2010-01-26 Tristan Gingold <gingold@adacore.com>
[deliverable/binutils-gdb.git] / gdb / symtab.c
... / ...
CommitLineData
1/* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#include "defs.h"
23#include "symtab.h"
24#include "gdbtypes.h"
25#include "gdbcore.h"
26#include "frame.h"
27#include "target.h"
28#include "value.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "gdbcmd.h"
32#include "call-cmds.h"
33#include "gdb_regex.h"
34#include "expression.h"
35#include "language.h"
36#include "demangle.h"
37#include "inferior.h"
38#include "linespec.h"
39#include "source.h"
40#include "filenames.h" /* for FILENAME_CMP */
41#include "objc-lang.h"
42#include "ada-lang.h"
43#include "p-lang.h"
44#include "addrmap.h"
45
46#include "hashtab.h"
47
48#include "gdb_obstack.h"
49#include "block.h"
50#include "dictionary.h"
51
52#include <sys/types.h>
53#include <fcntl.h>
54#include "gdb_string.h"
55#include "gdb_stat.h"
56#include <ctype.h>
57#include "cp-abi.h"
58#include "cp-support.h"
59#include "observer.h"
60#include "gdb_assert.h"
61#include "solist.h"
62#include "macrotab.h"
63#include "macroscope.h"
64
65/* Prototypes for local functions */
66
67static void completion_list_add_name (char *, char *, int, char *, char *);
68
69static void rbreak_command (char *, int);
70
71static void types_info (char *, int);
72
73static void functions_info (char *, int);
74
75static void variables_info (char *, int);
76
77static void sources_info (char *, int);
78
79static void output_source_filename (const char *, int *);
80
81static int find_line_common (struct linetable *, int, int *);
82
83/* This one is used by linespec.c */
84
85char *operator_chars (char *p, char **end);
86
87static struct symbol *lookup_symbol_aux (const char *name,
88 const char *linkage_name,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language,
92 int *is_a_field_of_this);
93
94static
95struct symbol *lookup_symbol_aux_local (const char *name,
96 const char *linkage_name,
97 const struct block *block,
98 const domain_enum domain);
99
100static
101struct symbol *lookup_symbol_aux_symtabs (int block_index,
102 const char *name,
103 const char *linkage_name,
104 const domain_enum domain);
105
106static
107struct symbol *lookup_symbol_aux_psymtabs (int block_index,
108 const char *name,
109 const char *linkage_name,
110 const domain_enum domain);
111
112static int file_matches (char *, char **, int);
113
114static void print_symbol_info (domain_enum,
115 struct symtab *, struct symbol *, int, char *);
116
117static void print_msymbol_info (struct minimal_symbol *);
118
119static void symtab_symbol_info (char *, domain_enum, int);
120
121void _initialize_symtab (void);
122
123/* */
124
125/* Allow the user to configure the debugger behavior with respect
126 to multiple-choice menus when more than one symbol matches during
127 a symbol lookup. */
128
129const char multiple_symbols_ask[] = "ask";
130const char multiple_symbols_all[] = "all";
131const char multiple_symbols_cancel[] = "cancel";
132static const char *multiple_symbols_modes[] =
133{
134 multiple_symbols_ask,
135 multiple_symbols_all,
136 multiple_symbols_cancel,
137 NULL
138};
139static const char *multiple_symbols_mode = multiple_symbols_all;
140
141/* Read-only accessor to AUTO_SELECT_MODE. */
142
143const char *
144multiple_symbols_select_mode (void)
145{
146 return multiple_symbols_mode;
147}
148
149/* Block in which the most recently searched-for symbol was found.
150 Might be better to make this a parameter to lookup_symbol and
151 value_of_this. */
152
153const struct block *block_found;
154
155/* Check for a symtab of a specific name; first in symtabs, then in
156 psymtabs. *If* there is no '/' in the name, a match after a '/'
157 in the symtab filename will also work. */
158
159struct symtab *
160lookup_symtab (const char *name)
161{
162 struct symtab *s;
163 struct partial_symtab *ps;
164 struct objfile *objfile;
165 char *real_path = NULL;
166 char *full_path = NULL;
167
168 /* Here we are interested in canonicalizing an absolute path, not
169 absolutizing a relative path. */
170 if (IS_ABSOLUTE_PATH (name))
171 {
172 full_path = xfullpath (name);
173 make_cleanup (xfree, full_path);
174 real_path = gdb_realpath (name);
175 make_cleanup (xfree, real_path);
176 }
177
178got_symtab:
179
180 /* First, search for an exact match */
181
182 ALL_SYMTABS (objfile, s)
183 {
184 if (FILENAME_CMP (name, s->filename) == 0)
185 {
186 return s;
187 }
188
189 /* If the user gave us an absolute path, try to find the file in
190 this symtab and use its absolute path. */
191
192 if (full_path != NULL)
193 {
194 const char *fp = symtab_to_fullname (s);
195 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
196 {
197 return s;
198 }
199 }
200
201 if (real_path != NULL)
202 {
203 char *fullname = symtab_to_fullname (s);
204 if (fullname != NULL)
205 {
206 char *rp = gdb_realpath (fullname);
207 make_cleanup (xfree, rp);
208 if (FILENAME_CMP (real_path, rp) == 0)
209 {
210 return s;
211 }
212 }
213 }
214 }
215
216 /* Now, search for a matching tail (only if name doesn't have any dirs) */
217
218 if (lbasename (name) == name)
219 ALL_SYMTABS (objfile, s)
220 {
221 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
222 return s;
223 }
224
225 /* Same search rules as above apply here, but now we look thru the
226 psymtabs. */
227
228 ps = lookup_partial_symtab (name);
229 if (!ps)
230 return (NULL);
231
232 if (ps->readin)
233 error (_("Internal: readin %s pst for `%s' found when no symtab found."),
234 ps->filename, name);
235
236 s = PSYMTAB_TO_SYMTAB (ps);
237
238 if (s)
239 return s;
240
241 /* At this point, we have located the psymtab for this file, but
242 the conversion to a symtab has failed. This usually happens
243 when we are looking up an include file. In this case,
244 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
245 been created. So, we need to run through the symtabs again in
246 order to find the file.
247 XXX - This is a crock, and should be fixed inside of the the
248 symbol parsing routines. */
249 goto got_symtab;
250}
251
252/* Lookup the partial symbol table of a source file named NAME.
253 *If* there is no '/' in the name, a match after a '/'
254 in the psymtab filename will also work. */
255
256struct partial_symtab *
257lookup_partial_symtab (const char *name)
258{
259 struct partial_symtab *pst;
260 struct objfile *objfile;
261 char *full_path = NULL;
262 char *real_path = NULL;
263
264 /* Here we are interested in canonicalizing an absolute path, not
265 absolutizing a relative path. */
266 if (IS_ABSOLUTE_PATH (name))
267 {
268 full_path = xfullpath (name);
269 make_cleanup (xfree, full_path);
270 real_path = gdb_realpath (name);
271 make_cleanup (xfree, real_path);
272 }
273
274 ALL_PSYMTABS (objfile, pst)
275 {
276 if (FILENAME_CMP (name, pst->filename) == 0)
277 {
278 return (pst);
279 }
280
281 /* If the user gave us an absolute path, try to find the file in
282 this symtab and use its absolute path. */
283 if (full_path != NULL)
284 {
285 psymtab_to_fullname (pst);
286 if (pst->fullname != NULL
287 && FILENAME_CMP (full_path, pst->fullname) == 0)
288 {
289 return pst;
290 }
291 }
292
293 if (real_path != NULL)
294 {
295 char *rp = NULL;
296 psymtab_to_fullname (pst);
297 if (pst->fullname != NULL)
298 {
299 rp = gdb_realpath (pst->fullname);
300 make_cleanup (xfree, rp);
301 }
302 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
303 {
304 return pst;
305 }
306 }
307 }
308
309 /* Now, search for a matching tail (only if name doesn't have any dirs) */
310
311 if (lbasename (name) == name)
312 ALL_PSYMTABS (objfile, pst)
313 {
314 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
315 return (pst);
316 }
317
318 return (NULL);
319}
320\f
321/* Mangle a GDB method stub type. This actually reassembles the pieces of the
322 full method name, which consist of the class name (from T), the unadorned
323 method name from METHOD_ID, and the signature for the specific overload,
324 specified by SIGNATURE_ID. Note that this function is g++ specific. */
325
326char *
327gdb_mangle_name (struct type *type, int method_id, int signature_id)
328{
329 int mangled_name_len;
330 char *mangled_name;
331 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
332 struct fn_field *method = &f[signature_id];
333 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
334 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
335 char *newname = type_name_no_tag (type);
336
337 /* Does the form of physname indicate that it is the full mangled name
338 of a constructor (not just the args)? */
339 int is_full_physname_constructor;
340
341 int is_constructor;
342 int is_destructor = is_destructor_name (physname);
343 /* Need a new type prefix. */
344 char *const_prefix = method->is_const ? "C" : "";
345 char *volatile_prefix = method->is_volatile ? "V" : "";
346 char buf[20];
347 int len = (newname == NULL ? 0 : strlen (newname));
348
349 /* Nothing to do if physname already contains a fully mangled v3 abi name
350 or an operator name. */
351 if ((physname[0] == '_' && physname[1] == 'Z')
352 || is_operator_name (field_name))
353 return xstrdup (physname);
354
355 is_full_physname_constructor = is_constructor_name (physname);
356
357 is_constructor =
358 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
359
360 if (!is_destructor)
361 is_destructor = (strncmp (physname, "__dt", 4) == 0);
362
363 if (is_destructor || is_full_physname_constructor)
364 {
365 mangled_name = (char *) xmalloc (strlen (physname) + 1);
366 strcpy (mangled_name, physname);
367 return mangled_name;
368 }
369
370 if (len == 0)
371 {
372 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
373 }
374 else if (physname[0] == 't' || physname[0] == 'Q')
375 {
376 /* The physname for template and qualified methods already includes
377 the class name. */
378 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
379 newname = NULL;
380 len = 0;
381 }
382 else
383 {
384 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
385 }
386 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
387 + strlen (buf) + len + strlen (physname) + 1);
388
389 {
390 mangled_name = (char *) xmalloc (mangled_name_len);
391 if (is_constructor)
392 mangled_name[0] = '\0';
393 else
394 strcpy (mangled_name, field_name);
395 }
396 strcat (mangled_name, buf);
397 /* If the class doesn't have a name, i.e. newname NULL, then we just
398 mangle it using 0 for the length of the class. Thus it gets mangled
399 as something starting with `::' rather than `classname::'. */
400 if (newname != NULL)
401 strcat (mangled_name, newname);
402
403 strcat (mangled_name, physname);
404 return (mangled_name);
405}
406
407\f
408/* Initialize the language dependent portion of a symbol
409 depending upon the language for the symbol. */
410void
411symbol_init_language_specific (struct general_symbol_info *gsymbol,
412 enum language language)
413{
414 gsymbol->language = language;
415 if (gsymbol->language == language_cplus
416 || gsymbol->language == language_java
417 || gsymbol->language == language_objc)
418 {
419 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
420 }
421 else
422 {
423 memset (&gsymbol->language_specific, 0,
424 sizeof (gsymbol->language_specific));
425 }
426}
427
428/* Functions to initialize a symbol's mangled name. */
429
430/* Objects of this type are stored in the demangled name hash table. */
431struct demangled_name_entry
432{
433 char *mangled;
434 char demangled[1];
435};
436
437/* Hash function for the demangled name hash. */
438static hashval_t
439hash_demangled_name_entry (const void *data)
440{
441 const struct demangled_name_entry *e = data;
442 return htab_hash_string (e->mangled);
443}
444
445/* Equality function for the demangled name hash. */
446static int
447eq_demangled_name_entry (const void *a, const void *b)
448{
449 const struct demangled_name_entry *da = a;
450 const struct demangled_name_entry *db = b;
451 return strcmp (da->mangled, db->mangled) == 0;
452}
453
454/* Create the hash table used for demangled names. Each hash entry is
455 a pair of strings; one for the mangled name and one for the demangled
456 name. The entry is hashed via just the mangled name. */
457
458static void
459create_demangled_names_hash (struct objfile *objfile)
460{
461 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
462 The hash table code will round this up to the next prime number.
463 Choosing a much larger table size wastes memory, and saves only about
464 1% in symbol reading. */
465
466 objfile->demangled_names_hash = htab_create_alloc
467 (256, hash_demangled_name_entry, eq_demangled_name_entry,
468 NULL, xcalloc, xfree);
469}
470
471/* Try to determine the demangled name for a symbol, based on the
472 language of that symbol. If the language is set to language_auto,
473 it will attempt to find any demangling algorithm that works and
474 then set the language appropriately. The returned name is allocated
475 by the demangler and should be xfree'd. */
476
477static char *
478symbol_find_demangled_name (struct general_symbol_info *gsymbol,
479 const char *mangled)
480{
481 char *demangled = NULL;
482
483 if (gsymbol->language == language_unknown)
484 gsymbol->language = language_auto;
485
486 if (gsymbol->language == language_objc
487 || gsymbol->language == language_auto)
488 {
489 demangled =
490 objc_demangle (mangled, 0);
491 if (demangled != NULL)
492 {
493 gsymbol->language = language_objc;
494 return demangled;
495 }
496 }
497 if (gsymbol->language == language_cplus
498 || gsymbol->language == language_auto)
499 {
500 demangled =
501 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
502 if (demangled != NULL)
503 {
504 gsymbol->language = language_cplus;
505 return demangled;
506 }
507 }
508 if (gsymbol->language == language_java)
509 {
510 demangled =
511 cplus_demangle (mangled,
512 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
513 if (demangled != NULL)
514 {
515 gsymbol->language = language_java;
516 return demangled;
517 }
518 }
519 return NULL;
520}
521
522/* Set both the mangled and demangled (if any) names for GSYMBOL based
523 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
524 objfile's obstack; but if COPY_NAME is 0 and if NAME is
525 NUL-terminated, then this function assumes that NAME is already
526 correctly saved (either permanently or with a lifetime tied to the
527 objfile), and it will not be copied.
528
529 The hash table corresponding to OBJFILE is used, and the memory
530 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
531 so the pointer can be discarded after calling this function. */
532
533/* We have to be careful when dealing with Java names: when we run
534 into a Java minimal symbol, we don't know it's a Java symbol, so it
535 gets demangled as a C++ name. This is unfortunate, but there's not
536 much we can do about it: but when demangling partial symbols and
537 regular symbols, we'd better not reuse the wrong demangled name.
538 (See PR gdb/1039.) We solve this by putting a distinctive prefix
539 on Java names when storing them in the hash table. */
540
541/* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
542 don't mind the Java prefix so much: different languages have
543 different demangling requirements, so it's only natural that we
544 need to keep language data around in our demangling cache. But
545 it's not good that the minimal symbol has the wrong demangled name.
546 Unfortunately, I can't think of any easy solution to that
547 problem. */
548
549#define JAVA_PREFIX "##JAVA$$"
550#define JAVA_PREFIX_LEN 8
551
552void
553symbol_set_names (struct general_symbol_info *gsymbol,
554 const char *linkage_name, int len, int copy_name,
555 struct objfile *objfile)
556{
557 struct demangled_name_entry **slot;
558 /* A 0-terminated copy of the linkage name. */
559 const char *linkage_name_copy;
560 /* A copy of the linkage name that might have a special Java prefix
561 added to it, for use when looking names up in the hash table. */
562 const char *lookup_name;
563 /* The length of lookup_name. */
564 int lookup_len;
565 struct demangled_name_entry entry;
566
567 if (gsymbol->language == language_ada)
568 {
569 /* In Ada, we do the symbol lookups using the mangled name, so
570 we can save some space by not storing the demangled name.
571
572 As a side note, we have also observed some overlap between
573 the C++ mangling and Ada mangling, similarly to what has
574 been observed with Java. Because we don't store the demangled
575 name with the symbol, we don't need to use the same trick
576 as Java. */
577 if (!copy_name)
578 gsymbol->name = (char *) linkage_name;
579 else
580 {
581 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
582 memcpy (gsymbol->name, linkage_name, len);
583 gsymbol->name[len] = '\0';
584 }
585 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
586
587 return;
588 }
589
590 if (objfile->demangled_names_hash == NULL)
591 create_demangled_names_hash (objfile);
592
593 /* The stabs reader generally provides names that are not
594 NUL-terminated; most of the other readers don't do this, so we
595 can just use the given copy, unless we're in the Java case. */
596 if (gsymbol->language == language_java)
597 {
598 char *alloc_name;
599 lookup_len = len + JAVA_PREFIX_LEN;
600
601 alloc_name = alloca (lookup_len + 1);
602 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
603 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
604 alloc_name[lookup_len] = '\0';
605
606 lookup_name = alloc_name;
607 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
608 }
609 else if (linkage_name[len] != '\0')
610 {
611 char *alloc_name;
612 lookup_len = len;
613
614 alloc_name = alloca (lookup_len + 1);
615 memcpy (alloc_name, linkage_name, len);
616 alloc_name[lookup_len] = '\0';
617
618 lookup_name = alloc_name;
619 linkage_name_copy = alloc_name;
620 }
621 else
622 {
623 lookup_len = len;
624 lookup_name = linkage_name;
625 linkage_name_copy = linkage_name;
626 }
627
628 entry.mangled = (char *) lookup_name;
629 slot = ((struct demangled_name_entry **)
630 htab_find_slot (objfile->demangled_names_hash,
631 &entry, INSERT));
632
633 /* If this name is not in the hash table, add it. */
634 if (*slot == NULL)
635 {
636 char *demangled_name = symbol_find_demangled_name (gsymbol,
637 linkage_name_copy);
638 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
639
640 /* Suppose we have demangled_name==NULL, copy_name==0, and
641 lookup_name==linkage_name. In this case, we already have the
642 mangled name saved, and we don't have a demangled name. So,
643 you might think we could save a little space by not recording
644 this in the hash table at all.
645
646 It turns out that it is actually important to still save such
647 an entry in the hash table, because storing this name gives
648 us better backache hit rates for partial symbols. */
649 if (!copy_name && lookup_name == linkage_name)
650 {
651 *slot = obstack_alloc (&objfile->objfile_obstack,
652 offsetof (struct demangled_name_entry,
653 demangled)
654 + demangled_len + 1);
655 (*slot)->mangled = (char *) lookup_name;
656 }
657 else
658 {
659 /* If we must copy the mangled name, put it directly after
660 the demangled name so we can have a single
661 allocation. */
662 *slot = obstack_alloc (&objfile->objfile_obstack,
663 offsetof (struct demangled_name_entry,
664 demangled)
665 + lookup_len + demangled_len + 2);
666 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
667 strcpy ((*slot)->mangled, lookup_name);
668 }
669
670 if (demangled_name != NULL)
671 {
672 strcpy ((*slot)->demangled, demangled_name);
673 xfree (demangled_name);
674 }
675 else
676 (*slot)->demangled[0] = '\0';
677 }
678
679 gsymbol->name = (*slot)->mangled + lookup_len - len;
680 if ((*slot)->demangled[0] != '\0')
681 gsymbol->language_specific.cplus_specific.demangled_name
682 = (*slot)->demangled;
683 else
684 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
685}
686
687/* Return the source code name of a symbol. In languages where
688 demangling is necessary, this is the demangled name. */
689
690char *
691symbol_natural_name (const struct general_symbol_info *gsymbol)
692{
693 switch (gsymbol->language)
694 {
695 case language_cplus:
696 case language_java:
697 case language_objc:
698 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
699 return gsymbol->language_specific.cplus_specific.demangled_name;
700 break;
701 case language_ada:
702 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
703 return gsymbol->language_specific.cplus_specific.demangled_name;
704 else
705 return ada_decode_symbol (gsymbol);
706 break;
707 default:
708 break;
709 }
710 return gsymbol->name;
711}
712
713/* Return the demangled name for a symbol based on the language for
714 that symbol. If no demangled name exists, return NULL. */
715char *
716symbol_demangled_name (const struct general_symbol_info *gsymbol)
717{
718 switch (gsymbol->language)
719 {
720 case language_cplus:
721 case language_java:
722 case language_objc:
723 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
724 return gsymbol->language_specific.cplus_specific.demangled_name;
725 break;
726 case language_ada:
727 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
728 return gsymbol->language_specific.cplus_specific.demangled_name;
729 else
730 return ada_decode_symbol (gsymbol);
731 break;
732 default:
733 break;
734 }
735 return NULL;
736}
737
738/* Return the search name of a symbol---generally the demangled or
739 linkage name of the symbol, depending on how it will be searched for.
740 If there is no distinct demangled name, then returns the same value
741 (same pointer) as SYMBOL_LINKAGE_NAME. */
742char *
743symbol_search_name (const struct general_symbol_info *gsymbol)
744{
745 if (gsymbol->language == language_ada)
746 return gsymbol->name;
747 else
748 return symbol_natural_name (gsymbol);
749}
750
751/* Initialize the structure fields to zero values. */
752void
753init_sal (struct symtab_and_line *sal)
754{
755 sal->pspace = NULL;
756 sal->symtab = 0;
757 sal->section = 0;
758 sal->line = 0;
759 sal->pc = 0;
760 sal->end = 0;
761 sal->explicit_pc = 0;
762 sal->explicit_line = 0;
763}
764\f
765
766/* Return 1 if the two sections are the same, or if they could
767 plausibly be copies of each other, one in an original object
768 file and another in a separated debug file. */
769
770int
771matching_obj_sections (struct obj_section *obj_first,
772 struct obj_section *obj_second)
773{
774 asection *first = obj_first? obj_first->the_bfd_section : NULL;
775 asection *second = obj_second? obj_second->the_bfd_section : NULL;
776 struct objfile *obj;
777
778 /* If they're the same section, then they match. */
779 if (first == second)
780 return 1;
781
782 /* If either is NULL, give up. */
783 if (first == NULL || second == NULL)
784 return 0;
785
786 /* This doesn't apply to absolute symbols. */
787 if (first->owner == NULL || second->owner == NULL)
788 return 0;
789
790 /* If they're in the same object file, they must be different sections. */
791 if (first->owner == second->owner)
792 return 0;
793
794 /* Check whether the two sections are potentially corresponding. They must
795 have the same size, address, and name. We can't compare section indexes,
796 which would be more reliable, because some sections may have been
797 stripped. */
798 if (bfd_get_section_size (first) != bfd_get_section_size (second))
799 return 0;
800
801 /* In-memory addresses may start at a different offset, relativize them. */
802 if (bfd_get_section_vma (first->owner, first)
803 - bfd_get_start_address (first->owner)
804 != bfd_get_section_vma (second->owner, second)
805 - bfd_get_start_address (second->owner))
806 return 0;
807
808 if (bfd_get_section_name (first->owner, first) == NULL
809 || bfd_get_section_name (second->owner, second) == NULL
810 || strcmp (bfd_get_section_name (first->owner, first),
811 bfd_get_section_name (second->owner, second)) != 0)
812 return 0;
813
814 /* Otherwise check that they are in corresponding objfiles. */
815
816 ALL_OBJFILES (obj)
817 if (obj->obfd == first->owner)
818 break;
819 gdb_assert (obj != NULL);
820
821 if (obj->separate_debug_objfile != NULL
822 && obj->separate_debug_objfile->obfd == second->owner)
823 return 1;
824 if (obj->separate_debug_objfile_backlink != NULL
825 && obj->separate_debug_objfile_backlink->obfd == second->owner)
826 return 1;
827
828 return 0;
829}
830
831/* Find which partial symtab contains PC and SECTION starting at psymtab PST.
832 We may find a different psymtab than PST. See FIND_PC_SECT_PSYMTAB. */
833
834static struct partial_symtab *
835find_pc_sect_psymtab_closer (CORE_ADDR pc, struct obj_section *section,
836 struct partial_symtab *pst,
837 struct minimal_symbol *msymbol)
838{
839 struct objfile *objfile = pst->objfile;
840 struct partial_symtab *tpst;
841 struct partial_symtab *best_pst = pst;
842 CORE_ADDR best_addr = pst->textlow;
843
844 /* An objfile that has its functions reordered might have
845 many partial symbol tables containing the PC, but
846 we want the partial symbol table that contains the
847 function containing the PC. */
848 if (!(objfile->flags & OBJF_REORDERED) &&
849 section == 0) /* can't validate section this way */
850 return pst;
851
852 if (msymbol == NULL)
853 return (pst);
854
855 /* The code range of partial symtabs sometimes overlap, so, in
856 the loop below, we need to check all partial symtabs and
857 find the one that fits better for the given PC address. We
858 select the partial symtab that contains a symbol whose
859 address is closest to the PC address. By closest we mean
860 that find_pc_sect_symbol returns the symbol with address
861 that is closest and still less than the given PC. */
862 for (tpst = pst; tpst != NULL; tpst = tpst->next)
863 {
864 if (pc >= tpst->textlow && pc < tpst->texthigh)
865 {
866 struct partial_symbol *p;
867 CORE_ADDR this_addr;
868
869 /* NOTE: This assumes that every psymbol has a
870 corresponding msymbol, which is not necessarily
871 true; the debug info might be much richer than the
872 object's symbol table. */
873 p = find_pc_sect_psymbol (tpst, pc, section);
874 if (p != NULL
875 && SYMBOL_VALUE_ADDRESS (p)
876 == SYMBOL_VALUE_ADDRESS (msymbol))
877 return tpst;
878
879 /* Also accept the textlow value of a psymtab as a
880 "symbol", to provide some support for partial
881 symbol tables with line information but no debug
882 symbols (e.g. those produced by an assembler). */
883 if (p != NULL)
884 this_addr = SYMBOL_VALUE_ADDRESS (p);
885 else
886 this_addr = tpst->textlow;
887
888 /* Check whether it is closer than our current
889 BEST_ADDR. Since this symbol address is
890 necessarily lower or equal to PC, the symbol closer
891 to PC is the symbol which address is the highest.
892 This way we return the psymtab which contains such
893 best match symbol. This can help in cases where the
894 symbol information/debuginfo is not complete, like
895 for instance on IRIX6 with gcc, where no debug info
896 is emitted for statics. (See also the nodebug.exp
897 testcase.) */
898 if (this_addr > best_addr)
899 {
900 best_addr = this_addr;
901 best_pst = tpst;
902 }
903 }
904 }
905 return best_pst;
906}
907
908/* Find which partial symtab contains PC and SECTION. Return 0 if
909 none. We return the psymtab that contains a symbol whose address
910 exactly matches PC, or, if we cannot find an exact match, the
911 psymtab that contains a symbol whose address is closest to PC. */
912struct partial_symtab *
913find_pc_sect_psymtab (CORE_ADDR pc, struct obj_section *section)
914{
915 struct objfile *objfile;
916 struct minimal_symbol *msymbol;
917
918 /* If we know that this is not a text address, return failure. This is
919 necessary because we loop based on texthigh and textlow, which do
920 not include the data ranges. */
921 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
922 if (msymbol
923 && (MSYMBOL_TYPE (msymbol) == mst_data
924 || MSYMBOL_TYPE (msymbol) == mst_bss
925 || MSYMBOL_TYPE (msymbol) == mst_abs
926 || MSYMBOL_TYPE (msymbol) == mst_file_data
927 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
928 return NULL;
929
930 /* Try just the PSYMTABS_ADDRMAP mapping first as it has better granularity
931 than the later used TEXTLOW/TEXTHIGH one. */
932
933 ALL_OBJFILES (objfile)
934 if (objfile->psymtabs_addrmap != NULL)
935 {
936 struct partial_symtab *pst;
937
938 pst = addrmap_find (objfile->psymtabs_addrmap, pc);
939 if (pst != NULL)
940 {
941 /* FIXME: addrmaps currently do not handle overlayed sections,
942 so fall back to the non-addrmap case if we're debugging
943 overlays and the addrmap returned the wrong section. */
944 if (overlay_debugging && msymbol && section)
945 {
946 struct partial_symbol *p;
947 /* NOTE: This assumes that every psymbol has a
948 corresponding msymbol, which is not necessarily
949 true; the debug info might be much richer than the
950 object's symbol table. */
951 p = find_pc_sect_psymbol (pst, pc, section);
952 if (!p
953 || SYMBOL_VALUE_ADDRESS (p)
954 != SYMBOL_VALUE_ADDRESS (msymbol))
955 continue;
956 }
957
958 /* We do not try to call FIND_PC_SECT_PSYMTAB_CLOSER as
959 PSYMTABS_ADDRMAP we used has already the best 1-byte
960 granularity and FIND_PC_SECT_PSYMTAB_CLOSER may mislead us into
961 a worse chosen section due to the TEXTLOW/TEXTHIGH ranges
962 overlap. */
963
964 return pst;
965 }
966 }
967
968 /* Existing PSYMTABS_ADDRMAP mapping is present even for PARTIAL_SYMTABs
969 which still have no corresponding full SYMTABs read. But it is not
970 present for non-DWARF2 debug infos not supporting PSYMTABS_ADDRMAP in GDB
971 so far. */
972
973 ALL_OBJFILES (objfile)
974 {
975 struct partial_symtab *pst;
976
977 /* Check even OBJFILE with non-zero PSYMTABS_ADDRMAP as only several of
978 its CUs may be missing in PSYMTABS_ADDRMAP as they may be varying
979 debug info type in single OBJFILE. */
980
981 ALL_OBJFILE_PSYMTABS (objfile, pst)
982 if (pc >= pst->textlow && pc < pst->texthigh)
983 {
984 struct partial_symtab *best_pst;
985
986 best_pst = find_pc_sect_psymtab_closer (pc, section, pst,
987 msymbol);
988 if (best_pst != NULL)
989 return best_pst;
990 }
991 }
992
993 return NULL;
994}
995
996/* Find which partial symtab contains PC. Return 0 if none.
997 Backward compatibility, no section */
998
999struct partial_symtab *
1000find_pc_psymtab (CORE_ADDR pc)
1001{
1002 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
1003}
1004
1005/* Find which partial symbol within a psymtab matches PC and SECTION.
1006 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
1007
1008struct partial_symbol *
1009find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
1010 struct obj_section *section)
1011{
1012 struct partial_symbol *best = NULL, *p, **pp;
1013 CORE_ADDR best_pc;
1014
1015 if (!psymtab)
1016 psymtab = find_pc_sect_psymtab (pc, section);
1017 if (!psymtab)
1018 return 0;
1019
1020 /* Cope with programs that start at address 0 */
1021 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
1022
1023 /* Search the global symbols as well as the static symbols, so that
1024 find_pc_partial_function doesn't use a minimal symbol and thus
1025 cache a bad endaddr. */
1026 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
1027 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
1028 < psymtab->n_global_syms);
1029 pp++)
1030 {
1031 p = *pp;
1032 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
1033 && SYMBOL_CLASS (p) == LOC_BLOCK
1034 && pc >= SYMBOL_VALUE_ADDRESS (p)
1035 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
1036 || (psymtab->textlow == 0
1037 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
1038 {
1039 if (section) /* match on a specific section */
1040 {
1041 fixup_psymbol_section (p, psymtab->objfile);
1042 if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section))
1043 continue;
1044 }
1045 best_pc = SYMBOL_VALUE_ADDRESS (p);
1046 best = p;
1047 }
1048 }
1049
1050 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
1051 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
1052 < psymtab->n_static_syms);
1053 pp++)
1054 {
1055 p = *pp;
1056 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
1057 && SYMBOL_CLASS (p) == LOC_BLOCK
1058 && pc >= SYMBOL_VALUE_ADDRESS (p)
1059 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
1060 || (psymtab->textlow == 0
1061 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
1062 {
1063 if (section) /* match on a specific section */
1064 {
1065 fixup_psymbol_section (p, psymtab->objfile);
1066 if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section))
1067 continue;
1068 }
1069 best_pc = SYMBOL_VALUE_ADDRESS (p);
1070 best = p;
1071 }
1072 }
1073
1074 return best;
1075}
1076
1077/* Find which partial symbol within a psymtab matches PC. Return 0 if none.
1078 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
1079
1080struct partial_symbol *
1081find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
1082{
1083 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
1084}
1085\f
1086/* Debug symbols usually don't have section information. We need to dig that
1087 out of the minimal symbols and stash that in the debug symbol. */
1088
1089static void
1090fixup_section (struct general_symbol_info *ginfo,
1091 CORE_ADDR addr, struct objfile *objfile)
1092{
1093 struct minimal_symbol *msym;
1094
1095 /* First, check whether a minimal symbol with the same name exists
1096 and points to the same address. The address check is required
1097 e.g. on PowerPC64, where the minimal symbol for a function will
1098 point to the function descriptor, while the debug symbol will
1099 point to the actual function code. */
1100 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1101 if (msym)
1102 {
1103 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1104 ginfo->section = SYMBOL_SECTION (msym);
1105 }
1106 else
1107 {
1108 /* Static, function-local variables do appear in the linker
1109 (minimal) symbols, but are frequently given names that won't
1110 be found via lookup_minimal_symbol(). E.g., it has been
1111 observed in frv-uclinux (ELF) executables that a static,
1112 function-local variable named "foo" might appear in the
1113 linker symbols as "foo.6" or "foo.3". Thus, there is no
1114 point in attempting to extend the lookup-by-name mechanism to
1115 handle this case due to the fact that there can be multiple
1116 names.
1117
1118 So, instead, search the section table when lookup by name has
1119 failed. The ``addr'' and ``endaddr'' fields may have already
1120 been relocated. If so, the relocation offset (i.e. the
1121 ANOFFSET value) needs to be subtracted from these values when
1122 performing the comparison. We unconditionally subtract it,
1123 because, when no relocation has been performed, the ANOFFSET
1124 value will simply be zero.
1125
1126 The address of the symbol whose section we're fixing up HAS
1127 NOT BEEN adjusted (relocated) yet. It can't have been since
1128 the section isn't yet known and knowing the section is
1129 necessary in order to add the correct relocation value. In
1130 other words, we wouldn't even be in this function (attempting
1131 to compute the section) if it were already known.
1132
1133 Note that it is possible to search the minimal symbols
1134 (subtracting the relocation value if necessary) to find the
1135 matching minimal symbol, but this is overkill and much less
1136 efficient. It is not necessary to find the matching minimal
1137 symbol, only its section.
1138
1139 Note that this technique (of doing a section table search)
1140 can fail when unrelocated section addresses overlap. For
1141 this reason, we still attempt a lookup by name prior to doing
1142 a search of the section table. */
1143
1144 struct obj_section *s;
1145 ALL_OBJFILE_OSECTIONS (objfile, s)
1146 {
1147 int idx = s->the_bfd_section->index;
1148 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1149
1150 if (obj_section_addr (s) - offset <= addr
1151 && addr < obj_section_endaddr (s) - offset)
1152 {
1153 ginfo->obj_section = s;
1154 ginfo->section = idx;
1155 return;
1156 }
1157 }
1158 }
1159}
1160
1161struct symbol *
1162fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1163{
1164 CORE_ADDR addr;
1165
1166 if (!sym)
1167 return NULL;
1168
1169 if (SYMBOL_OBJ_SECTION (sym))
1170 return sym;
1171
1172 /* We either have an OBJFILE, or we can get at it from the sym's
1173 symtab. Anything else is a bug. */
1174 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1175
1176 if (objfile == NULL)
1177 objfile = SYMBOL_SYMTAB (sym)->objfile;
1178
1179 /* We should have an objfile by now. */
1180 gdb_assert (objfile);
1181
1182 switch (SYMBOL_CLASS (sym))
1183 {
1184 case LOC_STATIC:
1185 case LOC_LABEL:
1186 addr = SYMBOL_VALUE_ADDRESS (sym);
1187 break;
1188 case LOC_BLOCK:
1189 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1190 break;
1191
1192 default:
1193 /* Nothing else will be listed in the minsyms -- no use looking
1194 it up. */
1195 return sym;
1196 }
1197
1198 fixup_section (&sym->ginfo, addr, objfile);
1199
1200 return sym;
1201}
1202
1203struct partial_symbol *
1204fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
1205{
1206 CORE_ADDR addr;
1207
1208 if (!psym)
1209 return NULL;
1210
1211 if (SYMBOL_OBJ_SECTION (psym))
1212 return psym;
1213
1214 gdb_assert (objfile);
1215
1216 switch (SYMBOL_CLASS (psym))
1217 {
1218 case LOC_STATIC:
1219 case LOC_LABEL:
1220 case LOC_BLOCK:
1221 addr = SYMBOL_VALUE_ADDRESS (psym);
1222 break;
1223 default:
1224 /* Nothing else will be listed in the minsyms -- no use looking
1225 it up. */
1226 return psym;
1227 }
1228
1229 fixup_section (&psym->ginfo, addr, objfile);
1230
1231 return psym;
1232}
1233
1234/* Find the definition for a specified symbol name NAME
1235 in domain DOMAIN, visible from lexical block BLOCK.
1236 Returns the struct symbol pointer, or zero if no symbol is found.
1237 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1238 NAME is a field of the current implied argument `this'. If so set
1239 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1240 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1241 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1242
1243/* This function has a bunch of loops in it and it would seem to be
1244 attractive to put in some QUIT's (though I'm not really sure
1245 whether it can run long enough to be really important). But there
1246 are a few calls for which it would appear to be bad news to quit
1247 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1248 that there is C++ code below which can error(), but that probably
1249 doesn't affect these calls since they are looking for a known
1250 variable and thus can probably assume it will never hit the C++
1251 code). */
1252
1253struct symbol *
1254lookup_symbol_in_language (const char *name, const struct block *block,
1255 const domain_enum domain, enum language lang,
1256 int *is_a_field_of_this)
1257{
1258 char *demangled_name = NULL;
1259 const char *modified_name = NULL;
1260 const char *mangled_name = NULL;
1261 struct symbol *returnval;
1262 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1263
1264 modified_name = name;
1265
1266 /* If we are using C++ or Java, demangle the name before doing a lookup, so
1267 we can always binary search. */
1268 if (lang == language_cplus)
1269 {
1270 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1271 if (demangled_name)
1272 {
1273 mangled_name = name;
1274 modified_name = demangled_name;
1275 make_cleanup (xfree, demangled_name);
1276 }
1277 else
1278 {
1279 /* If we were given a non-mangled name, canonicalize it
1280 according to the language (so far only for C++). */
1281 demangled_name = cp_canonicalize_string (name);
1282 if (demangled_name)
1283 {
1284 modified_name = demangled_name;
1285 make_cleanup (xfree, demangled_name);
1286 }
1287 }
1288 }
1289 else if (lang == language_java)
1290 {
1291 demangled_name = cplus_demangle (name,
1292 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1293 if (demangled_name)
1294 {
1295 mangled_name = name;
1296 modified_name = demangled_name;
1297 make_cleanup (xfree, demangled_name);
1298 }
1299 }
1300
1301 if (case_sensitivity == case_sensitive_off)
1302 {
1303 char *copy;
1304 int len, i;
1305
1306 len = strlen (name);
1307 copy = (char *) alloca (len + 1);
1308 for (i= 0; i < len; i++)
1309 copy[i] = tolower (name[i]);
1310 copy[len] = 0;
1311 modified_name = copy;
1312 }
1313
1314 returnval = lookup_symbol_aux (modified_name, mangled_name, block,
1315 domain, lang, is_a_field_of_this);
1316 do_cleanups (cleanup);
1317
1318 return returnval;
1319}
1320
1321/* Behave like lookup_symbol_in_language, but performed with the
1322 current language. */
1323
1324struct symbol *
1325lookup_symbol (const char *name, const struct block *block,
1326 domain_enum domain, int *is_a_field_of_this)
1327{
1328 return lookup_symbol_in_language (name, block, domain,
1329 current_language->la_language,
1330 is_a_field_of_this);
1331}
1332
1333/* Behave like lookup_symbol except that NAME is the natural name
1334 of the symbol that we're looking for and, if LINKAGE_NAME is
1335 non-NULL, ensure that the symbol's linkage name matches as
1336 well. */
1337
1338static struct symbol *
1339lookup_symbol_aux (const char *name, const char *linkage_name,
1340 const struct block *block, const domain_enum domain,
1341 enum language language, int *is_a_field_of_this)
1342{
1343 struct symbol *sym;
1344 const struct language_defn *langdef;
1345
1346 /* Make sure we do something sensible with is_a_field_of_this, since
1347 the callers that set this parameter to some non-null value will
1348 certainly use it later and expect it to be either 0 or 1.
1349 If we don't set it, the contents of is_a_field_of_this are
1350 undefined. */
1351 if (is_a_field_of_this != NULL)
1352 *is_a_field_of_this = 0;
1353
1354 /* Search specified block and its superiors. Don't search
1355 STATIC_BLOCK or GLOBAL_BLOCK. */
1356
1357 sym = lookup_symbol_aux_local (name, linkage_name, block, domain);
1358 if (sym != NULL)
1359 return sym;
1360
1361 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1362 check to see if NAME is a field of `this'. */
1363
1364 langdef = language_def (language);
1365
1366 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1367 && block != NULL)
1368 {
1369 struct symbol *sym = NULL;
1370 /* 'this' is only defined in the function's block, so find the
1371 enclosing function block. */
1372 for (; block && !BLOCK_FUNCTION (block);
1373 block = BLOCK_SUPERBLOCK (block));
1374
1375 if (block && !dict_empty (BLOCK_DICT (block)))
1376 sym = lookup_block_symbol (block, langdef->la_name_of_this,
1377 NULL, VAR_DOMAIN);
1378 if (sym)
1379 {
1380 struct type *t = sym->type;
1381
1382 /* I'm not really sure that type of this can ever
1383 be typedefed; just be safe. */
1384 CHECK_TYPEDEF (t);
1385 if (TYPE_CODE (t) == TYPE_CODE_PTR
1386 || TYPE_CODE (t) == TYPE_CODE_REF)
1387 t = TYPE_TARGET_TYPE (t);
1388
1389 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1390 && TYPE_CODE (t) != TYPE_CODE_UNION)
1391 error (_("Internal error: `%s' is not an aggregate"),
1392 langdef->la_name_of_this);
1393
1394 if (check_field (t, name))
1395 {
1396 *is_a_field_of_this = 1;
1397 return NULL;
1398 }
1399 }
1400 }
1401
1402 /* Now do whatever is appropriate for LANGUAGE to look
1403 up static and global variables. */
1404
1405 sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name, block, domain);
1406 if (sym != NULL)
1407 return sym;
1408
1409 /* Now search all static file-level symbols. Not strictly correct,
1410 but more useful than an error. Do the symtabs first, then check
1411 the psymtabs. If a psymtab indicates the existence of the
1412 desired name as a file-level static, then do psymtab-to-symtab
1413 conversion on the fly and return the found symbol. */
1414
1415 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name, domain);
1416 if (sym != NULL)
1417 return sym;
1418
1419 sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name, domain);
1420 if (sym != NULL)
1421 return sym;
1422
1423 return NULL;
1424}
1425
1426/* Check to see if the symbol is defined in BLOCK or its superiors.
1427 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1428
1429static struct symbol *
1430lookup_symbol_aux_local (const char *name, const char *linkage_name,
1431 const struct block *block,
1432 const domain_enum domain)
1433{
1434 struct symbol *sym;
1435 const struct block *static_block = block_static_block (block);
1436
1437 /* Check if either no block is specified or it's a global block. */
1438
1439 if (static_block == NULL)
1440 return NULL;
1441
1442 while (block != static_block)
1443 {
1444 sym = lookup_symbol_aux_block (name, linkage_name, block, domain);
1445 if (sym != NULL)
1446 return sym;
1447
1448 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1449 break;
1450 block = BLOCK_SUPERBLOCK (block);
1451 }
1452
1453 /* We've reached the edge of the function without finding a result. */
1454
1455 return NULL;
1456}
1457
1458/* Look up OBJFILE to BLOCK. */
1459
1460static struct objfile *
1461lookup_objfile_from_block (const struct block *block)
1462{
1463 struct objfile *obj;
1464 struct symtab *s;
1465
1466 if (block == NULL)
1467 return NULL;
1468
1469 block = block_global_block (block);
1470 /* Go through SYMTABS. */
1471 ALL_SYMTABS (obj, s)
1472 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1473 {
1474 if (obj->separate_debug_objfile_backlink)
1475 obj = obj->separate_debug_objfile_backlink;
1476
1477 return obj;
1478 }
1479
1480 return NULL;
1481}
1482
1483/* Look up a symbol in a block; if found, fixup the symbol, and set
1484 block_found appropriately. */
1485
1486struct symbol *
1487lookup_symbol_aux_block (const char *name, const char *linkage_name,
1488 const struct block *block,
1489 const domain_enum domain)
1490{
1491 struct symbol *sym;
1492
1493 sym = lookup_block_symbol (block, name, linkage_name, domain);
1494 if (sym)
1495 {
1496 block_found = block;
1497 return fixup_symbol_section (sym, NULL);
1498 }
1499
1500 return NULL;
1501}
1502
1503/* Check all global symbols in OBJFILE in symtabs and
1504 psymtabs. */
1505
1506struct symbol *
1507lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1508 const char *name,
1509 const char *linkage_name,
1510 const domain_enum domain)
1511{
1512 const struct objfile *objfile;
1513 struct symbol *sym;
1514 struct blockvector *bv;
1515 const struct block *block;
1516 struct symtab *s;
1517 struct partial_symtab *ps;
1518
1519 for (objfile = main_objfile;
1520 objfile;
1521 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1522 {
1523 /* Go through symtabs. */
1524 ALL_OBJFILE_SYMTABS (objfile, s)
1525 {
1526 bv = BLOCKVECTOR (s);
1527 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1528 sym = lookup_block_symbol (block, name, linkage_name, domain);
1529 if (sym)
1530 {
1531 block_found = block;
1532 return fixup_symbol_section (sym, (struct objfile *)objfile);
1533 }
1534 }
1535
1536 /* Now go through psymtabs. */
1537 ALL_OBJFILE_PSYMTABS (objfile, ps)
1538 {
1539 if (!ps->readin
1540 && lookup_partial_symbol (ps, name, linkage_name,
1541 1, domain))
1542 {
1543 s = PSYMTAB_TO_SYMTAB (ps);
1544 bv = BLOCKVECTOR (s);
1545 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1546 sym = lookup_block_symbol (block, name, linkage_name, domain);
1547 return fixup_symbol_section (sym, (struct objfile *)objfile);
1548 }
1549 }
1550 }
1551
1552 return NULL;
1553}
1554
1555/* Check to see if the symbol is defined in one of the symtabs.
1556 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1557 depending on whether or not we want to search global symbols or
1558 static symbols. */
1559
1560static struct symbol *
1561lookup_symbol_aux_symtabs (int block_index,
1562 const char *name, const char *linkage_name,
1563 const domain_enum domain)
1564{
1565 struct symbol *sym;
1566 struct objfile *objfile;
1567 struct blockvector *bv;
1568 const struct block *block;
1569 struct symtab *s;
1570
1571 ALL_PRIMARY_SYMTABS (objfile, s)
1572 {
1573 bv = BLOCKVECTOR (s);
1574 block = BLOCKVECTOR_BLOCK (bv, block_index);
1575 sym = lookup_block_symbol (block, name, linkage_name, domain);
1576 if (sym)
1577 {
1578 block_found = block;
1579 return fixup_symbol_section (sym, objfile);
1580 }
1581 }
1582
1583 return NULL;
1584}
1585
1586/* Check to see if the symbol is defined in one of the partial
1587 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or
1588 STATIC_BLOCK, depending on whether or not we want to search global
1589 symbols or static symbols. */
1590
1591static struct symbol *
1592lookup_symbol_aux_psymtabs (int block_index, const char *name,
1593 const char *linkage_name,
1594 const domain_enum domain)
1595{
1596 struct symbol *sym;
1597 struct objfile *objfile;
1598 struct blockvector *bv;
1599 const struct block *block;
1600 struct partial_symtab *ps;
1601 struct symtab *s;
1602 const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1603
1604 ALL_PSYMTABS (objfile, ps)
1605 {
1606 if (!ps->readin
1607 && lookup_partial_symbol (ps, name, linkage_name,
1608 psymtab_index, domain))
1609 {
1610 s = PSYMTAB_TO_SYMTAB (ps);
1611 bv = BLOCKVECTOR (s);
1612 block = BLOCKVECTOR_BLOCK (bv, block_index);
1613 sym = lookup_block_symbol (block, name, linkage_name, domain);
1614 if (!sym)
1615 {
1616 /* This shouldn't be necessary, but as a last resort try
1617 looking in the statics even though the psymtab claimed
1618 the symbol was global, or vice-versa. It's possible
1619 that the psymtab gets it wrong in some cases. */
1620
1621 /* FIXME: carlton/2002-09-30: Should we really do that?
1622 If that happens, isn't it likely to be a GDB error, in
1623 which case we should fix the GDB error rather than
1624 silently dealing with it here? So I'd vote for
1625 removing the check for the symbol in the other
1626 block. */
1627 block = BLOCKVECTOR_BLOCK (bv,
1628 block_index == GLOBAL_BLOCK ?
1629 STATIC_BLOCK : GLOBAL_BLOCK);
1630 sym = lookup_block_symbol (block, name, linkage_name, domain);
1631 if (!sym)
1632 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1633 block_index == GLOBAL_BLOCK ? "global" : "static",
1634 name, ps->filename, name, name);
1635 }
1636 return fixup_symbol_section (sym, objfile);
1637 }
1638 }
1639
1640 return NULL;
1641}
1642
1643/* A default version of lookup_symbol_nonlocal for use by languages
1644 that can't think of anything better to do. This implements the C
1645 lookup rules. */
1646
1647struct symbol *
1648basic_lookup_symbol_nonlocal (const char *name,
1649 const char *linkage_name,
1650 const struct block *block,
1651 const domain_enum domain)
1652{
1653 struct symbol *sym;
1654
1655 /* NOTE: carlton/2003-05-19: The comments below were written when
1656 this (or what turned into this) was part of lookup_symbol_aux;
1657 I'm much less worried about these questions now, since these
1658 decisions have turned out well, but I leave these comments here
1659 for posterity. */
1660
1661 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1662 not it would be appropriate to search the current global block
1663 here as well. (That's what this code used to do before the
1664 is_a_field_of_this check was moved up.) On the one hand, it's
1665 redundant with the lookup_symbol_aux_symtabs search that happens
1666 next. On the other hand, if decode_line_1 is passed an argument
1667 like filename:var, then the user presumably wants 'var' to be
1668 searched for in filename. On the third hand, there shouldn't be
1669 multiple global variables all of which are named 'var', and it's
1670 not like decode_line_1 has ever restricted its search to only
1671 global variables in a single filename. All in all, only
1672 searching the static block here seems best: it's correct and it's
1673 cleanest. */
1674
1675 /* NOTE: carlton/2002-12-05: There's also a possible performance
1676 issue here: if you usually search for global symbols in the
1677 current file, then it would be slightly better to search the
1678 current global block before searching all the symtabs. But there
1679 are other factors that have a much greater effect on performance
1680 than that one, so I don't think we should worry about that for
1681 now. */
1682
1683 sym = lookup_symbol_static (name, linkage_name, block, domain);
1684 if (sym != NULL)
1685 return sym;
1686
1687 return lookup_symbol_global (name, linkage_name, block, domain);
1688}
1689
1690/* Lookup a symbol in the static block associated to BLOCK, if there
1691 is one; do nothing if BLOCK is NULL or a global block. */
1692
1693struct symbol *
1694lookup_symbol_static (const char *name,
1695 const char *linkage_name,
1696 const struct block *block,
1697 const domain_enum domain)
1698{
1699 const struct block *static_block = block_static_block (block);
1700
1701 if (static_block != NULL)
1702 return lookup_symbol_aux_block (name, linkage_name, static_block, domain);
1703 else
1704 return NULL;
1705}
1706
1707/* Lookup a symbol in all files' global blocks (searching psymtabs if
1708 necessary). */
1709
1710struct symbol *
1711lookup_symbol_global (const char *name,
1712 const char *linkage_name,
1713 const struct block *block,
1714 const domain_enum domain)
1715{
1716 struct symbol *sym = NULL;
1717 struct objfile *objfile = NULL;
1718
1719 /* Call library-specific lookup procedure. */
1720 objfile = lookup_objfile_from_block (block);
1721 if (objfile != NULL)
1722 sym = solib_global_lookup (objfile, name, linkage_name, domain);
1723 if (sym != NULL)
1724 return sym;
1725
1726 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1727 if (sym != NULL)
1728 return sym;
1729
1730 return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1731}
1732
1733int
1734symbol_matches_domain (enum language symbol_language,
1735 domain_enum symbol_domain,
1736 domain_enum domain)
1737{
1738 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1739 A Java class declaration also defines a typedef for the class.
1740 Similarly, any Ada type declaration implicitly defines a typedef. */
1741 if (symbol_language == language_cplus
1742 || symbol_language == language_java
1743 || symbol_language == language_ada)
1744 {
1745 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1746 && symbol_domain == STRUCT_DOMAIN)
1747 return 1;
1748 }
1749 /* For all other languages, strict match is required. */
1750 return (symbol_domain == domain);
1751}
1752
1753/* Look, in partial_symtab PST, for symbol whose natural name is NAME.
1754 If LINKAGE_NAME is non-NULL, check in addition that the symbol's
1755 linkage name matches it. Check the global symbols if GLOBAL, the
1756 static symbols if not */
1757
1758struct partial_symbol *
1759lookup_partial_symbol (struct partial_symtab *pst, const char *name,
1760 const char *linkage_name, int global,
1761 domain_enum domain)
1762{
1763 struct partial_symbol *temp;
1764 struct partial_symbol **start, **psym;
1765 struct partial_symbol **top, **real_top, **bottom, **center;
1766 int length = (global ? pst->n_global_syms : pst->n_static_syms);
1767 int do_linear_search = 1;
1768
1769 if (length == 0)
1770 {
1771 return (NULL);
1772 }
1773 start = (global ?
1774 pst->objfile->global_psymbols.list + pst->globals_offset :
1775 pst->objfile->static_psymbols.list + pst->statics_offset);
1776
1777 if (global) /* This means we can use a binary search. */
1778 {
1779 do_linear_search = 0;
1780
1781 /* Binary search. This search is guaranteed to end with center
1782 pointing at the earliest partial symbol whose name might be
1783 correct. At that point *all* partial symbols with an
1784 appropriate name will be checked against the correct
1785 domain. */
1786
1787 bottom = start;
1788 top = start + length - 1;
1789 real_top = top;
1790 while (top > bottom)
1791 {
1792 center = bottom + (top - bottom) / 2;
1793 if (!(center < top))
1794 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1795 if (!do_linear_search
1796 && (SYMBOL_LANGUAGE (*center) == language_java))
1797 {
1798 do_linear_search = 1;
1799 }
1800 if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0)
1801 {
1802 top = center;
1803 }
1804 else
1805 {
1806 bottom = center + 1;
1807 }
1808 }
1809 if (!(top == bottom))
1810 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1811
1812 while (top <= real_top
1813 && (linkage_name != NULL
1814 ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0
1815 : SYMBOL_MATCHES_SEARCH_NAME (*top,name)))
1816 {
1817 if (symbol_matches_domain (SYMBOL_LANGUAGE (*top),
1818 SYMBOL_DOMAIN (*top), domain))
1819 return (*top);
1820 top++;
1821 }
1822 }
1823
1824 /* Can't use a binary search or else we found during the binary search that
1825 we should also do a linear search. */
1826
1827 if (do_linear_search)
1828 {
1829 for (psym = start; psym < start + length; psym++)
1830 {
1831 if (symbol_matches_domain (SYMBOL_LANGUAGE (*psym),
1832 SYMBOL_DOMAIN (*psym), domain))
1833 {
1834 if (linkage_name != NULL
1835 ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0
1836 : SYMBOL_MATCHES_SEARCH_NAME (*psym, name))
1837 {
1838 return (*psym);
1839 }
1840 }
1841 }
1842 }
1843
1844 return (NULL);
1845}
1846
1847/* Look up a type named NAME in the struct_domain. The type returned
1848 must not be opaque -- i.e., must have at least one field
1849 defined. */
1850
1851struct type *
1852lookup_transparent_type (const char *name)
1853{
1854 return current_language->la_lookup_transparent_type (name);
1855}
1856
1857/* The standard implementation of lookup_transparent_type. This code
1858 was modeled on lookup_symbol -- the parts not relevant to looking
1859 up types were just left out. In particular it's assumed here that
1860 types are available in struct_domain and only at file-static or
1861 global blocks. */
1862
1863struct type *
1864basic_lookup_transparent_type (const char *name)
1865{
1866 struct symbol *sym;
1867 struct symtab *s = NULL;
1868 struct partial_symtab *ps;
1869 struct blockvector *bv;
1870 struct objfile *objfile;
1871 struct block *block;
1872
1873 /* Now search all the global symbols. Do the symtab's first, then
1874 check the psymtab's. If a psymtab indicates the existence
1875 of the desired name as a global, then do psymtab-to-symtab
1876 conversion on the fly and return the found symbol. */
1877
1878 ALL_PRIMARY_SYMTABS (objfile, s)
1879 {
1880 bv = BLOCKVECTOR (s);
1881 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1882 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1883 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1884 {
1885 return SYMBOL_TYPE (sym);
1886 }
1887 }
1888
1889 ALL_PSYMTABS (objfile, ps)
1890 {
1891 if (!ps->readin && lookup_partial_symbol (ps, name, NULL,
1892 1, STRUCT_DOMAIN))
1893 {
1894 s = PSYMTAB_TO_SYMTAB (ps);
1895 bv = BLOCKVECTOR (s);
1896 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1897 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1898 if (!sym)
1899 {
1900 /* This shouldn't be necessary, but as a last resort
1901 * try looking in the statics even though the psymtab
1902 * claimed the symbol was global. It's possible that
1903 * the psymtab gets it wrong in some cases.
1904 */
1905 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1906 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1907 if (!sym)
1908 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1909%s may be an inlined function, or may be a template function\n\
1910(if a template, try specifying an instantiation: %s<type>)."),
1911 name, ps->filename, name, name);
1912 }
1913 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1914 return SYMBOL_TYPE (sym);
1915 }
1916 }
1917
1918 /* Now search the static file-level symbols.
1919 Not strictly correct, but more useful than an error.
1920 Do the symtab's first, then
1921 check the psymtab's. If a psymtab indicates the existence
1922 of the desired name as a file-level static, then do psymtab-to-symtab
1923 conversion on the fly and return the found symbol.
1924 */
1925
1926 ALL_PRIMARY_SYMTABS (objfile, s)
1927 {
1928 bv = BLOCKVECTOR (s);
1929 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1930 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1931 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1932 {
1933 return SYMBOL_TYPE (sym);
1934 }
1935 }
1936
1937 ALL_PSYMTABS (objfile, ps)
1938 {
1939 if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN))
1940 {
1941 s = PSYMTAB_TO_SYMTAB (ps);
1942 bv = BLOCKVECTOR (s);
1943 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1944 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1945 if (!sym)
1946 {
1947 /* This shouldn't be necessary, but as a last resort
1948 * try looking in the globals even though the psymtab
1949 * claimed the symbol was static. It's possible that
1950 * the psymtab gets it wrong in some cases.
1951 */
1952 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1953 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1954 if (!sym)
1955 error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1956%s may be an inlined function, or may be a template function\n\
1957(if a template, try specifying an instantiation: %s<type>)."),
1958 name, ps->filename, name, name);
1959 }
1960 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1961 return SYMBOL_TYPE (sym);
1962 }
1963 }
1964 return (struct type *) 0;
1965}
1966
1967
1968/* Find the psymtab containing main(). */
1969/* FIXME: What about languages without main() or specially linked
1970 executables that have no main() ? */
1971
1972struct partial_symtab *
1973find_main_psymtab (void)
1974{
1975 struct partial_symtab *pst;
1976 struct objfile *objfile;
1977
1978 ALL_PSYMTABS (objfile, pst)
1979 {
1980 if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN))
1981 {
1982 return (pst);
1983 }
1984 }
1985 return (NULL);
1986}
1987
1988/* Search BLOCK for symbol NAME in DOMAIN.
1989
1990 Note that if NAME is the demangled form of a C++ symbol, we will fail
1991 to find a match during the binary search of the non-encoded names, but
1992 for now we don't worry about the slight inefficiency of looking for
1993 a match we'll never find, since it will go pretty quick. Once the
1994 binary search terminates, we drop through and do a straight linear
1995 search on the symbols. Each symbol which is marked as being a ObjC/C++
1996 symbol (language_cplus or language_objc set) has both the encoded and
1997 non-encoded names tested for a match.
1998
1999 If LINKAGE_NAME is non-NULL, verify that any symbol we find has this
2000 particular mangled name.
2001*/
2002
2003struct symbol *
2004lookup_block_symbol (const struct block *block, const char *name,
2005 const char *linkage_name,
2006 const domain_enum domain)
2007{
2008 struct dict_iterator iter;
2009 struct symbol *sym;
2010
2011 if (!BLOCK_FUNCTION (block))
2012 {
2013 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
2014 sym != NULL;
2015 sym = dict_iter_name_next (name, &iter))
2016 {
2017 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2018 SYMBOL_DOMAIN (sym), domain)
2019 && (linkage_name != NULL
2020 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
2021 return sym;
2022 }
2023 return NULL;
2024 }
2025 else
2026 {
2027 /* Note that parameter symbols do not always show up last in the
2028 list; this loop makes sure to take anything else other than
2029 parameter symbols first; it only uses parameter symbols as a
2030 last resort. Note that this only takes up extra computation
2031 time on a match. */
2032
2033 struct symbol *sym_found = NULL;
2034
2035 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
2036 sym != NULL;
2037 sym = dict_iter_name_next (name, &iter))
2038 {
2039 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2040 SYMBOL_DOMAIN (sym), domain)
2041 && (linkage_name != NULL
2042 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
2043 {
2044 sym_found = sym;
2045 if (!SYMBOL_IS_ARGUMENT (sym))
2046 {
2047 break;
2048 }
2049 }
2050 }
2051 return (sym_found); /* Will be NULL if not found. */
2052 }
2053}
2054
2055/* Find the symtab associated with PC and SECTION. Look through the
2056 psymtabs and read in another symtab if necessary. */
2057
2058struct symtab *
2059find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2060{
2061 struct block *b;
2062 struct blockvector *bv;
2063 struct symtab *s = NULL;
2064 struct symtab *best_s = NULL;
2065 struct partial_symtab *ps;
2066 struct objfile *objfile;
2067 struct program_space *pspace;
2068 CORE_ADDR distance = 0;
2069 struct minimal_symbol *msymbol;
2070
2071 pspace = current_program_space;
2072
2073 /* If we know that this is not a text address, return failure. This is
2074 necessary because we loop based on the block's high and low code
2075 addresses, which do not include the data ranges, and because
2076 we call find_pc_sect_psymtab which has a similar restriction based
2077 on the partial_symtab's texthigh and textlow. */
2078 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2079 if (msymbol
2080 && (MSYMBOL_TYPE (msymbol) == mst_data
2081 || MSYMBOL_TYPE (msymbol) == mst_bss
2082 || MSYMBOL_TYPE (msymbol) == mst_abs
2083 || MSYMBOL_TYPE (msymbol) == mst_file_data
2084 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2085 return NULL;
2086
2087 /* Search all symtabs for the one whose file contains our address, and which
2088 is the smallest of all the ones containing the address. This is designed
2089 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2090 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2091 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2092
2093 This happens for native ecoff format, where code from included files
2094 gets its own symtab. The symtab for the included file should have
2095 been read in already via the dependency mechanism.
2096 It might be swifter to create several symtabs with the same name
2097 like xcoff does (I'm not sure).
2098
2099 It also happens for objfiles that have their functions reordered.
2100 For these, the symtab we are looking for is not necessarily read in. */
2101
2102 ALL_PRIMARY_SYMTABS (objfile, s)
2103 {
2104 bv = BLOCKVECTOR (s);
2105 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2106
2107 if (BLOCK_START (b) <= pc
2108 && BLOCK_END (b) > pc
2109 && (distance == 0
2110 || BLOCK_END (b) - BLOCK_START (b) < distance))
2111 {
2112 /* For an objfile that has its functions reordered,
2113 find_pc_psymtab will find the proper partial symbol table
2114 and we simply return its corresponding symtab. */
2115 /* In order to better support objfiles that contain both
2116 stabs and coff debugging info, we continue on if a psymtab
2117 can't be found. */
2118 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
2119 {
2120 ps = find_pc_sect_psymtab (pc, section);
2121 if (ps)
2122 return PSYMTAB_TO_SYMTAB (ps);
2123 }
2124 if (section != 0)
2125 {
2126 struct dict_iterator iter;
2127 struct symbol *sym = NULL;
2128
2129 ALL_BLOCK_SYMBOLS (b, iter, sym)
2130 {
2131 fixup_symbol_section (sym, objfile);
2132 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2133 break;
2134 }
2135 if (sym == NULL)
2136 continue; /* no symbol in this symtab matches section */
2137 }
2138 distance = BLOCK_END (b) - BLOCK_START (b);
2139 best_s = s;
2140 }
2141 }
2142
2143 if (best_s != NULL)
2144 return (best_s);
2145
2146 s = NULL;
2147 ps = find_pc_sect_psymtab (pc, section);
2148 if (ps)
2149 {
2150 if (ps->readin)
2151 /* Might want to error() here (in case symtab is corrupt and
2152 will cause a core dump), but maybe we can successfully
2153 continue, so let's not. */
2154 warning (_("\
2155(Internal error: pc %s in read in psymtab, but not in symtab.)\n"),
2156 paddress (get_objfile_arch (ps->objfile), pc));
2157 s = PSYMTAB_TO_SYMTAB (ps);
2158 }
2159 return (s);
2160}
2161
2162/* Find the symtab associated with PC. Look through the psymtabs and
2163 read in another symtab if necessary. Backward compatibility, no section */
2164
2165struct symtab *
2166find_pc_symtab (CORE_ADDR pc)
2167{
2168 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2169}
2170\f
2171
2172/* Find the source file and line number for a given PC value and SECTION.
2173 Return a structure containing a symtab pointer, a line number,
2174 and a pc range for the entire source line.
2175 The value's .pc field is NOT the specified pc.
2176 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2177 use the line that ends there. Otherwise, in that case, the line
2178 that begins there is used. */
2179
2180/* The big complication here is that a line may start in one file, and end just
2181 before the start of another file. This usually occurs when you #include
2182 code in the middle of a subroutine. To properly find the end of a line's PC
2183 range, we must search all symtabs associated with this compilation unit, and
2184 find the one whose first PC is closer than that of the next line in this
2185 symtab. */
2186
2187/* If it's worth the effort, we could be using a binary search. */
2188
2189struct symtab_and_line
2190find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2191{
2192 struct symtab *s;
2193 struct linetable *l;
2194 int len;
2195 int i;
2196 struct linetable_entry *item;
2197 struct symtab_and_line val;
2198 struct blockvector *bv;
2199 struct minimal_symbol *msymbol;
2200 struct minimal_symbol *mfunsym;
2201
2202 /* Info on best line seen so far, and where it starts, and its file. */
2203
2204 struct linetable_entry *best = NULL;
2205 CORE_ADDR best_end = 0;
2206 struct symtab *best_symtab = 0;
2207
2208 /* Store here the first line number
2209 of a file which contains the line at the smallest pc after PC.
2210 If we don't find a line whose range contains PC,
2211 we will use a line one less than this,
2212 with a range from the start of that file to the first line's pc. */
2213 struct linetable_entry *alt = NULL;
2214 struct symtab *alt_symtab = 0;
2215
2216 /* Info on best line seen in this file. */
2217
2218 struct linetable_entry *prev;
2219
2220 /* If this pc is not from the current frame,
2221 it is the address of the end of a call instruction.
2222 Quite likely that is the start of the following statement.
2223 But what we want is the statement containing the instruction.
2224 Fudge the pc to make sure we get that. */
2225
2226 init_sal (&val); /* initialize to zeroes */
2227
2228 val.pspace = current_program_space;
2229
2230 /* It's tempting to assume that, if we can't find debugging info for
2231 any function enclosing PC, that we shouldn't search for line
2232 number info, either. However, GAS can emit line number info for
2233 assembly files --- very helpful when debugging hand-written
2234 assembly code. In such a case, we'd have no debug info for the
2235 function, but we would have line info. */
2236
2237 if (notcurrent)
2238 pc -= 1;
2239
2240 /* elz: added this because this function returned the wrong
2241 information if the pc belongs to a stub (import/export)
2242 to call a shlib function. This stub would be anywhere between
2243 two functions in the target, and the line info was erroneously
2244 taken to be the one of the line before the pc.
2245 */
2246 /* RT: Further explanation:
2247
2248 * We have stubs (trampolines) inserted between procedures.
2249 *
2250 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2251 * exists in the main image.
2252 *
2253 * In the minimal symbol table, we have a bunch of symbols
2254 * sorted by start address. The stubs are marked as "trampoline",
2255 * the others appear as text. E.g.:
2256 *
2257 * Minimal symbol table for main image
2258 * main: code for main (text symbol)
2259 * shr1: stub (trampoline symbol)
2260 * foo: code for foo (text symbol)
2261 * ...
2262 * Minimal symbol table for "shr1" image:
2263 * ...
2264 * shr1: code for shr1 (text symbol)
2265 * ...
2266 *
2267 * So the code below is trying to detect if we are in the stub
2268 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2269 * and if found, do the symbolization from the real-code address
2270 * rather than the stub address.
2271 *
2272 * Assumptions being made about the minimal symbol table:
2273 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2274 * if we're really in the trampoline. If we're beyond it (say
2275 * we're in "foo" in the above example), it'll have a closer
2276 * symbol (the "foo" text symbol for example) and will not
2277 * return the trampoline.
2278 * 2. lookup_minimal_symbol_text() will find a real text symbol
2279 * corresponding to the trampoline, and whose address will
2280 * be different than the trampoline address. I put in a sanity
2281 * check for the address being the same, to avoid an
2282 * infinite recursion.
2283 */
2284 msymbol = lookup_minimal_symbol_by_pc (pc);
2285 if (msymbol != NULL)
2286 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2287 {
2288 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2289 NULL);
2290 if (mfunsym == NULL)
2291 /* I eliminated this warning since it is coming out
2292 * in the following situation:
2293 * gdb shmain // test program with shared libraries
2294 * (gdb) break shr1 // function in shared lib
2295 * Warning: In stub for ...
2296 * In the above situation, the shared lib is not loaded yet,
2297 * so of course we can't find the real func/line info,
2298 * but the "break" still works, and the warning is annoying.
2299 * So I commented out the warning. RT */
2300 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2301 /* fall through */
2302 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
2303 /* Avoid infinite recursion */
2304 /* See above comment about why warning is commented out */
2305 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2306 /* fall through */
2307 else
2308 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2309 }
2310
2311
2312 s = find_pc_sect_symtab (pc, section);
2313 if (!s)
2314 {
2315 /* if no symbol information, return previous pc */
2316 if (notcurrent)
2317 pc++;
2318 val.pc = pc;
2319 return val;
2320 }
2321
2322 bv = BLOCKVECTOR (s);
2323
2324 /* Look at all the symtabs that share this blockvector.
2325 They all have the same apriori range, that we found was right;
2326 but they have different line tables. */
2327
2328 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2329 {
2330 /* Find the best line in this symtab. */
2331 l = LINETABLE (s);
2332 if (!l)
2333 continue;
2334 len = l->nitems;
2335 if (len <= 0)
2336 {
2337 /* I think len can be zero if the symtab lacks line numbers
2338 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2339 I'm not sure which, and maybe it depends on the symbol
2340 reader). */
2341 continue;
2342 }
2343
2344 prev = NULL;
2345 item = l->item; /* Get first line info */
2346
2347 /* Is this file's first line closer than the first lines of other files?
2348 If so, record this file, and its first line, as best alternate. */
2349 if (item->pc > pc && (!alt || item->pc < alt->pc))
2350 {
2351 alt = item;
2352 alt_symtab = s;
2353 }
2354
2355 for (i = 0; i < len; i++, item++)
2356 {
2357 /* Leave prev pointing to the linetable entry for the last line
2358 that started at or before PC. */
2359 if (item->pc > pc)
2360 break;
2361
2362 prev = item;
2363 }
2364
2365 /* At this point, prev points at the line whose start addr is <= pc, and
2366 item points at the next line. If we ran off the end of the linetable
2367 (pc >= start of the last line), then prev == item. If pc < start of
2368 the first line, prev will not be set. */
2369
2370 /* Is this file's best line closer than the best in the other files?
2371 If so, record this file, and its best line, as best so far. Don't
2372 save prev if it represents the end of a function (i.e. line number
2373 0) instead of a real line. */
2374
2375 if (prev && prev->line && (!best || prev->pc > best->pc))
2376 {
2377 best = prev;
2378 best_symtab = s;
2379
2380 /* Discard BEST_END if it's before the PC of the current BEST. */
2381 if (best_end <= best->pc)
2382 best_end = 0;
2383 }
2384
2385 /* If another line (denoted by ITEM) is in the linetable and its
2386 PC is after BEST's PC, but before the current BEST_END, then
2387 use ITEM's PC as the new best_end. */
2388 if (best && i < len && item->pc > best->pc
2389 && (best_end == 0 || best_end > item->pc))
2390 best_end = item->pc;
2391 }
2392
2393 if (!best_symtab)
2394 {
2395 /* If we didn't find any line number info, just return zeros.
2396 We used to return alt->line - 1 here, but that could be
2397 anywhere; if we don't have line number info for this PC,
2398 don't make some up. */
2399 val.pc = pc;
2400 }
2401 else if (best->line == 0)
2402 {
2403 /* If our best fit is in a range of PC's for which no line
2404 number info is available (line number is zero) then we didn't
2405 find any valid line information. */
2406 val.pc = pc;
2407 }
2408 else
2409 {
2410 val.symtab = best_symtab;
2411 val.line = best->line;
2412 val.pc = best->pc;
2413 if (best_end && (!alt || best_end < alt->pc))
2414 val.end = best_end;
2415 else if (alt)
2416 val.end = alt->pc;
2417 else
2418 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2419 }
2420 val.section = section;
2421 return val;
2422}
2423
2424/* Backward compatibility (no section) */
2425
2426struct symtab_and_line
2427find_pc_line (CORE_ADDR pc, int notcurrent)
2428{
2429 struct obj_section *section;
2430
2431 section = find_pc_overlay (pc);
2432 if (pc_in_unmapped_range (pc, section))
2433 pc = overlay_mapped_address (pc, section);
2434 return find_pc_sect_line (pc, section, notcurrent);
2435}
2436\f
2437/* Find line number LINE in any symtab whose name is the same as
2438 SYMTAB.
2439
2440 If found, return the symtab that contains the linetable in which it was
2441 found, set *INDEX to the index in the linetable of the best entry
2442 found, and set *EXACT_MATCH nonzero if the value returned is an
2443 exact match.
2444
2445 If not found, return NULL. */
2446
2447struct symtab *
2448find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2449{
2450 int exact = 0; /* Initialized here to avoid a compiler warning. */
2451
2452 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2453 so far seen. */
2454
2455 int best_index;
2456 struct linetable *best_linetable;
2457 struct symtab *best_symtab;
2458
2459 /* First try looking it up in the given symtab. */
2460 best_linetable = LINETABLE (symtab);
2461 best_symtab = symtab;
2462 best_index = find_line_common (best_linetable, line, &exact);
2463 if (best_index < 0 || !exact)
2464 {
2465 /* Didn't find an exact match. So we better keep looking for
2466 another symtab with the same name. In the case of xcoff,
2467 multiple csects for one source file (produced by IBM's FORTRAN
2468 compiler) produce multiple symtabs (this is unavoidable
2469 assuming csects can be at arbitrary places in memory and that
2470 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2471
2472 /* BEST is the smallest linenumber > LINE so far seen,
2473 or 0 if none has been seen so far.
2474 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2475 int best;
2476
2477 struct objfile *objfile;
2478 struct symtab *s;
2479 struct partial_symtab *p;
2480
2481 if (best_index >= 0)
2482 best = best_linetable->item[best_index].line;
2483 else
2484 best = 0;
2485
2486 ALL_PSYMTABS (objfile, p)
2487 {
2488 if (FILENAME_CMP (symtab->filename, p->filename) != 0)
2489 continue;
2490 PSYMTAB_TO_SYMTAB (p);
2491 }
2492
2493 /* Get symbol full file name if possible. */
2494 symtab_to_fullname (symtab);
2495
2496 ALL_SYMTABS (objfile, s)
2497 {
2498 struct linetable *l;
2499 int ind;
2500
2501 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2502 continue;
2503 if (symtab->fullname != NULL
2504 && symtab_to_fullname (s) != NULL
2505 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2506 continue;
2507 l = LINETABLE (s);
2508 ind = find_line_common (l, line, &exact);
2509 if (ind >= 0)
2510 {
2511 if (exact)
2512 {
2513 best_index = ind;
2514 best_linetable = l;
2515 best_symtab = s;
2516 goto done;
2517 }
2518 if (best == 0 || l->item[ind].line < best)
2519 {
2520 best = l->item[ind].line;
2521 best_index = ind;
2522 best_linetable = l;
2523 best_symtab = s;
2524 }
2525 }
2526 }
2527 }
2528done:
2529 if (best_index < 0)
2530 return NULL;
2531
2532 if (index)
2533 *index = best_index;
2534 if (exact_match)
2535 *exact_match = exact;
2536
2537 return best_symtab;
2538}
2539\f
2540/* Set the PC value for a given source file and line number and return true.
2541 Returns zero for invalid line number (and sets the PC to 0).
2542 The source file is specified with a struct symtab. */
2543
2544int
2545find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2546{
2547 struct linetable *l;
2548 int ind;
2549
2550 *pc = 0;
2551 if (symtab == 0)
2552 return 0;
2553
2554 symtab = find_line_symtab (symtab, line, &ind, NULL);
2555 if (symtab != NULL)
2556 {
2557 l = LINETABLE (symtab);
2558 *pc = l->item[ind].pc;
2559 return 1;
2560 }
2561 else
2562 return 0;
2563}
2564
2565/* Find the range of pc values in a line.
2566 Store the starting pc of the line into *STARTPTR
2567 and the ending pc (start of next line) into *ENDPTR.
2568 Returns 1 to indicate success.
2569 Returns 0 if could not find the specified line. */
2570
2571int
2572find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2573 CORE_ADDR *endptr)
2574{
2575 CORE_ADDR startaddr;
2576 struct symtab_and_line found_sal;
2577
2578 startaddr = sal.pc;
2579 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2580 return 0;
2581
2582 /* This whole function is based on address. For example, if line 10 has
2583 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2584 "info line *0x123" should say the line goes from 0x100 to 0x200
2585 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2586 This also insures that we never give a range like "starts at 0x134
2587 and ends at 0x12c". */
2588
2589 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2590 if (found_sal.line != sal.line)
2591 {
2592 /* The specified line (sal) has zero bytes. */
2593 *startptr = found_sal.pc;
2594 *endptr = found_sal.pc;
2595 }
2596 else
2597 {
2598 *startptr = found_sal.pc;
2599 *endptr = found_sal.end;
2600 }
2601 return 1;
2602}
2603
2604/* Given a line table and a line number, return the index into the line
2605 table for the pc of the nearest line whose number is >= the specified one.
2606 Return -1 if none is found. The value is >= 0 if it is an index.
2607
2608 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2609
2610static int
2611find_line_common (struct linetable *l, int lineno,
2612 int *exact_match)
2613{
2614 int i;
2615 int len;
2616
2617 /* BEST is the smallest linenumber > LINENO so far seen,
2618 or 0 if none has been seen so far.
2619 BEST_INDEX identifies the item for it. */
2620
2621 int best_index = -1;
2622 int best = 0;
2623
2624 *exact_match = 0;
2625
2626 if (lineno <= 0)
2627 return -1;
2628 if (l == 0)
2629 return -1;
2630
2631 len = l->nitems;
2632 for (i = 0; i < len; i++)
2633 {
2634 struct linetable_entry *item = &(l->item[i]);
2635
2636 if (item->line == lineno)
2637 {
2638 /* Return the first (lowest address) entry which matches. */
2639 *exact_match = 1;
2640 return i;
2641 }
2642
2643 if (item->line > lineno && (best == 0 || item->line < best))
2644 {
2645 best = item->line;
2646 best_index = i;
2647 }
2648 }
2649
2650 /* If we got here, we didn't get an exact match. */
2651 return best_index;
2652}
2653
2654int
2655find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2656{
2657 struct symtab_and_line sal;
2658 sal = find_pc_line (pc, 0);
2659 *startptr = sal.pc;
2660 *endptr = sal.end;
2661 return sal.symtab != 0;
2662}
2663
2664/* Given a function start address PC and SECTION, find the first
2665 address after the function prologue. */
2666CORE_ADDR
2667find_function_start_pc (struct gdbarch *gdbarch,
2668 CORE_ADDR pc, struct obj_section *section)
2669{
2670 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2671 so that gdbarch_skip_prologue has something unique to work on. */
2672 if (section_is_overlay (section) && !section_is_mapped (section))
2673 pc = overlay_unmapped_address (pc, section);
2674
2675 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2676 pc = gdbarch_skip_prologue (gdbarch, pc);
2677
2678 /* For overlays, map pc back into its mapped VMA range. */
2679 pc = overlay_mapped_address (pc, section);
2680
2681 return pc;
2682}
2683
2684/* Given a function start address FUNC_ADDR and SYMTAB, find the first
2685 address for that function that has an entry in SYMTAB's line info
2686 table. If such an entry cannot be found, return FUNC_ADDR
2687 unaltered. */
2688CORE_ADDR
2689skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2690{
2691 CORE_ADDR func_start, func_end;
2692 struct linetable *l;
2693 int ind, i, len;
2694 int best_lineno = 0;
2695 CORE_ADDR best_pc = func_addr;
2696
2697 /* Give up if this symbol has no lineinfo table. */
2698 l = LINETABLE (symtab);
2699 if (l == NULL)
2700 return func_addr;
2701
2702 /* Get the range for the function's PC values, or give up if we
2703 cannot, for some reason. */
2704 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2705 return func_addr;
2706
2707 /* Linetable entries are ordered by PC values, see the commentary in
2708 symtab.h where `struct linetable' is defined. Thus, the first
2709 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2710 address we are looking for. */
2711 for (i = 0; i < l->nitems; i++)
2712 {
2713 struct linetable_entry *item = &(l->item[i]);
2714
2715 /* Don't use line numbers of zero, they mark special entries in
2716 the table. See the commentary on symtab.h before the
2717 definition of struct linetable. */
2718 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2719 return item->pc;
2720 }
2721
2722 return func_addr;
2723}
2724
2725/* Given a function symbol SYM, find the symtab and line for the start
2726 of the function.
2727 If the argument FUNFIRSTLINE is nonzero, we want the first line
2728 of real code inside the function. */
2729
2730struct symtab_and_line
2731find_function_start_sal (struct symbol *sym, int funfirstline)
2732{
2733 struct block *block = SYMBOL_BLOCK_VALUE (sym);
2734 struct objfile *objfile = lookup_objfile_from_block (block);
2735 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2736
2737 CORE_ADDR pc;
2738 struct symtab_and_line sal;
2739 struct block *b, *function_block;
2740
2741 struct cleanup *old_chain;
2742
2743 old_chain = save_current_space_and_thread ();
2744 switch_to_program_space_and_thread (objfile->pspace);
2745
2746 pc = BLOCK_START (block);
2747 fixup_symbol_section (sym, objfile);
2748 if (funfirstline)
2749 {
2750 /* Skip "first line" of function (which is actually its prologue). */
2751 pc = find_function_start_pc (gdbarch, pc, SYMBOL_OBJ_SECTION (sym));
2752 }
2753 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2754
2755 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2756 line is still part of the same function. */
2757 if (sal.pc != pc
2758 && BLOCK_START (block) <= sal.end
2759 && sal.end < BLOCK_END (block))
2760 {
2761 /* First pc of next line */
2762 pc = sal.end;
2763 /* Recalculate the line number (might not be N+1). */
2764 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2765 }
2766
2767 /* On targets with executable formats that don't have a concept of
2768 constructors (ELF with .init has, PE doesn't), gcc emits a call
2769 to `__main' in `main' between the prologue and before user
2770 code. */
2771 if (funfirstline
2772 && gdbarch_skip_main_prologue_p (gdbarch)
2773 && SYMBOL_LINKAGE_NAME (sym)
2774 && strcmp (SYMBOL_LINKAGE_NAME (sym), "main") == 0)
2775 {
2776 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2777 /* Recalculate the line number (might not be N+1). */
2778 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2779 }
2780
2781 /* If we still don't have a valid source line, try to find the first
2782 PC in the lineinfo table that belongs to the same function. This
2783 happens with COFF debug info, which does not seem to have an
2784 entry in lineinfo table for the code after the prologue which has
2785 no direct relation to source. For example, this was found to be
2786 the case with the DJGPP target using "gcc -gcoff" when the
2787 compiler inserted code after the prologue to make sure the stack
2788 is aligned. */
2789 if (funfirstline && sal.symtab == NULL)
2790 {
2791 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2792 /* Recalculate the line number. */
2793 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2794 }
2795
2796 sal.pc = pc;
2797 sal.pspace = objfile->pspace;
2798
2799 /* Check if we are now inside an inlined function. If we can,
2800 use the call site of the function instead. */
2801 b = block_for_pc_sect (sal.pc, SYMBOL_OBJ_SECTION (sym));
2802 function_block = NULL;
2803 while (b != NULL)
2804 {
2805 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2806 function_block = b;
2807 else if (BLOCK_FUNCTION (b) != NULL)
2808 break;
2809 b = BLOCK_SUPERBLOCK (b);
2810 }
2811 if (function_block != NULL
2812 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2813 {
2814 sal.line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2815 sal.symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2816 }
2817
2818 do_cleanups (old_chain);
2819 return sal;
2820}
2821
2822/* If P is of the form "operator[ \t]+..." where `...' is
2823 some legitimate operator text, return a pointer to the
2824 beginning of the substring of the operator text.
2825 Otherwise, return "". */
2826char *
2827operator_chars (char *p, char **end)
2828{
2829 *end = "";
2830 if (strncmp (p, "operator", 8))
2831 return *end;
2832 p += 8;
2833
2834 /* Don't get faked out by `operator' being part of a longer
2835 identifier. */
2836 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2837 return *end;
2838
2839 /* Allow some whitespace between `operator' and the operator symbol. */
2840 while (*p == ' ' || *p == '\t')
2841 p++;
2842
2843 /* Recognize 'operator TYPENAME'. */
2844
2845 if (isalpha (*p) || *p == '_' || *p == '$')
2846 {
2847 char *q = p + 1;
2848 while (isalnum (*q) || *q == '_' || *q == '$')
2849 q++;
2850 *end = q;
2851 return p;
2852 }
2853
2854 while (*p)
2855 switch (*p)
2856 {
2857 case '\\': /* regexp quoting */
2858 if (p[1] == '*')
2859 {
2860 if (p[2] == '=') /* 'operator\*=' */
2861 *end = p + 3;
2862 else /* 'operator\*' */
2863 *end = p + 2;
2864 return p;
2865 }
2866 else if (p[1] == '[')
2867 {
2868 if (p[2] == ']')
2869 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2870 else if (p[2] == '\\' && p[3] == ']')
2871 {
2872 *end = p + 4; /* 'operator\[\]' */
2873 return p;
2874 }
2875 else
2876 error (_("nothing is allowed between '[' and ']'"));
2877 }
2878 else
2879 {
2880 /* Gratuitous qoute: skip it and move on. */
2881 p++;
2882 continue;
2883 }
2884 break;
2885 case '!':
2886 case '=':
2887 case '*':
2888 case '/':
2889 case '%':
2890 case '^':
2891 if (p[1] == '=')
2892 *end = p + 2;
2893 else
2894 *end = p + 1;
2895 return p;
2896 case '<':
2897 case '>':
2898 case '+':
2899 case '-':
2900 case '&':
2901 case '|':
2902 if (p[0] == '-' && p[1] == '>')
2903 {
2904 /* Struct pointer member operator 'operator->'. */
2905 if (p[2] == '*')
2906 {
2907 *end = p + 3; /* 'operator->*' */
2908 return p;
2909 }
2910 else if (p[2] == '\\')
2911 {
2912 *end = p + 4; /* Hopefully 'operator->\*' */
2913 return p;
2914 }
2915 else
2916 {
2917 *end = p + 2; /* 'operator->' */
2918 return p;
2919 }
2920 }
2921 if (p[1] == '=' || p[1] == p[0])
2922 *end = p + 2;
2923 else
2924 *end = p + 1;
2925 return p;
2926 case '~':
2927 case ',':
2928 *end = p + 1;
2929 return p;
2930 case '(':
2931 if (p[1] != ')')
2932 error (_("`operator ()' must be specified without whitespace in `()'"));
2933 *end = p + 2;
2934 return p;
2935 case '?':
2936 if (p[1] != ':')
2937 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2938 *end = p + 2;
2939 return p;
2940 case '[':
2941 if (p[1] != ']')
2942 error (_("`operator []' must be specified without whitespace in `[]'"));
2943 *end = p + 2;
2944 return p;
2945 default:
2946 error (_("`operator %s' not supported"), p);
2947 break;
2948 }
2949
2950 *end = "";
2951 return *end;
2952}
2953\f
2954
2955/* If FILE is not already in the table of files, return zero;
2956 otherwise return non-zero. Optionally add FILE to the table if ADD
2957 is non-zero. If *FIRST is non-zero, forget the old table
2958 contents. */
2959static int
2960filename_seen (const char *file, int add, int *first)
2961{
2962 /* Table of files seen so far. */
2963 static const char **tab = NULL;
2964 /* Allocated size of tab in elements.
2965 Start with one 256-byte block (when using GNU malloc.c).
2966 24 is the malloc overhead when range checking is in effect. */
2967 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2968 /* Current size of tab in elements. */
2969 static int tab_cur_size;
2970 const char **p;
2971
2972 if (*first)
2973 {
2974 if (tab == NULL)
2975 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2976 tab_cur_size = 0;
2977 }
2978
2979 /* Is FILE in tab? */
2980 for (p = tab; p < tab + tab_cur_size; p++)
2981 if (strcmp (*p, file) == 0)
2982 return 1;
2983
2984 /* No; maybe add it to tab. */
2985 if (add)
2986 {
2987 if (tab_cur_size == tab_alloc_size)
2988 {
2989 tab_alloc_size *= 2;
2990 tab = (const char **) xrealloc ((char *) tab,
2991 tab_alloc_size * sizeof (*tab));
2992 }
2993 tab[tab_cur_size++] = file;
2994 }
2995
2996 return 0;
2997}
2998
2999/* Slave routine for sources_info. Force line breaks at ,'s.
3000 NAME is the name to print and *FIRST is nonzero if this is the first
3001 name printed. Set *FIRST to zero. */
3002static void
3003output_source_filename (const char *name, int *first)
3004{
3005 /* Since a single source file can result in several partial symbol
3006 tables, we need to avoid printing it more than once. Note: if
3007 some of the psymtabs are read in and some are not, it gets
3008 printed both under "Source files for which symbols have been
3009 read" and "Source files for which symbols will be read in on
3010 demand". I consider this a reasonable way to deal with the
3011 situation. I'm not sure whether this can also happen for
3012 symtabs; it doesn't hurt to check. */
3013
3014 /* Was NAME already seen? */
3015 if (filename_seen (name, 1, first))
3016 {
3017 /* Yes; don't print it again. */
3018 return;
3019 }
3020 /* No; print it and reset *FIRST. */
3021 if (*first)
3022 {
3023 *first = 0;
3024 }
3025 else
3026 {
3027 printf_filtered (", ");
3028 }
3029
3030 wrap_here ("");
3031 fputs_filtered (name, gdb_stdout);
3032}
3033
3034static void
3035sources_info (char *ignore, int from_tty)
3036{
3037 struct symtab *s;
3038 struct partial_symtab *ps;
3039 struct objfile *objfile;
3040 int first;
3041
3042 if (!have_full_symbols () && !have_partial_symbols ())
3043 {
3044 error (_("No symbol table is loaded. Use the \"file\" command."));
3045 }
3046
3047 printf_filtered ("Source files for which symbols have been read in:\n\n");
3048
3049 first = 1;
3050 ALL_SYMTABS (objfile, s)
3051 {
3052 const char *fullname = symtab_to_fullname (s);
3053 output_source_filename (fullname ? fullname : s->filename, &first);
3054 }
3055 printf_filtered ("\n\n");
3056
3057 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
3058
3059 first = 1;
3060 ALL_PSYMTABS (objfile, ps)
3061 {
3062 if (!ps->readin)
3063 {
3064 const char *fullname = psymtab_to_fullname (ps);
3065 output_source_filename (fullname ? fullname : ps->filename, &first);
3066 }
3067 }
3068 printf_filtered ("\n");
3069}
3070
3071static int
3072file_matches (char *file, char *files[], int nfiles)
3073{
3074 int i;
3075
3076 if (file != NULL && nfiles != 0)
3077 {
3078 for (i = 0; i < nfiles; i++)
3079 {
3080 if (strcmp (files[i], lbasename (file)) == 0)
3081 return 1;
3082 }
3083 }
3084 else if (nfiles == 0)
3085 return 1;
3086 return 0;
3087}
3088
3089/* Free any memory associated with a search. */
3090void
3091free_search_symbols (struct symbol_search *symbols)
3092{
3093 struct symbol_search *p;
3094 struct symbol_search *next;
3095
3096 for (p = symbols; p != NULL; p = next)
3097 {
3098 next = p->next;
3099 xfree (p);
3100 }
3101}
3102
3103static void
3104do_free_search_symbols_cleanup (void *symbols)
3105{
3106 free_search_symbols (symbols);
3107}
3108
3109struct cleanup *
3110make_cleanup_free_search_symbols (struct symbol_search *symbols)
3111{
3112 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3113}
3114
3115/* Helper function for sort_search_symbols and qsort. Can only
3116 sort symbols, not minimal symbols. */
3117static int
3118compare_search_syms (const void *sa, const void *sb)
3119{
3120 struct symbol_search **sym_a = (struct symbol_search **) sa;
3121 struct symbol_search **sym_b = (struct symbol_search **) sb;
3122
3123 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3124 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3125}
3126
3127/* Sort the ``nfound'' symbols in the list after prevtail. Leave
3128 prevtail where it is, but update its next pointer to point to
3129 the first of the sorted symbols. */
3130static struct symbol_search *
3131sort_search_symbols (struct symbol_search *prevtail, int nfound)
3132{
3133 struct symbol_search **symbols, *symp, *old_next;
3134 int i;
3135
3136 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3137 * nfound);
3138 symp = prevtail->next;
3139 for (i = 0; i < nfound; i++)
3140 {
3141 symbols[i] = symp;
3142 symp = symp->next;
3143 }
3144 /* Generally NULL. */
3145 old_next = symp;
3146
3147 qsort (symbols, nfound, sizeof (struct symbol_search *),
3148 compare_search_syms);
3149
3150 symp = prevtail;
3151 for (i = 0; i < nfound; i++)
3152 {
3153 symp->next = symbols[i];
3154 symp = symp->next;
3155 }
3156 symp->next = old_next;
3157
3158 xfree (symbols);
3159 return symp;
3160}
3161
3162/* Search the symbol table for matches to the regular expression REGEXP,
3163 returning the results in *MATCHES.
3164
3165 Only symbols of KIND are searched:
3166 FUNCTIONS_DOMAIN - search all functions
3167 TYPES_DOMAIN - search all type names
3168 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3169 and constants (enums)
3170
3171 free_search_symbols should be called when *MATCHES is no longer needed.
3172
3173 The results are sorted locally; each symtab's global and static blocks are
3174 separately alphabetized.
3175 */
3176void
3177search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
3178 struct symbol_search **matches)
3179{
3180 struct symtab *s;
3181 struct partial_symtab *ps;
3182 struct blockvector *bv;
3183 struct block *b;
3184 int i = 0;
3185 struct dict_iterator iter;
3186 struct symbol *sym;
3187 struct partial_symbol **psym;
3188 struct objfile *objfile;
3189 struct minimal_symbol *msymbol;
3190 char *val;
3191 int found_misc = 0;
3192 static enum minimal_symbol_type types[]
3193 =
3194 {mst_data, mst_text, mst_abs, mst_unknown};
3195 static enum minimal_symbol_type types2[]
3196 =
3197 {mst_bss, mst_file_text, mst_abs, mst_unknown};
3198 static enum minimal_symbol_type types3[]
3199 =
3200 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
3201 static enum minimal_symbol_type types4[]
3202 =
3203 {mst_file_bss, mst_text, mst_abs, mst_unknown};
3204 enum minimal_symbol_type ourtype;
3205 enum minimal_symbol_type ourtype2;
3206 enum minimal_symbol_type ourtype3;
3207 enum minimal_symbol_type ourtype4;
3208 struct symbol_search *sr;
3209 struct symbol_search *psr;
3210 struct symbol_search *tail;
3211 struct cleanup *old_chain = NULL;
3212
3213 if (kind < VARIABLES_DOMAIN)
3214 error (_("must search on specific domain"));
3215
3216 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
3217 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
3218 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
3219 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
3220
3221 sr = *matches = NULL;
3222 tail = NULL;
3223
3224 if (regexp != NULL)
3225 {
3226 /* Make sure spacing is right for C++ operators.
3227 This is just a courtesy to make the matching less sensitive
3228 to how many spaces the user leaves between 'operator'
3229 and <TYPENAME> or <OPERATOR>. */
3230 char *opend;
3231 char *opname = operator_chars (regexp, &opend);
3232 if (*opname)
3233 {
3234 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
3235 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3236 {
3237 /* There should 1 space between 'operator' and 'TYPENAME'. */
3238 if (opname[-1] != ' ' || opname[-2] == ' ')
3239 fix = 1;
3240 }
3241 else
3242 {
3243 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3244 if (opname[-1] == ' ')
3245 fix = 0;
3246 }
3247 /* If wrong number of spaces, fix it. */
3248 if (fix >= 0)
3249 {
3250 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3251 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3252 regexp = tmp;
3253 }
3254 }
3255
3256 if (0 != (val = re_comp (regexp)))
3257 error (_("Invalid regexp (%s): %s"), val, regexp);
3258 }
3259
3260 /* Search through the partial symtabs *first* for all symbols
3261 matching the regexp. That way we don't have to reproduce all of
3262 the machinery below. */
3263
3264 ALL_PSYMTABS (objfile, ps)
3265 {
3266 struct partial_symbol **bound, **gbound, **sbound;
3267 int keep_going = 1;
3268
3269 if (ps->readin)
3270 continue;
3271
3272 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
3273 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
3274 bound = gbound;
3275
3276 /* Go through all of the symbols stored in a partial
3277 symtab in one loop. */
3278 psym = objfile->global_psymbols.list + ps->globals_offset;
3279 while (keep_going)
3280 {
3281 if (psym >= bound)
3282 {
3283 if (bound == gbound && ps->n_static_syms != 0)
3284 {
3285 psym = objfile->static_psymbols.list + ps->statics_offset;
3286 bound = sbound;
3287 }
3288 else
3289 keep_going = 0;
3290 continue;
3291 }
3292 else
3293 {
3294 QUIT;
3295
3296 /* If it would match (logic taken from loop below)
3297 load the file and go on to the next one. We check the
3298 filename here, but that's a bit bogus: we don't know
3299 what file it really comes from until we have full
3300 symtabs. The symbol might be in a header file included by
3301 this psymtab. This only affects Insight. */
3302 if (file_matches (ps->filename, files, nfiles)
3303 && ((regexp == NULL
3304 || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0)
3305 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
3306 && SYMBOL_CLASS (*psym) != LOC_UNRESOLVED
3307 && SYMBOL_CLASS (*psym) != LOC_BLOCK
3308 && SYMBOL_CLASS (*psym) != LOC_CONST)
3309 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)
3310 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF))))
3311 {
3312 PSYMTAB_TO_SYMTAB (ps);
3313 keep_going = 0;
3314 }
3315 }
3316 psym++;
3317 }
3318 }
3319
3320 /* Here, we search through the minimal symbol tables for functions
3321 and variables that match, and force their symbols to be read.
3322 This is in particular necessary for demangled variable names,
3323 which are no longer put into the partial symbol tables.
3324 The symbol will then be found during the scan of symtabs below.
3325
3326 For functions, find_pc_symtab should succeed if we have debug info
3327 for the function, for variables we have to call lookup_symbol
3328 to determine if the variable has debug info.
3329 If the lookup fails, set found_misc so that we will rescan to print
3330 any matching symbols without debug info.
3331 */
3332
3333 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3334 {
3335 ALL_MSYMBOLS (objfile, msymbol)
3336 {
3337 QUIT;
3338
3339 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3340 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3341 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3342 MSYMBOL_TYPE (msymbol) == ourtype4)
3343 {
3344 if (regexp == NULL
3345 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3346 {
3347 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3348 {
3349 /* FIXME: carlton/2003-02-04: Given that the
3350 semantics of lookup_symbol keeps on changing
3351 slightly, it would be a nice idea if we had a
3352 function lookup_symbol_minsym that found the
3353 symbol associated to a given minimal symbol (if
3354 any). */
3355 if (kind == FUNCTIONS_DOMAIN
3356 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3357 (struct block *) NULL,
3358 VAR_DOMAIN, 0)
3359 == NULL)
3360 found_misc = 1;
3361 }
3362 }
3363 }
3364 }
3365 }
3366
3367 ALL_PRIMARY_SYMTABS (objfile, s)
3368 {
3369 bv = BLOCKVECTOR (s);
3370 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3371 {
3372 struct symbol_search *prevtail = tail;
3373 int nfound = 0;
3374 b = BLOCKVECTOR_BLOCK (bv, i);
3375 ALL_BLOCK_SYMBOLS (b, iter, sym)
3376 {
3377 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3378 QUIT;
3379
3380 if (file_matches (real_symtab->filename, files, nfiles)
3381 && ((regexp == NULL
3382 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3383 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3384 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3385 && SYMBOL_CLASS (sym) != LOC_BLOCK
3386 && SYMBOL_CLASS (sym) != LOC_CONST)
3387 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3388 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3389 {
3390 /* match */
3391 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3392 psr->block = i;
3393 psr->symtab = real_symtab;
3394 psr->symbol = sym;
3395 psr->msymbol = NULL;
3396 psr->next = NULL;
3397 if (tail == NULL)
3398 sr = psr;
3399 else
3400 tail->next = psr;
3401 tail = psr;
3402 nfound ++;
3403 }
3404 }
3405 if (nfound > 0)
3406 {
3407 if (prevtail == NULL)
3408 {
3409 struct symbol_search dummy;
3410
3411 dummy.next = sr;
3412 tail = sort_search_symbols (&dummy, nfound);
3413 sr = dummy.next;
3414
3415 old_chain = make_cleanup_free_search_symbols (sr);
3416 }
3417 else
3418 tail = sort_search_symbols (prevtail, nfound);
3419 }
3420 }
3421 }
3422
3423 /* If there are no eyes, avoid all contact. I mean, if there are
3424 no debug symbols, then print directly from the msymbol_vector. */
3425
3426 if (found_misc || kind != FUNCTIONS_DOMAIN)
3427 {
3428 ALL_MSYMBOLS (objfile, msymbol)
3429 {
3430 QUIT;
3431
3432 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3433 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3434 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3435 MSYMBOL_TYPE (msymbol) == ourtype4)
3436 {
3437 if (regexp == NULL
3438 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3439 {
3440 /* Functions: Look up by address. */
3441 if (kind != FUNCTIONS_DOMAIN ||
3442 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3443 {
3444 /* Variables/Absolutes: Look up by name */
3445 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3446 (struct block *) NULL, VAR_DOMAIN, 0)
3447 == NULL)
3448 {
3449 /* match */
3450 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3451 psr->block = i;
3452 psr->msymbol = msymbol;
3453 psr->symtab = NULL;
3454 psr->symbol = NULL;
3455 psr->next = NULL;
3456 if (tail == NULL)
3457 {
3458 sr = psr;
3459 old_chain = make_cleanup_free_search_symbols (sr);
3460 }
3461 else
3462 tail->next = psr;
3463 tail = psr;
3464 }
3465 }
3466 }
3467 }
3468 }
3469 }
3470
3471 *matches = sr;
3472 if (sr != NULL)
3473 discard_cleanups (old_chain);
3474}
3475
3476/* Helper function for symtab_symbol_info, this function uses
3477 the data returned from search_symbols() to print information
3478 regarding the match to gdb_stdout.
3479 */
3480static void
3481print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3482 int block, char *last)
3483{
3484 if (last == NULL || strcmp (last, s->filename) != 0)
3485 {
3486 fputs_filtered ("\nFile ", gdb_stdout);
3487 fputs_filtered (s->filename, gdb_stdout);
3488 fputs_filtered (":\n", gdb_stdout);
3489 }
3490
3491 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3492 printf_filtered ("static ");
3493
3494 /* Typedef that is not a C++ class */
3495 if (kind == TYPES_DOMAIN
3496 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3497 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3498 /* variable, func, or typedef-that-is-c++-class */
3499 else if (kind < TYPES_DOMAIN ||
3500 (kind == TYPES_DOMAIN &&
3501 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3502 {
3503 type_print (SYMBOL_TYPE (sym),
3504 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3505 ? "" : SYMBOL_PRINT_NAME (sym)),
3506 gdb_stdout, 0);
3507
3508 printf_filtered (";\n");
3509 }
3510}
3511
3512/* This help function for symtab_symbol_info() prints information
3513 for non-debugging symbols to gdb_stdout.
3514 */
3515static void
3516print_msymbol_info (struct minimal_symbol *msymbol)
3517{
3518 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3519 char *tmp;
3520
3521 if (gdbarch_addr_bit (gdbarch) <= 32)
3522 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3523 & (CORE_ADDR) 0xffffffff,
3524 8);
3525 else
3526 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3527 16);
3528 printf_filtered ("%s %s\n",
3529 tmp, SYMBOL_PRINT_NAME (msymbol));
3530}
3531
3532/* This is the guts of the commands "info functions", "info types", and
3533 "info variables". It calls search_symbols to find all matches and then
3534 print_[m]symbol_info to print out some useful information about the
3535 matches.
3536 */
3537static void
3538symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3539{
3540 static char *classnames[]
3541 =
3542 {"variable", "function", "type", "method"};
3543 struct symbol_search *symbols;
3544 struct symbol_search *p;
3545 struct cleanup *old_chain;
3546 char *last_filename = NULL;
3547 int first = 1;
3548
3549 /* must make sure that if we're interrupted, symbols gets freed */
3550 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3551 old_chain = make_cleanup_free_search_symbols (symbols);
3552
3553 printf_filtered (regexp
3554 ? "All %ss matching regular expression \"%s\":\n"
3555 : "All defined %ss:\n",
3556 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3557
3558 for (p = symbols; p != NULL; p = p->next)
3559 {
3560 QUIT;
3561
3562 if (p->msymbol != NULL)
3563 {
3564 if (first)
3565 {
3566 printf_filtered ("\nNon-debugging symbols:\n");
3567 first = 0;
3568 }
3569 print_msymbol_info (p->msymbol);
3570 }
3571 else
3572 {
3573 print_symbol_info (kind,
3574 p->symtab,
3575 p->symbol,
3576 p->block,
3577 last_filename);
3578 last_filename = p->symtab->filename;
3579 }
3580 }
3581
3582 do_cleanups (old_chain);
3583}
3584
3585static void
3586variables_info (char *regexp, int from_tty)
3587{
3588 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3589}
3590
3591static void
3592functions_info (char *regexp, int from_tty)
3593{
3594 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3595}
3596
3597
3598static void
3599types_info (char *regexp, int from_tty)
3600{
3601 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3602}
3603
3604/* Breakpoint all functions matching regular expression. */
3605
3606void
3607rbreak_command_wrapper (char *regexp, int from_tty)
3608{
3609 rbreak_command (regexp, from_tty);
3610}
3611
3612static void
3613rbreak_command (char *regexp, int from_tty)
3614{
3615 struct symbol_search *ss;
3616 struct symbol_search *p;
3617 struct cleanup *old_chain;
3618
3619 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
3620 old_chain = make_cleanup_free_search_symbols (ss);
3621
3622 for (p = ss; p != NULL; p = p->next)
3623 {
3624 if (p->msymbol == NULL)
3625 {
3626 char *string = alloca (strlen (p->symtab->filename)
3627 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3628 + 4);
3629 strcpy (string, p->symtab->filename);
3630 strcat (string, ":'");
3631 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3632 strcat (string, "'");
3633 break_command (string, from_tty);
3634 print_symbol_info (FUNCTIONS_DOMAIN,
3635 p->symtab,
3636 p->symbol,
3637 p->block,
3638 p->symtab->filename);
3639 }
3640 else
3641 {
3642 char *string = alloca (strlen (SYMBOL_LINKAGE_NAME (p->msymbol))
3643 + 3);
3644 strcpy (string, "'");
3645 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3646 strcat (string, "'");
3647
3648 break_command (string, from_tty);
3649 printf_filtered ("<function, no debug info> %s;\n",
3650 SYMBOL_PRINT_NAME (p->msymbol));
3651 }
3652 }
3653
3654 do_cleanups (old_chain);
3655}
3656\f
3657
3658/* Helper routine for make_symbol_completion_list. */
3659
3660static int return_val_size;
3661static int return_val_index;
3662static char **return_val;
3663
3664#define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3665 completion_list_add_name \
3666 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3667
3668/* Test to see if the symbol specified by SYMNAME (which is already
3669 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3670 characters. If so, add it to the current completion list. */
3671
3672static void
3673completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3674 char *text, char *word)
3675{
3676 int newsize;
3677 int i;
3678
3679 /* clip symbols that cannot match */
3680
3681 if (strncmp (symname, sym_text, sym_text_len) != 0)
3682 {
3683 return;
3684 }
3685
3686 /* We have a match for a completion, so add SYMNAME to the current list
3687 of matches. Note that the name is moved to freshly malloc'd space. */
3688
3689 {
3690 char *new;
3691 if (word == sym_text)
3692 {
3693 new = xmalloc (strlen (symname) + 5);
3694 strcpy (new, symname);
3695 }
3696 else if (word > sym_text)
3697 {
3698 /* Return some portion of symname. */
3699 new = xmalloc (strlen (symname) + 5);
3700 strcpy (new, symname + (word - sym_text));
3701 }
3702 else
3703 {
3704 /* Return some of SYM_TEXT plus symname. */
3705 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3706 strncpy (new, word, sym_text - word);
3707 new[sym_text - word] = '\0';
3708 strcat (new, symname);
3709 }
3710
3711 if (return_val_index + 3 > return_val_size)
3712 {
3713 newsize = (return_val_size *= 2) * sizeof (char *);
3714 return_val = (char **) xrealloc ((char *) return_val, newsize);
3715 }
3716 return_val[return_val_index++] = new;
3717 return_val[return_val_index] = NULL;
3718 }
3719}
3720
3721/* ObjC: In case we are completing on a selector, look as the msymbol
3722 again and feed all the selectors into the mill. */
3723
3724static void
3725completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3726 int sym_text_len, char *text, char *word)
3727{
3728 static char *tmp = NULL;
3729 static unsigned int tmplen = 0;
3730
3731 char *method, *category, *selector;
3732 char *tmp2 = NULL;
3733
3734 method = SYMBOL_NATURAL_NAME (msymbol);
3735
3736 /* Is it a method? */
3737 if ((method[0] != '-') && (method[0] != '+'))
3738 return;
3739
3740 if (sym_text[0] == '[')
3741 /* Complete on shortened method method. */
3742 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3743
3744 while ((strlen (method) + 1) >= tmplen)
3745 {
3746 if (tmplen == 0)
3747 tmplen = 1024;
3748 else
3749 tmplen *= 2;
3750 tmp = xrealloc (tmp, tmplen);
3751 }
3752 selector = strchr (method, ' ');
3753 if (selector != NULL)
3754 selector++;
3755
3756 category = strchr (method, '(');
3757
3758 if ((category != NULL) && (selector != NULL))
3759 {
3760 memcpy (tmp, method, (category - method));
3761 tmp[category - method] = ' ';
3762 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3763 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3764 if (sym_text[0] == '[')
3765 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3766 }
3767
3768 if (selector != NULL)
3769 {
3770 /* Complete on selector only. */
3771 strcpy (tmp, selector);
3772 tmp2 = strchr (tmp, ']');
3773 if (tmp2 != NULL)
3774 *tmp2 = '\0';
3775
3776 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3777 }
3778}
3779
3780/* Break the non-quoted text based on the characters which are in
3781 symbols. FIXME: This should probably be language-specific. */
3782
3783static char *
3784language_search_unquoted_string (char *text, char *p)
3785{
3786 for (; p > text; --p)
3787 {
3788 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3789 continue;
3790 else
3791 {
3792 if ((current_language->la_language == language_objc))
3793 {
3794 if (p[-1] == ':') /* might be part of a method name */
3795 continue;
3796 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3797 p -= 2; /* beginning of a method name */
3798 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3799 { /* might be part of a method name */
3800 char *t = p;
3801
3802 /* Seeing a ' ' or a '(' is not conclusive evidence
3803 that we are in the middle of a method name. However,
3804 finding "-[" or "+[" should be pretty un-ambiguous.
3805 Unfortunately we have to find it now to decide. */
3806
3807 while (t > text)
3808 if (isalnum (t[-1]) || t[-1] == '_' ||
3809 t[-1] == ' ' || t[-1] == ':' ||
3810 t[-1] == '(' || t[-1] == ')')
3811 --t;
3812 else
3813 break;
3814
3815 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3816 p = t - 2; /* method name detected */
3817 /* else we leave with p unchanged */
3818 }
3819 }
3820 break;
3821 }
3822 }
3823 return p;
3824}
3825
3826static void
3827completion_list_add_fields (struct symbol *sym, char *sym_text,
3828 int sym_text_len, char *text, char *word)
3829{
3830 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3831 {
3832 struct type *t = SYMBOL_TYPE (sym);
3833 enum type_code c = TYPE_CODE (t);
3834 int j;
3835
3836 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3837 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3838 if (TYPE_FIELD_NAME (t, j))
3839 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3840 sym_text, sym_text_len, text, word);
3841 }
3842}
3843
3844/* Type of the user_data argument passed to add_macro_name. The
3845 contents are simply whatever is needed by
3846 completion_list_add_name. */
3847struct add_macro_name_data
3848{
3849 char *sym_text;
3850 int sym_text_len;
3851 char *text;
3852 char *word;
3853};
3854
3855/* A callback used with macro_for_each and macro_for_each_in_scope.
3856 This adds a macro's name to the current completion list. */
3857static void
3858add_macro_name (const char *name, const struct macro_definition *ignore,
3859 void *user_data)
3860{
3861 struct add_macro_name_data *datum = (struct add_macro_name_data *) user_data;
3862 completion_list_add_name ((char *) name,
3863 datum->sym_text, datum->sym_text_len,
3864 datum->text, datum->word);
3865}
3866
3867char **
3868default_make_symbol_completion_list (char *text, char *word)
3869{
3870 /* Problem: All of the symbols have to be copied because readline
3871 frees them. I'm not going to worry about this; hopefully there
3872 won't be that many. */
3873
3874 struct symbol *sym;
3875 struct symtab *s;
3876 struct partial_symtab *ps;
3877 struct minimal_symbol *msymbol;
3878 struct objfile *objfile;
3879 struct block *b;
3880 const struct block *surrounding_static_block, *surrounding_global_block;
3881 struct dict_iterator iter;
3882 struct partial_symbol **psym;
3883 /* The symbol we are completing on. Points in same buffer as text. */
3884 char *sym_text;
3885 /* Length of sym_text. */
3886 int sym_text_len;
3887
3888 /* Now look for the symbol we are supposed to complete on. */
3889 {
3890 char *p;
3891 char quote_found;
3892 char *quote_pos = NULL;
3893
3894 /* First see if this is a quoted string. */
3895 quote_found = '\0';
3896 for (p = text; *p != '\0'; ++p)
3897 {
3898 if (quote_found != '\0')
3899 {
3900 if (*p == quote_found)
3901 /* Found close quote. */
3902 quote_found = '\0';
3903 else if (*p == '\\' && p[1] == quote_found)
3904 /* A backslash followed by the quote character
3905 doesn't end the string. */
3906 ++p;
3907 }
3908 else if (*p == '\'' || *p == '"')
3909 {
3910 quote_found = *p;
3911 quote_pos = p;
3912 }
3913 }
3914 if (quote_found == '\'')
3915 /* A string within single quotes can be a symbol, so complete on it. */
3916 sym_text = quote_pos + 1;
3917 else if (quote_found == '"')
3918 /* A double-quoted string is never a symbol, nor does it make sense
3919 to complete it any other way. */
3920 {
3921 return_val = (char **) xmalloc (sizeof (char *));
3922 return_val[0] = NULL;
3923 return return_val;
3924 }
3925 else
3926 {
3927 /* It is not a quoted string. Break it based on the characters
3928 which are in symbols. */
3929 while (p > text)
3930 {
3931 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3932 || p[-1] == ':')
3933 --p;
3934 else
3935 break;
3936 }
3937 sym_text = p;
3938 }
3939 }
3940
3941 sym_text_len = strlen (sym_text);
3942
3943 return_val_size = 100;
3944 return_val_index = 0;
3945 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3946 return_val[0] = NULL;
3947
3948 /* Look through the partial symtabs for all symbols which begin
3949 by matching SYM_TEXT. Add each one that you find to the list. */
3950
3951 ALL_PSYMTABS (objfile, ps)
3952 {
3953 /* If the psymtab's been read in we'll get it when we search
3954 through the blockvector. */
3955 if (ps->readin)
3956 continue;
3957
3958 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3959 psym < (objfile->global_psymbols.list + ps->globals_offset
3960 + ps->n_global_syms);
3961 psym++)
3962 {
3963 /* If interrupted, then quit. */
3964 QUIT;
3965 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3966 }
3967
3968 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3969 psym < (objfile->static_psymbols.list + ps->statics_offset
3970 + ps->n_static_syms);
3971 psym++)
3972 {
3973 QUIT;
3974 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3975 }
3976 }
3977
3978 /* At this point scan through the misc symbol vectors and add each
3979 symbol you find to the list. Eventually we want to ignore
3980 anything that isn't a text symbol (everything else will be
3981 handled by the psymtab code above). */
3982
3983 ALL_MSYMBOLS (objfile, msymbol)
3984 {
3985 QUIT;
3986 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3987
3988 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3989 }
3990
3991 /* Search upwards from currently selected frame (so that we can
3992 complete on local vars). Also catch fields of types defined in
3993 this places which match our text string. Only complete on types
3994 visible from current context. */
3995
3996 b = get_selected_block (0);
3997 surrounding_static_block = block_static_block (b);
3998 surrounding_global_block = block_global_block (b);
3999 if (surrounding_static_block != NULL)
4000 while (b != surrounding_static_block)
4001 {
4002 QUIT;
4003
4004 ALL_BLOCK_SYMBOLS (b, iter, sym)
4005 {
4006 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4007 word);
4008 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4009 word);
4010 }
4011
4012 /* Stop when we encounter an enclosing function. Do not stop for
4013 non-inlined functions - the locals of the enclosing function
4014 are in scope for a nested function. */
4015 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4016 break;
4017 b = BLOCK_SUPERBLOCK (b);
4018 }
4019
4020 /* Add fields from the file's types; symbols will be added below. */
4021
4022 if (surrounding_static_block != NULL)
4023 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4024 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4025
4026 if (surrounding_global_block != NULL)
4027 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4028 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4029
4030 /* Go through the symtabs and check the externs and statics for
4031 symbols which match. */
4032
4033 ALL_PRIMARY_SYMTABS (objfile, s)
4034 {
4035 QUIT;
4036 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4037 ALL_BLOCK_SYMBOLS (b, iter, sym)
4038 {
4039 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4040 }
4041 }
4042
4043 ALL_PRIMARY_SYMTABS (objfile, s)
4044 {
4045 QUIT;
4046 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4047 ALL_BLOCK_SYMBOLS (b, iter, sym)
4048 {
4049 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4050 }
4051 }
4052
4053 if (current_language->la_macro_expansion == macro_expansion_c)
4054 {
4055 struct macro_scope *scope;
4056 struct add_macro_name_data datum;
4057
4058 datum.sym_text = sym_text;
4059 datum.sym_text_len = sym_text_len;
4060 datum.text = text;
4061 datum.word = word;
4062
4063 /* Add any macros visible in the default scope. Note that this
4064 may yield the occasional wrong result, because an expression
4065 might be evaluated in a scope other than the default. For
4066 example, if the user types "break file:line if <TAB>", the
4067 resulting expression will be evaluated at "file:line" -- but
4068 at there does not seem to be a way to detect this at
4069 completion time. */
4070 scope = default_macro_scope ();
4071 if (scope)
4072 {
4073 macro_for_each_in_scope (scope->file, scope->line,
4074 add_macro_name, &datum);
4075 xfree (scope);
4076 }
4077
4078 /* User-defined macros are always visible. */
4079 macro_for_each (macro_user_macros, add_macro_name, &datum);
4080 }
4081
4082 return (return_val);
4083}
4084
4085/* Return a NULL terminated array of all symbols (regardless of class)
4086 which begin by matching TEXT. If the answer is no symbols, then
4087 the return value is an array which contains only a NULL pointer. */
4088
4089char **
4090make_symbol_completion_list (char *text, char *word)
4091{
4092 return current_language->la_make_symbol_completion_list (text, word);
4093}
4094
4095/* Like make_symbol_completion_list, but suitable for use as a
4096 completion function. */
4097
4098char **
4099make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4100 char *text, char *word)
4101{
4102 return make_symbol_completion_list (text, word);
4103}
4104
4105/* Like make_symbol_completion_list, but returns a list of symbols
4106 defined in a source file FILE. */
4107
4108char **
4109make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4110{
4111 struct symbol *sym;
4112 struct symtab *s;
4113 struct block *b;
4114 struct dict_iterator iter;
4115 /* The symbol we are completing on. Points in same buffer as text. */
4116 char *sym_text;
4117 /* Length of sym_text. */
4118 int sym_text_len;
4119
4120 /* Now look for the symbol we are supposed to complete on.
4121 FIXME: This should be language-specific. */
4122 {
4123 char *p;
4124 char quote_found;
4125 char *quote_pos = NULL;
4126
4127 /* First see if this is a quoted string. */
4128 quote_found = '\0';
4129 for (p = text; *p != '\0'; ++p)
4130 {
4131 if (quote_found != '\0')
4132 {
4133 if (*p == quote_found)
4134 /* Found close quote. */
4135 quote_found = '\0';
4136 else if (*p == '\\' && p[1] == quote_found)
4137 /* A backslash followed by the quote character
4138 doesn't end the string. */
4139 ++p;
4140 }
4141 else if (*p == '\'' || *p == '"')
4142 {
4143 quote_found = *p;
4144 quote_pos = p;
4145 }
4146 }
4147 if (quote_found == '\'')
4148 /* A string within single quotes can be a symbol, so complete on it. */
4149 sym_text = quote_pos + 1;
4150 else if (quote_found == '"')
4151 /* A double-quoted string is never a symbol, nor does it make sense
4152 to complete it any other way. */
4153 {
4154 return_val = (char **) xmalloc (sizeof (char *));
4155 return_val[0] = NULL;
4156 return return_val;
4157 }
4158 else
4159 {
4160 /* Not a quoted string. */
4161 sym_text = language_search_unquoted_string (text, p);
4162 }
4163 }
4164
4165 sym_text_len = strlen (sym_text);
4166
4167 return_val_size = 10;
4168 return_val_index = 0;
4169 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4170 return_val[0] = NULL;
4171
4172 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4173 in). */
4174 s = lookup_symtab (srcfile);
4175 if (s == NULL)
4176 {
4177 /* Maybe they typed the file with leading directories, while the
4178 symbol tables record only its basename. */
4179 const char *tail = lbasename (srcfile);
4180
4181 if (tail > srcfile)
4182 s = lookup_symtab (tail);
4183 }
4184
4185 /* If we have no symtab for that file, return an empty list. */
4186 if (s == NULL)
4187 return (return_val);
4188
4189 /* Go through this symtab and check the externs and statics for
4190 symbols which match. */
4191
4192 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4193 ALL_BLOCK_SYMBOLS (b, iter, sym)
4194 {
4195 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4196 }
4197
4198 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4199 ALL_BLOCK_SYMBOLS (b, iter, sym)
4200 {
4201 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4202 }
4203
4204 return (return_val);
4205}
4206
4207/* A helper function for make_source_files_completion_list. It adds
4208 another file name to a list of possible completions, growing the
4209 list as necessary. */
4210
4211static void
4212add_filename_to_list (const char *fname, char *text, char *word,
4213 char ***list, int *list_used, int *list_alloced)
4214{
4215 char *new;
4216 size_t fnlen = strlen (fname);
4217
4218 if (*list_used + 1 >= *list_alloced)
4219 {
4220 *list_alloced *= 2;
4221 *list = (char **) xrealloc ((char *) *list,
4222 *list_alloced * sizeof (char *));
4223 }
4224
4225 if (word == text)
4226 {
4227 /* Return exactly fname. */
4228 new = xmalloc (fnlen + 5);
4229 strcpy (new, fname);
4230 }
4231 else if (word > text)
4232 {
4233 /* Return some portion of fname. */
4234 new = xmalloc (fnlen + 5);
4235 strcpy (new, fname + (word - text));
4236 }
4237 else
4238 {
4239 /* Return some of TEXT plus fname. */
4240 new = xmalloc (fnlen + (text - word) + 5);
4241 strncpy (new, word, text - word);
4242 new[text - word] = '\0';
4243 strcat (new, fname);
4244 }
4245 (*list)[*list_used] = new;
4246 (*list)[++*list_used] = NULL;
4247}
4248
4249static int
4250not_interesting_fname (const char *fname)
4251{
4252 static const char *illegal_aliens[] = {
4253 "_globals_", /* inserted by coff_symtab_read */
4254 NULL
4255 };
4256 int i;
4257
4258 for (i = 0; illegal_aliens[i]; i++)
4259 {
4260 if (strcmp (fname, illegal_aliens[i]) == 0)
4261 return 1;
4262 }
4263 return 0;
4264}
4265
4266/* Return a NULL terminated array of all source files whose names
4267 begin with matching TEXT. The file names are looked up in the
4268 symbol tables of this program. If the answer is no matchess, then
4269 the return value is an array which contains only a NULL pointer. */
4270
4271char **
4272make_source_files_completion_list (char *text, char *word)
4273{
4274 struct symtab *s;
4275 struct partial_symtab *ps;
4276 struct objfile *objfile;
4277 int first = 1;
4278 int list_alloced = 1;
4279 int list_used = 0;
4280 size_t text_len = strlen (text);
4281 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4282 const char *base_name;
4283
4284 list[0] = NULL;
4285
4286 if (!have_full_symbols () && !have_partial_symbols ())
4287 return list;
4288
4289 ALL_SYMTABS (objfile, s)
4290 {
4291 if (not_interesting_fname (s->filename))
4292 continue;
4293 if (!filename_seen (s->filename, 1, &first)
4294#if HAVE_DOS_BASED_FILE_SYSTEM
4295 && strncasecmp (s->filename, text, text_len) == 0
4296#else
4297 && strncmp (s->filename, text, text_len) == 0
4298#endif
4299 )
4300 {
4301 /* This file matches for a completion; add it to the current
4302 list of matches. */
4303 add_filename_to_list (s->filename, text, word,
4304 &list, &list_used, &list_alloced);
4305 }
4306 else
4307 {
4308 /* NOTE: We allow the user to type a base name when the
4309 debug info records leading directories, but not the other
4310 way around. This is what subroutines of breakpoint
4311 command do when they parse file names. */
4312 base_name = lbasename (s->filename);
4313 if (base_name != s->filename
4314 && !filename_seen (base_name, 1, &first)
4315#if HAVE_DOS_BASED_FILE_SYSTEM
4316 && strncasecmp (base_name, text, text_len) == 0
4317#else
4318 && strncmp (base_name, text, text_len) == 0
4319#endif
4320 )
4321 add_filename_to_list (base_name, text, word,
4322 &list, &list_used, &list_alloced);
4323 }
4324 }
4325
4326 ALL_PSYMTABS (objfile, ps)
4327 {
4328 if (not_interesting_fname (ps->filename))
4329 continue;
4330 if (!ps->readin)
4331 {
4332 if (!filename_seen (ps->filename, 1, &first)
4333#if HAVE_DOS_BASED_FILE_SYSTEM
4334 && strncasecmp (ps->filename, text, text_len) == 0
4335#else
4336 && strncmp (ps->filename, text, text_len) == 0
4337#endif
4338 )
4339 {
4340 /* This file matches for a completion; add it to the
4341 current list of matches. */
4342 add_filename_to_list (ps->filename, text, word,
4343 &list, &list_used, &list_alloced);
4344
4345 }
4346 else
4347 {
4348 base_name = lbasename (ps->filename);
4349 if (base_name != ps->filename
4350 && !filename_seen (base_name, 1, &first)
4351#if HAVE_DOS_BASED_FILE_SYSTEM
4352 && strncasecmp (base_name, text, text_len) == 0
4353#else
4354 && strncmp (base_name, text, text_len) == 0
4355#endif
4356 )
4357 add_filename_to_list (base_name, text, word,
4358 &list, &list_used, &list_alloced);
4359 }
4360 }
4361 }
4362
4363 return list;
4364}
4365
4366/* Determine if PC is in the prologue of a function. The prologue is the area
4367 between the first instruction of a function, and the first executable line.
4368 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4369
4370 If non-zero, func_start is where we think the prologue starts, possibly
4371 by previous examination of symbol table information.
4372 */
4373
4374int
4375in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4376{
4377 struct symtab_and_line sal;
4378 CORE_ADDR func_addr, func_end;
4379
4380 /* We have several sources of information we can consult to figure
4381 this out.
4382 - Compilers usually emit line number info that marks the prologue
4383 as its own "source line". So the ending address of that "line"
4384 is the end of the prologue. If available, this is the most
4385 reliable method.
4386 - The minimal symbols and partial symbols, which can usually tell
4387 us the starting and ending addresses of a function.
4388 - If we know the function's start address, we can call the
4389 architecture-defined gdbarch_skip_prologue function to analyze the
4390 instruction stream and guess where the prologue ends.
4391 - Our `func_start' argument; if non-zero, this is the caller's
4392 best guess as to the function's entry point. At the time of
4393 this writing, handle_inferior_event doesn't get this right, so
4394 it should be our last resort. */
4395
4396 /* Consult the partial symbol table, to find which function
4397 the PC is in. */
4398 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4399 {
4400 CORE_ADDR prologue_end;
4401
4402 /* We don't even have minsym information, so fall back to using
4403 func_start, if given. */
4404 if (! func_start)
4405 return 1; /* We *might* be in a prologue. */
4406
4407 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4408
4409 return func_start <= pc && pc < prologue_end;
4410 }
4411
4412 /* If we have line number information for the function, that's
4413 usually pretty reliable. */
4414 sal = find_pc_line (func_addr, 0);
4415
4416 /* Now sal describes the source line at the function's entry point,
4417 which (by convention) is the prologue. The end of that "line",
4418 sal.end, is the end of the prologue.
4419
4420 Note that, for functions whose source code is all on a single
4421 line, the line number information doesn't always end up this way.
4422 So we must verify that our purported end-of-prologue address is
4423 *within* the function, not at its start or end. */
4424 if (sal.line == 0
4425 || sal.end <= func_addr
4426 || func_end <= sal.end)
4427 {
4428 /* We don't have any good line number info, so use the minsym
4429 information, together with the architecture-specific prologue
4430 scanning code. */
4431 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4432
4433 return func_addr <= pc && pc < prologue_end;
4434 }
4435
4436 /* We have line number info, and it looks good. */
4437 return func_addr <= pc && pc < sal.end;
4438}
4439
4440/* Given PC at the function's start address, attempt to find the
4441 prologue end using SAL information. Return zero if the skip fails.
4442
4443 A non-optimized prologue traditionally has one SAL for the function
4444 and a second for the function body. A single line function has
4445 them both pointing at the same line.
4446
4447 An optimized prologue is similar but the prologue may contain
4448 instructions (SALs) from the instruction body. Need to skip those
4449 while not getting into the function body.
4450
4451 The functions end point and an increasing SAL line are used as
4452 indicators of the prologue's endpoint.
4453
4454 This code is based on the function refine_prologue_limit (versions
4455 found in both ia64 and ppc). */
4456
4457CORE_ADDR
4458skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4459{
4460 struct symtab_and_line prologue_sal;
4461 CORE_ADDR start_pc;
4462 CORE_ADDR end_pc;
4463 struct block *bl;
4464
4465 /* Get an initial range for the function. */
4466 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4467 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4468
4469 prologue_sal = find_pc_line (start_pc, 0);
4470 if (prologue_sal.line != 0)
4471 {
4472 /* For langauges other than assembly, treat two consecutive line
4473 entries at the same address as a zero-instruction prologue.
4474 The GNU assembler emits separate line notes for each instruction
4475 in a multi-instruction macro, but compilers generally will not
4476 do this. */
4477 if (prologue_sal.symtab->language != language_asm)
4478 {
4479 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4480 int exact;
4481 int idx = 0;
4482
4483 /* Skip any earlier lines, and any end-of-sequence marker
4484 from a previous function. */
4485 while (linetable->item[idx].pc != prologue_sal.pc
4486 || linetable->item[idx].line == 0)
4487 idx++;
4488
4489 if (idx+1 < linetable->nitems
4490 && linetable->item[idx+1].line != 0
4491 && linetable->item[idx+1].pc == start_pc)
4492 return start_pc;
4493 }
4494
4495 /* If there is only one sal that covers the entire function,
4496 then it is probably a single line function, like
4497 "foo(){}". */
4498 if (prologue_sal.end >= end_pc)
4499 return 0;
4500
4501 while (prologue_sal.end < end_pc)
4502 {
4503 struct symtab_and_line sal;
4504
4505 sal = find_pc_line (prologue_sal.end, 0);
4506 if (sal.line == 0)
4507 break;
4508 /* Assume that a consecutive SAL for the same (or larger)
4509 line mark the prologue -> body transition. */
4510 if (sal.line >= prologue_sal.line)
4511 break;
4512
4513 /* The line number is smaller. Check that it's from the
4514 same function, not something inlined. If it's inlined,
4515 then there is no point comparing the line numbers. */
4516 bl = block_for_pc (prologue_sal.end);
4517 while (bl)
4518 {
4519 if (block_inlined_p (bl))
4520 break;
4521 if (BLOCK_FUNCTION (bl))
4522 {
4523 bl = NULL;
4524 break;
4525 }
4526 bl = BLOCK_SUPERBLOCK (bl);
4527 }
4528 if (bl != NULL)
4529 break;
4530
4531 /* The case in which compiler's optimizer/scheduler has
4532 moved instructions into the prologue. We look ahead in
4533 the function looking for address ranges whose
4534 corresponding line number is less the first one that we
4535 found for the function. This is more conservative then
4536 refine_prologue_limit which scans a large number of SALs
4537 looking for any in the prologue */
4538 prologue_sal = sal;
4539 }
4540 }
4541
4542 if (prologue_sal.end < end_pc)
4543 /* Return the end of this line, or zero if we could not find a
4544 line. */
4545 return prologue_sal.end;
4546 else
4547 /* Don't return END_PC, which is past the end of the function. */
4548 return prologue_sal.pc;
4549}
4550\f
4551struct symtabs_and_lines
4552decode_line_spec (char *string, int funfirstline)
4553{
4554 struct symtabs_and_lines sals;
4555 struct symtab_and_line cursal;
4556
4557 if (string == 0)
4558 error (_("Empty line specification."));
4559
4560 /* We use whatever is set as the current source line. We do not try
4561 and get a default or it will recursively call us! */
4562 cursal = get_current_source_symtab_and_line ();
4563
4564 sals = decode_line_1 (&string, funfirstline,
4565 cursal.symtab, cursal.line,
4566 (char ***) NULL, NULL);
4567
4568 if (*string)
4569 error (_("Junk at end of line specification: %s"), string);
4570 return sals;
4571}
4572
4573/* Track MAIN */
4574static char *name_of_main;
4575
4576void
4577set_main_name (const char *name)
4578{
4579 if (name_of_main != NULL)
4580 {
4581 xfree (name_of_main);
4582 name_of_main = NULL;
4583 }
4584 if (name != NULL)
4585 {
4586 name_of_main = xstrdup (name);
4587 }
4588}
4589
4590/* Deduce the name of the main procedure, and set NAME_OF_MAIN
4591 accordingly. */
4592
4593static void
4594find_main_name (void)
4595{
4596 const char *new_main_name;
4597
4598 /* Try to see if the main procedure is in Ada. */
4599 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4600 be to add a new method in the language vector, and call this
4601 method for each language until one of them returns a non-empty
4602 name. This would allow us to remove this hard-coded call to
4603 an Ada function. It is not clear that this is a better approach
4604 at this point, because all methods need to be written in a way
4605 such that false positives never be returned. For instance, it is
4606 important that a method does not return a wrong name for the main
4607 procedure if the main procedure is actually written in a different
4608 language. It is easy to guaranty this with Ada, since we use a
4609 special symbol generated only when the main in Ada to find the name
4610 of the main procedure. It is difficult however to see how this can
4611 be guarantied for languages such as C, for instance. This suggests
4612 that order of call for these methods becomes important, which means
4613 a more complicated approach. */
4614 new_main_name = ada_main_name ();
4615 if (new_main_name != NULL)
4616 {
4617 set_main_name (new_main_name);
4618 return;
4619 }
4620
4621 new_main_name = pascal_main_name ();
4622 if (new_main_name != NULL)
4623 {
4624 set_main_name (new_main_name);
4625 return;
4626 }
4627
4628 /* The languages above didn't identify the name of the main procedure.
4629 Fallback to "main". */
4630 set_main_name ("main");
4631}
4632
4633char *
4634main_name (void)
4635{
4636 if (name_of_main == NULL)
4637 find_main_name ();
4638
4639 return name_of_main;
4640}
4641
4642/* Handle ``executable_changed'' events for the symtab module. */
4643
4644static void
4645symtab_observer_executable_changed (void)
4646{
4647 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4648 set_main_name (NULL);
4649}
4650
4651/* Helper to expand_line_sal below. Appends new sal to SAL,
4652 initializing it from SYMTAB, LINENO and PC. */
4653static void
4654append_expanded_sal (struct symtabs_and_lines *sal,
4655 struct program_space *pspace,
4656 struct symtab *symtab,
4657 int lineno, CORE_ADDR pc)
4658{
4659 sal->sals = xrealloc (sal->sals,
4660 sizeof (sal->sals[0])
4661 * (sal->nelts + 1));
4662 init_sal (sal->sals + sal->nelts);
4663 sal->sals[sal->nelts].pspace = pspace;
4664 sal->sals[sal->nelts].symtab = symtab;
4665 sal->sals[sal->nelts].section = NULL;
4666 sal->sals[sal->nelts].end = 0;
4667 sal->sals[sal->nelts].line = lineno;
4668 sal->sals[sal->nelts].pc = pc;
4669 ++sal->nelts;
4670}
4671
4672/* Helper to expand_line_sal below. Search in the symtabs for any
4673 linetable entry that exactly matches FULLNAME and LINENO and append
4674 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4675 use FILENAME and LINENO instead. If there is at least one match,
4676 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4677 and BEST_SYMTAB. */
4678
4679static int
4680append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4681 struct symtabs_and_lines *ret,
4682 struct linetable_entry **best_item,
4683 struct symtab **best_symtab)
4684{
4685 struct program_space *pspace;
4686 struct objfile *objfile;
4687 struct symtab *symtab;
4688 int exact = 0;
4689 int j;
4690 *best_item = 0;
4691 *best_symtab = 0;
4692
4693 ALL_PSPACES (pspace)
4694 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4695 {
4696 if (FILENAME_CMP (filename, symtab->filename) == 0)
4697 {
4698 struct linetable *l;
4699 int len;
4700 if (fullname != NULL
4701 && symtab_to_fullname (symtab) != NULL
4702 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4703 continue;
4704 l = LINETABLE (symtab);
4705 if (!l)
4706 continue;
4707 len = l->nitems;
4708
4709 for (j = 0; j < len; j++)
4710 {
4711 struct linetable_entry *item = &(l->item[j]);
4712
4713 if (item->line == lineno)
4714 {
4715 exact = 1;
4716 append_expanded_sal (ret, objfile->pspace,
4717 symtab, lineno, item->pc);
4718 }
4719 else if (!exact && item->line > lineno
4720 && (*best_item == NULL
4721 || item->line < (*best_item)->line))
4722 {
4723 *best_item = item;
4724 *best_symtab = symtab;
4725 }
4726 }
4727 }
4728 }
4729 return exact;
4730}
4731
4732/* Compute a set of all sals in all program spaces that correspond to
4733 same file and line as SAL and return those. If there are several
4734 sals that belong to the same block, only one sal for the block is
4735 included in results. */
4736
4737struct symtabs_and_lines
4738expand_line_sal (struct symtab_and_line sal)
4739{
4740 struct symtabs_and_lines ret, this_line;
4741 int i, j;
4742 struct objfile *objfile;
4743 struct partial_symtab *psymtab;
4744 struct symtab *symtab;
4745 int lineno;
4746 int deleted = 0;
4747 struct block **blocks = NULL;
4748 int *filter;
4749 struct cleanup *old_chain;
4750
4751 ret.nelts = 0;
4752 ret.sals = NULL;
4753
4754 /* Only expand sals that represent file.c:line. */
4755 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4756 {
4757 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4758 ret.sals[0] = sal;
4759 ret.nelts = 1;
4760 return ret;
4761 }
4762 else
4763 {
4764 struct program_space *pspace;
4765 struct linetable_entry *best_item = 0;
4766 struct symtab *best_symtab = 0;
4767 int exact = 0;
4768 char *match_filename;
4769
4770 lineno = sal.line;
4771 match_filename = sal.symtab->filename;
4772
4773 /* We need to find all symtabs for a file which name
4774 is described by sal. We cannot just directly
4775 iterate over symtabs, since a symtab might not be
4776 yet created. We also cannot iterate over psymtabs,
4777 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4778 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4779 corresponding to an included file. Therefore, we do
4780 first pass over psymtabs, reading in those with
4781 the right name. Then, we iterate over symtabs, knowing
4782 that all symtabs we're interested in are loaded. */
4783
4784 old_chain = save_current_program_space ();
4785 ALL_PSPACES (pspace)
4786 ALL_PSPACE_PSYMTABS (pspace, objfile, psymtab)
4787 {
4788 if (FILENAME_CMP (match_filename, psymtab->filename) == 0)
4789 {
4790 set_current_program_space (pspace);
4791
4792 PSYMTAB_TO_SYMTAB (psymtab);
4793 }
4794 }
4795 do_cleanups (old_chain);
4796
4797 /* Now search the symtab for exact matches and append them. If
4798 none is found, append the best_item and all its exact
4799 matches. */
4800 symtab_to_fullname (sal.symtab);
4801 exact = append_exact_match_to_sals (sal.symtab->filename,
4802 sal.symtab->fullname, lineno,
4803 &ret, &best_item, &best_symtab);
4804 if (!exact && best_item)
4805 append_exact_match_to_sals (best_symtab->filename,
4806 best_symtab->fullname, best_item->line,
4807 &ret, &best_item, &best_symtab);
4808 }
4809
4810 /* For optimized code, compiler can scatter one source line accross
4811 disjoint ranges of PC values, even when no duplicate functions
4812 or inline functions are involved. For example, 'for (;;)' inside
4813 non-template non-inline non-ctor-or-dtor function can result
4814 in two PC ranges. In this case, we don't want to set breakpoint
4815 on first PC of each range. To filter such cases, we use containing
4816 blocks -- for each PC found above we see if there are other PCs
4817 that are in the same block. If yes, the other PCs are filtered out. */
4818
4819 old_chain = save_current_program_space ();
4820 filter = alloca (ret.nelts * sizeof (int));
4821 blocks = alloca (ret.nelts * sizeof (struct block *));
4822 for (i = 0; i < ret.nelts; ++i)
4823 {
4824 struct blockvector *bl;
4825 struct block *b;
4826
4827 set_current_program_space (ret.sals[i].pspace);
4828
4829 filter[i] = 1;
4830 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4831
4832 }
4833 do_cleanups (old_chain);
4834
4835 for (i = 0; i < ret.nelts; ++i)
4836 if (blocks[i] != NULL)
4837 for (j = i+1; j < ret.nelts; ++j)
4838 if (blocks[j] == blocks[i])
4839 {
4840 filter[j] = 0;
4841 ++deleted;
4842 break;
4843 }
4844
4845 {
4846 struct symtab_and_line *final =
4847 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4848
4849 for (i = 0, j = 0; i < ret.nelts; ++i)
4850 if (filter[i])
4851 final[j++] = ret.sals[i];
4852
4853 ret.nelts -= deleted;
4854 xfree (ret.sals);
4855 ret.sals = final;
4856 }
4857
4858 return ret;
4859}
4860
4861
4862void
4863_initialize_symtab (void)
4864{
4865 add_info ("variables", variables_info, _("\
4866All global and static variable names, or those matching REGEXP."));
4867 if (dbx_commands)
4868 add_com ("whereis", class_info, variables_info, _("\
4869All global and static variable names, or those matching REGEXP."));
4870
4871 add_info ("functions", functions_info,
4872 _("All function names, or those matching REGEXP."));
4873
4874 /* FIXME: This command has at least the following problems:
4875 1. It prints builtin types (in a very strange and confusing fashion).
4876 2. It doesn't print right, e.g. with
4877 typedef struct foo *FOO
4878 type_print prints "FOO" when we want to make it (in this situation)
4879 print "struct foo *".
4880 I also think "ptype" or "whatis" is more likely to be useful (but if
4881 there is much disagreement "info types" can be fixed). */
4882 add_info ("types", types_info,
4883 _("All type names, or those matching REGEXP."));
4884
4885 add_info ("sources", sources_info,
4886 _("Source files in the program."));
4887
4888 add_com ("rbreak", class_breakpoint, rbreak_command,
4889 _("Set a breakpoint for all functions matching REGEXP."));
4890
4891 if (xdb_commands)
4892 {
4893 add_com ("lf", class_info, sources_info,
4894 _("Source files in the program"));
4895 add_com ("lg", class_info, variables_info, _("\
4896All global and static variable names, or those matching REGEXP."));
4897 }
4898
4899 add_setshow_enum_cmd ("multiple-symbols", no_class,
4900 multiple_symbols_modes, &multiple_symbols_mode,
4901 _("\
4902Set the debugger behavior when more than one symbol are possible matches\n\
4903in an expression."), _("\
4904Show how the debugger handles ambiguities in expressions."), _("\
4905Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4906 NULL, NULL, &setlist, &showlist);
4907
4908 observer_attach_executable_changed (symtab_observer_executable_changed);
4909}
This page took 0.03827 seconds and 4 git commands to generate.