* dwarf2read.c (new_symbol_full): Remove cast.
[deliverable/binutils-gdb.git] / gdb / symtab.c
... / ...
CommitLineData
1/* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "symtab.h"
22#include "gdbtypes.h"
23#include "gdbcore.h"
24#include "frame.h"
25#include "target.h"
26#include "value.h"
27#include "symfile.h"
28#include "objfiles.h"
29#include "gdbcmd.h"
30#include "gdb_regex.h"
31#include "expression.h"
32#include "language.h"
33#include "demangle.h"
34#include "inferior.h"
35#include "source.h"
36#include "filenames.h" /* for FILENAME_CMP */
37#include "objc-lang.h"
38#include "d-lang.h"
39#include "ada-lang.h"
40#include "go-lang.h"
41#include "p-lang.h"
42#include "addrmap.h"
43
44#include "hashtab.h"
45
46#include "gdb_obstack.h"
47#include "block.h"
48#include "dictionary.h"
49
50#include <sys/types.h>
51#include <fcntl.h>
52#include "gdb_string.h"
53#include "gdb_stat.h"
54#include <ctype.h>
55#include "cp-abi.h"
56#include "cp-support.h"
57#include "observer.h"
58#include "gdb_assert.h"
59#include "solist.h"
60#include "macrotab.h"
61#include "macroscope.h"
62
63#include "psymtab.h"
64#include "parser-defs.h"
65
66/* Prototypes for local functions */
67
68static void rbreak_command (char *, int);
69
70static void types_info (char *, int);
71
72static void functions_info (char *, int);
73
74static void variables_info (char *, int);
75
76static void sources_info (char *, int);
77
78static int find_line_common (struct linetable *, int, int *, int);
79
80static struct symbol *lookup_symbol_aux (const char *name,
81 const struct block *block,
82 const domain_enum domain,
83 enum language language,
84 struct field_of_this_result *is_a_field_of_this);
85
86static
87struct symbol *lookup_symbol_aux_local (const char *name,
88 const struct block *block,
89 const domain_enum domain,
90 enum language language);
91
92static
93struct symbol *lookup_symbol_aux_symtabs (int block_index,
94 const char *name,
95 const domain_enum domain);
96
97static
98struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
99 int block_index,
100 const char *name,
101 const domain_enum domain);
102
103static void print_msymbol_info (struct minimal_symbol *);
104
105void _initialize_symtab (void);
106
107/* */
108
109/* When non-zero, print debugging messages related to symtab creation. */
110int symtab_create_debug = 0;
111
112/* Non-zero if a file may be known by two different basenames.
113 This is the uncommon case, and significantly slows down gdb.
114 Default set to "off" to not slow down the common case. */
115int basenames_may_differ = 0;
116
117/* Allow the user to configure the debugger behavior with respect
118 to multiple-choice menus when more than one symbol matches during
119 a symbol lookup. */
120
121const char multiple_symbols_ask[] = "ask";
122const char multiple_symbols_all[] = "all";
123const char multiple_symbols_cancel[] = "cancel";
124static const char *const multiple_symbols_modes[] =
125{
126 multiple_symbols_ask,
127 multiple_symbols_all,
128 multiple_symbols_cancel,
129 NULL
130};
131static const char *multiple_symbols_mode = multiple_symbols_all;
132
133/* Read-only accessor to AUTO_SELECT_MODE. */
134
135const char *
136multiple_symbols_select_mode (void)
137{
138 return multiple_symbols_mode;
139}
140
141/* Block in which the most recently searched-for symbol was found.
142 Might be better to make this a parameter to lookup_symbol and
143 value_of_this. */
144
145const struct block *block_found;
146
147/* See whether FILENAME matches SEARCH_NAME using the rule that we
148 advertise to the user. (The manual's description of linespecs
149 describes what we advertise). We assume that SEARCH_NAME is
150 a relative path. Returns true if they match, false otherwise. */
151
152int
153compare_filenames_for_search (const char *filename, const char *search_name)
154{
155 int len = strlen (filename);
156 size_t search_len = strlen (search_name);
157
158 if (len < search_len)
159 return 0;
160
161 /* The tail of FILENAME must match. */
162 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
163 return 0;
164
165 /* Either the names must completely match, or the character
166 preceding the trailing SEARCH_NAME segment of FILENAME must be a
167 directory separator.
168
169 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
170 compatible with SEARCH_NAME "file.c". In such case a compiler had
171 to put the "c:file.c" name into debug info. Such compatibility
172 works only on GDB built for DOS host. */
173 return (len == search_len
174 || IS_DIR_SEPARATOR (filename[len - search_len - 1])
175 || (HAS_DRIVE_SPEC (filename)
176 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
177}
178
179/* Check for a symtab of a specific name by searching some symtabs.
180 This is a helper function for callbacks of iterate_over_symtabs.
181
182 The return value, NAME, FULL_PATH, REAL_PATH, CALLBACK, and DATA
183 are identical to the `map_symtabs_matching_filename' method of
184 quick_symbol_functions.
185
186 FIRST and AFTER_LAST indicate the range of symtabs to search.
187 AFTER_LAST is one past the last symtab to search; NULL means to
188 search until the end of the list. */
189
190int
191iterate_over_some_symtabs (const char *name,
192 const char *full_path,
193 const char *real_path,
194 int (*callback) (struct symtab *symtab,
195 void *data),
196 void *data,
197 struct symtab *first,
198 struct symtab *after_last)
199{
200 struct symtab *s = NULL;
201 const char* base_name = lbasename (name);
202 int is_abs = IS_ABSOLUTE_PATH (name);
203
204 for (s = first; s != NULL && s != after_last; s = s->next)
205 {
206 /* Exact match is always ok. */
207 if (FILENAME_CMP (name, s->filename) == 0)
208 {
209 if (callback (s, data))
210 return 1;
211 }
212
213 if (!is_abs && compare_filenames_for_search (s->filename, name))
214 {
215 if (callback (s, data))
216 return 1;
217 }
218
219 /* Before we invoke realpath, which can get expensive when many
220 files are involved, do a quick comparison of the basenames. */
221 if (! basenames_may_differ
222 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
223 continue;
224
225 /* If the user gave us an absolute path, try to find the file in
226 this symtab and use its absolute path. */
227
228 if (full_path != NULL)
229 {
230 const char *fp = symtab_to_fullname (s);
231
232 if (FILENAME_CMP (full_path, fp) == 0)
233 {
234 if (callback (s, data))
235 return 1;
236 }
237
238 if (!is_abs && compare_filenames_for_search (fp, name))
239 {
240 if (callback (s, data))
241 return 1;
242 }
243 }
244
245 if (real_path != NULL)
246 {
247 const char *fullname = symtab_to_fullname (s);
248 char *rp = gdb_realpath (fullname);
249 struct cleanup *cleanups = make_cleanup (xfree, rp);
250
251 if (FILENAME_CMP (real_path, rp) == 0)
252 {
253 if (callback (s, data))
254 {
255 do_cleanups (cleanups);
256 return 1;
257 }
258 }
259
260 if (!is_abs && compare_filenames_for_search (rp, name))
261 {
262 if (callback (s, data))
263 {
264 do_cleanups (cleanups);
265 return 1;
266 }
267 }
268 do_cleanups (cleanups);
269 }
270 }
271
272 return 0;
273}
274
275/* Check for a symtab of a specific name; first in symtabs, then in
276 psymtabs. *If* there is no '/' in the name, a match after a '/'
277 in the symtab filename will also work.
278
279 Calls CALLBACK with each symtab that is found and with the supplied
280 DATA. If CALLBACK returns true, the search stops. */
281
282void
283iterate_over_symtabs (const char *name,
284 int (*callback) (struct symtab *symtab,
285 void *data),
286 void *data)
287{
288 struct symtab *s = NULL;
289 struct objfile *objfile;
290 char *real_path = NULL;
291 char *full_path = NULL;
292 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
293
294 /* Here we are interested in canonicalizing an absolute path, not
295 absolutizing a relative path. */
296 if (IS_ABSOLUTE_PATH (name))
297 {
298 full_path = xfullpath (name);
299 make_cleanup (xfree, full_path);
300 real_path = gdb_realpath (name);
301 make_cleanup (xfree, real_path);
302 }
303
304 ALL_OBJFILES (objfile)
305 {
306 if (iterate_over_some_symtabs (name, full_path, real_path, callback, data,
307 objfile->symtabs, NULL))
308 {
309 do_cleanups (cleanups);
310 return;
311 }
312 }
313
314 /* Same search rules as above apply here, but now we look thru the
315 psymtabs. */
316
317 ALL_OBJFILES (objfile)
318 {
319 if (objfile->sf
320 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
321 name,
322 full_path,
323 real_path,
324 callback,
325 data))
326 {
327 do_cleanups (cleanups);
328 return;
329 }
330 }
331
332 do_cleanups (cleanups);
333}
334
335/* The callback function used by lookup_symtab. */
336
337static int
338lookup_symtab_callback (struct symtab *symtab, void *data)
339{
340 struct symtab **result_ptr = data;
341
342 *result_ptr = symtab;
343 return 1;
344}
345
346/* A wrapper for iterate_over_symtabs that returns the first matching
347 symtab, or NULL. */
348
349struct symtab *
350lookup_symtab (const char *name)
351{
352 struct symtab *result = NULL;
353
354 iterate_over_symtabs (name, lookup_symtab_callback, &result);
355 return result;
356}
357
358\f
359/* Mangle a GDB method stub type. This actually reassembles the pieces of the
360 full method name, which consist of the class name (from T), the unadorned
361 method name from METHOD_ID, and the signature for the specific overload,
362 specified by SIGNATURE_ID. Note that this function is g++ specific. */
363
364char *
365gdb_mangle_name (struct type *type, int method_id, int signature_id)
366{
367 int mangled_name_len;
368 char *mangled_name;
369 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
370 struct fn_field *method = &f[signature_id];
371 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
372 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
373 const char *newname = type_name_no_tag (type);
374
375 /* Does the form of physname indicate that it is the full mangled name
376 of a constructor (not just the args)? */
377 int is_full_physname_constructor;
378
379 int is_constructor;
380 int is_destructor = is_destructor_name (physname);
381 /* Need a new type prefix. */
382 char *const_prefix = method->is_const ? "C" : "";
383 char *volatile_prefix = method->is_volatile ? "V" : "";
384 char buf[20];
385 int len = (newname == NULL ? 0 : strlen (newname));
386
387 /* Nothing to do if physname already contains a fully mangled v3 abi name
388 or an operator name. */
389 if ((physname[0] == '_' && physname[1] == 'Z')
390 || is_operator_name (field_name))
391 return xstrdup (physname);
392
393 is_full_physname_constructor = is_constructor_name (physname);
394
395 is_constructor = is_full_physname_constructor
396 || (newname && strcmp (field_name, newname) == 0);
397
398 if (!is_destructor)
399 is_destructor = (strncmp (physname, "__dt", 4) == 0);
400
401 if (is_destructor || is_full_physname_constructor)
402 {
403 mangled_name = (char *) xmalloc (strlen (physname) + 1);
404 strcpy (mangled_name, physname);
405 return mangled_name;
406 }
407
408 if (len == 0)
409 {
410 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
411 }
412 else if (physname[0] == 't' || physname[0] == 'Q')
413 {
414 /* The physname for template and qualified methods already includes
415 the class name. */
416 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
417 newname = NULL;
418 len = 0;
419 }
420 else
421 {
422 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
423 volatile_prefix, len);
424 }
425 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
426 + strlen (buf) + len + strlen (physname) + 1);
427
428 mangled_name = (char *) xmalloc (mangled_name_len);
429 if (is_constructor)
430 mangled_name[0] = '\0';
431 else
432 strcpy (mangled_name, field_name);
433
434 strcat (mangled_name, buf);
435 /* If the class doesn't have a name, i.e. newname NULL, then we just
436 mangle it using 0 for the length of the class. Thus it gets mangled
437 as something starting with `::' rather than `classname::'. */
438 if (newname != NULL)
439 strcat (mangled_name, newname);
440
441 strcat (mangled_name, physname);
442 return (mangled_name);
443}
444
445/* Initialize the cplus_specific structure. 'cplus_specific' should
446 only be allocated for use with cplus symbols. */
447
448static void
449symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
450 struct objfile *objfile)
451{
452 /* A language_specific structure should not have been previously
453 initialized. */
454 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
455 gdb_assert (objfile != NULL);
456
457 gsymbol->language_specific.cplus_specific =
458 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
459}
460
461/* Set the demangled name of GSYMBOL to NAME. NAME must be already
462 correctly allocated. For C++ symbols a cplus_specific struct is
463 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
464 OBJFILE can be NULL. */
465
466void
467symbol_set_demangled_name (struct general_symbol_info *gsymbol,
468 const char *name,
469 struct objfile *objfile)
470{
471 if (gsymbol->language == language_cplus)
472 {
473 if (gsymbol->language_specific.cplus_specific == NULL)
474 symbol_init_cplus_specific (gsymbol, objfile);
475
476 gsymbol->language_specific.cplus_specific->demangled_name = name;
477 }
478 else
479 gsymbol->language_specific.mangled_lang.demangled_name = name;
480}
481
482/* Return the demangled name of GSYMBOL. */
483
484const char *
485symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
486{
487 if (gsymbol->language == language_cplus)
488 {
489 if (gsymbol->language_specific.cplus_specific != NULL)
490 return gsymbol->language_specific.cplus_specific->demangled_name;
491 else
492 return NULL;
493 }
494 else
495 return gsymbol->language_specific.mangled_lang.demangled_name;
496}
497
498\f
499/* Initialize the language dependent portion of a symbol
500 depending upon the language for the symbol. */
501
502void
503symbol_set_language (struct general_symbol_info *gsymbol,
504 enum language language)
505{
506 gsymbol->language = language;
507 if (gsymbol->language == language_d
508 || gsymbol->language == language_go
509 || gsymbol->language == language_java
510 || gsymbol->language == language_objc
511 || gsymbol->language == language_fortran)
512 {
513 symbol_set_demangled_name (gsymbol, NULL, NULL);
514 }
515 else if (gsymbol->language == language_cplus)
516 gsymbol->language_specific.cplus_specific = NULL;
517 else
518 {
519 memset (&gsymbol->language_specific, 0,
520 sizeof (gsymbol->language_specific));
521 }
522}
523
524/* Functions to initialize a symbol's mangled name. */
525
526/* Objects of this type are stored in the demangled name hash table. */
527struct demangled_name_entry
528{
529 char *mangled;
530 char demangled[1];
531};
532
533/* Hash function for the demangled name hash. */
534
535static hashval_t
536hash_demangled_name_entry (const void *data)
537{
538 const struct demangled_name_entry *e = data;
539
540 return htab_hash_string (e->mangled);
541}
542
543/* Equality function for the demangled name hash. */
544
545static int
546eq_demangled_name_entry (const void *a, const void *b)
547{
548 const struct demangled_name_entry *da = a;
549 const struct demangled_name_entry *db = b;
550
551 return strcmp (da->mangled, db->mangled) == 0;
552}
553
554/* Create the hash table used for demangled names. Each hash entry is
555 a pair of strings; one for the mangled name and one for the demangled
556 name. The entry is hashed via just the mangled name. */
557
558static void
559create_demangled_names_hash (struct objfile *objfile)
560{
561 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
562 The hash table code will round this up to the next prime number.
563 Choosing a much larger table size wastes memory, and saves only about
564 1% in symbol reading. */
565
566 objfile->demangled_names_hash = htab_create_alloc
567 (256, hash_demangled_name_entry, eq_demangled_name_entry,
568 NULL, xcalloc, xfree);
569}
570
571/* Try to determine the demangled name for a symbol, based on the
572 language of that symbol. If the language is set to language_auto,
573 it will attempt to find any demangling algorithm that works and
574 then set the language appropriately. The returned name is allocated
575 by the demangler and should be xfree'd. */
576
577static char *
578symbol_find_demangled_name (struct general_symbol_info *gsymbol,
579 const char *mangled)
580{
581 char *demangled = NULL;
582
583 if (gsymbol->language == language_unknown)
584 gsymbol->language = language_auto;
585
586 if (gsymbol->language == language_objc
587 || gsymbol->language == language_auto)
588 {
589 demangled =
590 objc_demangle (mangled, 0);
591 if (demangled != NULL)
592 {
593 gsymbol->language = language_objc;
594 return demangled;
595 }
596 }
597 if (gsymbol->language == language_cplus
598 || gsymbol->language == language_auto)
599 {
600 demangled =
601 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
602 if (demangled != NULL)
603 {
604 gsymbol->language = language_cplus;
605 return demangled;
606 }
607 }
608 if (gsymbol->language == language_java)
609 {
610 demangled =
611 cplus_demangle (mangled,
612 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
613 if (demangled != NULL)
614 {
615 gsymbol->language = language_java;
616 return demangled;
617 }
618 }
619 if (gsymbol->language == language_d
620 || gsymbol->language == language_auto)
621 {
622 demangled = d_demangle(mangled, 0);
623 if (demangled != NULL)
624 {
625 gsymbol->language = language_d;
626 return demangled;
627 }
628 }
629 /* FIXME(dje): Continually adding languages here is clumsy.
630 Better to just call la_demangle if !auto, and if auto then call
631 a utility routine that tries successive languages in turn and reports
632 which one it finds. I realize the la_demangle options may be different
633 for different languages but there's already a FIXME for that. */
634 if (gsymbol->language == language_go
635 || gsymbol->language == language_auto)
636 {
637 demangled = go_demangle (mangled, 0);
638 if (demangled != NULL)
639 {
640 gsymbol->language = language_go;
641 return demangled;
642 }
643 }
644
645 /* We could support `gsymbol->language == language_fortran' here to provide
646 module namespaces also for inferiors with only minimal symbol table (ELF
647 symbols). Just the mangling standard is not standardized across compilers
648 and there is no DW_AT_producer available for inferiors with only the ELF
649 symbols to check the mangling kind. */
650 return NULL;
651}
652
653/* Set both the mangled and demangled (if any) names for GSYMBOL based
654 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
655 objfile's obstack; but if COPY_NAME is 0 and if NAME is
656 NUL-terminated, then this function assumes that NAME is already
657 correctly saved (either permanently or with a lifetime tied to the
658 objfile), and it will not be copied.
659
660 The hash table corresponding to OBJFILE is used, and the memory
661 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
662 so the pointer can be discarded after calling this function. */
663
664/* We have to be careful when dealing with Java names: when we run
665 into a Java minimal symbol, we don't know it's a Java symbol, so it
666 gets demangled as a C++ name. This is unfortunate, but there's not
667 much we can do about it: but when demangling partial symbols and
668 regular symbols, we'd better not reuse the wrong demangled name.
669 (See PR gdb/1039.) We solve this by putting a distinctive prefix
670 on Java names when storing them in the hash table. */
671
672/* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
673 don't mind the Java prefix so much: different languages have
674 different demangling requirements, so it's only natural that we
675 need to keep language data around in our demangling cache. But
676 it's not good that the minimal symbol has the wrong demangled name.
677 Unfortunately, I can't think of any easy solution to that
678 problem. */
679
680#define JAVA_PREFIX "##JAVA$$"
681#define JAVA_PREFIX_LEN 8
682
683void
684symbol_set_names (struct general_symbol_info *gsymbol,
685 const char *linkage_name, int len, int copy_name,
686 struct objfile *objfile)
687{
688 struct demangled_name_entry **slot;
689 /* A 0-terminated copy of the linkage name. */
690 const char *linkage_name_copy;
691 /* A copy of the linkage name that might have a special Java prefix
692 added to it, for use when looking names up in the hash table. */
693 const char *lookup_name;
694 /* The length of lookup_name. */
695 int lookup_len;
696 struct demangled_name_entry entry;
697
698 if (gsymbol->language == language_ada)
699 {
700 /* In Ada, we do the symbol lookups using the mangled name, so
701 we can save some space by not storing the demangled name.
702
703 As a side note, we have also observed some overlap between
704 the C++ mangling and Ada mangling, similarly to what has
705 been observed with Java. Because we don't store the demangled
706 name with the symbol, we don't need to use the same trick
707 as Java. */
708 if (!copy_name)
709 gsymbol->name = linkage_name;
710 else
711 {
712 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
713
714 memcpy (name, linkage_name, len);
715 name[len] = '\0';
716 gsymbol->name = name;
717 }
718 symbol_set_demangled_name (gsymbol, NULL, NULL);
719
720 return;
721 }
722
723 if (objfile->demangled_names_hash == NULL)
724 create_demangled_names_hash (objfile);
725
726 /* The stabs reader generally provides names that are not
727 NUL-terminated; most of the other readers don't do this, so we
728 can just use the given copy, unless we're in the Java case. */
729 if (gsymbol->language == language_java)
730 {
731 char *alloc_name;
732
733 lookup_len = len + JAVA_PREFIX_LEN;
734 alloc_name = alloca (lookup_len + 1);
735 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
736 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
737 alloc_name[lookup_len] = '\0';
738
739 lookup_name = alloc_name;
740 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
741 }
742 else if (linkage_name[len] != '\0')
743 {
744 char *alloc_name;
745
746 lookup_len = len;
747 alloc_name = alloca (lookup_len + 1);
748 memcpy (alloc_name, linkage_name, len);
749 alloc_name[lookup_len] = '\0';
750
751 lookup_name = alloc_name;
752 linkage_name_copy = alloc_name;
753 }
754 else
755 {
756 lookup_len = len;
757 lookup_name = linkage_name;
758 linkage_name_copy = linkage_name;
759 }
760
761 entry.mangled = (char *) lookup_name;
762 slot = ((struct demangled_name_entry **)
763 htab_find_slot (objfile->demangled_names_hash,
764 &entry, INSERT));
765
766 /* If this name is not in the hash table, add it. */
767 if (*slot == NULL
768 /* A C version of the symbol may have already snuck into the table.
769 This happens to, e.g., main.init (__go_init_main). Cope. */
770 || (gsymbol->language == language_go
771 && (*slot)->demangled[0] == '\0'))
772 {
773 char *demangled_name = symbol_find_demangled_name (gsymbol,
774 linkage_name_copy);
775 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
776
777 /* Suppose we have demangled_name==NULL, copy_name==0, and
778 lookup_name==linkage_name. In this case, we already have the
779 mangled name saved, and we don't have a demangled name. So,
780 you might think we could save a little space by not recording
781 this in the hash table at all.
782
783 It turns out that it is actually important to still save such
784 an entry in the hash table, because storing this name gives
785 us better bcache hit rates for partial symbols. */
786 if (!copy_name && lookup_name == linkage_name)
787 {
788 *slot = obstack_alloc (&objfile->objfile_obstack,
789 offsetof (struct demangled_name_entry,
790 demangled)
791 + demangled_len + 1);
792 (*slot)->mangled = (char *) lookup_name;
793 }
794 else
795 {
796 /* If we must copy the mangled name, put it directly after
797 the demangled name so we can have a single
798 allocation. */
799 *slot = obstack_alloc (&objfile->objfile_obstack,
800 offsetof (struct demangled_name_entry,
801 demangled)
802 + lookup_len + demangled_len + 2);
803 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
804 strcpy ((*slot)->mangled, lookup_name);
805 }
806
807 if (demangled_name != NULL)
808 {
809 strcpy ((*slot)->demangled, demangled_name);
810 xfree (demangled_name);
811 }
812 else
813 (*slot)->demangled[0] = '\0';
814 }
815
816 gsymbol->name = (*slot)->mangled + lookup_len - len;
817 if ((*slot)->demangled[0] != '\0')
818 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
819 else
820 symbol_set_demangled_name (gsymbol, NULL, objfile);
821}
822
823/* Return the source code name of a symbol. In languages where
824 demangling is necessary, this is the demangled name. */
825
826const char *
827symbol_natural_name (const struct general_symbol_info *gsymbol)
828{
829 switch (gsymbol->language)
830 {
831 case language_cplus:
832 case language_d:
833 case language_go:
834 case language_java:
835 case language_objc:
836 case language_fortran:
837 if (symbol_get_demangled_name (gsymbol) != NULL)
838 return symbol_get_demangled_name (gsymbol);
839 break;
840 case language_ada:
841 if (symbol_get_demangled_name (gsymbol) != NULL)
842 return symbol_get_demangled_name (gsymbol);
843 else
844 return ada_decode_symbol (gsymbol);
845 break;
846 default:
847 break;
848 }
849 return gsymbol->name;
850}
851
852/* Return the demangled name for a symbol based on the language for
853 that symbol. If no demangled name exists, return NULL. */
854
855const char *
856symbol_demangled_name (const struct general_symbol_info *gsymbol)
857{
858 const char *dem_name = NULL;
859
860 switch (gsymbol->language)
861 {
862 case language_cplus:
863 case language_d:
864 case language_go:
865 case language_java:
866 case language_objc:
867 case language_fortran:
868 dem_name = symbol_get_demangled_name (gsymbol);
869 break;
870 case language_ada:
871 dem_name = symbol_get_demangled_name (gsymbol);
872 if (dem_name == NULL)
873 dem_name = ada_decode_symbol (gsymbol);
874 break;
875 default:
876 break;
877 }
878 return dem_name;
879}
880
881/* Return the search name of a symbol---generally the demangled or
882 linkage name of the symbol, depending on how it will be searched for.
883 If there is no distinct demangled name, then returns the same value
884 (same pointer) as SYMBOL_LINKAGE_NAME. */
885
886const char *
887symbol_search_name (const struct general_symbol_info *gsymbol)
888{
889 if (gsymbol->language == language_ada)
890 return gsymbol->name;
891 else
892 return symbol_natural_name (gsymbol);
893}
894
895/* Initialize the structure fields to zero values. */
896
897void
898init_sal (struct symtab_and_line *sal)
899{
900 sal->pspace = NULL;
901 sal->symtab = 0;
902 sal->section = 0;
903 sal->line = 0;
904 sal->pc = 0;
905 sal->end = 0;
906 sal->explicit_pc = 0;
907 sal->explicit_line = 0;
908 sal->probe = NULL;
909}
910\f
911
912/* Return 1 if the two sections are the same, or if they could
913 plausibly be copies of each other, one in an original object
914 file and another in a separated debug file. */
915
916int
917matching_obj_sections (struct obj_section *obj_first,
918 struct obj_section *obj_second)
919{
920 asection *first = obj_first? obj_first->the_bfd_section : NULL;
921 asection *second = obj_second? obj_second->the_bfd_section : NULL;
922 struct objfile *obj;
923
924 /* If they're the same section, then they match. */
925 if (first == second)
926 return 1;
927
928 /* If either is NULL, give up. */
929 if (first == NULL || second == NULL)
930 return 0;
931
932 /* This doesn't apply to absolute symbols. */
933 if (first->owner == NULL || second->owner == NULL)
934 return 0;
935
936 /* If they're in the same object file, they must be different sections. */
937 if (first->owner == second->owner)
938 return 0;
939
940 /* Check whether the two sections are potentially corresponding. They must
941 have the same size, address, and name. We can't compare section indexes,
942 which would be more reliable, because some sections may have been
943 stripped. */
944 if (bfd_get_section_size (first) != bfd_get_section_size (second))
945 return 0;
946
947 /* In-memory addresses may start at a different offset, relativize them. */
948 if (bfd_get_section_vma (first->owner, first)
949 - bfd_get_start_address (first->owner)
950 != bfd_get_section_vma (second->owner, second)
951 - bfd_get_start_address (second->owner))
952 return 0;
953
954 if (bfd_get_section_name (first->owner, first) == NULL
955 || bfd_get_section_name (second->owner, second) == NULL
956 || strcmp (bfd_get_section_name (first->owner, first),
957 bfd_get_section_name (second->owner, second)) != 0)
958 return 0;
959
960 /* Otherwise check that they are in corresponding objfiles. */
961
962 ALL_OBJFILES (obj)
963 if (obj->obfd == first->owner)
964 break;
965 gdb_assert (obj != NULL);
966
967 if (obj->separate_debug_objfile != NULL
968 && obj->separate_debug_objfile->obfd == second->owner)
969 return 1;
970 if (obj->separate_debug_objfile_backlink != NULL
971 && obj->separate_debug_objfile_backlink->obfd == second->owner)
972 return 1;
973
974 return 0;
975}
976
977struct symtab *
978find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
979{
980 struct objfile *objfile;
981 struct minimal_symbol *msymbol;
982
983 /* If we know that this is not a text address, return failure. This is
984 necessary because we loop based on texthigh and textlow, which do
985 not include the data ranges. */
986 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
987 if (msymbol
988 && (MSYMBOL_TYPE (msymbol) == mst_data
989 || MSYMBOL_TYPE (msymbol) == mst_bss
990 || MSYMBOL_TYPE (msymbol) == mst_abs
991 || MSYMBOL_TYPE (msymbol) == mst_file_data
992 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
993 return NULL;
994
995 ALL_OBJFILES (objfile)
996 {
997 struct symtab *result = NULL;
998
999 if (objfile->sf)
1000 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
1001 pc, section, 0);
1002 if (result)
1003 return result;
1004 }
1005
1006 return NULL;
1007}
1008\f
1009/* Debug symbols usually don't have section information. We need to dig that
1010 out of the minimal symbols and stash that in the debug symbol. */
1011
1012void
1013fixup_section (struct general_symbol_info *ginfo,
1014 CORE_ADDR addr, struct objfile *objfile)
1015{
1016 struct minimal_symbol *msym;
1017
1018 /* First, check whether a minimal symbol with the same name exists
1019 and points to the same address. The address check is required
1020 e.g. on PowerPC64, where the minimal symbol for a function will
1021 point to the function descriptor, while the debug symbol will
1022 point to the actual function code. */
1023 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1024 if (msym)
1025 {
1026 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1027 ginfo->section = SYMBOL_SECTION (msym);
1028 }
1029 else
1030 {
1031 /* Static, function-local variables do appear in the linker
1032 (minimal) symbols, but are frequently given names that won't
1033 be found via lookup_minimal_symbol(). E.g., it has been
1034 observed in frv-uclinux (ELF) executables that a static,
1035 function-local variable named "foo" might appear in the
1036 linker symbols as "foo.6" or "foo.3". Thus, there is no
1037 point in attempting to extend the lookup-by-name mechanism to
1038 handle this case due to the fact that there can be multiple
1039 names.
1040
1041 So, instead, search the section table when lookup by name has
1042 failed. The ``addr'' and ``endaddr'' fields may have already
1043 been relocated. If so, the relocation offset (i.e. the
1044 ANOFFSET value) needs to be subtracted from these values when
1045 performing the comparison. We unconditionally subtract it,
1046 because, when no relocation has been performed, the ANOFFSET
1047 value will simply be zero.
1048
1049 The address of the symbol whose section we're fixing up HAS
1050 NOT BEEN adjusted (relocated) yet. It can't have been since
1051 the section isn't yet known and knowing the section is
1052 necessary in order to add the correct relocation value. In
1053 other words, we wouldn't even be in this function (attempting
1054 to compute the section) if it were already known.
1055
1056 Note that it is possible to search the minimal symbols
1057 (subtracting the relocation value if necessary) to find the
1058 matching minimal symbol, but this is overkill and much less
1059 efficient. It is not necessary to find the matching minimal
1060 symbol, only its section.
1061
1062 Note that this technique (of doing a section table search)
1063 can fail when unrelocated section addresses overlap. For
1064 this reason, we still attempt a lookup by name prior to doing
1065 a search of the section table. */
1066
1067 struct obj_section *s;
1068
1069 ALL_OBJFILE_OSECTIONS (objfile, s)
1070 {
1071 int idx = s->the_bfd_section->index;
1072 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1073
1074 if (obj_section_addr (s) - offset <= addr
1075 && addr < obj_section_endaddr (s) - offset)
1076 {
1077 ginfo->obj_section = s;
1078 ginfo->section = idx;
1079 return;
1080 }
1081 }
1082 }
1083}
1084
1085struct symbol *
1086fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1087{
1088 CORE_ADDR addr;
1089
1090 if (!sym)
1091 return NULL;
1092
1093 if (SYMBOL_OBJ_SECTION (sym))
1094 return sym;
1095
1096 /* We either have an OBJFILE, or we can get at it from the sym's
1097 symtab. Anything else is a bug. */
1098 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1099
1100 if (objfile == NULL)
1101 objfile = SYMBOL_SYMTAB (sym)->objfile;
1102
1103 /* We should have an objfile by now. */
1104 gdb_assert (objfile);
1105
1106 switch (SYMBOL_CLASS (sym))
1107 {
1108 case LOC_STATIC:
1109 case LOC_LABEL:
1110 addr = SYMBOL_VALUE_ADDRESS (sym);
1111 break;
1112 case LOC_BLOCK:
1113 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1114 break;
1115
1116 default:
1117 /* Nothing else will be listed in the minsyms -- no use looking
1118 it up. */
1119 return sym;
1120 }
1121
1122 fixup_section (&sym->ginfo, addr, objfile);
1123
1124 return sym;
1125}
1126
1127/* Compute the demangled form of NAME as used by the various symbol
1128 lookup functions. The result is stored in *RESULT_NAME. Returns a
1129 cleanup which can be used to clean up the result.
1130
1131 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1132 Normally, Ada symbol lookups are performed using the encoded name
1133 rather than the demangled name, and so it might seem to make sense
1134 for this function to return an encoded version of NAME.
1135 Unfortunately, we cannot do this, because this function is used in
1136 circumstances where it is not appropriate to try to encode NAME.
1137 For instance, when displaying the frame info, we demangle the name
1138 of each parameter, and then perform a symbol lookup inside our
1139 function using that demangled name. In Ada, certain functions
1140 have internally-generated parameters whose name contain uppercase
1141 characters. Encoding those name would result in those uppercase
1142 characters to become lowercase, and thus cause the symbol lookup
1143 to fail. */
1144
1145struct cleanup *
1146demangle_for_lookup (const char *name, enum language lang,
1147 const char **result_name)
1148{
1149 char *demangled_name = NULL;
1150 const char *modified_name = NULL;
1151 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1152
1153 modified_name = name;
1154
1155 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1156 lookup, so we can always binary search. */
1157 if (lang == language_cplus)
1158 {
1159 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1160 if (demangled_name)
1161 {
1162 modified_name = demangled_name;
1163 make_cleanup (xfree, demangled_name);
1164 }
1165 else
1166 {
1167 /* If we were given a non-mangled name, canonicalize it
1168 according to the language (so far only for C++). */
1169 demangled_name = cp_canonicalize_string (name);
1170 if (demangled_name)
1171 {
1172 modified_name = demangled_name;
1173 make_cleanup (xfree, demangled_name);
1174 }
1175 }
1176 }
1177 else if (lang == language_java)
1178 {
1179 demangled_name = cplus_demangle (name,
1180 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1181 if (demangled_name)
1182 {
1183 modified_name = demangled_name;
1184 make_cleanup (xfree, demangled_name);
1185 }
1186 }
1187 else if (lang == language_d)
1188 {
1189 demangled_name = d_demangle (name, 0);
1190 if (demangled_name)
1191 {
1192 modified_name = demangled_name;
1193 make_cleanup (xfree, demangled_name);
1194 }
1195 }
1196 else if (lang == language_go)
1197 {
1198 demangled_name = go_demangle (name, 0);
1199 if (demangled_name)
1200 {
1201 modified_name = demangled_name;
1202 make_cleanup (xfree, demangled_name);
1203 }
1204 }
1205
1206 *result_name = modified_name;
1207 return cleanup;
1208}
1209
1210/* Find the definition for a specified symbol name NAME
1211 in domain DOMAIN, visible from lexical block BLOCK.
1212 Returns the struct symbol pointer, or zero if no symbol is found.
1213 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1214 NAME is a field of the current implied argument `this'. If so set
1215 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1216 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1217 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1218
1219/* This function (or rather its subordinates) have a bunch of loops and
1220 it would seem to be attractive to put in some QUIT's (though I'm not really
1221 sure whether it can run long enough to be really important). But there
1222 are a few calls for which it would appear to be bad news to quit
1223 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1224 that there is C++ code below which can error(), but that probably
1225 doesn't affect these calls since they are looking for a known
1226 variable and thus can probably assume it will never hit the C++
1227 code). */
1228
1229struct symbol *
1230lookup_symbol_in_language (const char *name, const struct block *block,
1231 const domain_enum domain, enum language lang,
1232 struct field_of_this_result *is_a_field_of_this)
1233{
1234 const char *modified_name;
1235 struct symbol *returnval;
1236 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1237
1238 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1239 is_a_field_of_this);
1240 do_cleanups (cleanup);
1241
1242 return returnval;
1243}
1244
1245/* Behave like lookup_symbol_in_language, but performed with the
1246 current language. */
1247
1248struct symbol *
1249lookup_symbol (const char *name, const struct block *block,
1250 domain_enum domain,
1251 struct field_of_this_result *is_a_field_of_this)
1252{
1253 return lookup_symbol_in_language (name, block, domain,
1254 current_language->la_language,
1255 is_a_field_of_this);
1256}
1257
1258/* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1259 found, or NULL if not found. */
1260
1261struct symbol *
1262lookup_language_this (const struct language_defn *lang,
1263 const struct block *block)
1264{
1265 if (lang->la_name_of_this == NULL || block == NULL)
1266 return NULL;
1267
1268 while (block)
1269 {
1270 struct symbol *sym;
1271
1272 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1273 if (sym != NULL)
1274 {
1275 block_found = block;
1276 return sym;
1277 }
1278 if (BLOCK_FUNCTION (block))
1279 break;
1280 block = BLOCK_SUPERBLOCK (block);
1281 }
1282
1283 return NULL;
1284}
1285
1286/* Given TYPE, a structure/union,
1287 return 1 if the component named NAME from the ultimate target
1288 structure/union is defined, otherwise, return 0. */
1289
1290static int
1291check_field (struct type *type, const char *name,
1292 struct field_of_this_result *is_a_field_of_this)
1293{
1294 int i;
1295
1296 /* The type may be a stub. */
1297 CHECK_TYPEDEF (type);
1298
1299 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1300 {
1301 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1302
1303 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1304 {
1305 is_a_field_of_this->type = type;
1306 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1307 return 1;
1308 }
1309 }
1310
1311 /* C++: If it was not found as a data field, then try to return it
1312 as a pointer to a method. */
1313
1314 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1315 {
1316 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1317 {
1318 is_a_field_of_this->type = type;
1319 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1320 return 1;
1321 }
1322 }
1323
1324 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1325 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1326 return 1;
1327
1328 return 0;
1329}
1330
1331/* Behave like lookup_symbol except that NAME is the natural name
1332 (e.g., demangled name) of the symbol that we're looking for. */
1333
1334static struct symbol *
1335lookup_symbol_aux (const char *name, const struct block *block,
1336 const domain_enum domain, enum language language,
1337 struct field_of_this_result *is_a_field_of_this)
1338{
1339 struct symbol *sym;
1340 const struct language_defn *langdef;
1341
1342 /* Make sure we do something sensible with is_a_field_of_this, since
1343 the callers that set this parameter to some non-null value will
1344 certainly use it later. If we don't set it, the contents of
1345 is_a_field_of_this are undefined. */
1346 if (is_a_field_of_this != NULL)
1347 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1348
1349 /* Search specified block and its superiors. Don't search
1350 STATIC_BLOCK or GLOBAL_BLOCK. */
1351
1352 sym = lookup_symbol_aux_local (name, block, domain, language);
1353 if (sym != NULL)
1354 return sym;
1355
1356 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1357 check to see if NAME is a field of `this'. */
1358
1359 langdef = language_def (language);
1360
1361 /* Don't do this check if we are searching for a struct. It will
1362 not be found by check_field, but will be found by other
1363 means. */
1364 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1365 {
1366 struct symbol *sym = lookup_language_this (langdef, block);
1367
1368 if (sym)
1369 {
1370 struct type *t = sym->type;
1371
1372 /* I'm not really sure that type of this can ever
1373 be typedefed; just be safe. */
1374 CHECK_TYPEDEF (t);
1375 if (TYPE_CODE (t) == TYPE_CODE_PTR
1376 || TYPE_CODE (t) == TYPE_CODE_REF)
1377 t = TYPE_TARGET_TYPE (t);
1378
1379 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1380 && TYPE_CODE (t) != TYPE_CODE_UNION)
1381 error (_("Internal error: `%s' is not an aggregate"),
1382 langdef->la_name_of_this);
1383
1384 if (check_field (t, name, is_a_field_of_this))
1385 return NULL;
1386 }
1387 }
1388
1389 /* Now do whatever is appropriate for LANGUAGE to look
1390 up static and global variables. */
1391
1392 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1393 if (sym != NULL)
1394 return sym;
1395
1396 /* Now search all static file-level symbols. Not strictly correct,
1397 but more useful than an error. */
1398
1399 return lookup_static_symbol_aux (name, domain);
1400}
1401
1402/* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1403 first, then check the psymtabs. If a psymtab indicates the existence of the
1404 desired name as a file-level static, then do psymtab-to-symtab conversion on
1405 the fly and return the found symbol. */
1406
1407struct symbol *
1408lookup_static_symbol_aux (const char *name, const domain_enum domain)
1409{
1410 struct objfile *objfile;
1411 struct symbol *sym;
1412
1413 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1414 if (sym != NULL)
1415 return sym;
1416
1417 ALL_OBJFILES (objfile)
1418 {
1419 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1420 if (sym != NULL)
1421 return sym;
1422 }
1423
1424 return NULL;
1425}
1426
1427/* Check to see if the symbol is defined in BLOCK or its superiors.
1428 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1429
1430static struct symbol *
1431lookup_symbol_aux_local (const char *name, const struct block *block,
1432 const domain_enum domain,
1433 enum language language)
1434{
1435 struct symbol *sym;
1436 const struct block *static_block = block_static_block (block);
1437 const char *scope = block_scope (block);
1438
1439 /* Check if either no block is specified or it's a global block. */
1440
1441 if (static_block == NULL)
1442 return NULL;
1443
1444 while (block != static_block)
1445 {
1446 sym = lookup_symbol_aux_block (name, block, domain);
1447 if (sym != NULL)
1448 return sym;
1449
1450 if (language == language_cplus || language == language_fortran)
1451 {
1452 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1453 domain);
1454 if (sym != NULL)
1455 return sym;
1456 }
1457
1458 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1459 break;
1460 block = BLOCK_SUPERBLOCK (block);
1461 }
1462
1463 /* We've reached the edge of the function without finding a result. */
1464
1465 return NULL;
1466}
1467
1468/* Look up OBJFILE to BLOCK. */
1469
1470struct objfile *
1471lookup_objfile_from_block (const struct block *block)
1472{
1473 struct objfile *obj;
1474 struct symtab *s;
1475
1476 if (block == NULL)
1477 return NULL;
1478
1479 block = block_global_block (block);
1480 /* Go through SYMTABS. */
1481 ALL_SYMTABS (obj, s)
1482 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1483 {
1484 if (obj->separate_debug_objfile_backlink)
1485 obj = obj->separate_debug_objfile_backlink;
1486
1487 return obj;
1488 }
1489
1490 return NULL;
1491}
1492
1493/* Look up a symbol in a block; if found, fixup the symbol, and set
1494 block_found appropriately. */
1495
1496struct symbol *
1497lookup_symbol_aux_block (const char *name, const struct block *block,
1498 const domain_enum domain)
1499{
1500 struct symbol *sym;
1501
1502 sym = lookup_block_symbol (block, name, domain);
1503 if (sym)
1504 {
1505 block_found = block;
1506 return fixup_symbol_section (sym, NULL);
1507 }
1508
1509 return NULL;
1510}
1511
1512/* Check all global symbols in OBJFILE in symtabs and
1513 psymtabs. */
1514
1515struct symbol *
1516lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1517 const char *name,
1518 const domain_enum domain)
1519{
1520 const struct objfile *objfile;
1521 struct symbol *sym;
1522 struct blockvector *bv;
1523 const struct block *block;
1524 struct symtab *s;
1525
1526 for (objfile = main_objfile;
1527 objfile;
1528 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1529 {
1530 /* Go through symtabs. */
1531 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1532 {
1533 bv = BLOCKVECTOR (s);
1534 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1535 sym = lookup_block_symbol (block, name, domain);
1536 if (sym)
1537 {
1538 block_found = block;
1539 return fixup_symbol_section (sym, (struct objfile *)objfile);
1540 }
1541 }
1542
1543 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1544 name, domain);
1545 if (sym)
1546 return sym;
1547 }
1548
1549 return NULL;
1550}
1551
1552/* Check to see if the symbol is defined in one of the OBJFILE's
1553 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1554 depending on whether or not we want to search global symbols or
1555 static symbols. */
1556
1557static struct symbol *
1558lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1559 const char *name, const domain_enum domain)
1560{
1561 struct symbol *sym = NULL;
1562 struct blockvector *bv;
1563 const struct block *block;
1564 struct symtab *s;
1565
1566 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1567 {
1568 bv = BLOCKVECTOR (s);
1569 block = BLOCKVECTOR_BLOCK (bv, block_index);
1570 sym = lookup_block_symbol (block, name, domain);
1571 if (sym)
1572 {
1573 block_found = block;
1574 return fixup_symbol_section (sym, objfile);
1575 }
1576 }
1577
1578 return NULL;
1579}
1580
1581/* Same as lookup_symbol_aux_objfile, except that it searches all
1582 objfiles. Return the first match found. */
1583
1584static struct symbol *
1585lookup_symbol_aux_symtabs (int block_index, const char *name,
1586 const domain_enum domain)
1587{
1588 struct symbol *sym;
1589 struct objfile *objfile;
1590
1591 ALL_OBJFILES (objfile)
1592 {
1593 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1594 if (sym)
1595 return sym;
1596 }
1597
1598 return NULL;
1599}
1600
1601/* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1602 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1603 and all related objfiles. */
1604
1605static struct symbol *
1606lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1607 const char *linkage_name,
1608 domain_enum domain)
1609{
1610 enum language lang = current_language->la_language;
1611 const char *modified_name;
1612 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1613 &modified_name);
1614 struct objfile *main_objfile, *cur_objfile;
1615
1616 if (objfile->separate_debug_objfile_backlink)
1617 main_objfile = objfile->separate_debug_objfile_backlink;
1618 else
1619 main_objfile = objfile;
1620
1621 for (cur_objfile = main_objfile;
1622 cur_objfile;
1623 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1624 {
1625 struct symbol *sym;
1626
1627 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1628 modified_name, domain);
1629 if (sym == NULL)
1630 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1631 modified_name, domain);
1632 if (sym != NULL)
1633 {
1634 do_cleanups (cleanup);
1635 return sym;
1636 }
1637 }
1638
1639 do_cleanups (cleanup);
1640 return NULL;
1641}
1642
1643/* A helper function for lookup_symbol_aux that interfaces with the
1644 "quick" symbol table functions. */
1645
1646static struct symbol *
1647lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1648 const char *name, const domain_enum domain)
1649{
1650 struct symtab *symtab;
1651 struct blockvector *bv;
1652 const struct block *block;
1653 struct symbol *sym;
1654
1655 if (!objfile->sf)
1656 return NULL;
1657 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1658 if (!symtab)
1659 return NULL;
1660
1661 bv = BLOCKVECTOR (symtab);
1662 block = BLOCKVECTOR_BLOCK (bv, kind);
1663 sym = lookup_block_symbol (block, name, domain);
1664 if (!sym)
1665 {
1666 /* This shouldn't be necessary, but as a last resort try
1667 looking in the statics even though the psymtab claimed
1668 the symbol was global, or vice-versa. It's possible
1669 that the psymtab gets it wrong in some cases. */
1670
1671 /* FIXME: carlton/2002-09-30: Should we really do that?
1672 If that happens, isn't it likely to be a GDB error, in
1673 which case we should fix the GDB error rather than
1674 silently dealing with it here? So I'd vote for
1675 removing the check for the symbol in the other
1676 block. */
1677 block = BLOCKVECTOR_BLOCK (bv,
1678 kind == GLOBAL_BLOCK ?
1679 STATIC_BLOCK : GLOBAL_BLOCK);
1680 sym = lookup_block_symbol (block, name, domain);
1681 if (!sym)
1682 error (_("\
1683Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1684%s may be an inlined function, or may be a template function\n\
1685(if a template, try specifying an instantiation: %s<type>)."),
1686 kind == GLOBAL_BLOCK ? "global" : "static",
1687 name, symtab->filename, name, name);
1688 }
1689 return fixup_symbol_section (sym, objfile);
1690}
1691
1692/* A default version of lookup_symbol_nonlocal for use by languages
1693 that can't think of anything better to do. This implements the C
1694 lookup rules. */
1695
1696struct symbol *
1697basic_lookup_symbol_nonlocal (const char *name,
1698 const struct block *block,
1699 const domain_enum domain)
1700{
1701 struct symbol *sym;
1702
1703 /* NOTE: carlton/2003-05-19: The comments below were written when
1704 this (or what turned into this) was part of lookup_symbol_aux;
1705 I'm much less worried about these questions now, since these
1706 decisions have turned out well, but I leave these comments here
1707 for posterity. */
1708
1709 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1710 not it would be appropriate to search the current global block
1711 here as well. (That's what this code used to do before the
1712 is_a_field_of_this check was moved up.) On the one hand, it's
1713 redundant with the lookup_symbol_aux_symtabs search that happens
1714 next. On the other hand, if decode_line_1 is passed an argument
1715 like filename:var, then the user presumably wants 'var' to be
1716 searched for in filename. On the third hand, there shouldn't be
1717 multiple global variables all of which are named 'var', and it's
1718 not like decode_line_1 has ever restricted its search to only
1719 global variables in a single filename. All in all, only
1720 searching the static block here seems best: it's correct and it's
1721 cleanest. */
1722
1723 /* NOTE: carlton/2002-12-05: There's also a possible performance
1724 issue here: if you usually search for global symbols in the
1725 current file, then it would be slightly better to search the
1726 current global block before searching all the symtabs. But there
1727 are other factors that have a much greater effect on performance
1728 than that one, so I don't think we should worry about that for
1729 now. */
1730
1731 sym = lookup_symbol_static (name, block, domain);
1732 if (sym != NULL)
1733 return sym;
1734
1735 return lookup_symbol_global (name, block, domain);
1736}
1737
1738/* Lookup a symbol in the static block associated to BLOCK, if there
1739 is one; do nothing if BLOCK is NULL or a global block. */
1740
1741struct symbol *
1742lookup_symbol_static (const char *name,
1743 const struct block *block,
1744 const domain_enum domain)
1745{
1746 const struct block *static_block = block_static_block (block);
1747
1748 if (static_block != NULL)
1749 return lookup_symbol_aux_block (name, static_block, domain);
1750 else
1751 return NULL;
1752}
1753
1754/* Private data to be used with lookup_symbol_global_iterator_cb. */
1755
1756struct global_sym_lookup_data
1757{
1758 /* The name of the symbol we are searching for. */
1759 const char *name;
1760
1761 /* The domain to use for our search. */
1762 domain_enum domain;
1763
1764 /* The field where the callback should store the symbol if found.
1765 It should be initialized to NULL before the search is started. */
1766 struct symbol *result;
1767};
1768
1769/* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1770 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1771 OBJFILE. The arguments for the search are passed via CB_DATA,
1772 which in reality is a pointer to struct global_sym_lookup_data. */
1773
1774static int
1775lookup_symbol_global_iterator_cb (struct objfile *objfile,
1776 void *cb_data)
1777{
1778 struct global_sym_lookup_data *data =
1779 (struct global_sym_lookup_data *) cb_data;
1780
1781 gdb_assert (data->result == NULL);
1782
1783 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1784 data->name, data->domain);
1785 if (data->result == NULL)
1786 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1787 data->name, data->domain);
1788
1789 /* If we found a match, tell the iterator to stop. Otherwise,
1790 keep going. */
1791 return (data->result != NULL);
1792}
1793
1794/* Lookup a symbol in all files' global blocks (searching psymtabs if
1795 necessary). */
1796
1797struct symbol *
1798lookup_symbol_global (const char *name,
1799 const struct block *block,
1800 const domain_enum domain)
1801{
1802 struct symbol *sym = NULL;
1803 struct objfile *objfile = NULL;
1804 struct global_sym_lookup_data lookup_data;
1805
1806 /* Call library-specific lookup procedure. */
1807 objfile = lookup_objfile_from_block (block);
1808 if (objfile != NULL)
1809 sym = solib_global_lookup (objfile, name, domain);
1810 if (sym != NULL)
1811 return sym;
1812
1813 memset (&lookup_data, 0, sizeof (lookup_data));
1814 lookup_data.name = name;
1815 lookup_data.domain = domain;
1816 gdbarch_iterate_over_objfiles_in_search_order
1817 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1818 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1819
1820 return lookup_data.result;
1821}
1822
1823int
1824symbol_matches_domain (enum language symbol_language,
1825 domain_enum symbol_domain,
1826 domain_enum domain)
1827{
1828 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1829 A Java class declaration also defines a typedef for the class.
1830 Similarly, any Ada type declaration implicitly defines a typedef. */
1831 if (symbol_language == language_cplus
1832 || symbol_language == language_d
1833 || symbol_language == language_java
1834 || symbol_language == language_ada)
1835 {
1836 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1837 && symbol_domain == STRUCT_DOMAIN)
1838 return 1;
1839 }
1840 /* For all other languages, strict match is required. */
1841 return (symbol_domain == domain);
1842}
1843
1844/* Look up a type named NAME in the struct_domain. The type returned
1845 must not be opaque -- i.e., must have at least one field
1846 defined. */
1847
1848struct type *
1849lookup_transparent_type (const char *name)
1850{
1851 return current_language->la_lookup_transparent_type (name);
1852}
1853
1854/* A helper for basic_lookup_transparent_type that interfaces with the
1855 "quick" symbol table functions. */
1856
1857static struct type *
1858basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1859 const char *name)
1860{
1861 struct symtab *symtab;
1862 struct blockvector *bv;
1863 struct block *block;
1864 struct symbol *sym;
1865
1866 if (!objfile->sf)
1867 return NULL;
1868 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1869 if (!symtab)
1870 return NULL;
1871
1872 bv = BLOCKVECTOR (symtab);
1873 block = BLOCKVECTOR_BLOCK (bv, kind);
1874 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1875 if (!sym)
1876 {
1877 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1878
1879 /* This shouldn't be necessary, but as a last resort
1880 * try looking in the 'other kind' even though the psymtab
1881 * claimed the symbol was one thing. It's possible that
1882 * the psymtab gets it wrong in some cases.
1883 */
1884 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1885 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1886 if (!sym)
1887 /* FIXME; error is wrong in one case. */
1888 error (_("\
1889Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1890%s may be an inlined function, or may be a template function\n\
1891(if a template, try specifying an instantiation: %s<type>)."),
1892 name, symtab->filename, name, name);
1893 }
1894 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1895 return SYMBOL_TYPE (sym);
1896
1897 return NULL;
1898}
1899
1900/* The standard implementation of lookup_transparent_type. This code
1901 was modeled on lookup_symbol -- the parts not relevant to looking
1902 up types were just left out. In particular it's assumed here that
1903 types are available in struct_domain and only at file-static or
1904 global blocks. */
1905
1906struct type *
1907basic_lookup_transparent_type (const char *name)
1908{
1909 struct symbol *sym;
1910 struct symtab *s = NULL;
1911 struct blockvector *bv;
1912 struct objfile *objfile;
1913 struct block *block;
1914 struct type *t;
1915
1916 /* Now search all the global symbols. Do the symtab's first, then
1917 check the psymtab's. If a psymtab indicates the existence
1918 of the desired name as a global, then do psymtab-to-symtab
1919 conversion on the fly and return the found symbol. */
1920
1921 ALL_OBJFILES (objfile)
1922 {
1923 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1924 {
1925 bv = BLOCKVECTOR (s);
1926 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1927 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1928 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1929 {
1930 return SYMBOL_TYPE (sym);
1931 }
1932 }
1933 }
1934
1935 ALL_OBJFILES (objfile)
1936 {
1937 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1938 if (t)
1939 return t;
1940 }
1941
1942 /* Now search the static file-level symbols.
1943 Not strictly correct, but more useful than an error.
1944 Do the symtab's first, then
1945 check the psymtab's. If a psymtab indicates the existence
1946 of the desired name as a file-level static, then do psymtab-to-symtab
1947 conversion on the fly and return the found symbol. */
1948
1949 ALL_OBJFILES (objfile)
1950 {
1951 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1952 {
1953 bv = BLOCKVECTOR (s);
1954 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1955 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1956 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1957 {
1958 return SYMBOL_TYPE (sym);
1959 }
1960 }
1961 }
1962
1963 ALL_OBJFILES (objfile)
1964 {
1965 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1966 if (t)
1967 return t;
1968 }
1969
1970 return (struct type *) 0;
1971}
1972
1973/* Find the name of the file containing main(). */
1974/* FIXME: What about languages without main() or specially linked
1975 executables that have no main() ? */
1976
1977const char *
1978find_main_filename (void)
1979{
1980 struct objfile *objfile;
1981 char *name = main_name ();
1982
1983 ALL_OBJFILES (objfile)
1984 {
1985 const char *result;
1986
1987 if (!objfile->sf)
1988 continue;
1989 result = objfile->sf->qf->find_symbol_file (objfile, name);
1990 if (result)
1991 return result;
1992 }
1993 return (NULL);
1994}
1995
1996/* Search BLOCK for symbol NAME in DOMAIN.
1997
1998 Note that if NAME is the demangled form of a C++ symbol, we will fail
1999 to find a match during the binary search of the non-encoded names, but
2000 for now we don't worry about the slight inefficiency of looking for
2001 a match we'll never find, since it will go pretty quick. Once the
2002 binary search terminates, we drop through and do a straight linear
2003 search on the symbols. Each symbol which is marked as being a ObjC/C++
2004 symbol (language_cplus or language_objc set) has both the encoded and
2005 non-encoded names tested for a match. */
2006
2007struct symbol *
2008lookup_block_symbol (const struct block *block, const char *name,
2009 const domain_enum domain)
2010{
2011 struct block_iterator iter;
2012 struct symbol *sym;
2013
2014 if (!BLOCK_FUNCTION (block))
2015 {
2016 for (sym = block_iter_name_first (block, name, &iter);
2017 sym != NULL;
2018 sym = block_iter_name_next (name, &iter))
2019 {
2020 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2021 SYMBOL_DOMAIN (sym), domain))
2022 return sym;
2023 }
2024 return NULL;
2025 }
2026 else
2027 {
2028 /* Note that parameter symbols do not always show up last in the
2029 list; this loop makes sure to take anything else other than
2030 parameter symbols first; it only uses parameter symbols as a
2031 last resort. Note that this only takes up extra computation
2032 time on a match. */
2033
2034 struct symbol *sym_found = NULL;
2035
2036 for (sym = block_iter_name_first (block, name, &iter);
2037 sym != NULL;
2038 sym = block_iter_name_next (name, &iter))
2039 {
2040 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2041 SYMBOL_DOMAIN (sym), domain))
2042 {
2043 sym_found = sym;
2044 if (!SYMBOL_IS_ARGUMENT (sym))
2045 {
2046 break;
2047 }
2048 }
2049 }
2050 return (sym_found); /* Will be NULL if not found. */
2051 }
2052}
2053
2054/* Iterate over the symbols named NAME, matching DOMAIN, starting with
2055 BLOCK.
2056
2057 For each symbol that matches, CALLBACK is called. The symbol and
2058 DATA are passed to the callback.
2059
2060 If CALLBACK returns zero, the iteration ends. Otherwise, the
2061 search continues. This function iterates upward through blocks.
2062 When the outermost block has been finished, the function
2063 returns. */
2064
2065void
2066iterate_over_symbols (const struct block *block, const char *name,
2067 const domain_enum domain,
2068 symbol_found_callback_ftype *callback,
2069 void *data)
2070{
2071 while (block)
2072 {
2073 struct block_iterator iter;
2074 struct symbol *sym;
2075
2076 for (sym = block_iter_name_first (block, name, &iter);
2077 sym != NULL;
2078 sym = block_iter_name_next (name, &iter))
2079 {
2080 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2081 SYMBOL_DOMAIN (sym), domain))
2082 {
2083 if (!callback (sym, data))
2084 return;
2085 }
2086 }
2087
2088 block = BLOCK_SUPERBLOCK (block);
2089 }
2090}
2091
2092/* Find the symtab associated with PC and SECTION. Look through the
2093 psymtabs and read in another symtab if necessary. */
2094
2095struct symtab *
2096find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2097{
2098 struct block *b;
2099 struct blockvector *bv;
2100 struct symtab *s = NULL;
2101 struct symtab *best_s = NULL;
2102 struct objfile *objfile;
2103 struct program_space *pspace;
2104 CORE_ADDR distance = 0;
2105 struct minimal_symbol *msymbol;
2106
2107 pspace = current_program_space;
2108
2109 /* If we know that this is not a text address, return failure. This is
2110 necessary because we loop based on the block's high and low code
2111 addresses, which do not include the data ranges, and because
2112 we call find_pc_sect_psymtab which has a similar restriction based
2113 on the partial_symtab's texthigh and textlow. */
2114 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2115 if (msymbol
2116 && (MSYMBOL_TYPE (msymbol) == mst_data
2117 || MSYMBOL_TYPE (msymbol) == mst_bss
2118 || MSYMBOL_TYPE (msymbol) == mst_abs
2119 || MSYMBOL_TYPE (msymbol) == mst_file_data
2120 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2121 return NULL;
2122
2123 /* Search all symtabs for the one whose file contains our address, and which
2124 is the smallest of all the ones containing the address. This is designed
2125 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2126 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2127 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2128
2129 This happens for native ecoff format, where code from included files
2130 gets its own symtab. The symtab for the included file should have
2131 been read in already via the dependency mechanism.
2132 It might be swifter to create several symtabs with the same name
2133 like xcoff does (I'm not sure).
2134
2135 It also happens for objfiles that have their functions reordered.
2136 For these, the symtab we are looking for is not necessarily read in. */
2137
2138 ALL_PRIMARY_SYMTABS (objfile, s)
2139 {
2140 bv = BLOCKVECTOR (s);
2141 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2142
2143 if (BLOCK_START (b) <= pc
2144 && BLOCK_END (b) > pc
2145 && (distance == 0
2146 || BLOCK_END (b) - BLOCK_START (b) < distance))
2147 {
2148 /* For an objfile that has its functions reordered,
2149 find_pc_psymtab will find the proper partial symbol table
2150 and we simply return its corresponding symtab. */
2151 /* In order to better support objfiles that contain both
2152 stabs and coff debugging info, we continue on if a psymtab
2153 can't be found. */
2154 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2155 {
2156 struct symtab *result;
2157
2158 result
2159 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2160 msymbol,
2161 pc, section,
2162 0);
2163 if (result)
2164 return result;
2165 }
2166 if (section != 0)
2167 {
2168 struct block_iterator iter;
2169 struct symbol *sym = NULL;
2170
2171 ALL_BLOCK_SYMBOLS (b, iter, sym)
2172 {
2173 fixup_symbol_section (sym, objfile);
2174 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2175 break;
2176 }
2177 if (sym == NULL)
2178 continue; /* No symbol in this symtab matches
2179 section. */
2180 }
2181 distance = BLOCK_END (b) - BLOCK_START (b);
2182 best_s = s;
2183 }
2184 }
2185
2186 if (best_s != NULL)
2187 return (best_s);
2188
2189 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2190
2191 ALL_OBJFILES (objfile)
2192 {
2193 struct symtab *result;
2194
2195 if (!objfile->sf)
2196 continue;
2197 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2198 msymbol,
2199 pc, section,
2200 1);
2201 if (result)
2202 return result;
2203 }
2204
2205 return NULL;
2206}
2207
2208/* Find the symtab associated with PC. Look through the psymtabs and read
2209 in another symtab if necessary. Backward compatibility, no section. */
2210
2211struct symtab *
2212find_pc_symtab (CORE_ADDR pc)
2213{
2214 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2215}
2216\f
2217
2218/* Find the source file and line number for a given PC value and SECTION.
2219 Return a structure containing a symtab pointer, a line number,
2220 and a pc range for the entire source line.
2221 The value's .pc field is NOT the specified pc.
2222 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2223 use the line that ends there. Otherwise, in that case, the line
2224 that begins there is used. */
2225
2226/* The big complication here is that a line may start in one file, and end just
2227 before the start of another file. This usually occurs when you #include
2228 code in the middle of a subroutine. To properly find the end of a line's PC
2229 range, we must search all symtabs associated with this compilation unit, and
2230 find the one whose first PC is closer than that of the next line in this
2231 symtab. */
2232
2233/* If it's worth the effort, we could be using a binary search. */
2234
2235struct symtab_and_line
2236find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2237{
2238 struct symtab *s;
2239 struct linetable *l;
2240 int len;
2241 int i;
2242 struct linetable_entry *item;
2243 struct symtab_and_line val;
2244 struct blockvector *bv;
2245 struct minimal_symbol *msymbol;
2246 struct minimal_symbol *mfunsym;
2247 struct objfile *objfile;
2248
2249 /* Info on best line seen so far, and where it starts, and its file. */
2250
2251 struct linetable_entry *best = NULL;
2252 CORE_ADDR best_end = 0;
2253 struct symtab *best_symtab = 0;
2254
2255 /* Store here the first line number
2256 of a file which contains the line at the smallest pc after PC.
2257 If we don't find a line whose range contains PC,
2258 we will use a line one less than this,
2259 with a range from the start of that file to the first line's pc. */
2260 struct linetable_entry *alt = NULL;
2261 struct symtab *alt_symtab = 0;
2262
2263 /* Info on best line seen in this file. */
2264
2265 struct linetable_entry *prev;
2266
2267 /* If this pc is not from the current frame,
2268 it is the address of the end of a call instruction.
2269 Quite likely that is the start of the following statement.
2270 But what we want is the statement containing the instruction.
2271 Fudge the pc to make sure we get that. */
2272
2273 init_sal (&val); /* initialize to zeroes */
2274
2275 val.pspace = current_program_space;
2276
2277 /* It's tempting to assume that, if we can't find debugging info for
2278 any function enclosing PC, that we shouldn't search for line
2279 number info, either. However, GAS can emit line number info for
2280 assembly files --- very helpful when debugging hand-written
2281 assembly code. In such a case, we'd have no debug info for the
2282 function, but we would have line info. */
2283
2284 if (notcurrent)
2285 pc -= 1;
2286
2287 /* elz: added this because this function returned the wrong
2288 information if the pc belongs to a stub (import/export)
2289 to call a shlib function. This stub would be anywhere between
2290 two functions in the target, and the line info was erroneously
2291 taken to be the one of the line before the pc. */
2292
2293 /* RT: Further explanation:
2294
2295 * We have stubs (trampolines) inserted between procedures.
2296 *
2297 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2298 * exists in the main image.
2299 *
2300 * In the minimal symbol table, we have a bunch of symbols
2301 * sorted by start address. The stubs are marked as "trampoline",
2302 * the others appear as text. E.g.:
2303 *
2304 * Minimal symbol table for main image
2305 * main: code for main (text symbol)
2306 * shr1: stub (trampoline symbol)
2307 * foo: code for foo (text symbol)
2308 * ...
2309 * Minimal symbol table for "shr1" image:
2310 * ...
2311 * shr1: code for shr1 (text symbol)
2312 * ...
2313 *
2314 * So the code below is trying to detect if we are in the stub
2315 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2316 * and if found, do the symbolization from the real-code address
2317 * rather than the stub address.
2318 *
2319 * Assumptions being made about the minimal symbol table:
2320 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2321 * if we're really in the trampoline.s If we're beyond it (say
2322 * we're in "foo" in the above example), it'll have a closer
2323 * symbol (the "foo" text symbol for example) and will not
2324 * return the trampoline.
2325 * 2. lookup_minimal_symbol_text() will find a real text symbol
2326 * corresponding to the trampoline, and whose address will
2327 * be different than the trampoline address. I put in a sanity
2328 * check for the address being the same, to avoid an
2329 * infinite recursion.
2330 */
2331 msymbol = lookup_minimal_symbol_by_pc (pc);
2332 if (msymbol != NULL)
2333 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2334 {
2335 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2336 NULL);
2337 if (mfunsym == NULL)
2338 /* I eliminated this warning since it is coming out
2339 * in the following situation:
2340 * gdb shmain // test program with shared libraries
2341 * (gdb) break shr1 // function in shared lib
2342 * Warning: In stub for ...
2343 * In the above situation, the shared lib is not loaded yet,
2344 * so of course we can't find the real func/line info,
2345 * but the "break" still works, and the warning is annoying.
2346 * So I commented out the warning. RT */
2347 /* warning ("In stub for %s; unable to find real function/line info",
2348 SYMBOL_LINKAGE_NAME (msymbol)); */
2349 ;
2350 /* fall through */
2351 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2352 == SYMBOL_VALUE_ADDRESS (msymbol))
2353 /* Avoid infinite recursion */
2354 /* See above comment about why warning is commented out. */
2355 /* warning ("In stub for %s; unable to find real function/line info",
2356 SYMBOL_LINKAGE_NAME (msymbol)); */
2357 ;
2358 /* fall through */
2359 else
2360 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2361 }
2362
2363
2364 s = find_pc_sect_symtab (pc, section);
2365 if (!s)
2366 {
2367 /* If no symbol information, return previous pc. */
2368 if (notcurrent)
2369 pc++;
2370 val.pc = pc;
2371 return val;
2372 }
2373
2374 bv = BLOCKVECTOR (s);
2375 objfile = s->objfile;
2376
2377 /* Look at all the symtabs that share this blockvector.
2378 They all have the same apriori range, that we found was right;
2379 but they have different line tables. */
2380
2381 ALL_OBJFILE_SYMTABS (objfile, s)
2382 {
2383 if (BLOCKVECTOR (s) != bv)
2384 continue;
2385
2386 /* Find the best line in this symtab. */
2387 l = LINETABLE (s);
2388 if (!l)
2389 continue;
2390 len = l->nitems;
2391 if (len <= 0)
2392 {
2393 /* I think len can be zero if the symtab lacks line numbers
2394 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2395 I'm not sure which, and maybe it depends on the symbol
2396 reader). */
2397 continue;
2398 }
2399
2400 prev = NULL;
2401 item = l->item; /* Get first line info. */
2402
2403 /* Is this file's first line closer than the first lines of other files?
2404 If so, record this file, and its first line, as best alternate. */
2405 if (item->pc > pc && (!alt || item->pc < alt->pc))
2406 {
2407 alt = item;
2408 alt_symtab = s;
2409 }
2410
2411 for (i = 0; i < len; i++, item++)
2412 {
2413 /* Leave prev pointing to the linetable entry for the last line
2414 that started at or before PC. */
2415 if (item->pc > pc)
2416 break;
2417
2418 prev = item;
2419 }
2420
2421 /* At this point, prev points at the line whose start addr is <= pc, and
2422 item points at the next line. If we ran off the end of the linetable
2423 (pc >= start of the last line), then prev == item. If pc < start of
2424 the first line, prev will not be set. */
2425
2426 /* Is this file's best line closer than the best in the other files?
2427 If so, record this file, and its best line, as best so far. Don't
2428 save prev if it represents the end of a function (i.e. line number
2429 0) instead of a real line. */
2430
2431 if (prev && prev->line && (!best || prev->pc > best->pc))
2432 {
2433 best = prev;
2434 best_symtab = s;
2435
2436 /* Discard BEST_END if it's before the PC of the current BEST. */
2437 if (best_end <= best->pc)
2438 best_end = 0;
2439 }
2440
2441 /* If another line (denoted by ITEM) is in the linetable and its
2442 PC is after BEST's PC, but before the current BEST_END, then
2443 use ITEM's PC as the new best_end. */
2444 if (best && i < len && item->pc > best->pc
2445 && (best_end == 0 || best_end > item->pc))
2446 best_end = item->pc;
2447 }
2448
2449 if (!best_symtab)
2450 {
2451 /* If we didn't find any line number info, just return zeros.
2452 We used to return alt->line - 1 here, but that could be
2453 anywhere; if we don't have line number info for this PC,
2454 don't make some up. */
2455 val.pc = pc;
2456 }
2457 else if (best->line == 0)
2458 {
2459 /* If our best fit is in a range of PC's for which no line
2460 number info is available (line number is zero) then we didn't
2461 find any valid line information. */
2462 val.pc = pc;
2463 }
2464 else
2465 {
2466 val.symtab = best_symtab;
2467 val.line = best->line;
2468 val.pc = best->pc;
2469 if (best_end && (!alt || best_end < alt->pc))
2470 val.end = best_end;
2471 else if (alt)
2472 val.end = alt->pc;
2473 else
2474 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2475 }
2476 val.section = section;
2477 return val;
2478}
2479
2480/* Backward compatibility (no section). */
2481
2482struct symtab_and_line
2483find_pc_line (CORE_ADDR pc, int notcurrent)
2484{
2485 struct obj_section *section;
2486
2487 section = find_pc_overlay (pc);
2488 if (pc_in_unmapped_range (pc, section))
2489 pc = overlay_mapped_address (pc, section);
2490 return find_pc_sect_line (pc, section, notcurrent);
2491}
2492\f
2493/* Find line number LINE in any symtab whose name is the same as
2494 SYMTAB.
2495
2496 If found, return the symtab that contains the linetable in which it was
2497 found, set *INDEX to the index in the linetable of the best entry
2498 found, and set *EXACT_MATCH nonzero if the value returned is an
2499 exact match.
2500
2501 If not found, return NULL. */
2502
2503struct symtab *
2504find_line_symtab (struct symtab *symtab, int line,
2505 int *index, int *exact_match)
2506{
2507 int exact = 0; /* Initialized here to avoid a compiler warning. */
2508
2509 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2510 so far seen. */
2511
2512 int best_index;
2513 struct linetable *best_linetable;
2514 struct symtab *best_symtab;
2515
2516 /* First try looking it up in the given symtab. */
2517 best_linetable = LINETABLE (symtab);
2518 best_symtab = symtab;
2519 best_index = find_line_common (best_linetable, line, &exact, 0);
2520 if (best_index < 0 || !exact)
2521 {
2522 /* Didn't find an exact match. So we better keep looking for
2523 another symtab with the same name. In the case of xcoff,
2524 multiple csects for one source file (produced by IBM's FORTRAN
2525 compiler) produce multiple symtabs (this is unavoidable
2526 assuming csects can be at arbitrary places in memory and that
2527 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2528
2529 /* BEST is the smallest linenumber > LINE so far seen,
2530 or 0 if none has been seen so far.
2531 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2532 int best;
2533
2534 struct objfile *objfile;
2535 struct symtab *s;
2536
2537 if (best_index >= 0)
2538 best = best_linetable->item[best_index].line;
2539 else
2540 best = 0;
2541
2542 ALL_OBJFILES (objfile)
2543 {
2544 if (objfile->sf)
2545 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2546 symtab->filename);
2547 }
2548
2549 ALL_SYMTABS (objfile, s)
2550 {
2551 struct linetable *l;
2552 int ind;
2553
2554 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2555 continue;
2556 if (FILENAME_CMP (symtab_to_fullname (symtab),
2557 symtab_to_fullname (s)) != 0)
2558 continue;
2559 l = LINETABLE (s);
2560 ind = find_line_common (l, line, &exact, 0);
2561 if (ind >= 0)
2562 {
2563 if (exact)
2564 {
2565 best_index = ind;
2566 best_linetable = l;
2567 best_symtab = s;
2568 goto done;
2569 }
2570 if (best == 0 || l->item[ind].line < best)
2571 {
2572 best = l->item[ind].line;
2573 best_index = ind;
2574 best_linetable = l;
2575 best_symtab = s;
2576 }
2577 }
2578 }
2579 }
2580done:
2581 if (best_index < 0)
2582 return NULL;
2583
2584 if (index)
2585 *index = best_index;
2586 if (exact_match)
2587 *exact_match = exact;
2588
2589 return best_symtab;
2590}
2591
2592/* Given SYMTAB, returns all the PCs function in the symtab that
2593 exactly match LINE. Returns NULL if there are no exact matches,
2594 but updates BEST_ITEM in this case. */
2595
2596VEC (CORE_ADDR) *
2597find_pcs_for_symtab_line (struct symtab *symtab, int line,
2598 struct linetable_entry **best_item)
2599{
2600 int start = 0, ix;
2601 struct symbol *previous_function = NULL;
2602 VEC (CORE_ADDR) *result = NULL;
2603
2604 /* First, collect all the PCs that are at this line. */
2605 while (1)
2606 {
2607 int was_exact;
2608 int idx;
2609
2610 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2611 if (idx < 0)
2612 break;
2613
2614 if (!was_exact)
2615 {
2616 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2617
2618 if (*best_item == NULL || item->line < (*best_item)->line)
2619 *best_item = item;
2620
2621 break;
2622 }
2623
2624 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2625 start = idx + 1;
2626 }
2627
2628 return result;
2629}
2630
2631\f
2632/* Set the PC value for a given source file and line number and return true.
2633 Returns zero for invalid line number (and sets the PC to 0).
2634 The source file is specified with a struct symtab. */
2635
2636int
2637find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2638{
2639 struct linetable *l;
2640 int ind;
2641
2642 *pc = 0;
2643 if (symtab == 0)
2644 return 0;
2645
2646 symtab = find_line_symtab (symtab, line, &ind, NULL);
2647 if (symtab != NULL)
2648 {
2649 l = LINETABLE (symtab);
2650 *pc = l->item[ind].pc;
2651 return 1;
2652 }
2653 else
2654 return 0;
2655}
2656
2657/* Find the range of pc values in a line.
2658 Store the starting pc of the line into *STARTPTR
2659 and the ending pc (start of next line) into *ENDPTR.
2660 Returns 1 to indicate success.
2661 Returns 0 if could not find the specified line. */
2662
2663int
2664find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2665 CORE_ADDR *endptr)
2666{
2667 CORE_ADDR startaddr;
2668 struct symtab_and_line found_sal;
2669
2670 startaddr = sal.pc;
2671 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2672 return 0;
2673
2674 /* This whole function is based on address. For example, if line 10 has
2675 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2676 "info line *0x123" should say the line goes from 0x100 to 0x200
2677 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2678 This also insures that we never give a range like "starts at 0x134
2679 and ends at 0x12c". */
2680
2681 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2682 if (found_sal.line != sal.line)
2683 {
2684 /* The specified line (sal) has zero bytes. */
2685 *startptr = found_sal.pc;
2686 *endptr = found_sal.pc;
2687 }
2688 else
2689 {
2690 *startptr = found_sal.pc;
2691 *endptr = found_sal.end;
2692 }
2693 return 1;
2694}
2695
2696/* Given a line table and a line number, return the index into the line
2697 table for the pc of the nearest line whose number is >= the specified one.
2698 Return -1 if none is found. The value is >= 0 if it is an index.
2699 START is the index at which to start searching the line table.
2700
2701 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2702
2703static int
2704find_line_common (struct linetable *l, int lineno,
2705 int *exact_match, int start)
2706{
2707 int i;
2708 int len;
2709
2710 /* BEST is the smallest linenumber > LINENO so far seen,
2711 or 0 if none has been seen so far.
2712 BEST_INDEX identifies the item for it. */
2713
2714 int best_index = -1;
2715 int best = 0;
2716
2717 *exact_match = 0;
2718
2719 if (lineno <= 0)
2720 return -1;
2721 if (l == 0)
2722 return -1;
2723
2724 len = l->nitems;
2725 for (i = start; i < len; i++)
2726 {
2727 struct linetable_entry *item = &(l->item[i]);
2728
2729 if (item->line == lineno)
2730 {
2731 /* Return the first (lowest address) entry which matches. */
2732 *exact_match = 1;
2733 return i;
2734 }
2735
2736 if (item->line > lineno && (best == 0 || item->line < best))
2737 {
2738 best = item->line;
2739 best_index = i;
2740 }
2741 }
2742
2743 /* If we got here, we didn't get an exact match. */
2744 return best_index;
2745}
2746
2747int
2748find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2749{
2750 struct symtab_and_line sal;
2751
2752 sal = find_pc_line (pc, 0);
2753 *startptr = sal.pc;
2754 *endptr = sal.end;
2755 return sal.symtab != 0;
2756}
2757
2758/* Given a function start address FUNC_ADDR and SYMTAB, find the first
2759 address for that function that has an entry in SYMTAB's line info
2760 table. If such an entry cannot be found, return FUNC_ADDR
2761 unaltered. */
2762
2763static CORE_ADDR
2764skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2765{
2766 CORE_ADDR func_start, func_end;
2767 struct linetable *l;
2768 int i;
2769
2770 /* Give up if this symbol has no lineinfo table. */
2771 l = LINETABLE (symtab);
2772 if (l == NULL)
2773 return func_addr;
2774
2775 /* Get the range for the function's PC values, or give up if we
2776 cannot, for some reason. */
2777 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2778 return func_addr;
2779
2780 /* Linetable entries are ordered by PC values, see the commentary in
2781 symtab.h where `struct linetable' is defined. Thus, the first
2782 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2783 address we are looking for. */
2784 for (i = 0; i < l->nitems; i++)
2785 {
2786 struct linetable_entry *item = &(l->item[i]);
2787
2788 /* Don't use line numbers of zero, they mark special entries in
2789 the table. See the commentary on symtab.h before the
2790 definition of struct linetable. */
2791 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2792 return item->pc;
2793 }
2794
2795 return func_addr;
2796}
2797
2798/* Given a function symbol SYM, find the symtab and line for the start
2799 of the function.
2800 If the argument FUNFIRSTLINE is nonzero, we want the first line
2801 of real code inside the function. */
2802
2803struct symtab_and_line
2804find_function_start_sal (struct symbol *sym, int funfirstline)
2805{
2806 struct symtab_and_line sal;
2807
2808 fixup_symbol_section (sym, NULL);
2809 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2810 SYMBOL_OBJ_SECTION (sym), 0);
2811
2812 /* We always should have a line for the function start address.
2813 If we don't, something is odd. Create a plain SAL refering
2814 just the PC and hope that skip_prologue_sal (if requested)
2815 can find a line number for after the prologue. */
2816 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2817 {
2818 init_sal (&sal);
2819 sal.pspace = current_program_space;
2820 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2821 sal.section = SYMBOL_OBJ_SECTION (sym);
2822 }
2823
2824 if (funfirstline)
2825 skip_prologue_sal (&sal);
2826
2827 return sal;
2828}
2829
2830/* Adjust SAL to the first instruction past the function prologue.
2831 If the PC was explicitly specified, the SAL is not changed.
2832 If the line number was explicitly specified, at most the SAL's PC
2833 is updated. If SAL is already past the prologue, then do nothing. */
2834
2835void
2836skip_prologue_sal (struct symtab_and_line *sal)
2837{
2838 struct symbol *sym;
2839 struct symtab_and_line start_sal;
2840 struct cleanup *old_chain;
2841 CORE_ADDR pc, saved_pc;
2842 struct obj_section *section;
2843 const char *name;
2844 struct objfile *objfile;
2845 struct gdbarch *gdbarch;
2846 struct block *b, *function_block;
2847 int force_skip, skip;
2848
2849 /* Do not change the SAL if PC was specified explicitly. */
2850 if (sal->explicit_pc)
2851 return;
2852
2853 old_chain = save_current_space_and_thread ();
2854 switch_to_program_space_and_thread (sal->pspace);
2855
2856 sym = find_pc_sect_function (sal->pc, sal->section);
2857 if (sym != NULL)
2858 {
2859 fixup_symbol_section (sym, NULL);
2860
2861 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2862 section = SYMBOL_OBJ_SECTION (sym);
2863 name = SYMBOL_LINKAGE_NAME (sym);
2864 objfile = SYMBOL_SYMTAB (sym)->objfile;
2865 }
2866 else
2867 {
2868 struct minimal_symbol *msymbol
2869 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2870
2871 if (msymbol == NULL)
2872 {
2873 do_cleanups (old_chain);
2874 return;
2875 }
2876
2877 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2878 section = SYMBOL_OBJ_SECTION (msymbol);
2879 name = SYMBOL_LINKAGE_NAME (msymbol);
2880 objfile = msymbol_objfile (msymbol);
2881 }
2882
2883 gdbarch = get_objfile_arch (objfile);
2884
2885 /* Process the prologue in two passes. In the first pass try to skip the
2886 prologue (SKIP is true) and verify there is a real need for it (indicated
2887 by FORCE_SKIP). If no such reason was found run a second pass where the
2888 prologue is not skipped (SKIP is false). */
2889
2890 skip = 1;
2891 force_skip = 1;
2892
2893 /* Be conservative - allow direct PC (without skipping prologue) only if we
2894 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2895 have to be set by the caller so we use SYM instead. */
2896 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2897 force_skip = 0;
2898
2899 saved_pc = pc;
2900 do
2901 {
2902 pc = saved_pc;
2903
2904 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2905 so that gdbarch_skip_prologue has something unique to work on. */
2906 if (section_is_overlay (section) && !section_is_mapped (section))
2907 pc = overlay_unmapped_address (pc, section);
2908
2909 /* Skip "first line" of function (which is actually its prologue). */
2910 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2911 if (skip)
2912 pc = gdbarch_skip_prologue (gdbarch, pc);
2913
2914 /* For overlays, map pc back into its mapped VMA range. */
2915 pc = overlay_mapped_address (pc, section);
2916
2917 /* Calculate line number. */
2918 start_sal = find_pc_sect_line (pc, section, 0);
2919
2920 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2921 line is still part of the same function. */
2922 if (skip && start_sal.pc != pc
2923 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2924 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2925 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2926 == lookup_minimal_symbol_by_pc_section (pc, section))))
2927 {
2928 /* First pc of next line */
2929 pc = start_sal.end;
2930 /* Recalculate the line number (might not be N+1). */
2931 start_sal = find_pc_sect_line (pc, section, 0);
2932 }
2933
2934 /* On targets with executable formats that don't have a concept of
2935 constructors (ELF with .init has, PE doesn't), gcc emits a call
2936 to `__main' in `main' between the prologue and before user
2937 code. */
2938 if (gdbarch_skip_main_prologue_p (gdbarch)
2939 && name && strcmp_iw (name, "main") == 0)
2940 {
2941 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2942 /* Recalculate the line number (might not be N+1). */
2943 start_sal = find_pc_sect_line (pc, section, 0);
2944 force_skip = 1;
2945 }
2946 }
2947 while (!force_skip && skip--);
2948
2949 /* If we still don't have a valid source line, try to find the first
2950 PC in the lineinfo table that belongs to the same function. This
2951 happens with COFF debug info, which does not seem to have an
2952 entry in lineinfo table for the code after the prologue which has
2953 no direct relation to source. For example, this was found to be
2954 the case with the DJGPP target using "gcc -gcoff" when the
2955 compiler inserted code after the prologue to make sure the stack
2956 is aligned. */
2957 if (!force_skip && sym && start_sal.symtab == NULL)
2958 {
2959 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2960 /* Recalculate the line number. */
2961 start_sal = find_pc_sect_line (pc, section, 0);
2962 }
2963
2964 do_cleanups (old_chain);
2965
2966 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2967 forward SAL to the end of the prologue. */
2968 if (sal->pc >= pc)
2969 return;
2970
2971 sal->pc = pc;
2972 sal->section = section;
2973
2974 /* Unless the explicit_line flag was set, update the SAL line
2975 and symtab to correspond to the modified PC location. */
2976 if (sal->explicit_line)
2977 return;
2978
2979 sal->symtab = start_sal.symtab;
2980 sal->line = start_sal.line;
2981 sal->end = start_sal.end;
2982
2983 /* Check if we are now inside an inlined function. If we can,
2984 use the call site of the function instead. */
2985 b = block_for_pc_sect (sal->pc, sal->section);
2986 function_block = NULL;
2987 while (b != NULL)
2988 {
2989 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2990 function_block = b;
2991 else if (BLOCK_FUNCTION (b) != NULL)
2992 break;
2993 b = BLOCK_SUPERBLOCK (b);
2994 }
2995 if (function_block != NULL
2996 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2997 {
2998 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2999 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
3000 }
3001}
3002
3003/* If P is of the form "operator[ \t]+..." where `...' is
3004 some legitimate operator text, return a pointer to the
3005 beginning of the substring of the operator text.
3006 Otherwise, return "". */
3007
3008static char *
3009operator_chars (char *p, char **end)
3010{
3011 *end = "";
3012 if (strncmp (p, "operator", 8))
3013 return *end;
3014 p += 8;
3015
3016 /* Don't get faked out by `operator' being part of a longer
3017 identifier. */
3018 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3019 return *end;
3020
3021 /* Allow some whitespace between `operator' and the operator symbol. */
3022 while (*p == ' ' || *p == '\t')
3023 p++;
3024
3025 /* Recognize 'operator TYPENAME'. */
3026
3027 if (isalpha (*p) || *p == '_' || *p == '$')
3028 {
3029 char *q = p + 1;
3030
3031 while (isalnum (*q) || *q == '_' || *q == '$')
3032 q++;
3033 *end = q;
3034 return p;
3035 }
3036
3037 while (*p)
3038 switch (*p)
3039 {
3040 case '\\': /* regexp quoting */
3041 if (p[1] == '*')
3042 {
3043 if (p[2] == '=') /* 'operator\*=' */
3044 *end = p + 3;
3045 else /* 'operator\*' */
3046 *end = p + 2;
3047 return p;
3048 }
3049 else if (p[1] == '[')
3050 {
3051 if (p[2] == ']')
3052 error (_("mismatched quoting on brackets, "
3053 "try 'operator\\[\\]'"));
3054 else if (p[2] == '\\' && p[3] == ']')
3055 {
3056 *end = p + 4; /* 'operator\[\]' */
3057 return p;
3058 }
3059 else
3060 error (_("nothing is allowed between '[' and ']'"));
3061 }
3062 else
3063 {
3064 /* Gratuitous qoute: skip it and move on. */
3065 p++;
3066 continue;
3067 }
3068 break;
3069 case '!':
3070 case '=':
3071 case '*':
3072 case '/':
3073 case '%':
3074 case '^':
3075 if (p[1] == '=')
3076 *end = p + 2;
3077 else
3078 *end = p + 1;
3079 return p;
3080 case '<':
3081 case '>':
3082 case '+':
3083 case '-':
3084 case '&':
3085 case '|':
3086 if (p[0] == '-' && p[1] == '>')
3087 {
3088 /* Struct pointer member operator 'operator->'. */
3089 if (p[2] == '*')
3090 {
3091 *end = p + 3; /* 'operator->*' */
3092 return p;
3093 }
3094 else if (p[2] == '\\')
3095 {
3096 *end = p + 4; /* Hopefully 'operator->\*' */
3097 return p;
3098 }
3099 else
3100 {
3101 *end = p + 2; /* 'operator->' */
3102 return p;
3103 }
3104 }
3105 if (p[1] == '=' || p[1] == p[0])
3106 *end = p + 2;
3107 else
3108 *end = p + 1;
3109 return p;
3110 case '~':
3111 case ',':
3112 *end = p + 1;
3113 return p;
3114 case '(':
3115 if (p[1] != ')')
3116 error (_("`operator ()' must be specified "
3117 "without whitespace in `()'"));
3118 *end = p + 2;
3119 return p;
3120 case '?':
3121 if (p[1] != ':')
3122 error (_("`operator ?:' must be specified "
3123 "without whitespace in `?:'"));
3124 *end = p + 2;
3125 return p;
3126 case '[':
3127 if (p[1] != ']')
3128 error (_("`operator []' must be specified "
3129 "without whitespace in `[]'"));
3130 *end = p + 2;
3131 return p;
3132 default:
3133 error (_("`operator %s' not supported"), p);
3134 break;
3135 }
3136
3137 *end = "";
3138 return *end;
3139}
3140\f
3141
3142/* Cache to watch for file names already seen by filename_seen. */
3143
3144struct filename_seen_cache
3145{
3146 /* Table of files seen so far. */
3147 htab_t tab;
3148 /* Initial size of the table. It automagically grows from here. */
3149#define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3150};
3151
3152/* filename_seen_cache constructor. */
3153
3154static struct filename_seen_cache *
3155create_filename_seen_cache (void)
3156{
3157 struct filename_seen_cache *cache;
3158
3159 cache = XNEW (struct filename_seen_cache);
3160 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3161 filename_hash, filename_eq,
3162 NULL, xcalloc, xfree);
3163
3164 return cache;
3165}
3166
3167/* Empty the cache, but do not delete it. */
3168
3169static void
3170clear_filename_seen_cache (struct filename_seen_cache *cache)
3171{
3172 htab_empty (cache->tab);
3173}
3174
3175/* filename_seen_cache destructor.
3176 This takes a void * argument as it is generally used as a cleanup. */
3177
3178static void
3179delete_filename_seen_cache (void *ptr)
3180{
3181 struct filename_seen_cache *cache = ptr;
3182
3183 htab_delete (cache->tab);
3184 xfree (cache);
3185}
3186
3187/* If FILE is not already in the table of files in CACHE, return zero;
3188 otherwise return non-zero. Optionally add FILE to the table if ADD
3189 is non-zero.
3190
3191 NOTE: We don't manage space for FILE, we assume FILE lives as long
3192 as the caller needs. */
3193
3194static int
3195filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3196{
3197 void **slot;
3198
3199 /* Is FILE in tab? */
3200 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3201 if (*slot != NULL)
3202 return 1;
3203
3204 /* No; maybe add it to tab. */
3205 if (add)
3206 *slot = (char *) file;
3207
3208 return 0;
3209}
3210
3211/* Data structure to maintain printing state for output_source_filename. */
3212
3213struct output_source_filename_data
3214{
3215 /* Cache of what we've seen so far. */
3216 struct filename_seen_cache *filename_seen_cache;
3217
3218 /* Flag of whether we're printing the first one. */
3219 int first;
3220};
3221
3222/* Slave routine for sources_info. Force line breaks at ,'s.
3223 NAME is the name to print.
3224 DATA contains the state for printing and watching for duplicates. */
3225
3226static void
3227output_source_filename (const char *name,
3228 struct output_source_filename_data *data)
3229{
3230 /* Since a single source file can result in several partial symbol
3231 tables, we need to avoid printing it more than once. Note: if
3232 some of the psymtabs are read in and some are not, it gets
3233 printed both under "Source files for which symbols have been
3234 read" and "Source files for which symbols will be read in on
3235 demand". I consider this a reasonable way to deal with the
3236 situation. I'm not sure whether this can also happen for
3237 symtabs; it doesn't hurt to check. */
3238
3239 /* Was NAME already seen? */
3240 if (filename_seen (data->filename_seen_cache, name, 1))
3241 {
3242 /* Yes; don't print it again. */
3243 return;
3244 }
3245
3246 /* No; print it and reset *FIRST. */
3247 if (! data->first)
3248 printf_filtered (", ");
3249 data->first = 0;
3250
3251 wrap_here ("");
3252 fputs_filtered (name, gdb_stdout);
3253}
3254
3255/* A callback for map_partial_symbol_filenames. */
3256
3257static void
3258output_partial_symbol_filename (const char *filename, const char *fullname,
3259 void *data)
3260{
3261 output_source_filename (fullname ? fullname : filename, data);
3262}
3263
3264static void
3265sources_info (char *ignore, int from_tty)
3266{
3267 struct symtab *s;
3268 struct objfile *objfile;
3269 struct output_source_filename_data data;
3270 struct cleanup *cleanups;
3271
3272 if (!have_full_symbols () && !have_partial_symbols ())
3273 {
3274 error (_("No symbol table is loaded. Use the \"file\" command."));
3275 }
3276
3277 data.filename_seen_cache = create_filename_seen_cache ();
3278 cleanups = make_cleanup (delete_filename_seen_cache,
3279 data.filename_seen_cache);
3280
3281 printf_filtered ("Source files for which symbols have been read in:\n\n");
3282
3283 data.first = 1;
3284 ALL_SYMTABS (objfile, s)
3285 {
3286 const char *fullname = symtab_to_fullname (s);
3287
3288 output_source_filename (fullname, &data);
3289 }
3290 printf_filtered ("\n\n");
3291
3292 printf_filtered ("Source files for which symbols "
3293 "will be read in on demand:\n\n");
3294
3295 clear_filename_seen_cache (data.filename_seen_cache);
3296 data.first = 1;
3297 map_partial_symbol_filenames (output_partial_symbol_filename, &data,
3298 1 /*need_fullname*/);
3299 printf_filtered ("\n");
3300
3301 do_cleanups (cleanups);
3302}
3303
3304static int
3305file_matches (const char *file, char *files[], int nfiles)
3306{
3307 int i;
3308
3309 if (file != NULL && nfiles != 0)
3310 {
3311 for (i = 0; i < nfiles; i++)
3312 {
3313 if (filename_cmp (files[i], lbasename (file)) == 0)
3314 return 1;
3315 }
3316 }
3317 else if (nfiles == 0)
3318 return 1;
3319 return 0;
3320}
3321
3322/* Free any memory associated with a search. */
3323
3324void
3325free_search_symbols (struct symbol_search *symbols)
3326{
3327 struct symbol_search *p;
3328 struct symbol_search *next;
3329
3330 for (p = symbols; p != NULL; p = next)
3331 {
3332 next = p->next;
3333 xfree (p);
3334 }
3335}
3336
3337static void
3338do_free_search_symbols_cleanup (void *symbols)
3339{
3340 free_search_symbols (symbols);
3341}
3342
3343struct cleanup *
3344make_cleanup_free_search_symbols (struct symbol_search *symbols)
3345{
3346 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3347}
3348
3349/* Helper function for sort_search_symbols and qsort. Can only
3350 sort symbols, not minimal symbols. */
3351
3352static int
3353compare_search_syms (const void *sa, const void *sb)
3354{
3355 struct symbol_search **sym_a = (struct symbol_search **) sa;
3356 struct symbol_search **sym_b = (struct symbol_search **) sb;
3357
3358 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3359 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3360}
3361
3362/* Sort the ``nfound'' symbols in the list after prevtail. Leave
3363 prevtail where it is, but update its next pointer to point to
3364 the first of the sorted symbols. */
3365
3366static struct symbol_search *
3367sort_search_symbols (struct symbol_search *prevtail, int nfound)
3368{
3369 struct symbol_search **symbols, *symp, *old_next;
3370 int i;
3371
3372 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3373 * nfound);
3374 symp = prevtail->next;
3375 for (i = 0; i < nfound; i++)
3376 {
3377 symbols[i] = symp;
3378 symp = symp->next;
3379 }
3380 /* Generally NULL. */
3381 old_next = symp;
3382
3383 qsort (symbols, nfound, sizeof (struct symbol_search *),
3384 compare_search_syms);
3385
3386 symp = prevtail;
3387 for (i = 0; i < nfound; i++)
3388 {
3389 symp->next = symbols[i];
3390 symp = symp->next;
3391 }
3392 symp->next = old_next;
3393
3394 xfree (symbols);
3395 return symp;
3396}
3397
3398/* An object of this type is passed as the user_data to the
3399 expand_symtabs_matching method. */
3400struct search_symbols_data
3401{
3402 int nfiles;
3403 char **files;
3404
3405 /* It is true if PREG contains valid data, false otherwise. */
3406 unsigned preg_p : 1;
3407 regex_t preg;
3408};
3409
3410/* A callback for expand_symtabs_matching. */
3411
3412static int
3413search_symbols_file_matches (const char *filename, void *user_data)
3414{
3415 struct search_symbols_data *data = user_data;
3416
3417 return file_matches (filename, data->files, data->nfiles);
3418}
3419
3420/* A callback for expand_symtabs_matching. */
3421
3422static int
3423search_symbols_name_matches (const char *symname, void *user_data)
3424{
3425 struct search_symbols_data *data = user_data;
3426
3427 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3428}
3429
3430/* Search the symbol table for matches to the regular expression REGEXP,
3431 returning the results in *MATCHES.
3432
3433 Only symbols of KIND are searched:
3434 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3435 and constants (enums)
3436 FUNCTIONS_DOMAIN - search all functions
3437 TYPES_DOMAIN - search all type names
3438 ALL_DOMAIN - an internal error for this function
3439
3440 free_search_symbols should be called when *MATCHES is no longer needed.
3441
3442 The results are sorted locally; each symtab's global and static blocks are
3443 separately alphabetized. */
3444
3445void
3446search_symbols (char *regexp, enum search_domain kind,
3447 int nfiles, char *files[],
3448 struct symbol_search **matches)
3449{
3450 struct symtab *s;
3451 struct blockvector *bv;
3452 struct block *b;
3453 int i = 0;
3454 struct block_iterator iter;
3455 struct symbol *sym;
3456 struct objfile *objfile;
3457 struct minimal_symbol *msymbol;
3458 int found_misc = 0;
3459 static const enum minimal_symbol_type types[]
3460 = {mst_data, mst_text, mst_abs};
3461 static const enum minimal_symbol_type types2[]
3462 = {mst_bss, mst_file_text, mst_abs};
3463 static const enum minimal_symbol_type types3[]
3464 = {mst_file_data, mst_solib_trampoline, mst_abs};
3465 static const enum minimal_symbol_type types4[]
3466 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3467 enum minimal_symbol_type ourtype;
3468 enum minimal_symbol_type ourtype2;
3469 enum minimal_symbol_type ourtype3;
3470 enum minimal_symbol_type ourtype4;
3471 struct symbol_search *sr;
3472 struct symbol_search *psr;
3473 struct symbol_search *tail;
3474 struct search_symbols_data datum;
3475
3476 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3477 CLEANUP_CHAIN is freed only in the case of an error. */
3478 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3479 struct cleanup *retval_chain;
3480
3481 gdb_assert (kind <= TYPES_DOMAIN);
3482
3483 ourtype = types[kind];
3484 ourtype2 = types2[kind];
3485 ourtype3 = types3[kind];
3486 ourtype4 = types4[kind];
3487
3488 sr = *matches = NULL;
3489 tail = NULL;
3490 datum.preg_p = 0;
3491
3492 if (regexp != NULL)
3493 {
3494 /* Make sure spacing is right for C++ operators.
3495 This is just a courtesy to make the matching less sensitive
3496 to how many spaces the user leaves between 'operator'
3497 and <TYPENAME> or <OPERATOR>. */
3498 char *opend;
3499 char *opname = operator_chars (regexp, &opend);
3500 int errcode;
3501
3502 if (*opname)
3503 {
3504 int fix = -1; /* -1 means ok; otherwise number of
3505 spaces needed. */
3506
3507 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3508 {
3509 /* There should 1 space between 'operator' and 'TYPENAME'. */
3510 if (opname[-1] != ' ' || opname[-2] == ' ')
3511 fix = 1;
3512 }
3513 else
3514 {
3515 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3516 if (opname[-1] == ' ')
3517 fix = 0;
3518 }
3519 /* If wrong number of spaces, fix it. */
3520 if (fix >= 0)
3521 {
3522 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3523
3524 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3525 regexp = tmp;
3526 }
3527 }
3528
3529 errcode = regcomp (&datum.preg, regexp,
3530 REG_NOSUB | (case_sensitivity == case_sensitive_off
3531 ? REG_ICASE : 0));
3532 if (errcode != 0)
3533 {
3534 char *err = get_regcomp_error (errcode, &datum.preg);
3535
3536 make_cleanup (xfree, err);
3537 error (_("Invalid regexp (%s): %s"), err, regexp);
3538 }
3539 datum.preg_p = 1;
3540 make_regfree_cleanup (&datum.preg);
3541 }
3542
3543 /* Search through the partial symtabs *first* for all symbols
3544 matching the regexp. That way we don't have to reproduce all of
3545 the machinery below. */
3546
3547 datum.nfiles = nfiles;
3548 datum.files = files;
3549 ALL_OBJFILES (objfile)
3550 {
3551 if (objfile->sf)
3552 objfile->sf->qf->expand_symtabs_matching (objfile,
3553 (nfiles == 0
3554 ? NULL
3555 : search_symbols_file_matches),
3556 search_symbols_name_matches,
3557 kind,
3558 &datum);
3559 }
3560
3561 retval_chain = old_chain;
3562
3563 /* Here, we search through the minimal symbol tables for functions
3564 and variables that match, and force their symbols to be read.
3565 This is in particular necessary for demangled variable names,
3566 which are no longer put into the partial symbol tables.
3567 The symbol will then be found during the scan of symtabs below.
3568
3569 For functions, find_pc_symtab should succeed if we have debug info
3570 for the function, for variables we have to call
3571 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3572 has debug info.
3573 If the lookup fails, set found_misc so that we will rescan to print
3574 any matching symbols without debug info.
3575 We only search the objfile the msymbol came from, we no longer search
3576 all objfiles. In large programs (1000s of shared libs) searching all
3577 objfiles is not worth the pain. */
3578
3579 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3580 {
3581 ALL_MSYMBOLS (objfile, msymbol)
3582 {
3583 QUIT;
3584
3585 if (msymbol->created_by_gdb)
3586 continue;
3587
3588 if (MSYMBOL_TYPE (msymbol) == ourtype
3589 || MSYMBOL_TYPE (msymbol) == ourtype2
3590 || MSYMBOL_TYPE (msymbol) == ourtype3
3591 || MSYMBOL_TYPE (msymbol) == ourtype4)
3592 {
3593 if (!datum.preg_p
3594 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3595 NULL, 0) == 0)
3596 {
3597 /* Note: An important side-effect of these lookup functions
3598 is to expand the symbol table if msymbol is found, for the
3599 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3600 if (kind == FUNCTIONS_DOMAIN
3601 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3602 : (lookup_symbol_in_objfile_from_linkage_name
3603 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3604 == NULL))
3605 found_misc = 1;
3606 }
3607 }
3608 }
3609 }
3610
3611 ALL_PRIMARY_SYMTABS (objfile, s)
3612 {
3613 bv = BLOCKVECTOR (s);
3614 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3615 {
3616 struct symbol_search *prevtail = tail;
3617 int nfound = 0;
3618
3619 b = BLOCKVECTOR_BLOCK (bv, i);
3620 ALL_BLOCK_SYMBOLS (b, iter, sym)
3621 {
3622 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3623
3624 QUIT;
3625
3626 if (file_matches (real_symtab->filename, files, nfiles)
3627 && ((!datum.preg_p
3628 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3629 NULL, 0) == 0)
3630 && ((kind == VARIABLES_DOMAIN
3631 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3632 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3633 && SYMBOL_CLASS (sym) != LOC_BLOCK
3634 /* LOC_CONST can be used for more than just enums,
3635 e.g., c++ static const members.
3636 We only want to skip enums here. */
3637 && !(SYMBOL_CLASS (sym) == LOC_CONST
3638 && TYPE_CODE (SYMBOL_TYPE (sym))
3639 == TYPE_CODE_ENUM))
3640 || (kind == FUNCTIONS_DOMAIN
3641 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3642 || (kind == TYPES_DOMAIN
3643 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3644 {
3645 /* match */
3646 psr = (struct symbol_search *)
3647 xmalloc (sizeof (struct symbol_search));
3648 psr->block = i;
3649 psr->symtab = real_symtab;
3650 psr->symbol = sym;
3651 psr->msymbol = NULL;
3652 psr->next = NULL;
3653 if (tail == NULL)
3654 sr = psr;
3655 else
3656 tail->next = psr;
3657 tail = psr;
3658 nfound ++;
3659 }
3660 }
3661 if (nfound > 0)
3662 {
3663 if (prevtail == NULL)
3664 {
3665 struct symbol_search dummy;
3666
3667 dummy.next = sr;
3668 tail = sort_search_symbols (&dummy, nfound);
3669 sr = dummy.next;
3670
3671 make_cleanup_free_search_symbols (sr);
3672 }
3673 else
3674 tail = sort_search_symbols (prevtail, nfound);
3675 }
3676 }
3677 }
3678
3679 /* If there are no eyes, avoid all contact. I mean, if there are
3680 no debug symbols, then print directly from the msymbol_vector. */
3681
3682 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3683 {
3684 ALL_MSYMBOLS (objfile, msymbol)
3685 {
3686 QUIT;
3687
3688 if (msymbol->created_by_gdb)
3689 continue;
3690
3691 if (MSYMBOL_TYPE (msymbol) == ourtype
3692 || MSYMBOL_TYPE (msymbol) == ourtype2
3693 || MSYMBOL_TYPE (msymbol) == ourtype3
3694 || MSYMBOL_TYPE (msymbol) == ourtype4)
3695 {
3696 if (!datum.preg_p
3697 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3698 NULL, 0) == 0)
3699 {
3700 /* For functions we can do a quick check of whether the
3701 symbol might be found via find_pc_symtab. */
3702 if (kind != FUNCTIONS_DOMAIN
3703 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3704 {
3705 if (lookup_symbol_in_objfile_from_linkage_name
3706 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3707 == NULL)
3708 {
3709 /* match */
3710 psr = (struct symbol_search *)
3711 xmalloc (sizeof (struct symbol_search));
3712 psr->block = i;
3713 psr->msymbol = msymbol;
3714 psr->symtab = NULL;
3715 psr->symbol = NULL;
3716 psr->next = NULL;
3717 if (tail == NULL)
3718 {
3719 sr = psr;
3720 make_cleanup_free_search_symbols (sr);
3721 }
3722 else
3723 tail->next = psr;
3724 tail = psr;
3725 }
3726 }
3727 }
3728 }
3729 }
3730 }
3731
3732 discard_cleanups (retval_chain);
3733 do_cleanups (old_chain);
3734 *matches = sr;
3735}
3736
3737/* Helper function for symtab_symbol_info, this function uses
3738 the data returned from search_symbols() to print information
3739 regarding the match to gdb_stdout. */
3740
3741static void
3742print_symbol_info (enum search_domain kind,
3743 struct symtab *s, struct symbol *sym,
3744 int block, char *last)
3745{
3746 if (last == NULL || filename_cmp (last, s->filename) != 0)
3747 {
3748 fputs_filtered ("\nFile ", gdb_stdout);
3749 fputs_filtered (s->filename, gdb_stdout);
3750 fputs_filtered (":\n", gdb_stdout);
3751 }
3752
3753 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3754 printf_filtered ("static ");
3755
3756 /* Typedef that is not a C++ class. */
3757 if (kind == TYPES_DOMAIN
3758 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3759 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3760 /* variable, func, or typedef-that-is-c++-class. */
3761 else if (kind < TYPES_DOMAIN
3762 || (kind == TYPES_DOMAIN
3763 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3764 {
3765 type_print (SYMBOL_TYPE (sym),
3766 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3767 ? "" : SYMBOL_PRINT_NAME (sym)),
3768 gdb_stdout, 0);
3769
3770 printf_filtered (";\n");
3771 }
3772}
3773
3774/* This help function for symtab_symbol_info() prints information
3775 for non-debugging symbols to gdb_stdout. */
3776
3777static void
3778print_msymbol_info (struct minimal_symbol *msymbol)
3779{
3780 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3781 char *tmp;
3782
3783 if (gdbarch_addr_bit (gdbarch) <= 32)
3784 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3785 & (CORE_ADDR) 0xffffffff,
3786 8);
3787 else
3788 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3789 16);
3790 printf_filtered ("%s %s\n",
3791 tmp, SYMBOL_PRINT_NAME (msymbol));
3792}
3793
3794/* This is the guts of the commands "info functions", "info types", and
3795 "info variables". It calls search_symbols to find all matches and then
3796 print_[m]symbol_info to print out some useful information about the
3797 matches. */
3798
3799static void
3800symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3801{
3802 static const char * const classnames[] =
3803 {"variable", "function", "type"};
3804 struct symbol_search *symbols;
3805 struct symbol_search *p;
3806 struct cleanup *old_chain;
3807 char *last_filename = NULL;
3808 int first = 1;
3809
3810 gdb_assert (kind <= TYPES_DOMAIN);
3811
3812 /* Must make sure that if we're interrupted, symbols gets freed. */
3813 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3814 old_chain = make_cleanup_free_search_symbols (symbols);
3815
3816 if (regexp != NULL)
3817 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3818 classnames[kind], regexp);
3819 else
3820 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3821
3822 for (p = symbols; p != NULL; p = p->next)
3823 {
3824 QUIT;
3825
3826 if (p->msymbol != NULL)
3827 {
3828 if (first)
3829 {
3830 printf_filtered (_("\nNon-debugging symbols:\n"));
3831 first = 0;
3832 }
3833 print_msymbol_info (p->msymbol);
3834 }
3835 else
3836 {
3837 print_symbol_info (kind,
3838 p->symtab,
3839 p->symbol,
3840 p->block,
3841 last_filename);
3842 last_filename = p->symtab->filename;
3843 }
3844 }
3845
3846 do_cleanups (old_chain);
3847}
3848
3849static void
3850variables_info (char *regexp, int from_tty)
3851{
3852 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3853}
3854
3855static void
3856functions_info (char *regexp, int from_tty)
3857{
3858 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3859}
3860
3861
3862static void
3863types_info (char *regexp, int from_tty)
3864{
3865 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3866}
3867
3868/* Breakpoint all functions matching regular expression. */
3869
3870void
3871rbreak_command_wrapper (char *regexp, int from_tty)
3872{
3873 rbreak_command (regexp, from_tty);
3874}
3875
3876/* A cleanup function that calls end_rbreak_breakpoints. */
3877
3878static void
3879do_end_rbreak_breakpoints (void *ignore)
3880{
3881 end_rbreak_breakpoints ();
3882}
3883
3884static void
3885rbreak_command (char *regexp, int from_tty)
3886{
3887 struct symbol_search *ss;
3888 struct symbol_search *p;
3889 struct cleanup *old_chain;
3890 char *string = NULL;
3891 int len = 0;
3892 char **files = NULL, *file_name;
3893 int nfiles = 0;
3894
3895 if (regexp)
3896 {
3897 char *colon = strchr (regexp, ':');
3898
3899 if (colon && *(colon + 1) != ':')
3900 {
3901 int colon_index;
3902
3903 colon_index = colon - regexp;
3904 file_name = alloca (colon_index + 1);
3905 memcpy (file_name, regexp, colon_index);
3906 file_name[colon_index--] = 0;
3907 while (isspace (file_name[colon_index]))
3908 file_name[colon_index--] = 0;
3909 files = &file_name;
3910 nfiles = 1;
3911 regexp = colon + 1;
3912 while (isspace (*regexp)) regexp++;
3913 }
3914 }
3915
3916 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3917 old_chain = make_cleanup_free_search_symbols (ss);
3918 make_cleanup (free_current_contents, &string);
3919
3920 start_rbreak_breakpoints ();
3921 make_cleanup (do_end_rbreak_breakpoints, NULL);
3922 for (p = ss; p != NULL; p = p->next)
3923 {
3924 if (p->msymbol == NULL)
3925 {
3926 int newlen = (strlen (p->symtab->filename)
3927 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3928 + 4);
3929
3930 if (newlen > len)
3931 {
3932 string = xrealloc (string, newlen);
3933 len = newlen;
3934 }
3935 strcpy (string, p->symtab->filename);
3936 strcat (string, ":'");
3937 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3938 strcat (string, "'");
3939 break_command (string, from_tty);
3940 print_symbol_info (FUNCTIONS_DOMAIN,
3941 p->symtab,
3942 p->symbol,
3943 p->block,
3944 p->symtab->filename);
3945 }
3946 else
3947 {
3948 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3949
3950 if (newlen > len)
3951 {
3952 string = xrealloc (string, newlen);
3953 len = newlen;
3954 }
3955 strcpy (string, "'");
3956 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3957 strcat (string, "'");
3958
3959 break_command (string, from_tty);
3960 printf_filtered ("<function, no debug info> %s;\n",
3961 SYMBOL_PRINT_NAME (p->msymbol));
3962 }
3963 }
3964
3965 do_cleanups (old_chain);
3966}
3967\f
3968
3969/* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3970
3971 Either sym_text[sym_text_len] != '(' and then we search for any
3972 symbol starting with SYM_TEXT text.
3973
3974 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3975 be terminated at that point. Partial symbol tables do not have parameters
3976 information. */
3977
3978static int
3979compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3980{
3981 int (*ncmp) (const char *, const char *, size_t);
3982
3983 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3984
3985 if (ncmp (name, sym_text, sym_text_len) != 0)
3986 return 0;
3987
3988 if (sym_text[sym_text_len] == '(')
3989 {
3990 /* User searches for `name(someth...'. Require NAME to be terminated.
3991 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3992 present but accept even parameters presence. In this case this
3993 function is in fact strcmp_iw but whitespace skipping is not supported
3994 for tab completion. */
3995
3996 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3997 return 0;
3998 }
3999
4000 return 1;
4001}
4002
4003/* Free any memory associated with a completion list. */
4004
4005static void
4006free_completion_list (VEC (char_ptr) **list_ptr)
4007{
4008 int i;
4009 char *p;
4010
4011 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4012 xfree (p);
4013 VEC_free (char_ptr, *list_ptr);
4014}
4015
4016/* Callback for make_cleanup. */
4017
4018static void
4019do_free_completion_list (void *list)
4020{
4021 free_completion_list (list);
4022}
4023
4024/* Helper routine for make_symbol_completion_list. */
4025
4026static VEC (char_ptr) *return_val;
4027
4028#define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4029 completion_list_add_name \
4030 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4031
4032/* Test to see if the symbol specified by SYMNAME (which is already
4033 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4034 characters. If so, add it to the current completion list. */
4035
4036static void
4037completion_list_add_name (const char *symname,
4038 const char *sym_text, int sym_text_len,
4039 const char *text, const char *word)
4040{
4041 int newsize;
4042
4043 /* Clip symbols that cannot match. */
4044 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4045 return;
4046
4047 /* We have a match for a completion, so add SYMNAME to the current list
4048 of matches. Note that the name is moved to freshly malloc'd space. */
4049
4050 {
4051 char *new;
4052
4053 if (word == sym_text)
4054 {
4055 new = xmalloc (strlen (symname) + 5);
4056 strcpy (new, symname);
4057 }
4058 else if (word > sym_text)
4059 {
4060 /* Return some portion of symname. */
4061 new = xmalloc (strlen (symname) + 5);
4062 strcpy (new, symname + (word - sym_text));
4063 }
4064 else
4065 {
4066 /* Return some of SYM_TEXT plus symname. */
4067 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4068 strncpy (new, word, sym_text - word);
4069 new[sym_text - word] = '\0';
4070 strcat (new, symname);
4071 }
4072
4073 VEC_safe_push (char_ptr, return_val, new);
4074 }
4075}
4076
4077/* ObjC: In case we are completing on a selector, look as the msymbol
4078 again and feed all the selectors into the mill. */
4079
4080static void
4081completion_list_objc_symbol (struct minimal_symbol *msymbol,
4082 const char *sym_text, int sym_text_len,
4083 const char *text, const char *word)
4084{
4085 static char *tmp = NULL;
4086 static unsigned int tmplen = 0;
4087
4088 const char *method, *category, *selector;
4089 char *tmp2 = NULL;
4090
4091 method = SYMBOL_NATURAL_NAME (msymbol);
4092
4093 /* Is it a method? */
4094 if ((method[0] != '-') && (method[0] != '+'))
4095 return;
4096
4097 if (sym_text[0] == '[')
4098 /* Complete on shortened method method. */
4099 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4100
4101 while ((strlen (method) + 1) >= tmplen)
4102 {
4103 if (tmplen == 0)
4104 tmplen = 1024;
4105 else
4106 tmplen *= 2;
4107 tmp = xrealloc (tmp, tmplen);
4108 }
4109 selector = strchr (method, ' ');
4110 if (selector != NULL)
4111 selector++;
4112
4113 category = strchr (method, '(');
4114
4115 if ((category != NULL) && (selector != NULL))
4116 {
4117 memcpy (tmp, method, (category - method));
4118 tmp[category - method] = ' ';
4119 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4120 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4121 if (sym_text[0] == '[')
4122 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4123 }
4124
4125 if (selector != NULL)
4126 {
4127 /* Complete on selector only. */
4128 strcpy (tmp, selector);
4129 tmp2 = strchr (tmp, ']');
4130 if (tmp2 != NULL)
4131 *tmp2 = '\0';
4132
4133 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4134 }
4135}
4136
4137/* Break the non-quoted text based on the characters which are in
4138 symbols. FIXME: This should probably be language-specific. */
4139
4140static char *
4141language_search_unquoted_string (char *text, char *p)
4142{
4143 for (; p > text; --p)
4144 {
4145 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4146 continue;
4147 else
4148 {
4149 if ((current_language->la_language == language_objc))
4150 {
4151 if (p[-1] == ':') /* Might be part of a method name. */
4152 continue;
4153 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4154 p -= 2; /* Beginning of a method name. */
4155 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4156 { /* Might be part of a method name. */
4157 char *t = p;
4158
4159 /* Seeing a ' ' or a '(' is not conclusive evidence
4160 that we are in the middle of a method name. However,
4161 finding "-[" or "+[" should be pretty un-ambiguous.
4162 Unfortunately we have to find it now to decide. */
4163
4164 while (t > text)
4165 if (isalnum (t[-1]) || t[-1] == '_' ||
4166 t[-1] == ' ' || t[-1] == ':' ||
4167 t[-1] == '(' || t[-1] == ')')
4168 --t;
4169 else
4170 break;
4171
4172 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4173 p = t - 2; /* Method name detected. */
4174 /* Else we leave with p unchanged. */
4175 }
4176 }
4177 break;
4178 }
4179 }
4180 return p;
4181}
4182
4183static void
4184completion_list_add_fields (struct symbol *sym, char *sym_text,
4185 int sym_text_len, char *text, char *word)
4186{
4187 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4188 {
4189 struct type *t = SYMBOL_TYPE (sym);
4190 enum type_code c = TYPE_CODE (t);
4191 int j;
4192
4193 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4194 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4195 if (TYPE_FIELD_NAME (t, j))
4196 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4197 sym_text, sym_text_len, text, word);
4198 }
4199}
4200
4201/* Type of the user_data argument passed to add_macro_name or
4202 expand_partial_symbol_name. The contents are simply whatever is
4203 needed by completion_list_add_name. */
4204struct add_name_data
4205{
4206 char *sym_text;
4207 int sym_text_len;
4208 char *text;
4209 char *word;
4210};
4211
4212/* A callback used with macro_for_each and macro_for_each_in_scope.
4213 This adds a macro's name to the current completion list. */
4214
4215static void
4216add_macro_name (const char *name, const struct macro_definition *ignore,
4217 struct macro_source_file *ignore2, int ignore3,
4218 void *user_data)
4219{
4220 struct add_name_data *datum = (struct add_name_data *) user_data;
4221
4222 completion_list_add_name ((char *) name,
4223 datum->sym_text, datum->sym_text_len,
4224 datum->text, datum->word);
4225}
4226
4227/* A callback for expand_partial_symbol_names. */
4228
4229static int
4230expand_partial_symbol_name (const char *name, void *user_data)
4231{
4232 struct add_name_data *datum = (struct add_name_data *) user_data;
4233
4234 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4235}
4236
4237VEC (char_ptr) *
4238default_make_symbol_completion_list_break_on (char *text, char *word,
4239 const char *break_on,
4240 enum type_code code)
4241{
4242 /* Problem: All of the symbols have to be copied because readline
4243 frees them. I'm not going to worry about this; hopefully there
4244 won't be that many. */
4245
4246 struct symbol *sym;
4247 struct symtab *s;
4248 struct minimal_symbol *msymbol;
4249 struct objfile *objfile;
4250 struct block *b;
4251 const struct block *surrounding_static_block, *surrounding_global_block;
4252 struct block_iterator iter;
4253 /* The symbol we are completing on. Points in same buffer as text. */
4254 char *sym_text;
4255 /* Length of sym_text. */
4256 int sym_text_len;
4257 struct add_name_data datum;
4258 struct cleanup *back_to;
4259
4260 /* Now look for the symbol we are supposed to complete on. */
4261 {
4262 char *p;
4263 char quote_found;
4264 char *quote_pos = NULL;
4265
4266 /* First see if this is a quoted string. */
4267 quote_found = '\0';
4268 for (p = text; *p != '\0'; ++p)
4269 {
4270 if (quote_found != '\0')
4271 {
4272 if (*p == quote_found)
4273 /* Found close quote. */
4274 quote_found = '\0';
4275 else if (*p == '\\' && p[1] == quote_found)
4276 /* A backslash followed by the quote character
4277 doesn't end the string. */
4278 ++p;
4279 }
4280 else if (*p == '\'' || *p == '"')
4281 {
4282 quote_found = *p;
4283 quote_pos = p;
4284 }
4285 }
4286 if (quote_found == '\'')
4287 /* A string within single quotes can be a symbol, so complete on it. */
4288 sym_text = quote_pos + 1;
4289 else if (quote_found == '"')
4290 /* A double-quoted string is never a symbol, nor does it make sense
4291 to complete it any other way. */
4292 {
4293 return NULL;
4294 }
4295 else
4296 {
4297 /* It is not a quoted string. Break it based on the characters
4298 which are in symbols. */
4299 while (p > text)
4300 {
4301 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4302 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4303 --p;
4304 else
4305 break;
4306 }
4307 sym_text = p;
4308 }
4309 }
4310
4311 sym_text_len = strlen (sym_text);
4312
4313 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4314
4315 if (current_language->la_language == language_cplus
4316 || current_language->la_language == language_java
4317 || current_language->la_language == language_fortran)
4318 {
4319 /* These languages may have parameters entered by user but they are never
4320 present in the partial symbol tables. */
4321
4322 const char *cs = memchr (sym_text, '(', sym_text_len);
4323
4324 if (cs)
4325 sym_text_len = cs - sym_text;
4326 }
4327 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4328
4329 return_val = NULL;
4330 back_to = make_cleanup (do_free_completion_list, &return_val);
4331
4332 datum.sym_text = sym_text;
4333 datum.sym_text_len = sym_text_len;
4334 datum.text = text;
4335 datum.word = word;
4336
4337 /* Look through the partial symtabs for all symbols which begin
4338 by matching SYM_TEXT. Expand all CUs that you find to the list.
4339 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4340 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4341
4342 /* At this point scan through the misc symbol vectors and add each
4343 symbol you find to the list. Eventually we want to ignore
4344 anything that isn't a text symbol (everything else will be
4345 handled by the psymtab code above). */
4346
4347 if (code == TYPE_CODE_UNDEF)
4348 {
4349 ALL_MSYMBOLS (objfile, msymbol)
4350 {
4351 QUIT;
4352 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4353 word);
4354
4355 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4356 word);
4357 }
4358 }
4359
4360 /* Search upwards from currently selected frame (so that we can
4361 complete on local vars). Also catch fields of types defined in
4362 this places which match our text string. Only complete on types
4363 visible from current context. */
4364
4365 b = get_selected_block (0);
4366 surrounding_static_block = block_static_block (b);
4367 surrounding_global_block = block_global_block (b);
4368 if (surrounding_static_block != NULL)
4369 while (b != surrounding_static_block)
4370 {
4371 QUIT;
4372
4373 ALL_BLOCK_SYMBOLS (b, iter, sym)
4374 {
4375 if (code == TYPE_CODE_UNDEF)
4376 {
4377 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4378 word);
4379 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4380 word);
4381 }
4382 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4383 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4384 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4385 word);
4386 }
4387
4388 /* Stop when we encounter an enclosing function. Do not stop for
4389 non-inlined functions - the locals of the enclosing function
4390 are in scope for a nested function. */
4391 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4392 break;
4393 b = BLOCK_SUPERBLOCK (b);
4394 }
4395
4396 /* Add fields from the file's types; symbols will be added below. */
4397
4398 if (code == TYPE_CODE_UNDEF)
4399 {
4400 if (surrounding_static_block != NULL)
4401 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4402 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4403
4404 if (surrounding_global_block != NULL)
4405 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4406 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4407 }
4408
4409 /* Go through the symtabs and check the externs and statics for
4410 symbols which match. */
4411
4412 ALL_PRIMARY_SYMTABS (objfile, s)
4413 {
4414 QUIT;
4415 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4416 ALL_BLOCK_SYMBOLS (b, iter, sym)
4417 {
4418 if (code == TYPE_CODE_UNDEF
4419 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4420 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4421 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4422 }
4423 }
4424
4425 ALL_PRIMARY_SYMTABS (objfile, s)
4426 {
4427 QUIT;
4428 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4429 ALL_BLOCK_SYMBOLS (b, iter, sym)
4430 {
4431 if (code == TYPE_CODE_UNDEF
4432 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4433 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4434 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4435 }
4436 }
4437
4438 /* Skip macros if we are completing a struct tag -- arguable but
4439 usually what is expected. */
4440 if (current_language->la_macro_expansion == macro_expansion_c
4441 && code == TYPE_CODE_UNDEF)
4442 {
4443 struct macro_scope *scope;
4444
4445 /* Add any macros visible in the default scope. Note that this
4446 may yield the occasional wrong result, because an expression
4447 might be evaluated in a scope other than the default. For
4448 example, if the user types "break file:line if <TAB>", the
4449 resulting expression will be evaluated at "file:line" -- but
4450 at there does not seem to be a way to detect this at
4451 completion time. */
4452 scope = default_macro_scope ();
4453 if (scope)
4454 {
4455 macro_for_each_in_scope (scope->file, scope->line,
4456 add_macro_name, &datum);
4457 xfree (scope);
4458 }
4459
4460 /* User-defined macros are always visible. */
4461 macro_for_each (macro_user_macros, add_macro_name, &datum);
4462 }
4463
4464 discard_cleanups (back_to);
4465 return (return_val);
4466}
4467
4468VEC (char_ptr) *
4469default_make_symbol_completion_list (char *text, char *word,
4470 enum type_code code)
4471{
4472 return default_make_symbol_completion_list_break_on (text, word, "", code);
4473}
4474
4475/* Return a vector of all symbols (regardless of class) which begin by
4476 matching TEXT. If the answer is no symbols, then the return value
4477 is NULL. */
4478
4479VEC (char_ptr) *
4480make_symbol_completion_list (char *text, char *word)
4481{
4482 return current_language->la_make_symbol_completion_list (text, word,
4483 TYPE_CODE_UNDEF);
4484}
4485
4486/* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4487 symbols whose type code is CODE. */
4488
4489VEC (char_ptr) *
4490make_symbol_completion_type (char *text, char *word, enum type_code code)
4491{
4492 gdb_assert (code == TYPE_CODE_UNION
4493 || code == TYPE_CODE_STRUCT
4494 || code == TYPE_CODE_CLASS
4495 || code == TYPE_CODE_ENUM);
4496 return current_language->la_make_symbol_completion_list (text, word, code);
4497}
4498
4499/* Like make_symbol_completion_list, but suitable for use as a
4500 completion function. */
4501
4502VEC (char_ptr) *
4503make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4504 char *text, char *word)
4505{
4506 return make_symbol_completion_list (text, word);
4507}
4508
4509/* Like make_symbol_completion_list, but returns a list of symbols
4510 defined in a source file FILE. */
4511
4512VEC (char_ptr) *
4513make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4514{
4515 struct symbol *sym;
4516 struct symtab *s;
4517 struct block *b;
4518 struct block_iterator iter;
4519 /* The symbol we are completing on. Points in same buffer as text. */
4520 char *sym_text;
4521 /* Length of sym_text. */
4522 int sym_text_len;
4523
4524 /* Now look for the symbol we are supposed to complete on.
4525 FIXME: This should be language-specific. */
4526 {
4527 char *p;
4528 char quote_found;
4529 char *quote_pos = NULL;
4530
4531 /* First see if this is a quoted string. */
4532 quote_found = '\0';
4533 for (p = text; *p != '\0'; ++p)
4534 {
4535 if (quote_found != '\0')
4536 {
4537 if (*p == quote_found)
4538 /* Found close quote. */
4539 quote_found = '\0';
4540 else if (*p == '\\' && p[1] == quote_found)
4541 /* A backslash followed by the quote character
4542 doesn't end the string. */
4543 ++p;
4544 }
4545 else if (*p == '\'' || *p == '"')
4546 {
4547 quote_found = *p;
4548 quote_pos = p;
4549 }
4550 }
4551 if (quote_found == '\'')
4552 /* A string within single quotes can be a symbol, so complete on it. */
4553 sym_text = quote_pos + 1;
4554 else if (quote_found == '"')
4555 /* A double-quoted string is never a symbol, nor does it make sense
4556 to complete it any other way. */
4557 {
4558 return NULL;
4559 }
4560 else
4561 {
4562 /* Not a quoted string. */
4563 sym_text = language_search_unquoted_string (text, p);
4564 }
4565 }
4566
4567 sym_text_len = strlen (sym_text);
4568
4569 return_val = NULL;
4570
4571 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4572 in). */
4573 s = lookup_symtab (srcfile);
4574 if (s == NULL)
4575 {
4576 /* Maybe they typed the file with leading directories, while the
4577 symbol tables record only its basename. */
4578 const char *tail = lbasename (srcfile);
4579
4580 if (tail > srcfile)
4581 s = lookup_symtab (tail);
4582 }
4583
4584 /* If we have no symtab for that file, return an empty list. */
4585 if (s == NULL)
4586 return (return_val);
4587
4588 /* Go through this symtab and check the externs and statics for
4589 symbols which match. */
4590
4591 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4592 ALL_BLOCK_SYMBOLS (b, iter, sym)
4593 {
4594 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4595 }
4596
4597 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4598 ALL_BLOCK_SYMBOLS (b, iter, sym)
4599 {
4600 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4601 }
4602
4603 return (return_val);
4604}
4605
4606/* A helper function for make_source_files_completion_list. It adds
4607 another file name to a list of possible completions, growing the
4608 list as necessary. */
4609
4610static void
4611add_filename_to_list (const char *fname, char *text, char *word,
4612 VEC (char_ptr) **list)
4613{
4614 char *new;
4615 size_t fnlen = strlen (fname);
4616
4617 if (word == text)
4618 {
4619 /* Return exactly fname. */
4620 new = xmalloc (fnlen + 5);
4621 strcpy (new, fname);
4622 }
4623 else if (word > text)
4624 {
4625 /* Return some portion of fname. */
4626 new = xmalloc (fnlen + 5);
4627 strcpy (new, fname + (word - text));
4628 }
4629 else
4630 {
4631 /* Return some of TEXT plus fname. */
4632 new = xmalloc (fnlen + (text - word) + 5);
4633 strncpy (new, word, text - word);
4634 new[text - word] = '\0';
4635 strcat (new, fname);
4636 }
4637 VEC_safe_push (char_ptr, *list, new);
4638}
4639
4640static int
4641not_interesting_fname (const char *fname)
4642{
4643 static const char *illegal_aliens[] = {
4644 "_globals_", /* inserted by coff_symtab_read */
4645 NULL
4646 };
4647 int i;
4648
4649 for (i = 0; illegal_aliens[i]; i++)
4650 {
4651 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4652 return 1;
4653 }
4654 return 0;
4655}
4656
4657/* An object of this type is passed as the user_data argument to
4658 map_partial_symbol_filenames. */
4659struct add_partial_filename_data
4660{
4661 struct filename_seen_cache *filename_seen_cache;
4662 char *text;
4663 char *word;
4664 int text_len;
4665 VEC (char_ptr) **list;
4666};
4667
4668/* A callback for map_partial_symbol_filenames. */
4669
4670static void
4671maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4672 void *user_data)
4673{
4674 struct add_partial_filename_data *data = user_data;
4675
4676 if (not_interesting_fname (filename))
4677 return;
4678 if (!filename_seen (data->filename_seen_cache, filename, 1)
4679 && filename_ncmp (filename, data->text, data->text_len) == 0)
4680 {
4681 /* This file matches for a completion; add it to the
4682 current list of matches. */
4683 add_filename_to_list (filename, data->text, data->word, data->list);
4684 }
4685 else
4686 {
4687 const char *base_name = lbasename (filename);
4688
4689 if (base_name != filename
4690 && !filename_seen (data->filename_seen_cache, base_name, 1)
4691 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4692 add_filename_to_list (base_name, data->text, data->word, data->list);
4693 }
4694}
4695
4696/* Return a vector of all source files whose names begin with matching
4697 TEXT. The file names are looked up in the symbol tables of this
4698 program. If the answer is no matchess, then the return value is
4699 NULL. */
4700
4701VEC (char_ptr) *
4702make_source_files_completion_list (char *text, char *word)
4703{
4704 struct symtab *s;
4705 struct objfile *objfile;
4706 size_t text_len = strlen (text);
4707 VEC (char_ptr) *list = NULL;
4708 const char *base_name;
4709 struct add_partial_filename_data datum;
4710 struct filename_seen_cache *filename_seen_cache;
4711 struct cleanup *back_to, *cache_cleanup;
4712
4713 if (!have_full_symbols () && !have_partial_symbols ())
4714 return list;
4715
4716 back_to = make_cleanup (do_free_completion_list, &list);
4717
4718 filename_seen_cache = create_filename_seen_cache ();
4719 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4720 filename_seen_cache);
4721
4722 ALL_SYMTABS (objfile, s)
4723 {
4724 if (not_interesting_fname (s->filename))
4725 continue;
4726 if (!filename_seen (filename_seen_cache, s->filename, 1)
4727 && filename_ncmp (s->filename, text, text_len) == 0)
4728 {
4729 /* This file matches for a completion; add it to the current
4730 list of matches. */
4731 add_filename_to_list (s->filename, text, word, &list);
4732 }
4733 else
4734 {
4735 /* NOTE: We allow the user to type a base name when the
4736 debug info records leading directories, but not the other
4737 way around. This is what subroutines of breakpoint
4738 command do when they parse file names. */
4739 base_name = lbasename (s->filename);
4740 if (base_name != s->filename
4741 && !filename_seen (filename_seen_cache, base_name, 1)
4742 && filename_ncmp (base_name, text, text_len) == 0)
4743 add_filename_to_list (base_name, text, word, &list);
4744 }
4745 }
4746
4747 datum.filename_seen_cache = filename_seen_cache;
4748 datum.text = text;
4749 datum.word = word;
4750 datum.text_len = text_len;
4751 datum.list = &list;
4752 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4753 0 /*need_fullname*/);
4754
4755 do_cleanups (cache_cleanup);
4756 discard_cleanups (back_to);
4757
4758 return list;
4759}
4760
4761/* Determine if PC is in the prologue of a function. The prologue is the area
4762 between the first instruction of a function, and the first executable line.
4763 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4764
4765 If non-zero, func_start is where we think the prologue starts, possibly
4766 by previous examination of symbol table information. */
4767
4768int
4769in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4770{
4771 struct symtab_and_line sal;
4772 CORE_ADDR func_addr, func_end;
4773
4774 /* We have several sources of information we can consult to figure
4775 this out.
4776 - Compilers usually emit line number info that marks the prologue
4777 as its own "source line". So the ending address of that "line"
4778 is the end of the prologue. If available, this is the most
4779 reliable method.
4780 - The minimal symbols and partial symbols, which can usually tell
4781 us the starting and ending addresses of a function.
4782 - If we know the function's start address, we can call the
4783 architecture-defined gdbarch_skip_prologue function to analyze the
4784 instruction stream and guess where the prologue ends.
4785 - Our `func_start' argument; if non-zero, this is the caller's
4786 best guess as to the function's entry point. At the time of
4787 this writing, handle_inferior_event doesn't get this right, so
4788 it should be our last resort. */
4789
4790 /* Consult the partial symbol table, to find which function
4791 the PC is in. */
4792 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4793 {
4794 CORE_ADDR prologue_end;
4795
4796 /* We don't even have minsym information, so fall back to using
4797 func_start, if given. */
4798 if (! func_start)
4799 return 1; /* We *might* be in a prologue. */
4800
4801 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4802
4803 return func_start <= pc && pc < prologue_end;
4804 }
4805
4806 /* If we have line number information for the function, that's
4807 usually pretty reliable. */
4808 sal = find_pc_line (func_addr, 0);
4809
4810 /* Now sal describes the source line at the function's entry point,
4811 which (by convention) is the prologue. The end of that "line",
4812 sal.end, is the end of the prologue.
4813
4814 Note that, for functions whose source code is all on a single
4815 line, the line number information doesn't always end up this way.
4816 So we must verify that our purported end-of-prologue address is
4817 *within* the function, not at its start or end. */
4818 if (sal.line == 0
4819 || sal.end <= func_addr
4820 || func_end <= sal.end)
4821 {
4822 /* We don't have any good line number info, so use the minsym
4823 information, together with the architecture-specific prologue
4824 scanning code. */
4825 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4826
4827 return func_addr <= pc && pc < prologue_end;
4828 }
4829
4830 /* We have line number info, and it looks good. */
4831 return func_addr <= pc && pc < sal.end;
4832}
4833
4834/* Given PC at the function's start address, attempt to find the
4835 prologue end using SAL information. Return zero if the skip fails.
4836
4837 A non-optimized prologue traditionally has one SAL for the function
4838 and a second for the function body. A single line function has
4839 them both pointing at the same line.
4840
4841 An optimized prologue is similar but the prologue may contain
4842 instructions (SALs) from the instruction body. Need to skip those
4843 while not getting into the function body.
4844
4845 The functions end point and an increasing SAL line are used as
4846 indicators of the prologue's endpoint.
4847
4848 This code is based on the function refine_prologue_limit
4849 (found in ia64). */
4850
4851CORE_ADDR
4852skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4853{
4854 struct symtab_and_line prologue_sal;
4855 CORE_ADDR start_pc;
4856 CORE_ADDR end_pc;
4857 struct block *bl;
4858
4859 /* Get an initial range for the function. */
4860 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4861 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4862
4863 prologue_sal = find_pc_line (start_pc, 0);
4864 if (prologue_sal.line != 0)
4865 {
4866 /* For languages other than assembly, treat two consecutive line
4867 entries at the same address as a zero-instruction prologue.
4868 The GNU assembler emits separate line notes for each instruction
4869 in a multi-instruction macro, but compilers generally will not
4870 do this. */
4871 if (prologue_sal.symtab->language != language_asm)
4872 {
4873 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4874 int idx = 0;
4875
4876 /* Skip any earlier lines, and any end-of-sequence marker
4877 from a previous function. */
4878 while (linetable->item[idx].pc != prologue_sal.pc
4879 || linetable->item[idx].line == 0)
4880 idx++;
4881
4882 if (idx+1 < linetable->nitems
4883 && linetable->item[idx+1].line != 0
4884 && linetable->item[idx+1].pc == start_pc)
4885 return start_pc;
4886 }
4887
4888 /* If there is only one sal that covers the entire function,
4889 then it is probably a single line function, like
4890 "foo(){}". */
4891 if (prologue_sal.end >= end_pc)
4892 return 0;
4893
4894 while (prologue_sal.end < end_pc)
4895 {
4896 struct symtab_and_line sal;
4897
4898 sal = find_pc_line (prologue_sal.end, 0);
4899 if (sal.line == 0)
4900 break;
4901 /* Assume that a consecutive SAL for the same (or larger)
4902 line mark the prologue -> body transition. */
4903 if (sal.line >= prologue_sal.line)
4904 break;
4905
4906 /* The line number is smaller. Check that it's from the
4907 same function, not something inlined. If it's inlined,
4908 then there is no point comparing the line numbers. */
4909 bl = block_for_pc (prologue_sal.end);
4910 while (bl)
4911 {
4912 if (block_inlined_p (bl))
4913 break;
4914 if (BLOCK_FUNCTION (bl))
4915 {
4916 bl = NULL;
4917 break;
4918 }
4919 bl = BLOCK_SUPERBLOCK (bl);
4920 }
4921 if (bl != NULL)
4922 break;
4923
4924 /* The case in which compiler's optimizer/scheduler has
4925 moved instructions into the prologue. We look ahead in
4926 the function looking for address ranges whose
4927 corresponding line number is less the first one that we
4928 found for the function. This is more conservative then
4929 refine_prologue_limit which scans a large number of SALs
4930 looking for any in the prologue. */
4931 prologue_sal = sal;
4932 }
4933 }
4934
4935 if (prologue_sal.end < end_pc)
4936 /* Return the end of this line, or zero if we could not find a
4937 line. */
4938 return prologue_sal.end;
4939 else
4940 /* Don't return END_PC, which is past the end of the function. */
4941 return prologue_sal.pc;
4942}
4943\f
4944/* Track MAIN */
4945static char *name_of_main;
4946enum language language_of_main = language_unknown;
4947
4948void
4949set_main_name (const char *name)
4950{
4951 if (name_of_main != NULL)
4952 {
4953 xfree (name_of_main);
4954 name_of_main = NULL;
4955 language_of_main = language_unknown;
4956 }
4957 if (name != NULL)
4958 {
4959 name_of_main = xstrdup (name);
4960 language_of_main = language_unknown;
4961 }
4962}
4963
4964/* Deduce the name of the main procedure, and set NAME_OF_MAIN
4965 accordingly. */
4966
4967static void
4968find_main_name (void)
4969{
4970 const char *new_main_name;
4971
4972 /* Try to see if the main procedure is in Ada. */
4973 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4974 be to add a new method in the language vector, and call this
4975 method for each language until one of them returns a non-empty
4976 name. This would allow us to remove this hard-coded call to
4977 an Ada function. It is not clear that this is a better approach
4978 at this point, because all methods need to be written in a way
4979 such that false positives never be returned. For instance, it is
4980 important that a method does not return a wrong name for the main
4981 procedure if the main procedure is actually written in a different
4982 language. It is easy to guaranty this with Ada, since we use a
4983 special symbol generated only when the main in Ada to find the name
4984 of the main procedure. It is difficult however to see how this can
4985 be guarantied for languages such as C, for instance. This suggests
4986 that order of call for these methods becomes important, which means
4987 a more complicated approach. */
4988 new_main_name = ada_main_name ();
4989 if (new_main_name != NULL)
4990 {
4991 set_main_name (new_main_name);
4992 return;
4993 }
4994
4995 new_main_name = go_main_name ();
4996 if (new_main_name != NULL)
4997 {
4998 set_main_name (new_main_name);
4999 return;
5000 }
5001
5002 new_main_name = pascal_main_name ();
5003 if (new_main_name != NULL)
5004 {
5005 set_main_name (new_main_name);
5006 return;
5007 }
5008
5009 /* The languages above didn't identify the name of the main procedure.
5010 Fallback to "main". */
5011 set_main_name ("main");
5012}
5013
5014char *
5015main_name (void)
5016{
5017 if (name_of_main == NULL)
5018 find_main_name ();
5019
5020 return name_of_main;
5021}
5022
5023/* Handle ``executable_changed'' events for the symtab module. */
5024
5025static void
5026symtab_observer_executable_changed (void)
5027{
5028 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5029 set_main_name (NULL);
5030}
5031
5032/* Return 1 if the supplied producer string matches the ARM RealView
5033 compiler (armcc). */
5034
5035int
5036producer_is_realview (const char *producer)
5037{
5038 static const char *const arm_idents[] = {
5039 "ARM C Compiler, ADS",
5040 "Thumb C Compiler, ADS",
5041 "ARM C++ Compiler, ADS",
5042 "Thumb C++ Compiler, ADS",
5043 "ARM/Thumb C/C++ Compiler, RVCT",
5044 "ARM C/C++ Compiler, RVCT"
5045 };
5046 int i;
5047
5048 if (producer == NULL)
5049 return 0;
5050
5051 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5052 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5053 return 1;
5054
5055 return 0;
5056}
5057
5058void
5059_initialize_symtab (void)
5060{
5061 add_info ("variables", variables_info, _("\
5062All global and static variable names, or those matching REGEXP."));
5063 if (dbx_commands)
5064 add_com ("whereis", class_info, variables_info, _("\
5065All global and static variable names, or those matching REGEXP."));
5066
5067 add_info ("functions", functions_info,
5068 _("All function names, or those matching REGEXP."));
5069
5070 /* FIXME: This command has at least the following problems:
5071 1. It prints builtin types (in a very strange and confusing fashion).
5072 2. It doesn't print right, e.g. with
5073 typedef struct foo *FOO
5074 type_print prints "FOO" when we want to make it (in this situation)
5075 print "struct foo *".
5076 I also think "ptype" or "whatis" is more likely to be useful (but if
5077 there is much disagreement "info types" can be fixed). */
5078 add_info ("types", types_info,
5079 _("All type names, or those matching REGEXP."));
5080
5081 add_info ("sources", sources_info,
5082 _("Source files in the program."));
5083
5084 add_com ("rbreak", class_breakpoint, rbreak_command,
5085 _("Set a breakpoint for all functions matching REGEXP."));
5086
5087 if (xdb_commands)
5088 {
5089 add_com ("lf", class_info, sources_info,
5090 _("Source files in the program"));
5091 add_com ("lg", class_info, variables_info, _("\
5092All global and static variable names, or those matching REGEXP."));
5093 }
5094
5095 add_setshow_enum_cmd ("multiple-symbols", no_class,
5096 multiple_symbols_modes, &multiple_symbols_mode,
5097 _("\
5098Set the debugger behavior when more than one symbol are possible matches\n\
5099in an expression."), _("\
5100Show how the debugger handles ambiguities in expressions."), _("\
5101Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5102 NULL, NULL, &setlist, &showlist);
5103
5104 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5105 &basenames_may_differ, _("\
5106Set whether a source file may have multiple base names."), _("\
5107Show whether a source file may have multiple base names."), _("\
5108(A \"base name\" is the name of a file with the directory part removed.\n\
5109Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5110If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5111before comparing them. Canonicalization is an expensive operation,\n\
5112but it allows the same file be known by more than one base name.\n\
5113If not set (the default), all source files are assumed to have just\n\
5114one base name, and gdb will do file name comparisons more efficiently."),
5115 NULL, NULL,
5116 &setlist, &showlist);
5117
5118 add_setshow_boolean_cmd ("symtab-create", no_class, &symtab_create_debug,
5119 _("Set debugging of symbol table creation."),
5120 _("Show debugging of symbol table creation."), _("\
5121When enabled, debugging messages are printed when building symbol tables."),
5122 NULL,
5123 NULL,
5124 &setdebuglist, &showdebuglist);
5125
5126 observer_attach_executable_changed (symtab_observer_executable_changed);
5127}
This page took 0.037559 seconds and 4 git commands to generate.