* dwarf2read.c (lookup_dwo_comp_unit): Enhance comment.
[deliverable/binutils-gdb.git] / gdb / symtab.c
... / ...
CommitLineData
1/* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2004, 2007-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "symtab.h"
22#include "gdbtypes.h"
23#include "gdbcore.h"
24#include "frame.h"
25#include "target.h"
26#include "value.h"
27#include "symfile.h"
28#include "objfiles.h"
29#include "gdbcmd.h"
30#include "call-cmds.h"
31#include "gdb_regex.h"
32#include "expression.h"
33#include "language.h"
34#include "demangle.h"
35#include "inferior.h"
36#include "linespec.h"
37#include "source.h"
38#include "filenames.h" /* for FILENAME_CMP */
39#include "objc-lang.h"
40#include "d-lang.h"
41#include "ada-lang.h"
42#include "go-lang.h"
43#include "p-lang.h"
44#include "addrmap.h"
45
46#include "hashtab.h"
47
48#include "gdb_obstack.h"
49#include "block.h"
50#include "dictionary.h"
51
52#include <sys/types.h>
53#include <fcntl.h>
54#include "gdb_string.h"
55#include "gdb_stat.h"
56#include <ctype.h>
57#include "cp-abi.h"
58#include "cp-support.h"
59#include "observer.h"
60#include "gdb_assert.h"
61#include "solist.h"
62#include "macrotab.h"
63#include "macroscope.h"
64
65#include "psymtab.h"
66
67/* Prototypes for local functions */
68
69static void rbreak_command (char *, int);
70
71static void types_info (char *, int);
72
73static void functions_info (char *, int);
74
75static void variables_info (char *, int);
76
77static void sources_info (char *, int);
78
79static void output_source_filename (const char *, int *);
80
81static int find_line_common (struct linetable *, int, int *, int);
82
83static struct symbol *lookup_symbol_aux (const char *name,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 int *is_a_field_of_this);
88
89static
90struct symbol *lookup_symbol_aux_local (const char *name,
91 const struct block *block,
92 const domain_enum domain,
93 enum language language);
94
95static
96struct symbol *lookup_symbol_aux_symtabs (int block_index,
97 const char *name,
98 const domain_enum domain);
99
100static
101struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
102 int block_index,
103 const char *name,
104 const domain_enum domain);
105
106static void print_msymbol_info (struct minimal_symbol *);
107
108void _initialize_symtab (void);
109
110/* */
111
112/* Non-zero if a file may be known by two different basenames.
113 This is the uncommon case, and significantly slows down gdb.
114 Default set to "off" to not slow down the common case. */
115int basenames_may_differ = 0;
116
117/* Allow the user to configure the debugger behavior with respect
118 to multiple-choice menus when more than one symbol matches during
119 a symbol lookup. */
120
121const char multiple_symbols_ask[] = "ask";
122const char multiple_symbols_all[] = "all";
123const char multiple_symbols_cancel[] = "cancel";
124static const char *const multiple_symbols_modes[] =
125{
126 multiple_symbols_ask,
127 multiple_symbols_all,
128 multiple_symbols_cancel,
129 NULL
130};
131static const char *multiple_symbols_mode = multiple_symbols_all;
132
133/* Read-only accessor to AUTO_SELECT_MODE. */
134
135const char *
136multiple_symbols_select_mode (void)
137{
138 return multiple_symbols_mode;
139}
140
141/* Block in which the most recently searched-for symbol was found.
142 Might be better to make this a parameter to lookup_symbol and
143 value_of_this. */
144
145const struct block *block_found;
146
147/* See whether FILENAME matches SEARCH_NAME using the rule that we
148 advertise to the user. (The manual's description of linespecs
149 describes what we advertise). SEARCH_LEN is the length of
150 SEARCH_NAME. We assume that SEARCH_NAME is a relative path.
151 Returns true if they match, false otherwise. */
152
153int
154compare_filenames_for_search (const char *filename, const char *search_name,
155 int search_len)
156{
157 int len = strlen (filename);
158
159 if (len < search_len)
160 return 0;
161
162 /* The tail of FILENAME must match. */
163 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
164 return 0;
165
166 /* Either the names must completely match, or the character
167 preceding the trailing SEARCH_NAME segment of FILENAME must be a
168 directory separator. */
169 return (len == search_len
170 || IS_DIR_SEPARATOR (filename[len - search_len - 1])
171 || (HAS_DRIVE_SPEC (filename)
172 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
173}
174
175/* Check for a symtab of a specific name by searching some symtabs.
176 This is a helper function for callbacks of iterate_over_symtabs.
177
178 The return value, NAME, FULL_PATH, REAL_PATH, CALLBACK, and DATA
179 are identical to the `map_symtabs_matching_filename' method of
180 quick_symbol_functions.
181
182 FIRST and AFTER_LAST indicate the range of symtabs to search.
183 AFTER_LAST is one past the last symtab to search; NULL means to
184 search until the end of the list. */
185
186int
187iterate_over_some_symtabs (const char *name,
188 const char *full_path,
189 const char *real_path,
190 int (*callback) (struct symtab *symtab,
191 void *data),
192 void *data,
193 struct symtab *first,
194 struct symtab *after_last)
195{
196 struct symtab *s = NULL;
197 const char* base_name = lbasename (name);
198 int name_len = strlen (name);
199 int is_abs = IS_ABSOLUTE_PATH (name);
200
201 for (s = first; s != NULL && s != after_last; s = s->next)
202 {
203 /* Exact match is always ok. */
204 if (FILENAME_CMP (name, s->filename) == 0)
205 {
206 if (callback (s, data))
207 return 1;
208 }
209
210 if (!is_abs && compare_filenames_for_search (s->filename, name, name_len))
211 {
212 if (callback (s, data))
213 return 1;
214 }
215
216 /* Before we invoke realpath, which can get expensive when many
217 files are involved, do a quick comparison of the basenames. */
218 if (! basenames_may_differ
219 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
220 continue;
221
222 /* If the user gave us an absolute path, try to find the file in
223 this symtab and use its absolute path. */
224
225 if (full_path != NULL)
226 {
227 const char *fp = symtab_to_fullname (s);
228
229 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
230 {
231 if (callback (s, data))
232 return 1;
233 }
234
235 if (fp != NULL && !is_abs && compare_filenames_for_search (fp, name,
236 name_len))
237 {
238 if (callback (s, data))
239 return 1;
240 }
241 }
242
243 if (real_path != NULL)
244 {
245 char *fullname = symtab_to_fullname (s);
246
247 if (fullname != NULL)
248 {
249 char *rp = gdb_realpath (fullname);
250
251 make_cleanup (xfree, rp);
252 if (FILENAME_CMP (real_path, rp) == 0)
253 {
254 if (callback (s, data))
255 return 1;
256 }
257
258 if (!is_abs && compare_filenames_for_search (rp, name, name_len))
259 {
260 if (callback (s, data))
261 return 1;
262 }
263 }
264 }
265 }
266
267 return 0;
268}
269
270/* Check for a symtab of a specific name; first in symtabs, then in
271 psymtabs. *If* there is no '/' in the name, a match after a '/'
272 in the symtab filename will also work.
273
274 Calls CALLBACK with each symtab that is found and with the supplied
275 DATA. If CALLBACK returns true, the search stops. */
276
277void
278iterate_over_symtabs (const char *name,
279 int (*callback) (struct symtab *symtab,
280 void *data),
281 void *data)
282{
283 struct symtab *s = NULL;
284 struct objfile *objfile;
285 char *real_path = NULL;
286 char *full_path = NULL;
287 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
288
289 /* Here we are interested in canonicalizing an absolute path, not
290 absolutizing a relative path. */
291 if (IS_ABSOLUTE_PATH (name))
292 {
293 full_path = xfullpath (name);
294 make_cleanup (xfree, full_path);
295 real_path = gdb_realpath (name);
296 make_cleanup (xfree, real_path);
297 }
298
299 ALL_OBJFILES (objfile)
300 {
301 if (iterate_over_some_symtabs (name, full_path, real_path, callback, data,
302 objfile->symtabs, NULL))
303 {
304 do_cleanups (cleanups);
305 return;
306 }
307 }
308
309 /* Same search rules as above apply here, but now we look thru the
310 psymtabs. */
311
312 ALL_OBJFILES (objfile)
313 {
314 if (objfile->sf
315 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
316 name,
317 full_path,
318 real_path,
319 callback,
320 data))
321 {
322 do_cleanups (cleanups);
323 return;
324 }
325 }
326
327 do_cleanups (cleanups);
328}
329
330/* The callback function used by lookup_symtab. */
331
332static int
333lookup_symtab_callback (struct symtab *symtab, void *data)
334{
335 struct symtab **result_ptr = data;
336
337 *result_ptr = symtab;
338 return 1;
339}
340
341/* A wrapper for iterate_over_symtabs that returns the first matching
342 symtab, or NULL. */
343
344struct symtab *
345lookup_symtab (const char *name)
346{
347 struct symtab *result = NULL;
348
349 iterate_over_symtabs (name, lookup_symtab_callback, &result);
350 return result;
351}
352
353\f
354/* Mangle a GDB method stub type. This actually reassembles the pieces of the
355 full method name, which consist of the class name (from T), the unadorned
356 method name from METHOD_ID, and the signature for the specific overload,
357 specified by SIGNATURE_ID. Note that this function is g++ specific. */
358
359char *
360gdb_mangle_name (struct type *type, int method_id, int signature_id)
361{
362 int mangled_name_len;
363 char *mangled_name;
364 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
365 struct fn_field *method = &f[signature_id];
366 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
367 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
368 const char *newname = type_name_no_tag (type);
369
370 /* Does the form of physname indicate that it is the full mangled name
371 of a constructor (not just the args)? */
372 int is_full_physname_constructor;
373
374 int is_constructor;
375 int is_destructor = is_destructor_name (physname);
376 /* Need a new type prefix. */
377 char *const_prefix = method->is_const ? "C" : "";
378 char *volatile_prefix = method->is_volatile ? "V" : "";
379 char buf[20];
380 int len = (newname == NULL ? 0 : strlen (newname));
381
382 /* Nothing to do if physname already contains a fully mangled v3 abi name
383 or an operator name. */
384 if ((physname[0] == '_' && physname[1] == 'Z')
385 || is_operator_name (field_name))
386 return xstrdup (physname);
387
388 is_full_physname_constructor = is_constructor_name (physname);
389
390 is_constructor = is_full_physname_constructor
391 || (newname && strcmp (field_name, newname) == 0);
392
393 if (!is_destructor)
394 is_destructor = (strncmp (physname, "__dt", 4) == 0);
395
396 if (is_destructor || is_full_physname_constructor)
397 {
398 mangled_name = (char *) xmalloc (strlen (physname) + 1);
399 strcpy (mangled_name, physname);
400 return mangled_name;
401 }
402
403 if (len == 0)
404 {
405 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
406 }
407 else if (physname[0] == 't' || physname[0] == 'Q')
408 {
409 /* The physname for template and qualified methods already includes
410 the class name. */
411 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
412 newname = NULL;
413 len = 0;
414 }
415 else
416 {
417 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
418 }
419 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
420 + strlen (buf) + len + strlen (physname) + 1);
421
422 mangled_name = (char *) xmalloc (mangled_name_len);
423 if (is_constructor)
424 mangled_name[0] = '\0';
425 else
426 strcpy (mangled_name, field_name);
427
428 strcat (mangled_name, buf);
429 /* If the class doesn't have a name, i.e. newname NULL, then we just
430 mangle it using 0 for the length of the class. Thus it gets mangled
431 as something starting with `::' rather than `classname::'. */
432 if (newname != NULL)
433 strcat (mangled_name, newname);
434
435 strcat (mangled_name, physname);
436 return (mangled_name);
437}
438
439/* Initialize the cplus_specific structure. 'cplus_specific' should
440 only be allocated for use with cplus symbols. */
441
442static void
443symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
444 struct objfile *objfile)
445{
446 /* A language_specific structure should not have been previously
447 initialized. */
448 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
449 gdb_assert (objfile != NULL);
450
451 gsymbol->language_specific.cplus_specific =
452 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
453}
454
455/* Set the demangled name of GSYMBOL to NAME. NAME must be already
456 correctly allocated. For C++ symbols a cplus_specific struct is
457 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
458 OBJFILE can be NULL. */
459
460void
461symbol_set_demangled_name (struct general_symbol_info *gsymbol,
462 char *name,
463 struct objfile *objfile)
464{
465 if (gsymbol->language == language_cplus)
466 {
467 if (gsymbol->language_specific.cplus_specific == NULL)
468 symbol_init_cplus_specific (gsymbol, objfile);
469
470 gsymbol->language_specific.cplus_specific->demangled_name = name;
471 }
472 else
473 gsymbol->language_specific.mangled_lang.demangled_name = name;
474}
475
476/* Return the demangled name of GSYMBOL. */
477
478const char *
479symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
480{
481 if (gsymbol->language == language_cplus)
482 {
483 if (gsymbol->language_specific.cplus_specific != NULL)
484 return gsymbol->language_specific.cplus_specific->demangled_name;
485 else
486 return NULL;
487 }
488 else
489 return gsymbol->language_specific.mangled_lang.demangled_name;
490}
491
492\f
493/* Initialize the language dependent portion of a symbol
494 depending upon the language for the symbol. */
495
496void
497symbol_set_language (struct general_symbol_info *gsymbol,
498 enum language language)
499{
500 gsymbol->language = language;
501 if (gsymbol->language == language_d
502 || gsymbol->language == language_go
503 || gsymbol->language == language_java
504 || gsymbol->language == language_objc
505 || gsymbol->language == language_fortran)
506 {
507 symbol_set_demangled_name (gsymbol, NULL, NULL);
508 }
509 else if (gsymbol->language == language_cplus)
510 gsymbol->language_specific.cplus_specific = NULL;
511 else
512 {
513 memset (&gsymbol->language_specific, 0,
514 sizeof (gsymbol->language_specific));
515 }
516}
517
518/* Functions to initialize a symbol's mangled name. */
519
520/* Objects of this type are stored in the demangled name hash table. */
521struct demangled_name_entry
522{
523 char *mangled;
524 char demangled[1];
525};
526
527/* Hash function for the demangled name hash. */
528
529static hashval_t
530hash_demangled_name_entry (const void *data)
531{
532 const struct demangled_name_entry *e = data;
533
534 return htab_hash_string (e->mangled);
535}
536
537/* Equality function for the demangled name hash. */
538
539static int
540eq_demangled_name_entry (const void *a, const void *b)
541{
542 const struct demangled_name_entry *da = a;
543 const struct demangled_name_entry *db = b;
544
545 return strcmp (da->mangled, db->mangled) == 0;
546}
547
548/* Create the hash table used for demangled names. Each hash entry is
549 a pair of strings; one for the mangled name and one for the demangled
550 name. The entry is hashed via just the mangled name. */
551
552static void
553create_demangled_names_hash (struct objfile *objfile)
554{
555 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
556 The hash table code will round this up to the next prime number.
557 Choosing a much larger table size wastes memory, and saves only about
558 1% in symbol reading. */
559
560 objfile->demangled_names_hash = htab_create_alloc
561 (256, hash_demangled_name_entry, eq_demangled_name_entry,
562 NULL, xcalloc, xfree);
563}
564
565/* Try to determine the demangled name for a symbol, based on the
566 language of that symbol. If the language is set to language_auto,
567 it will attempt to find any demangling algorithm that works and
568 then set the language appropriately. The returned name is allocated
569 by the demangler and should be xfree'd. */
570
571static char *
572symbol_find_demangled_name (struct general_symbol_info *gsymbol,
573 const char *mangled)
574{
575 char *demangled = NULL;
576
577 if (gsymbol->language == language_unknown)
578 gsymbol->language = language_auto;
579
580 if (gsymbol->language == language_objc
581 || gsymbol->language == language_auto)
582 {
583 demangled =
584 objc_demangle (mangled, 0);
585 if (demangled != NULL)
586 {
587 gsymbol->language = language_objc;
588 return demangled;
589 }
590 }
591 if (gsymbol->language == language_cplus
592 || gsymbol->language == language_auto)
593 {
594 demangled =
595 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
596 if (demangled != NULL)
597 {
598 gsymbol->language = language_cplus;
599 return demangled;
600 }
601 }
602 if (gsymbol->language == language_java)
603 {
604 demangled =
605 cplus_demangle (mangled,
606 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
607 if (demangled != NULL)
608 {
609 gsymbol->language = language_java;
610 return demangled;
611 }
612 }
613 if (gsymbol->language == language_d
614 || gsymbol->language == language_auto)
615 {
616 demangled = d_demangle(mangled, 0);
617 if (demangled != NULL)
618 {
619 gsymbol->language = language_d;
620 return demangled;
621 }
622 }
623 /* FIXME(dje): Continually adding languages here is clumsy.
624 Better to just call la_demangle if !auto, and if auto then call
625 a utility routine that tries successive languages in turn and reports
626 which one it finds. I realize the la_demangle options may be different
627 for different languages but there's already a FIXME for that. */
628 if (gsymbol->language == language_go
629 || gsymbol->language == language_auto)
630 {
631 demangled = go_demangle (mangled, 0);
632 if (demangled != NULL)
633 {
634 gsymbol->language = language_go;
635 return demangled;
636 }
637 }
638
639 /* We could support `gsymbol->language == language_fortran' here to provide
640 module namespaces also for inferiors with only minimal symbol table (ELF
641 symbols). Just the mangling standard is not standardized across compilers
642 and there is no DW_AT_producer available for inferiors with only the ELF
643 symbols to check the mangling kind. */
644 return NULL;
645}
646
647/* Set both the mangled and demangled (if any) names for GSYMBOL based
648 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
649 objfile's obstack; but if COPY_NAME is 0 and if NAME is
650 NUL-terminated, then this function assumes that NAME is already
651 correctly saved (either permanently or with a lifetime tied to the
652 objfile), and it will not be copied.
653
654 The hash table corresponding to OBJFILE is used, and the memory
655 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
656 so the pointer can be discarded after calling this function. */
657
658/* We have to be careful when dealing with Java names: when we run
659 into a Java minimal symbol, we don't know it's a Java symbol, so it
660 gets demangled as a C++ name. This is unfortunate, but there's not
661 much we can do about it: but when demangling partial symbols and
662 regular symbols, we'd better not reuse the wrong demangled name.
663 (See PR gdb/1039.) We solve this by putting a distinctive prefix
664 on Java names when storing them in the hash table. */
665
666/* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
667 don't mind the Java prefix so much: different languages have
668 different demangling requirements, so it's only natural that we
669 need to keep language data around in our demangling cache. But
670 it's not good that the minimal symbol has the wrong demangled name.
671 Unfortunately, I can't think of any easy solution to that
672 problem. */
673
674#define JAVA_PREFIX "##JAVA$$"
675#define JAVA_PREFIX_LEN 8
676
677void
678symbol_set_names (struct general_symbol_info *gsymbol,
679 const char *linkage_name, int len, int copy_name,
680 struct objfile *objfile)
681{
682 struct demangled_name_entry **slot;
683 /* A 0-terminated copy of the linkage name. */
684 const char *linkage_name_copy;
685 /* A copy of the linkage name that might have a special Java prefix
686 added to it, for use when looking names up in the hash table. */
687 const char *lookup_name;
688 /* The length of lookup_name. */
689 int lookup_len;
690 struct demangled_name_entry entry;
691
692 if (gsymbol->language == language_ada)
693 {
694 /* In Ada, we do the symbol lookups using the mangled name, so
695 we can save some space by not storing the demangled name.
696
697 As a side note, we have also observed some overlap between
698 the C++ mangling and Ada mangling, similarly to what has
699 been observed with Java. Because we don't store the demangled
700 name with the symbol, we don't need to use the same trick
701 as Java. */
702 if (!copy_name)
703 gsymbol->name = linkage_name;
704 else
705 {
706 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
707
708 memcpy (name, linkage_name, len);
709 name[len] = '\0';
710 gsymbol->name = name;
711 }
712 symbol_set_demangled_name (gsymbol, NULL, NULL);
713
714 return;
715 }
716
717 if (objfile->demangled_names_hash == NULL)
718 create_demangled_names_hash (objfile);
719
720 /* The stabs reader generally provides names that are not
721 NUL-terminated; most of the other readers don't do this, so we
722 can just use the given copy, unless we're in the Java case. */
723 if (gsymbol->language == language_java)
724 {
725 char *alloc_name;
726
727 lookup_len = len + JAVA_PREFIX_LEN;
728 alloc_name = alloca (lookup_len + 1);
729 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
730 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
731 alloc_name[lookup_len] = '\0';
732
733 lookup_name = alloc_name;
734 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
735 }
736 else if (linkage_name[len] != '\0')
737 {
738 char *alloc_name;
739
740 lookup_len = len;
741 alloc_name = alloca (lookup_len + 1);
742 memcpy (alloc_name, linkage_name, len);
743 alloc_name[lookup_len] = '\0';
744
745 lookup_name = alloc_name;
746 linkage_name_copy = alloc_name;
747 }
748 else
749 {
750 lookup_len = len;
751 lookup_name = linkage_name;
752 linkage_name_copy = linkage_name;
753 }
754
755 entry.mangled = (char *) lookup_name;
756 slot = ((struct demangled_name_entry **)
757 htab_find_slot (objfile->demangled_names_hash,
758 &entry, INSERT));
759
760 /* If this name is not in the hash table, add it. */
761 if (*slot == NULL
762 /* A C version of the symbol may have already snuck into the table.
763 This happens to, e.g., main.init (__go_init_main). Cope. */
764 || (gsymbol->language == language_go
765 && (*slot)->demangled[0] == '\0'))
766 {
767 char *demangled_name = symbol_find_demangled_name (gsymbol,
768 linkage_name_copy);
769 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
770
771 /* Suppose we have demangled_name==NULL, copy_name==0, and
772 lookup_name==linkage_name. In this case, we already have the
773 mangled name saved, and we don't have a demangled name. So,
774 you might think we could save a little space by not recording
775 this in the hash table at all.
776
777 It turns out that it is actually important to still save such
778 an entry in the hash table, because storing this name gives
779 us better bcache hit rates for partial symbols. */
780 if (!copy_name && lookup_name == linkage_name)
781 {
782 *slot = obstack_alloc (&objfile->objfile_obstack,
783 offsetof (struct demangled_name_entry,
784 demangled)
785 + demangled_len + 1);
786 (*slot)->mangled = (char *) lookup_name;
787 }
788 else
789 {
790 /* If we must copy the mangled name, put it directly after
791 the demangled name so we can have a single
792 allocation. */
793 *slot = obstack_alloc (&objfile->objfile_obstack,
794 offsetof (struct demangled_name_entry,
795 demangled)
796 + lookup_len + demangled_len + 2);
797 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
798 strcpy ((*slot)->mangled, lookup_name);
799 }
800
801 if (demangled_name != NULL)
802 {
803 strcpy ((*slot)->demangled, demangled_name);
804 xfree (demangled_name);
805 }
806 else
807 (*slot)->demangled[0] = '\0';
808 }
809
810 gsymbol->name = (*slot)->mangled + lookup_len - len;
811 if ((*slot)->demangled[0] != '\0')
812 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
813 else
814 symbol_set_demangled_name (gsymbol, NULL, objfile);
815}
816
817/* Return the source code name of a symbol. In languages where
818 demangling is necessary, this is the demangled name. */
819
820const char *
821symbol_natural_name (const struct general_symbol_info *gsymbol)
822{
823 switch (gsymbol->language)
824 {
825 case language_cplus:
826 case language_d:
827 case language_go:
828 case language_java:
829 case language_objc:
830 case language_fortran:
831 if (symbol_get_demangled_name (gsymbol) != NULL)
832 return symbol_get_demangled_name (gsymbol);
833 break;
834 case language_ada:
835 if (symbol_get_demangled_name (gsymbol) != NULL)
836 return symbol_get_demangled_name (gsymbol);
837 else
838 return ada_decode_symbol (gsymbol);
839 break;
840 default:
841 break;
842 }
843 return gsymbol->name;
844}
845
846/* Return the demangled name for a symbol based on the language for
847 that symbol. If no demangled name exists, return NULL. */
848
849const char *
850symbol_demangled_name (const struct general_symbol_info *gsymbol)
851{
852 const char *dem_name = NULL;
853
854 switch (gsymbol->language)
855 {
856 case language_cplus:
857 case language_d:
858 case language_go:
859 case language_java:
860 case language_objc:
861 case language_fortran:
862 dem_name = symbol_get_demangled_name (gsymbol);
863 break;
864 case language_ada:
865 dem_name = symbol_get_demangled_name (gsymbol);
866 if (dem_name == NULL)
867 dem_name = ada_decode_symbol (gsymbol);
868 break;
869 default:
870 break;
871 }
872 return dem_name;
873}
874
875/* Return the search name of a symbol---generally the demangled or
876 linkage name of the symbol, depending on how it will be searched for.
877 If there is no distinct demangled name, then returns the same value
878 (same pointer) as SYMBOL_LINKAGE_NAME. */
879
880const char *
881symbol_search_name (const struct general_symbol_info *gsymbol)
882{
883 if (gsymbol->language == language_ada)
884 return gsymbol->name;
885 else
886 return symbol_natural_name (gsymbol);
887}
888
889/* Initialize the structure fields to zero values. */
890
891void
892init_sal (struct symtab_and_line *sal)
893{
894 sal->pspace = NULL;
895 sal->symtab = 0;
896 sal->section = 0;
897 sal->line = 0;
898 sal->pc = 0;
899 sal->end = 0;
900 sal->explicit_pc = 0;
901 sal->explicit_line = 0;
902 sal->probe = NULL;
903}
904\f
905
906/* Return 1 if the two sections are the same, or if they could
907 plausibly be copies of each other, one in an original object
908 file and another in a separated debug file. */
909
910int
911matching_obj_sections (struct obj_section *obj_first,
912 struct obj_section *obj_second)
913{
914 asection *first = obj_first? obj_first->the_bfd_section : NULL;
915 asection *second = obj_second? obj_second->the_bfd_section : NULL;
916 struct objfile *obj;
917
918 /* If they're the same section, then they match. */
919 if (first == second)
920 return 1;
921
922 /* If either is NULL, give up. */
923 if (first == NULL || second == NULL)
924 return 0;
925
926 /* This doesn't apply to absolute symbols. */
927 if (first->owner == NULL || second->owner == NULL)
928 return 0;
929
930 /* If they're in the same object file, they must be different sections. */
931 if (first->owner == second->owner)
932 return 0;
933
934 /* Check whether the two sections are potentially corresponding. They must
935 have the same size, address, and name. We can't compare section indexes,
936 which would be more reliable, because some sections may have been
937 stripped. */
938 if (bfd_get_section_size (first) != bfd_get_section_size (second))
939 return 0;
940
941 /* In-memory addresses may start at a different offset, relativize them. */
942 if (bfd_get_section_vma (first->owner, first)
943 - bfd_get_start_address (first->owner)
944 != bfd_get_section_vma (second->owner, second)
945 - bfd_get_start_address (second->owner))
946 return 0;
947
948 if (bfd_get_section_name (first->owner, first) == NULL
949 || bfd_get_section_name (second->owner, second) == NULL
950 || strcmp (bfd_get_section_name (first->owner, first),
951 bfd_get_section_name (second->owner, second)) != 0)
952 return 0;
953
954 /* Otherwise check that they are in corresponding objfiles. */
955
956 ALL_OBJFILES (obj)
957 if (obj->obfd == first->owner)
958 break;
959 gdb_assert (obj != NULL);
960
961 if (obj->separate_debug_objfile != NULL
962 && obj->separate_debug_objfile->obfd == second->owner)
963 return 1;
964 if (obj->separate_debug_objfile_backlink != NULL
965 && obj->separate_debug_objfile_backlink->obfd == second->owner)
966 return 1;
967
968 return 0;
969}
970
971struct symtab *
972find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
973{
974 struct objfile *objfile;
975 struct minimal_symbol *msymbol;
976
977 /* If we know that this is not a text address, return failure. This is
978 necessary because we loop based on texthigh and textlow, which do
979 not include the data ranges. */
980 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
981 if (msymbol
982 && (MSYMBOL_TYPE (msymbol) == mst_data
983 || MSYMBOL_TYPE (msymbol) == mst_bss
984 || MSYMBOL_TYPE (msymbol) == mst_abs
985 || MSYMBOL_TYPE (msymbol) == mst_file_data
986 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
987 return NULL;
988
989 ALL_OBJFILES (objfile)
990 {
991 struct symtab *result = NULL;
992
993 if (objfile->sf)
994 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
995 pc, section, 0);
996 if (result)
997 return result;
998 }
999
1000 return NULL;
1001}
1002\f
1003/* Debug symbols usually don't have section information. We need to dig that
1004 out of the minimal symbols and stash that in the debug symbol. */
1005
1006void
1007fixup_section (struct general_symbol_info *ginfo,
1008 CORE_ADDR addr, struct objfile *objfile)
1009{
1010 struct minimal_symbol *msym;
1011
1012 /* First, check whether a minimal symbol with the same name exists
1013 and points to the same address. The address check is required
1014 e.g. on PowerPC64, where the minimal symbol for a function will
1015 point to the function descriptor, while the debug symbol will
1016 point to the actual function code. */
1017 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1018 if (msym)
1019 {
1020 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1021 ginfo->section = SYMBOL_SECTION (msym);
1022 }
1023 else
1024 {
1025 /* Static, function-local variables do appear in the linker
1026 (minimal) symbols, but are frequently given names that won't
1027 be found via lookup_minimal_symbol(). E.g., it has been
1028 observed in frv-uclinux (ELF) executables that a static,
1029 function-local variable named "foo" might appear in the
1030 linker symbols as "foo.6" or "foo.3". Thus, there is no
1031 point in attempting to extend the lookup-by-name mechanism to
1032 handle this case due to the fact that there can be multiple
1033 names.
1034
1035 So, instead, search the section table when lookup by name has
1036 failed. The ``addr'' and ``endaddr'' fields may have already
1037 been relocated. If so, the relocation offset (i.e. the
1038 ANOFFSET value) needs to be subtracted from these values when
1039 performing the comparison. We unconditionally subtract it,
1040 because, when no relocation has been performed, the ANOFFSET
1041 value will simply be zero.
1042
1043 The address of the symbol whose section we're fixing up HAS
1044 NOT BEEN adjusted (relocated) yet. It can't have been since
1045 the section isn't yet known and knowing the section is
1046 necessary in order to add the correct relocation value. In
1047 other words, we wouldn't even be in this function (attempting
1048 to compute the section) if it were already known.
1049
1050 Note that it is possible to search the minimal symbols
1051 (subtracting the relocation value if necessary) to find the
1052 matching minimal symbol, but this is overkill and much less
1053 efficient. It is not necessary to find the matching minimal
1054 symbol, only its section.
1055
1056 Note that this technique (of doing a section table search)
1057 can fail when unrelocated section addresses overlap. For
1058 this reason, we still attempt a lookup by name prior to doing
1059 a search of the section table. */
1060
1061 struct obj_section *s;
1062
1063 ALL_OBJFILE_OSECTIONS (objfile, s)
1064 {
1065 int idx = s->the_bfd_section->index;
1066 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1067
1068 if (obj_section_addr (s) - offset <= addr
1069 && addr < obj_section_endaddr (s) - offset)
1070 {
1071 ginfo->obj_section = s;
1072 ginfo->section = idx;
1073 return;
1074 }
1075 }
1076 }
1077}
1078
1079struct symbol *
1080fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1081{
1082 CORE_ADDR addr;
1083
1084 if (!sym)
1085 return NULL;
1086
1087 if (SYMBOL_OBJ_SECTION (sym))
1088 return sym;
1089
1090 /* We either have an OBJFILE, or we can get at it from the sym's
1091 symtab. Anything else is a bug. */
1092 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1093
1094 if (objfile == NULL)
1095 objfile = SYMBOL_SYMTAB (sym)->objfile;
1096
1097 /* We should have an objfile by now. */
1098 gdb_assert (objfile);
1099
1100 switch (SYMBOL_CLASS (sym))
1101 {
1102 case LOC_STATIC:
1103 case LOC_LABEL:
1104 addr = SYMBOL_VALUE_ADDRESS (sym);
1105 break;
1106 case LOC_BLOCK:
1107 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1108 break;
1109
1110 default:
1111 /* Nothing else will be listed in the minsyms -- no use looking
1112 it up. */
1113 return sym;
1114 }
1115
1116 fixup_section (&sym->ginfo, addr, objfile);
1117
1118 return sym;
1119}
1120
1121/* Compute the demangled form of NAME as used by the various symbol
1122 lookup functions. The result is stored in *RESULT_NAME. Returns a
1123 cleanup which can be used to clean up the result.
1124
1125 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1126 Normally, Ada symbol lookups are performed using the encoded name
1127 rather than the demangled name, and so it might seem to make sense
1128 for this function to return an encoded version of NAME.
1129 Unfortunately, we cannot do this, because this function is used in
1130 circumstances where it is not appropriate to try to encode NAME.
1131 For instance, when displaying the frame info, we demangle the name
1132 of each parameter, and then perform a symbol lookup inside our
1133 function using that demangled name. In Ada, certain functions
1134 have internally-generated parameters whose name contain uppercase
1135 characters. Encoding those name would result in those uppercase
1136 characters to become lowercase, and thus cause the symbol lookup
1137 to fail. */
1138
1139struct cleanup *
1140demangle_for_lookup (const char *name, enum language lang,
1141 const char **result_name)
1142{
1143 char *demangled_name = NULL;
1144 const char *modified_name = NULL;
1145 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1146
1147 modified_name = name;
1148
1149 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1150 lookup, so we can always binary search. */
1151 if (lang == language_cplus)
1152 {
1153 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1154 if (demangled_name)
1155 {
1156 modified_name = demangled_name;
1157 make_cleanup (xfree, demangled_name);
1158 }
1159 else
1160 {
1161 /* If we were given a non-mangled name, canonicalize it
1162 according to the language (so far only for C++). */
1163 demangled_name = cp_canonicalize_string (name);
1164 if (demangled_name)
1165 {
1166 modified_name = demangled_name;
1167 make_cleanup (xfree, demangled_name);
1168 }
1169 }
1170 }
1171 else if (lang == language_java)
1172 {
1173 demangled_name = cplus_demangle (name,
1174 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1175 if (demangled_name)
1176 {
1177 modified_name = demangled_name;
1178 make_cleanup (xfree, demangled_name);
1179 }
1180 }
1181 else if (lang == language_d)
1182 {
1183 demangled_name = d_demangle (name, 0);
1184 if (demangled_name)
1185 {
1186 modified_name = demangled_name;
1187 make_cleanup (xfree, demangled_name);
1188 }
1189 }
1190 else if (lang == language_go)
1191 {
1192 demangled_name = go_demangle (name, 0);
1193 if (demangled_name)
1194 {
1195 modified_name = demangled_name;
1196 make_cleanup (xfree, demangled_name);
1197 }
1198 }
1199
1200 *result_name = modified_name;
1201 return cleanup;
1202}
1203
1204/* Find the definition for a specified symbol name NAME
1205 in domain DOMAIN, visible from lexical block BLOCK.
1206 Returns the struct symbol pointer, or zero if no symbol is found.
1207 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1208 NAME is a field of the current implied argument `this'. If so set
1209 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1210 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1211 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1212
1213/* This function (or rather its subordinates) have a bunch of loops and
1214 it would seem to be attractive to put in some QUIT's (though I'm not really
1215 sure whether it can run long enough to be really important). But there
1216 are a few calls for which it would appear to be bad news to quit
1217 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1218 that there is C++ code below which can error(), but that probably
1219 doesn't affect these calls since they are looking for a known
1220 variable and thus can probably assume it will never hit the C++
1221 code). */
1222
1223struct symbol *
1224lookup_symbol_in_language (const char *name, const struct block *block,
1225 const domain_enum domain, enum language lang,
1226 int *is_a_field_of_this)
1227{
1228 const char *modified_name;
1229 struct symbol *returnval;
1230 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1231
1232 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1233 is_a_field_of_this);
1234 do_cleanups (cleanup);
1235
1236 return returnval;
1237}
1238
1239/* Behave like lookup_symbol_in_language, but performed with the
1240 current language. */
1241
1242struct symbol *
1243lookup_symbol (const char *name, const struct block *block,
1244 domain_enum domain, int *is_a_field_of_this)
1245{
1246 return lookup_symbol_in_language (name, block, domain,
1247 current_language->la_language,
1248 is_a_field_of_this);
1249}
1250
1251/* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1252 found, or NULL if not found. */
1253
1254struct symbol *
1255lookup_language_this (const struct language_defn *lang,
1256 const struct block *block)
1257{
1258 if (lang->la_name_of_this == NULL || block == NULL)
1259 return NULL;
1260
1261 while (block)
1262 {
1263 struct symbol *sym;
1264
1265 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1266 if (sym != NULL)
1267 {
1268 block_found = block;
1269 return sym;
1270 }
1271 if (BLOCK_FUNCTION (block))
1272 break;
1273 block = BLOCK_SUPERBLOCK (block);
1274 }
1275
1276 return NULL;
1277}
1278
1279/* Behave like lookup_symbol except that NAME is the natural name
1280 (e.g., demangled name) of the symbol that we're looking for. */
1281
1282static struct symbol *
1283lookup_symbol_aux (const char *name, const struct block *block,
1284 const domain_enum domain, enum language language,
1285 int *is_a_field_of_this)
1286{
1287 struct symbol *sym;
1288 const struct language_defn *langdef;
1289
1290 /* Make sure we do something sensible with is_a_field_of_this, since
1291 the callers that set this parameter to some non-null value will
1292 certainly use it later and expect it to be either 0 or 1.
1293 If we don't set it, the contents of is_a_field_of_this are
1294 undefined. */
1295 if (is_a_field_of_this != NULL)
1296 *is_a_field_of_this = 0;
1297
1298 /* Search specified block and its superiors. Don't search
1299 STATIC_BLOCK or GLOBAL_BLOCK. */
1300
1301 sym = lookup_symbol_aux_local (name, block, domain, language);
1302 if (sym != NULL)
1303 return sym;
1304
1305 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1306 check to see if NAME is a field of `this'. */
1307
1308 langdef = language_def (language);
1309
1310 if (is_a_field_of_this != NULL)
1311 {
1312 struct symbol *sym = lookup_language_this (langdef, block);
1313
1314 if (sym)
1315 {
1316 struct type *t = sym->type;
1317
1318 /* I'm not really sure that type of this can ever
1319 be typedefed; just be safe. */
1320 CHECK_TYPEDEF (t);
1321 if (TYPE_CODE (t) == TYPE_CODE_PTR
1322 || TYPE_CODE (t) == TYPE_CODE_REF)
1323 t = TYPE_TARGET_TYPE (t);
1324
1325 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1326 && TYPE_CODE (t) != TYPE_CODE_UNION)
1327 error (_("Internal error: `%s' is not an aggregate"),
1328 langdef->la_name_of_this);
1329
1330 if (check_field (t, name))
1331 {
1332 *is_a_field_of_this = 1;
1333 return NULL;
1334 }
1335 }
1336 }
1337
1338 /* Now do whatever is appropriate for LANGUAGE to look
1339 up static and global variables. */
1340
1341 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1342 if (sym != NULL)
1343 return sym;
1344
1345 /* Now search all static file-level symbols. Not strictly correct,
1346 but more useful than an error. */
1347
1348 return lookup_static_symbol_aux (name, domain);
1349}
1350
1351/* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1352 first, then check the psymtabs. If a psymtab indicates the existence of the
1353 desired name as a file-level static, then do psymtab-to-symtab conversion on
1354 the fly and return the found symbol. */
1355
1356struct symbol *
1357lookup_static_symbol_aux (const char *name, const domain_enum domain)
1358{
1359 struct objfile *objfile;
1360 struct symbol *sym;
1361
1362 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1363 if (sym != NULL)
1364 return sym;
1365
1366 ALL_OBJFILES (objfile)
1367 {
1368 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1369 if (sym != NULL)
1370 return sym;
1371 }
1372
1373 return NULL;
1374}
1375
1376/* Check to see if the symbol is defined in BLOCK or its superiors.
1377 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1378
1379static struct symbol *
1380lookup_symbol_aux_local (const char *name, const struct block *block,
1381 const domain_enum domain,
1382 enum language language)
1383{
1384 struct symbol *sym;
1385 const struct block *static_block = block_static_block (block);
1386 const char *scope = block_scope (block);
1387
1388 /* Check if either no block is specified or it's a global block. */
1389
1390 if (static_block == NULL)
1391 return NULL;
1392
1393 while (block != static_block)
1394 {
1395 sym = lookup_symbol_aux_block (name, block, domain);
1396 if (sym != NULL)
1397 return sym;
1398
1399 if (language == language_cplus || language == language_fortran)
1400 {
1401 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1402 domain);
1403 if (sym != NULL)
1404 return sym;
1405 }
1406
1407 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1408 break;
1409 block = BLOCK_SUPERBLOCK (block);
1410 }
1411
1412 /* We've reached the edge of the function without finding a result. */
1413
1414 return NULL;
1415}
1416
1417/* Look up OBJFILE to BLOCK. */
1418
1419struct objfile *
1420lookup_objfile_from_block (const struct block *block)
1421{
1422 struct objfile *obj;
1423 struct symtab *s;
1424
1425 if (block == NULL)
1426 return NULL;
1427
1428 block = block_global_block (block);
1429 /* Go through SYMTABS. */
1430 ALL_SYMTABS (obj, s)
1431 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1432 {
1433 if (obj->separate_debug_objfile_backlink)
1434 obj = obj->separate_debug_objfile_backlink;
1435
1436 return obj;
1437 }
1438
1439 return NULL;
1440}
1441
1442/* Look up a symbol in a block; if found, fixup the symbol, and set
1443 block_found appropriately. */
1444
1445struct symbol *
1446lookup_symbol_aux_block (const char *name, const struct block *block,
1447 const domain_enum domain)
1448{
1449 struct symbol *sym;
1450
1451 sym = lookup_block_symbol (block, name, domain);
1452 if (sym)
1453 {
1454 block_found = block;
1455 return fixup_symbol_section (sym, NULL);
1456 }
1457
1458 return NULL;
1459}
1460
1461/* Check all global symbols in OBJFILE in symtabs and
1462 psymtabs. */
1463
1464struct symbol *
1465lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1466 const char *name,
1467 const domain_enum domain)
1468{
1469 const struct objfile *objfile;
1470 struct symbol *sym;
1471 struct blockvector *bv;
1472 const struct block *block;
1473 struct symtab *s;
1474
1475 for (objfile = main_objfile;
1476 objfile;
1477 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1478 {
1479 /* Go through symtabs. */
1480 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1481 {
1482 bv = BLOCKVECTOR (s);
1483 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1484 sym = lookup_block_symbol (block, name, domain);
1485 if (sym)
1486 {
1487 block_found = block;
1488 return fixup_symbol_section (sym, (struct objfile *)objfile);
1489 }
1490 }
1491
1492 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1493 name, domain);
1494 if (sym)
1495 return sym;
1496 }
1497
1498 return NULL;
1499}
1500
1501/* Check to see if the symbol is defined in one of the OBJFILE's
1502 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1503 depending on whether or not we want to search global symbols or
1504 static symbols. */
1505
1506static struct symbol *
1507lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1508 const char *name, const domain_enum domain)
1509{
1510 struct symbol *sym = NULL;
1511 struct blockvector *bv;
1512 const struct block *block;
1513 struct symtab *s;
1514
1515 if (objfile->sf)
1516 objfile->sf->qf->pre_expand_symtabs_matching (objfile, block_index,
1517 name, domain);
1518
1519 ALL_OBJFILE_SYMTABS (objfile, s)
1520 if (s->primary)
1521 {
1522 bv = BLOCKVECTOR (s);
1523 block = BLOCKVECTOR_BLOCK (bv, block_index);
1524 sym = lookup_block_symbol (block, name, domain);
1525 if (sym)
1526 {
1527 block_found = block;
1528 return fixup_symbol_section (sym, objfile);
1529 }
1530 }
1531
1532 return NULL;
1533}
1534
1535/* Same as lookup_symbol_aux_objfile, except that it searches all
1536 objfiles. Return the first match found. */
1537
1538static struct symbol *
1539lookup_symbol_aux_symtabs (int block_index, const char *name,
1540 const domain_enum domain)
1541{
1542 struct symbol *sym;
1543 struct objfile *objfile;
1544
1545 ALL_OBJFILES (objfile)
1546 {
1547 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1548 if (sym)
1549 return sym;
1550 }
1551
1552 return NULL;
1553}
1554
1555/* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1556 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1557 and all related objfiles. */
1558
1559static struct symbol *
1560lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1561 const char *linkage_name,
1562 domain_enum domain)
1563{
1564 enum language lang = current_language->la_language;
1565 const char *modified_name;
1566 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1567 &modified_name);
1568 struct objfile *main_objfile, *cur_objfile;
1569
1570 if (objfile->separate_debug_objfile_backlink)
1571 main_objfile = objfile->separate_debug_objfile_backlink;
1572 else
1573 main_objfile = objfile;
1574
1575 for (cur_objfile = main_objfile;
1576 cur_objfile;
1577 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1578 {
1579 struct symbol *sym;
1580
1581 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1582 modified_name, domain);
1583 if (sym == NULL)
1584 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1585 modified_name, domain);
1586 if (sym != NULL)
1587 {
1588 do_cleanups (cleanup);
1589 return sym;
1590 }
1591 }
1592
1593 do_cleanups (cleanup);
1594 return NULL;
1595}
1596
1597/* A helper function for lookup_symbol_aux that interfaces with the
1598 "quick" symbol table functions. */
1599
1600static struct symbol *
1601lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1602 const char *name, const domain_enum domain)
1603{
1604 struct symtab *symtab;
1605 struct blockvector *bv;
1606 const struct block *block;
1607 struct symbol *sym;
1608
1609 if (!objfile->sf)
1610 return NULL;
1611 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1612 if (!symtab)
1613 return NULL;
1614
1615 bv = BLOCKVECTOR (symtab);
1616 block = BLOCKVECTOR_BLOCK (bv, kind);
1617 sym = lookup_block_symbol (block, name, domain);
1618 if (!sym)
1619 {
1620 /* This shouldn't be necessary, but as a last resort try
1621 looking in the statics even though the psymtab claimed
1622 the symbol was global, or vice-versa. It's possible
1623 that the psymtab gets it wrong in some cases. */
1624
1625 /* FIXME: carlton/2002-09-30: Should we really do that?
1626 If that happens, isn't it likely to be a GDB error, in
1627 which case we should fix the GDB error rather than
1628 silently dealing with it here? So I'd vote for
1629 removing the check for the symbol in the other
1630 block. */
1631 block = BLOCKVECTOR_BLOCK (bv,
1632 kind == GLOBAL_BLOCK ?
1633 STATIC_BLOCK : GLOBAL_BLOCK);
1634 sym = lookup_block_symbol (block, name, domain);
1635 if (!sym)
1636 error (_("\
1637Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1638%s may be an inlined function, or may be a template function\n\
1639(if a template, try specifying an instantiation: %s<type>)."),
1640 kind == GLOBAL_BLOCK ? "global" : "static",
1641 name, symtab->filename, name, name);
1642 }
1643 return fixup_symbol_section (sym, objfile);
1644}
1645
1646/* A default version of lookup_symbol_nonlocal for use by languages
1647 that can't think of anything better to do. This implements the C
1648 lookup rules. */
1649
1650struct symbol *
1651basic_lookup_symbol_nonlocal (const char *name,
1652 const struct block *block,
1653 const domain_enum domain)
1654{
1655 struct symbol *sym;
1656
1657 /* NOTE: carlton/2003-05-19: The comments below were written when
1658 this (or what turned into this) was part of lookup_symbol_aux;
1659 I'm much less worried about these questions now, since these
1660 decisions have turned out well, but I leave these comments here
1661 for posterity. */
1662
1663 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1664 not it would be appropriate to search the current global block
1665 here as well. (That's what this code used to do before the
1666 is_a_field_of_this check was moved up.) On the one hand, it's
1667 redundant with the lookup_symbol_aux_symtabs search that happens
1668 next. On the other hand, if decode_line_1 is passed an argument
1669 like filename:var, then the user presumably wants 'var' to be
1670 searched for in filename. On the third hand, there shouldn't be
1671 multiple global variables all of which are named 'var', and it's
1672 not like decode_line_1 has ever restricted its search to only
1673 global variables in a single filename. All in all, only
1674 searching the static block here seems best: it's correct and it's
1675 cleanest. */
1676
1677 /* NOTE: carlton/2002-12-05: There's also a possible performance
1678 issue here: if you usually search for global symbols in the
1679 current file, then it would be slightly better to search the
1680 current global block before searching all the symtabs. But there
1681 are other factors that have a much greater effect on performance
1682 than that one, so I don't think we should worry about that for
1683 now. */
1684
1685 sym = lookup_symbol_static (name, block, domain);
1686 if (sym != NULL)
1687 return sym;
1688
1689 return lookup_symbol_global (name, block, domain);
1690}
1691
1692/* Lookup a symbol in the static block associated to BLOCK, if there
1693 is one; do nothing if BLOCK is NULL or a global block. */
1694
1695struct symbol *
1696lookup_symbol_static (const char *name,
1697 const struct block *block,
1698 const domain_enum domain)
1699{
1700 const struct block *static_block = block_static_block (block);
1701
1702 if (static_block != NULL)
1703 return lookup_symbol_aux_block (name, static_block, domain);
1704 else
1705 return NULL;
1706}
1707
1708/* Private data to be used with lookup_symbol_global_iterator_cb. */
1709
1710struct global_sym_lookup_data
1711{
1712 /* The name of the symbol we are searching for. */
1713 const char *name;
1714
1715 /* The domain to use for our search. */
1716 domain_enum domain;
1717
1718 /* The field where the callback should store the symbol if found.
1719 It should be initialized to NULL before the search is started. */
1720 struct symbol *result;
1721};
1722
1723/* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1724 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1725 OBJFILE. The arguments for the search are passed via CB_DATA,
1726 which in reality is a pointer to struct global_sym_lookup_data. */
1727
1728static int
1729lookup_symbol_global_iterator_cb (struct objfile *objfile,
1730 void *cb_data)
1731{
1732 struct global_sym_lookup_data *data =
1733 (struct global_sym_lookup_data *) cb_data;
1734
1735 gdb_assert (data->result == NULL);
1736
1737 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1738 data->name, data->domain);
1739 if (data->result == NULL)
1740 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1741 data->name, data->domain);
1742
1743 /* If we found a match, tell the iterator to stop. Otherwise,
1744 keep going. */
1745 return (data->result != NULL);
1746}
1747
1748/* Lookup a symbol in all files' global blocks (searching psymtabs if
1749 necessary). */
1750
1751struct symbol *
1752lookup_symbol_global (const char *name,
1753 const struct block *block,
1754 const domain_enum domain)
1755{
1756 struct symbol *sym = NULL;
1757 struct objfile *objfile = NULL;
1758 struct global_sym_lookup_data lookup_data;
1759
1760 /* Call library-specific lookup procedure. */
1761 objfile = lookup_objfile_from_block (block);
1762 if (objfile != NULL)
1763 sym = solib_global_lookup (objfile, name, domain);
1764 if (sym != NULL)
1765 return sym;
1766
1767 memset (&lookup_data, 0, sizeof (lookup_data));
1768 lookup_data.name = name;
1769 lookup_data.domain = domain;
1770 gdbarch_iterate_over_objfiles_in_search_order
1771 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch,
1772 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1773
1774 return lookup_data.result;
1775}
1776
1777int
1778symbol_matches_domain (enum language symbol_language,
1779 domain_enum symbol_domain,
1780 domain_enum domain)
1781{
1782 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1783 A Java class declaration also defines a typedef for the class.
1784 Similarly, any Ada type declaration implicitly defines a typedef. */
1785 if (symbol_language == language_cplus
1786 || symbol_language == language_d
1787 || symbol_language == language_java
1788 || symbol_language == language_ada)
1789 {
1790 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1791 && symbol_domain == STRUCT_DOMAIN)
1792 return 1;
1793 }
1794 /* For all other languages, strict match is required. */
1795 return (symbol_domain == domain);
1796}
1797
1798/* Look up a type named NAME in the struct_domain. The type returned
1799 must not be opaque -- i.e., must have at least one field
1800 defined. */
1801
1802struct type *
1803lookup_transparent_type (const char *name)
1804{
1805 return current_language->la_lookup_transparent_type (name);
1806}
1807
1808/* A helper for basic_lookup_transparent_type that interfaces with the
1809 "quick" symbol table functions. */
1810
1811static struct type *
1812basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1813 const char *name)
1814{
1815 struct symtab *symtab;
1816 struct blockvector *bv;
1817 struct block *block;
1818 struct symbol *sym;
1819
1820 if (!objfile->sf)
1821 return NULL;
1822 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1823 if (!symtab)
1824 return NULL;
1825
1826 bv = BLOCKVECTOR (symtab);
1827 block = BLOCKVECTOR_BLOCK (bv, kind);
1828 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1829 if (!sym)
1830 {
1831 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1832
1833 /* This shouldn't be necessary, but as a last resort
1834 * try looking in the 'other kind' even though the psymtab
1835 * claimed the symbol was one thing. It's possible that
1836 * the psymtab gets it wrong in some cases.
1837 */
1838 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1839 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1840 if (!sym)
1841 /* FIXME; error is wrong in one case. */
1842 error (_("\
1843Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1844%s may be an inlined function, or may be a template function\n\
1845(if a template, try specifying an instantiation: %s<type>)."),
1846 name, symtab->filename, name, name);
1847 }
1848 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1849 return SYMBOL_TYPE (sym);
1850
1851 return NULL;
1852}
1853
1854/* The standard implementation of lookup_transparent_type. This code
1855 was modeled on lookup_symbol -- the parts not relevant to looking
1856 up types were just left out. In particular it's assumed here that
1857 types are available in struct_domain and only at file-static or
1858 global blocks. */
1859
1860struct type *
1861basic_lookup_transparent_type (const char *name)
1862{
1863 struct symbol *sym;
1864 struct symtab *s = NULL;
1865 struct blockvector *bv;
1866 struct objfile *objfile;
1867 struct block *block;
1868 struct type *t;
1869
1870 /* Now search all the global symbols. Do the symtab's first, then
1871 check the psymtab's. If a psymtab indicates the existence
1872 of the desired name as a global, then do psymtab-to-symtab
1873 conversion on the fly and return the found symbol. */
1874
1875 ALL_OBJFILES (objfile)
1876 {
1877 if (objfile->sf)
1878 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1879 GLOBAL_BLOCK,
1880 name, STRUCT_DOMAIN);
1881
1882 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1883 {
1884 bv = BLOCKVECTOR (s);
1885 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1886 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1887 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1888 {
1889 return SYMBOL_TYPE (sym);
1890 }
1891 }
1892 }
1893
1894 ALL_OBJFILES (objfile)
1895 {
1896 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1897 if (t)
1898 return t;
1899 }
1900
1901 /* Now search the static file-level symbols.
1902 Not strictly correct, but more useful than an error.
1903 Do the symtab's first, then
1904 check the psymtab's. If a psymtab indicates the existence
1905 of the desired name as a file-level static, then do psymtab-to-symtab
1906 conversion on the fly and return the found symbol. */
1907
1908 ALL_OBJFILES (objfile)
1909 {
1910 if (objfile->sf)
1911 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1912 name, STRUCT_DOMAIN);
1913
1914 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1915 {
1916 bv = BLOCKVECTOR (s);
1917 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1918 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1919 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1920 {
1921 return SYMBOL_TYPE (sym);
1922 }
1923 }
1924 }
1925
1926 ALL_OBJFILES (objfile)
1927 {
1928 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1929 if (t)
1930 return t;
1931 }
1932
1933 return (struct type *) 0;
1934}
1935
1936/* Find the name of the file containing main(). */
1937/* FIXME: What about languages without main() or specially linked
1938 executables that have no main() ? */
1939
1940const char *
1941find_main_filename (void)
1942{
1943 struct objfile *objfile;
1944 char *name = main_name ();
1945
1946 ALL_OBJFILES (objfile)
1947 {
1948 const char *result;
1949
1950 if (!objfile->sf)
1951 continue;
1952 result = objfile->sf->qf->find_symbol_file (objfile, name);
1953 if (result)
1954 return result;
1955 }
1956 return (NULL);
1957}
1958
1959/* Search BLOCK for symbol NAME in DOMAIN.
1960
1961 Note that if NAME is the demangled form of a C++ symbol, we will fail
1962 to find a match during the binary search of the non-encoded names, but
1963 for now we don't worry about the slight inefficiency of looking for
1964 a match we'll never find, since it will go pretty quick. Once the
1965 binary search terminates, we drop through and do a straight linear
1966 search on the symbols. Each symbol which is marked as being a ObjC/C++
1967 symbol (language_cplus or language_objc set) has both the encoded and
1968 non-encoded names tested for a match. */
1969
1970struct symbol *
1971lookup_block_symbol (const struct block *block, const char *name,
1972 const domain_enum domain)
1973{
1974 struct block_iterator iter;
1975 struct symbol *sym;
1976
1977 if (!BLOCK_FUNCTION (block))
1978 {
1979 for (sym = block_iter_name_first (block, name, &iter);
1980 sym != NULL;
1981 sym = block_iter_name_next (name, &iter))
1982 {
1983 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1984 SYMBOL_DOMAIN (sym), domain))
1985 return sym;
1986 }
1987 return NULL;
1988 }
1989 else
1990 {
1991 /* Note that parameter symbols do not always show up last in the
1992 list; this loop makes sure to take anything else other than
1993 parameter symbols first; it only uses parameter symbols as a
1994 last resort. Note that this only takes up extra computation
1995 time on a match. */
1996
1997 struct symbol *sym_found = NULL;
1998
1999 for (sym = block_iter_name_first (block, name, &iter);
2000 sym != NULL;
2001 sym = block_iter_name_next (name, &iter))
2002 {
2003 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2004 SYMBOL_DOMAIN (sym), domain))
2005 {
2006 sym_found = sym;
2007 if (!SYMBOL_IS_ARGUMENT (sym))
2008 {
2009 break;
2010 }
2011 }
2012 }
2013 return (sym_found); /* Will be NULL if not found. */
2014 }
2015}
2016
2017/* Iterate over the symbols named NAME, matching DOMAIN, starting with
2018 BLOCK.
2019
2020 For each symbol that matches, CALLBACK is called. The symbol and
2021 DATA are passed to the callback.
2022
2023 If CALLBACK returns zero, the iteration ends. Otherwise, the
2024 search continues. This function iterates upward through blocks.
2025 When the outermost block has been finished, the function
2026 returns. */
2027
2028void
2029iterate_over_symbols (const struct block *block, const char *name,
2030 const domain_enum domain,
2031 symbol_found_callback_ftype *callback,
2032 void *data)
2033{
2034 while (block)
2035 {
2036 struct block_iterator iter;
2037 struct symbol *sym;
2038
2039 for (sym = block_iter_name_first (block, name, &iter);
2040 sym != NULL;
2041 sym = block_iter_name_next (name, &iter))
2042 {
2043 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2044 SYMBOL_DOMAIN (sym), domain))
2045 {
2046 if (!callback (sym, data))
2047 return;
2048 }
2049 }
2050
2051 block = BLOCK_SUPERBLOCK (block);
2052 }
2053}
2054
2055/* Find the symtab associated with PC and SECTION. Look through the
2056 psymtabs and read in another symtab if necessary. */
2057
2058struct symtab *
2059find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2060{
2061 struct block *b;
2062 struct blockvector *bv;
2063 struct symtab *s = NULL;
2064 struct symtab *best_s = NULL;
2065 struct objfile *objfile;
2066 struct program_space *pspace;
2067 CORE_ADDR distance = 0;
2068 struct minimal_symbol *msymbol;
2069
2070 pspace = current_program_space;
2071
2072 /* If we know that this is not a text address, return failure. This is
2073 necessary because we loop based on the block's high and low code
2074 addresses, which do not include the data ranges, and because
2075 we call find_pc_sect_psymtab which has a similar restriction based
2076 on the partial_symtab's texthigh and textlow. */
2077 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2078 if (msymbol
2079 && (MSYMBOL_TYPE (msymbol) == mst_data
2080 || MSYMBOL_TYPE (msymbol) == mst_bss
2081 || MSYMBOL_TYPE (msymbol) == mst_abs
2082 || MSYMBOL_TYPE (msymbol) == mst_file_data
2083 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2084 return NULL;
2085
2086 /* Search all symtabs for the one whose file contains our address, and which
2087 is the smallest of all the ones containing the address. This is designed
2088 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2089 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2090 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2091
2092 This happens for native ecoff format, where code from included files
2093 gets its own symtab. The symtab for the included file should have
2094 been read in already via the dependency mechanism.
2095 It might be swifter to create several symtabs with the same name
2096 like xcoff does (I'm not sure).
2097
2098 It also happens for objfiles that have their functions reordered.
2099 For these, the symtab we are looking for is not necessarily read in. */
2100
2101 ALL_PRIMARY_SYMTABS (objfile, s)
2102 {
2103 bv = BLOCKVECTOR (s);
2104 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2105
2106 if (BLOCK_START (b) <= pc
2107 && BLOCK_END (b) > pc
2108 && (distance == 0
2109 || BLOCK_END (b) - BLOCK_START (b) < distance))
2110 {
2111 /* For an objfile that has its functions reordered,
2112 find_pc_psymtab will find the proper partial symbol table
2113 and we simply return its corresponding symtab. */
2114 /* In order to better support objfiles that contain both
2115 stabs and coff debugging info, we continue on if a psymtab
2116 can't be found. */
2117 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2118 {
2119 struct symtab *result;
2120
2121 result
2122 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2123 msymbol,
2124 pc, section,
2125 0);
2126 if (result)
2127 return result;
2128 }
2129 if (section != 0)
2130 {
2131 struct block_iterator iter;
2132 struct symbol *sym = NULL;
2133
2134 ALL_BLOCK_SYMBOLS (b, iter, sym)
2135 {
2136 fixup_symbol_section (sym, objfile);
2137 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2138 break;
2139 }
2140 if (sym == NULL)
2141 continue; /* No symbol in this symtab matches
2142 section. */
2143 }
2144 distance = BLOCK_END (b) - BLOCK_START (b);
2145 best_s = s;
2146 }
2147 }
2148
2149 if (best_s != NULL)
2150 return (best_s);
2151
2152 ALL_OBJFILES (objfile)
2153 {
2154 struct symtab *result;
2155
2156 if (!objfile->sf)
2157 continue;
2158 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2159 msymbol,
2160 pc, section,
2161 1);
2162 if (result)
2163 return result;
2164 }
2165
2166 return NULL;
2167}
2168
2169/* Find the symtab associated with PC. Look through the psymtabs and read
2170 in another symtab if necessary. Backward compatibility, no section. */
2171
2172struct symtab *
2173find_pc_symtab (CORE_ADDR pc)
2174{
2175 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2176}
2177\f
2178
2179/* Find the source file and line number for a given PC value and SECTION.
2180 Return a structure containing a symtab pointer, a line number,
2181 and a pc range for the entire source line.
2182 The value's .pc field is NOT the specified pc.
2183 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2184 use the line that ends there. Otherwise, in that case, the line
2185 that begins there is used. */
2186
2187/* The big complication here is that a line may start in one file, and end just
2188 before the start of another file. This usually occurs when you #include
2189 code in the middle of a subroutine. To properly find the end of a line's PC
2190 range, we must search all symtabs associated with this compilation unit, and
2191 find the one whose first PC is closer than that of the next line in this
2192 symtab. */
2193
2194/* If it's worth the effort, we could be using a binary search. */
2195
2196struct symtab_and_line
2197find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2198{
2199 struct symtab *s;
2200 struct linetable *l;
2201 int len;
2202 int i;
2203 struct linetable_entry *item;
2204 struct symtab_and_line val;
2205 struct blockvector *bv;
2206 struct minimal_symbol *msymbol;
2207 struct minimal_symbol *mfunsym;
2208 struct objfile *objfile;
2209
2210 /* Info on best line seen so far, and where it starts, and its file. */
2211
2212 struct linetable_entry *best = NULL;
2213 CORE_ADDR best_end = 0;
2214 struct symtab *best_symtab = 0;
2215
2216 /* Store here the first line number
2217 of a file which contains the line at the smallest pc after PC.
2218 If we don't find a line whose range contains PC,
2219 we will use a line one less than this,
2220 with a range from the start of that file to the first line's pc. */
2221 struct linetable_entry *alt = NULL;
2222 struct symtab *alt_symtab = 0;
2223
2224 /* Info on best line seen in this file. */
2225
2226 struct linetable_entry *prev;
2227
2228 /* If this pc is not from the current frame,
2229 it is the address of the end of a call instruction.
2230 Quite likely that is the start of the following statement.
2231 But what we want is the statement containing the instruction.
2232 Fudge the pc to make sure we get that. */
2233
2234 init_sal (&val); /* initialize to zeroes */
2235
2236 val.pspace = current_program_space;
2237
2238 /* It's tempting to assume that, if we can't find debugging info for
2239 any function enclosing PC, that we shouldn't search for line
2240 number info, either. However, GAS can emit line number info for
2241 assembly files --- very helpful when debugging hand-written
2242 assembly code. In such a case, we'd have no debug info for the
2243 function, but we would have line info. */
2244
2245 if (notcurrent)
2246 pc -= 1;
2247
2248 /* elz: added this because this function returned the wrong
2249 information if the pc belongs to a stub (import/export)
2250 to call a shlib function. This stub would be anywhere between
2251 two functions in the target, and the line info was erroneously
2252 taken to be the one of the line before the pc. */
2253
2254 /* RT: Further explanation:
2255
2256 * We have stubs (trampolines) inserted between procedures.
2257 *
2258 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2259 * exists in the main image.
2260 *
2261 * In the minimal symbol table, we have a bunch of symbols
2262 * sorted by start address. The stubs are marked as "trampoline",
2263 * the others appear as text. E.g.:
2264 *
2265 * Minimal symbol table for main image
2266 * main: code for main (text symbol)
2267 * shr1: stub (trampoline symbol)
2268 * foo: code for foo (text symbol)
2269 * ...
2270 * Minimal symbol table for "shr1" image:
2271 * ...
2272 * shr1: code for shr1 (text symbol)
2273 * ...
2274 *
2275 * So the code below is trying to detect if we are in the stub
2276 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2277 * and if found, do the symbolization from the real-code address
2278 * rather than the stub address.
2279 *
2280 * Assumptions being made about the minimal symbol table:
2281 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2282 * if we're really in the trampoline.s If we're beyond it (say
2283 * we're in "foo" in the above example), it'll have a closer
2284 * symbol (the "foo" text symbol for example) and will not
2285 * return the trampoline.
2286 * 2. lookup_minimal_symbol_text() will find a real text symbol
2287 * corresponding to the trampoline, and whose address will
2288 * be different than the trampoline address. I put in a sanity
2289 * check for the address being the same, to avoid an
2290 * infinite recursion.
2291 */
2292 msymbol = lookup_minimal_symbol_by_pc (pc);
2293 if (msymbol != NULL)
2294 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2295 {
2296 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2297 NULL);
2298 if (mfunsym == NULL)
2299 /* I eliminated this warning since it is coming out
2300 * in the following situation:
2301 * gdb shmain // test program with shared libraries
2302 * (gdb) break shr1 // function in shared lib
2303 * Warning: In stub for ...
2304 * In the above situation, the shared lib is not loaded yet,
2305 * so of course we can't find the real func/line info,
2306 * but the "break" still works, and the warning is annoying.
2307 * So I commented out the warning. RT */
2308 /* warning ("In stub for %s; unable to find real function/line info",
2309 SYMBOL_LINKAGE_NAME (msymbol)); */
2310 ;
2311 /* fall through */
2312 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2313 == SYMBOL_VALUE_ADDRESS (msymbol))
2314 /* Avoid infinite recursion */
2315 /* See above comment about why warning is commented out. */
2316 /* warning ("In stub for %s; unable to find real function/line info",
2317 SYMBOL_LINKAGE_NAME (msymbol)); */
2318 ;
2319 /* fall through */
2320 else
2321 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2322 }
2323
2324
2325 s = find_pc_sect_symtab (pc, section);
2326 if (!s)
2327 {
2328 /* If no symbol information, return previous pc. */
2329 if (notcurrent)
2330 pc++;
2331 val.pc = pc;
2332 return val;
2333 }
2334
2335 bv = BLOCKVECTOR (s);
2336 objfile = s->objfile;
2337
2338 /* Look at all the symtabs that share this blockvector.
2339 They all have the same apriori range, that we found was right;
2340 but they have different line tables. */
2341
2342 ALL_OBJFILE_SYMTABS (objfile, s)
2343 {
2344 if (BLOCKVECTOR (s) != bv)
2345 continue;
2346
2347 /* Find the best line in this symtab. */
2348 l = LINETABLE (s);
2349 if (!l)
2350 continue;
2351 len = l->nitems;
2352 if (len <= 0)
2353 {
2354 /* I think len can be zero if the symtab lacks line numbers
2355 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2356 I'm not sure which, and maybe it depends on the symbol
2357 reader). */
2358 continue;
2359 }
2360
2361 prev = NULL;
2362 item = l->item; /* Get first line info. */
2363
2364 /* Is this file's first line closer than the first lines of other files?
2365 If so, record this file, and its first line, as best alternate. */
2366 if (item->pc > pc && (!alt || item->pc < alt->pc))
2367 {
2368 alt = item;
2369 alt_symtab = s;
2370 }
2371
2372 for (i = 0; i < len; i++, item++)
2373 {
2374 /* Leave prev pointing to the linetable entry for the last line
2375 that started at or before PC. */
2376 if (item->pc > pc)
2377 break;
2378
2379 prev = item;
2380 }
2381
2382 /* At this point, prev points at the line whose start addr is <= pc, and
2383 item points at the next line. If we ran off the end of the linetable
2384 (pc >= start of the last line), then prev == item. If pc < start of
2385 the first line, prev will not be set. */
2386
2387 /* Is this file's best line closer than the best in the other files?
2388 If so, record this file, and its best line, as best so far. Don't
2389 save prev if it represents the end of a function (i.e. line number
2390 0) instead of a real line. */
2391
2392 if (prev && prev->line && (!best || prev->pc > best->pc))
2393 {
2394 best = prev;
2395 best_symtab = s;
2396
2397 /* Discard BEST_END if it's before the PC of the current BEST. */
2398 if (best_end <= best->pc)
2399 best_end = 0;
2400 }
2401
2402 /* If another line (denoted by ITEM) is in the linetable and its
2403 PC is after BEST's PC, but before the current BEST_END, then
2404 use ITEM's PC as the new best_end. */
2405 if (best && i < len && item->pc > best->pc
2406 && (best_end == 0 || best_end > item->pc))
2407 best_end = item->pc;
2408 }
2409
2410 if (!best_symtab)
2411 {
2412 /* If we didn't find any line number info, just return zeros.
2413 We used to return alt->line - 1 here, but that could be
2414 anywhere; if we don't have line number info for this PC,
2415 don't make some up. */
2416 val.pc = pc;
2417 }
2418 else if (best->line == 0)
2419 {
2420 /* If our best fit is in a range of PC's for which no line
2421 number info is available (line number is zero) then we didn't
2422 find any valid line information. */
2423 val.pc = pc;
2424 }
2425 else
2426 {
2427 val.symtab = best_symtab;
2428 val.line = best->line;
2429 val.pc = best->pc;
2430 if (best_end && (!alt || best_end < alt->pc))
2431 val.end = best_end;
2432 else if (alt)
2433 val.end = alt->pc;
2434 else
2435 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2436 }
2437 val.section = section;
2438 return val;
2439}
2440
2441/* Backward compatibility (no section). */
2442
2443struct symtab_and_line
2444find_pc_line (CORE_ADDR pc, int notcurrent)
2445{
2446 struct obj_section *section;
2447
2448 section = find_pc_overlay (pc);
2449 if (pc_in_unmapped_range (pc, section))
2450 pc = overlay_mapped_address (pc, section);
2451 return find_pc_sect_line (pc, section, notcurrent);
2452}
2453\f
2454/* Find line number LINE in any symtab whose name is the same as
2455 SYMTAB.
2456
2457 If found, return the symtab that contains the linetable in which it was
2458 found, set *INDEX to the index in the linetable of the best entry
2459 found, and set *EXACT_MATCH nonzero if the value returned is an
2460 exact match.
2461
2462 If not found, return NULL. */
2463
2464struct symtab *
2465find_line_symtab (struct symtab *symtab, int line,
2466 int *index, int *exact_match)
2467{
2468 int exact = 0; /* Initialized here to avoid a compiler warning. */
2469
2470 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2471 so far seen. */
2472
2473 int best_index;
2474 struct linetable *best_linetable;
2475 struct symtab *best_symtab;
2476
2477 /* First try looking it up in the given symtab. */
2478 best_linetable = LINETABLE (symtab);
2479 best_symtab = symtab;
2480 best_index = find_line_common (best_linetable, line, &exact, 0);
2481 if (best_index < 0 || !exact)
2482 {
2483 /* Didn't find an exact match. So we better keep looking for
2484 another symtab with the same name. In the case of xcoff,
2485 multiple csects for one source file (produced by IBM's FORTRAN
2486 compiler) produce multiple symtabs (this is unavoidable
2487 assuming csects can be at arbitrary places in memory and that
2488 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2489
2490 /* BEST is the smallest linenumber > LINE so far seen,
2491 or 0 if none has been seen so far.
2492 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2493 int best;
2494
2495 struct objfile *objfile;
2496 struct symtab *s;
2497
2498 if (best_index >= 0)
2499 best = best_linetable->item[best_index].line;
2500 else
2501 best = 0;
2502
2503 ALL_OBJFILES (objfile)
2504 {
2505 if (objfile->sf)
2506 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2507 symtab->filename);
2508 }
2509
2510 /* Get symbol full file name if possible. */
2511 symtab_to_fullname (symtab);
2512
2513 ALL_SYMTABS (objfile, s)
2514 {
2515 struct linetable *l;
2516 int ind;
2517
2518 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2519 continue;
2520 if (symtab->fullname != NULL
2521 && symtab_to_fullname (s) != NULL
2522 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2523 continue;
2524 l = LINETABLE (s);
2525 ind = find_line_common (l, line, &exact, 0);
2526 if (ind >= 0)
2527 {
2528 if (exact)
2529 {
2530 best_index = ind;
2531 best_linetable = l;
2532 best_symtab = s;
2533 goto done;
2534 }
2535 if (best == 0 || l->item[ind].line < best)
2536 {
2537 best = l->item[ind].line;
2538 best_index = ind;
2539 best_linetable = l;
2540 best_symtab = s;
2541 }
2542 }
2543 }
2544 }
2545done:
2546 if (best_index < 0)
2547 return NULL;
2548
2549 if (index)
2550 *index = best_index;
2551 if (exact_match)
2552 *exact_match = exact;
2553
2554 return best_symtab;
2555}
2556
2557/* Given SYMTAB, returns all the PCs function in the symtab that
2558 exactly match LINE. Returns NULL if there are no exact matches,
2559 but updates BEST_ITEM in this case. */
2560
2561VEC (CORE_ADDR) *
2562find_pcs_for_symtab_line (struct symtab *symtab, int line,
2563 struct linetable_entry **best_item)
2564{
2565 int start = 0, ix;
2566 struct symbol *previous_function = NULL;
2567 VEC (CORE_ADDR) *result = NULL;
2568
2569 /* First, collect all the PCs that are at this line. */
2570 while (1)
2571 {
2572 int was_exact;
2573 int idx;
2574
2575 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2576 if (idx < 0)
2577 break;
2578
2579 if (!was_exact)
2580 {
2581 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2582
2583 if (*best_item == NULL || item->line < (*best_item)->line)
2584 *best_item = item;
2585
2586 break;
2587 }
2588
2589 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2590 start = idx + 1;
2591 }
2592
2593 return result;
2594}
2595
2596\f
2597/* Set the PC value for a given source file and line number and return true.
2598 Returns zero for invalid line number (and sets the PC to 0).
2599 The source file is specified with a struct symtab. */
2600
2601int
2602find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2603{
2604 struct linetable *l;
2605 int ind;
2606
2607 *pc = 0;
2608 if (symtab == 0)
2609 return 0;
2610
2611 symtab = find_line_symtab (symtab, line, &ind, NULL);
2612 if (symtab != NULL)
2613 {
2614 l = LINETABLE (symtab);
2615 *pc = l->item[ind].pc;
2616 return 1;
2617 }
2618 else
2619 return 0;
2620}
2621
2622/* Find the range of pc values in a line.
2623 Store the starting pc of the line into *STARTPTR
2624 and the ending pc (start of next line) into *ENDPTR.
2625 Returns 1 to indicate success.
2626 Returns 0 if could not find the specified line. */
2627
2628int
2629find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2630 CORE_ADDR *endptr)
2631{
2632 CORE_ADDR startaddr;
2633 struct symtab_and_line found_sal;
2634
2635 startaddr = sal.pc;
2636 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2637 return 0;
2638
2639 /* This whole function is based on address. For example, if line 10 has
2640 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2641 "info line *0x123" should say the line goes from 0x100 to 0x200
2642 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2643 This also insures that we never give a range like "starts at 0x134
2644 and ends at 0x12c". */
2645
2646 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2647 if (found_sal.line != sal.line)
2648 {
2649 /* The specified line (sal) has zero bytes. */
2650 *startptr = found_sal.pc;
2651 *endptr = found_sal.pc;
2652 }
2653 else
2654 {
2655 *startptr = found_sal.pc;
2656 *endptr = found_sal.end;
2657 }
2658 return 1;
2659}
2660
2661/* Given a line table and a line number, return the index into the line
2662 table for the pc of the nearest line whose number is >= the specified one.
2663 Return -1 if none is found. The value is >= 0 if it is an index.
2664 START is the index at which to start searching the line table.
2665
2666 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2667
2668static int
2669find_line_common (struct linetable *l, int lineno,
2670 int *exact_match, int start)
2671{
2672 int i;
2673 int len;
2674
2675 /* BEST is the smallest linenumber > LINENO so far seen,
2676 or 0 if none has been seen so far.
2677 BEST_INDEX identifies the item for it. */
2678
2679 int best_index = -1;
2680 int best = 0;
2681
2682 *exact_match = 0;
2683
2684 if (lineno <= 0)
2685 return -1;
2686 if (l == 0)
2687 return -1;
2688
2689 len = l->nitems;
2690 for (i = start; i < len; i++)
2691 {
2692 struct linetable_entry *item = &(l->item[i]);
2693
2694 if (item->line == lineno)
2695 {
2696 /* Return the first (lowest address) entry which matches. */
2697 *exact_match = 1;
2698 return i;
2699 }
2700
2701 if (item->line > lineno && (best == 0 || item->line < best))
2702 {
2703 best = item->line;
2704 best_index = i;
2705 }
2706 }
2707
2708 /* If we got here, we didn't get an exact match. */
2709 return best_index;
2710}
2711
2712int
2713find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2714{
2715 struct symtab_and_line sal;
2716
2717 sal = find_pc_line (pc, 0);
2718 *startptr = sal.pc;
2719 *endptr = sal.end;
2720 return sal.symtab != 0;
2721}
2722
2723/* Given a function start address FUNC_ADDR and SYMTAB, find the first
2724 address for that function that has an entry in SYMTAB's line info
2725 table. If such an entry cannot be found, return FUNC_ADDR
2726 unaltered. */
2727
2728static CORE_ADDR
2729skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2730{
2731 CORE_ADDR func_start, func_end;
2732 struct linetable *l;
2733 int i;
2734
2735 /* Give up if this symbol has no lineinfo table. */
2736 l = LINETABLE (symtab);
2737 if (l == NULL)
2738 return func_addr;
2739
2740 /* Get the range for the function's PC values, or give up if we
2741 cannot, for some reason. */
2742 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2743 return func_addr;
2744
2745 /* Linetable entries are ordered by PC values, see the commentary in
2746 symtab.h where `struct linetable' is defined. Thus, the first
2747 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2748 address we are looking for. */
2749 for (i = 0; i < l->nitems; i++)
2750 {
2751 struct linetable_entry *item = &(l->item[i]);
2752
2753 /* Don't use line numbers of zero, they mark special entries in
2754 the table. See the commentary on symtab.h before the
2755 definition of struct linetable. */
2756 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2757 return item->pc;
2758 }
2759
2760 return func_addr;
2761}
2762
2763/* Given a function symbol SYM, find the symtab and line for the start
2764 of the function.
2765 If the argument FUNFIRSTLINE is nonzero, we want the first line
2766 of real code inside the function. */
2767
2768struct symtab_and_line
2769find_function_start_sal (struct symbol *sym, int funfirstline)
2770{
2771 struct symtab_and_line sal;
2772
2773 fixup_symbol_section (sym, NULL);
2774 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2775 SYMBOL_OBJ_SECTION (sym), 0);
2776
2777 /* We always should have a line for the function start address.
2778 If we don't, something is odd. Create a plain SAL refering
2779 just the PC and hope that skip_prologue_sal (if requested)
2780 can find a line number for after the prologue. */
2781 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2782 {
2783 init_sal (&sal);
2784 sal.pspace = current_program_space;
2785 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2786 sal.section = SYMBOL_OBJ_SECTION (sym);
2787 }
2788
2789 if (funfirstline)
2790 skip_prologue_sal (&sal);
2791
2792 return sal;
2793}
2794
2795/* Adjust SAL to the first instruction past the function prologue.
2796 If the PC was explicitly specified, the SAL is not changed.
2797 If the line number was explicitly specified, at most the SAL's PC
2798 is updated. If SAL is already past the prologue, then do nothing. */
2799
2800void
2801skip_prologue_sal (struct symtab_and_line *sal)
2802{
2803 struct symbol *sym;
2804 struct symtab_and_line start_sal;
2805 struct cleanup *old_chain;
2806 CORE_ADDR pc, saved_pc;
2807 struct obj_section *section;
2808 const char *name;
2809 struct objfile *objfile;
2810 struct gdbarch *gdbarch;
2811 struct block *b, *function_block;
2812 int force_skip, skip;
2813
2814 /* Do not change the SAL is PC was specified explicitly. */
2815 if (sal->explicit_pc)
2816 return;
2817
2818 old_chain = save_current_space_and_thread ();
2819 switch_to_program_space_and_thread (sal->pspace);
2820
2821 sym = find_pc_sect_function (sal->pc, sal->section);
2822 if (sym != NULL)
2823 {
2824 fixup_symbol_section (sym, NULL);
2825
2826 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2827 section = SYMBOL_OBJ_SECTION (sym);
2828 name = SYMBOL_LINKAGE_NAME (sym);
2829 objfile = SYMBOL_SYMTAB (sym)->objfile;
2830 }
2831 else
2832 {
2833 struct minimal_symbol *msymbol
2834 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2835
2836 if (msymbol == NULL)
2837 {
2838 do_cleanups (old_chain);
2839 return;
2840 }
2841
2842 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2843 section = SYMBOL_OBJ_SECTION (msymbol);
2844 name = SYMBOL_LINKAGE_NAME (msymbol);
2845 objfile = msymbol_objfile (msymbol);
2846 }
2847
2848 gdbarch = get_objfile_arch (objfile);
2849
2850 /* Process the prologue in two passes. In the first pass try to skip the
2851 prologue (SKIP is true) and verify there is a real need for it (indicated
2852 by FORCE_SKIP). If no such reason was found run a second pass where the
2853 prologue is not skipped (SKIP is false). */
2854
2855 skip = 1;
2856 force_skip = 1;
2857
2858 /* Be conservative - allow direct PC (without skipping prologue) only if we
2859 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2860 have to be set by the caller so we use SYM instead. */
2861 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2862 force_skip = 0;
2863
2864 saved_pc = pc;
2865 do
2866 {
2867 pc = saved_pc;
2868
2869 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2870 so that gdbarch_skip_prologue has something unique to work on. */
2871 if (section_is_overlay (section) && !section_is_mapped (section))
2872 pc = overlay_unmapped_address (pc, section);
2873
2874 /* Skip "first line" of function (which is actually its prologue). */
2875 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2876 if (skip)
2877 pc = gdbarch_skip_prologue (gdbarch, pc);
2878
2879 /* For overlays, map pc back into its mapped VMA range. */
2880 pc = overlay_mapped_address (pc, section);
2881
2882 /* Calculate line number. */
2883 start_sal = find_pc_sect_line (pc, section, 0);
2884
2885 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2886 line is still part of the same function. */
2887 if (skip && start_sal.pc != pc
2888 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2889 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2890 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2891 == lookup_minimal_symbol_by_pc_section (pc, section))))
2892 {
2893 /* First pc of next line */
2894 pc = start_sal.end;
2895 /* Recalculate the line number (might not be N+1). */
2896 start_sal = find_pc_sect_line (pc, section, 0);
2897 }
2898
2899 /* On targets with executable formats that don't have a concept of
2900 constructors (ELF with .init has, PE doesn't), gcc emits a call
2901 to `__main' in `main' between the prologue and before user
2902 code. */
2903 if (gdbarch_skip_main_prologue_p (gdbarch)
2904 && name && strcmp_iw (name, "main") == 0)
2905 {
2906 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2907 /* Recalculate the line number (might not be N+1). */
2908 start_sal = find_pc_sect_line (pc, section, 0);
2909 force_skip = 1;
2910 }
2911 }
2912 while (!force_skip && skip--);
2913
2914 /* If we still don't have a valid source line, try to find the first
2915 PC in the lineinfo table that belongs to the same function. This
2916 happens with COFF debug info, which does not seem to have an
2917 entry in lineinfo table for the code after the prologue which has
2918 no direct relation to source. For example, this was found to be
2919 the case with the DJGPP target using "gcc -gcoff" when the
2920 compiler inserted code after the prologue to make sure the stack
2921 is aligned. */
2922 if (!force_skip && sym && start_sal.symtab == NULL)
2923 {
2924 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2925 /* Recalculate the line number. */
2926 start_sal = find_pc_sect_line (pc, section, 0);
2927 }
2928
2929 do_cleanups (old_chain);
2930
2931 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2932 forward SAL to the end of the prologue. */
2933 if (sal->pc >= pc)
2934 return;
2935
2936 sal->pc = pc;
2937 sal->section = section;
2938
2939 /* Unless the explicit_line flag was set, update the SAL line
2940 and symtab to correspond to the modified PC location. */
2941 if (sal->explicit_line)
2942 return;
2943
2944 sal->symtab = start_sal.symtab;
2945 sal->line = start_sal.line;
2946 sal->end = start_sal.end;
2947
2948 /* Check if we are now inside an inlined function. If we can,
2949 use the call site of the function instead. */
2950 b = block_for_pc_sect (sal->pc, sal->section);
2951 function_block = NULL;
2952 while (b != NULL)
2953 {
2954 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2955 function_block = b;
2956 else if (BLOCK_FUNCTION (b) != NULL)
2957 break;
2958 b = BLOCK_SUPERBLOCK (b);
2959 }
2960 if (function_block != NULL
2961 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2962 {
2963 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2964 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2965 }
2966}
2967
2968/* If P is of the form "operator[ \t]+..." where `...' is
2969 some legitimate operator text, return a pointer to the
2970 beginning of the substring of the operator text.
2971 Otherwise, return "". */
2972
2973static char *
2974operator_chars (char *p, char **end)
2975{
2976 *end = "";
2977 if (strncmp (p, "operator", 8))
2978 return *end;
2979 p += 8;
2980
2981 /* Don't get faked out by `operator' being part of a longer
2982 identifier. */
2983 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2984 return *end;
2985
2986 /* Allow some whitespace between `operator' and the operator symbol. */
2987 while (*p == ' ' || *p == '\t')
2988 p++;
2989
2990 /* Recognize 'operator TYPENAME'. */
2991
2992 if (isalpha (*p) || *p == '_' || *p == '$')
2993 {
2994 char *q = p + 1;
2995
2996 while (isalnum (*q) || *q == '_' || *q == '$')
2997 q++;
2998 *end = q;
2999 return p;
3000 }
3001
3002 while (*p)
3003 switch (*p)
3004 {
3005 case '\\': /* regexp quoting */
3006 if (p[1] == '*')
3007 {
3008 if (p[2] == '=') /* 'operator\*=' */
3009 *end = p + 3;
3010 else /* 'operator\*' */
3011 *end = p + 2;
3012 return p;
3013 }
3014 else if (p[1] == '[')
3015 {
3016 if (p[2] == ']')
3017 error (_("mismatched quoting on brackets, "
3018 "try 'operator\\[\\]'"));
3019 else if (p[2] == '\\' && p[3] == ']')
3020 {
3021 *end = p + 4; /* 'operator\[\]' */
3022 return p;
3023 }
3024 else
3025 error (_("nothing is allowed between '[' and ']'"));
3026 }
3027 else
3028 {
3029 /* Gratuitous qoute: skip it and move on. */
3030 p++;
3031 continue;
3032 }
3033 break;
3034 case '!':
3035 case '=':
3036 case '*':
3037 case '/':
3038 case '%':
3039 case '^':
3040 if (p[1] == '=')
3041 *end = p + 2;
3042 else
3043 *end = p + 1;
3044 return p;
3045 case '<':
3046 case '>':
3047 case '+':
3048 case '-':
3049 case '&':
3050 case '|':
3051 if (p[0] == '-' && p[1] == '>')
3052 {
3053 /* Struct pointer member operator 'operator->'. */
3054 if (p[2] == '*')
3055 {
3056 *end = p + 3; /* 'operator->*' */
3057 return p;
3058 }
3059 else if (p[2] == '\\')
3060 {
3061 *end = p + 4; /* Hopefully 'operator->\*' */
3062 return p;
3063 }
3064 else
3065 {
3066 *end = p + 2; /* 'operator->' */
3067 return p;
3068 }
3069 }
3070 if (p[1] == '=' || p[1] == p[0])
3071 *end = p + 2;
3072 else
3073 *end = p + 1;
3074 return p;
3075 case '~':
3076 case ',':
3077 *end = p + 1;
3078 return p;
3079 case '(':
3080 if (p[1] != ')')
3081 error (_("`operator ()' must be specified "
3082 "without whitespace in `()'"));
3083 *end = p + 2;
3084 return p;
3085 case '?':
3086 if (p[1] != ':')
3087 error (_("`operator ?:' must be specified "
3088 "without whitespace in `?:'"));
3089 *end = p + 2;
3090 return p;
3091 case '[':
3092 if (p[1] != ']')
3093 error (_("`operator []' must be specified "
3094 "without whitespace in `[]'"));
3095 *end = p + 2;
3096 return p;
3097 default:
3098 error (_("`operator %s' not supported"), p);
3099 break;
3100 }
3101
3102 *end = "";
3103 return *end;
3104}
3105\f
3106
3107/* If FILE is not already in the table of files, return zero;
3108 otherwise return non-zero. Optionally add FILE to the table if ADD
3109 is non-zero. If *FIRST is non-zero, forget the old table
3110 contents. */
3111
3112static int
3113filename_seen (const char *file, int add, int *first)
3114{
3115 /* Table of files seen so far. */
3116 static const char **tab = NULL;
3117 /* Allocated size of tab in elements.
3118 Start with one 256-byte block (when using GNU malloc.c).
3119 24 is the malloc overhead when range checking is in effect. */
3120 static int tab_alloc_size = (256 - 24) / sizeof (char *);
3121 /* Current size of tab in elements. */
3122 static int tab_cur_size;
3123 const char **p;
3124
3125 if (*first)
3126 {
3127 if (tab == NULL)
3128 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
3129 tab_cur_size = 0;
3130 }
3131
3132 /* Is FILE in tab? */
3133 for (p = tab; p < tab + tab_cur_size; p++)
3134 if (filename_cmp (*p, file) == 0)
3135 return 1;
3136
3137 /* No; maybe add it to tab. */
3138 if (add)
3139 {
3140 if (tab_cur_size == tab_alloc_size)
3141 {
3142 tab_alloc_size *= 2;
3143 tab = (const char **) xrealloc ((char *) tab,
3144 tab_alloc_size * sizeof (*tab));
3145 }
3146 tab[tab_cur_size++] = file;
3147 }
3148
3149 return 0;
3150}
3151
3152/* Slave routine for sources_info. Force line breaks at ,'s.
3153 NAME is the name to print and *FIRST is nonzero if this is the first
3154 name printed. Set *FIRST to zero. */
3155
3156static void
3157output_source_filename (const char *name, int *first)
3158{
3159 /* Since a single source file can result in several partial symbol
3160 tables, we need to avoid printing it more than once. Note: if
3161 some of the psymtabs are read in and some are not, it gets
3162 printed both under "Source files for which symbols have been
3163 read" and "Source files for which symbols will be read in on
3164 demand". I consider this a reasonable way to deal with the
3165 situation. I'm not sure whether this can also happen for
3166 symtabs; it doesn't hurt to check. */
3167
3168 /* Was NAME already seen? */
3169 if (filename_seen (name, 1, first))
3170 {
3171 /* Yes; don't print it again. */
3172 return;
3173 }
3174 /* No; print it and reset *FIRST. */
3175 if (*first)
3176 {
3177 *first = 0;
3178 }
3179 else
3180 {
3181 printf_filtered (", ");
3182 }
3183
3184 wrap_here ("");
3185 fputs_filtered (name, gdb_stdout);
3186}
3187
3188/* A callback for map_partial_symbol_filenames. */
3189
3190static void
3191output_partial_symbol_filename (const char *filename, const char *fullname,
3192 void *data)
3193{
3194 output_source_filename (fullname ? fullname : filename, data);
3195}
3196
3197static void
3198sources_info (char *ignore, int from_tty)
3199{
3200 struct symtab *s;
3201 struct objfile *objfile;
3202 int first;
3203
3204 if (!have_full_symbols () && !have_partial_symbols ())
3205 {
3206 error (_("No symbol table is loaded. Use the \"file\" command."));
3207 }
3208
3209 printf_filtered ("Source files for which symbols have been read in:\n\n");
3210
3211 first = 1;
3212 ALL_SYMTABS (objfile, s)
3213 {
3214 const char *fullname = symtab_to_fullname (s);
3215
3216 output_source_filename (fullname ? fullname : s->filename, &first);
3217 }
3218 printf_filtered ("\n\n");
3219
3220 printf_filtered ("Source files for which symbols "
3221 "will be read in on demand:\n\n");
3222
3223 first = 1;
3224 map_partial_symbol_filenames (output_partial_symbol_filename, &first,
3225 1 /*need_fullname*/);
3226 printf_filtered ("\n");
3227}
3228
3229static int
3230file_matches (const char *file, char *files[], int nfiles)
3231{
3232 int i;
3233
3234 if (file != NULL && nfiles != 0)
3235 {
3236 for (i = 0; i < nfiles; i++)
3237 {
3238 if (filename_cmp (files[i], lbasename (file)) == 0)
3239 return 1;
3240 }
3241 }
3242 else if (nfiles == 0)
3243 return 1;
3244 return 0;
3245}
3246
3247/* Free any memory associated with a search. */
3248
3249void
3250free_search_symbols (struct symbol_search *symbols)
3251{
3252 struct symbol_search *p;
3253 struct symbol_search *next;
3254
3255 for (p = symbols; p != NULL; p = next)
3256 {
3257 next = p->next;
3258 xfree (p);
3259 }
3260}
3261
3262static void
3263do_free_search_symbols_cleanup (void *symbols)
3264{
3265 free_search_symbols (symbols);
3266}
3267
3268struct cleanup *
3269make_cleanup_free_search_symbols (struct symbol_search *symbols)
3270{
3271 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3272}
3273
3274/* Helper function for sort_search_symbols and qsort. Can only
3275 sort symbols, not minimal symbols. */
3276
3277static int
3278compare_search_syms (const void *sa, const void *sb)
3279{
3280 struct symbol_search **sym_a = (struct symbol_search **) sa;
3281 struct symbol_search **sym_b = (struct symbol_search **) sb;
3282
3283 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3284 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3285}
3286
3287/* Sort the ``nfound'' symbols in the list after prevtail. Leave
3288 prevtail where it is, but update its next pointer to point to
3289 the first of the sorted symbols. */
3290
3291static struct symbol_search *
3292sort_search_symbols (struct symbol_search *prevtail, int nfound)
3293{
3294 struct symbol_search **symbols, *symp, *old_next;
3295 int i;
3296
3297 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3298 * nfound);
3299 symp = prevtail->next;
3300 for (i = 0; i < nfound; i++)
3301 {
3302 symbols[i] = symp;
3303 symp = symp->next;
3304 }
3305 /* Generally NULL. */
3306 old_next = symp;
3307
3308 qsort (symbols, nfound, sizeof (struct symbol_search *),
3309 compare_search_syms);
3310
3311 symp = prevtail;
3312 for (i = 0; i < nfound; i++)
3313 {
3314 symp->next = symbols[i];
3315 symp = symp->next;
3316 }
3317 symp->next = old_next;
3318
3319 xfree (symbols);
3320 return symp;
3321}
3322
3323/* An object of this type is passed as the user_data to the
3324 expand_symtabs_matching method. */
3325struct search_symbols_data
3326{
3327 int nfiles;
3328 char **files;
3329
3330 /* It is true if PREG contains valid data, false otherwise. */
3331 unsigned preg_p : 1;
3332 regex_t preg;
3333};
3334
3335/* A callback for expand_symtabs_matching. */
3336
3337static int
3338search_symbols_file_matches (const char *filename, void *user_data)
3339{
3340 struct search_symbols_data *data = user_data;
3341
3342 return file_matches (filename, data->files, data->nfiles);
3343}
3344
3345/* A callback for expand_symtabs_matching. */
3346
3347static int
3348search_symbols_name_matches (const char *symname, void *user_data)
3349{
3350 struct search_symbols_data *data = user_data;
3351
3352 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3353}
3354
3355/* Search the symbol table for matches to the regular expression REGEXP,
3356 returning the results in *MATCHES.
3357
3358 Only symbols of KIND are searched:
3359 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3360 and constants (enums)
3361 FUNCTIONS_DOMAIN - search all functions
3362 TYPES_DOMAIN - search all type names
3363 ALL_DOMAIN - an internal error for this function
3364
3365 free_search_symbols should be called when *MATCHES is no longer needed.
3366
3367 The results are sorted locally; each symtab's global and static blocks are
3368 separately alphabetized. */
3369
3370void
3371search_symbols (char *regexp, enum search_domain kind,
3372 int nfiles, char *files[],
3373 struct symbol_search **matches)
3374{
3375 struct symtab *s;
3376 struct blockvector *bv;
3377 struct block *b;
3378 int i = 0;
3379 struct block_iterator iter;
3380 struct symbol *sym;
3381 struct objfile *objfile;
3382 struct minimal_symbol *msymbol;
3383 int found_misc = 0;
3384 static const enum minimal_symbol_type types[]
3385 = {mst_data, mst_text, mst_abs};
3386 static const enum minimal_symbol_type types2[]
3387 = {mst_bss, mst_file_text, mst_abs};
3388 static const enum minimal_symbol_type types3[]
3389 = {mst_file_data, mst_solib_trampoline, mst_abs};
3390 static const enum minimal_symbol_type types4[]
3391 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3392 enum minimal_symbol_type ourtype;
3393 enum minimal_symbol_type ourtype2;
3394 enum minimal_symbol_type ourtype3;
3395 enum minimal_symbol_type ourtype4;
3396 struct symbol_search *sr;
3397 struct symbol_search *psr;
3398 struct symbol_search *tail;
3399 struct search_symbols_data datum;
3400
3401 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3402 CLEANUP_CHAIN is freed only in the case of an error. */
3403 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3404 struct cleanup *retval_chain;
3405
3406 gdb_assert (kind <= TYPES_DOMAIN);
3407
3408 ourtype = types[kind];
3409 ourtype2 = types2[kind];
3410 ourtype3 = types3[kind];
3411 ourtype4 = types4[kind];
3412
3413 sr = *matches = NULL;
3414 tail = NULL;
3415 datum.preg_p = 0;
3416
3417 if (regexp != NULL)
3418 {
3419 /* Make sure spacing is right for C++ operators.
3420 This is just a courtesy to make the matching less sensitive
3421 to how many spaces the user leaves between 'operator'
3422 and <TYPENAME> or <OPERATOR>. */
3423 char *opend;
3424 char *opname = operator_chars (regexp, &opend);
3425 int errcode;
3426
3427 if (*opname)
3428 {
3429 int fix = -1; /* -1 means ok; otherwise number of
3430 spaces needed. */
3431
3432 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3433 {
3434 /* There should 1 space between 'operator' and 'TYPENAME'. */
3435 if (opname[-1] != ' ' || opname[-2] == ' ')
3436 fix = 1;
3437 }
3438 else
3439 {
3440 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3441 if (opname[-1] == ' ')
3442 fix = 0;
3443 }
3444 /* If wrong number of spaces, fix it. */
3445 if (fix >= 0)
3446 {
3447 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3448
3449 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3450 regexp = tmp;
3451 }
3452 }
3453
3454 errcode = regcomp (&datum.preg, regexp,
3455 REG_NOSUB | (case_sensitivity == case_sensitive_off
3456 ? REG_ICASE : 0));
3457 if (errcode != 0)
3458 {
3459 char *err = get_regcomp_error (errcode, &datum.preg);
3460
3461 make_cleanup (xfree, err);
3462 error (_("Invalid regexp (%s): %s"), err, regexp);
3463 }
3464 datum.preg_p = 1;
3465 make_regfree_cleanup (&datum.preg);
3466 }
3467
3468 /* Search through the partial symtabs *first* for all symbols
3469 matching the regexp. That way we don't have to reproduce all of
3470 the machinery below. */
3471
3472 datum.nfiles = nfiles;
3473 datum.files = files;
3474 ALL_OBJFILES (objfile)
3475 {
3476 if (objfile->sf)
3477 objfile->sf->qf->expand_symtabs_matching (objfile,
3478 (nfiles == 0
3479 ? NULL
3480 : search_symbols_file_matches),
3481 search_symbols_name_matches,
3482 kind,
3483 &datum);
3484 }
3485
3486 retval_chain = old_chain;
3487
3488 /* Here, we search through the minimal symbol tables for functions
3489 and variables that match, and force their symbols to be read.
3490 This is in particular necessary for demangled variable names,
3491 which are no longer put into the partial symbol tables.
3492 The symbol will then be found during the scan of symtabs below.
3493
3494 For functions, find_pc_symtab should succeed if we have debug info
3495 for the function, for variables we have to call
3496 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3497 has debug info.
3498 If the lookup fails, set found_misc so that we will rescan to print
3499 any matching symbols without debug info.
3500 We only search the objfile the msymbol came from, we no longer search
3501 all objfiles. In large programs (1000s of shared libs) searching all
3502 objfiles is not worth the pain. */
3503
3504 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3505 {
3506 ALL_MSYMBOLS (objfile, msymbol)
3507 {
3508 QUIT;
3509
3510 if (msymbol->created_by_gdb)
3511 continue;
3512
3513 if (MSYMBOL_TYPE (msymbol) == ourtype
3514 || MSYMBOL_TYPE (msymbol) == ourtype2
3515 || MSYMBOL_TYPE (msymbol) == ourtype3
3516 || MSYMBOL_TYPE (msymbol) == ourtype4)
3517 {
3518 if (!datum.preg_p
3519 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3520 NULL, 0) == 0)
3521 {
3522 /* Note: An important side-effect of these lookup functions
3523 is to expand the symbol table if msymbol is found, for the
3524 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3525 if (kind == FUNCTIONS_DOMAIN
3526 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3527 : (lookup_symbol_in_objfile_from_linkage_name
3528 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3529 == NULL))
3530 found_misc = 1;
3531 }
3532 }
3533 }
3534 }
3535
3536 ALL_PRIMARY_SYMTABS (objfile, s)
3537 {
3538 bv = BLOCKVECTOR (s);
3539 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3540 {
3541 struct symbol_search *prevtail = tail;
3542 int nfound = 0;
3543
3544 b = BLOCKVECTOR_BLOCK (bv, i);
3545 ALL_BLOCK_SYMBOLS (b, iter, sym)
3546 {
3547 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3548
3549 QUIT;
3550
3551 if (file_matches (real_symtab->filename, files, nfiles)
3552 && ((!datum.preg_p
3553 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3554 NULL, 0) == 0)
3555 && ((kind == VARIABLES_DOMAIN
3556 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3557 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3558 && SYMBOL_CLASS (sym) != LOC_BLOCK
3559 /* LOC_CONST can be used for more than just enums,
3560 e.g., c++ static const members.
3561 We only want to skip enums here. */
3562 && !(SYMBOL_CLASS (sym) == LOC_CONST
3563 && TYPE_CODE (SYMBOL_TYPE (sym))
3564 == TYPE_CODE_ENUM))
3565 || (kind == FUNCTIONS_DOMAIN
3566 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3567 || (kind == TYPES_DOMAIN
3568 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3569 {
3570 /* match */
3571 psr = (struct symbol_search *)
3572 xmalloc (sizeof (struct symbol_search));
3573 psr->block = i;
3574 psr->symtab = real_symtab;
3575 psr->symbol = sym;
3576 psr->msymbol = NULL;
3577 psr->next = NULL;
3578 if (tail == NULL)
3579 sr = psr;
3580 else
3581 tail->next = psr;
3582 tail = psr;
3583 nfound ++;
3584 }
3585 }
3586 if (nfound > 0)
3587 {
3588 if (prevtail == NULL)
3589 {
3590 struct symbol_search dummy;
3591
3592 dummy.next = sr;
3593 tail = sort_search_symbols (&dummy, nfound);
3594 sr = dummy.next;
3595
3596 make_cleanup_free_search_symbols (sr);
3597 }
3598 else
3599 tail = sort_search_symbols (prevtail, nfound);
3600 }
3601 }
3602 }
3603
3604 /* If there are no eyes, avoid all contact. I mean, if there are
3605 no debug symbols, then print directly from the msymbol_vector. */
3606
3607 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3608 {
3609 ALL_MSYMBOLS (objfile, msymbol)
3610 {
3611 QUIT;
3612
3613 if (msymbol->created_by_gdb)
3614 continue;
3615
3616 if (MSYMBOL_TYPE (msymbol) == ourtype
3617 || MSYMBOL_TYPE (msymbol) == ourtype2
3618 || MSYMBOL_TYPE (msymbol) == ourtype3
3619 || MSYMBOL_TYPE (msymbol) == ourtype4)
3620 {
3621 if (!datum.preg_p
3622 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3623 NULL, 0) == 0)
3624 {
3625 /* For functions we can do a quick check of whether the
3626 symbol might be found via find_pc_symtab. */
3627 if (kind != FUNCTIONS_DOMAIN
3628 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3629 {
3630 if (lookup_symbol_in_objfile_from_linkage_name
3631 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3632 == NULL)
3633 {
3634 /* match */
3635 psr = (struct symbol_search *)
3636 xmalloc (sizeof (struct symbol_search));
3637 psr->block = i;
3638 psr->msymbol = msymbol;
3639 psr->symtab = NULL;
3640 psr->symbol = NULL;
3641 psr->next = NULL;
3642 if (tail == NULL)
3643 {
3644 sr = psr;
3645 make_cleanup_free_search_symbols (sr);
3646 }
3647 else
3648 tail->next = psr;
3649 tail = psr;
3650 }
3651 }
3652 }
3653 }
3654 }
3655 }
3656
3657 discard_cleanups (retval_chain);
3658 do_cleanups (old_chain);
3659 *matches = sr;
3660}
3661
3662/* Helper function for symtab_symbol_info, this function uses
3663 the data returned from search_symbols() to print information
3664 regarding the match to gdb_stdout. */
3665
3666static void
3667print_symbol_info (enum search_domain kind,
3668 struct symtab *s, struct symbol *sym,
3669 int block, char *last)
3670{
3671 if (last == NULL || filename_cmp (last, s->filename) != 0)
3672 {
3673 fputs_filtered ("\nFile ", gdb_stdout);
3674 fputs_filtered (s->filename, gdb_stdout);
3675 fputs_filtered (":\n", gdb_stdout);
3676 }
3677
3678 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3679 printf_filtered ("static ");
3680
3681 /* Typedef that is not a C++ class. */
3682 if (kind == TYPES_DOMAIN
3683 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3684 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3685 /* variable, func, or typedef-that-is-c++-class. */
3686 else if (kind < TYPES_DOMAIN
3687 || (kind == TYPES_DOMAIN
3688 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3689 {
3690 type_print (SYMBOL_TYPE (sym),
3691 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3692 ? "" : SYMBOL_PRINT_NAME (sym)),
3693 gdb_stdout, 0);
3694
3695 printf_filtered (";\n");
3696 }
3697}
3698
3699/* This help function for symtab_symbol_info() prints information
3700 for non-debugging symbols to gdb_stdout. */
3701
3702static void
3703print_msymbol_info (struct minimal_symbol *msymbol)
3704{
3705 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3706 char *tmp;
3707
3708 if (gdbarch_addr_bit (gdbarch) <= 32)
3709 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3710 & (CORE_ADDR) 0xffffffff,
3711 8);
3712 else
3713 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3714 16);
3715 printf_filtered ("%s %s\n",
3716 tmp, SYMBOL_PRINT_NAME (msymbol));
3717}
3718
3719/* This is the guts of the commands "info functions", "info types", and
3720 "info variables". It calls search_symbols to find all matches and then
3721 print_[m]symbol_info to print out some useful information about the
3722 matches. */
3723
3724static void
3725symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3726{
3727 static const char * const classnames[] =
3728 {"variable", "function", "type"};
3729 struct symbol_search *symbols;
3730 struct symbol_search *p;
3731 struct cleanup *old_chain;
3732 char *last_filename = NULL;
3733 int first = 1;
3734
3735 gdb_assert (kind <= TYPES_DOMAIN);
3736
3737 /* Must make sure that if we're interrupted, symbols gets freed. */
3738 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3739 old_chain = make_cleanup_free_search_symbols (symbols);
3740
3741 printf_filtered (regexp
3742 ? "All %ss matching regular expression \"%s\":\n"
3743 : "All defined %ss:\n",
3744 classnames[kind], regexp);
3745
3746 for (p = symbols; p != NULL; p = p->next)
3747 {
3748 QUIT;
3749
3750 if (p->msymbol != NULL)
3751 {
3752 if (first)
3753 {
3754 printf_filtered ("\nNon-debugging symbols:\n");
3755 first = 0;
3756 }
3757 print_msymbol_info (p->msymbol);
3758 }
3759 else
3760 {
3761 print_symbol_info (kind,
3762 p->symtab,
3763 p->symbol,
3764 p->block,
3765 last_filename);
3766 last_filename = p->symtab->filename;
3767 }
3768 }
3769
3770 do_cleanups (old_chain);
3771}
3772
3773static void
3774variables_info (char *regexp, int from_tty)
3775{
3776 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3777}
3778
3779static void
3780functions_info (char *regexp, int from_tty)
3781{
3782 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3783}
3784
3785
3786static void
3787types_info (char *regexp, int from_tty)
3788{
3789 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3790}
3791
3792/* Breakpoint all functions matching regular expression. */
3793
3794void
3795rbreak_command_wrapper (char *regexp, int from_tty)
3796{
3797 rbreak_command (regexp, from_tty);
3798}
3799
3800/* A cleanup function that calls end_rbreak_breakpoints. */
3801
3802static void
3803do_end_rbreak_breakpoints (void *ignore)
3804{
3805 end_rbreak_breakpoints ();
3806}
3807
3808static void
3809rbreak_command (char *regexp, int from_tty)
3810{
3811 struct symbol_search *ss;
3812 struct symbol_search *p;
3813 struct cleanup *old_chain;
3814 char *string = NULL;
3815 int len = 0;
3816 char **files = NULL, *file_name;
3817 int nfiles = 0;
3818
3819 if (regexp)
3820 {
3821 char *colon = strchr (regexp, ':');
3822
3823 if (colon && *(colon + 1) != ':')
3824 {
3825 int colon_index;
3826
3827 colon_index = colon - regexp;
3828 file_name = alloca (colon_index + 1);
3829 memcpy (file_name, regexp, colon_index);
3830 file_name[colon_index--] = 0;
3831 while (isspace (file_name[colon_index]))
3832 file_name[colon_index--] = 0;
3833 files = &file_name;
3834 nfiles = 1;
3835 regexp = colon + 1;
3836 while (isspace (*regexp)) regexp++;
3837 }
3838 }
3839
3840 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3841 old_chain = make_cleanup_free_search_symbols (ss);
3842 make_cleanup (free_current_contents, &string);
3843
3844 start_rbreak_breakpoints ();
3845 make_cleanup (do_end_rbreak_breakpoints, NULL);
3846 for (p = ss; p != NULL; p = p->next)
3847 {
3848 if (p->msymbol == NULL)
3849 {
3850 int newlen = (strlen (p->symtab->filename)
3851 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3852 + 4);
3853
3854 if (newlen > len)
3855 {
3856 string = xrealloc (string, newlen);
3857 len = newlen;
3858 }
3859 strcpy (string, p->symtab->filename);
3860 strcat (string, ":'");
3861 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3862 strcat (string, "'");
3863 break_command (string, from_tty);
3864 print_symbol_info (FUNCTIONS_DOMAIN,
3865 p->symtab,
3866 p->symbol,
3867 p->block,
3868 p->symtab->filename);
3869 }
3870 else
3871 {
3872 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3873
3874 if (newlen > len)
3875 {
3876 string = xrealloc (string, newlen);
3877 len = newlen;
3878 }
3879 strcpy (string, "'");
3880 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3881 strcat (string, "'");
3882
3883 break_command (string, from_tty);
3884 printf_filtered ("<function, no debug info> %s;\n",
3885 SYMBOL_PRINT_NAME (p->msymbol));
3886 }
3887 }
3888
3889 do_cleanups (old_chain);
3890}
3891\f
3892
3893/* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3894
3895 Either sym_text[sym_text_len] != '(' and then we search for any
3896 symbol starting with SYM_TEXT text.
3897
3898 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3899 be terminated at that point. Partial symbol tables do not have parameters
3900 information. */
3901
3902static int
3903compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3904{
3905 int (*ncmp) (const char *, const char *, size_t);
3906
3907 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3908
3909 if (ncmp (name, sym_text, sym_text_len) != 0)
3910 return 0;
3911
3912 if (sym_text[sym_text_len] == '(')
3913 {
3914 /* User searches for `name(someth...'. Require NAME to be terminated.
3915 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3916 present but accept even parameters presence. In this case this
3917 function is in fact strcmp_iw but whitespace skipping is not supported
3918 for tab completion. */
3919
3920 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3921 return 0;
3922 }
3923
3924 return 1;
3925}
3926
3927/* Free any memory associated with a completion list. */
3928
3929static void
3930free_completion_list (VEC (char_ptr) **list_ptr)
3931{
3932 int i;
3933 char *p;
3934
3935 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
3936 xfree (p);
3937 VEC_free (char_ptr, *list_ptr);
3938}
3939
3940/* Callback for make_cleanup. */
3941
3942static void
3943do_free_completion_list (void *list)
3944{
3945 free_completion_list (list);
3946}
3947
3948/* Helper routine for make_symbol_completion_list. */
3949
3950static VEC (char_ptr) *return_val;
3951
3952#define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3953 completion_list_add_name \
3954 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3955
3956/* Test to see if the symbol specified by SYMNAME (which is already
3957 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3958 characters. If so, add it to the current completion list. */
3959
3960static void
3961completion_list_add_name (const char *symname,
3962 const char *sym_text, int sym_text_len,
3963 const char *text, const char *word)
3964{
3965 int newsize;
3966
3967 /* Clip symbols that cannot match. */
3968 if (!compare_symbol_name (symname, sym_text, sym_text_len))
3969 return;
3970
3971 /* We have a match for a completion, so add SYMNAME to the current list
3972 of matches. Note that the name is moved to freshly malloc'd space. */
3973
3974 {
3975 char *new;
3976
3977 if (word == sym_text)
3978 {
3979 new = xmalloc (strlen (symname) + 5);
3980 strcpy (new, symname);
3981 }
3982 else if (word > sym_text)
3983 {
3984 /* Return some portion of symname. */
3985 new = xmalloc (strlen (symname) + 5);
3986 strcpy (new, symname + (word - sym_text));
3987 }
3988 else
3989 {
3990 /* Return some of SYM_TEXT plus symname. */
3991 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3992 strncpy (new, word, sym_text - word);
3993 new[sym_text - word] = '\0';
3994 strcat (new, symname);
3995 }
3996
3997 VEC_safe_push (char_ptr, return_val, new);
3998 }
3999}
4000
4001/* ObjC: In case we are completing on a selector, look as the msymbol
4002 again and feed all the selectors into the mill. */
4003
4004static void
4005completion_list_objc_symbol (struct minimal_symbol *msymbol,
4006 const char *sym_text, int sym_text_len,
4007 const char *text, const char *word)
4008{
4009 static char *tmp = NULL;
4010 static unsigned int tmplen = 0;
4011
4012 const char *method, *category, *selector;
4013 char *tmp2 = NULL;
4014
4015 method = SYMBOL_NATURAL_NAME (msymbol);
4016
4017 /* Is it a method? */
4018 if ((method[0] != '-') && (method[0] != '+'))
4019 return;
4020
4021 if (sym_text[0] == '[')
4022 /* Complete on shortened method method. */
4023 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4024
4025 while ((strlen (method) + 1) >= tmplen)
4026 {
4027 if (tmplen == 0)
4028 tmplen = 1024;
4029 else
4030 tmplen *= 2;
4031 tmp = xrealloc (tmp, tmplen);
4032 }
4033 selector = strchr (method, ' ');
4034 if (selector != NULL)
4035 selector++;
4036
4037 category = strchr (method, '(');
4038
4039 if ((category != NULL) && (selector != NULL))
4040 {
4041 memcpy (tmp, method, (category - method));
4042 tmp[category - method] = ' ';
4043 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4044 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4045 if (sym_text[0] == '[')
4046 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4047 }
4048
4049 if (selector != NULL)
4050 {
4051 /* Complete on selector only. */
4052 strcpy (tmp, selector);
4053 tmp2 = strchr (tmp, ']');
4054 if (tmp2 != NULL)
4055 *tmp2 = '\0';
4056
4057 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4058 }
4059}
4060
4061/* Break the non-quoted text based on the characters which are in
4062 symbols. FIXME: This should probably be language-specific. */
4063
4064static char *
4065language_search_unquoted_string (char *text, char *p)
4066{
4067 for (; p > text; --p)
4068 {
4069 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4070 continue;
4071 else
4072 {
4073 if ((current_language->la_language == language_objc))
4074 {
4075 if (p[-1] == ':') /* Might be part of a method name. */
4076 continue;
4077 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4078 p -= 2; /* Beginning of a method name. */
4079 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4080 { /* Might be part of a method name. */
4081 char *t = p;
4082
4083 /* Seeing a ' ' or a '(' is not conclusive evidence
4084 that we are in the middle of a method name. However,
4085 finding "-[" or "+[" should be pretty un-ambiguous.
4086 Unfortunately we have to find it now to decide. */
4087
4088 while (t > text)
4089 if (isalnum (t[-1]) || t[-1] == '_' ||
4090 t[-1] == ' ' || t[-1] == ':' ||
4091 t[-1] == '(' || t[-1] == ')')
4092 --t;
4093 else
4094 break;
4095
4096 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4097 p = t - 2; /* Method name detected. */
4098 /* Else we leave with p unchanged. */
4099 }
4100 }
4101 break;
4102 }
4103 }
4104 return p;
4105}
4106
4107static void
4108completion_list_add_fields (struct symbol *sym, char *sym_text,
4109 int sym_text_len, char *text, char *word)
4110{
4111 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4112 {
4113 struct type *t = SYMBOL_TYPE (sym);
4114 enum type_code c = TYPE_CODE (t);
4115 int j;
4116
4117 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4118 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4119 if (TYPE_FIELD_NAME (t, j))
4120 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4121 sym_text, sym_text_len, text, word);
4122 }
4123}
4124
4125/* Type of the user_data argument passed to add_macro_name or
4126 expand_partial_symbol_name. The contents are simply whatever is
4127 needed by completion_list_add_name. */
4128struct add_name_data
4129{
4130 char *sym_text;
4131 int sym_text_len;
4132 char *text;
4133 char *word;
4134};
4135
4136/* A callback used with macro_for_each and macro_for_each_in_scope.
4137 This adds a macro's name to the current completion list. */
4138
4139static void
4140add_macro_name (const char *name, const struct macro_definition *ignore,
4141 struct macro_source_file *ignore2, int ignore3,
4142 void *user_data)
4143{
4144 struct add_name_data *datum = (struct add_name_data *) user_data;
4145
4146 completion_list_add_name ((char *) name,
4147 datum->sym_text, datum->sym_text_len,
4148 datum->text, datum->word);
4149}
4150
4151/* A callback for expand_partial_symbol_names. */
4152
4153static int
4154expand_partial_symbol_name (const char *name, void *user_data)
4155{
4156 struct add_name_data *datum = (struct add_name_data *) user_data;
4157
4158 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4159}
4160
4161VEC (char_ptr) *
4162default_make_symbol_completion_list_break_on (char *text, char *word,
4163 const char *break_on)
4164{
4165 /* Problem: All of the symbols have to be copied because readline
4166 frees them. I'm not going to worry about this; hopefully there
4167 won't be that many. */
4168
4169 struct symbol *sym;
4170 struct symtab *s;
4171 struct minimal_symbol *msymbol;
4172 struct objfile *objfile;
4173 struct block *b;
4174 const struct block *surrounding_static_block, *surrounding_global_block;
4175 struct block_iterator iter;
4176 /* The symbol we are completing on. Points in same buffer as text. */
4177 char *sym_text;
4178 /* Length of sym_text. */
4179 int sym_text_len;
4180 struct add_name_data datum;
4181 struct cleanup *back_to;
4182
4183 /* Now look for the symbol we are supposed to complete on. */
4184 {
4185 char *p;
4186 char quote_found;
4187 char *quote_pos = NULL;
4188
4189 /* First see if this is a quoted string. */
4190 quote_found = '\0';
4191 for (p = text; *p != '\0'; ++p)
4192 {
4193 if (quote_found != '\0')
4194 {
4195 if (*p == quote_found)
4196 /* Found close quote. */
4197 quote_found = '\0';
4198 else if (*p == '\\' && p[1] == quote_found)
4199 /* A backslash followed by the quote character
4200 doesn't end the string. */
4201 ++p;
4202 }
4203 else if (*p == '\'' || *p == '"')
4204 {
4205 quote_found = *p;
4206 quote_pos = p;
4207 }
4208 }
4209 if (quote_found == '\'')
4210 /* A string within single quotes can be a symbol, so complete on it. */
4211 sym_text = quote_pos + 1;
4212 else if (quote_found == '"')
4213 /* A double-quoted string is never a symbol, nor does it make sense
4214 to complete it any other way. */
4215 {
4216 return NULL;
4217 }
4218 else
4219 {
4220 /* It is not a quoted string. Break it based on the characters
4221 which are in symbols. */
4222 while (p > text)
4223 {
4224 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4225 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4226 --p;
4227 else
4228 break;
4229 }
4230 sym_text = p;
4231 }
4232 }
4233
4234 sym_text_len = strlen (sym_text);
4235
4236 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4237
4238 if (current_language->la_language == language_cplus
4239 || current_language->la_language == language_java
4240 || current_language->la_language == language_fortran)
4241 {
4242 /* These languages may have parameters entered by user but they are never
4243 present in the partial symbol tables. */
4244
4245 const char *cs = memchr (sym_text, '(', sym_text_len);
4246
4247 if (cs)
4248 sym_text_len = cs - sym_text;
4249 }
4250 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4251
4252 return_val = NULL;
4253 back_to = make_cleanup (do_free_completion_list, &return_val);
4254
4255 datum.sym_text = sym_text;
4256 datum.sym_text_len = sym_text_len;
4257 datum.text = text;
4258 datum.word = word;
4259
4260 /* Look through the partial symtabs for all symbols which begin
4261 by matching SYM_TEXT. Expand all CUs that you find to the list.
4262 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4263 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4264
4265 /* At this point scan through the misc symbol vectors and add each
4266 symbol you find to the list. Eventually we want to ignore
4267 anything that isn't a text symbol (everything else will be
4268 handled by the psymtab code above). */
4269
4270 ALL_MSYMBOLS (objfile, msymbol)
4271 {
4272 QUIT;
4273 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
4274
4275 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
4276 }
4277
4278 /* Search upwards from currently selected frame (so that we can
4279 complete on local vars). Also catch fields of types defined in
4280 this places which match our text string. Only complete on types
4281 visible from current context. */
4282
4283 b = get_selected_block (0);
4284 surrounding_static_block = block_static_block (b);
4285 surrounding_global_block = block_global_block (b);
4286 if (surrounding_static_block != NULL)
4287 while (b != surrounding_static_block)
4288 {
4289 QUIT;
4290
4291 ALL_BLOCK_SYMBOLS (b, iter, sym)
4292 {
4293 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4294 word);
4295 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4296 word);
4297 }
4298
4299 /* Stop when we encounter an enclosing function. Do not stop for
4300 non-inlined functions - the locals of the enclosing function
4301 are in scope for a nested function. */
4302 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4303 break;
4304 b = BLOCK_SUPERBLOCK (b);
4305 }
4306
4307 /* Add fields from the file's types; symbols will be added below. */
4308
4309 if (surrounding_static_block != NULL)
4310 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4311 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4312
4313 if (surrounding_global_block != NULL)
4314 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4315 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4316
4317 /* Go through the symtabs and check the externs and statics for
4318 symbols which match. */
4319
4320 ALL_PRIMARY_SYMTABS (objfile, s)
4321 {
4322 QUIT;
4323 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4324 ALL_BLOCK_SYMBOLS (b, iter, sym)
4325 {
4326 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4327 }
4328 }
4329
4330 ALL_PRIMARY_SYMTABS (objfile, s)
4331 {
4332 QUIT;
4333 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4334 ALL_BLOCK_SYMBOLS (b, iter, sym)
4335 {
4336 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4337 }
4338 }
4339
4340 if (current_language->la_macro_expansion == macro_expansion_c)
4341 {
4342 struct macro_scope *scope;
4343
4344 /* Add any macros visible in the default scope. Note that this
4345 may yield the occasional wrong result, because an expression
4346 might be evaluated in a scope other than the default. For
4347 example, if the user types "break file:line if <TAB>", the
4348 resulting expression will be evaluated at "file:line" -- but
4349 at there does not seem to be a way to detect this at
4350 completion time. */
4351 scope = default_macro_scope ();
4352 if (scope)
4353 {
4354 macro_for_each_in_scope (scope->file, scope->line,
4355 add_macro_name, &datum);
4356 xfree (scope);
4357 }
4358
4359 /* User-defined macros are always visible. */
4360 macro_for_each (macro_user_macros, add_macro_name, &datum);
4361 }
4362
4363 discard_cleanups (back_to);
4364 return (return_val);
4365}
4366
4367VEC (char_ptr) *
4368default_make_symbol_completion_list (char *text, char *word)
4369{
4370 return default_make_symbol_completion_list_break_on (text, word, "");
4371}
4372
4373/* Return a vector of all symbols (regardless of class) which begin by
4374 matching TEXT. If the answer is no symbols, then the return value
4375 is NULL. */
4376
4377VEC (char_ptr) *
4378make_symbol_completion_list (char *text, char *word)
4379{
4380 return current_language->la_make_symbol_completion_list (text, word);
4381}
4382
4383/* Like make_symbol_completion_list, but suitable for use as a
4384 completion function. */
4385
4386VEC (char_ptr) *
4387make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4388 char *text, char *word)
4389{
4390 return make_symbol_completion_list (text, word);
4391}
4392
4393/* Like make_symbol_completion_list, but returns a list of symbols
4394 defined in a source file FILE. */
4395
4396VEC (char_ptr) *
4397make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4398{
4399 struct symbol *sym;
4400 struct symtab *s;
4401 struct block *b;
4402 struct block_iterator iter;
4403 /* The symbol we are completing on. Points in same buffer as text. */
4404 char *sym_text;
4405 /* Length of sym_text. */
4406 int sym_text_len;
4407
4408 /* Now look for the symbol we are supposed to complete on.
4409 FIXME: This should be language-specific. */
4410 {
4411 char *p;
4412 char quote_found;
4413 char *quote_pos = NULL;
4414
4415 /* First see if this is a quoted string. */
4416 quote_found = '\0';
4417 for (p = text; *p != '\0'; ++p)
4418 {
4419 if (quote_found != '\0')
4420 {
4421 if (*p == quote_found)
4422 /* Found close quote. */
4423 quote_found = '\0';
4424 else if (*p == '\\' && p[1] == quote_found)
4425 /* A backslash followed by the quote character
4426 doesn't end the string. */
4427 ++p;
4428 }
4429 else if (*p == '\'' || *p == '"')
4430 {
4431 quote_found = *p;
4432 quote_pos = p;
4433 }
4434 }
4435 if (quote_found == '\'')
4436 /* A string within single quotes can be a symbol, so complete on it. */
4437 sym_text = quote_pos + 1;
4438 else if (quote_found == '"')
4439 /* A double-quoted string is never a symbol, nor does it make sense
4440 to complete it any other way. */
4441 {
4442 return NULL;
4443 }
4444 else
4445 {
4446 /* Not a quoted string. */
4447 sym_text = language_search_unquoted_string (text, p);
4448 }
4449 }
4450
4451 sym_text_len = strlen (sym_text);
4452
4453 return_val = NULL;
4454
4455 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4456 in). */
4457 s = lookup_symtab (srcfile);
4458 if (s == NULL)
4459 {
4460 /* Maybe they typed the file with leading directories, while the
4461 symbol tables record only its basename. */
4462 const char *tail = lbasename (srcfile);
4463
4464 if (tail > srcfile)
4465 s = lookup_symtab (tail);
4466 }
4467
4468 /* If we have no symtab for that file, return an empty list. */
4469 if (s == NULL)
4470 return (return_val);
4471
4472 /* Go through this symtab and check the externs and statics for
4473 symbols which match. */
4474
4475 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4476 ALL_BLOCK_SYMBOLS (b, iter, sym)
4477 {
4478 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4479 }
4480
4481 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4482 ALL_BLOCK_SYMBOLS (b, iter, sym)
4483 {
4484 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4485 }
4486
4487 return (return_val);
4488}
4489
4490/* A helper function for make_source_files_completion_list. It adds
4491 another file name to a list of possible completions, growing the
4492 list as necessary. */
4493
4494static void
4495add_filename_to_list (const char *fname, char *text, char *word,
4496 VEC (char_ptr) **list)
4497{
4498 char *new;
4499 size_t fnlen = strlen (fname);
4500
4501 if (word == text)
4502 {
4503 /* Return exactly fname. */
4504 new = xmalloc (fnlen + 5);
4505 strcpy (new, fname);
4506 }
4507 else if (word > text)
4508 {
4509 /* Return some portion of fname. */
4510 new = xmalloc (fnlen + 5);
4511 strcpy (new, fname + (word - text));
4512 }
4513 else
4514 {
4515 /* Return some of TEXT plus fname. */
4516 new = xmalloc (fnlen + (text - word) + 5);
4517 strncpy (new, word, text - word);
4518 new[text - word] = '\0';
4519 strcat (new, fname);
4520 }
4521 VEC_safe_push (char_ptr, *list, new);
4522}
4523
4524static int
4525not_interesting_fname (const char *fname)
4526{
4527 static const char *illegal_aliens[] = {
4528 "_globals_", /* inserted by coff_symtab_read */
4529 NULL
4530 };
4531 int i;
4532
4533 for (i = 0; illegal_aliens[i]; i++)
4534 {
4535 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4536 return 1;
4537 }
4538 return 0;
4539}
4540
4541/* An object of this type is passed as the user_data argument to
4542 map_partial_symbol_filenames. */
4543struct add_partial_filename_data
4544{
4545 int *first;
4546 char *text;
4547 char *word;
4548 int text_len;
4549 VEC (char_ptr) **list;
4550};
4551
4552/* A callback for map_partial_symbol_filenames. */
4553
4554static void
4555maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4556 void *user_data)
4557{
4558 struct add_partial_filename_data *data = user_data;
4559
4560 if (not_interesting_fname (filename))
4561 return;
4562 if (!filename_seen (filename, 1, data->first)
4563 && filename_ncmp (filename, data->text, data->text_len) == 0)
4564 {
4565 /* This file matches for a completion; add it to the
4566 current list of matches. */
4567 add_filename_to_list (filename, data->text, data->word, data->list);
4568 }
4569 else
4570 {
4571 const char *base_name = lbasename (filename);
4572
4573 if (base_name != filename
4574 && !filename_seen (base_name, 1, data->first)
4575 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4576 add_filename_to_list (base_name, data->text, data->word, data->list);
4577 }
4578}
4579
4580/* Return a vector of all source files whose names begin with matching
4581 TEXT. The file names are looked up in the symbol tables of this
4582 program. If the answer is no matchess, then the return value is
4583 NULL. */
4584
4585VEC (char_ptr) *
4586make_source_files_completion_list (char *text, char *word)
4587{
4588 struct symtab *s;
4589 struct objfile *objfile;
4590 int first = 1;
4591 size_t text_len = strlen (text);
4592 VEC (char_ptr) *list = NULL;
4593 const char *base_name;
4594 struct add_partial_filename_data datum;
4595 struct cleanup *back_to;
4596
4597 if (!have_full_symbols () && !have_partial_symbols ())
4598 return list;
4599
4600 back_to = make_cleanup (do_free_completion_list, &list);
4601
4602 ALL_SYMTABS (objfile, s)
4603 {
4604 if (not_interesting_fname (s->filename))
4605 continue;
4606 if (!filename_seen (s->filename, 1, &first)
4607 && filename_ncmp (s->filename, text, text_len) == 0)
4608 {
4609 /* This file matches for a completion; add it to the current
4610 list of matches. */
4611 add_filename_to_list (s->filename, text, word, &list);
4612 }
4613 else
4614 {
4615 /* NOTE: We allow the user to type a base name when the
4616 debug info records leading directories, but not the other
4617 way around. This is what subroutines of breakpoint
4618 command do when they parse file names. */
4619 base_name = lbasename (s->filename);
4620 if (base_name != s->filename
4621 && !filename_seen (base_name, 1, &first)
4622 && filename_ncmp (base_name, text, text_len) == 0)
4623 add_filename_to_list (base_name, text, word, &list);
4624 }
4625 }
4626
4627 datum.first = &first;
4628 datum.text = text;
4629 datum.word = word;
4630 datum.text_len = text_len;
4631 datum.list = &list;
4632 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4633 0 /*need_fullname*/);
4634 discard_cleanups (back_to);
4635
4636 return list;
4637}
4638
4639/* Determine if PC is in the prologue of a function. The prologue is the area
4640 between the first instruction of a function, and the first executable line.
4641 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4642
4643 If non-zero, func_start is where we think the prologue starts, possibly
4644 by previous examination of symbol table information. */
4645
4646int
4647in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4648{
4649 struct symtab_and_line sal;
4650 CORE_ADDR func_addr, func_end;
4651
4652 /* We have several sources of information we can consult to figure
4653 this out.
4654 - Compilers usually emit line number info that marks the prologue
4655 as its own "source line". So the ending address of that "line"
4656 is the end of the prologue. If available, this is the most
4657 reliable method.
4658 - The minimal symbols and partial symbols, which can usually tell
4659 us the starting and ending addresses of a function.
4660 - If we know the function's start address, we can call the
4661 architecture-defined gdbarch_skip_prologue function to analyze the
4662 instruction stream and guess where the prologue ends.
4663 - Our `func_start' argument; if non-zero, this is the caller's
4664 best guess as to the function's entry point. At the time of
4665 this writing, handle_inferior_event doesn't get this right, so
4666 it should be our last resort. */
4667
4668 /* Consult the partial symbol table, to find which function
4669 the PC is in. */
4670 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4671 {
4672 CORE_ADDR prologue_end;
4673
4674 /* We don't even have minsym information, so fall back to using
4675 func_start, if given. */
4676 if (! func_start)
4677 return 1; /* We *might* be in a prologue. */
4678
4679 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4680
4681 return func_start <= pc && pc < prologue_end;
4682 }
4683
4684 /* If we have line number information for the function, that's
4685 usually pretty reliable. */
4686 sal = find_pc_line (func_addr, 0);
4687
4688 /* Now sal describes the source line at the function's entry point,
4689 which (by convention) is the prologue. The end of that "line",
4690 sal.end, is the end of the prologue.
4691
4692 Note that, for functions whose source code is all on a single
4693 line, the line number information doesn't always end up this way.
4694 So we must verify that our purported end-of-prologue address is
4695 *within* the function, not at its start or end. */
4696 if (sal.line == 0
4697 || sal.end <= func_addr
4698 || func_end <= sal.end)
4699 {
4700 /* We don't have any good line number info, so use the minsym
4701 information, together with the architecture-specific prologue
4702 scanning code. */
4703 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4704
4705 return func_addr <= pc && pc < prologue_end;
4706 }
4707
4708 /* We have line number info, and it looks good. */
4709 return func_addr <= pc && pc < sal.end;
4710}
4711
4712/* Given PC at the function's start address, attempt to find the
4713 prologue end using SAL information. Return zero if the skip fails.
4714
4715 A non-optimized prologue traditionally has one SAL for the function
4716 and a second for the function body. A single line function has
4717 them both pointing at the same line.
4718
4719 An optimized prologue is similar but the prologue may contain
4720 instructions (SALs) from the instruction body. Need to skip those
4721 while not getting into the function body.
4722
4723 The functions end point and an increasing SAL line are used as
4724 indicators of the prologue's endpoint.
4725
4726 This code is based on the function refine_prologue_limit
4727 (found in ia64). */
4728
4729CORE_ADDR
4730skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4731{
4732 struct symtab_and_line prologue_sal;
4733 CORE_ADDR start_pc;
4734 CORE_ADDR end_pc;
4735 struct block *bl;
4736
4737 /* Get an initial range for the function. */
4738 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4739 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4740
4741 prologue_sal = find_pc_line (start_pc, 0);
4742 if (prologue_sal.line != 0)
4743 {
4744 /* For languages other than assembly, treat two consecutive line
4745 entries at the same address as a zero-instruction prologue.
4746 The GNU assembler emits separate line notes for each instruction
4747 in a multi-instruction macro, but compilers generally will not
4748 do this. */
4749 if (prologue_sal.symtab->language != language_asm)
4750 {
4751 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4752 int idx = 0;
4753
4754 /* Skip any earlier lines, and any end-of-sequence marker
4755 from a previous function. */
4756 while (linetable->item[idx].pc != prologue_sal.pc
4757 || linetable->item[idx].line == 0)
4758 idx++;
4759
4760 if (idx+1 < linetable->nitems
4761 && linetable->item[idx+1].line != 0
4762 && linetable->item[idx+1].pc == start_pc)
4763 return start_pc;
4764 }
4765
4766 /* If there is only one sal that covers the entire function,
4767 then it is probably a single line function, like
4768 "foo(){}". */
4769 if (prologue_sal.end >= end_pc)
4770 return 0;
4771
4772 while (prologue_sal.end < end_pc)
4773 {
4774 struct symtab_and_line sal;
4775
4776 sal = find_pc_line (prologue_sal.end, 0);
4777 if (sal.line == 0)
4778 break;
4779 /* Assume that a consecutive SAL for the same (or larger)
4780 line mark the prologue -> body transition. */
4781 if (sal.line >= prologue_sal.line)
4782 break;
4783
4784 /* The line number is smaller. Check that it's from the
4785 same function, not something inlined. If it's inlined,
4786 then there is no point comparing the line numbers. */
4787 bl = block_for_pc (prologue_sal.end);
4788 while (bl)
4789 {
4790 if (block_inlined_p (bl))
4791 break;
4792 if (BLOCK_FUNCTION (bl))
4793 {
4794 bl = NULL;
4795 break;
4796 }
4797 bl = BLOCK_SUPERBLOCK (bl);
4798 }
4799 if (bl != NULL)
4800 break;
4801
4802 /* The case in which compiler's optimizer/scheduler has
4803 moved instructions into the prologue. We look ahead in
4804 the function looking for address ranges whose
4805 corresponding line number is less the first one that we
4806 found for the function. This is more conservative then
4807 refine_prologue_limit which scans a large number of SALs
4808 looking for any in the prologue. */
4809 prologue_sal = sal;
4810 }
4811 }
4812
4813 if (prologue_sal.end < end_pc)
4814 /* Return the end of this line, or zero if we could not find a
4815 line. */
4816 return prologue_sal.end;
4817 else
4818 /* Don't return END_PC, which is past the end of the function. */
4819 return prologue_sal.pc;
4820}
4821\f
4822struct symtabs_and_lines
4823decode_line_spec (char *string, int flags)
4824{
4825 struct symtabs_and_lines sals;
4826 struct symtab_and_line cursal;
4827
4828 if (string == 0)
4829 error (_("Empty line specification."));
4830
4831 /* We use whatever is set as the current source line. We do not try
4832 and get a default or it will recursively call us! */
4833 cursal = get_current_source_symtab_and_line ();
4834
4835 sals = decode_line_1 (&string, flags,
4836 cursal.symtab, cursal.line);
4837
4838 if (*string)
4839 error (_("Junk at end of line specification: %s"), string);
4840 return sals;
4841}
4842
4843/* Track MAIN */
4844static char *name_of_main;
4845enum language language_of_main = language_unknown;
4846
4847void
4848set_main_name (const char *name)
4849{
4850 if (name_of_main != NULL)
4851 {
4852 xfree (name_of_main);
4853 name_of_main = NULL;
4854 language_of_main = language_unknown;
4855 }
4856 if (name != NULL)
4857 {
4858 name_of_main = xstrdup (name);
4859 language_of_main = language_unknown;
4860 }
4861}
4862
4863/* Deduce the name of the main procedure, and set NAME_OF_MAIN
4864 accordingly. */
4865
4866static void
4867find_main_name (void)
4868{
4869 const char *new_main_name;
4870
4871 /* Try to see if the main procedure is in Ada. */
4872 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4873 be to add a new method in the language vector, and call this
4874 method for each language until one of them returns a non-empty
4875 name. This would allow us to remove this hard-coded call to
4876 an Ada function. It is not clear that this is a better approach
4877 at this point, because all methods need to be written in a way
4878 such that false positives never be returned. For instance, it is
4879 important that a method does not return a wrong name for the main
4880 procedure if the main procedure is actually written in a different
4881 language. It is easy to guaranty this with Ada, since we use a
4882 special symbol generated only when the main in Ada to find the name
4883 of the main procedure. It is difficult however to see how this can
4884 be guarantied for languages such as C, for instance. This suggests
4885 that order of call for these methods becomes important, which means
4886 a more complicated approach. */
4887 new_main_name = ada_main_name ();
4888 if (new_main_name != NULL)
4889 {
4890 set_main_name (new_main_name);
4891 return;
4892 }
4893
4894 new_main_name = go_main_name ();
4895 if (new_main_name != NULL)
4896 {
4897 set_main_name (new_main_name);
4898 return;
4899 }
4900
4901 new_main_name = pascal_main_name ();
4902 if (new_main_name != NULL)
4903 {
4904 set_main_name (new_main_name);
4905 return;
4906 }
4907
4908 /* The languages above didn't identify the name of the main procedure.
4909 Fallback to "main". */
4910 set_main_name ("main");
4911}
4912
4913char *
4914main_name (void)
4915{
4916 if (name_of_main == NULL)
4917 find_main_name ();
4918
4919 return name_of_main;
4920}
4921
4922/* Handle ``executable_changed'' events for the symtab module. */
4923
4924static void
4925symtab_observer_executable_changed (void)
4926{
4927 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4928 set_main_name (NULL);
4929}
4930
4931/* Return 1 if the supplied producer string matches the ARM RealView
4932 compiler (armcc). */
4933
4934int
4935producer_is_realview (const char *producer)
4936{
4937 static const char *const arm_idents[] = {
4938 "ARM C Compiler, ADS",
4939 "Thumb C Compiler, ADS",
4940 "ARM C++ Compiler, ADS",
4941 "Thumb C++ Compiler, ADS",
4942 "ARM/Thumb C/C++ Compiler, RVCT",
4943 "ARM C/C++ Compiler, RVCT"
4944 };
4945 int i;
4946
4947 if (producer == NULL)
4948 return 0;
4949
4950 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4951 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4952 return 1;
4953
4954 return 0;
4955}
4956
4957void
4958_initialize_symtab (void)
4959{
4960 add_info ("variables", variables_info, _("\
4961All global and static variable names, or those matching REGEXP."));
4962 if (dbx_commands)
4963 add_com ("whereis", class_info, variables_info, _("\
4964All global and static variable names, or those matching REGEXP."));
4965
4966 add_info ("functions", functions_info,
4967 _("All function names, or those matching REGEXP."));
4968
4969 /* FIXME: This command has at least the following problems:
4970 1. It prints builtin types (in a very strange and confusing fashion).
4971 2. It doesn't print right, e.g. with
4972 typedef struct foo *FOO
4973 type_print prints "FOO" when we want to make it (in this situation)
4974 print "struct foo *".
4975 I also think "ptype" or "whatis" is more likely to be useful (but if
4976 there is much disagreement "info types" can be fixed). */
4977 add_info ("types", types_info,
4978 _("All type names, or those matching REGEXP."));
4979
4980 add_info ("sources", sources_info,
4981 _("Source files in the program."));
4982
4983 add_com ("rbreak", class_breakpoint, rbreak_command,
4984 _("Set a breakpoint for all functions matching REGEXP."));
4985
4986 if (xdb_commands)
4987 {
4988 add_com ("lf", class_info, sources_info,
4989 _("Source files in the program"));
4990 add_com ("lg", class_info, variables_info, _("\
4991All global and static variable names, or those matching REGEXP."));
4992 }
4993
4994 add_setshow_enum_cmd ("multiple-symbols", no_class,
4995 multiple_symbols_modes, &multiple_symbols_mode,
4996 _("\
4997Set the debugger behavior when more than one symbol are possible matches\n\
4998in an expression."), _("\
4999Show how the debugger handles ambiguities in expressions."), _("\
5000Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5001 NULL, NULL, &setlist, &showlist);
5002
5003 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5004 &basenames_may_differ, _("\
5005Set whether a source file may have multiple base names."), _("\
5006Show whether a source file may have multiple base names."), _("\
5007(A \"base name\" is the name of a file with the directory part removed.\n\
5008Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5009If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5010before comparing them. Canonicalization is an expensive operation,\n\
5011but it allows the same file be known by more than one base name.\n\
5012If not set (the default), all source files are assumed to have just\n\
5013one base name, and gdb will do file name comparisons more efficiently."),
5014 NULL, NULL,
5015 &setlist, &showlist);
5016
5017 observer_attach_executable_changed (symtab_observer_executable_changed);
5018}
This page took 0.038335 seconds and 4 git commands to generate.