*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / objfiles.c
... / ...
CommitLineData
1/* GDB routines for manipulating objfiles.
2
3 Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25/* This file contains support routines for creating, manipulating, and
26 destroying objfile structures. */
27
28#include "defs.h"
29#include "bfd.h" /* Binary File Description */
30#include "symtab.h"
31#include "symfile.h"
32#include "objfiles.h"
33#include "gdb-stabs.h"
34#include "target.h"
35#include "bcache.h"
36
37#include "gdb_assert.h"
38#include <sys/types.h>
39#include "gdb_stat.h"
40#include <fcntl.h>
41#include "gdb_obstack.h"
42#include "gdb_string.h"
43#include "hashtab.h"
44
45#include "breakpoint.h"
46#include "block.h"
47#include "dictionary.h"
48
49/* Prototypes for local functions */
50
51#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
52
53#include "mmalloc.h"
54
55static int open_existing_mapped_file (char *, long, int);
56
57static int open_mapped_file (char *filename, long mtime, int flags);
58
59static void *map_to_file (int);
60
61#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
62
63static void objfile_alloc_data (struct objfile *objfile);
64static void objfile_free_data (struct objfile *objfile);
65
66/* Externally visible variables that are owned by this module.
67 See declarations in objfile.h for more info. */
68
69struct objfile *object_files; /* Linked list of all objfiles */
70struct objfile *current_objfile; /* For symbol file being read in */
71struct objfile *symfile_objfile; /* Main symbol table loaded from */
72struct objfile *rt_common_objfile; /* For runtime common symbols */
73
74int mapped_symbol_files; /* Try to use mapped symbol files */
75
76/* Locate all mappable sections of a BFD file.
77 objfile_p_char is a char * to get it through
78 bfd_map_over_sections; we cast it back to its proper type. */
79
80#ifndef TARGET_KEEP_SECTION
81#define TARGET_KEEP_SECTION(ASECT) 0
82#endif
83
84/* Called via bfd_map_over_sections to build up the section table that
85 the objfile references. The objfile contains pointers to the start
86 of the table (objfile->sections) and to the first location after
87 the end of the table (objfile->sections_end). */
88
89static void
90add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
91 void *objfile_p_char)
92{
93 struct objfile *objfile = (struct objfile *) objfile_p_char;
94 struct obj_section section;
95 flagword aflag;
96
97 aflag = bfd_get_section_flags (abfd, asect);
98
99 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
100 return;
101
102 if (0 == bfd_section_size (abfd, asect))
103 return;
104 section.offset = 0;
105 section.objfile = objfile;
106 section.the_bfd_section = asect;
107 section.ovly_mapped = 0;
108 section.addr = bfd_section_vma (abfd, asect);
109 section.endaddr = section.addr + bfd_section_size (abfd, asect);
110 obstack_grow (&objfile->psymbol_obstack, (char *) &section, sizeof (section));
111 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
112}
113
114/* Builds a section table for OBJFILE.
115 Returns 0 if OK, 1 on error (in which case bfd_error contains the
116 error).
117
118 Note that while we are building the table, which goes into the
119 psymbol obstack, we hijack the sections_end pointer to instead hold
120 a count of the number of sections. When bfd_map_over_sections
121 returns, this count is used to compute the pointer to the end of
122 the sections table, which then overwrites the count.
123
124 Also note that the OFFSET and OVLY_MAPPED in each table entry
125 are initialized to zero.
126
127 Also note that if anything else writes to the psymbol obstack while
128 we are building the table, we're pretty much hosed. */
129
130int
131build_objfile_section_table (struct objfile *objfile)
132{
133 /* objfile->sections can be already set when reading a mapped symbol
134 file. I believe that we do need to rebuild the section table in
135 this case (we rebuild other things derived from the bfd), but we
136 can't free the old one (it's in the psymbol_obstack). So we just
137 waste some memory. */
138
139 objfile->sections_end = 0;
140 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
141 objfile->sections = (struct obj_section *)
142 obstack_finish (&objfile->psymbol_obstack);
143 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
144 return (0);
145}
146
147/* Given a pointer to an initialized bfd (ABFD) and some flag bits
148 allocate a new objfile struct, fill it in as best we can, link it
149 into the list of all known objfiles, and return a pointer to the
150 new objfile struct.
151
152 The FLAGS word contains various bits (OBJF_*) that can be taken as
153 requests for specific operations, like trying to open a mapped
154 version of the objfile (OBJF_MAPPED). Other bits like
155 OBJF_SHARED are simply copied through to the new objfile flags
156 member. */
157
158/* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
159 by jv-lang.c, to create an artificial objfile used to hold
160 information about dynamically-loaded Java classes. Unfortunately,
161 that branch of this function doesn't get tested very frequently, so
162 it's prone to breakage. (E.g. at one time the name was set to NULL
163 in that situation, which broke a loop over all names in the dynamic
164 library loader.) If you change this function, please try to leave
165 things in a consistent state even if abfd is NULL. */
166
167struct objfile *
168allocate_objfile (bfd *abfd, int flags)
169{
170 struct objfile *objfile = NULL;
171 struct objfile *last_one = NULL;
172
173 if (mapped_symbol_files)
174 flags |= OBJF_MAPPED;
175
176#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
177 if (abfd != NULL)
178 {
179
180 /* If we can support mapped symbol files, try to open/reopen the
181 mapped file that corresponds to the file from which we wish to
182 read symbols. If the objfile is to be mapped, we must malloc
183 the structure itself using the mmap version, and arrange that
184 all memory allocation for the objfile uses the mmap routines.
185 If we are reusing an existing mapped file, from which we get
186 our objfile pointer, we have to make sure that we update the
187 pointers to the alloc/free functions in the obstack, in case
188 these functions have moved within the current gdb. */
189
190 int fd;
191
192 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
193 flags);
194 if (fd >= 0)
195 {
196 void *md;
197
198 if ((md = map_to_file (fd)) == NULL)
199 {
200 close (fd);
201 }
202 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
203 {
204 /* Update memory corruption handler function addresses. */
205 init_malloc (md);
206 objfile->md = md;
207 objfile->mmfd = fd;
208 /* Update pointers to functions to *our* copies */
209 if (objfile->demangled_names_hash)
210 htab_set_functions_ex
211 (objfile->demangled_names_hash, htab_hash_string,
212 (int (*) (const void *, const void *)) streq, NULL,
213 objfile->md, xmcalloc, xmfree);
214 obstack_chunkfun (&objfile->psymbol_cache.cache, xmmalloc);
215 obstack_freefun (&objfile->psymbol_cache.cache, xmfree);
216 obstack_chunkfun (&objfile->macro_cache.cache, xmmalloc);
217 obstack_freefun (&objfile->macro_cache.cache, xmfree);
218 obstack_chunkfun (&objfile->psymbol_obstack, xmmalloc);
219 obstack_freefun (&objfile->psymbol_obstack, xmfree);
220 obstack_chunkfun (&objfile->symbol_obstack, xmmalloc);
221 obstack_freefun (&objfile->symbol_obstack, xmfree);
222 obstack_chunkfun (&objfile->type_obstack, xmmalloc);
223 obstack_freefun (&objfile->type_obstack, xmfree);
224 /* If already in objfile list, unlink it. */
225 unlink_objfile (objfile);
226 /* Forget things specific to a particular gdb, may have changed. */
227 objfile->sf = NULL;
228 }
229 else
230 {
231
232 /* Set up to detect internal memory corruption. MUST be
233 done before the first malloc. See comments in
234 init_malloc() and mmcheck(). */
235
236 init_malloc (md);
237
238 objfile = (struct objfile *)
239 xmmalloc (md, sizeof (struct objfile));
240 memset (objfile, 0, sizeof (struct objfile));
241 objfile->md = md;
242 objfile->mmfd = fd;
243 objfile->flags |= OBJF_MAPPED;
244 mmalloc_setkey (objfile->md, 0, objfile);
245 obstack_specify_allocation_with_arg (&objfile->psymbol_cache.cache,
246 0, 0, xmmalloc, xmfree,
247 objfile->md);
248 obstack_specify_allocation_with_arg (&objfile->macro_cache.cache,
249 0, 0, xmmalloc, xmfree,
250 objfile->md);
251 obstack_specify_allocation_with_arg (&objfile->psymbol_obstack,
252 0, 0, xmmalloc, xmfree,
253 objfile->md);
254 obstack_specify_allocation_with_arg (&objfile->symbol_obstack,
255 0, 0, xmmalloc, xmfree,
256 objfile->md);
257 obstack_specify_allocation_with_arg (&objfile->type_obstack,
258 0, 0, xmmalloc, xmfree,
259 objfile->md);
260 }
261 }
262
263 if ((flags & OBJF_MAPPED) && (objfile == NULL))
264 {
265 warning ("symbol table for '%s' will not be mapped",
266 bfd_get_filename (abfd));
267 flags &= ~OBJF_MAPPED;
268 }
269 }
270#else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */
271
272 if (flags & OBJF_MAPPED)
273 {
274 warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
275
276 /* Turn off the global flag so we don't try to do mapped symbol tables
277 any more, which shuts up gdb unless the user specifically gives the
278 "mapped" keyword again. */
279
280 mapped_symbol_files = 0;
281 flags &= ~OBJF_MAPPED;
282 }
283
284#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
285
286 /* If we don't support mapped symbol files, didn't ask for the file to be
287 mapped, or failed to open the mapped file for some reason, then revert
288 back to an unmapped objfile. */
289
290 if (objfile == NULL)
291 {
292 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
293 memset (objfile, 0, sizeof (struct objfile));
294 objfile->md = NULL;
295 objfile->psymbol_cache = bcache_xmalloc ();
296 objfile->macro_cache = bcache_xmalloc ();
297 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
298 xfree);
299 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
300 xfree);
301 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
302 xfree);
303 flags &= ~OBJF_MAPPED;
304
305 terminate_minimal_symbol_table (objfile);
306 }
307
308 objfile_alloc_data (objfile);
309
310 /* Update the per-objfile information that comes from the bfd, ensuring
311 that any data that is reference is saved in the per-objfile data
312 region. */
313
314 objfile->obfd = abfd;
315 if (objfile->name != NULL)
316 {
317 xmfree (objfile->md, objfile->name);
318 }
319 if (abfd != NULL)
320 {
321 objfile->name = mstrsave (objfile->md, bfd_get_filename (abfd));
322 objfile->mtime = bfd_get_mtime (abfd);
323
324 /* Build section table. */
325
326 if (build_objfile_section_table (objfile))
327 {
328 error ("Can't find the file sections in `%s': %s",
329 objfile->name, bfd_errmsg (bfd_get_error ()));
330 }
331 }
332 else
333 {
334 objfile->name = mstrsave (objfile->md, "<<anonymous objfile>>");
335 }
336
337 /* Initialize the section indexes for this objfile, so that we can
338 later detect if they are used w/o being properly assigned to. */
339
340 objfile->sect_index_text = -1;
341 objfile->sect_index_data = -1;
342 objfile->sect_index_bss = -1;
343 objfile->sect_index_rodata = -1;
344
345 /* We don't yet have a C++-specific namespace symtab. */
346
347 objfile->cp_namespace_symtab = NULL;
348
349 /* Add this file onto the tail of the linked list of other such files. */
350
351 objfile->next = NULL;
352 if (object_files == NULL)
353 object_files = objfile;
354 else
355 {
356 for (last_one = object_files;
357 last_one->next;
358 last_one = last_one->next);
359 last_one->next = objfile;
360 }
361
362 /* Save passed in flag bits. */
363 objfile->flags |= flags;
364
365 return (objfile);
366}
367
368
369/* Create the terminating entry of OBJFILE's minimal symbol table.
370 If OBJFILE->msymbols is zero, allocate a single entry from
371 OBJFILE->symbol_obstack; otherwise, just initialize
372 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
373void
374terminate_minimal_symbol_table (struct objfile *objfile)
375{
376 if (! objfile->msymbols)
377 objfile->msymbols = ((struct minimal_symbol *)
378 obstack_alloc (&objfile->symbol_obstack,
379 sizeof (objfile->msymbols[0])));
380
381 {
382 struct minimal_symbol *m
383 = &objfile->msymbols[objfile->minimal_symbol_count];
384
385 memset (m, 0, sizeof (*m));
386 DEPRECATED_SYMBOL_NAME (m) = NULL;
387 SYMBOL_VALUE_ADDRESS (m) = 0;
388 MSYMBOL_INFO (m) = NULL;
389 MSYMBOL_TYPE (m) = mst_unknown;
390 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
391 }
392}
393
394
395/* Put one object file before a specified on in the global list.
396 This can be used to make sure an object file is destroyed before
397 another when using ALL_OBJFILES_SAFE to free all objfiles. */
398void
399put_objfile_before (struct objfile *objfile, struct objfile *before_this)
400{
401 struct objfile **objp;
402
403 unlink_objfile (objfile);
404
405 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
406 {
407 if (*objp == before_this)
408 {
409 objfile->next = *objp;
410 *objp = objfile;
411 return;
412 }
413 }
414
415 internal_error (__FILE__, __LINE__,
416 "put_objfile_before: before objfile not in list");
417}
418
419/* Put OBJFILE at the front of the list. */
420
421void
422objfile_to_front (struct objfile *objfile)
423{
424 struct objfile **objp;
425 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
426 {
427 if (*objp == objfile)
428 {
429 /* Unhook it from where it is. */
430 *objp = objfile->next;
431 /* Put it in the front. */
432 objfile->next = object_files;
433 object_files = objfile;
434 break;
435 }
436 }
437}
438
439/* Unlink OBJFILE from the list of known objfiles, if it is found in the
440 list.
441
442 It is not a bug, or error, to call this function if OBJFILE is not known
443 to be in the current list. This is done in the case of mapped objfiles,
444 for example, just to ensure that the mapped objfile doesn't appear twice
445 in the list. Since the list is threaded, linking in a mapped objfile
446 twice would create a circular list.
447
448 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
449 unlinking it, just to ensure that we have completely severed any linkages
450 between the OBJFILE and the list. */
451
452void
453unlink_objfile (struct objfile *objfile)
454{
455 struct objfile **objpp;
456
457 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
458 {
459 if (*objpp == objfile)
460 {
461 *objpp = (*objpp)->next;
462 objfile->next = NULL;
463 return;
464 }
465 }
466
467 internal_error (__FILE__, __LINE__,
468 "unlink_objfile: objfile already unlinked");
469}
470
471
472/* Destroy an objfile and all the symtabs and psymtabs under it. Note
473 that as much as possible is allocated on the symbol_obstack and
474 psymbol_obstack, so that the memory can be efficiently freed.
475
476 Things which we do NOT free because they are not in malloc'd memory
477 or not in memory specific to the objfile include:
478
479 objfile -> sf
480
481 FIXME: If the objfile is using reusable symbol information (via mmalloc),
482 then we need to take into account the fact that more than one process
483 may be using the symbol information at the same time (when mmalloc is
484 extended to support cooperative locking). When more than one process
485 is using the mapped symbol info, we need to be more careful about when
486 we free objects in the reusable area. */
487
488void
489free_objfile (struct objfile *objfile)
490{
491 if (objfile->separate_debug_objfile)
492 {
493 free_objfile (objfile->separate_debug_objfile);
494 }
495
496 if (objfile->separate_debug_objfile_backlink)
497 {
498 /* We freed the separate debug file, make sure the base objfile
499 doesn't reference it. */
500 objfile->separate_debug_objfile_backlink->separate_debug_objfile = NULL;
501 }
502
503 /* First do any symbol file specific actions required when we are
504 finished with a particular symbol file. Note that if the objfile
505 is using reusable symbol information (via mmalloc) then each of
506 these routines is responsible for doing the correct thing, either
507 freeing things which are valid only during this particular gdb
508 execution, or leaving them to be reused during the next one. */
509
510 if (objfile->sf != NULL)
511 {
512 (*objfile->sf->sym_finish) (objfile);
513 }
514
515 /* We always close the bfd. */
516
517 if (objfile->obfd != NULL)
518 {
519 char *name = bfd_get_filename (objfile->obfd);
520 if (!bfd_close (objfile->obfd))
521 warning ("cannot close \"%s\": %s",
522 name, bfd_errmsg (bfd_get_error ()));
523 xfree (name);
524 }
525
526 /* Remove it from the chain of all objfiles. */
527
528 unlink_objfile (objfile);
529
530 /* If we are going to free the runtime common objfile, mark it
531 as unallocated. */
532
533 if (objfile == rt_common_objfile)
534 rt_common_objfile = NULL;
535
536 /* Before the symbol table code was redone to make it easier to
537 selectively load and remove information particular to a specific
538 linkage unit, gdb used to do these things whenever the monolithic
539 symbol table was blown away. How much still needs to be done
540 is unknown, but we play it safe for now and keep each action until
541 it is shown to be no longer needed. */
542
543 /* I *think* all our callers call clear_symtab_users. If so, no need
544 to call this here. */
545 clear_pc_function_cache ();
546
547 /* The last thing we do is free the objfile struct itself for the
548 non-reusable case, or detach from the mapped file for the
549 reusable case. Note that the mmalloc_detach or the xmfree() is
550 the last thing we can do with this objfile. */
551
552#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
553
554 if (objfile->flags & OBJF_MAPPED)
555 {
556 /* Remember the fd so we can close it. We can't close it before
557 doing the detach, and after the detach the objfile is gone. */
558 int mmfd;
559
560 mmfd = objfile->mmfd;
561 mmalloc_detach (objfile->md);
562 objfile = NULL;
563 close (mmfd);
564 }
565
566#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
567
568 /* If we still have an objfile, then either we don't support reusable
569 objfiles or this one was not reusable. So free it normally. */
570
571 if (objfile != NULL)
572 {
573 objfile_free_data (objfile);
574 if (objfile->name != NULL)
575 {
576 xmfree (objfile->md, objfile->name);
577 }
578 if (objfile->global_psymbols.list)
579 xmfree (objfile->md, objfile->global_psymbols.list);
580 if (objfile->static_psymbols.list)
581 xmfree (objfile->md, objfile->static_psymbols.list);
582 /* Free the obstacks for non-reusable objfiles */
583 bcache_xfree (objfile->psymbol_cache);
584 bcache_xfree (objfile->macro_cache);
585 if (objfile->demangled_names_hash)
586 htab_delete (objfile->demangled_names_hash);
587 obstack_free (&objfile->psymbol_obstack, 0);
588 obstack_free (&objfile->symbol_obstack, 0);
589 obstack_free (&objfile->type_obstack, 0);
590 xmfree (objfile->md, objfile);
591 objfile = NULL;
592 }
593}
594
595static void
596do_free_objfile_cleanup (void *obj)
597{
598 free_objfile (obj);
599}
600
601struct cleanup *
602make_cleanup_free_objfile (struct objfile *obj)
603{
604 return make_cleanup (do_free_objfile_cleanup, obj);
605}
606
607/* Free all the object files at once and clean up their users. */
608
609void
610free_all_objfiles (void)
611{
612 struct objfile *objfile, *temp;
613
614 ALL_OBJFILES_SAFE (objfile, temp)
615 {
616 free_objfile (objfile);
617 }
618 clear_symtab_users ();
619}
620\f
621/* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
622 entries in new_offsets. */
623void
624objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
625{
626 struct section_offsets *delta =
627 ((struct section_offsets *)
628 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
629
630 {
631 int i;
632 int something_changed = 0;
633 for (i = 0; i < objfile->num_sections; ++i)
634 {
635 delta->offsets[i] =
636 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
637 if (ANOFFSET (delta, i) != 0)
638 something_changed = 1;
639 }
640 if (!something_changed)
641 return;
642 }
643
644 /* OK, get all the symtabs. */
645 {
646 struct symtab *s;
647
648 ALL_OBJFILE_SYMTABS (objfile, s)
649 {
650 struct linetable *l;
651 struct blockvector *bv;
652 int i;
653
654 /* First the line table. */
655 l = LINETABLE (s);
656 if (l)
657 {
658 for (i = 0; i < l->nitems; ++i)
659 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
660 }
661
662 /* Don't relocate a shared blockvector more than once. */
663 if (!s->primary)
664 continue;
665
666 bv = BLOCKVECTOR (s);
667 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
668 {
669 struct block *b;
670 struct symbol *sym;
671 struct dict_iterator iter;
672
673 b = BLOCKVECTOR_BLOCK (bv, i);
674 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
675 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
676
677 ALL_BLOCK_SYMBOLS (b, iter, sym)
678 {
679 fixup_symbol_section (sym, objfile);
680
681 /* The RS6000 code from which this was taken skipped
682 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
683 But I'm leaving out that test, on the theory that
684 they can't possibly pass the tests below. */
685 if ((SYMBOL_CLASS (sym) == LOC_LABEL
686 || SYMBOL_CLASS (sym) == LOC_STATIC
687 || SYMBOL_CLASS (sym) == LOC_INDIRECT)
688 && SYMBOL_SECTION (sym) >= 0)
689 {
690 SYMBOL_VALUE_ADDRESS (sym) +=
691 ANOFFSET (delta, SYMBOL_SECTION (sym));
692 }
693#ifdef MIPS_EFI_SYMBOL_NAME
694 /* Relocate Extra Function Info for ecoff. */
695
696 else if (SYMBOL_CLASS (sym) == LOC_CONST
697 && SYMBOL_DOMAIN (sym) == LABEL_DOMAIN
698 && strcmp (DEPRECATED_SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
699 ecoff_relocate_efi (sym, ANOFFSET (delta,
700 s->block_line_section));
701#endif
702 }
703 }
704 }
705 }
706
707 {
708 struct partial_symtab *p;
709
710 ALL_OBJFILE_PSYMTABS (objfile, p)
711 {
712 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
713 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
714 }
715 }
716
717 {
718 struct partial_symbol **psym;
719
720 for (psym = objfile->global_psymbols.list;
721 psym < objfile->global_psymbols.next;
722 psym++)
723 {
724 fixup_psymbol_section (*psym, objfile);
725 if (SYMBOL_SECTION (*psym) >= 0)
726 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
727 SYMBOL_SECTION (*psym));
728 }
729 for (psym = objfile->static_psymbols.list;
730 psym < objfile->static_psymbols.next;
731 psym++)
732 {
733 fixup_psymbol_section (*psym, objfile);
734 if (SYMBOL_SECTION (*psym) >= 0)
735 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
736 SYMBOL_SECTION (*psym));
737 }
738 }
739
740 {
741 struct minimal_symbol *msym;
742 ALL_OBJFILE_MSYMBOLS (objfile, msym)
743 if (SYMBOL_SECTION (msym) >= 0)
744 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
745 }
746 /* Relocating different sections by different amounts may cause the symbols
747 to be out of order. */
748 msymbols_sort (objfile);
749
750 {
751 int i;
752 for (i = 0; i < objfile->num_sections; ++i)
753 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
754 }
755
756 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
757 {
758 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
759 only as a fallback. */
760 struct obj_section *s;
761 s = find_pc_section (objfile->ei.entry_point);
762 if (s)
763 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
764 else
765 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
766 }
767
768 {
769 struct obj_section *s;
770 bfd *abfd;
771
772 abfd = objfile->obfd;
773
774 ALL_OBJFILE_OSECTIONS (objfile, s)
775 {
776 int idx = s->the_bfd_section->index;
777
778 s->addr += ANOFFSET (delta, idx);
779 s->endaddr += ANOFFSET (delta, idx);
780 }
781 }
782
783 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
784 {
785 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
786 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
787 }
788
789 if (objfile->ei.deprecated_entry_file_lowpc != INVALID_ENTRY_LOWPC)
790 {
791 objfile->ei.deprecated_entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
792 objfile->ei.deprecated_entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
793 }
794
795 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
796 {
797 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
798 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
799 }
800
801 /* Relocate breakpoints as necessary, after things are relocated. */
802 breakpoint_re_set ();
803}
804\f
805/* Many places in gdb want to test just to see if we have any partial
806 symbols available. This function returns zero if none are currently
807 available, nonzero otherwise. */
808
809int
810have_partial_symbols (void)
811{
812 struct objfile *ofp;
813
814 ALL_OBJFILES (ofp)
815 {
816 if (ofp->psymtabs != NULL)
817 {
818 return 1;
819 }
820 }
821 return 0;
822}
823
824/* Many places in gdb want to test just to see if we have any full
825 symbols available. This function returns zero if none are currently
826 available, nonzero otherwise. */
827
828int
829have_full_symbols (void)
830{
831 struct objfile *ofp;
832
833 ALL_OBJFILES (ofp)
834 {
835 if (ofp->symtabs != NULL)
836 {
837 return 1;
838 }
839 }
840 return 0;
841}
842
843
844/* This operations deletes all objfile entries that represent solibs that
845 weren't explicitly loaded by the user, via e.g., the add-symbol-file
846 command.
847 */
848void
849objfile_purge_solibs (void)
850{
851 struct objfile *objf;
852 struct objfile *temp;
853
854 ALL_OBJFILES_SAFE (objf, temp)
855 {
856 /* We assume that the solib package has been purged already, or will
857 be soon.
858 */
859 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
860 free_objfile (objf);
861 }
862}
863
864
865/* Many places in gdb want to test just to see if we have any minimal
866 symbols available. This function returns zero if none are currently
867 available, nonzero otherwise. */
868
869int
870have_minimal_symbols (void)
871{
872 struct objfile *ofp;
873
874 ALL_OBJFILES (ofp)
875 {
876 if (ofp->minimal_symbol_count > 0)
877 {
878 return 1;
879 }
880 }
881 return 0;
882}
883
884#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
885
886/* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
887 of the corresponding symbol file in MTIME, try to open an existing file
888 with the name SYMSFILENAME and verify it is more recent than the base
889 file by checking it's timestamp against MTIME.
890
891 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
892
893 If SYMSFILENAME does exist, but is out of date, we check to see if the
894 user has specified creation of a mapped file. If so, we don't issue
895 any warning message because we will be creating a new mapped file anyway,
896 overwriting the old one. If not, then we issue a warning message so that
897 the user will know why we aren't using this existing mapped symbol file.
898 In either case, we return -1.
899
900 If SYMSFILENAME does exist and is not out of date, but can't be opened for
901 some reason, then prints an appropriate system error message and returns -1.
902
903 Otherwise, returns the open file descriptor. */
904
905static int
906open_existing_mapped_file (char *symsfilename, long mtime, int flags)
907{
908 int fd = -1;
909 struct stat sbuf;
910
911 if (stat (symsfilename, &sbuf) == 0)
912 {
913 if (sbuf.st_mtime < mtime)
914 {
915 if (!(flags & OBJF_MAPPED))
916 {
917 warning ("mapped symbol file `%s' is out of date, ignored it",
918 symsfilename);
919 }
920 }
921 else if ((fd = open (symsfilename, O_RDWR)) < 0)
922 {
923 if (error_pre_print)
924 {
925 printf_unfiltered (error_pre_print);
926 }
927 print_sys_errmsg (symsfilename, errno);
928 }
929 }
930 return (fd);
931}
932
933/* Look for a mapped symbol file that corresponds to FILENAME and is more
934 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
935 use a mapped symbol file for this file, so create a new one if one does
936 not currently exist.
937
938 If found, then return an open file descriptor for the file, otherwise
939 return -1.
940
941 This routine is responsible for implementing the policy that generates
942 the name of the mapped symbol file from the name of a file containing
943 symbols that gdb would like to read. Currently this policy is to append
944 ".syms" to the name of the file.
945
946 This routine is also responsible for implementing the policy that
947 determines where the mapped symbol file is found (the search path).
948 This policy is that when reading an existing mapped file, a file of
949 the correct name in the current directory takes precedence over a
950 file of the correct name in the same directory as the symbol file.
951 When creating a new mapped file, it is always created in the current
952 directory. This helps to minimize the chances of a user unknowingly
953 creating big mapped files in places like /bin and /usr/local/bin, and
954 allows a local copy to override a manually installed global copy (in
955 /bin for example). */
956
957static int
958open_mapped_file (char *filename, long mtime, int flags)
959{
960 int fd;
961 char *symsfilename;
962
963 /* First try to open an existing file in the current directory, and
964 then try the directory where the symbol file is located. */
965
966 symsfilename = concat ("./", lbasename (filename), ".syms", (char *) NULL);
967 if ((fd = open_existing_mapped_file (symsfilename, mtime, flags)) < 0)
968 {
969 xfree (symsfilename);
970 symsfilename = concat (filename, ".syms", (char *) NULL);
971 fd = open_existing_mapped_file (symsfilename, mtime, flags);
972 }
973
974 /* If we don't have an open file by now, then either the file does not
975 already exist, or the base file has changed since it was created. In
976 either case, if the user has specified use of a mapped file, then
977 create a new mapped file, truncating any existing one. If we can't
978 create one, print a system error message saying why we can't.
979
980 By default the file is rw for everyone, with the user's umask taking
981 care of turning off the permissions the user wants off. */
982
983 if ((fd < 0) && (flags & OBJF_MAPPED))
984 {
985 xfree (symsfilename);
986 symsfilename = concat ("./", lbasename (filename), ".syms",
987 (char *) NULL);
988 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
989 {
990 if (error_pre_print)
991 {
992 printf_unfiltered (error_pre_print);
993 }
994 print_sys_errmsg (symsfilename, errno);
995 }
996 }
997
998 xfree (symsfilename);
999 return (fd);
1000}
1001
1002static void *
1003map_to_file (int fd)
1004{
1005 void *md;
1006 CORE_ADDR mapto;
1007
1008 md = mmalloc_attach (fd, 0);
1009 if (md != NULL)
1010 {
1011 mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
1012 md = mmalloc_detach (md);
1013 if (md != NULL)
1014 {
1015 /* FIXME: should figure out why detach failed */
1016 md = NULL;
1017 }
1018 else if (mapto != (CORE_ADDR) NULL)
1019 {
1020 /* This mapping file needs to be remapped at "mapto" */
1021 md = mmalloc_attach (fd, mapto);
1022 }
1023 else
1024 {
1025 /* This is a freshly created mapping file. */
1026 mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
1027 if (mapto != 0)
1028 {
1029 /* To avoid reusing the freshly created mapping file, at the
1030 address selected by mmap, we must truncate it before trying
1031 to do an attach at the address we want. */
1032 ftruncate (fd, 0);
1033 md = mmalloc_attach (fd, mapto);
1034 if (md != NULL)
1035 {
1036 mmalloc_setkey (md, 1, mapto);
1037 }
1038 }
1039 }
1040 }
1041 return (md);
1042}
1043
1044#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
1045
1046/* Returns a section whose range includes PC and SECTION, or NULL if
1047 none found. Note the distinction between the return type, struct
1048 obj_section (which is defined in gdb), and the input type "struct
1049 bfd_section" (which is a bfd-defined data type). The obj_section
1050 contains a pointer to the "struct bfd_section". */
1051
1052struct obj_section *
1053find_pc_sect_section (CORE_ADDR pc, struct bfd_section *section)
1054{
1055 struct obj_section *s;
1056 struct objfile *objfile;
1057
1058 ALL_OBJSECTIONS (objfile, s)
1059 if ((section == 0 || section == s->the_bfd_section) &&
1060 s->addr <= pc && pc < s->endaddr)
1061 return (s);
1062
1063 return (NULL);
1064}
1065
1066/* Returns a section whose range includes PC or NULL if none found.
1067 Backward compatibility, no section. */
1068
1069struct obj_section *
1070find_pc_section (CORE_ADDR pc)
1071{
1072 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
1073}
1074
1075
1076/* In SVR4, we recognize a trampoline by it's section name.
1077 That is, if the pc is in a section named ".plt" then we are in
1078 a trampoline. */
1079
1080int
1081in_plt_section (CORE_ADDR pc, char *name)
1082{
1083 struct obj_section *s;
1084 int retval = 0;
1085
1086 s = find_pc_section (pc);
1087
1088 retval = (s != NULL
1089 && s->the_bfd_section->name != NULL
1090 && STREQ (s->the_bfd_section->name, ".plt"));
1091 return (retval);
1092}
1093
1094/* Return nonzero if NAME is in the import list of OBJFILE. Else
1095 return zero. */
1096
1097int
1098is_in_import_list (char *name, struct objfile *objfile)
1099{
1100 int i;
1101
1102 if (!objfile || !name || !*name)
1103 return 0;
1104
1105 for (i = 0; i < objfile->import_list_size; i++)
1106 if (objfile->import_list[i] && STREQ (name, objfile->import_list[i]))
1107 return 1;
1108 return 0;
1109}
1110\f
1111
1112/* Keep a registry of per-objfile data-pointers required by other GDB
1113 modules. */
1114
1115struct objfile_data
1116{
1117 unsigned index;
1118};
1119
1120struct objfile_data_registration
1121{
1122 struct objfile_data *data;
1123 struct objfile_data_registration *next;
1124};
1125
1126struct objfile_data_registry
1127{
1128 struct objfile_data_registration *registrations;
1129 unsigned num_registrations;
1130};
1131
1132static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
1133
1134const struct objfile_data *
1135register_objfile_data (void)
1136{
1137 struct objfile_data_registration **curr;
1138
1139 /* Append new registration. */
1140 for (curr = &objfile_data_registry.registrations;
1141 *curr != NULL; curr = &(*curr)->next);
1142
1143 *curr = XMALLOC (struct objfile_data_registration);
1144 (*curr)->next = NULL;
1145 (*curr)->data = XMALLOC (struct objfile_data);
1146 (*curr)->data->index = objfile_data_registry.num_registrations++;
1147
1148 return (*curr)->data;
1149}
1150
1151static void
1152objfile_alloc_data (struct objfile *objfile)
1153{
1154 gdb_assert (objfile->data == NULL);
1155 objfile->num_data = objfile_data_registry.num_registrations;
1156 objfile->data = XCALLOC (objfile->num_data, void *);
1157}
1158
1159static void
1160objfile_free_data (struct objfile *objfile)
1161{
1162 gdb_assert (objfile->data != NULL);
1163 xfree (objfile->data);
1164 objfile->data = NULL;
1165}
1166
1167void
1168clear_objfile_data (struct objfile *objfile)
1169{
1170 gdb_assert (objfile->data != NULL);
1171 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
1172}
1173
1174void
1175set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
1176 void *value)
1177{
1178 gdb_assert (data->index < objfile->num_data);
1179 objfile->data[data->index] = value;
1180}
1181
1182void *
1183objfile_data (struct objfile *objfile, const struct objfile_data *data)
1184{
1185 gdb_assert (data->index < objfile->num_data);
1186 return objfile->data[data->index];
1187}
This page took 0.028251 seconds and 4 git commands to generate.