* jit.c (jit_event_handler): Use paddress to print target addresses.
[deliverable/binutils-gdb.git] / gdb / symfile.c
... / ...
CommitLineData
1/* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24#include "defs.h"
25#include "arch-utils.h"
26#include "bfdlink.h"
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "source.h"
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
41#include "inferior.h"
42#include "regcache.h"
43#include "filenames.h" /* for DOSish file names */
44#include "gdb-stabs.h"
45#include "gdb_obstack.h"
46#include "completer.h"
47#include "bcache.h"
48#include "hashtab.h"
49#include "readline/readline.h"
50#include "gdb_assert.h"
51#include "block.h"
52#include "observer.h"
53#include "exec.h"
54#include "parser-defs.h"
55#include "varobj.h"
56#include "elf-bfd.h"
57#include "solib.h"
58#include "remote.h"
59
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
66#include <sys/time.h>
67
68
69int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
70void (*deprecated_show_load_progress) (const char *section,
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
74 unsigned long total_size);
75void (*deprecated_pre_add_symbol_hook) (const char *);
76void (*deprecated_post_add_symbol_hook) (void);
77
78static void clear_symtab_users_cleanup (void *ignore);
79
80/* Global variables owned by this file */
81int readnow_symbol_files; /* Read full symbols immediately */
82
83/* External variables and functions referenced. */
84
85extern void report_transfer_performance (unsigned long, time_t, time_t);
86
87/* Functions this file defines */
88
89#if 0
90static int simple_read_overlay_region_table (void);
91static void simple_free_overlay_region_table (void);
92#endif
93
94static void load_command (char *, int);
95
96static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
98static void add_symbol_file_command (char *, int);
99
100static void reread_separate_symbols (struct objfile *objfile);
101
102static void cashier_psymtab (struct partial_symtab *);
103
104bfd *symfile_bfd_open (char *);
105
106int get_section_index (struct objfile *, char *);
107
108static struct sym_fns *find_sym_fns (bfd *);
109
110static void decrement_reading_symtab (void *);
111
112static void overlay_invalidate_all (void);
113
114void list_overlays_command (char *, int);
115
116void map_overlay_command (char *, int);
117
118void unmap_overlay_command (char *, int);
119
120static void overlay_auto_command (char *, int);
121
122static void overlay_manual_command (char *, int);
123
124static void overlay_off_command (char *, int);
125
126static void overlay_load_command (char *, int);
127
128static void overlay_command (char *, int);
129
130static void simple_free_overlay_table (void);
131
132static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
133 enum bfd_endian);
134
135static int simple_read_overlay_table (void);
136
137static int simple_overlay_update_1 (struct obj_section *);
138
139static void add_filename_language (char *ext, enum language lang);
140
141static void info_ext_lang_command (char *args, int from_tty);
142
143static char *find_separate_debug_file (struct objfile *objfile);
144
145static void init_filename_language_table (void);
146
147static void symfile_find_segment_sections (struct objfile *objfile);
148
149void _initialize_symfile (void);
150
151/* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155static struct sym_fns *symtab_fns = NULL;
156
157/* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160#ifdef SYMBOL_RELOADING_DEFAULT
161int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162#else
163int symbol_reloading = 0;
164#endif
165static void
166show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168{
169 fprintf_filtered (file, _("\
170Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172}
173
174/* If non-zero, gdb will notify the user when it is loading symbols
175 from a file. This is almost always what users will want to have happen;
176 but for programs with lots of dynamically linked libraries, the output
177 can be more noise than signal. */
178
179int print_symbol_loading = 1;
180
181/* If non-zero, shared library symbols will be added automatically
182 when the inferior is created, new libraries are loaded, or when
183 attaching to the inferior. This is almost always what users will
184 want to have happen; but for very large programs, the startup time
185 will be excessive, and so if this is a problem, the user can clear
186 this flag and then add the shared library symbols as needed. Note
187 that there is a potential for confusion, since if the shared
188 library symbols are not loaded, commands like "info fun" will *not*
189 report all the functions that are actually present. */
190
191int auto_solib_add = 1;
192
193/* For systems that support it, a threshold size in megabytes. If
194 automatically adding a new library's symbol table to those already
195 known to the debugger would cause the total shared library symbol
196 size to exceed this threshhold, then the shlib's symbols are not
197 added. The threshold is ignored if the user explicitly asks for a
198 shlib to be added, such as when using the "sharedlibrary"
199 command. */
200
201int auto_solib_limit;
202\f
203
204/* This compares two partial symbols by names, using strcmp_iw_ordered
205 for the comparison. */
206
207static int
208compare_psymbols (const void *s1p, const void *s2p)
209{
210 struct partial_symbol *const *s1 = s1p;
211 struct partial_symbol *const *s2 = s2p;
212
213 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
214 SYMBOL_SEARCH_NAME (*s2));
215}
216
217void
218sort_pst_symbols (struct partial_symtab *pst)
219{
220 /* Sort the global list; don't sort the static list */
221
222 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
223 pst->n_global_syms, sizeof (struct partial_symbol *),
224 compare_psymbols);
225}
226
227/* Make a null terminated copy of the string at PTR with SIZE characters in
228 the obstack pointed to by OBSTACKP . Returns the address of the copy.
229 Note that the string at PTR does not have to be null terminated, I.E. it
230 may be part of a larger string and we are only saving a substring. */
231
232char *
233obsavestring (const char *ptr, int size, struct obstack *obstackp)
234{
235 char *p = (char *) obstack_alloc (obstackp, size + 1);
236 /* Open-coded memcpy--saves function call time. These strings are usually
237 short. FIXME: Is this really still true with a compiler that can
238 inline memcpy? */
239 {
240 const char *p1 = ptr;
241 char *p2 = p;
242 const char *end = ptr + size;
243 while (p1 != end)
244 *p2++ = *p1++;
245 }
246 p[size] = 0;
247 return p;
248}
249
250/* Concatenate strings S1, S2 and S3; return the new string. Space is found
251 in the obstack pointed to by OBSTACKP. */
252
253char *
254obconcat (struct obstack *obstackp, const char *s1, const char *s2,
255 const char *s3)
256{
257 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
258 char *val = (char *) obstack_alloc (obstackp, len);
259 strcpy (val, s1);
260 strcat (val, s2);
261 strcat (val, s3);
262 return val;
263}
264
265/* True if we are nested inside psymtab_to_symtab. */
266
267int currently_reading_symtab = 0;
268
269static void
270decrement_reading_symtab (void *dummy)
271{
272 currently_reading_symtab--;
273}
274
275/* Get the symbol table that corresponds to a partial_symtab.
276 This is fast after the first time you do it. In fact, there
277 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
278 case inline. */
279
280struct symtab *
281psymtab_to_symtab (struct partial_symtab *pst)
282{
283 /* If it's been looked up before, return it. */
284 if (pst->symtab)
285 return pst->symtab;
286
287 /* If it has not yet been read in, read it. */
288 if (!pst->readin)
289 {
290 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
291 currently_reading_symtab++;
292 (*pst->read_symtab) (pst);
293 do_cleanups (back_to);
294 }
295
296 return pst->symtab;
297}
298
299/* Remember the lowest-addressed loadable section we've seen.
300 This function is called via bfd_map_over_sections.
301
302 In case of equal vmas, the section with the largest size becomes the
303 lowest-addressed loadable section.
304
305 If the vmas and sizes are equal, the last section is considered the
306 lowest-addressed loadable section. */
307
308void
309find_lowest_section (bfd *abfd, asection *sect, void *obj)
310{
311 asection **lowest = (asection **) obj;
312
313 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
314 return;
315 if (!*lowest)
316 *lowest = sect; /* First loadable section */
317 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
318 *lowest = sect; /* A lower loadable section */
319 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
320 && (bfd_section_size (abfd, (*lowest))
321 <= bfd_section_size (abfd, sect)))
322 *lowest = sect;
323}
324
325/* Create a new section_addr_info, with room for NUM_SECTIONS. */
326
327struct section_addr_info *
328alloc_section_addr_info (size_t num_sections)
329{
330 struct section_addr_info *sap;
331 size_t size;
332
333 size = (sizeof (struct section_addr_info)
334 + sizeof (struct other_sections) * (num_sections - 1));
335 sap = (struct section_addr_info *) xmalloc (size);
336 memset (sap, 0, size);
337 sap->num_sections = num_sections;
338
339 return sap;
340}
341
342
343/* Return a freshly allocated copy of ADDRS. The section names, if
344 any, are also freshly allocated copies of those in ADDRS. */
345struct section_addr_info *
346copy_section_addr_info (struct section_addr_info *addrs)
347{
348 struct section_addr_info *copy
349 = alloc_section_addr_info (addrs->num_sections);
350 int i;
351
352 copy->num_sections = addrs->num_sections;
353 for (i = 0; i < addrs->num_sections; i++)
354 {
355 copy->other[i].addr = addrs->other[i].addr;
356 if (addrs->other[i].name)
357 copy->other[i].name = xstrdup (addrs->other[i].name);
358 else
359 copy->other[i].name = NULL;
360 copy->other[i].sectindex = addrs->other[i].sectindex;
361 }
362
363 return copy;
364}
365
366
367
368/* Build (allocate and populate) a section_addr_info struct from
369 an existing section table. */
370
371extern struct section_addr_info *
372build_section_addr_info_from_section_table (const struct target_section *start,
373 const struct target_section *end)
374{
375 struct section_addr_info *sap;
376 const struct target_section *stp;
377 int oidx;
378
379 sap = alloc_section_addr_info (end - start);
380
381 for (stp = start, oidx = 0; stp != end; stp++)
382 {
383 if (bfd_get_section_flags (stp->bfd,
384 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
385 && oidx < end - start)
386 {
387 sap->other[oidx].addr = stp->addr;
388 sap->other[oidx].name
389 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
390 sap->other[oidx].sectindex = stp->the_bfd_section->index;
391 oidx++;
392 }
393 }
394
395 return sap;
396}
397
398
399/* Free all memory allocated by build_section_addr_info_from_section_table. */
400
401extern void
402free_section_addr_info (struct section_addr_info *sap)
403{
404 int idx;
405
406 for (idx = 0; idx < sap->num_sections; idx++)
407 if (sap->other[idx].name)
408 xfree (sap->other[idx].name);
409 xfree (sap);
410}
411
412
413/* Initialize OBJFILE's sect_index_* members. */
414static void
415init_objfile_sect_indices (struct objfile *objfile)
416{
417 asection *sect;
418 int i;
419
420 sect = bfd_get_section_by_name (objfile->obfd, ".text");
421 if (sect)
422 objfile->sect_index_text = sect->index;
423
424 sect = bfd_get_section_by_name (objfile->obfd, ".data");
425 if (sect)
426 objfile->sect_index_data = sect->index;
427
428 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
429 if (sect)
430 objfile->sect_index_bss = sect->index;
431
432 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
433 if (sect)
434 objfile->sect_index_rodata = sect->index;
435
436 /* This is where things get really weird... We MUST have valid
437 indices for the various sect_index_* members or gdb will abort.
438 So if for example, there is no ".text" section, we have to
439 accomodate that. First, check for a file with the standard
440 one or two segments. */
441
442 symfile_find_segment_sections (objfile);
443
444 /* Except when explicitly adding symbol files at some address,
445 section_offsets contains nothing but zeros, so it doesn't matter
446 which slot in section_offsets the individual sect_index_* members
447 index into. So if they are all zero, it is safe to just point
448 all the currently uninitialized indices to the first slot. But
449 beware: if this is the main executable, it may be relocated
450 later, e.g. by the remote qOffsets packet, and then this will
451 be wrong! That's why we try segments first. */
452
453 for (i = 0; i < objfile->num_sections; i++)
454 {
455 if (ANOFFSET (objfile->section_offsets, i) != 0)
456 {
457 break;
458 }
459 }
460 if (i == objfile->num_sections)
461 {
462 if (objfile->sect_index_text == -1)
463 objfile->sect_index_text = 0;
464 if (objfile->sect_index_data == -1)
465 objfile->sect_index_data = 0;
466 if (objfile->sect_index_bss == -1)
467 objfile->sect_index_bss = 0;
468 if (objfile->sect_index_rodata == -1)
469 objfile->sect_index_rodata = 0;
470 }
471}
472
473/* The arguments to place_section. */
474
475struct place_section_arg
476{
477 struct section_offsets *offsets;
478 CORE_ADDR lowest;
479};
480
481/* Find a unique offset to use for loadable section SECT if
482 the user did not provide an offset. */
483
484static void
485place_section (bfd *abfd, asection *sect, void *obj)
486{
487 struct place_section_arg *arg = obj;
488 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
489 int done;
490 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
491
492 /* We are only interested in allocated sections. */
493 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
494 return;
495
496 /* If the user specified an offset, honor it. */
497 if (offsets[sect->index] != 0)
498 return;
499
500 /* Otherwise, let's try to find a place for the section. */
501 start_addr = (arg->lowest + align - 1) & -align;
502
503 do {
504 asection *cur_sec;
505
506 done = 1;
507
508 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
509 {
510 int indx = cur_sec->index;
511 CORE_ADDR cur_offset;
512
513 /* We don't need to compare against ourself. */
514 if (cur_sec == sect)
515 continue;
516
517 /* We can only conflict with allocated sections. */
518 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
519 continue;
520
521 /* If the section offset is 0, either the section has not been placed
522 yet, or it was the lowest section placed (in which case LOWEST
523 will be past its end). */
524 if (offsets[indx] == 0)
525 continue;
526
527 /* If this section would overlap us, then we must move up. */
528 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
529 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
530 {
531 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
532 start_addr = (start_addr + align - 1) & -align;
533 done = 0;
534 break;
535 }
536
537 /* Otherwise, we appear to be OK. So far. */
538 }
539 }
540 while (!done);
541
542 offsets[sect->index] = start_addr;
543 arg->lowest = start_addr + bfd_get_section_size (sect);
544}
545
546/* Parse the user's idea of an offset for dynamic linking, into our idea
547 of how to represent it for fast symbol reading. This is the default
548 version of the sym_fns.sym_offsets function for symbol readers that
549 don't need to do anything special. It allocates a section_offsets table
550 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
551
552void
553default_symfile_offsets (struct objfile *objfile,
554 struct section_addr_info *addrs)
555{
556 int i;
557
558 objfile->num_sections = bfd_count_sections (objfile->obfd);
559 objfile->section_offsets = (struct section_offsets *)
560 obstack_alloc (&objfile->objfile_obstack,
561 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
562 memset (objfile->section_offsets, 0,
563 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
564
565 /* Now calculate offsets for section that were specified by the
566 caller. */
567 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
568 {
569 struct other_sections *osp ;
570
571 osp = &addrs->other[i] ;
572 if (osp->addr == 0)
573 continue;
574
575 /* Record all sections in offsets */
576 /* The section_offsets in the objfile are here filled in using
577 the BFD index. */
578 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
579 }
580
581 /* For relocatable files, all loadable sections will start at zero.
582 The zero is meaningless, so try to pick arbitrary addresses such
583 that no loadable sections overlap. This algorithm is quadratic,
584 but the number of sections in a single object file is generally
585 small. */
586 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
587 {
588 struct place_section_arg arg;
589 bfd *abfd = objfile->obfd;
590 asection *cur_sec;
591 CORE_ADDR lowest = 0;
592
593 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
594 /* We do not expect this to happen; just skip this step if the
595 relocatable file has a section with an assigned VMA. */
596 if (bfd_section_vma (abfd, cur_sec) != 0)
597 break;
598
599 if (cur_sec == NULL)
600 {
601 CORE_ADDR *offsets = objfile->section_offsets->offsets;
602
603 /* Pick non-overlapping offsets for sections the user did not
604 place explicitly. */
605 arg.offsets = objfile->section_offsets;
606 arg.lowest = 0;
607 bfd_map_over_sections (objfile->obfd, place_section, &arg);
608
609 /* Correctly filling in the section offsets is not quite
610 enough. Relocatable files have two properties that
611 (most) shared objects do not:
612
613 - Their debug information will contain relocations. Some
614 shared libraries do also, but many do not, so this can not
615 be assumed.
616
617 - If there are multiple code sections they will be loaded
618 at different relative addresses in memory than they are
619 in the objfile, since all sections in the file will start
620 at address zero.
621
622 Because GDB has very limited ability to map from an
623 address in debug info to the correct code section,
624 it relies on adding SECT_OFF_TEXT to things which might be
625 code. If we clear all the section offsets, and set the
626 section VMAs instead, then symfile_relocate_debug_section
627 will return meaningful debug information pointing at the
628 correct sections.
629
630 GDB has too many different data structures for section
631 addresses - a bfd, objfile, and so_list all have section
632 tables, as does exec_ops. Some of these could probably
633 be eliminated. */
634
635 for (cur_sec = abfd->sections; cur_sec != NULL;
636 cur_sec = cur_sec->next)
637 {
638 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
639 continue;
640
641 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
642 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
643 offsets[cur_sec->index]);
644 offsets[cur_sec->index] = 0;
645 }
646 }
647 }
648
649 /* Remember the bfd indexes for the .text, .data, .bss and
650 .rodata sections. */
651 init_objfile_sect_indices (objfile);
652}
653
654
655/* Divide the file into segments, which are individual relocatable units.
656 This is the default version of the sym_fns.sym_segments function for
657 symbol readers that do not have an explicit representation of segments.
658 It assumes that object files do not have segments, and fully linked
659 files have a single segment. */
660
661struct symfile_segment_data *
662default_symfile_segments (bfd *abfd)
663{
664 int num_sections, i;
665 asection *sect;
666 struct symfile_segment_data *data;
667 CORE_ADDR low, high;
668
669 /* Relocatable files contain enough information to position each
670 loadable section independently; they should not be relocated
671 in segments. */
672 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
673 return NULL;
674
675 /* Make sure there is at least one loadable section in the file. */
676 for (sect = abfd->sections; sect != NULL; sect = sect->next)
677 {
678 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
679 continue;
680
681 break;
682 }
683 if (sect == NULL)
684 return NULL;
685
686 low = bfd_get_section_vma (abfd, sect);
687 high = low + bfd_get_section_size (sect);
688
689 data = XZALLOC (struct symfile_segment_data);
690 data->num_segments = 1;
691 data->segment_bases = XCALLOC (1, CORE_ADDR);
692 data->segment_sizes = XCALLOC (1, CORE_ADDR);
693
694 num_sections = bfd_count_sections (abfd);
695 data->segment_info = XCALLOC (num_sections, int);
696
697 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
698 {
699 CORE_ADDR vma;
700
701 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
702 continue;
703
704 vma = bfd_get_section_vma (abfd, sect);
705 if (vma < low)
706 low = vma;
707 if (vma + bfd_get_section_size (sect) > high)
708 high = vma + bfd_get_section_size (sect);
709
710 data->segment_info[i] = 1;
711 }
712
713 data->segment_bases[0] = low;
714 data->segment_sizes[0] = high - low;
715
716 return data;
717}
718
719/* Process a symbol file, as either the main file or as a dynamically
720 loaded file.
721
722 OBJFILE is where the symbols are to be read from.
723
724 ADDRS is the list of section load addresses. If the user has given
725 an 'add-symbol-file' command, then this is the list of offsets and
726 addresses he or she provided as arguments to the command; or, if
727 we're handling a shared library, these are the actual addresses the
728 sections are loaded at, according to the inferior's dynamic linker
729 (as gleaned by GDB's shared library code). We convert each address
730 into an offset from the section VMA's as it appears in the object
731 file, and then call the file's sym_offsets function to convert this
732 into a format-specific offset table --- a `struct section_offsets'.
733 If ADDRS is non-zero, OFFSETS must be zero.
734
735 OFFSETS is a table of section offsets already in the right
736 format-specific representation. NUM_OFFSETS is the number of
737 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
738 assume this is the proper table the call to sym_offsets described
739 above would produce. Instead of calling sym_offsets, we just dump
740 it right into objfile->section_offsets. (When we're re-reading
741 symbols from an objfile, we don't have the original load address
742 list any more; all we have is the section offset table.) If
743 OFFSETS is non-zero, ADDRS must be zero.
744
745 ADD_FLAGS encodes verbosity level, whether this is main symbol or
746 an extra symbol file such as dynamically loaded code, and wether
747 breakpoint reset should be deferred. */
748
749void
750syms_from_objfile (struct objfile *objfile,
751 struct section_addr_info *addrs,
752 struct section_offsets *offsets,
753 int num_offsets,
754 int add_flags)
755{
756 struct section_addr_info *local_addr = NULL;
757 struct cleanup *old_chain;
758 const int mainline = add_flags & SYMFILE_MAINLINE;
759
760 gdb_assert (! (addrs && offsets));
761
762 init_entry_point_info (objfile);
763 objfile->sf = find_sym_fns (objfile->obfd);
764
765 if (objfile->sf == NULL)
766 return; /* No symbols. */
767
768 /* Make sure that partially constructed symbol tables will be cleaned up
769 if an error occurs during symbol reading. */
770 old_chain = make_cleanup_free_objfile (objfile);
771
772 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
773 list. We now establish the convention that an addr of zero means
774 no load address was specified. */
775 if (! addrs && ! offsets)
776 {
777 local_addr
778 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
779 make_cleanup (xfree, local_addr);
780 addrs = local_addr;
781 }
782
783 /* Now either addrs or offsets is non-zero. */
784
785 if (mainline)
786 {
787 /* We will modify the main symbol table, make sure that all its users
788 will be cleaned up if an error occurs during symbol reading. */
789 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
790
791 /* Since no error yet, throw away the old symbol table. */
792
793 if (symfile_objfile != NULL)
794 {
795 free_objfile (symfile_objfile);
796 symfile_objfile = NULL;
797 }
798
799 /* Currently we keep symbols from the add-symbol-file command.
800 If the user wants to get rid of them, they should do "symbol-file"
801 without arguments first. Not sure this is the best behavior
802 (PR 2207). */
803
804 (*objfile->sf->sym_new_init) (objfile);
805 }
806
807 /* Convert addr into an offset rather than an absolute address.
808 We find the lowest address of a loaded segment in the objfile,
809 and assume that <addr> is where that got loaded.
810
811 We no longer warn if the lowest section is not a text segment (as
812 happens for the PA64 port. */
813 if (!mainline && addrs && addrs->other[0].name)
814 {
815 asection *lower_sect;
816 asection *sect;
817 CORE_ADDR lower_offset;
818 int i;
819
820 /* Find lowest loadable section to be used as starting point for
821 continguous sections. FIXME!! won't work without call to find
822 .text first, but this assumes text is lowest section. */
823 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
824 if (lower_sect == NULL)
825 bfd_map_over_sections (objfile->obfd, find_lowest_section,
826 &lower_sect);
827 if (lower_sect == NULL)
828 {
829 warning (_("no loadable sections found in added symbol-file %s"),
830 objfile->name);
831 lower_offset = 0;
832 }
833 else
834 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
835
836 /* Calculate offsets for the loadable sections.
837 FIXME! Sections must be in order of increasing loadable section
838 so that contiguous sections can use the lower-offset!!!
839
840 Adjust offsets if the segments are not contiguous.
841 If the section is contiguous, its offset should be set to
842 the offset of the highest loadable section lower than it
843 (the loadable section directly below it in memory).
844 this_offset = lower_offset = lower_addr - lower_orig_addr */
845
846 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
847 {
848 if (addrs->other[i].addr != 0)
849 {
850 sect = bfd_get_section_by_name (objfile->obfd,
851 addrs->other[i].name);
852 if (sect)
853 {
854 addrs->other[i].addr
855 -= bfd_section_vma (objfile->obfd, sect);
856 lower_offset = addrs->other[i].addr;
857 /* This is the index used by BFD. */
858 addrs->other[i].sectindex = sect->index ;
859 }
860 else
861 {
862 warning (_("section %s not found in %s"),
863 addrs->other[i].name,
864 objfile->name);
865 addrs->other[i].addr = 0;
866 }
867 }
868 else
869 addrs->other[i].addr = lower_offset;
870 }
871 }
872
873 /* Initialize symbol reading routines for this objfile, allow complaints to
874 appear for this new file, and record how verbose to be, then do the
875 initial symbol reading for this file. */
876
877 (*objfile->sf->sym_init) (objfile);
878 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
879
880 if (addrs)
881 (*objfile->sf->sym_offsets) (objfile, addrs);
882 else
883 {
884 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
885
886 /* Just copy in the offset table directly as given to us. */
887 objfile->num_sections = num_offsets;
888 objfile->section_offsets
889 = ((struct section_offsets *)
890 obstack_alloc (&objfile->objfile_obstack, size));
891 memcpy (objfile->section_offsets, offsets, size);
892
893 init_objfile_sect_indices (objfile);
894 }
895
896 (*objfile->sf->sym_read) (objfile, mainline);
897
898 /* Discard cleanups as symbol reading was successful. */
899
900 discard_cleanups (old_chain);
901 xfree (local_addr);
902}
903
904/* Perform required actions after either reading in the initial
905 symbols for a new objfile, or mapping in the symbols from a reusable
906 objfile. */
907
908void
909new_symfile_objfile (struct objfile *objfile, int add_flags)
910{
911
912 /* If this is the main symbol file we have to clean up all users of the
913 old main symbol file. Otherwise it is sufficient to fixup all the
914 breakpoints that may have been redefined by this symbol file. */
915 if (add_flags & SYMFILE_MAINLINE)
916 {
917 /* OK, make it the "real" symbol file. */
918 symfile_objfile = objfile;
919
920 clear_symtab_users ();
921 }
922 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
923 {
924 breakpoint_re_set ();
925 }
926
927 /* We're done reading the symbol file; finish off complaints. */
928 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
929}
930
931/* Process a symbol file, as either the main file or as a dynamically
932 loaded file.
933
934 ABFD is a BFD already open on the file, as from symfile_bfd_open.
935 This BFD will be closed on error, and is always consumed by this function.
936
937 ADD_FLAGS encodes verbosity, whether this is main symbol file or
938 extra, such as dynamically loaded code, and what to do with breakpoins.
939
940 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
941 syms_from_objfile, above.
942 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
943
944 Upon success, returns a pointer to the objfile that was added.
945 Upon failure, jumps back to command level (never returns). */
946
947static struct objfile *
948symbol_file_add_with_addrs_or_offsets (bfd *abfd,
949 int add_flags,
950 struct section_addr_info *addrs,
951 struct section_offsets *offsets,
952 int num_offsets,
953 int flags)
954{
955 struct objfile *objfile;
956 struct partial_symtab *psymtab;
957 char *debugfile = NULL;
958 struct section_addr_info *orig_addrs = NULL;
959 struct cleanup *my_cleanups;
960 const char *name = bfd_get_filename (abfd);
961 const int from_tty = add_flags & SYMFILE_VERBOSE;
962
963 my_cleanups = make_cleanup_bfd_close (abfd);
964
965 /* Give user a chance to burp if we'd be
966 interactively wiping out any existing symbols. */
967
968 if ((have_full_symbols () || have_partial_symbols ())
969 && (add_flags & SYMFILE_MAINLINE)
970 && from_tty
971 && !query (_("Load new symbol table from \"%s\"? "), name))
972 error (_("Not confirmed."));
973
974 objfile = allocate_objfile (abfd, flags);
975 discard_cleanups (my_cleanups);
976
977 if (addrs)
978 {
979 orig_addrs = copy_section_addr_info (addrs);
980 make_cleanup_free_section_addr_info (orig_addrs);
981 }
982
983 /* We either created a new mapped symbol table, mapped an existing
984 symbol table file which has not had initial symbol reading
985 performed, or need to read an unmapped symbol table. */
986 if (from_tty || info_verbose)
987 {
988 if (deprecated_pre_add_symbol_hook)
989 deprecated_pre_add_symbol_hook (name);
990 else
991 {
992 if (print_symbol_loading)
993 {
994 printf_unfiltered (_("Reading symbols from %s..."), name);
995 wrap_here ("");
996 gdb_flush (gdb_stdout);
997 }
998 }
999 }
1000 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1001 add_flags);
1002
1003 /* We now have at least a partial symbol table. Check to see if the
1004 user requested that all symbols be read on initial access via either
1005 the gdb startup command line or on a per symbol file basis. Expand
1006 all partial symbol tables for this objfile if so. */
1007
1008 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1009 {
1010 if ((from_tty || info_verbose) && print_symbol_loading)
1011 {
1012 printf_unfiltered (_("expanding to full symbols..."));
1013 wrap_here ("");
1014 gdb_flush (gdb_stdout);
1015 }
1016
1017 for (psymtab = objfile->psymtabs;
1018 psymtab != NULL;
1019 psymtab = psymtab->next)
1020 {
1021 psymtab_to_symtab (psymtab);
1022 }
1023 }
1024
1025 /* If the file has its own symbol tables it has no separate debug info.
1026 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1027 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1028 if (objfile->psymtabs == NULL)
1029 debugfile = find_separate_debug_file (objfile);
1030 if (debugfile)
1031 {
1032 if (addrs != NULL)
1033 {
1034 objfile->separate_debug_objfile
1035 = symbol_file_add (debugfile, add_flags, orig_addrs, flags);
1036 }
1037 else
1038 {
1039 objfile->separate_debug_objfile
1040 = symbol_file_add (debugfile, add_flags, NULL, flags);
1041 }
1042 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1043 = objfile;
1044
1045 /* Put the separate debug object before the normal one, this is so that
1046 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1047 put_objfile_before (objfile->separate_debug_objfile, objfile);
1048
1049 xfree (debugfile);
1050 }
1051
1052 if (!have_partial_symbols () && !have_full_symbols ()
1053 && print_symbol_loading)
1054 {
1055 wrap_here ("");
1056 printf_unfiltered (_("(no debugging symbols found)"));
1057 if (from_tty || info_verbose)
1058 printf_unfiltered ("...");
1059 else
1060 printf_unfiltered ("\n");
1061 wrap_here ("");
1062 }
1063
1064 if (from_tty || info_verbose)
1065 {
1066 if (deprecated_post_add_symbol_hook)
1067 deprecated_post_add_symbol_hook ();
1068 else
1069 {
1070 if (print_symbol_loading)
1071 printf_unfiltered (_("done.\n"));
1072 }
1073 }
1074
1075 /* We print some messages regardless of whether 'from_tty ||
1076 info_verbose' is true, so make sure they go out at the right
1077 time. */
1078 gdb_flush (gdb_stdout);
1079
1080 do_cleanups (my_cleanups);
1081
1082 if (objfile->sf == NULL)
1083 {
1084 observer_notify_new_objfile (objfile);
1085 return objfile; /* No symbols. */
1086 }
1087
1088 new_symfile_objfile (objfile, add_flags);
1089
1090 observer_notify_new_objfile (objfile);
1091
1092 bfd_cache_close_all ();
1093 return (objfile);
1094}
1095
1096
1097/* Process the symbol file ABFD, as either the main file or as a
1098 dynamically loaded file.
1099
1100 See symbol_file_add_with_addrs_or_offsets's comments for
1101 details. */
1102struct objfile *
1103symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1104 struct section_addr_info *addrs,
1105 int flags)
1106{
1107 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1108 flags);
1109}
1110
1111
1112/* Process a symbol file, as either the main file or as a dynamically
1113 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1114 for details. */
1115struct objfile *
1116symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1117 int flags)
1118{
1119 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1120 flags);
1121}
1122
1123
1124/* Call symbol_file_add() with default values and update whatever is
1125 affected by the loading of a new main().
1126 Used when the file is supplied in the gdb command line
1127 and by some targets with special loading requirements.
1128 The auxiliary function, symbol_file_add_main_1(), has the flags
1129 argument for the switches that can only be specified in the symbol_file
1130 command itself. */
1131
1132void
1133symbol_file_add_main (char *args, int from_tty)
1134{
1135 symbol_file_add_main_1 (args, from_tty, 0);
1136}
1137
1138static void
1139symbol_file_add_main_1 (char *args, int from_tty, int flags)
1140{
1141 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1142 symbol_file_add (args, add_flags, NULL, flags);
1143
1144 /* Getting new symbols may change our opinion about
1145 what is frameless. */
1146 reinit_frame_cache ();
1147
1148 set_initial_language ();
1149}
1150
1151void
1152symbol_file_clear (int from_tty)
1153{
1154 if ((have_full_symbols () || have_partial_symbols ())
1155 && from_tty
1156 && (symfile_objfile
1157 ? !query (_("Discard symbol table from `%s'? "),
1158 symfile_objfile->name)
1159 : !query (_("Discard symbol table? "))))
1160 error (_("Not confirmed."));
1161
1162 free_all_objfiles ();
1163
1164 /* solib descriptors may have handles to objfiles. Since their
1165 storage has just been released, we'd better wipe the solib
1166 descriptors as well. */
1167 no_shared_libraries (NULL, from_tty);
1168
1169 symfile_objfile = NULL;
1170 if (from_tty)
1171 printf_unfiltered (_("No symbol file now.\n"));
1172}
1173
1174struct build_id
1175 {
1176 size_t size;
1177 gdb_byte data[1];
1178 };
1179
1180/* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1181
1182static struct build_id *
1183build_id_bfd_get (bfd *abfd)
1184{
1185 struct build_id *retval;
1186
1187 if (!bfd_check_format (abfd, bfd_object)
1188 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1189 || elf_tdata (abfd)->build_id == NULL)
1190 return NULL;
1191
1192 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1193 retval->size = elf_tdata (abfd)->build_id_size;
1194 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1195
1196 return retval;
1197}
1198
1199/* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1200
1201static int
1202build_id_verify (const char *filename, struct build_id *check)
1203{
1204 bfd *abfd;
1205 struct build_id *found = NULL;
1206 int retval = 0;
1207
1208 /* We expect to be silent on the non-existing files. */
1209 if (remote_filename_p (filename))
1210 abfd = remote_bfd_open (filename, gnutarget);
1211 else
1212 abfd = bfd_openr (filename, gnutarget);
1213 if (abfd == NULL)
1214 return 0;
1215
1216 found = build_id_bfd_get (abfd);
1217
1218 if (found == NULL)
1219 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1220 else if (found->size != check->size
1221 || memcmp (found->data, check->data, found->size) != 0)
1222 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1223 else
1224 retval = 1;
1225
1226 if (!bfd_close (abfd))
1227 warning (_("cannot close \"%s\": %s"), filename,
1228 bfd_errmsg (bfd_get_error ()));
1229
1230 xfree (found);
1231
1232 return retval;
1233}
1234
1235static char *
1236build_id_to_debug_filename (struct build_id *build_id)
1237{
1238 char *link, *s, *retval = NULL;
1239 gdb_byte *data = build_id->data;
1240 size_t size = build_id->size;
1241
1242 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1243 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1244 + 2 * size + (sizeof ".debug" - 1) + 1);
1245 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1246 if (size > 0)
1247 {
1248 size--;
1249 s += sprintf (s, "%02x", (unsigned) *data++);
1250 }
1251 if (size > 0)
1252 *s++ = '/';
1253 while (size-- > 0)
1254 s += sprintf (s, "%02x", (unsigned) *data++);
1255 strcpy (s, ".debug");
1256
1257 /* lrealpath() is expensive even for the usually non-existent files. */
1258 if (access (link, F_OK) == 0)
1259 retval = lrealpath (link);
1260 xfree (link);
1261
1262 if (retval != NULL && !build_id_verify (retval, build_id))
1263 {
1264 xfree (retval);
1265 retval = NULL;
1266 }
1267
1268 return retval;
1269}
1270
1271static char *
1272get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1273{
1274 asection *sect;
1275 bfd_size_type debuglink_size;
1276 unsigned long crc32;
1277 char *contents;
1278 int crc_offset;
1279 unsigned char *p;
1280
1281 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1282
1283 if (sect == NULL)
1284 return NULL;
1285
1286 debuglink_size = bfd_section_size (objfile->obfd, sect);
1287
1288 contents = xmalloc (debuglink_size);
1289 bfd_get_section_contents (objfile->obfd, sect, contents,
1290 (file_ptr)0, (bfd_size_type)debuglink_size);
1291
1292 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1293 crc_offset = strlen (contents) + 1;
1294 crc_offset = (crc_offset + 3) & ~3;
1295
1296 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1297
1298 *crc32_out = crc32;
1299 return contents;
1300}
1301
1302static int
1303separate_debug_file_exists (const char *name, unsigned long crc)
1304{
1305 unsigned long file_crc = 0;
1306 bfd *abfd;
1307 gdb_byte buffer[8*1024];
1308 int count;
1309
1310 if (remote_filename_p (name))
1311 abfd = remote_bfd_open (name, gnutarget);
1312 else
1313 abfd = bfd_openr (name, gnutarget);
1314
1315 if (!abfd)
1316 return 0;
1317
1318 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1319 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1320
1321 bfd_close (abfd);
1322
1323 return crc == file_crc;
1324}
1325
1326char *debug_file_directory = NULL;
1327static void
1328show_debug_file_directory (struct ui_file *file, int from_tty,
1329 struct cmd_list_element *c, const char *value)
1330{
1331 fprintf_filtered (file, _("\
1332The directory where separate debug symbols are searched for is \"%s\".\n"),
1333 value);
1334}
1335
1336#if ! defined (DEBUG_SUBDIRECTORY)
1337#define DEBUG_SUBDIRECTORY ".debug"
1338#endif
1339
1340static char *
1341find_separate_debug_file (struct objfile *objfile)
1342{
1343 asection *sect;
1344 char *basename;
1345 char *dir;
1346 char *debugfile;
1347 char *name_copy;
1348 char *canon_name;
1349 bfd_size_type debuglink_size;
1350 unsigned long crc32;
1351 int i;
1352 struct build_id *build_id;
1353
1354 build_id = build_id_bfd_get (objfile->obfd);
1355 if (build_id != NULL)
1356 {
1357 char *build_id_name;
1358
1359 build_id_name = build_id_to_debug_filename (build_id);
1360 xfree (build_id);
1361 /* Prevent looping on a stripped .debug file. */
1362 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1363 {
1364 warning (_("\"%s\": separate debug info file has no debug info"),
1365 build_id_name);
1366 xfree (build_id_name);
1367 }
1368 else if (build_id_name != NULL)
1369 return build_id_name;
1370 }
1371
1372 basename = get_debug_link_info (objfile, &crc32);
1373
1374 if (basename == NULL)
1375 return NULL;
1376
1377 dir = xstrdup (objfile->name);
1378
1379 /* Strip off the final filename part, leaving the directory name,
1380 followed by a slash. Objfile names should always be absolute and
1381 tilde-expanded, so there should always be a slash in there
1382 somewhere. */
1383 for (i = strlen(dir) - 1; i >= 0; i--)
1384 {
1385 if (IS_DIR_SEPARATOR (dir[i]))
1386 break;
1387 }
1388 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1389 dir[i+1] = '\0';
1390
1391 /* Set I to max (strlen (canon_name), strlen (dir)). */
1392 canon_name = lrealpath (dir);
1393 i = strlen (dir);
1394 if (canon_name && strlen (canon_name) > i)
1395 i = strlen (canon_name);
1396
1397 debugfile = alloca (strlen (debug_file_directory) + 1
1398 + i
1399 + strlen (DEBUG_SUBDIRECTORY)
1400 + strlen ("/")
1401 + strlen (basename)
1402 + 1);
1403
1404 /* First try in the same directory as the original file. */
1405 strcpy (debugfile, dir);
1406 strcat (debugfile, basename);
1407
1408 if (separate_debug_file_exists (debugfile, crc32))
1409 {
1410 xfree (basename);
1411 xfree (dir);
1412 xfree (canon_name);
1413 return xstrdup (debugfile);
1414 }
1415
1416 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1417 strcpy (debugfile, dir);
1418 strcat (debugfile, DEBUG_SUBDIRECTORY);
1419 strcat (debugfile, "/");
1420 strcat (debugfile, basename);
1421
1422 if (separate_debug_file_exists (debugfile, crc32))
1423 {
1424 xfree (basename);
1425 xfree (dir);
1426 xfree (canon_name);
1427 return xstrdup (debugfile);
1428 }
1429
1430 /* Then try in the global debugfile directory. */
1431 strcpy (debugfile, debug_file_directory);
1432 strcat (debugfile, "/");
1433 strcat (debugfile, dir);
1434 strcat (debugfile, basename);
1435
1436 if (separate_debug_file_exists (debugfile, crc32))
1437 {
1438 xfree (basename);
1439 xfree (dir);
1440 xfree (canon_name);
1441 return xstrdup (debugfile);
1442 }
1443
1444 /* If the file is in the sysroot, try using its base path in the
1445 global debugfile directory. */
1446 if (canon_name
1447 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1448 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1449 {
1450 strcpy (debugfile, debug_file_directory);
1451 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1452 strcat (debugfile, "/");
1453 strcat (debugfile, basename);
1454
1455 if (separate_debug_file_exists (debugfile, crc32))
1456 {
1457 xfree (canon_name);
1458 xfree (basename);
1459 xfree (dir);
1460 return xstrdup (debugfile);
1461 }
1462 }
1463
1464 if (canon_name)
1465 xfree (canon_name);
1466
1467 xfree (basename);
1468 xfree (dir);
1469 return NULL;
1470}
1471
1472
1473/* This is the symbol-file command. Read the file, analyze its
1474 symbols, and add a struct symtab to a symtab list. The syntax of
1475 the command is rather bizarre:
1476
1477 1. The function buildargv implements various quoting conventions
1478 which are undocumented and have little or nothing in common with
1479 the way things are quoted (or not quoted) elsewhere in GDB.
1480
1481 2. Options are used, which are not generally used in GDB (perhaps
1482 "set mapped on", "set readnow on" would be better)
1483
1484 3. The order of options matters, which is contrary to GNU
1485 conventions (because it is confusing and inconvenient). */
1486
1487void
1488symbol_file_command (char *args, int from_tty)
1489{
1490 dont_repeat ();
1491
1492 if (args == NULL)
1493 {
1494 symbol_file_clear (from_tty);
1495 }
1496 else
1497 {
1498 char **argv = gdb_buildargv (args);
1499 int flags = OBJF_USERLOADED;
1500 struct cleanup *cleanups;
1501 char *name = NULL;
1502
1503 cleanups = make_cleanup_freeargv (argv);
1504 while (*argv != NULL)
1505 {
1506 if (strcmp (*argv, "-readnow") == 0)
1507 flags |= OBJF_READNOW;
1508 else if (**argv == '-')
1509 error (_("unknown option `%s'"), *argv);
1510 else
1511 {
1512 symbol_file_add_main_1 (*argv, from_tty, flags);
1513 name = *argv;
1514 }
1515
1516 argv++;
1517 }
1518
1519 if (name == NULL)
1520 error (_("no symbol file name was specified"));
1521
1522 do_cleanups (cleanups);
1523 }
1524}
1525
1526/* Set the initial language.
1527
1528 FIXME: A better solution would be to record the language in the
1529 psymtab when reading partial symbols, and then use it (if known) to
1530 set the language. This would be a win for formats that encode the
1531 language in an easily discoverable place, such as DWARF. For
1532 stabs, we can jump through hoops looking for specially named
1533 symbols or try to intuit the language from the specific type of
1534 stabs we find, but we can't do that until later when we read in
1535 full symbols. */
1536
1537void
1538set_initial_language (void)
1539{
1540 struct partial_symtab *pst;
1541 enum language lang = language_unknown;
1542
1543 pst = find_main_psymtab ();
1544 if (pst != NULL)
1545 {
1546 if (pst->filename != NULL)
1547 lang = deduce_language_from_filename (pst->filename);
1548
1549 if (lang == language_unknown)
1550 {
1551 /* Make C the default language */
1552 lang = language_c;
1553 }
1554
1555 set_language (lang);
1556 expected_language = current_language; /* Don't warn the user. */
1557 }
1558}
1559
1560/* Open the file specified by NAME and hand it off to BFD for
1561 preliminary analysis. Return a newly initialized bfd *, which
1562 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1563 absolute). In case of trouble, error() is called. */
1564
1565bfd *
1566symfile_bfd_open (char *name)
1567{
1568 bfd *sym_bfd;
1569 int desc;
1570 char *absolute_name;
1571
1572 if (remote_filename_p (name))
1573 {
1574 name = xstrdup (name);
1575 sym_bfd = remote_bfd_open (name, gnutarget);
1576 if (!sym_bfd)
1577 {
1578 make_cleanup (xfree, name);
1579 error (_("`%s': can't open to read symbols: %s."), name,
1580 bfd_errmsg (bfd_get_error ()));
1581 }
1582
1583 if (!bfd_check_format (sym_bfd, bfd_object))
1584 {
1585 bfd_close (sym_bfd);
1586 make_cleanup (xfree, name);
1587 error (_("`%s': can't read symbols: %s."), name,
1588 bfd_errmsg (bfd_get_error ()));
1589 }
1590
1591 return sym_bfd;
1592 }
1593
1594 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1595
1596 /* Look down path for it, allocate 2nd new malloc'd copy. */
1597 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1598 O_RDONLY | O_BINARY, &absolute_name);
1599#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1600 if (desc < 0)
1601 {
1602 char *exename = alloca (strlen (name) + 5);
1603 strcat (strcpy (exename, name), ".exe");
1604 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1605 O_RDONLY | O_BINARY, &absolute_name);
1606 }
1607#endif
1608 if (desc < 0)
1609 {
1610 make_cleanup (xfree, name);
1611 perror_with_name (name);
1612 }
1613
1614 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1615 bfd. It'll be freed in free_objfile(). */
1616 xfree (name);
1617 name = absolute_name;
1618
1619 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1620 if (!sym_bfd)
1621 {
1622 close (desc);
1623 make_cleanup (xfree, name);
1624 error (_("`%s': can't open to read symbols: %s."), name,
1625 bfd_errmsg (bfd_get_error ()));
1626 }
1627 bfd_set_cacheable (sym_bfd, 1);
1628
1629 if (!bfd_check_format (sym_bfd, bfd_object))
1630 {
1631 /* FIXME: should be checking for errors from bfd_close (for one
1632 thing, on error it does not free all the storage associated
1633 with the bfd). */
1634 bfd_close (sym_bfd); /* This also closes desc. */
1635 make_cleanup (xfree, name);
1636 error (_("`%s': can't read symbols: %s."), name,
1637 bfd_errmsg (bfd_get_error ()));
1638 }
1639
1640 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1641 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1642
1643 return sym_bfd;
1644}
1645
1646/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1647 the section was not found. */
1648
1649int
1650get_section_index (struct objfile *objfile, char *section_name)
1651{
1652 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1653
1654 if (sect)
1655 return sect->index;
1656 else
1657 return -1;
1658}
1659
1660/* Link SF into the global symtab_fns list. Called on startup by the
1661 _initialize routine in each object file format reader, to register
1662 information about each format the the reader is prepared to
1663 handle. */
1664
1665void
1666add_symtab_fns (struct sym_fns *sf)
1667{
1668 sf->next = symtab_fns;
1669 symtab_fns = sf;
1670}
1671
1672/* Initialize OBJFILE to read symbols from its associated BFD. It
1673 either returns or calls error(). The result is an initialized
1674 struct sym_fns in the objfile structure, that contains cached
1675 information about the symbol file. */
1676
1677static struct sym_fns *
1678find_sym_fns (bfd *abfd)
1679{
1680 struct sym_fns *sf;
1681 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1682
1683 if (our_flavour == bfd_target_srec_flavour
1684 || our_flavour == bfd_target_ihex_flavour
1685 || our_flavour == bfd_target_tekhex_flavour)
1686 return NULL; /* No symbols. */
1687
1688 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1689 if (our_flavour == sf->sym_flavour)
1690 return sf;
1691
1692 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1693 bfd_get_target (abfd));
1694}
1695\f
1696
1697/* This function runs the load command of our current target. */
1698
1699static void
1700load_command (char *arg, int from_tty)
1701{
1702 /* The user might be reloading because the binary has changed. Take
1703 this opportunity to check. */
1704 reopen_exec_file ();
1705 reread_symbols ();
1706
1707 if (arg == NULL)
1708 {
1709 char *parg;
1710 int count = 0;
1711
1712 parg = arg = get_exec_file (1);
1713
1714 /* Count how many \ " ' tab space there are in the name. */
1715 while ((parg = strpbrk (parg, "\\\"'\t ")))
1716 {
1717 parg++;
1718 count++;
1719 }
1720
1721 if (count)
1722 {
1723 /* We need to quote this string so buildargv can pull it apart. */
1724 char *temp = xmalloc (strlen (arg) + count + 1 );
1725 char *ptemp = temp;
1726 char *prev;
1727
1728 make_cleanup (xfree, temp);
1729
1730 prev = parg = arg;
1731 while ((parg = strpbrk (parg, "\\\"'\t ")))
1732 {
1733 strncpy (ptemp, prev, parg - prev);
1734 ptemp += parg - prev;
1735 prev = parg++;
1736 *ptemp++ = '\\';
1737 }
1738 strcpy (ptemp, prev);
1739
1740 arg = temp;
1741 }
1742 }
1743
1744 target_load (arg, from_tty);
1745
1746 /* After re-loading the executable, we don't really know which
1747 overlays are mapped any more. */
1748 overlay_cache_invalid = 1;
1749}
1750
1751/* This version of "load" should be usable for any target. Currently
1752 it is just used for remote targets, not inftarg.c or core files,
1753 on the theory that only in that case is it useful.
1754
1755 Avoiding xmodem and the like seems like a win (a) because we don't have
1756 to worry about finding it, and (b) On VMS, fork() is very slow and so
1757 we don't want to run a subprocess. On the other hand, I'm not sure how
1758 performance compares. */
1759
1760static int validate_download = 0;
1761
1762/* Callback service function for generic_load (bfd_map_over_sections). */
1763
1764static void
1765add_section_size_callback (bfd *abfd, asection *asec, void *data)
1766{
1767 bfd_size_type *sum = data;
1768
1769 *sum += bfd_get_section_size (asec);
1770}
1771
1772/* Opaque data for load_section_callback. */
1773struct load_section_data {
1774 unsigned long load_offset;
1775 struct load_progress_data *progress_data;
1776 VEC(memory_write_request_s) *requests;
1777};
1778
1779/* Opaque data for load_progress. */
1780struct load_progress_data {
1781 /* Cumulative data. */
1782 unsigned long write_count;
1783 unsigned long data_count;
1784 bfd_size_type total_size;
1785};
1786
1787/* Opaque data for load_progress for a single section. */
1788struct load_progress_section_data {
1789 struct load_progress_data *cumulative;
1790
1791 /* Per-section data. */
1792 const char *section_name;
1793 ULONGEST section_sent;
1794 ULONGEST section_size;
1795 CORE_ADDR lma;
1796 gdb_byte *buffer;
1797};
1798
1799/* Target write callback routine for progress reporting. */
1800
1801static void
1802load_progress (ULONGEST bytes, void *untyped_arg)
1803{
1804 struct load_progress_section_data *args = untyped_arg;
1805 struct load_progress_data *totals;
1806
1807 if (args == NULL)
1808 /* Writing padding data. No easy way to get at the cumulative
1809 stats, so just ignore this. */
1810 return;
1811
1812 totals = args->cumulative;
1813
1814 if (bytes == 0 && args->section_sent == 0)
1815 {
1816 /* The write is just starting. Let the user know we've started
1817 this section. */
1818 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1819 args->section_name, hex_string (args->section_size),
1820 paddress (target_gdbarch, args->lma));
1821 return;
1822 }
1823
1824 if (validate_download)
1825 {
1826 /* Broken memories and broken monitors manifest themselves here
1827 when bring new computers to life. This doubles already slow
1828 downloads. */
1829 /* NOTE: cagney/1999-10-18: A more efficient implementation
1830 might add a verify_memory() method to the target vector and
1831 then use that. remote.c could implement that method using
1832 the ``qCRC'' packet. */
1833 gdb_byte *check = xmalloc (bytes);
1834 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1835
1836 if (target_read_memory (args->lma, check, bytes) != 0)
1837 error (_("Download verify read failed at %s"),
1838 paddress (target_gdbarch, args->lma));
1839 if (memcmp (args->buffer, check, bytes) != 0)
1840 error (_("Download verify compare failed at %s"),
1841 paddress (target_gdbarch, args->lma));
1842 do_cleanups (verify_cleanups);
1843 }
1844 totals->data_count += bytes;
1845 args->lma += bytes;
1846 args->buffer += bytes;
1847 totals->write_count += 1;
1848 args->section_sent += bytes;
1849 if (quit_flag
1850 || (deprecated_ui_load_progress_hook != NULL
1851 && deprecated_ui_load_progress_hook (args->section_name,
1852 args->section_sent)))
1853 error (_("Canceled the download"));
1854
1855 if (deprecated_show_load_progress != NULL)
1856 deprecated_show_load_progress (args->section_name,
1857 args->section_sent,
1858 args->section_size,
1859 totals->data_count,
1860 totals->total_size);
1861}
1862
1863/* Callback service function for generic_load (bfd_map_over_sections). */
1864
1865static void
1866load_section_callback (bfd *abfd, asection *asec, void *data)
1867{
1868 struct memory_write_request *new_request;
1869 struct load_section_data *args = data;
1870 struct load_progress_section_data *section_data;
1871 bfd_size_type size = bfd_get_section_size (asec);
1872 gdb_byte *buffer;
1873 const char *sect_name = bfd_get_section_name (abfd, asec);
1874
1875 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1876 return;
1877
1878 if (size == 0)
1879 return;
1880
1881 new_request = VEC_safe_push (memory_write_request_s,
1882 args->requests, NULL);
1883 memset (new_request, 0, sizeof (struct memory_write_request));
1884 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1885 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1886 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1887 new_request->data = xmalloc (size);
1888 new_request->baton = section_data;
1889
1890 buffer = new_request->data;
1891
1892 section_data->cumulative = args->progress_data;
1893 section_data->section_name = sect_name;
1894 section_data->section_size = size;
1895 section_data->lma = new_request->begin;
1896 section_data->buffer = buffer;
1897
1898 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1899}
1900
1901/* Clean up an entire memory request vector, including load
1902 data and progress records. */
1903
1904static void
1905clear_memory_write_data (void *arg)
1906{
1907 VEC(memory_write_request_s) **vec_p = arg;
1908 VEC(memory_write_request_s) *vec = *vec_p;
1909 int i;
1910 struct memory_write_request *mr;
1911
1912 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1913 {
1914 xfree (mr->data);
1915 xfree (mr->baton);
1916 }
1917 VEC_free (memory_write_request_s, vec);
1918}
1919
1920void
1921generic_load (char *args, int from_tty)
1922{
1923 bfd *loadfile_bfd;
1924 struct timeval start_time, end_time;
1925 char *filename;
1926 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1927 struct load_section_data cbdata;
1928 struct load_progress_data total_progress;
1929
1930 CORE_ADDR entry;
1931 char **argv;
1932
1933 memset (&cbdata, 0, sizeof (cbdata));
1934 memset (&total_progress, 0, sizeof (total_progress));
1935 cbdata.progress_data = &total_progress;
1936
1937 make_cleanup (clear_memory_write_data, &cbdata.requests);
1938
1939 if (args == NULL)
1940 error_no_arg (_("file to load"));
1941
1942 argv = gdb_buildargv (args);
1943 make_cleanup_freeargv (argv);
1944
1945 filename = tilde_expand (argv[0]);
1946 make_cleanup (xfree, filename);
1947
1948 if (argv[1] != NULL)
1949 {
1950 char *endptr;
1951
1952 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1953
1954 /* If the last word was not a valid number then
1955 treat it as a file name with spaces in. */
1956 if (argv[1] == endptr)
1957 error (_("Invalid download offset:%s."), argv[1]);
1958
1959 if (argv[2] != NULL)
1960 error (_("Too many parameters."));
1961 }
1962
1963 /* Open the file for loading. */
1964 loadfile_bfd = bfd_openr (filename, gnutarget);
1965 if (loadfile_bfd == NULL)
1966 {
1967 perror_with_name (filename);
1968 return;
1969 }
1970
1971 /* FIXME: should be checking for errors from bfd_close (for one thing,
1972 on error it does not free all the storage associated with the
1973 bfd). */
1974 make_cleanup_bfd_close (loadfile_bfd);
1975
1976 if (!bfd_check_format (loadfile_bfd, bfd_object))
1977 {
1978 error (_("\"%s\" is not an object file: %s"), filename,
1979 bfd_errmsg (bfd_get_error ()));
1980 }
1981
1982 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1983 (void *) &total_progress.total_size);
1984
1985 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1986
1987 gettimeofday (&start_time, NULL);
1988
1989 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1990 load_progress) != 0)
1991 error (_("Load failed"));
1992
1993 gettimeofday (&end_time, NULL);
1994
1995 entry = bfd_get_start_address (loadfile_bfd);
1996 ui_out_text (uiout, "Start address ");
1997 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
1998 ui_out_text (uiout, ", load size ");
1999 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2000 ui_out_text (uiout, "\n");
2001 /* We were doing this in remote-mips.c, I suspect it is right
2002 for other targets too. */
2003 regcache_write_pc (get_current_regcache (), entry);
2004
2005 /* FIXME: are we supposed to call symbol_file_add or not? According
2006 to a comment from remote-mips.c (where a call to symbol_file_add
2007 was commented out), making the call confuses GDB if more than one
2008 file is loaded in. Some targets do (e.g., remote-vx.c) but
2009 others don't (or didn't - perhaps they have all been deleted). */
2010
2011 print_transfer_performance (gdb_stdout, total_progress.data_count,
2012 total_progress.write_count,
2013 &start_time, &end_time);
2014
2015 do_cleanups (old_cleanups);
2016}
2017
2018/* Report how fast the transfer went. */
2019
2020/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2021 replaced by print_transfer_performance (with a very different
2022 function signature). */
2023
2024void
2025report_transfer_performance (unsigned long data_count, time_t start_time,
2026 time_t end_time)
2027{
2028 struct timeval start, end;
2029
2030 start.tv_sec = start_time;
2031 start.tv_usec = 0;
2032 end.tv_sec = end_time;
2033 end.tv_usec = 0;
2034
2035 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2036}
2037
2038void
2039print_transfer_performance (struct ui_file *stream,
2040 unsigned long data_count,
2041 unsigned long write_count,
2042 const struct timeval *start_time,
2043 const struct timeval *end_time)
2044{
2045 ULONGEST time_count;
2046
2047 /* Compute the elapsed time in milliseconds, as a tradeoff between
2048 accuracy and overflow. */
2049 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2050 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2051
2052 ui_out_text (uiout, "Transfer rate: ");
2053 if (time_count > 0)
2054 {
2055 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2056
2057 if (ui_out_is_mi_like_p (uiout))
2058 {
2059 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2060 ui_out_text (uiout, " bits/sec");
2061 }
2062 else if (rate < 1024)
2063 {
2064 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2065 ui_out_text (uiout, " bytes/sec");
2066 }
2067 else
2068 {
2069 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2070 ui_out_text (uiout, " KB/sec");
2071 }
2072 }
2073 else
2074 {
2075 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2076 ui_out_text (uiout, " bits in <1 sec");
2077 }
2078 if (write_count > 0)
2079 {
2080 ui_out_text (uiout, ", ");
2081 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2082 ui_out_text (uiout, " bytes/write");
2083 }
2084 ui_out_text (uiout, ".\n");
2085}
2086
2087/* This function allows the addition of incrementally linked object files.
2088 It does not modify any state in the target, only in the debugger. */
2089/* Note: ezannoni 2000-04-13 This function/command used to have a
2090 special case syntax for the rombug target (Rombug is the boot
2091 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2092 rombug case, the user doesn't need to supply a text address,
2093 instead a call to target_link() (in target.c) would supply the
2094 value to use. We are now discontinuing this type of ad hoc syntax. */
2095
2096static void
2097add_symbol_file_command (char *args, int from_tty)
2098{
2099 struct gdbarch *gdbarch = get_current_arch ();
2100 char *filename = NULL;
2101 int flags = OBJF_USERLOADED;
2102 char *arg;
2103 int expecting_option = 0;
2104 int section_index = 0;
2105 int argcnt = 0;
2106 int sec_num = 0;
2107 int i;
2108 int expecting_sec_name = 0;
2109 int expecting_sec_addr = 0;
2110 char **argv;
2111
2112 struct sect_opt
2113 {
2114 char *name;
2115 char *value;
2116 };
2117
2118 struct section_addr_info *section_addrs;
2119 struct sect_opt *sect_opts = NULL;
2120 size_t num_sect_opts = 0;
2121 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2122
2123 num_sect_opts = 16;
2124 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2125 * sizeof (struct sect_opt));
2126
2127 dont_repeat ();
2128
2129 if (args == NULL)
2130 error (_("add-symbol-file takes a file name and an address"));
2131
2132 argv = gdb_buildargv (args);
2133 make_cleanup_freeargv (argv);
2134
2135 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2136 {
2137 /* Process the argument. */
2138 if (argcnt == 0)
2139 {
2140 /* The first argument is the file name. */
2141 filename = tilde_expand (arg);
2142 make_cleanup (xfree, filename);
2143 }
2144 else
2145 if (argcnt == 1)
2146 {
2147 /* The second argument is always the text address at which
2148 to load the program. */
2149 sect_opts[section_index].name = ".text";
2150 sect_opts[section_index].value = arg;
2151 if (++section_index >= num_sect_opts)
2152 {
2153 num_sect_opts *= 2;
2154 sect_opts = ((struct sect_opt *)
2155 xrealloc (sect_opts,
2156 num_sect_opts
2157 * sizeof (struct sect_opt)));
2158 }
2159 }
2160 else
2161 {
2162 /* It's an option (starting with '-') or it's an argument
2163 to an option */
2164
2165 if (*arg == '-')
2166 {
2167 if (strcmp (arg, "-readnow") == 0)
2168 flags |= OBJF_READNOW;
2169 else if (strcmp (arg, "-s") == 0)
2170 {
2171 expecting_sec_name = 1;
2172 expecting_sec_addr = 1;
2173 }
2174 }
2175 else
2176 {
2177 if (expecting_sec_name)
2178 {
2179 sect_opts[section_index].name = arg;
2180 expecting_sec_name = 0;
2181 }
2182 else
2183 if (expecting_sec_addr)
2184 {
2185 sect_opts[section_index].value = arg;
2186 expecting_sec_addr = 0;
2187 if (++section_index >= num_sect_opts)
2188 {
2189 num_sect_opts *= 2;
2190 sect_opts = ((struct sect_opt *)
2191 xrealloc (sect_opts,
2192 num_sect_opts
2193 * sizeof (struct sect_opt)));
2194 }
2195 }
2196 else
2197 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2198 }
2199 }
2200 }
2201
2202 /* This command takes at least two arguments. The first one is a
2203 filename, and the second is the address where this file has been
2204 loaded. Abort now if this address hasn't been provided by the
2205 user. */
2206 if (section_index < 1)
2207 error (_("The address where %s has been loaded is missing"), filename);
2208
2209 /* Print the prompt for the query below. And save the arguments into
2210 a sect_addr_info structure to be passed around to other
2211 functions. We have to split this up into separate print
2212 statements because hex_string returns a local static
2213 string. */
2214
2215 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2216 section_addrs = alloc_section_addr_info (section_index);
2217 make_cleanup (xfree, section_addrs);
2218 for (i = 0; i < section_index; i++)
2219 {
2220 CORE_ADDR addr;
2221 char *val = sect_opts[i].value;
2222 char *sec = sect_opts[i].name;
2223
2224 addr = parse_and_eval_address (val);
2225
2226 /* Here we store the section offsets in the order they were
2227 entered on the command line. */
2228 section_addrs->other[sec_num].name = sec;
2229 section_addrs->other[sec_num].addr = addr;
2230 printf_unfiltered ("\t%s_addr = %s\n", sec,
2231 paddress (gdbarch, addr));
2232 sec_num++;
2233
2234 /* The object's sections are initialized when a
2235 call is made to build_objfile_section_table (objfile).
2236 This happens in reread_symbols.
2237 At this point, we don't know what file type this is,
2238 so we can't determine what section names are valid. */
2239 }
2240
2241 if (from_tty && (!query ("%s", "")))
2242 error (_("Not confirmed."));
2243
2244 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2245 section_addrs, flags);
2246
2247 /* Getting new symbols may change our opinion about what is
2248 frameless. */
2249 reinit_frame_cache ();
2250 do_cleanups (my_cleanups);
2251}
2252\f
2253
2254/* Re-read symbols if a symbol-file has changed. */
2255void
2256reread_symbols (void)
2257{
2258 struct objfile *objfile;
2259 long new_modtime;
2260 int reread_one = 0;
2261 struct stat new_statbuf;
2262 int res;
2263
2264 /* With the addition of shared libraries, this should be modified,
2265 the load time should be saved in the partial symbol tables, since
2266 different tables may come from different source files. FIXME.
2267 This routine should then walk down each partial symbol table
2268 and see if the symbol table that it originates from has been changed */
2269
2270 for (objfile = object_files; objfile; objfile = objfile->next)
2271 {
2272 if (objfile->obfd)
2273 {
2274#ifdef DEPRECATED_IBM6000_TARGET
2275 /* If this object is from a shared library, then you should
2276 stat on the library name, not member name. */
2277
2278 if (objfile->obfd->my_archive)
2279 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2280 else
2281#endif
2282 res = stat (objfile->name, &new_statbuf);
2283 if (res != 0)
2284 {
2285 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2286 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2287 objfile->name);
2288 continue;
2289 }
2290 new_modtime = new_statbuf.st_mtime;
2291 if (new_modtime != objfile->mtime)
2292 {
2293 struct cleanup *old_cleanups;
2294 struct section_offsets *offsets;
2295 int num_offsets;
2296 char *obfd_filename;
2297
2298 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2299 objfile->name);
2300
2301 /* There are various functions like symbol_file_add,
2302 symfile_bfd_open, syms_from_objfile, etc., which might
2303 appear to do what we want. But they have various other
2304 effects which we *don't* want. So we just do stuff
2305 ourselves. We don't worry about mapped files (for one thing,
2306 any mapped file will be out of date). */
2307
2308 /* If we get an error, blow away this objfile (not sure if
2309 that is the correct response for things like shared
2310 libraries). */
2311 old_cleanups = make_cleanup_free_objfile (objfile);
2312 /* We need to do this whenever any symbols go away. */
2313 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2314
2315 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2316 bfd_get_filename (exec_bfd)) == 0)
2317 {
2318 /* Reload EXEC_BFD without asking anything. */
2319
2320 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2321 }
2322
2323 /* Clean up any state BFD has sitting around. We don't need
2324 to close the descriptor but BFD lacks a way of closing the
2325 BFD without closing the descriptor. */
2326 obfd_filename = bfd_get_filename (objfile->obfd);
2327 if (!bfd_close (objfile->obfd))
2328 error (_("Can't close BFD for %s: %s"), objfile->name,
2329 bfd_errmsg (bfd_get_error ()));
2330 if (remote_filename_p (obfd_filename))
2331 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2332 else
2333 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2334 if (objfile->obfd == NULL)
2335 error (_("Can't open %s to read symbols."), objfile->name);
2336 else
2337 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2338 /* bfd_openr sets cacheable to true, which is what we want. */
2339 if (!bfd_check_format (objfile->obfd, bfd_object))
2340 error (_("Can't read symbols from %s: %s."), objfile->name,
2341 bfd_errmsg (bfd_get_error ()));
2342
2343 /* Save the offsets, we will nuke them with the rest of the
2344 objfile_obstack. */
2345 num_offsets = objfile->num_sections;
2346 offsets = ((struct section_offsets *)
2347 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2348 memcpy (offsets, objfile->section_offsets,
2349 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2350
2351 /* Remove any references to this objfile in the global
2352 value lists. */
2353 preserve_values (objfile);
2354
2355 /* Nuke all the state that we will re-read. Much of the following
2356 code which sets things to NULL really is necessary to tell
2357 other parts of GDB that there is nothing currently there.
2358
2359 Try to keep the freeing order compatible with free_objfile. */
2360
2361 if (objfile->sf != NULL)
2362 {
2363 (*objfile->sf->sym_finish) (objfile);
2364 }
2365
2366 clear_objfile_data (objfile);
2367
2368 /* FIXME: Do we have to free a whole linked list, or is this
2369 enough? */
2370 if (objfile->global_psymbols.list)
2371 xfree (objfile->global_psymbols.list);
2372 memset (&objfile->global_psymbols, 0,
2373 sizeof (objfile->global_psymbols));
2374 if (objfile->static_psymbols.list)
2375 xfree (objfile->static_psymbols.list);
2376 memset (&objfile->static_psymbols, 0,
2377 sizeof (objfile->static_psymbols));
2378
2379 /* Free the obstacks for non-reusable objfiles */
2380 bcache_xfree (objfile->psymbol_cache);
2381 objfile->psymbol_cache = bcache_xmalloc ();
2382 bcache_xfree (objfile->macro_cache);
2383 objfile->macro_cache = bcache_xmalloc ();
2384 if (objfile->demangled_names_hash != NULL)
2385 {
2386 htab_delete (objfile->demangled_names_hash);
2387 objfile->demangled_names_hash = NULL;
2388 }
2389 obstack_free (&objfile->objfile_obstack, 0);
2390 objfile->sections = NULL;
2391 objfile->symtabs = NULL;
2392 objfile->psymtabs = NULL;
2393 objfile->psymtabs_addrmap = NULL;
2394 objfile->free_psymtabs = NULL;
2395 objfile->cp_namespace_symtab = NULL;
2396 objfile->msymbols = NULL;
2397 objfile->deprecated_sym_private = NULL;
2398 objfile->minimal_symbol_count = 0;
2399 memset (&objfile->msymbol_hash, 0,
2400 sizeof (objfile->msymbol_hash));
2401 memset (&objfile->msymbol_demangled_hash, 0,
2402 sizeof (objfile->msymbol_demangled_hash));
2403
2404 objfile->psymbol_cache = bcache_xmalloc ();
2405 objfile->macro_cache = bcache_xmalloc ();
2406 /* obstack_init also initializes the obstack so it is
2407 empty. We could use obstack_specify_allocation but
2408 gdb_obstack.h specifies the alloc/dealloc
2409 functions. */
2410 obstack_init (&objfile->objfile_obstack);
2411 if (build_objfile_section_table (objfile))
2412 {
2413 error (_("Can't find the file sections in `%s': %s"),
2414 objfile->name, bfd_errmsg (bfd_get_error ()));
2415 }
2416 terminate_minimal_symbol_table (objfile);
2417
2418 /* We use the same section offsets as from last time. I'm not
2419 sure whether that is always correct for shared libraries. */
2420 objfile->section_offsets = (struct section_offsets *)
2421 obstack_alloc (&objfile->objfile_obstack,
2422 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2423 memcpy (objfile->section_offsets, offsets,
2424 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2425 objfile->num_sections = num_offsets;
2426
2427 /* What the hell is sym_new_init for, anyway? The concept of
2428 distinguishing between the main file and additional files
2429 in this way seems rather dubious. */
2430 if (objfile == symfile_objfile)
2431 {
2432 (*objfile->sf->sym_new_init) (objfile);
2433 }
2434
2435 (*objfile->sf->sym_init) (objfile);
2436 clear_complaints (&symfile_complaints, 1, 1);
2437 /* The "mainline" parameter is a hideous hack; I think leaving it
2438 zero is OK since dbxread.c also does what it needs to do if
2439 objfile->global_psymbols.size is 0. */
2440 (*objfile->sf->sym_read) (objfile, 0);
2441 if (!have_partial_symbols () && !have_full_symbols ())
2442 {
2443 wrap_here ("");
2444 printf_unfiltered (_("(no debugging symbols found)\n"));
2445 wrap_here ("");
2446 }
2447
2448 /* We're done reading the symbol file; finish off complaints. */
2449 clear_complaints (&symfile_complaints, 0, 1);
2450
2451 /* Getting new symbols may change our opinion about what is
2452 frameless. */
2453
2454 reinit_frame_cache ();
2455
2456 /* Discard cleanups as symbol reading was successful. */
2457 discard_cleanups (old_cleanups);
2458
2459 /* If the mtime has changed between the time we set new_modtime
2460 and now, we *want* this to be out of date, so don't call stat
2461 again now. */
2462 objfile->mtime = new_modtime;
2463 reread_one = 1;
2464 reread_separate_symbols (objfile);
2465 init_entry_point_info (objfile);
2466 }
2467 }
2468 }
2469
2470 if (reread_one)
2471 {
2472 /* Notify objfiles that we've modified objfile sections. */
2473 objfiles_changed ();
2474
2475 clear_symtab_users ();
2476 /* At least one objfile has changed, so we can consider that
2477 the executable we're debugging has changed too. */
2478 observer_notify_executable_changed ();
2479 }
2480}
2481
2482
2483/* Handle separate debug info for OBJFILE, which has just been
2484 re-read:
2485 - If we had separate debug info before, but now we don't, get rid
2486 of the separated objfile.
2487 - If we didn't have separated debug info before, but now we do,
2488 read in the new separated debug info file.
2489 - If the debug link points to a different file, toss the old one
2490 and read the new one.
2491 This function does *not* handle the case where objfile is still
2492 using the same separate debug info file, but that file's timestamp
2493 has changed. That case should be handled by the loop in
2494 reread_symbols already. */
2495static void
2496reread_separate_symbols (struct objfile *objfile)
2497{
2498 char *debug_file;
2499 unsigned long crc32;
2500
2501 /* Does the updated objfile's debug info live in a
2502 separate file? */
2503 debug_file = find_separate_debug_file (objfile);
2504
2505 if (objfile->separate_debug_objfile)
2506 {
2507 /* There are two cases where we need to get rid of
2508 the old separated debug info objfile:
2509 - if the new primary objfile doesn't have
2510 separated debug info, or
2511 - if the new primary objfile has separate debug
2512 info, but it's under a different filename.
2513
2514 If the old and new objfiles both have separate
2515 debug info, under the same filename, then we're
2516 okay --- if the separated file's contents have
2517 changed, we will have caught that when we
2518 visited it in this function's outermost
2519 loop. */
2520 if (! debug_file
2521 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2522 free_objfile (objfile->separate_debug_objfile);
2523 }
2524
2525 /* If the new objfile has separate debug info, and we
2526 haven't loaded it already, do so now. */
2527 if (debug_file
2528 && ! objfile->separate_debug_objfile)
2529 {
2530 /* Use the same section offset table as objfile itself.
2531 Preserve the flags from objfile that make sense. */
2532 objfile->separate_debug_objfile
2533 = (symbol_file_add_with_addrs_or_offsets
2534 (symfile_bfd_open (debug_file),
2535 info_verbose ? SYMFILE_VERBOSE : 0,
2536 0, /* No addr table. */
2537 objfile->section_offsets, objfile->num_sections,
2538 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2539 | OBJF_USERLOADED)));
2540 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2541 = objfile;
2542 }
2543 if (debug_file)
2544 xfree (debug_file);
2545}
2546
2547
2548\f
2549
2550
2551typedef struct
2552{
2553 char *ext;
2554 enum language lang;
2555}
2556filename_language;
2557
2558static filename_language *filename_language_table;
2559static int fl_table_size, fl_table_next;
2560
2561static void
2562add_filename_language (char *ext, enum language lang)
2563{
2564 if (fl_table_next >= fl_table_size)
2565 {
2566 fl_table_size += 10;
2567 filename_language_table =
2568 xrealloc (filename_language_table,
2569 fl_table_size * sizeof (*filename_language_table));
2570 }
2571
2572 filename_language_table[fl_table_next].ext = xstrdup (ext);
2573 filename_language_table[fl_table_next].lang = lang;
2574 fl_table_next++;
2575}
2576
2577static char *ext_args;
2578static void
2579show_ext_args (struct ui_file *file, int from_tty,
2580 struct cmd_list_element *c, const char *value)
2581{
2582 fprintf_filtered (file, _("\
2583Mapping between filename extension and source language is \"%s\".\n"),
2584 value);
2585}
2586
2587static void
2588set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2589{
2590 int i;
2591 char *cp = ext_args;
2592 enum language lang;
2593
2594 /* First arg is filename extension, starting with '.' */
2595 if (*cp != '.')
2596 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2597
2598 /* Find end of first arg. */
2599 while (*cp && !isspace (*cp))
2600 cp++;
2601
2602 if (*cp == '\0')
2603 error (_("'%s': two arguments required -- filename extension and language"),
2604 ext_args);
2605
2606 /* Null-terminate first arg */
2607 *cp++ = '\0';
2608
2609 /* Find beginning of second arg, which should be a source language. */
2610 while (*cp && isspace (*cp))
2611 cp++;
2612
2613 if (*cp == '\0')
2614 error (_("'%s': two arguments required -- filename extension and language"),
2615 ext_args);
2616
2617 /* Lookup the language from among those we know. */
2618 lang = language_enum (cp);
2619
2620 /* Now lookup the filename extension: do we already know it? */
2621 for (i = 0; i < fl_table_next; i++)
2622 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2623 break;
2624
2625 if (i >= fl_table_next)
2626 {
2627 /* new file extension */
2628 add_filename_language (ext_args, lang);
2629 }
2630 else
2631 {
2632 /* redefining a previously known filename extension */
2633
2634 /* if (from_tty) */
2635 /* query ("Really make files of type %s '%s'?", */
2636 /* ext_args, language_str (lang)); */
2637
2638 xfree (filename_language_table[i].ext);
2639 filename_language_table[i].ext = xstrdup (ext_args);
2640 filename_language_table[i].lang = lang;
2641 }
2642}
2643
2644static void
2645info_ext_lang_command (char *args, int from_tty)
2646{
2647 int i;
2648
2649 printf_filtered (_("Filename extensions and the languages they represent:"));
2650 printf_filtered ("\n\n");
2651 for (i = 0; i < fl_table_next; i++)
2652 printf_filtered ("\t%s\t- %s\n",
2653 filename_language_table[i].ext,
2654 language_str (filename_language_table[i].lang));
2655}
2656
2657static void
2658init_filename_language_table (void)
2659{
2660 if (fl_table_size == 0) /* protect against repetition */
2661 {
2662 fl_table_size = 20;
2663 fl_table_next = 0;
2664 filename_language_table =
2665 xmalloc (fl_table_size * sizeof (*filename_language_table));
2666 add_filename_language (".c", language_c);
2667 add_filename_language (".C", language_cplus);
2668 add_filename_language (".cc", language_cplus);
2669 add_filename_language (".cp", language_cplus);
2670 add_filename_language (".cpp", language_cplus);
2671 add_filename_language (".cxx", language_cplus);
2672 add_filename_language (".c++", language_cplus);
2673 add_filename_language (".java", language_java);
2674 add_filename_language (".class", language_java);
2675 add_filename_language (".m", language_objc);
2676 add_filename_language (".f", language_fortran);
2677 add_filename_language (".F", language_fortran);
2678 add_filename_language (".s", language_asm);
2679 add_filename_language (".sx", language_asm);
2680 add_filename_language (".S", language_asm);
2681 add_filename_language (".pas", language_pascal);
2682 add_filename_language (".p", language_pascal);
2683 add_filename_language (".pp", language_pascal);
2684 add_filename_language (".adb", language_ada);
2685 add_filename_language (".ads", language_ada);
2686 add_filename_language (".a", language_ada);
2687 add_filename_language (".ada", language_ada);
2688 }
2689}
2690
2691enum language
2692deduce_language_from_filename (char *filename)
2693{
2694 int i;
2695 char *cp;
2696
2697 if (filename != NULL)
2698 if ((cp = strrchr (filename, '.')) != NULL)
2699 for (i = 0; i < fl_table_next; i++)
2700 if (strcmp (cp, filename_language_table[i].ext) == 0)
2701 return filename_language_table[i].lang;
2702
2703 return language_unknown;
2704}
2705\f
2706/* allocate_symtab:
2707
2708 Allocate and partly initialize a new symbol table. Return a pointer
2709 to it. error() if no space.
2710
2711 Caller must set these fields:
2712 LINETABLE(symtab)
2713 symtab->blockvector
2714 symtab->dirname
2715 symtab->free_code
2716 symtab->free_ptr
2717 possibly free_named_symtabs (symtab->filename);
2718 */
2719
2720struct symtab *
2721allocate_symtab (char *filename, struct objfile *objfile)
2722{
2723 struct symtab *symtab;
2724
2725 symtab = (struct symtab *)
2726 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2727 memset (symtab, 0, sizeof (*symtab));
2728 symtab->filename = obsavestring (filename, strlen (filename),
2729 &objfile->objfile_obstack);
2730 symtab->fullname = NULL;
2731 symtab->language = deduce_language_from_filename (filename);
2732 symtab->debugformat = obsavestring ("unknown", 7,
2733 &objfile->objfile_obstack);
2734
2735 /* Hook it to the objfile it comes from */
2736
2737 symtab->objfile = objfile;
2738 symtab->next = objfile->symtabs;
2739 objfile->symtabs = symtab;
2740
2741 return (symtab);
2742}
2743
2744struct partial_symtab *
2745allocate_psymtab (char *filename, struct objfile *objfile)
2746{
2747 struct partial_symtab *psymtab;
2748
2749 if (objfile->free_psymtabs)
2750 {
2751 psymtab = objfile->free_psymtabs;
2752 objfile->free_psymtabs = psymtab->next;
2753 }
2754 else
2755 psymtab = (struct partial_symtab *)
2756 obstack_alloc (&objfile->objfile_obstack,
2757 sizeof (struct partial_symtab));
2758
2759 memset (psymtab, 0, sizeof (struct partial_symtab));
2760 psymtab->filename = obsavestring (filename, strlen (filename),
2761 &objfile->objfile_obstack);
2762 psymtab->symtab = NULL;
2763
2764 /* Prepend it to the psymtab list for the objfile it belongs to.
2765 Psymtabs are searched in most recent inserted -> least recent
2766 inserted order. */
2767
2768 psymtab->objfile = objfile;
2769 psymtab->next = objfile->psymtabs;
2770 objfile->psymtabs = psymtab;
2771#if 0
2772 {
2773 struct partial_symtab **prev_pst;
2774 psymtab->objfile = objfile;
2775 psymtab->next = NULL;
2776 prev_pst = &(objfile->psymtabs);
2777 while ((*prev_pst) != NULL)
2778 prev_pst = &((*prev_pst)->next);
2779 (*prev_pst) = psymtab;
2780 }
2781#endif
2782
2783 return (psymtab);
2784}
2785
2786void
2787discard_psymtab (struct partial_symtab *pst)
2788{
2789 struct partial_symtab **prev_pst;
2790
2791 /* From dbxread.c:
2792 Empty psymtabs happen as a result of header files which don't
2793 have any symbols in them. There can be a lot of them. But this
2794 check is wrong, in that a psymtab with N_SLINE entries but
2795 nothing else is not empty, but we don't realize that. Fixing
2796 that without slowing things down might be tricky. */
2797
2798 /* First, snip it out of the psymtab chain */
2799
2800 prev_pst = &(pst->objfile->psymtabs);
2801 while ((*prev_pst) != pst)
2802 prev_pst = &((*prev_pst)->next);
2803 (*prev_pst) = pst->next;
2804
2805 /* Next, put it on a free list for recycling */
2806
2807 pst->next = pst->objfile->free_psymtabs;
2808 pst->objfile->free_psymtabs = pst;
2809}
2810\f
2811
2812/* Reset all data structures in gdb which may contain references to symbol
2813 table data. */
2814
2815void
2816clear_symtab_users (void)
2817{
2818 /* Someday, we should do better than this, by only blowing away
2819 the things that really need to be blown. */
2820
2821 /* Clear the "current" symtab first, because it is no longer valid.
2822 breakpoint_re_set may try to access the current symtab. */
2823 clear_current_source_symtab_and_line ();
2824
2825 clear_displays ();
2826 breakpoint_re_set ();
2827 set_default_breakpoint (0, 0, 0, 0);
2828 clear_pc_function_cache ();
2829 observer_notify_new_objfile (NULL);
2830
2831 /* Clear globals which might have pointed into a removed objfile.
2832 FIXME: It's not clear which of these are supposed to persist
2833 between expressions and which ought to be reset each time. */
2834 expression_context_block = NULL;
2835 innermost_block = NULL;
2836
2837 /* Varobj may refer to old symbols, perform a cleanup. */
2838 varobj_invalidate ();
2839
2840}
2841
2842static void
2843clear_symtab_users_cleanup (void *ignore)
2844{
2845 clear_symtab_users ();
2846}
2847
2848/* clear_symtab_users_once:
2849
2850 This function is run after symbol reading, or from a cleanup.
2851 If an old symbol table was obsoleted, the old symbol table
2852 has been blown away, but the other GDB data structures that may
2853 reference it have not yet been cleared or re-directed. (The old
2854 symtab was zapped, and the cleanup queued, in free_named_symtab()
2855 below.)
2856
2857 This function can be queued N times as a cleanup, or called
2858 directly; it will do all the work the first time, and then will be a
2859 no-op until the next time it is queued. This works by bumping a
2860 counter at queueing time. Much later when the cleanup is run, or at
2861 the end of symbol processing (in case the cleanup is discarded), if
2862 the queued count is greater than the "done-count", we do the work
2863 and set the done-count to the queued count. If the queued count is
2864 less than or equal to the done-count, we just ignore the call. This
2865 is needed because reading a single .o file will often replace many
2866 symtabs (one per .h file, for example), and we don't want to reset
2867 the breakpoints N times in the user's face.
2868
2869 The reason we both queue a cleanup, and call it directly after symbol
2870 reading, is because the cleanup protects us in case of errors, but is
2871 discarded if symbol reading is successful. */
2872
2873#if 0
2874/* FIXME: As free_named_symtabs is currently a big noop this function
2875 is no longer needed. */
2876static void clear_symtab_users_once (void);
2877
2878static int clear_symtab_users_queued;
2879static int clear_symtab_users_done;
2880
2881static void
2882clear_symtab_users_once (void)
2883{
2884 /* Enforce once-per-`do_cleanups'-semantics */
2885 if (clear_symtab_users_queued <= clear_symtab_users_done)
2886 return;
2887 clear_symtab_users_done = clear_symtab_users_queued;
2888
2889 clear_symtab_users ();
2890}
2891#endif
2892
2893/* Delete the specified psymtab, and any others that reference it. */
2894
2895static void
2896cashier_psymtab (struct partial_symtab *pst)
2897{
2898 struct partial_symtab *ps, *pprev = NULL;
2899 int i;
2900
2901 /* Find its previous psymtab in the chain */
2902 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2903 {
2904 if (ps == pst)
2905 break;
2906 pprev = ps;
2907 }
2908
2909 if (ps)
2910 {
2911 /* Unhook it from the chain. */
2912 if (ps == pst->objfile->psymtabs)
2913 pst->objfile->psymtabs = ps->next;
2914 else
2915 pprev->next = ps->next;
2916
2917 /* FIXME, we can't conveniently deallocate the entries in the
2918 partial_symbol lists (global_psymbols/static_psymbols) that
2919 this psymtab points to. These just take up space until all
2920 the psymtabs are reclaimed. Ditto the dependencies list and
2921 filename, which are all in the objfile_obstack. */
2922
2923 /* We need to cashier any psymtab that has this one as a dependency... */
2924 again:
2925 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2926 {
2927 for (i = 0; i < ps->number_of_dependencies; i++)
2928 {
2929 if (ps->dependencies[i] == pst)
2930 {
2931 cashier_psymtab (ps);
2932 goto again; /* Must restart, chain has been munged. */
2933 }
2934 }
2935 }
2936 }
2937}
2938
2939/* If a symtab or psymtab for filename NAME is found, free it along
2940 with any dependent breakpoints, displays, etc.
2941 Used when loading new versions of object modules with the "add-file"
2942 command. This is only called on the top-level symtab or psymtab's name;
2943 it is not called for subsidiary files such as .h files.
2944
2945 Return value is 1 if we blew away the environment, 0 if not.
2946 FIXME. The return value appears to never be used.
2947
2948 FIXME. I think this is not the best way to do this. We should
2949 work on being gentler to the environment while still cleaning up
2950 all stray pointers into the freed symtab. */
2951
2952int
2953free_named_symtabs (char *name)
2954{
2955#if 0
2956 /* FIXME: With the new method of each objfile having it's own
2957 psymtab list, this function needs serious rethinking. In particular,
2958 why was it ever necessary to toss psymtabs with specific compilation
2959 unit filenames, as opposed to all psymtabs from a particular symbol
2960 file? -- fnf
2961 Well, the answer is that some systems permit reloading of particular
2962 compilation units. We want to blow away any old info about these
2963 compilation units, regardless of which objfiles they arrived in. --gnu. */
2964
2965 struct symtab *s;
2966 struct symtab *prev;
2967 struct partial_symtab *ps;
2968 struct blockvector *bv;
2969 int blewit = 0;
2970
2971 /* We only wack things if the symbol-reload switch is set. */
2972 if (!symbol_reloading)
2973 return 0;
2974
2975 /* Some symbol formats have trouble providing file names... */
2976 if (name == 0 || *name == '\0')
2977 return 0;
2978
2979 /* Look for a psymtab with the specified name. */
2980
2981again2:
2982 for (ps = partial_symtab_list; ps; ps = ps->next)
2983 {
2984 if (strcmp (name, ps->filename) == 0)
2985 {
2986 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2987 goto again2; /* Must restart, chain has been munged */
2988 }
2989 }
2990
2991 /* Look for a symtab with the specified name. */
2992
2993 for (s = symtab_list; s; s = s->next)
2994 {
2995 if (strcmp (name, s->filename) == 0)
2996 break;
2997 prev = s;
2998 }
2999
3000 if (s)
3001 {
3002 if (s == symtab_list)
3003 symtab_list = s->next;
3004 else
3005 prev->next = s->next;
3006
3007 /* For now, queue a delete for all breakpoints, displays, etc., whether
3008 or not they depend on the symtab being freed. This should be
3009 changed so that only those data structures affected are deleted. */
3010
3011 /* But don't delete anything if the symtab is empty.
3012 This test is necessary due to a bug in "dbxread.c" that
3013 causes empty symtabs to be created for N_SO symbols that
3014 contain the pathname of the object file. (This problem
3015 has been fixed in GDB 3.9x). */
3016
3017 bv = BLOCKVECTOR (s);
3018 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3019 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3020 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3021 {
3022 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3023 name);
3024 clear_symtab_users_queued++;
3025 make_cleanup (clear_symtab_users_once, 0);
3026 blewit = 1;
3027 }
3028 else
3029 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3030 name);
3031
3032 free_symtab (s);
3033 }
3034 else
3035 {
3036 /* It is still possible that some breakpoints will be affected
3037 even though no symtab was found, since the file might have
3038 been compiled without debugging, and hence not be associated
3039 with a symtab. In order to handle this correctly, we would need
3040 to keep a list of text address ranges for undebuggable files.
3041 For now, we do nothing, since this is a fairly obscure case. */
3042 ;
3043 }
3044
3045 /* FIXME, what about the minimal symbol table? */
3046 return blewit;
3047#else
3048 return (0);
3049#endif
3050}
3051\f
3052/* Allocate and partially fill a partial symtab. It will be
3053 completely filled at the end of the symbol list.
3054
3055 FILENAME is the name of the symbol-file we are reading from. */
3056
3057struct partial_symtab *
3058start_psymtab_common (struct objfile *objfile,
3059 struct section_offsets *section_offsets, char *filename,
3060 CORE_ADDR textlow, struct partial_symbol **global_syms,
3061 struct partial_symbol **static_syms)
3062{
3063 struct partial_symtab *psymtab;
3064
3065 psymtab = allocate_psymtab (filename, objfile);
3066 psymtab->section_offsets = section_offsets;
3067 psymtab->textlow = textlow;
3068 psymtab->texthigh = psymtab->textlow; /* default */
3069 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3070 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3071 return (psymtab);
3072}
3073\f
3074/* Helper function, initialises partial symbol structure and stashes
3075 it into objfile's bcache. Note that our caching mechanism will
3076 use all fields of struct partial_symbol to determine hash value of the
3077 structure. In other words, having two symbols with the same name but
3078 different domain (or address) is possible and correct. */
3079
3080static const struct partial_symbol *
3081add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3082 enum address_class class,
3083 long val, /* Value as a long */
3084 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3085 enum language language, struct objfile *objfile,
3086 int *added)
3087{
3088 char *buf = name;
3089 /* psymbol is static so that there will be no uninitialized gaps in the
3090 structure which might contain random data, causing cache misses in
3091 bcache. */
3092 static struct partial_symbol psymbol;
3093
3094 if (name[namelength] != '\0')
3095 {
3096 buf = alloca (namelength + 1);
3097 /* Create local copy of the partial symbol */
3098 memcpy (buf, name, namelength);
3099 buf[namelength] = '\0';
3100 }
3101 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3102 if (val != 0)
3103 {
3104 SYMBOL_VALUE (&psymbol) = val;
3105 }
3106 else
3107 {
3108 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3109 }
3110 SYMBOL_SECTION (&psymbol) = 0;
3111 SYMBOL_LANGUAGE (&psymbol) = language;
3112 PSYMBOL_DOMAIN (&psymbol) = domain;
3113 PSYMBOL_CLASS (&psymbol) = class;
3114
3115 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3116
3117 /* Stash the partial symbol away in the cache */
3118 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3119 objfile->psymbol_cache, added);
3120}
3121
3122/* Helper function, adds partial symbol to the given partial symbol
3123 list. */
3124
3125static void
3126append_psymbol_to_list (struct psymbol_allocation_list *list,
3127 const struct partial_symbol *psym,
3128 struct objfile *objfile)
3129{
3130 if (list->next >= list->list + list->size)
3131 extend_psymbol_list (list, objfile);
3132 *list->next++ = (struct partial_symbol *) psym;
3133 OBJSTAT (objfile, n_psyms++);
3134}
3135
3136/* Add a symbol with a long value to a psymtab.
3137 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3138 Return the partial symbol that has been added. */
3139
3140/* NOTE: carlton/2003-09-11: The reason why we return the partial
3141 symbol is so that callers can get access to the symbol's demangled
3142 name, which they don't have any cheap way to determine otherwise.
3143 (Currenly, dwarf2read.c is the only file who uses that information,
3144 though it's possible that other readers might in the future.)
3145 Elena wasn't thrilled about that, and I don't blame her, but we
3146 couldn't come up with a better way to get that information. If
3147 it's needed in other situations, we could consider breaking up
3148 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3149 cache. */
3150
3151const struct partial_symbol *
3152add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3153 enum address_class class,
3154 struct psymbol_allocation_list *list,
3155 long val, /* Value as a long */
3156 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3157 enum language language, struct objfile *objfile)
3158{
3159 const struct partial_symbol *psym;
3160
3161 int added;
3162
3163 /* Stash the partial symbol away in the cache */
3164 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3165 val, coreaddr, language, objfile, &added);
3166
3167 /* Do not duplicate global partial symbols. */
3168 if (list == &objfile->global_psymbols
3169 && !added)
3170 return psym;
3171
3172 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3173 append_psymbol_to_list (list, psym, objfile);
3174 return psym;
3175}
3176
3177/* Initialize storage for partial symbols. */
3178
3179void
3180init_psymbol_list (struct objfile *objfile, int total_symbols)
3181{
3182 /* Free any previously allocated psymbol lists. */
3183
3184 if (objfile->global_psymbols.list)
3185 {
3186 xfree (objfile->global_psymbols.list);
3187 }
3188 if (objfile->static_psymbols.list)
3189 {
3190 xfree (objfile->static_psymbols.list);
3191 }
3192
3193 /* Current best guess is that approximately a twentieth
3194 of the total symbols (in a debugging file) are global or static
3195 oriented symbols */
3196
3197 objfile->global_psymbols.size = total_symbols / 10;
3198 objfile->static_psymbols.size = total_symbols / 10;
3199
3200 if (objfile->global_psymbols.size > 0)
3201 {
3202 objfile->global_psymbols.next =
3203 objfile->global_psymbols.list = (struct partial_symbol **)
3204 xmalloc ((objfile->global_psymbols.size
3205 * sizeof (struct partial_symbol *)));
3206 }
3207 if (objfile->static_psymbols.size > 0)
3208 {
3209 objfile->static_psymbols.next =
3210 objfile->static_psymbols.list = (struct partial_symbol **)
3211 xmalloc ((objfile->static_psymbols.size
3212 * sizeof (struct partial_symbol *)));
3213 }
3214}
3215
3216/* OVERLAYS:
3217 The following code implements an abstraction for debugging overlay sections.
3218
3219 The target model is as follows:
3220 1) The gnu linker will permit multiple sections to be mapped into the
3221 same VMA, each with its own unique LMA (or load address).
3222 2) It is assumed that some runtime mechanism exists for mapping the
3223 sections, one by one, from the load address into the VMA address.
3224 3) This code provides a mechanism for gdb to keep track of which
3225 sections should be considered to be mapped from the VMA to the LMA.
3226 This information is used for symbol lookup, and memory read/write.
3227 For instance, if a section has been mapped then its contents
3228 should be read from the VMA, otherwise from the LMA.
3229
3230 Two levels of debugger support for overlays are available. One is
3231 "manual", in which the debugger relies on the user to tell it which
3232 overlays are currently mapped. This level of support is
3233 implemented entirely in the core debugger, and the information about
3234 whether a section is mapped is kept in the objfile->obj_section table.
3235
3236 The second level of support is "automatic", and is only available if
3237 the target-specific code provides functionality to read the target's
3238 overlay mapping table, and translate its contents for the debugger
3239 (by updating the mapped state information in the obj_section tables).
3240
3241 The interface is as follows:
3242 User commands:
3243 overlay map <name> -- tell gdb to consider this section mapped
3244 overlay unmap <name> -- tell gdb to consider this section unmapped
3245 overlay list -- list the sections that GDB thinks are mapped
3246 overlay read-target -- get the target's state of what's mapped
3247 overlay off/manual/auto -- set overlay debugging state
3248 Functional interface:
3249 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3250 section, return that section.
3251 find_pc_overlay(pc): find any overlay section that contains
3252 the pc, either in its VMA or its LMA
3253 section_is_mapped(sect): true if overlay is marked as mapped
3254 section_is_overlay(sect): true if section's VMA != LMA
3255 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3256 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3257 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3258 overlay_mapped_address(...): map an address from section's LMA to VMA
3259 overlay_unmapped_address(...): map an address from section's VMA to LMA
3260 symbol_overlayed_address(...): Return a "current" address for symbol:
3261 either in VMA or LMA depending on whether
3262 the symbol's section is currently mapped
3263 */
3264
3265/* Overlay debugging state: */
3266
3267enum overlay_debugging_state overlay_debugging = ovly_off;
3268int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3269
3270/* Function: section_is_overlay (SECTION)
3271 Returns true if SECTION has VMA not equal to LMA, ie.
3272 SECTION is loaded at an address different from where it will "run". */
3273
3274int
3275section_is_overlay (struct obj_section *section)
3276{
3277 if (overlay_debugging && section)
3278 {
3279 bfd *abfd = section->objfile->obfd;
3280 asection *bfd_section = section->the_bfd_section;
3281
3282 if (bfd_section_lma (abfd, bfd_section) != 0
3283 && bfd_section_lma (abfd, bfd_section)
3284 != bfd_section_vma (abfd, bfd_section))
3285 return 1;
3286 }
3287
3288 return 0;
3289}
3290
3291/* Function: overlay_invalidate_all (void)
3292 Invalidate the mapped state of all overlay sections (mark it as stale). */
3293
3294static void
3295overlay_invalidate_all (void)
3296{
3297 struct objfile *objfile;
3298 struct obj_section *sect;
3299
3300 ALL_OBJSECTIONS (objfile, sect)
3301 if (section_is_overlay (sect))
3302 sect->ovly_mapped = -1;
3303}
3304
3305/* Function: section_is_mapped (SECTION)
3306 Returns true if section is an overlay, and is currently mapped.
3307
3308 Access to the ovly_mapped flag is restricted to this function, so
3309 that we can do automatic update. If the global flag
3310 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3311 overlay_invalidate_all. If the mapped state of the particular
3312 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3313
3314int
3315section_is_mapped (struct obj_section *osect)
3316{
3317 struct gdbarch *gdbarch;
3318
3319 if (osect == 0 || !section_is_overlay (osect))
3320 return 0;
3321
3322 switch (overlay_debugging)
3323 {
3324 default:
3325 case ovly_off:
3326 return 0; /* overlay debugging off */
3327 case ovly_auto: /* overlay debugging automatic */
3328 /* Unles there is a gdbarch_overlay_update function,
3329 there's really nothing useful to do here (can't really go auto) */
3330 gdbarch = get_objfile_arch (osect->objfile);
3331 if (gdbarch_overlay_update_p (gdbarch))
3332 {
3333 if (overlay_cache_invalid)
3334 {
3335 overlay_invalidate_all ();
3336 overlay_cache_invalid = 0;
3337 }
3338 if (osect->ovly_mapped == -1)
3339 gdbarch_overlay_update (gdbarch, osect);
3340 }
3341 /* fall thru to manual case */
3342 case ovly_on: /* overlay debugging manual */
3343 return osect->ovly_mapped == 1;
3344 }
3345}
3346
3347/* Function: pc_in_unmapped_range
3348 If PC falls into the lma range of SECTION, return true, else false. */
3349
3350CORE_ADDR
3351pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3352{
3353 if (section_is_overlay (section))
3354 {
3355 bfd *abfd = section->objfile->obfd;
3356 asection *bfd_section = section->the_bfd_section;
3357
3358 /* We assume the LMA is relocated by the same offset as the VMA. */
3359 bfd_vma size = bfd_get_section_size (bfd_section);
3360 CORE_ADDR offset = obj_section_offset (section);
3361
3362 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3363 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3364 return 1;
3365 }
3366
3367 return 0;
3368}
3369
3370/* Function: pc_in_mapped_range
3371 If PC falls into the vma range of SECTION, return true, else false. */
3372
3373CORE_ADDR
3374pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3375{
3376 if (section_is_overlay (section))
3377 {
3378 if (obj_section_addr (section) <= pc
3379 && pc < obj_section_endaddr (section))
3380 return 1;
3381 }
3382
3383 return 0;
3384}
3385
3386
3387/* Return true if the mapped ranges of sections A and B overlap, false
3388 otherwise. */
3389static int
3390sections_overlap (struct obj_section *a, struct obj_section *b)
3391{
3392 CORE_ADDR a_start = obj_section_addr (a);
3393 CORE_ADDR a_end = obj_section_endaddr (a);
3394 CORE_ADDR b_start = obj_section_addr (b);
3395 CORE_ADDR b_end = obj_section_endaddr (b);
3396
3397 return (a_start < b_end && b_start < a_end);
3398}
3399
3400/* Function: overlay_unmapped_address (PC, SECTION)
3401 Returns the address corresponding to PC in the unmapped (load) range.
3402 May be the same as PC. */
3403
3404CORE_ADDR
3405overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3406{
3407 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3408 {
3409 bfd *abfd = section->objfile->obfd;
3410 asection *bfd_section = section->the_bfd_section;
3411
3412 return pc + bfd_section_lma (abfd, bfd_section)
3413 - bfd_section_vma (abfd, bfd_section);
3414 }
3415
3416 return pc;
3417}
3418
3419/* Function: overlay_mapped_address (PC, SECTION)
3420 Returns the address corresponding to PC in the mapped (runtime) range.
3421 May be the same as PC. */
3422
3423CORE_ADDR
3424overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3425{
3426 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3427 {
3428 bfd *abfd = section->objfile->obfd;
3429 asection *bfd_section = section->the_bfd_section;
3430
3431 return pc + bfd_section_vma (abfd, bfd_section)
3432 - bfd_section_lma (abfd, bfd_section);
3433 }
3434
3435 return pc;
3436}
3437
3438
3439/* Function: symbol_overlayed_address
3440 Return one of two addresses (relative to the VMA or to the LMA),
3441 depending on whether the section is mapped or not. */
3442
3443CORE_ADDR
3444symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3445{
3446 if (overlay_debugging)
3447 {
3448 /* If the symbol has no section, just return its regular address. */
3449 if (section == 0)
3450 return address;
3451 /* If the symbol's section is not an overlay, just return its address */
3452 if (!section_is_overlay (section))
3453 return address;
3454 /* If the symbol's section is mapped, just return its address */
3455 if (section_is_mapped (section))
3456 return address;
3457 /*
3458 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3459 * then return its LOADED address rather than its vma address!!
3460 */
3461 return overlay_unmapped_address (address, section);
3462 }
3463 return address;
3464}
3465
3466/* Function: find_pc_overlay (PC)
3467 Return the best-match overlay section for PC:
3468 If PC matches a mapped overlay section's VMA, return that section.
3469 Else if PC matches an unmapped section's VMA, return that section.
3470 Else if PC matches an unmapped section's LMA, return that section. */
3471
3472struct obj_section *
3473find_pc_overlay (CORE_ADDR pc)
3474{
3475 struct objfile *objfile;
3476 struct obj_section *osect, *best_match = NULL;
3477
3478 if (overlay_debugging)
3479 ALL_OBJSECTIONS (objfile, osect)
3480 if (section_is_overlay (osect))
3481 {
3482 if (pc_in_mapped_range (pc, osect))
3483 {
3484 if (section_is_mapped (osect))
3485 return osect;
3486 else
3487 best_match = osect;
3488 }
3489 else if (pc_in_unmapped_range (pc, osect))
3490 best_match = osect;
3491 }
3492 return best_match;
3493}
3494
3495/* Function: find_pc_mapped_section (PC)
3496 If PC falls into the VMA address range of an overlay section that is
3497 currently marked as MAPPED, return that section. Else return NULL. */
3498
3499struct obj_section *
3500find_pc_mapped_section (CORE_ADDR pc)
3501{
3502 struct objfile *objfile;
3503 struct obj_section *osect;
3504
3505 if (overlay_debugging)
3506 ALL_OBJSECTIONS (objfile, osect)
3507 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3508 return osect;
3509
3510 return NULL;
3511}
3512
3513/* Function: list_overlays_command
3514 Print a list of mapped sections and their PC ranges */
3515
3516void
3517list_overlays_command (char *args, int from_tty)
3518{
3519 int nmapped = 0;
3520 struct objfile *objfile;
3521 struct obj_section *osect;
3522
3523 if (overlay_debugging)
3524 ALL_OBJSECTIONS (objfile, osect)
3525 if (section_is_mapped (osect))
3526 {
3527 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3528 const char *name;
3529 bfd_vma lma, vma;
3530 int size;
3531
3532 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3533 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3534 size = bfd_get_section_size (osect->the_bfd_section);
3535 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3536
3537 printf_filtered ("Section %s, loaded at ", name);
3538 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3539 puts_filtered (" - ");
3540 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3541 printf_filtered (", mapped at ");
3542 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3543 puts_filtered (" - ");
3544 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3545 puts_filtered ("\n");
3546
3547 nmapped++;
3548 }
3549 if (nmapped == 0)
3550 printf_filtered (_("No sections are mapped.\n"));
3551}
3552
3553/* Function: map_overlay_command
3554 Mark the named section as mapped (ie. residing at its VMA address). */
3555
3556void
3557map_overlay_command (char *args, int from_tty)
3558{
3559 struct objfile *objfile, *objfile2;
3560 struct obj_section *sec, *sec2;
3561
3562 if (!overlay_debugging)
3563 error (_("\
3564Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3565the 'overlay manual' command."));
3566
3567 if (args == 0 || *args == 0)
3568 error (_("Argument required: name of an overlay section"));
3569
3570 /* First, find a section matching the user supplied argument */
3571 ALL_OBJSECTIONS (objfile, sec)
3572 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3573 {
3574 /* Now, check to see if the section is an overlay. */
3575 if (!section_is_overlay (sec))
3576 continue; /* not an overlay section */
3577
3578 /* Mark the overlay as "mapped" */
3579 sec->ovly_mapped = 1;
3580
3581 /* Next, make a pass and unmap any sections that are
3582 overlapped by this new section: */
3583 ALL_OBJSECTIONS (objfile2, sec2)
3584 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3585 {
3586 if (info_verbose)
3587 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3588 bfd_section_name (objfile->obfd,
3589 sec2->the_bfd_section));
3590 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3591 }
3592 return;
3593 }
3594 error (_("No overlay section called %s"), args);
3595}
3596
3597/* Function: unmap_overlay_command
3598 Mark the overlay section as unmapped
3599 (ie. resident in its LMA address range, rather than the VMA range). */
3600
3601void
3602unmap_overlay_command (char *args, int from_tty)
3603{
3604 struct objfile *objfile;
3605 struct obj_section *sec;
3606
3607 if (!overlay_debugging)
3608 error (_("\
3609Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3610the 'overlay manual' command."));
3611
3612 if (args == 0 || *args == 0)
3613 error (_("Argument required: name of an overlay section"));
3614
3615 /* First, find a section matching the user supplied argument */
3616 ALL_OBJSECTIONS (objfile, sec)
3617 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3618 {
3619 if (!sec->ovly_mapped)
3620 error (_("Section %s is not mapped"), args);
3621 sec->ovly_mapped = 0;
3622 return;
3623 }
3624 error (_("No overlay section called %s"), args);
3625}
3626
3627/* Function: overlay_auto_command
3628 A utility command to turn on overlay debugging.
3629 Possibly this should be done via a set/show command. */
3630
3631static void
3632overlay_auto_command (char *args, int from_tty)
3633{
3634 overlay_debugging = ovly_auto;
3635 enable_overlay_breakpoints ();
3636 if (info_verbose)
3637 printf_unfiltered (_("Automatic overlay debugging enabled."));
3638}
3639
3640/* Function: overlay_manual_command
3641 A utility command to turn on overlay debugging.
3642 Possibly this should be done via a set/show command. */
3643
3644static void
3645overlay_manual_command (char *args, int from_tty)
3646{
3647 overlay_debugging = ovly_on;
3648 disable_overlay_breakpoints ();
3649 if (info_verbose)
3650 printf_unfiltered (_("Overlay debugging enabled."));
3651}
3652
3653/* Function: overlay_off_command
3654 A utility command to turn on overlay debugging.
3655 Possibly this should be done via a set/show command. */
3656
3657static void
3658overlay_off_command (char *args, int from_tty)
3659{
3660 overlay_debugging = ovly_off;
3661 disable_overlay_breakpoints ();
3662 if (info_verbose)
3663 printf_unfiltered (_("Overlay debugging disabled."));
3664}
3665
3666static void
3667overlay_load_command (char *args, int from_tty)
3668{
3669 struct gdbarch *gdbarch = get_current_arch ();
3670
3671 if (gdbarch_overlay_update_p (gdbarch))
3672 gdbarch_overlay_update (gdbarch, NULL);
3673 else
3674 error (_("This target does not know how to read its overlay state."));
3675}
3676
3677/* Function: overlay_command
3678 A place-holder for a mis-typed command */
3679
3680/* Command list chain containing all defined "overlay" subcommands. */
3681struct cmd_list_element *overlaylist;
3682
3683static void
3684overlay_command (char *args, int from_tty)
3685{
3686 printf_unfiltered
3687 ("\"overlay\" must be followed by the name of an overlay command.\n");
3688 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3689}
3690
3691
3692/* Target Overlays for the "Simplest" overlay manager:
3693
3694 This is GDB's default target overlay layer. It works with the
3695 minimal overlay manager supplied as an example by Cygnus. The
3696 entry point is via a function pointer "gdbarch_overlay_update",
3697 so targets that use a different runtime overlay manager can
3698 substitute their own overlay_update function and take over the
3699 function pointer.
3700
3701 The overlay_update function pokes around in the target's data structures
3702 to see what overlays are mapped, and updates GDB's overlay mapping with
3703 this information.
3704
3705 In this simple implementation, the target data structures are as follows:
3706 unsigned _novlys; /# number of overlay sections #/
3707 unsigned _ovly_table[_novlys][4] = {
3708 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3709 {..., ..., ..., ...},
3710 }
3711 unsigned _novly_regions; /# number of overlay regions #/
3712 unsigned _ovly_region_table[_novly_regions][3] = {
3713 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3714 {..., ..., ...},
3715 }
3716 These functions will attempt to update GDB's mappedness state in the
3717 symbol section table, based on the target's mappedness state.
3718
3719 To do this, we keep a cached copy of the target's _ovly_table, and
3720 attempt to detect when the cached copy is invalidated. The main
3721 entry point is "simple_overlay_update(SECT), which looks up SECT in
3722 the cached table and re-reads only the entry for that section from
3723 the target (whenever possible).
3724 */
3725
3726/* Cached, dynamically allocated copies of the target data structures: */
3727static unsigned (*cache_ovly_table)[4] = 0;
3728#if 0
3729static unsigned (*cache_ovly_region_table)[3] = 0;
3730#endif
3731static unsigned cache_novlys = 0;
3732#if 0
3733static unsigned cache_novly_regions = 0;
3734#endif
3735static CORE_ADDR cache_ovly_table_base = 0;
3736#if 0
3737static CORE_ADDR cache_ovly_region_table_base = 0;
3738#endif
3739enum ovly_index
3740 {
3741 VMA, SIZE, LMA, MAPPED
3742 };
3743
3744/* Throw away the cached copy of _ovly_table */
3745static void
3746simple_free_overlay_table (void)
3747{
3748 if (cache_ovly_table)
3749 xfree (cache_ovly_table);
3750 cache_novlys = 0;
3751 cache_ovly_table = NULL;
3752 cache_ovly_table_base = 0;
3753}
3754
3755#if 0
3756/* Throw away the cached copy of _ovly_region_table */
3757static void
3758simple_free_overlay_region_table (void)
3759{
3760 if (cache_ovly_region_table)
3761 xfree (cache_ovly_region_table);
3762 cache_novly_regions = 0;
3763 cache_ovly_region_table = NULL;
3764 cache_ovly_region_table_base = 0;
3765}
3766#endif
3767
3768/* Read an array of ints of size SIZE from the target into a local buffer.
3769 Convert to host order. int LEN is number of ints */
3770static void
3771read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3772 int len, int size, enum bfd_endian byte_order)
3773{
3774 /* FIXME (alloca): Not safe if array is very large. */
3775 gdb_byte *buf = alloca (len * size);
3776 int i;
3777
3778 read_memory (memaddr, buf, len * size);
3779 for (i = 0; i < len; i++)
3780 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3781}
3782
3783/* Find and grab a copy of the target _ovly_table
3784 (and _novlys, which is needed for the table's size) */
3785static int
3786simple_read_overlay_table (void)
3787{
3788 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3789 struct gdbarch *gdbarch;
3790 int word_size;
3791 enum bfd_endian byte_order;
3792
3793 simple_free_overlay_table ();
3794 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3795 if (! novlys_msym)
3796 {
3797 error (_("Error reading inferior's overlay table: "
3798 "couldn't find `_novlys' variable\n"
3799 "in inferior. Use `overlay manual' mode."));
3800 return 0;
3801 }
3802
3803 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3804 if (! ovly_table_msym)
3805 {
3806 error (_("Error reading inferior's overlay table: couldn't find "
3807 "`_ovly_table' array\n"
3808 "in inferior. Use `overlay manual' mode."));
3809 return 0;
3810 }
3811
3812 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3813 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3814 byte_order = gdbarch_byte_order (gdbarch);
3815
3816 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3817 4, byte_order);
3818 cache_ovly_table
3819 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3820 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3821 read_target_long_array (cache_ovly_table_base,
3822 (unsigned int *) cache_ovly_table,
3823 cache_novlys * 4, word_size, byte_order);
3824
3825 return 1; /* SUCCESS */
3826}
3827
3828#if 0
3829/* Find and grab a copy of the target _ovly_region_table
3830 (and _novly_regions, which is needed for the table's size) */
3831static int
3832simple_read_overlay_region_table (void)
3833{
3834 struct minimal_symbol *msym;
3835 struct gdbarch *gdbarch;
3836 int word_size;
3837 enum bfd_endian byte_order;
3838
3839 simple_free_overlay_region_table ();
3840 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3841 if (msym == NULL)
3842 return 0; /* failure */
3843
3844 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3845 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3846 byte_order = gdbarch_byte_order (gdbarch);
3847
3848 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3849 4, byte_order);
3850
3851 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3852 if (cache_ovly_region_table != NULL)
3853 {
3854 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3855 if (msym != NULL)
3856 {
3857 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3858 read_target_long_array (cache_ovly_region_table_base,
3859 (unsigned int *) cache_ovly_region_table,
3860 cache_novly_regions * 3,
3861 word_size, byte_order);
3862 }
3863 else
3864 return 0; /* failure */
3865 }
3866 else
3867 return 0; /* failure */
3868 return 1; /* SUCCESS */
3869}
3870#endif
3871
3872/* Function: simple_overlay_update_1
3873 A helper function for simple_overlay_update. Assuming a cached copy
3874 of _ovly_table exists, look through it to find an entry whose vma,
3875 lma and size match those of OSECT. Re-read the entry and make sure
3876 it still matches OSECT (else the table may no longer be valid).
3877 Set OSECT's mapped state to match the entry. Return: 1 for
3878 success, 0 for failure. */
3879
3880static int
3881simple_overlay_update_1 (struct obj_section *osect)
3882{
3883 int i, size;
3884 bfd *obfd = osect->objfile->obfd;
3885 asection *bsect = osect->the_bfd_section;
3886 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3887 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3888 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3889
3890 size = bfd_get_section_size (osect->the_bfd_section);
3891 for (i = 0; i < cache_novlys; i++)
3892 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3893 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3894 /* && cache_ovly_table[i][SIZE] == size */ )
3895 {
3896 read_target_long_array (cache_ovly_table_base + i * word_size,
3897 (unsigned int *) cache_ovly_table[i],
3898 4, word_size, byte_order);
3899 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3900 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3901 /* && cache_ovly_table[i][SIZE] == size */ )
3902 {
3903 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3904 return 1;
3905 }
3906 else /* Warning! Warning! Target's ovly table has changed! */
3907 return 0;
3908 }
3909 return 0;
3910}
3911
3912/* Function: simple_overlay_update
3913 If OSECT is NULL, then update all sections' mapped state
3914 (after re-reading the entire target _ovly_table).
3915 If OSECT is non-NULL, then try to find a matching entry in the
3916 cached ovly_table and update only OSECT's mapped state.
3917 If a cached entry can't be found or the cache isn't valid, then
3918 re-read the entire cache, and go ahead and update all sections. */
3919
3920void
3921simple_overlay_update (struct obj_section *osect)
3922{
3923 struct objfile *objfile;
3924
3925 /* Were we given an osect to look up? NULL means do all of them. */
3926 if (osect)
3927 /* Have we got a cached copy of the target's overlay table? */
3928 if (cache_ovly_table != NULL)
3929 /* Does its cached location match what's currently in the symtab? */
3930 if (cache_ovly_table_base ==
3931 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3932 /* Then go ahead and try to look up this single section in the cache */
3933 if (simple_overlay_update_1 (osect))
3934 /* Found it! We're done. */
3935 return;
3936
3937 /* Cached table no good: need to read the entire table anew.
3938 Or else we want all the sections, in which case it's actually
3939 more efficient to read the whole table in one block anyway. */
3940
3941 if (! simple_read_overlay_table ())
3942 return;
3943
3944 /* Now may as well update all sections, even if only one was requested. */
3945 ALL_OBJSECTIONS (objfile, osect)
3946 if (section_is_overlay (osect))
3947 {
3948 int i, size;
3949 bfd *obfd = osect->objfile->obfd;
3950 asection *bsect = osect->the_bfd_section;
3951
3952 size = bfd_get_section_size (bsect);
3953 for (i = 0; i < cache_novlys; i++)
3954 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3955 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3956 /* && cache_ovly_table[i][SIZE] == size */ )
3957 { /* obj_section matches i'th entry in ovly_table */
3958 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3959 break; /* finished with inner for loop: break out */
3960 }
3961 }
3962}
3963
3964/* Set the output sections and output offsets for section SECTP in
3965 ABFD. The relocation code in BFD will read these offsets, so we
3966 need to be sure they're initialized. We map each section to itself,
3967 with no offset; this means that SECTP->vma will be honored. */
3968
3969static void
3970symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3971{
3972 sectp->output_section = sectp;
3973 sectp->output_offset = 0;
3974}
3975
3976/* Relocate the contents of a debug section SECTP in ABFD. The
3977 contents are stored in BUF if it is non-NULL, or returned in a
3978 malloc'd buffer otherwise.
3979
3980 For some platforms and debug info formats, shared libraries contain
3981 relocations against the debug sections (particularly for DWARF-2;
3982 one affected platform is PowerPC GNU/Linux, although it depends on
3983 the version of the linker in use). Also, ELF object files naturally
3984 have unresolved relocations for their debug sections. We need to apply
3985 the relocations in order to get the locations of symbols correct.
3986 Another example that may require relocation processing, is the
3987 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3988 debug section. */
3989
3990bfd_byte *
3991symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3992{
3993 /* We're only interested in sections with relocation
3994 information. */
3995 if ((sectp->flags & SEC_RELOC) == 0)
3996 return NULL;
3997
3998 /* We will handle section offsets properly elsewhere, so relocate as if
3999 all sections begin at 0. */
4000 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
4001
4002 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
4003}
4004
4005struct symfile_segment_data *
4006get_symfile_segment_data (bfd *abfd)
4007{
4008 struct sym_fns *sf = find_sym_fns (abfd);
4009
4010 if (sf == NULL)
4011 return NULL;
4012
4013 return sf->sym_segments (abfd);
4014}
4015
4016void
4017free_symfile_segment_data (struct symfile_segment_data *data)
4018{
4019 xfree (data->segment_bases);
4020 xfree (data->segment_sizes);
4021 xfree (data->segment_info);
4022 xfree (data);
4023}
4024
4025
4026/* Given:
4027 - DATA, containing segment addresses from the object file ABFD, and
4028 the mapping from ABFD's sections onto the segments that own them,
4029 and
4030 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
4031 segment addresses reported by the target,
4032 store the appropriate offsets for each section in OFFSETS.
4033
4034 If there are fewer entries in SEGMENT_BASES than there are segments
4035 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4036
4037 If there are more entries, then ignore the extra. The target may
4038 not be able to distinguish between an empty data segment and a
4039 missing data segment; a missing text segment is less plausible. */
4040int
4041symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4042 struct section_offsets *offsets,
4043 int num_segment_bases,
4044 const CORE_ADDR *segment_bases)
4045{
4046 int i;
4047 asection *sect;
4048
4049 /* It doesn't make sense to call this function unless you have some
4050 segment base addresses. */
4051 gdb_assert (segment_bases > 0);
4052
4053 /* If we do not have segment mappings for the object file, we
4054 can not relocate it by segments. */
4055 gdb_assert (data != NULL);
4056 gdb_assert (data->num_segments > 0);
4057
4058 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4059 {
4060 int which = data->segment_info[i];
4061
4062 gdb_assert (0 <= which && which <= data->num_segments);
4063
4064 /* Don't bother computing offsets for sections that aren't
4065 loaded as part of any segment. */
4066 if (! which)
4067 continue;
4068
4069 /* Use the last SEGMENT_BASES entry as the address of any extra
4070 segments mentioned in DATA->segment_info. */
4071 if (which > num_segment_bases)
4072 which = num_segment_bases;
4073
4074 offsets->offsets[i] = (segment_bases[which - 1]
4075 - data->segment_bases[which - 1]);
4076 }
4077
4078 return 1;
4079}
4080
4081static void
4082symfile_find_segment_sections (struct objfile *objfile)
4083{
4084 bfd *abfd = objfile->obfd;
4085 int i;
4086 asection *sect;
4087 struct symfile_segment_data *data;
4088
4089 data = get_symfile_segment_data (objfile->obfd);
4090 if (data == NULL)
4091 return;
4092
4093 if (data->num_segments != 1 && data->num_segments != 2)
4094 {
4095 free_symfile_segment_data (data);
4096 return;
4097 }
4098
4099 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4100 {
4101 CORE_ADDR vma;
4102 int which = data->segment_info[i];
4103
4104 if (which == 1)
4105 {
4106 if (objfile->sect_index_text == -1)
4107 objfile->sect_index_text = sect->index;
4108
4109 if (objfile->sect_index_rodata == -1)
4110 objfile->sect_index_rodata = sect->index;
4111 }
4112 else if (which == 2)
4113 {
4114 if (objfile->sect_index_data == -1)
4115 objfile->sect_index_data = sect->index;
4116
4117 if (objfile->sect_index_bss == -1)
4118 objfile->sect_index_bss = sect->index;
4119 }
4120 }
4121
4122 free_symfile_segment_data (data);
4123}
4124
4125void
4126_initialize_symfile (void)
4127{
4128 struct cmd_list_element *c;
4129
4130 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4131Load symbol table from executable file FILE.\n\
4132The `file' command can also load symbol tables, as well as setting the file\n\
4133to execute."), &cmdlist);
4134 set_cmd_completer (c, filename_completer);
4135
4136 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4137Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4138Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4139ADDR is the starting address of the file's text.\n\
4140The optional arguments are section-name section-address pairs and\n\
4141should be specified if the data and bss segments are not contiguous\n\
4142with the text. SECT is a section name to be loaded at SECT_ADDR."),
4143 &cmdlist);
4144 set_cmd_completer (c, filename_completer);
4145
4146 c = add_cmd ("load", class_files, load_command, _("\
4147Dynamically load FILE into the running program, and record its symbols\n\
4148for access from GDB.\n\
4149A load OFFSET may also be given."), &cmdlist);
4150 set_cmd_completer (c, filename_completer);
4151
4152 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4153 &symbol_reloading, _("\
4154Set dynamic symbol table reloading multiple times in one run."), _("\
4155Show dynamic symbol table reloading multiple times in one run."), NULL,
4156 NULL,
4157 show_symbol_reloading,
4158 &setlist, &showlist);
4159
4160 add_prefix_cmd ("overlay", class_support, overlay_command,
4161 _("Commands for debugging overlays."), &overlaylist,
4162 "overlay ", 0, &cmdlist);
4163
4164 add_com_alias ("ovly", "overlay", class_alias, 1);
4165 add_com_alias ("ov", "overlay", class_alias, 1);
4166
4167 add_cmd ("map-overlay", class_support, map_overlay_command,
4168 _("Assert that an overlay section is mapped."), &overlaylist);
4169
4170 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4171 _("Assert that an overlay section is unmapped."), &overlaylist);
4172
4173 add_cmd ("list-overlays", class_support, list_overlays_command,
4174 _("List mappings of overlay sections."), &overlaylist);
4175
4176 add_cmd ("manual", class_support, overlay_manual_command,
4177 _("Enable overlay debugging."), &overlaylist);
4178 add_cmd ("off", class_support, overlay_off_command,
4179 _("Disable overlay debugging."), &overlaylist);
4180 add_cmd ("auto", class_support, overlay_auto_command,
4181 _("Enable automatic overlay debugging."), &overlaylist);
4182 add_cmd ("load-target", class_support, overlay_load_command,
4183 _("Read the overlay mapping state from the target."), &overlaylist);
4184
4185 /* Filename extension to source language lookup table: */
4186 init_filename_language_table ();
4187 add_setshow_string_noescape_cmd ("extension-language", class_files,
4188 &ext_args, _("\
4189Set mapping between filename extension and source language."), _("\
4190Show mapping between filename extension and source language."), _("\
4191Usage: set extension-language .foo bar"),
4192 set_ext_lang_command,
4193 show_ext_args,
4194 &setlist, &showlist);
4195
4196 add_info ("extensions", info_ext_lang_command,
4197 _("All filename extensions associated with a source language."));
4198
4199 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4200 &debug_file_directory, _("\
4201Set the directory where separate debug symbols are searched for."), _("\
4202Show the directory where separate debug symbols are searched for."), _("\
4203Separate debug symbols are first searched for in the same\n\
4204directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4205and lastly at the path of the directory of the binary with\n\
4206the global debug-file directory prepended."),
4207 NULL,
4208 show_debug_file_directory,
4209 &setlist, &showlist);
4210
4211 add_setshow_boolean_cmd ("symbol-loading", no_class,
4212 &print_symbol_loading, _("\
4213Set printing of symbol loading messages."), _("\
4214Show printing of symbol loading messages."), NULL,
4215 NULL,
4216 NULL,
4217 &setprintlist, &showprintlist);
4218}
This page took 0.035555 seconds and 4 git commands to generate.