL_SECTION (*psym));
715 }
716 for (psym = objfile->static_psymbols.list;
717 psym < objfile->static_psymbols.next;
718 psym++)
719 {
720 fixup_psymbol_section (*psym, objfile);
721 if (SYMBOL_SECTION (*psym) >= 0)
722 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
723 SYMBOL_SECTION (*psym));
724 }
725 }
726
727 {
728 struct minimal_symbol *msym;
729 ALL_OBJFILE_MSYMBOLS (objfile, msym)
730 if (SYMBOL_SECTION (msym) >= 0)
731 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
732 }
733 /* Relocating different sections by different amounts may cause the symbols
734 to be out of order. */
735 msymbols_sort (objfile);
736
737 {
738 int i;
739 for (i = 0; i < objfile->num_sections; ++i)
740 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
741 }
742
743 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
744 {
745 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
746 only as a fallback. */
747 struct obj_section *s;
748 s = find_pc_section (objfile->ei.entry_point);
749 if (s)
750 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
751 else
752 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
753 }
754
755 {
756 struct obj_section *s;
757 bfd *abfd;
758
759 abfd = objfile->obfd;
760
761 ALL_OBJFILE_OSECTIONS (objfile, s)
762 {
763 int idx = s->the_bfd_section->index;
764
765 s->addr += ANOFFSET (delta, idx);
766 s->endaddr += ANOFFSET (delta, idx);
767 }
768 }
769
770 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
771 {
772 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
773 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
774 }
775
776 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
777 {
778 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
779 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
780 }
781
782 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
783 {
784 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
785 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
786 }
787
788 /* Relocate breakpoints as necessary, after things are relocated. */
789 breakpoint_re_set ();
790}
791\f
792/* Many places in gdb want to test just to see if we have any partial
793 symbols available. This function returns zero if none are currently
794 available, nonzero otherwise. */
795
796int
797have_partial_symbols (void)
798{
799 struct objfile *ofp;
800
801 ALL_OBJFILES (ofp)
802 {
803 if (ofp->psymtabs != NULL)
804 {
805 return 1;
806 }
807 }
808 return 0;
809}
810
811/* Many places in gdb want to test just to see if we have any full
812 symbols available. This function returns zero if none are currently
813 available, nonzero otherwise. */
814
815int
816have_full_symbols (void)
817{
818 struct objfile *ofp;
819
820 ALL_OBJFILES (ofp)
821 {
822 if (ofp->symtabs != NULL)
823 {
824 return 1;
825 }
826 }
827 return 0;
828}
829
830
831/* This operations deletes all objfile entries that represent solibs that
832 weren't explicitly loaded by the user, via e.g., the add-symbol-file
833 command.
834 */
835void
836objfile_purge_solibs (void)
837{
838 struct objfile *objf;
839 struct objfile *temp;
840
841 ALL_OBJFILES_SAFE (objf, temp)
842 {
843 /* We assume that the solib package has been purged already, or will
844 be soon.
845 */
846 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
847 free_objfile (objf);
848 }
849}
850
851
852/* Many places in gdb want to test just to see if we have any minimal
853 symbols available. This function returns zero if none are currently
854 available, nonzero otherwise. */
855
856int
857have_minimal_symbols (void)
858{
859 struct objfile *ofp;
860
861 ALL_OBJFILES (ofp)
862 {
863 if (ofp->minimal_symbol_count > 0)
864 {
865 return 1;
866 }
867 }
868 return 0;
869}
870
871#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
872
873/* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
874 of the corresponding symbol file in MTIME, try to open an existing file
875 with the name SYMSFILENAME and verify it is more recent than the base
876 file by checking it's timestamp against MTIME.
877
878 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
879
880 If SYMSFILENAME does exist, but is out of date, we check to see if the
881 user has specified creation of a mapped file. If so, we don't issue
882 any warning message because we will be creating a new mapped file anyway,
883 overwriting the old one. If not, then we issue a warning message so that
884 the user will know why we aren't using this existing mapped symbol file.
885 In either case, we return -1.
886
887 If SYMSFILENAME does exist and is not out of date, but can't be opened for
888 some reason, then prints an appropriate system error message and returns -1.
889
890 Otherwise, returns the open file descriptor. */
891
892static int
893open_existing_mapped_file (char *symsfilename, long mtime, int flags)
894{
895 int fd = -1;
896 struct stat sbuf;
897
898 if (stat (symsfilename, &sbuf) == 0)
899 {
900 if (sbuf.st_mtime < mtime)
901 {
902 if (!(flags & OBJF_MAPPED))
903 {
904 warning ("mapped symbol file `%s' is out of date, ignored it",
905 symsfilename);
906 }
907 }
908 else if ((fd = open (symsfilename, O_RDWR)) < 0)
909 {
910 if (error_pre_print)
911 {
912 printf_unfiltered (error_pre_print);
913 }
914 print_sys_errmsg (symsfilename, errno);
915 }
916 }
917 return (fd);
918}
919
920/* Look for a mapped symbol file that corresponds to FILENAME and is more
921 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
922 use a mapped symbol file for this file, so create a new one if one does
923 not currently exist.
924
925 If found, then return an open file descriptor for the file, otherwise
926 return -1.
927
928 This routine is responsible for implementing the policy that generates
929 the name of the mapped symbol file from the name of a file containing
930 symbols that gdb would like to read. Currently this policy is to append
931 ".syms" to the name of the file.
932
933 This routine is also responsible for implementing the policy that
934 determines where the mapped symbol file is found (the search path).
935 This policy is that when reading an existing mapped file, a file of
936 the correct name in the current directory takes precedence over a
937 file of the correct name in the same directory as the symbol file.
938 When creating a new mapped file, it is always created in the current
939 directory. This helps to minimize the chances of a user unknowingly
940 creating big mapped files in places like /bin and /usr/local/bin, and
941 allows a local copy to override a manually installed global copy (in
942 /bin for example). */
943
944static int
945open_mapped_file (char *filename, long mtime, int flags)
946{
947 int fd;
948 char *symsfilename;
949
950 /* First try to open an existing file in the current directory, and
951 then try the directory where the symbol file is located. */
952
953 symsfilename = concat ("./", lbasename (filename), ".syms", (char *) NULL);
954 if ((fd = open_existing_mapped_file (symsfilename, mtime, flags)) < 0)
955 {
956 xfree (symsfilename);
957 symsfilename = concat (filename, ".syms", (char *) NULL);
958 fd = open_existing_mapped_file (symsfilename, mtime, flags);
959 }
960
961 /* If we don't have an open file by now, then either the file does not
962 already exist, or the base file has changed since it was created. In
963 either case, if the user has specified use of a mapped file, then
964 create a new mapped file, truncating any existing one. If we can't
965 create one, print a system error message saying why we can't.
966
967 By default the file is rw for everyone, with the user's umask taking
968 care of turning off the permissions the user wants off. */
969
970 if ((fd < 0) && (flags & OBJF_MAPPED))
971 {
972 xfree (symsfilename);
973 symsfilename = concat ("./", lbasename (filename), ".syms",
974 (char *) NULL);
975 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
976 {
977 if (error_pre_print)
978 {
979 printf_unfiltered (error_pre_print);
980 }
981 print_sys_errmsg (symsfilename, errno);
982 }
983 }
984
985 xfree (symsfilename);
986 return (fd);
987}
988
989static void *
990map_to_file (int fd)
991{
992 void *md;
993 CORE_ADDR mapto;
994
995 md = mmalloc_attach (fd, 0);
996 if (md != NULL)
997 {
998 mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
999 md = mmalloc_detach (md);
1000 if (md != NULL)
1001 {
1002 /* FIXME: should figure out why detach failed */
1003 md = NULL;
1004 }
1005 else if (mapto != (CORE_ADDR) NULL)
1006 {
1007 /* This mapping file needs to be remapped at "mapto" */
1008 md = mmalloc_attach (fd, mapto);
1009 }
1010 else
1011 {
1012 /* This is a freshly created mapping file. */
1013 mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
1014 if (mapto != 0)
1015 {
1016 /* To avoid reusing the freshly created mapping file, at the
1017 address selected by mmap, we must truncate it before trying
1018 to do an attach at the address we want. */
1019 ftruncate (fd, 0);
1020 md = mmalloc_attach (fd, mapto);
1021 if (md != NULL)
1022 {
1023 mmalloc_setkey (md, 1, mapto);
1024 }
1025 }
1026 }
1027 }
1028 return (md);
1029}
1030
1031#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
1032
1033/* Returns a section whose range includes PC and SECTION,
1034 or NULL if none found. Note the distinction between the return type,
1035 struct obj_section (which is defined in gdb), and the input type
1036 struct sec (which is a bfd-defined data type). The obj_section
1037 contains a pointer to the bfd struct sec section. */
1038
1039struct obj_section *
1040find_pc_sect_section (CORE_ADDR pc, struct sec *section)
1041{
1042 struct obj_section *s;
1043 struct objfile *objfile;
1044
1045 ALL_OBJSECTIONS (objfile, s)
1046 if ((section == 0 || section == s->the_bfd_section) &&
1047 s->addr <= pc && pc < s->endaddr)
1048 return (s);
1049
1050 return (NULL);
1051}
1052
1053/* Returns a section whose range includes PC or NULL if none found.
1054 Backward compatibility, no section. */
1055
1056struct obj_section *
1057find_pc_section (CORE_ADDR pc)
1058{
1059 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
1060}
1061
1062
1063/* In SVR4, we recognize a trampoline by it's section name.
1064 That is, if the pc is in a section named ".plt" then we are in
1065 a trampoline. */
1066
1067int
1068in_plt_section (CORE_ADDR pc, char *name)
1069{
1070 struct obj_section *s;
1071 int retval = 0;
1072
1073 s = find_pc_section (pc);
1074
1075 retval = (s != NULL
1076 && s->the_bfd_section->name != NULL
1077 && STREQ (s->the_bfd_section->name, ".plt"));
1078 return (retval);
1079}
1080
1081/* Return nonzero if NAME is in the import list of OBJFILE. Else
1082 return zero. */
1083
1084int
1085is_in_import_list (char *name, struct objfile *objfile)
1086{
1087 register int i;
1088
1089 if (!objfile || !name || !*name)
1090 return 0;
1091
1092 for (i = 0; i < objfile->import_list_size; i++)
1093 if (objfile->import_list[i] && STREQ (name, objfile->import_list[i]))
1094 return 1;
1095 return 0;
1096}
1097
This page took 0.025891 seconds and 4 git commands to generate.