2010-01-06 Tristan Gingold <gingold@adacore.com>
[deliverable/binutils-gdb.git] / gdb / symtab.c
... / ...
CommitLineData
1/* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#include "defs.h"
23#include "symtab.h"
24#include "gdbtypes.h"
25#include "gdbcore.h"
26#include "frame.h"
27#include "target.h"
28#include "value.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "gdbcmd.h"
32#include "call-cmds.h"
33#include "gdb_regex.h"
34#include "expression.h"
35#include "language.h"
36#include "demangle.h"
37#include "inferior.h"
38#include "linespec.h"
39#include "source.h"
40#include "filenames.h" /* for FILENAME_CMP */
41#include "objc-lang.h"
42#include "ada-lang.h"
43#include "p-lang.h"
44#include "addrmap.h"
45
46#include "hashtab.h"
47
48#include "gdb_obstack.h"
49#include "block.h"
50#include "dictionary.h"
51
52#include <sys/types.h>
53#include <fcntl.h>
54#include "gdb_string.h"
55#include "gdb_stat.h"
56#include <ctype.h>
57#include "cp-abi.h"
58#include "cp-support.h"
59#include "observer.h"
60#include "gdb_assert.h"
61#include "solist.h"
62#include "macrotab.h"
63#include "macroscope.h"
64
65/* Prototypes for local functions */
66
67static void completion_list_add_name (char *, char *, int, char *, char *);
68
69static void rbreak_command (char *, int);
70
71static void types_info (char *, int);
72
73static void functions_info (char *, int);
74
75static void variables_info (char *, int);
76
77static void sources_info (char *, int);
78
79static void output_source_filename (const char *, int *);
80
81static int find_line_common (struct linetable *, int, int *);
82
83/* This one is used by linespec.c */
84
85char *operator_chars (char *p, char **end);
86
87static struct symbol *lookup_symbol_aux (const char *name,
88 const char *linkage_name,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language,
92 int *is_a_field_of_this);
93
94static
95struct symbol *lookup_symbol_aux_local (const char *name,
96 const char *linkage_name,
97 const struct block *block,
98 const domain_enum domain);
99
100static
101struct symbol *lookup_symbol_aux_symtabs (int block_index,
102 const char *name,
103 const char *linkage_name,
104 const domain_enum domain);
105
106static
107struct symbol *lookup_symbol_aux_psymtabs (int block_index,
108 const char *name,
109 const char *linkage_name,
110 const domain_enum domain);
111
112static int file_matches (char *, char **, int);
113
114static void print_symbol_info (domain_enum,
115 struct symtab *, struct symbol *, int, char *);
116
117static void print_msymbol_info (struct minimal_symbol *);
118
119static void symtab_symbol_info (char *, domain_enum, int);
120
121void _initialize_symtab (void);
122
123/* */
124
125/* Allow the user to configure the debugger behavior with respect
126 to multiple-choice menus when more than one symbol matches during
127 a symbol lookup. */
128
129const char multiple_symbols_ask[] = "ask";
130const char multiple_symbols_all[] = "all";
131const char multiple_symbols_cancel[] = "cancel";
132static const char *multiple_symbols_modes[] =
133{
134 multiple_symbols_ask,
135 multiple_symbols_all,
136 multiple_symbols_cancel,
137 NULL
138};
139static const char *multiple_symbols_mode = multiple_symbols_all;
140
141/* Read-only accessor to AUTO_SELECT_MODE. */
142
143const char *
144multiple_symbols_select_mode (void)
145{
146 return multiple_symbols_mode;
147}
148
149/* Block in which the most recently searched-for symbol was found.
150 Might be better to make this a parameter to lookup_symbol and
151 value_of_this. */
152
153const struct block *block_found;
154
155/* Check for a symtab of a specific name; first in symtabs, then in
156 psymtabs. *If* there is no '/' in the name, a match after a '/'
157 in the symtab filename will also work. */
158
159struct symtab *
160lookup_symtab (const char *name)
161{
162 struct symtab *s;
163 struct partial_symtab *ps;
164 struct objfile *objfile;
165 char *real_path = NULL;
166 char *full_path = NULL;
167
168 /* Here we are interested in canonicalizing an absolute path, not
169 absolutizing a relative path. */
170 if (IS_ABSOLUTE_PATH (name))
171 {
172 full_path = xfullpath (name);
173 make_cleanup (xfree, full_path);
174 real_path = gdb_realpath (name);
175 make_cleanup (xfree, real_path);
176 }
177
178got_symtab:
179
180 /* First, search for an exact match */
181
182 ALL_SYMTABS (objfile, s)
183 {
184 if (FILENAME_CMP (name, s->filename) == 0)
185 {
186 return s;
187 }
188
189 /* If the user gave us an absolute path, try to find the file in
190 this symtab and use its absolute path. */
191
192 if (full_path != NULL)
193 {
194 const char *fp = symtab_to_fullname (s);
195 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
196 {
197 return s;
198 }
199 }
200
201 if (real_path != NULL)
202 {
203 char *fullname = symtab_to_fullname (s);
204 if (fullname != NULL)
205 {
206 char *rp = gdb_realpath (fullname);
207 make_cleanup (xfree, rp);
208 if (FILENAME_CMP (real_path, rp) == 0)
209 {
210 return s;
211 }
212 }
213 }
214 }
215
216 /* Now, search for a matching tail (only if name doesn't have any dirs) */
217
218 if (lbasename (name) == name)
219 ALL_SYMTABS (objfile, s)
220 {
221 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
222 return s;
223 }
224
225 /* Same search rules as above apply here, but now we look thru the
226 psymtabs. */
227
228 ps = lookup_partial_symtab (name);
229 if (!ps)
230 return (NULL);
231
232 if (ps->readin)
233 error (_("Internal: readin %s pst for `%s' found when no symtab found."),
234 ps->filename, name);
235
236 s = PSYMTAB_TO_SYMTAB (ps);
237
238 if (s)
239 return s;
240
241 /* At this point, we have located the psymtab for this file, but
242 the conversion to a symtab has failed. This usually happens
243 when we are looking up an include file. In this case,
244 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
245 been created. So, we need to run through the symtabs again in
246 order to find the file.
247 XXX - This is a crock, and should be fixed inside of the the
248 symbol parsing routines. */
249 goto got_symtab;
250}
251
252/* Lookup the partial symbol table of a source file named NAME.
253 *If* there is no '/' in the name, a match after a '/'
254 in the psymtab filename will also work. */
255
256struct partial_symtab *
257lookup_partial_symtab (const char *name)
258{
259 struct partial_symtab *pst;
260 struct objfile *objfile;
261 char *full_path = NULL;
262 char *real_path = NULL;
263
264 /* Here we are interested in canonicalizing an absolute path, not
265 absolutizing a relative path. */
266 if (IS_ABSOLUTE_PATH (name))
267 {
268 full_path = xfullpath (name);
269 make_cleanup (xfree, full_path);
270 real_path = gdb_realpath (name);
271 make_cleanup (xfree, real_path);
272 }
273
274 ALL_PSYMTABS (objfile, pst)
275 {
276 if (FILENAME_CMP (name, pst->filename) == 0)
277 {
278 return (pst);
279 }
280
281 /* If the user gave us an absolute path, try to find the file in
282 this symtab and use its absolute path. */
283 if (full_path != NULL)
284 {
285 psymtab_to_fullname (pst);
286 if (pst->fullname != NULL
287 && FILENAME_CMP (full_path, pst->fullname) == 0)
288 {
289 return pst;
290 }
291 }
292
293 if (real_path != NULL)
294 {
295 char *rp = NULL;
296 psymtab_to_fullname (pst);
297 if (pst->fullname != NULL)
298 {
299 rp = gdb_realpath (pst->fullname);
300 make_cleanup (xfree, rp);
301 }
302 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
303 {
304 return pst;
305 }
306 }
307 }
308
309 /* Now, search for a matching tail (only if name doesn't have any dirs) */
310
311 if (lbasename (name) == name)
312 ALL_PSYMTABS (objfile, pst)
313 {
314 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
315 return (pst);
316 }
317
318 return (NULL);
319}
320\f
321/* Mangle a GDB method stub type. This actually reassembles the pieces of the
322 full method name, which consist of the class name (from T), the unadorned
323 method name from METHOD_ID, and the signature for the specific overload,
324 specified by SIGNATURE_ID. Note that this function is g++ specific. */
325
326char *
327gdb_mangle_name (struct type *type, int method_id, int signature_id)
328{
329 int mangled_name_len;
330 char *mangled_name;
331 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
332 struct fn_field *method = &f[signature_id];
333 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
334 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
335 char *newname = type_name_no_tag (type);
336
337 /* Does the form of physname indicate that it is the full mangled name
338 of a constructor (not just the args)? */
339 int is_full_physname_constructor;
340
341 int is_constructor;
342 int is_destructor = is_destructor_name (physname);
343 /* Need a new type prefix. */
344 char *const_prefix = method->is_const ? "C" : "";
345 char *volatile_prefix = method->is_volatile ? "V" : "";
346 char buf[20];
347 int len = (newname == NULL ? 0 : strlen (newname));
348
349 /* Nothing to do if physname already contains a fully mangled v3 abi name
350 or an operator name. */
351 if ((physname[0] == '_' && physname[1] == 'Z')
352 || is_operator_name (field_name))
353 return xstrdup (physname);
354
355 is_full_physname_constructor = is_constructor_name (physname);
356
357 is_constructor =
358 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
359
360 if (!is_destructor)
361 is_destructor = (strncmp (physname, "__dt", 4) == 0);
362
363 if (is_destructor || is_full_physname_constructor)
364 {
365 mangled_name = (char *) xmalloc (strlen (physname) + 1);
366 strcpy (mangled_name, physname);
367 return mangled_name;
368 }
369
370 if (len == 0)
371 {
372 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
373 }
374 else if (physname[0] == 't' || physname[0] == 'Q')
375 {
376 /* The physname for template and qualified methods already includes
377 the class name. */
378 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
379 newname = NULL;
380 len = 0;
381 }
382 else
383 {
384 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
385 }
386 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
387 + strlen (buf) + len + strlen (physname) + 1);
388
389 {
390 mangled_name = (char *) xmalloc (mangled_name_len);
391 if (is_constructor)
392 mangled_name[0] = '\0';
393 else
394 strcpy (mangled_name, field_name);
395 }
396 strcat (mangled_name, buf);
397 /* If the class doesn't have a name, i.e. newname NULL, then we just
398 mangle it using 0 for the length of the class. Thus it gets mangled
399 as something starting with `::' rather than `classname::'. */
400 if (newname != NULL)
401 strcat (mangled_name, newname);
402
403 strcat (mangled_name, physname);
404 return (mangled_name);
405}
406
407\f
408/* Initialize the language dependent portion of a symbol
409 depending upon the language for the symbol. */
410void
411symbol_init_language_specific (struct general_symbol_info *gsymbol,
412 enum language language)
413{
414 gsymbol->language = language;
415 if (gsymbol->language == language_cplus
416 || gsymbol->language == language_java
417 || gsymbol->language == language_objc)
418 {
419 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
420 }
421 else
422 {
423 memset (&gsymbol->language_specific, 0,
424 sizeof (gsymbol->language_specific));
425 }
426}
427
428/* Functions to initialize a symbol's mangled name. */
429
430/* Objects of this type are stored in the demangled name hash table. */
431struct demangled_name_entry
432{
433 char *mangled;
434 char demangled[1];
435};
436
437/* Hash function for the demangled name hash. */
438static hashval_t
439hash_demangled_name_entry (const void *data)
440{
441 const struct demangled_name_entry *e = data;
442 return htab_hash_string (e->mangled);
443}
444
445/* Equality function for the demangled name hash. */
446static int
447eq_demangled_name_entry (const void *a, const void *b)
448{
449 const struct demangled_name_entry *da = a;
450 const struct demangled_name_entry *db = b;
451 return strcmp (da->mangled, db->mangled) == 0;
452}
453
454/* Create the hash table used for demangled names. Each hash entry is
455 a pair of strings; one for the mangled name and one for the demangled
456 name. The entry is hashed via just the mangled name. */
457
458static void
459create_demangled_names_hash (struct objfile *objfile)
460{
461 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
462 The hash table code will round this up to the next prime number.
463 Choosing a much larger table size wastes memory, and saves only about
464 1% in symbol reading. */
465
466 objfile->demangled_names_hash = htab_create_alloc
467 (256, hash_demangled_name_entry, eq_demangled_name_entry,
468 NULL, xcalloc, xfree);
469}
470
471/* Try to determine the demangled name for a symbol, based on the
472 language of that symbol. If the language is set to language_auto,
473 it will attempt to find any demangling algorithm that works and
474 then set the language appropriately. The returned name is allocated
475 by the demangler and should be xfree'd. */
476
477static char *
478symbol_find_demangled_name (struct general_symbol_info *gsymbol,
479 const char *mangled)
480{
481 char *demangled = NULL;
482
483 if (gsymbol->language == language_unknown)
484 gsymbol->language = language_auto;
485
486 if (gsymbol->language == language_objc
487 || gsymbol->language == language_auto)
488 {
489 demangled =
490 objc_demangle (mangled, 0);
491 if (demangled != NULL)
492 {
493 gsymbol->language = language_objc;
494 return demangled;
495 }
496 }
497 if (gsymbol->language == language_cplus
498 || gsymbol->language == language_auto)
499 {
500 demangled =
501 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
502 if (demangled != NULL)
503 {
504 gsymbol->language = language_cplus;
505 return demangled;
506 }
507 }
508 if (gsymbol->language == language_java)
509 {
510 demangled =
511 cplus_demangle (mangled,
512 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
513 if (demangled != NULL)
514 {
515 gsymbol->language = language_java;
516 return demangled;
517 }
518 }
519 return NULL;
520}
521
522/* Set both the mangled and demangled (if any) names for GSYMBOL based
523 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
524 objfile's obstack; but if COPY_NAME is 0 and if NAME is
525 NUL-terminated, then this function assumes that NAME is already
526 correctly saved (either permanently or with a lifetime tied to the
527 objfile), and it will not be copied.
528
529 The hash table corresponding to OBJFILE is used, and the memory
530 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
531 so the pointer can be discarded after calling this function. */
532
533/* We have to be careful when dealing with Java names: when we run
534 into a Java minimal symbol, we don't know it's a Java symbol, so it
535 gets demangled as a C++ name. This is unfortunate, but there's not
536 much we can do about it: but when demangling partial symbols and
537 regular symbols, we'd better not reuse the wrong demangled name.
538 (See PR gdb/1039.) We solve this by putting a distinctive prefix
539 on Java names when storing them in the hash table. */
540
541/* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
542 don't mind the Java prefix so much: different languages have
543 different demangling requirements, so it's only natural that we
544 need to keep language data around in our demangling cache. But
545 it's not good that the minimal symbol has the wrong demangled name.
546 Unfortunately, I can't think of any easy solution to that
547 problem. */
548
549#define JAVA_PREFIX "##JAVA$$"
550#define JAVA_PREFIX_LEN 8
551
552void
553symbol_set_names (struct general_symbol_info *gsymbol,
554 const char *linkage_name, int len, int copy_name,
555 struct objfile *objfile)
556{
557 struct demangled_name_entry **slot;
558 /* A 0-terminated copy of the linkage name. */
559 const char *linkage_name_copy;
560 /* A copy of the linkage name that might have a special Java prefix
561 added to it, for use when looking names up in the hash table. */
562 const char *lookup_name;
563 /* The length of lookup_name. */
564 int lookup_len;
565 struct demangled_name_entry entry;
566
567 if (gsymbol->language == language_ada)
568 {
569 /* In Ada, we do the symbol lookups using the mangled name, so
570 we can save some space by not storing the demangled name.
571
572 As a side note, we have also observed some overlap between
573 the C++ mangling and Ada mangling, similarly to what has
574 been observed with Java. Because we don't store the demangled
575 name with the symbol, we don't need to use the same trick
576 as Java. */
577 if (!copy_name)
578 gsymbol->name = (char *) linkage_name;
579 else
580 {
581 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
582 memcpy (gsymbol->name, linkage_name, len);
583 gsymbol->name[len] = '\0';
584 }
585 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
586
587 return;
588 }
589
590 if (objfile->demangled_names_hash == NULL)
591 create_demangled_names_hash (objfile);
592
593 /* The stabs reader generally provides names that are not
594 NUL-terminated; most of the other readers don't do this, so we
595 can just use the given copy, unless we're in the Java case. */
596 if (gsymbol->language == language_java)
597 {
598 char *alloc_name;
599 lookup_len = len + JAVA_PREFIX_LEN;
600
601 alloc_name = alloca (lookup_len + 1);
602 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
603 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
604 alloc_name[lookup_len] = '\0';
605
606 lookup_name = alloc_name;
607 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
608 }
609 else if (linkage_name[len] != '\0')
610 {
611 char *alloc_name;
612 lookup_len = len;
613
614 alloc_name = alloca (lookup_len + 1);
615 memcpy (alloc_name, linkage_name, len);
616 alloc_name[lookup_len] = '\0';
617
618 lookup_name = alloc_name;
619 linkage_name_copy = alloc_name;
620 }
621 else
622 {
623 lookup_len = len;
624 lookup_name = linkage_name;
625 linkage_name_copy = linkage_name;
626 }
627
628 entry.mangled = (char *) lookup_name;
629 slot = ((struct demangled_name_entry **)
630 htab_find_slot (objfile->demangled_names_hash,
631 &entry, INSERT));
632
633 /* If this name is not in the hash table, add it. */
634 if (*slot == NULL)
635 {
636 char *demangled_name = symbol_find_demangled_name (gsymbol,
637 linkage_name_copy);
638 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
639
640 /* Suppose we have demangled_name==NULL, copy_name==0, and
641 lookup_name==linkage_name. In this case, we already have the
642 mangled name saved, and we don't have a demangled name. So,
643 you might think we could save a little space by not recording
644 this in the hash table at all.
645
646 It turns out that it is actually important to still save such
647 an entry in the hash table, because storing this name gives
648 us better backache hit rates for partial symbols. */
649 if (!copy_name && lookup_name == linkage_name)
650 {
651 *slot = obstack_alloc (&objfile->objfile_obstack,
652 offsetof (struct demangled_name_entry,
653 demangled)
654 + demangled_len + 1);
655 (*slot)->mangled = (char *) lookup_name;
656 }
657 else
658 {
659 /* If we must copy the mangled name, put it directly after
660 the demangled name so we can have a single
661 allocation. */
662 *slot = obstack_alloc (&objfile->objfile_obstack,
663 offsetof (struct demangled_name_entry,
664 demangled)
665 + lookup_len + demangled_len + 2);
666 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
667 strcpy ((*slot)->mangled, lookup_name);
668 }
669
670 if (demangled_name != NULL)
671 {
672 strcpy ((*slot)->demangled, demangled_name);
673 xfree (demangled_name);
674 }
675 else
676 (*slot)->demangled[0] = '\0';
677 }
678
679 gsymbol->name = (*slot)->mangled + lookup_len - len;
680 if ((*slot)->demangled[0] != '\0')
681 gsymbol->language_specific.cplus_specific.demangled_name
682 = (*slot)->demangled;
683 else
684 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
685}
686
687/* Return the source code name of a symbol. In languages where
688 demangling is necessary, this is the demangled name. */
689
690char *
691symbol_natural_name (const struct general_symbol_info *gsymbol)
692{
693 switch (gsymbol->language)
694 {
695 case language_cplus:
696 case language_java:
697 case language_objc:
698 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
699 return gsymbol->language_specific.cplus_specific.demangled_name;
700 break;
701 case language_ada:
702 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
703 return gsymbol->language_specific.cplus_specific.demangled_name;
704 else
705 return ada_decode_symbol (gsymbol);
706 break;
707 default:
708 break;
709 }
710 return gsymbol->name;
711}
712
713/* Return the demangled name for a symbol based on the language for
714 that symbol. If no demangled name exists, return NULL. */
715char *
716symbol_demangled_name (const struct general_symbol_info *gsymbol)
717{
718 switch (gsymbol->language)
719 {
720 case language_cplus:
721 case language_java:
722 case language_objc:
723 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
724 return gsymbol->language_specific.cplus_specific.demangled_name;
725 break;
726 case language_ada:
727 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
728 return gsymbol->language_specific.cplus_specific.demangled_name;
729 else
730 return ada_decode_symbol (gsymbol);
731 break;
732 default:
733 break;
734 }
735 return NULL;
736}
737
738/* Return the search name of a symbol---generally the demangled or
739 linkage name of the symbol, depending on how it will be searched for.
740 If there is no distinct demangled name, then returns the same value
741 (same pointer) as SYMBOL_LINKAGE_NAME. */
742char *
743symbol_search_name (const struct general_symbol_info *gsymbol)
744{
745 if (gsymbol->language == language_ada)
746 return gsymbol->name;
747 else
748 return symbol_natural_name (gsymbol);
749}
750
751/* Initialize the structure fields to zero values. */
752void
753init_sal (struct symtab_and_line *sal)
754{
755 sal->pspace = NULL;
756 sal->symtab = 0;
757 sal->section = 0;
758 sal->line = 0;
759 sal->pc = 0;
760 sal->end = 0;
761 sal->explicit_pc = 0;
762 sal->explicit_line = 0;
763}
764\f
765
766/* Return 1 if the two sections are the same, or if they could
767 plausibly be copies of each other, one in an original object
768 file and another in a separated debug file. */
769
770int
771matching_obj_sections (struct obj_section *obj_first,
772 struct obj_section *obj_second)
773{
774 asection *first = obj_first? obj_first->the_bfd_section : NULL;
775 asection *second = obj_second? obj_second->the_bfd_section : NULL;
776 struct objfile *obj;
777
778 /* If they're the same section, then they match. */
779 if (first == second)
780 return 1;
781
782 /* If either is NULL, give up. */
783 if (first == NULL || second == NULL)
784 return 0;
785
786 /* This doesn't apply to absolute symbols. */
787 if (first->owner == NULL || second->owner == NULL)
788 return 0;
789
790 /* If they're in the same object file, they must be different sections. */
791 if (first->owner == second->owner)
792 return 0;
793
794 /* Check whether the two sections are potentially corresponding. They must
795 have the same size, address, and name. We can't compare section indexes,
796 which would be more reliable, because some sections may have been
797 stripped. */
798 if (bfd_get_section_size (first) != bfd_get_section_size (second))
799 return 0;
800
801 /* In-memory addresses may start at a different offset, relativize them. */
802 if (bfd_get_section_vma (first->owner, first)
803 - bfd_get_start_address (first->owner)
804 != bfd_get_section_vma (second->owner, second)
805 - bfd_get_start_address (second->owner))
806 return 0;
807
808 if (bfd_get_section_name (first->owner, first) == NULL
809 || bfd_get_section_name (second->owner, second) == NULL
810 || strcmp (bfd_get_section_name (first->owner, first),
811 bfd_get_section_name (second->owner, second)) != 0)
812 return 0;
813
814 /* Otherwise check that they are in corresponding objfiles. */
815
816 ALL_OBJFILES (obj)
817 if (obj->obfd == first->owner)
818 break;
819 gdb_assert (obj != NULL);
820
821 if (obj->separate_debug_objfile != NULL
822 && obj->separate_debug_objfile->obfd == second->owner)
823 return 1;
824 if (obj->separate_debug_objfile_backlink != NULL
825 && obj->separate_debug_objfile_backlink->obfd == second->owner)
826 return 1;
827
828 return 0;
829}
830
831/* Find which partial symtab contains PC and SECTION starting at psymtab PST.
832 We may find a different psymtab than PST. See FIND_PC_SECT_PSYMTAB. */
833
834static struct partial_symtab *
835find_pc_sect_psymtab_closer (CORE_ADDR pc, struct obj_section *section,
836 struct partial_symtab *pst,
837 struct minimal_symbol *msymbol)
838{
839 struct objfile *objfile = pst->objfile;
840 struct partial_symtab *tpst;
841 struct partial_symtab *best_pst = pst;
842 CORE_ADDR best_addr = pst->textlow;
843
844 /* An objfile that has its functions reordered might have
845 many partial symbol tables containing the PC, but
846 we want the partial symbol table that contains the
847 function containing the PC. */
848 if (!(objfile->flags & OBJF_REORDERED) &&
849 section == 0) /* can't validate section this way */
850 return pst;
851
852 if (msymbol == NULL)
853 return (pst);
854
855 /* The code range of partial symtabs sometimes overlap, so, in
856 the loop below, we need to check all partial symtabs and
857 find the one that fits better for the given PC address. We
858 select the partial symtab that contains a symbol whose
859 address is closest to the PC address. By closest we mean
860 that find_pc_sect_symbol returns the symbol with address
861 that is closest and still less than the given PC. */
862 for (tpst = pst; tpst != NULL; tpst = tpst->next)
863 {
864 if (pc >= tpst->textlow && pc < tpst->texthigh)
865 {
866 struct partial_symbol *p;
867 CORE_ADDR this_addr;
868
869 /* NOTE: This assumes that every psymbol has a
870 corresponding msymbol, which is not necessarily
871 true; the debug info might be much richer than the
872 object's symbol table. */
873 p = find_pc_sect_psymbol (tpst, pc, section);
874 if (p != NULL
875 && SYMBOL_VALUE_ADDRESS (p)
876 == SYMBOL_VALUE_ADDRESS (msymbol))
877 return tpst;
878
879 /* Also accept the textlow value of a psymtab as a
880 "symbol", to provide some support for partial
881 symbol tables with line information but no debug
882 symbols (e.g. those produced by an assembler). */
883 if (p != NULL)
884 this_addr = SYMBOL_VALUE_ADDRESS (p);
885 else
886 this_addr = tpst->textlow;
887
888 /* Check whether it is closer than our current
889 BEST_ADDR. Since this symbol address is
890 necessarily lower or equal to PC, the symbol closer
891 to PC is the symbol which address is the highest.
892 This way we return the psymtab which contains such
893 best match symbol. This can help in cases where the
894 symbol information/debuginfo is not complete, like
895 for instance on IRIX6 with gcc, where no debug info
896 is emitted for statics. (See also the nodebug.exp
897 testcase.) */
898 if (this_addr > best_addr)
899 {
900 best_addr = this_addr;
901 best_pst = tpst;
902 }
903 }
904 }
905 return best_pst;
906}
907
908/* Find which partial symtab contains PC and SECTION. Return 0 if
909 none. We return the psymtab that contains a symbol whose address
910 exactly matches PC, or, if we cannot find an exact match, the
911 psymtab that contains a symbol whose address is closest to PC. */
912struct partial_symtab *
913find_pc_sect_psymtab (CORE_ADDR pc, struct obj_section *section)
914{
915 struct objfile *objfile;
916 struct minimal_symbol *msymbol;
917
918 /* If we know that this is not a text address, return failure. This is
919 necessary because we loop based on texthigh and textlow, which do
920 not include the data ranges. */
921 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
922 if (msymbol
923 && (MSYMBOL_TYPE (msymbol) == mst_data
924 || MSYMBOL_TYPE (msymbol) == mst_bss
925 || MSYMBOL_TYPE (msymbol) == mst_abs
926 || MSYMBOL_TYPE (msymbol) == mst_file_data
927 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
928 return NULL;
929
930 /* Try just the PSYMTABS_ADDRMAP mapping first as it has better granularity
931 than the later used TEXTLOW/TEXTHIGH one. */
932
933 ALL_OBJFILES (objfile)
934 if (objfile->psymtabs_addrmap != NULL)
935 {
936 struct partial_symtab *pst;
937
938 pst = addrmap_find (objfile->psymtabs_addrmap, pc);
939 if (pst != NULL)
940 {
941 /* FIXME: addrmaps currently do not handle overlayed sections,
942 so fall back to the non-addrmap case if we're debugging
943 overlays and the addrmap returned the wrong section. */
944 if (overlay_debugging && msymbol && section)
945 {
946 struct partial_symbol *p;
947 /* NOTE: This assumes that every psymbol has a
948 corresponding msymbol, which is not necessarily
949 true; the debug info might be much richer than the
950 object's symbol table. */
951 p = find_pc_sect_psymbol (pst, pc, section);
952 if (!p
953 || SYMBOL_VALUE_ADDRESS (p)
954 != SYMBOL_VALUE_ADDRESS (msymbol))
955 continue;
956 }
957
958 /* We do not try to call FIND_PC_SECT_PSYMTAB_CLOSER as
959 PSYMTABS_ADDRMAP we used has already the best 1-byte
960 granularity and FIND_PC_SECT_PSYMTAB_CLOSER may mislead us into
961 a worse chosen section due to the TEXTLOW/TEXTHIGH ranges
962 overlap. */
963
964 return pst;
965 }
966 }
967
968 /* Existing PSYMTABS_ADDRMAP mapping is present even for PARTIAL_SYMTABs
969 which still have no corresponding full SYMTABs read. But it is not
970 present for non-DWARF2 debug infos not supporting PSYMTABS_ADDRMAP in GDB
971 so far. */
972
973 ALL_OBJFILES (objfile)
974 {
975 struct partial_symtab *pst;
976
977 /* Check even OBJFILE with non-zero PSYMTABS_ADDRMAP as only several of
978 its CUs may be missing in PSYMTABS_ADDRMAP as they may be varying
979 debug info type in single OBJFILE. */
980
981 ALL_OBJFILE_PSYMTABS (objfile, pst)
982 if (pc >= pst->textlow && pc < pst->texthigh)
983 {
984 struct partial_symtab *best_pst;
985
986 best_pst = find_pc_sect_psymtab_closer (pc, section, pst,
987 msymbol);
988 if (best_pst != NULL)
989 return best_pst;
990 }
991 }
992
993 return NULL;
994}
995
996/* Find which partial symtab contains PC. Return 0 if none.
997 Backward compatibility, no section */
998
999struct partial_symtab *
1000find_pc_psymtab (CORE_ADDR pc)
1001{
1002 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
1003}
1004
1005/* Find which partial symbol within a psymtab matches PC and SECTION.
1006 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
1007
1008struct partial_symbol *
1009find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
1010 struct obj_section *section)
1011{
1012 struct partial_symbol *best = NULL, *p, **pp;
1013 CORE_ADDR best_pc;
1014
1015 if (!psymtab)
1016 psymtab = find_pc_sect_psymtab (pc, section);
1017 if (!psymtab)
1018 return 0;
1019
1020 /* Cope with programs that start at address 0 */
1021 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
1022
1023 /* Search the global symbols as well as the static symbols, so that
1024 find_pc_partial_function doesn't use a minimal symbol and thus
1025 cache a bad endaddr. */
1026 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
1027 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
1028 < psymtab->n_global_syms);
1029 pp++)
1030 {
1031 p = *pp;
1032 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
1033 && SYMBOL_CLASS (p) == LOC_BLOCK
1034 && pc >= SYMBOL_VALUE_ADDRESS (p)
1035 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
1036 || (psymtab->textlow == 0
1037 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
1038 {
1039 if (section) /* match on a specific section */
1040 {
1041 fixup_psymbol_section (p, psymtab->objfile);
1042 if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section))
1043 continue;
1044 }
1045 best_pc = SYMBOL_VALUE_ADDRESS (p);
1046 best = p;
1047 }
1048 }
1049
1050 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
1051 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
1052 < psymtab->n_static_syms);
1053 pp++)
1054 {
1055 p = *pp;
1056 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
1057 && SYMBOL_CLASS (p) == LOC_BLOCK
1058 && pc >= SYMBOL_VALUE_ADDRESS (p)
1059 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
1060 || (psymtab->textlow == 0
1061 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
1062 {
1063 if (section) /* match on a specific section */
1064 {
1065 fixup_psymbol_section (p, psymtab->objfile);
1066 if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section))
1067 continue;
1068 }
1069 best_pc = SYMBOL_VALUE_ADDRESS (p);
1070 best = p;
1071 }
1072 }
1073
1074 return best;
1075}
1076
1077/* Find which partial symbol within a psymtab matches PC. Return 0 if none.
1078 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
1079
1080struct partial_symbol *
1081find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
1082{
1083 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
1084}
1085\f
1086/* Debug symbols usually don't have section information. We need to dig that
1087 out of the minimal symbols and stash that in the debug symbol. */
1088
1089static void
1090fixup_section (struct general_symbol_info *ginfo,
1091 CORE_ADDR addr, struct objfile *objfile)
1092{
1093 struct minimal_symbol *msym;
1094
1095 /* First, check whether a minimal symbol with the same name exists
1096 and points to the same address. The address check is required
1097 e.g. on PowerPC64, where the minimal symbol for a function will
1098 point to the function descriptor, while the debug symbol will
1099 point to the actual function code. */
1100 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1101 if (msym)
1102 {
1103 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1104 ginfo->section = SYMBOL_SECTION (msym);
1105 }
1106 else
1107 {
1108 /* Static, function-local variables do appear in the linker
1109 (minimal) symbols, but are frequently given names that won't
1110 be found via lookup_minimal_symbol(). E.g., it has been
1111 observed in frv-uclinux (ELF) executables that a static,
1112 function-local variable named "foo" might appear in the
1113 linker symbols as "foo.6" or "foo.3". Thus, there is no
1114 point in attempting to extend the lookup-by-name mechanism to
1115 handle this case due to the fact that there can be multiple
1116 names.
1117
1118 So, instead, search the section table when lookup by name has
1119 failed. The ``addr'' and ``endaddr'' fields may have already
1120 been relocated. If so, the relocation offset (i.e. the
1121 ANOFFSET value) needs to be subtracted from these values when
1122 performing the comparison. We unconditionally subtract it,
1123 because, when no relocation has been performed, the ANOFFSET
1124 value will simply be zero.
1125
1126 The address of the symbol whose section we're fixing up HAS
1127 NOT BEEN adjusted (relocated) yet. It can't have been since
1128 the section isn't yet known and knowing the section is
1129 necessary in order to add the correct relocation value. In
1130 other words, we wouldn't even be in this function (attempting
1131 to compute the section) if it were already known.
1132
1133 Note that it is possible to search the minimal symbols
1134 (subtracting the relocation value if necessary) to find the
1135 matching minimal symbol, but this is overkill and much less
1136 efficient. It is not necessary to find the matching minimal
1137 symbol, only its section.
1138
1139 Note that this technique (of doing a section table search)
1140 can fail when unrelocated section addresses overlap. For
1141 this reason, we still attempt a lookup by name prior to doing
1142 a search of the section table. */
1143
1144 struct obj_section *s;
1145 ALL_OBJFILE_OSECTIONS (objfile, s)
1146 {
1147 int idx = s->the_bfd_section->index;
1148 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1149
1150 if (obj_section_addr (s) - offset <= addr
1151 && addr < obj_section_endaddr (s) - offset)
1152 {
1153 ginfo->obj_section = s;
1154 ginfo->section = idx;
1155 return;
1156 }
1157 }
1158 }
1159}
1160
1161struct symbol *
1162fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1163{
1164 CORE_ADDR addr;
1165
1166 if (!sym)
1167 return NULL;
1168
1169 if (SYMBOL_OBJ_SECTION (sym))
1170 return sym;
1171
1172 /* We either have an OBJFILE, or we can get at it from the sym's
1173 symtab. Anything else is a bug. */
1174 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1175
1176 if (objfile == NULL)
1177 objfile = SYMBOL_SYMTAB (sym)->objfile;
1178
1179 /* We should have an objfile by now. */
1180 gdb_assert (objfile);
1181
1182 switch (SYMBOL_CLASS (sym))
1183 {
1184 case LOC_STATIC:
1185 case LOC_LABEL:
1186 addr = SYMBOL_VALUE_ADDRESS (sym);
1187 break;
1188 case LOC_BLOCK:
1189 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1190 break;
1191
1192 default:
1193 /* Nothing else will be listed in the minsyms -- no use looking
1194 it up. */
1195 return sym;
1196 }
1197
1198 fixup_section (&sym->ginfo, addr, objfile);
1199
1200 return sym;
1201}
1202
1203struct partial_symbol *
1204fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
1205{
1206 CORE_ADDR addr;
1207
1208 if (!psym)
1209 return NULL;
1210
1211 if (SYMBOL_OBJ_SECTION (psym))
1212 return psym;
1213
1214 gdb_assert (objfile);
1215
1216 switch (SYMBOL_CLASS (psym))
1217 {
1218 case LOC_STATIC:
1219 case LOC_LABEL:
1220 case LOC_BLOCK:
1221 addr = SYMBOL_VALUE_ADDRESS (psym);
1222 break;
1223 default:
1224 /* Nothing else will be listed in the minsyms -- no use looking
1225 it up. */
1226 return psym;
1227 }
1228
1229 fixup_section (&psym->ginfo, addr, objfile);
1230
1231 return psym;
1232}
1233
1234/* Find the definition for a specified symbol name NAME
1235 in domain DOMAIN, visible from lexical block BLOCK.
1236 Returns the struct symbol pointer, or zero if no symbol is found.
1237 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1238 NAME is a field of the current implied argument `this'. If so set
1239 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1240 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1241 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1242
1243/* This function has a bunch of loops in it and it would seem to be
1244 attractive to put in some QUIT's (though I'm not really sure
1245 whether it can run long enough to be really important). But there
1246 are a few calls for which it would appear to be bad news to quit
1247 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1248 that there is C++ code below which can error(), but that probably
1249 doesn't affect these calls since they are looking for a known
1250 variable and thus can probably assume it will never hit the C++
1251 code). */
1252
1253struct symbol *
1254lookup_symbol_in_language (const char *name, const struct block *block,
1255 const domain_enum domain, enum language lang,
1256 int *is_a_field_of_this)
1257{
1258 char *demangled_name = NULL;
1259 const char *modified_name = NULL;
1260 const char *mangled_name = NULL;
1261 struct symbol *returnval;
1262 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1263
1264 modified_name = name;
1265
1266 /* If we are using C++ or Java, demangle the name before doing a lookup, so
1267 we can always binary search. */
1268 if (lang == language_cplus)
1269 {
1270 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1271 if (demangled_name)
1272 {
1273 mangled_name = name;
1274 modified_name = demangled_name;
1275 make_cleanup (xfree, demangled_name);
1276 }
1277 else
1278 {
1279 /* If we were given a non-mangled name, canonicalize it
1280 according to the language (so far only for C++). */
1281 demangled_name = cp_canonicalize_string (name);
1282 if (demangled_name)
1283 {
1284 modified_name = demangled_name;
1285 make_cleanup (xfree, demangled_name);
1286 }
1287 }
1288 }
1289 else if (lang == language_java)
1290 {
1291 demangled_name = cplus_demangle (name,
1292 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1293 if (demangled_name)
1294 {
1295 mangled_name = name;
1296 modified_name = demangled_name;
1297 make_cleanup (xfree, demangled_name);
1298 }
1299 }
1300
1301 if (case_sensitivity == case_sensitive_off)
1302 {
1303 char *copy;
1304 int len, i;
1305
1306 len = strlen (name);
1307 copy = (char *) alloca (len + 1);
1308 for (i= 0; i < len; i++)
1309 copy[i] = tolower (name[i]);
1310 copy[len] = 0;
1311 modified_name = copy;
1312 }
1313
1314 returnval = lookup_symbol_aux (modified_name, mangled_name, block,
1315 domain, lang, is_a_field_of_this);
1316 do_cleanups (cleanup);
1317
1318 return returnval;
1319}
1320
1321/* Behave like lookup_symbol_in_language, but performed with the
1322 current language. */
1323
1324struct symbol *
1325lookup_symbol (const char *name, const struct block *block,
1326 domain_enum domain, int *is_a_field_of_this)
1327{
1328 return lookup_symbol_in_language (name, block, domain,
1329 current_language->la_language,
1330 is_a_field_of_this);
1331}
1332
1333/* Behave like lookup_symbol except that NAME is the natural name
1334 of the symbol that we're looking for and, if LINKAGE_NAME is
1335 non-NULL, ensure that the symbol's linkage name matches as
1336 well. */
1337
1338static struct symbol *
1339lookup_symbol_aux (const char *name, const char *linkage_name,
1340 const struct block *block, const domain_enum domain,
1341 enum language language, int *is_a_field_of_this)
1342{
1343 struct symbol *sym;
1344 const struct language_defn *langdef;
1345
1346 /* Make sure we do something sensible with is_a_field_of_this, since
1347 the callers that set this parameter to some non-null value will
1348 certainly use it later and expect it to be either 0 or 1.
1349 If we don't set it, the contents of is_a_field_of_this are
1350 undefined. */
1351 if (is_a_field_of_this != NULL)
1352 *is_a_field_of_this = 0;
1353
1354 /* Search specified block and its superiors. Don't search
1355 STATIC_BLOCK or GLOBAL_BLOCK. */
1356
1357 sym = lookup_symbol_aux_local (name, linkage_name, block, domain);
1358 if (sym != NULL)
1359 return sym;
1360
1361 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1362 check to see if NAME is a field of `this'. */
1363
1364 langdef = language_def (language);
1365
1366 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1367 && block != NULL)
1368 {
1369 struct symbol *sym = NULL;
1370 /* 'this' is only defined in the function's block, so find the
1371 enclosing function block. */
1372 for (; block && !BLOCK_FUNCTION (block);
1373 block = BLOCK_SUPERBLOCK (block));
1374
1375 if (block && !dict_empty (BLOCK_DICT (block)))
1376 sym = lookup_block_symbol (block, langdef->la_name_of_this,
1377 NULL, VAR_DOMAIN);
1378 if (sym)
1379 {
1380 struct type *t = sym->type;
1381
1382 /* I'm not really sure that type of this can ever
1383 be typedefed; just be safe. */
1384 CHECK_TYPEDEF (t);
1385 if (TYPE_CODE (t) == TYPE_CODE_PTR
1386 || TYPE_CODE (t) == TYPE_CODE_REF)
1387 t = TYPE_TARGET_TYPE (t);
1388
1389 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1390 && TYPE_CODE (t) != TYPE_CODE_UNION)
1391 error (_("Internal error: `%s' is not an aggregate"),
1392 langdef->la_name_of_this);
1393
1394 if (check_field (t, name))
1395 {
1396 *is_a_field_of_this = 1;
1397 return NULL;
1398 }
1399 }
1400 }
1401
1402 /* Now do whatever is appropriate for LANGUAGE to look
1403 up static and global variables. */
1404
1405 sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name, block, domain);
1406 if (sym != NULL)
1407 return sym;
1408
1409 /* Now search all static file-level symbols. Not strictly correct,
1410 but more useful than an error. Do the symtabs first, then check
1411 the psymtabs. If a psymtab indicates the existence of the
1412 desired name as a file-level static, then do psymtab-to-symtab
1413 conversion on the fly and return the found symbol. */
1414
1415 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name, domain);
1416 if (sym != NULL)
1417 return sym;
1418
1419 sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name, domain);
1420 if (sym != NULL)
1421 return sym;
1422
1423 return NULL;
1424}
1425
1426/* Check to see if the symbol is defined in BLOCK or its superiors.
1427 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1428
1429static struct symbol *
1430lookup_symbol_aux_local (const char *name, const char *linkage_name,
1431 const struct block *block,
1432 const domain_enum domain)
1433{
1434 struct symbol *sym;
1435 const struct block *static_block = block_static_block (block);
1436
1437 /* Check if either no block is specified or it's a global block. */
1438
1439 if (static_block == NULL)
1440 return NULL;
1441
1442 while (block != static_block)
1443 {
1444 sym = lookup_symbol_aux_block (name, linkage_name, block, domain);
1445 if (sym != NULL)
1446 return sym;
1447
1448 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1449 break;
1450 block = BLOCK_SUPERBLOCK (block);
1451 }
1452
1453 /* We've reached the edge of the function without finding a result. */
1454
1455 return NULL;
1456}
1457
1458/* Look up OBJFILE to BLOCK. */
1459
1460static struct objfile *
1461lookup_objfile_from_block (const struct block *block)
1462{
1463 struct objfile *obj;
1464 struct symtab *s;
1465
1466 if (block == NULL)
1467 return NULL;
1468
1469 block = block_global_block (block);
1470 /* Go through SYMTABS. */
1471 ALL_SYMTABS (obj, s)
1472 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1473 return obj;
1474
1475 return NULL;
1476}
1477
1478/* Look up a symbol in a block; if found, fixup the symbol, and set
1479 block_found appropriately. */
1480
1481struct symbol *
1482lookup_symbol_aux_block (const char *name, const char *linkage_name,
1483 const struct block *block,
1484 const domain_enum domain)
1485{
1486 struct symbol *sym;
1487
1488 sym = lookup_block_symbol (block, name, linkage_name, domain);
1489 if (sym)
1490 {
1491 block_found = block;
1492 return fixup_symbol_section (sym, NULL);
1493 }
1494
1495 return NULL;
1496}
1497
1498/* Check all global symbols in OBJFILE in symtabs and
1499 psymtabs. */
1500
1501struct symbol *
1502lookup_global_symbol_from_objfile (const struct objfile *objfile,
1503 const char *name,
1504 const char *linkage_name,
1505 const domain_enum domain)
1506{
1507 struct symbol *sym;
1508 struct blockvector *bv;
1509 const struct block *block;
1510 struct symtab *s;
1511 struct partial_symtab *ps;
1512
1513 /* Go through symtabs. */
1514 ALL_OBJFILE_SYMTABS (objfile, s)
1515 {
1516 bv = BLOCKVECTOR (s);
1517 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1518 sym = lookup_block_symbol (block, name, linkage_name, domain);
1519 if (sym)
1520 {
1521 block_found = block;
1522 return fixup_symbol_section (sym, (struct objfile *)objfile);
1523 }
1524 }
1525
1526 /* Now go through psymtabs. */
1527 ALL_OBJFILE_PSYMTABS (objfile, ps)
1528 {
1529 if (!ps->readin
1530 && lookup_partial_symbol (ps, name, linkage_name,
1531 1, domain))
1532 {
1533 s = PSYMTAB_TO_SYMTAB (ps);
1534 bv = BLOCKVECTOR (s);
1535 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1536 sym = lookup_block_symbol (block, name, linkage_name, domain);
1537 return fixup_symbol_section (sym, (struct objfile *)objfile);
1538 }
1539 }
1540
1541 if (objfile->separate_debug_objfile)
1542 return lookup_global_symbol_from_objfile (objfile->separate_debug_objfile,
1543 name, linkage_name, domain);
1544
1545 return NULL;
1546}
1547
1548/* Check to see if the symbol is defined in one of the symtabs.
1549 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1550 depending on whether or not we want to search global symbols or
1551 static symbols. */
1552
1553static struct symbol *
1554lookup_symbol_aux_symtabs (int block_index,
1555 const char *name, const char *linkage_name,
1556 const domain_enum domain)
1557{
1558 struct symbol *sym;
1559 struct objfile *objfile;
1560 struct blockvector *bv;
1561 const struct block *block;
1562 struct symtab *s;
1563
1564 ALL_PRIMARY_SYMTABS (objfile, s)
1565 {
1566 bv = BLOCKVECTOR (s);
1567 block = BLOCKVECTOR_BLOCK (bv, block_index);
1568 sym = lookup_block_symbol (block, name, linkage_name, domain);
1569 if (sym)
1570 {
1571 block_found = block;
1572 return fixup_symbol_section (sym, objfile);
1573 }
1574 }
1575
1576 return NULL;
1577}
1578
1579/* Check to see if the symbol is defined in one of the partial
1580 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or
1581 STATIC_BLOCK, depending on whether or not we want to search global
1582 symbols or static symbols. */
1583
1584static struct symbol *
1585lookup_symbol_aux_psymtabs (int block_index, const char *name,
1586 const char *linkage_name,
1587 const domain_enum domain)
1588{
1589 struct symbol *sym;
1590 struct objfile *objfile;
1591 struct blockvector *bv;
1592 const struct block *block;
1593 struct partial_symtab *ps;
1594 struct symtab *s;
1595 const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1596
1597 ALL_PSYMTABS (objfile, ps)
1598 {
1599 if (!ps->readin
1600 && lookup_partial_symbol (ps, name, linkage_name,
1601 psymtab_index, domain))
1602 {
1603 s = PSYMTAB_TO_SYMTAB (ps);
1604 bv = BLOCKVECTOR (s);
1605 block = BLOCKVECTOR_BLOCK (bv, block_index);
1606 sym = lookup_block_symbol (block, name, linkage_name, domain);
1607 if (!sym)
1608 {
1609 /* This shouldn't be necessary, but as a last resort try
1610 looking in the statics even though the psymtab claimed
1611 the symbol was global, or vice-versa. It's possible
1612 that the psymtab gets it wrong in some cases. */
1613
1614 /* FIXME: carlton/2002-09-30: Should we really do that?
1615 If that happens, isn't it likely to be a GDB error, in
1616 which case we should fix the GDB error rather than
1617 silently dealing with it here? So I'd vote for
1618 removing the check for the symbol in the other
1619 block. */
1620 block = BLOCKVECTOR_BLOCK (bv,
1621 block_index == GLOBAL_BLOCK ?
1622 STATIC_BLOCK : GLOBAL_BLOCK);
1623 sym = lookup_block_symbol (block, name, linkage_name, domain);
1624 if (!sym)
1625 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1626 block_index == GLOBAL_BLOCK ? "global" : "static",
1627 name, ps->filename, name, name);
1628 }
1629 return fixup_symbol_section (sym, objfile);
1630 }
1631 }
1632
1633 return NULL;
1634}
1635
1636/* A default version of lookup_symbol_nonlocal for use by languages
1637 that can't think of anything better to do. This implements the C
1638 lookup rules. */
1639
1640struct symbol *
1641basic_lookup_symbol_nonlocal (const char *name,
1642 const char *linkage_name,
1643 const struct block *block,
1644 const domain_enum domain)
1645{
1646 struct symbol *sym;
1647
1648 /* NOTE: carlton/2003-05-19: The comments below were written when
1649 this (or what turned into this) was part of lookup_symbol_aux;
1650 I'm much less worried about these questions now, since these
1651 decisions have turned out well, but I leave these comments here
1652 for posterity. */
1653
1654 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1655 not it would be appropriate to search the current global block
1656 here as well. (That's what this code used to do before the
1657 is_a_field_of_this check was moved up.) On the one hand, it's
1658 redundant with the lookup_symbol_aux_symtabs search that happens
1659 next. On the other hand, if decode_line_1 is passed an argument
1660 like filename:var, then the user presumably wants 'var' to be
1661 searched for in filename. On the third hand, there shouldn't be
1662 multiple global variables all of which are named 'var', and it's
1663 not like decode_line_1 has ever restricted its search to only
1664 global variables in a single filename. All in all, only
1665 searching the static block here seems best: it's correct and it's
1666 cleanest. */
1667
1668 /* NOTE: carlton/2002-12-05: There's also a possible performance
1669 issue here: if you usually search for global symbols in the
1670 current file, then it would be slightly better to search the
1671 current global block before searching all the symtabs. But there
1672 are other factors that have a much greater effect on performance
1673 than that one, so I don't think we should worry about that for
1674 now. */
1675
1676 sym = lookup_symbol_static (name, linkage_name, block, domain);
1677 if (sym != NULL)
1678 return sym;
1679
1680 return lookup_symbol_global (name, linkage_name, block, domain);
1681}
1682
1683/* Lookup a symbol in the static block associated to BLOCK, if there
1684 is one; do nothing if BLOCK is NULL or a global block. */
1685
1686struct symbol *
1687lookup_symbol_static (const char *name,
1688 const char *linkage_name,
1689 const struct block *block,
1690 const domain_enum domain)
1691{
1692 const struct block *static_block = block_static_block (block);
1693
1694 if (static_block != NULL)
1695 return lookup_symbol_aux_block (name, linkage_name, static_block, domain);
1696 else
1697 return NULL;
1698}
1699
1700/* Lookup a symbol in all files' global blocks (searching psymtabs if
1701 necessary). */
1702
1703struct symbol *
1704lookup_symbol_global (const char *name,
1705 const char *linkage_name,
1706 const struct block *block,
1707 const domain_enum domain)
1708{
1709 struct symbol *sym = NULL;
1710 struct objfile *objfile = NULL;
1711
1712 /* Call library-specific lookup procedure. */
1713 objfile = lookup_objfile_from_block (block);
1714 if (objfile != NULL)
1715 sym = solib_global_lookup (objfile, name, linkage_name, domain);
1716 if (sym != NULL)
1717 return sym;
1718
1719 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1720 if (sym != NULL)
1721 return sym;
1722
1723 return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1724}
1725
1726int
1727symbol_matches_domain (enum language symbol_language,
1728 domain_enum symbol_domain,
1729 domain_enum domain)
1730{
1731 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1732 A Java class declaration also defines a typedef for the class.
1733 Similarly, any Ada type declaration implicitly defines a typedef. */
1734 if (symbol_language == language_cplus
1735 || symbol_language == language_java
1736 || symbol_language == language_ada)
1737 {
1738 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1739 && symbol_domain == STRUCT_DOMAIN)
1740 return 1;
1741 }
1742 /* For all other languages, strict match is required. */
1743 return (symbol_domain == domain);
1744}
1745
1746/* Look, in partial_symtab PST, for symbol whose natural name is NAME.
1747 If LINKAGE_NAME is non-NULL, check in addition that the symbol's
1748 linkage name matches it. Check the global symbols if GLOBAL, the
1749 static symbols if not */
1750
1751struct partial_symbol *
1752lookup_partial_symbol (struct partial_symtab *pst, const char *name,
1753 const char *linkage_name, int global,
1754 domain_enum domain)
1755{
1756 struct partial_symbol *temp;
1757 struct partial_symbol **start, **psym;
1758 struct partial_symbol **top, **real_top, **bottom, **center;
1759 int length = (global ? pst->n_global_syms : pst->n_static_syms);
1760 int do_linear_search = 1;
1761
1762 if (length == 0)
1763 {
1764 return (NULL);
1765 }
1766 start = (global ?
1767 pst->objfile->global_psymbols.list + pst->globals_offset :
1768 pst->objfile->static_psymbols.list + pst->statics_offset);
1769
1770 if (global) /* This means we can use a binary search. */
1771 {
1772 do_linear_search = 0;
1773
1774 /* Binary search. This search is guaranteed to end with center
1775 pointing at the earliest partial symbol whose name might be
1776 correct. At that point *all* partial symbols with an
1777 appropriate name will be checked against the correct
1778 domain. */
1779
1780 bottom = start;
1781 top = start + length - 1;
1782 real_top = top;
1783 while (top > bottom)
1784 {
1785 center = bottom + (top - bottom) / 2;
1786 if (!(center < top))
1787 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1788 if (!do_linear_search
1789 && (SYMBOL_LANGUAGE (*center) == language_java))
1790 {
1791 do_linear_search = 1;
1792 }
1793 if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0)
1794 {
1795 top = center;
1796 }
1797 else
1798 {
1799 bottom = center + 1;
1800 }
1801 }
1802 if (!(top == bottom))
1803 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1804
1805 while (top <= real_top
1806 && (linkage_name != NULL
1807 ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0
1808 : SYMBOL_MATCHES_SEARCH_NAME (*top,name)))
1809 {
1810 if (symbol_matches_domain (SYMBOL_LANGUAGE (*top),
1811 SYMBOL_DOMAIN (*top), domain))
1812 return (*top);
1813 top++;
1814 }
1815 }
1816
1817 /* Can't use a binary search or else we found during the binary search that
1818 we should also do a linear search. */
1819
1820 if (do_linear_search)
1821 {
1822 for (psym = start; psym < start + length; psym++)
1823 {
1824 if (symbol_matches_domain (SYMBOL_LANGUAGE (*psym),
1825 SYMBOL_DOMAIN (*psym), domain))
1826 {
1827 if (linkage_name != NULL
1828 ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0
1829 : SYMBOL_MATCHES_SEARCH_NAME (*psym, name))
1830 {
1831 return (*psym);
1832 }
1833 }
1834 }
1835 }
1836
1837 return (NULL);
1838}
1839
1840/* Look up a type named NAME in the struct_domain. The type returned
1841 must not be opaque -- i.e., must have at least one field
1842 defined. */
1843
1844struct type *
1845lookup_transparent_type (const char *name)
1846{
1847 return current_language->la_lookup_transparent_type (name);
1848}
1849
1850/* The standard implementation of lookup_transparent_type. This code
1851 was modeled on lookup_symbol -- the parts not relevant to looking
1852 up types were just left out. In particular it's assumed here that
1853 types are available in struct_domain and only at file-static or
1854 global blocks. */
1855
1856struct type *
1857basic_lookup_transparent_type (const char *name)
1858{
1859 struct symbol *sym;
1860 struct symtab *s = NULL;
1861 struct partial_symtab *ps;
1862 struct blockvector *bv;
1863 struct objfile *objfile;
1864 struct block *block;
1865
1866 /* Now search all the global symbols. Do the symtab's first, then
1867 check the psymtab's. If a psymtab indicates the existence
1868 of the desired name as a global, then do psymtab-to-symtab
1869 conversion on the fly and return the found symbol. */
1870
1871 ALL_PRIMARY_SYMTABS (objfile, s)
1872 {
1873 bv = BLOCKVECTOR (s);
1874 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1875 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1876 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1877 {
1878 return SYMBOL_TYPE (sym);
1879 }
1880 }
1881
1882 ALL_PSYMTABS (objfile, ps)
1883 {
1884 if (!ps->readin && lookup_partial_symbol (ps, name, NULL,
1885 1, STRUCT_DOMAIN))
1886 {
1887 s = PSYMTAB_TO_SYMTAB (ps);
1888 bv = BLOCKVECTOR (s);
1889 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1890 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1891 if (!sym)
1892 {
1893 /* This shouldn't be necessary, but as a last resort
1894 * try looking in the statics even though the psymtab
1895 * claimed the symbol was global. It's possible that
1896 * the psymtab gets it wrong in some cases.
1897 */
1898 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1899 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1900 if (!sym)
1901 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1902%s may be an inlined function, or may be a template function\n\
1903(if a template, try specifying an instantiation: %s<type>)."),
1904 name, ps->filename, name, name);
1905 }
1906 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1907 return SYMBOL_TYPE (sym);
1908 }
1909 }
1910
1911 /* Now search the static file-level symbols.
1912 Not strictly correct, but more useful than an error.
1913 Do the symtab's first, then
1914 check the psymtab's. If a psymtab indicates the existence
1915 of the desired name as a file-level static, then do psymtab-to-symtab
1916 conversion on the fly and return the found symbol.
1917 */
1918
1919 ALL_PRIMARY_SYMTABS (objfile, s)
1920 {
1921 bv = BLOCKVECTOR (s);
1922 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1923 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1924 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1925 {
1926 return SYMBOL_TYPE (sym);
1927 }
1928 }
1929
1930 ALL_PSYMTABS (objfile, ps)
1931 {
1932 if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN))
1933 {
1934 s = PSYMTAB_TO_SYMTAB (ps);
1935 bv = BLOCKVECTOR (s);
1936 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1937 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1938 if (!sym)
1939 {
1940 /* This shouldn't be necessary, but as a last resort
1941 * try looking in the globals even though the psymtab
1942 * claimed the symbol was static. It's possible that
1943 * the psymtab gets it wrong in some cases.
1944 */
1945 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1946 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1947 if (!sym)
1948 error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1949%s may be an inlined function, or may be a template function\n\
1950(if a template, try specifying an instantiation: %s<type>)."),
1951 name, ps->filename, name, name);
1952 }
1953 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1954 return SYMBOL_TYPE (sym);
1955 }
1956 }
1957 return (struct type *) 0;
1958}
1959
1960
1961/* Find the psymtab containing main(). */
1962/* FIXME: What about languages without main() or specially linked
1963 executables that have no main() ? */
1964
1965struct partial_symtab *
1966find_main_psymtab (void)
1967{
1968 struct partial_symtab *pst;
1969 struct objfile *objfile;
1970
1971 ALL_PSYMTABS (objfile, pst)
1972 {
1973 if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN))
1974 {
1975 return (pst);
1976 }
1977 }
1978 return (NULL);
1979}
1980
1981/* Search BLOCK for symbol NAME in DOMAIN.
1982
1983 Note that if NAME is the demangled form of a C++ symbol, we will fail
1984 to find a match during the binary search of the non-encoded names, but
1985 for now we don't worry about the slight inefficiency of looking for
1986 a match we'll never find, since it will go pretty quick. Once the
1987 binary search terminates, we drop through and do a straight linear
1988 search on the symbols. Each symbol which is marked as being a ObjC/C++
1989 symbol (language_cplus or language_objc set) has both the encoded and
1990 non-encoded names tested for a match.
1991
1992 If LINKAGE_NAME is non-NULL, verify that any symbol we find has this
1993 particular mangled name.
1994*/
1995
1996struct symbol *
1997lookup_block_symbol (const struct block *block, const char *name,
1998 const char *linkage_name,
1999 const domain_enum domain)
2000{
2001 struct dict_iterator iter;
2002 struct symbol *sym;
2003
2004 if (!BLOCK_FUNCTION (block))
2005 {
2006 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
2007 sym != NULL;
2008 sym = dict_iter_name_next (name, &iter))
2009 {
2010 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2011 SYMBOL_DOMAIN (sym), domain)
2012 && (linkage_name != NULL
2013 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
2014 return sym;
2015 }
2016 return NULL;
2017 }
2018 else
2019 {
2020 /* Note that parameter symbols do not always show up last in the
2021 list; this loop makes sure to take anything else other than
2022 parameter symbols first; it only uses parameter symbols as a
2023 last resort. Note that this only takes up extra computation
2024 time on a match. */
2025
2026 struct symbol *sym_found = NULL;
2027
2028 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
2029 sym != NULL;
2030 sym = dict_iter_name_next (name, &iter))
2031 {
2032 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2033 SYMBOL_DOMAIN (sym), domain)
2034 && (linkage_name != NULL
2035 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
2036 {
2037 sym_found = sym;
2038 if (!SYMBOL_IS_ARGUMENT (sym))
2039 {
2040 break;
2041 }
2042 }
2043 }
2044 return (sym_found); /* Will be NULL if not found. */
2045 }
2046}
2047
2048/* Find the symtab associated with PC and SECTION. Look through the
2049 psymtabs and read in another symtab if necessary. */
2050
2051struct symtab *
2052find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2053{
2054 struct block *b;
2055 struct blockvector *bv;
2056 struct symtab *s = NULL;
2057 struct symtab *best_s = NULL;
2058 struct partial_symtab *ps;
2059 struct objfile *objfile;
2060 struct program_space *pspace;
2061 CORE_ADDR distance = 0;
2062 struct minimal_symbol *msymbol;
2063
2064 pspace = current_program_space;
2065
2066 /* If we know that this is not a text address, return failure. This is
2067 necessary because we loop based on the block's high and low code
2068 addresses, which do not include the data ranges, and because
2069 we call find_pc_sect_psymtab which has a similar restriction based
2070 on the partial_symtab's texthigh and textlow. */
2071 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2072 if (msymbol
2073 && (MSYMBOL_TYPE (msymbol) == mst_data
2074 || MSYMBOL_TYPE (msymbol) == mst_bss
2075 || MSYMBOL_TYPE (msymbol) == mst_abs
2076 || MSYMBOL_TYPE (msymbol) == mst_file_data
2077 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2078 return NULL;
2079
2080 /* Search all symtabs for the one whose file contains our address, and which
2081 is the smallest of all the ones containing the address. This is designed
2082 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2083 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2084 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2085
2086 This happens for native ecoff format, where code from included files
2087 gets its own symtab. The symtab for the included file should have
2088 been read in already via the dependency mechanism.
2089 It might be swifter to create several symtabs with the same name
2090 like xcoff does (I'm not sure).
2091
2092 It also happens for objfiles that have their functions reordered.
2093 For these, the symtab we are looking for is not necessarily read in. */
2094
2095 ALL_PRIMARY_SYMTABS (objfile, s)
2096 {
2097 bv = BLOCKVECTOR (s);
2098 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2099
2100 if (BLOCK_START (b) <= pc
2101 && BLOCK_END (b) > pc
2102 && (distance == 0
2103 || BLOCK_END (b) - BLOCK_START (b) < distance))
2104 {
2105 /* For an objfile that has its functions reordered,
2106 find_pc_psymtab will find the proper partial symbol table
2107 and we simply return its corresponding symtab. */
2108 /* In order to better support objfiles that contain both
2109 stabs and coff debugging info, we continue on if a psymtab
2110 can't be found. */
2111 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
2112 {
2113 ps = find_pc_sect_psymtab (pc, section);
2114 if (ps)
2115 return PSYMTAB_TO_SYMTAB (ps);
2116 }
2117 if (section != 0)
2118 {
2119 struct dict_iterator iter;
2120 struct symbol *sym = NULL;
2121
2122 ALL_BLOCK_SYMBOLS (b, iter, sym)
2123 {
2124 fixup_symbol_section (sym, objfile);
2125 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2126 break;
2127 }
2128 if (sym == NULL)
2129 continue; /* no symbol in this symtab matches section */
2130 }
2131 distance = BLOCK_END (b) - BLOCK_START (b);
2132 best_s = s;
2133 }
2134 }
2135
2136 if (best_s != NULL)
2137 return (best_s);
2138
2139 s = NULL;
2140 ps = find_pc_sect_psymtab (pc, section);
2141 if (ps)
2142 {
2143 if (ps->readin)
2144 /* Might want to error() here (in case symtab is corrupt and
2145 will cause a core dump), but maybe we can successfully
2146 continue, so let's not. */
2147 warning (_("\
2148(Internal error: pc %s in read in psymtab, but not in symtab.)\n"),
2149 paddress (get_objfile_arch (ps->objfile), pc));
2150 s = PSYMTAB_TO_SYMTAB (ps);
2151 }
2152 return (s);
2153}
2154
2155/* Find the symtab associated with PC. Look through the psymtabs and
2156 read in another symtab if necessary. Backward compatibility, no section */
2157
2158struct symtab *
2159find_pc_symtab (CORE_ADDR pc)
2160{
2161 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2162}
2163\f
2164
2165/* Find the source file and line number for a given PC value and SECTION.
2166 Return a structure containing a symtab pointer, a line number,
2167 and a pc range for the entire source line.
2168 The value's .pc field is NOT the specified pc.
2169 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2170 use the line that ends there. Otherwise, in that case, the line
2171 that begins there is used. */
2172
2173/* The big complication here is that a line may start in one file, and end just
2174 before the start of another file. This usually occurs when you #include
2175 code in the middle of a subroutine. To properly find the end of a line's PC
2176 range, we must search all symtabs associated with this compilation unit, and
2177 find the one whose first PC is closer than that of the next line in this
2178 symtab. */
2179
2180/* If it's worth the effort, we could be using a binary search. */
2181
2182struct symtab_and_line
2183find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2184{
2185 struct symtab *s;
2186 struct linetable *l;
2187 int len;
2188 int i;
2189 struct linetable_entry *item;
2190 struct symtab_and_line val;
2191 struct blockvector *bv;
2192 struct minimal_symbol *msymbol;
2193 struct minimal_symbol *mfunsym;
2194
2195 /* Info on best line seen so far, and where it starts, and its file. */
2196
2197 struct linetable_entry *best = NULL;
2198 CORE_ADDR best_end = 0;
2199 struct symtab *best_symtab = 0;
2200
2201 /* Store here the first line number
2202 of a file which contains the line at the smallest pc after PC.
2203 If we don't find a line whose range contains PC,
2204 we will use a line one less than this,
2205 with a range from the start of that file to the first line's pc. */
2206 struct linetable_entry *alt = NULL;
2207 struct symtab *alt_symtab = 0;
2208
2209 /* Info on best line seen in this file. */
2210
2211 struct linetable_entry *prev;
2212
2213 /* If this pc is not from the current frame,
2214 it is the address of the end of a call instruction.
2215 Quite likely that is the start of the following statement.
2216 But what we want is the statement containing the instruction.
2217 Fudge the pc to make sure we get that. */
2218
2219 init_sal (&val); /* initialize to zeroes */
2220
2221 val.pspace = current_program_space;
2222
2223 /* It's tempting to assume that, if we can't find debugging info for
2224 any function enclosing PC, that we shouldn't search for line
2225 number info, either. However, GAS can emit line number info for
2226 assembly files --- very helpful when debugging hand-written
2227 assembly code. In such a case, we'd have no debug info for the
2228 function, but we would have line info. */
2229
2230 if (notcurrent)
2231 pc -= 1;
2232
2233 /* elz: added this because this function returned the wrong
2234 information if the pc belongs to a stub (import/export)
2235 to call a shlib function. This stub would be anywhere between
2236 two functions in the target, and the line info was erroneously
2237 taken to be the one of the line before the pc.
2238 */
2239 /* RT: Further explanation:
2240
2241 * We have stubs (trampolines) inserted between procedures.
2242 *
2243 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2244 * exists in the main image.
2245 *
2246 * In the minimal symbol table, we have a bunch of symbols
2247 * sorted by start address. The stubs are marked as "trampoline",
2248 * the others appear as text. E.g.:
2249 *
2250 * Minimal symbol table for main image
2251 * main: code for main (text symbol)
2252 * shr1: stub (trampoline symbol)
2253 * foo: code for foo (text symbol)
2254 * ...
2255 * Minimal symbol table for "shr1" image:
2256 * ...
2257 * shr1: code for shr1 (text symbol)
2258 * ...
2259 *
2260 * So the code below is trying to detect if we are in the stub
2261 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2262 * and if found, do the symbolization from the real-code address
2263 * rather than the stub address.
2264 *
2265 * Assumptions being made about the minimal symbol table:
2266 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2267 * if we're really in the trampoline. If we're beyond it (say
2268 * we're in "foo" in the above example), it'll have a closer
2269 * symbol (the "foo" text symbol for example) and will not
2270 * return the trampoline.
2271 * 2. lookup_minimal_symbol_text() will find a real text symbol
2272 * corresponding to the trampoline, and whose address will
2273 * be different than the trampoline address. I put in a sanity
2274 * check for the address being the same, to avoid an
2275 * infinite recursion.
2276 */
2277 msymbol = lookup_minimal_symbol_by_pc (pc);
2278 if (msymbol != NULL)
2279 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2280 {
2281 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2282 NULL);
2283 if (mfunsym == NULL)
2284 /* I eliminated this warning since it is coming out
2285 * in the following situation:
2286 * gdb shmain // test program with shared libraries
2287 * (gdb) break shr1 // function in shared lib
2288 * Warning: In stub for ...
2289 * In the above situation, the shared lib is not loaded yet,
2290 * so of course we can't find the real func/line info,
2291 * but the "break" still works, and the warning is annoying.
2292 * So I commented out the warning. RT */
2293 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2294 /* fall through */
2295 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
2296 /* Avoid infinite recursion */
2297 /* See above comment about why warning is commented out */
2298 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2299 /* fall through */
2300 else
2301 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2302 }
2303
2304
2305 s = find_pc_sect_symtab (pc, section);
2306 if (!s)
2307 {
2308 /* if no symbol information, return previous pc */
2309 if (notcurrent)
2310 pc++;
2311 val.pc = pc;
2312 return val;
2313 }
2314
2315 bv = BLOCKVECTOR (s);
2316
2317 /* Look at all the symtabs that share this blockvector.
2318 They all have the same apriori range, that we found was right;
2319 but they have different line tables. */
2320
2321 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2322 {
2323 /* Find the best line in this symtab. */
2324 l = LINETABLE (s);
2325 if (!l)
2326 continue;
2327 len = l->nitems;
2328 if (len <= 0)
2329 {
2330 /* I think len can be zero if the symtab lacks line numbers
2331 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2332 I'm not sure which, and maybe it depends on the symbol
2333 reader). */
2334 continue;
2335 }
2336
2337 prev = NULL;
2338 item = l->item; /* Get first line info */
2339
2340 /* Is this file's first line closer than the first lines of other files?
2341 If so, record this file, and its first line, as best alternate. */
2342 if (item->pc > pc && (!alt || item->pc < alt->pc))
2343 {
2344 alt = item;
2345 alt_symtab = s;
2346 }
2347
2348 for (i = 0; i < len; i++, item++)
2349 {
2350 /* Leave prev pointing to the linetable entry for the last line
2351 that started at or before PC. */
2352 if (item->pc > pc)
2353 break;
2354
2355 prev = item;
2356 }
2357
2358 /* At this point, prev points at the line whose start addr is <= pc, and
2359 item points at the next line. If we ran off the end of the linetable
2360 (pc >= start of the last line), then prev == item. If pc < start of
2361 the first line, prev will not be set. */
2362
2363 /* Is this file's best line closer than the best in the other files?
2364 If so, record this file, and its best line, as best so far. Don't
2365 save prev if it represents the end of a function (i.e. line number
2366 0) instead of a real line. */
2367
2368 if (prev && prev->line && (!best || prev->pc > best->pc))
2369 {
2370 best = prev;
2371 best_symtab = s;
2372
2373 /* Discard BEST_END if it's before the PC of the current BEST. */
2374 if (best_end <= best->pc)
2375 best_end = 0;
2376 }
2377
2378 /* If another line (denoted by ITEM) is in the linetable and its
2379 PC is after BEST's PC, but before the current BEST_END, then
2380 use ITEM's PC as the new best_end. */
2381 if (best && i < len && item->pc > best->pc
2382 && (best_end == 0 || best_end > item->pc))
2383 best_end = item->pc;
2384 }
2385
2386 if (!best_symtab)
2387 {
2388 /* If we didn't find any line number info, just return zeros.
2389 We used to return alt->line - 1 here, but that could be
2390 anywhere; if we don't have line number info for this PC,
2391 don't make some up. */
2392 val.pc = pc;
2393 }
2394 else if (best->line == 0)
2395 {
2396 /* If our best fit is in a range of PC's for which no line
2397 number info is available (line number is zero) then we didn't
2398 find any valid line information. */
2399 val.pc = pc;
2400 }
2401 else
2402 {
2403 val.symtab = best_symtab;
2404 val.line = best->line;
2405 val.pc = best->pc;
2406 if (best_end && (!alt || best_end < alt->pc))
2407 val.end = best_end;
2408 else if (alt)
2409 val.end = alt->pc;
2410 else
2411 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2412 }
2413 val.section = section;
2414 return val;
2415}
2416
2417/* Backward compatibility (no section) */
2418
2419struct symtab_and_line
2420find_pc_line (CORE_ADDR pc, int notcurrent)
2421{
2422 struct obj_section *section;
2423
2424 section = find_pc_overlay (pc);
2425 if (pc_in_unmapped_range (pc, section))
2426 pc = overlay_mapped_address (pc, section);
2427 return find_pc_sect_line (pc, section, notcurrent);
2428}
2429\f
2430/* Find line number LINE in any symtab whose name is the same as
2431 SYMTAB.
2432
2433 If found, return the symtab that contains the linetable in which it was
2434 found, set *INDEX to the index in the linetable of the best entry
2435 found, and set *EXACT_MATCH nonzero if the value returned is an
2436 exact match.
2437
2438 If not found, return NULL. */
2439
2440struct symtab *
2441find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2442{
2443 int exact = 0; /* Initialized here to avoid a compiler warning. */
2444
2445 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2446 so far seen. */
2447
2448 int best_index;
2449 struct linetable *best_linetable;
2450 struct symtab *best_symtab;
2451
2452 /* First try looking it up in the given symtab. */
2453 best_linetable = LINETABLE (symtab);
2454 best_symtab = symtab;
2455 best_index = find_line_common (best_linetable, line, &exact);
2456 if (best_index < 0 || !exact)
2457 {
2458 /* Didn't find an exact match. So we better keep looking for
2459 another symtab with the same name. In the case of xcoff,
2460 multiple csects for one source file (produced by IBM's FORTRAN
2461 compiler) produce multiple symtabs (this is unavoidable
2462 assuming csects can be at arbitrary places in memory and that
2463 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2464
2465 /* BEST is the smallest linenumber > LINE so far seen,
2466 or 0 if none has been seen so far.
2467 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2468 int best;
2469
2470 struct objfile *objfile;
2471 struct symtab *s;
2472 struct partial_symtab *p;
2473
2474 if (best_index >= 0)
2475 best = best_linetable->item[best_index].line;
2476 else
2477 best = 0;
2478
2479 ALL_PSYMTABS (objfile, p)
2480 {
2481 if (FILENAME_CMP (symtab->filename, p->filename) != 0)
2482 continue;
2483 PSYMTAB_TO_SYMTAB (p);
2484 }
2485
2486 /* Get symbol full file name if possible. */
2487 symtab_to_fullname (symtab);
2488
2489 ALL_SYMTABS (objfile, s)
2490 {
2491 struct linetable *l;
2492 int ind;
2493
2494 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2495 continue;
2496 if (symtab->fullname != NULL
2497 && symtab_to_fullname (s) != NULL
2498 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2499 continue;
2500 l = LINETABLE (s);
2501 ind = find_line_common (l, line, &exact);
2502 if (ind >= 0)
2503 {
2504 if (exact)
2505 {
2506 best_index = ind;
2507 best_linetable = l;
2508 best_symtab = s;
2509 goto done;
2510 }
2511 if (best == 0 || l->item[ind].line < best)
2512 {
2513 best = l->item[ind].line;
2514 best_index = ind;
2515 best_linetable = l;
2516 best_symtab = s;
2517 }
2518 }
2519 }
2520 }
2521done:
2522 if (best_index < 0)
2523 return NULL;
2524
2525 if (index)
2526 *index = best_index;
2527 if (exact_match)
2528 *exact_match = exact;
2529
2530 return best_symtab;
2531}
2532\f
2533/* Set the PC value for a given source file and line number and return true.
2534 Returns zero for invalid line number (and sets the PC to 0).
2535 The source file is specified with a struct symtab. */
2536
2537int
2538find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2539{
2540 struct linetable *l;
2541 int ind;
2542
2543 *pc = 0;
2544 if (symtab == 0)
2545 return 0;
2546
2547 symtab = find_line_symtab (symtab, line, &ind, NULL);
2548 if (symtab != NULL)
2549 {
2550 l = LINETABLE (symtab);
2551 *pc = l->item[ind].pc;
2552 return 1;
2553 }
2554 else
2555 return 0;
2556}
2557
2558/* Find the range of pc values in a line.
2559 Store the starting pc of the line into *STARTPTR
2560 and the ending pc (start of next line) into *ENDPTR.
2561 Returns 1 to indicate success.
2562 Returns 0 if could not find the specified line. */
2563
2564int
2565find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2566 CORE_ADDR *endptr)
2567{
2568 CORE_ADDR startaddr;
2569 struct symtab_and_line found_sal;
2570
2571 startaddr = sal.pc;
2572 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2573 return 0;
2574
2575 /* This whole function is based on address. For example, if line 10 has
2576 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2577 "info line *0x123" should say the line goes from 0x100 to 0x200
2578 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2579 This also insures that we never give a range like "starts at 0x134
2580 and ends at 0x12c". */
2581
2582 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2583 if (found_sal.line != sal.line)
2584 {
2585 /* The specified line (sal) has zero bytes. */
2586 *startptr = found_sal.pc;
2587 *endptr = found_sal.pc;
2588 }
2589 else
2590 {
2591 *startptr = found_sal.pc;
2592 *endptr = found_sal.end;
2593 }
2594 return 1;
2595}
2596
2597/* Given a line table and a line number, return the index into the line
2598 table for the pc of the nearest line whose number is >= the specified one.
2599 Return -1 if none is found. The value is >= 0 if it is an index.
2600
2601 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2602
2603static int
2604find_line_common (struct linetable *l, int lineno,
2605 int *exact_match)
2606{
2607 int i;
2608 int len;
2609
2610 /* BEST is the smallest linenumber > LINENO so far seen,
2611 or 0 if none has been seen so far.
2612 BEST_INDEX identifies the item for it. */
2613
2614 int best_index = -1;
2615 int best = 0;
2616
2617 *exact_match = 0;
2618
2619 if (lineno <= 0)
2620 return -1;
2621 if (l == 0)
2622 return -1;
2623
2624 len = l->nitems;
2625 for (i = 0; i < len; i++)
2626 {
2627 struct linetable_entry *item = &(l->item[i]);
2628
2629 if (item->line == lineno)
2630 {
2631 /* Return the first (lowest address) entry which matches. */
2632 *exact_match = 1;
2633 return i;
2634 }
2635
2636 if (item->line > lineno && (best == 0 || item->line < best))
2637 {
2638 best = item->line;
2639 best_index = i;
2640 }
2641 }
2642
2643 /* If we got here, we didn't get an exact match. */
2644 return best_index;
2645}
2646
2647int
2648find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2649{
2650 struct symtab_and_line sal;
2651 sal = find_pc_line (pc, 0);
2652 *startptr = sal.pc;
2653 *endptr = sal.end;
2654 return sal.symtab != 0;
2655}
2656
2657/* Given a function start address PC and SECTION, find the first
2658 address after the function prologue. */
2659CORE_ADDR
2660find_function_start_pc (struct gdbarch *gdbarch,
2661 CORE_ADDR pc, struct obj_section *section)
2662{
2663 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2664 so that gdbarch_skip_prologue has something unique to work on. */
2665 if (section_is_overlay (section) && !section_is_mapped (section))
2666 pc = overlay_unmapped_address (pc, section);
2667
2668 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2669 pc = gdbarch_skip_prologue (gdbarch, pc);
2670
2671 /* For overlays, map pc back into its mapped VMA range. */
2672 pc = overlay_mapped_address (pc, section);
2673
2674 return pc;
2675}
2676
2677/* Given a function start address FUNC_ADDR and SYMTAB, find the first
2678 address for that function that has an entry in SYMTAB's line info
2679 table. If such an entry cannot be found, return FUNC_ADDR
2680 unaltered. */
2681CORE_ADDR
2682skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2683{
2684 CORE_ADDR func_start, func_end;
2685 struct linetable *l;
2686 int ind, i, len;
2687 int best_lineno = 0;
2688 CORE_ADDR best_pc = func_addr;
2689
2690 /* Give up if this symbol has no lineinfo table. */
2691 l = LINETABLE (symtab);
2692 if (l == NULL)
2693 return func_addr;
2694
2695 /* Get the range for the function's PC values, or give up if we
2696 cannot, for some reason. */
2697 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2698 return func_addr;
2699
2700 /* Linetable entries are ordered by PC values, see the commentary in
2701 symtab.h where `struct linetable' is defined. Thus, the first
2702 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2703 address we are looking for. */
2704 for (i = 0; i < l->nitems; i++)
2705 {
2706 struct linetable_entry *item = &(l->item[i]);
2707
2708 /* Don't use line numbers of zero, they mark special entries in
2709 the table. See the commentary on symtab.h before the
2710 definition of struct linetable. */
2711 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2712 return item->pc;
2713 }
2714
2715 return func_addr;
2716}
2717
2718/* Given a function symbol SYM, find the symtab and line for the start
2719 of the function.
2720 If the argument FUNFIRSTLINE is nonzero, we want the first line
2721 of real code inside the function. */
2722
2723struct symtab_and_line
2724find_function_start_sal (struct symbol *sym, int funfirstline)
2725{
2726 struct block *block = SYMBOL_BLOCK_VALUE (sym);
2727 struct objfile *objfile = lookup_objfile_from_block (block);
2728 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2729
2730 CORE_ADDR pc;
2731 struct symtab_and_line sal;
2732 struct block *b, *function_block;
2733
2734 struct cleanup *old_chain;
2735
2736 old_chain = save_current_space_and_thread ();
2737 switch_to_program_space_and_thread (objfile->pspace);
2738
2739 pc = BLOCK_START (block);
2740 fixup_symbol_section (sym, objfile);
2741 if (funfirstline)
2742 {
2743 /* Skip "first line" of function (which is actually its prologue). */
2744 pc = find_function_start_pc (gdbarch, pc, SYMBOL_OBJ_SECTION (sym));
2745 }
2746 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2747
2748 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2749 line is still part of the same function. */
2750 if (sal.pc != pc
2751 && BLOCK_START (block) <= sal.end
2752 && sal.end < BLOCK_END (block))
2753 {
2754 /* First pc of next line */
2755 pc = sal.end;
2756 /* Recalculate the line number (might not be N+1). */
2757 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2758 }
2759
2760 /* On targets with executable formats that don't have a concept of
2761 constructors (ELF with .init has, PE doesn't), gcc emits a call
2762 to `__main' in `main' between the prologue and before user
2763 code. */
2764 if (funfirstline
2765 && gdbarch_skip_main_prologue_p (gdbarch)
2766 && SYMBOL_LINKAGE_NAME (sym)
2767 && strcmp (SYMBOL_LINKAGE_NAME (sym), "main") == 0)
2768 {
2769 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2770 /* Recalculate the line number (might not be N+1). */
2771 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2772 }
2773
2774 /* If we still don't have a valid source line, try to find the first
2775 PC in the lineinfo table that belongs to the same function. This
2776 happens with COFF debug info, which does not seem to have an
2777 entry in lineinfo table for the code after the prologue which has
2778 no direct relation to source. For example, this was found to be
2779 the case with the DJGPP target using "gcc -gcoff" when the
2780 compiler inserted code after the prologue to make sure the stack
2781 is aligned. */
2782 if (funfirstline && sal.symtab == NULL)
2783 {
2784 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2785 /* Recalculate the line number. */
2786 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2787 }
2788
2789 sal.pc = pc;
2790 sal.pspace = objfile->pspace;
2791
2792 /* Check if we are now inside an inlined function. If we can,
2793 use the call site of the function instead. */
2794 b = block_for_pc_sect (sal.pc, SYMBOL_OBJ_SECTION (sym));
2795 function_block = NULL;
2796 while (b != NULL)
2797 {
2798 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2799 function_block = b;
2800 else if (BLOCK_FUNCTION (b) != NULL)
2801 break;
2802 b = BLOCK_SUPERBLOCK (b);
2803 }
2804 if (function_block != NULL
2805 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2806 {
2807 sal.line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2808 sal.symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2809 }
2810
2811 do_cleanups (old_chain);
2812 return sal;
2813}
2814
2815/* If P is of the form "operator[ \t]+..." where `...' is
2816 some legitimate operator text, return a pointer to the
2817 beginning of the substring of the operator text.
2818 Otherwise, return "". */
2819char *
2820operator_chars (char *p, char **end)
2821{
2822 *end = "";
2823 if (strncmp (p, "operator", 8))
2824 return *end;
2825 p += 8;
2826
2827 /* Don't get faked out by `operator' being part of a longer
2828 identifier. */
2829 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2830 return *end;
2831
2832 /* Allow some whitespace between `operator' and the operator symbol. */
2833 while (*p == ' ' || *p == '\t')
2834 p++;
2835
2836 /* Recognize 'operator TYPENAME'. */
2837
2838 if (isalpha (*p) || *p == '_' || *p == '$')
2839 {
2840 char *q = p + 1;
2841 while (isalnum (*q) || *q == '_' || *q == '$')
2842 q++;
2843 *end = q;
2844 return p;
2845 }
2846
2847 while (*p)
2848 switch (*p)
2849 {
2850 case '\\': /* regexp quoting */
2851 if (p[1] == '*')
2852 {
2853 if (p[2] == '=') /* 'operator\*=' */
2854 *end = p + 3;
2855 else /* 'operator\*' */
2856 *end = p + 2;
2857 return p;
2858 }
2859 else if (p[1] == '[')
2860 {
2861 if (p[2] == ']')
2862 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2863 else if (p[2] == '\\' && p[3] == ']')
2864 {
2865 *end = p + 4; /* 'operator\[\]' */
2866 return p;
2867 }
2868 else
2869 error (_("nothing is allowed between '[' and ']'"));
2870 }
2871 else
2872 {
2873 /* Gratuitous qoute: skip it and move on. */
2874 p++;
2875 continue;
2876 }
2877 break;
2878 case '!':
2879 case '=':
2880 case '*':
2881 case '/':
2882 case '%':
2883 case '^':
2884 if (p[1] == '=')
2885 *end = p + 2;
2886 else
2887 *end = p + 1;
2888 return p;
2889 case '<':
2890 case '>':
2891 case '+':
2892 case '-':
2893 case '&':
2894 case '|':
2895 if (p[0] == '-' && p[1] == '>')
2896 {
2897 /* Struct pointer member operator 'operator->'. */
2898 if (p[2] == '*')
2899 {
2900 *end = p + 3; /* 'operator->*' */
2901 return p;
2902 }
2903 else if (p[2] == '\\')
2904 {
2905 *end = p + 4; /* Hopefully 'operator->\*' */
2906 return p;
2907 }
2908 else
2909 {
2910 *end = p + 2; /* 'operator->' */
2911 return p;
2912 }
2913 }
2914 if (p[1] == '=' || p[1] == p[0])
2915 *end = p + 2;
2916 else
2917 *end = p + 1;
2918 return p;
2919 case '~':
2920 case ',':
2921 *end = p + 1;
2922 return p;
2923 case '(':
2924 if (p[1] != ')')
2925 error (_("`operator ()' must be specified without whitespace in `()'"));
2926 *end = p + 2;
2927 return p;
2928 case '?':
2929 if (p[1] != ':')
2930 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2931 *end = p + 2;
2932 return p;
2933 case '[':
2934 if (p[1] != ']')
2935 error (_("`operator []' must be specified without whitespace in `[]'"));
2936 *end = p + 2;
2937 return p;
2938 default:
2939 error (_("`operator %s' not supported"), p);
2940 break;
2941 }
2942
2943 *end = "";
2944 return *end;
2945}
2946\f
2947
2948/* If FILE is not already in the table of files, return zero;
2949 otherwise return non-zero. Optionally add FILE to the table if ADD
2950 is non-zero. If *FIRST is non-zero, forget the old table
2951 contents. */
2952static int
2953filename_seen (const char *file, int add, int *first)
2954{
2955 /* Table of files seen so far. */
2956 static const char **tab = NULL;
2957 /* Allocated size of tab in elements.
2958 Start with one 256-byte block (when using GNU malloc.c).
2959 24 is the malloc overhead when range checking is in effect. */
2960 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2961 /* Current size of tab in elements. */
2962 static int tab_cur_size;
2963 const char **p;
2964
2965 if (*first)
2966 {
2967 if (tab == NULL)
2968 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2969 tab_cur_size = 0;
2970 }
2971
2972 /* Is FILE in tab? */
2973 for (p = tab; p < tab + tab_cur_size; p++)
2974 if (strcmp (*p, file) == 0)
2975 return 1;
2976
2977 /* No; maybe add it to tab. */
2978 if (add)
2979 {
2980 if (tab_cur_size == tab_alloc_size)
2981 {
2982 tab_alloc_size *= 2;
2983 tab = (const char **) xrealloc ((char *) tab,
2984 tab_alloc_size * sizeof (*tab));
2985 }
2986 tab[tab_cur_size++] = file;
2987 }
2988
2989 return 0;
2990}
2991
2992/* Slave routine for sources_info. Force line breaks at ,'s.
2993 NAME is the name to print and *FIRST is nonzero if this is the first
2994 name printed. Set *FIRST to zero. */
2995static void
2996output_source_filename (const char *name, int *first)
2997{
2998 /* Since a single source file can result in several partial symbol
2999 tables, we need to avoid printing it more than once. Note: if
3000 some of the psymtabs are read in and some are not, it gets
3001 printed both under "Source files for which symbols have been
3002 read" and "Source files for which symbols will be read in on
3003 demand". I consider this a reasonable way to deal with the
3004 situation. I'm not sure whether this can also happen for
3005 symtabs; it doesn't hurt to check. */
3006
3007 /* Was NAME already seen? */
3008 if (filename_seen (name, 1, first))
3009 {
3010 /* Yes; don't print it again. */
3011 return;
3012 }
3013 /* No; print it and reset *FIRST. */
3014 if (*first)
3015 {
3016 *first = 0;
3017 }
3018 else
3019 {
3020 printf_filtered (", ");
3021 }
3022
3023 wrap_here ("");
3024 fputs_filtered (name, gdb_stdout);
3025}
3026
3027static void
3028sources_info (char *ignore, int from_tty)
3029{
3030 struct symtab *s;
3031 struct partial_symtab *ps;
3032 struct objfile *objfile;
3033 int first;
3034
3035 if (!have_full_symbols () && !have_partial_symbols ())
3036 {
3037 error (_("No symbol table is loaded. Use the \"file\" command."));
3038 }
3039
3040 printf_filtered ("Source files for which symbols have been read in:\n\n");
3041
3042 first = 1;
3043 ALL_SYMTABS (objfile, s)
3044 {
3045 const char *fullname = symtab_to_fullname (s);
3046 output_source_filename (fullname ? fullname : s->filename, &first);
3047 }
3048 printf_filtered ("\n\n");
3049
3050 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
3051
3052 first = 1;
3053 ALL_PSYMTABS (objfile, ps)
3054 {
3055 if (!ps->readin)
3056 {
3057 const char *fullname = psymtab_to_fullname (ps);
3058 output_source_filename (fullname ? fullname : ps->filename, &first);
3059 }
3060 }
3061 printf_filtered ("\n");
3062}
3063
3064static int
3065file_matches (char *file, char *files[], int nfiles)
3066{
3067 int i;
3068
3069 if (file != NULL && nfiles != 0)
3070 {
3071 for (i = 0; i < nfiles; i++)
3072 {
3073 if (strcmp (files[i], lbasename (file)) == 0)
3074 return 1;
3075 }
3076 }
3077 else if (nfiles == 0)
3078 return 1;
3079 return 0;
3080}
3081
3082/* Free any memory associated with a search. */
3083void
3084free_search_symbols (struct symbol_search *symbols)
3085{
3086 struct symbol_search *p;
3087 struct symbol_search *next;
3088
3089 for (p = symbols; p != NULL; p = next)
3090 {
3091 next = p->next;
3092 xfree (p);
3093 }
3094}
3095
3096static void
3097do_free_search_symbols_cleanup (void *symbols)
3098{
3099 free_search_symbols (symbols);
3100}
3101
3102struct cleanup *
3103make_cleanup_free_search_symbols (struct symbol_search *symbols)
3104{
3105 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3106}
3107
3108/* Helper function for sort_search_symbols and qsort. Can only
3109 sort symbols, not minimal symbols. */
3110static int
3111compare_search_syms (const void *sa, const void *sb)
3112{
3113 struct symbol_search **sym_a = (struct symbol_search **) sa;
3114 struct symbol_search **sym_b = (struct symbol_search **) sb;
3115
3116 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3117 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3118}
3119
3120/* Sort the ``nfound'' symbols in the list after prevtail. Leave
3121 prevtail where it is, but update its next pointer to point to
3122 the first of the sorted symbols. */
3123static struct symbol_search *
3124sort_search_symbols (struct symbol_search *prevtail, int nfound)
3125{
3126 struct symbol_search **symbols, *symp, *old_next;
3127 int i;
3128
3129 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3130 * nfound);
3131 symp = prevtail->next;
3132 for (i = 0; i < nfound; i++)
3133 {
3134 symbols[i] = symp;
3135 symp = symp->next;
3136 }
3137 /* Generally NULL. */
3138 old_next = symp;
3139
3140 qsort (symbols, nfound, sizeof (struct symbol_search *),
3141 compare_search_syms);
3142
3143 symp = prevtail;
3144 for (i = 0; i < nfound; i++)
3145 {
3146 symp->next = symbols[i];
3147 symp = symp->next;
3148 }
3149 symp->next = old_next;
3150
3151 xfree (symbols);
3152 return symp;
3153}
3154
3155/* Search the symbol table for matches to the regular expression REGEXP,
3156 returning the results in *MATCHES.
3157
3158 Only symbols of KIND are searched:
3159 FUNCTIONS_DOMAIN - search all functions
3160 TYPES_DOMAIN - search all type names
3161 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3162 and constants (enums)
3163
3164 free_search_symbols should be called when *MATCHES is no longer needed.
3165
3166 The results are sorted locally; each symtab's global and static blocks are
3167 separately alphabetized.
3168 */
3169void
3170search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
3171 struct symbol_search **matches)
3172{
3173 struct symtab *s;
3174 struct partial_symtab *ps;
3175 struct blockvector *bv;
3176 struct block *b;
3177 int i = 0;
3178 struct dict_iterator iter;
3179 struct symbol *sym;
3180 struct partial_symbol **psym;
3181 struct objfile *objfile;
3182 struct minimal_symbol *msymbol;
3183 char *val;
3184 int found_misc = 0;
3185 static enum minimal_symbol_type types[]
3186 =
3187 {mst_data, mst_text, mst_abs, mst_unknown};
3188 static enum minimal_symbol_type types2[]
3189 =
3190 {mst_bss, mst_file_text, mst_abs, mst_unknown};
3191 static enum minimal_symbol_type types3[]
3192 =
3193 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
3194 static enum minimal_symbol_type types4[]
3195 =
3196 {mst_file_bss, mst_text, mst_abs, mst_unknown};
3197 enum minimal_symbol_type ourtype;
3198 enum minimal_symbol_type ourtype2;
3199 enum minimal_symbol_type ourtype3;
3200 enum minimal_symbol_type ourtype4;
3201 struct symbol_search *sr;
3202 struct symbol_search *psr;
3203 struct symbol_search *tail;
3204 struct cleanup *old_chain = NULL;
3205
3206 if (kind < VARIABLES_DOMAIN)
3207 error (_("must search on specific domain"));
3208
3209 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
3210 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
3211 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
3212 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
3213
3214 sr = *matches = NULL;
3215 tail = NULL;
3216
3217 if (regexp != NULL)
3218 {
3219 /* Make sure spacing is right for C++ operators.
3220 This is just a courtesy to make the matching less sensitive
3221 to how many spaces the user leaves between 'operator'
3222 and <TYPENAME> or <OPERATOR>. */
3223 char *opend;
3224 char *opname = operator_chars (regexp, &opend);
3225 if (*opname)
3226 {
3227 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
3228 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3229 {
3230 /* There should 1 space between 'operator' and 'TYPENAME'. */
3231 if (opname[-1] != ' ' || opname[-2] == ' ')
3232 fix = 1;
3233 }
3234 else
3235 {
3236 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3237 if (opname[-1] == ' ')
3238 fix = 0;
3239 }
3240 /* If wrong number of spaces, fix it. */
3241 if (fix >= 0)
3242 {
3243 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3244 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3245 regexp = tmp;
3246 }
3247 }
3248
3249 if (0 != (val = re_comp (regexp)))
3250 error (_("Invalid regexp (%s): %s"), val, regexp);
3251 }
3252
3253 /* Search through the partial symtabs *first* for all symbols
3254 matching the regexp. That way we don't have to reproduce all of
3255 the machinery below. */
3256
3257 ALL_PSYMTABS (objfile, ps)
3258 {
3259 struct partial_symbol **bound, **gbound, **sbound;
3260 int keep_going = 1;
3261
3262 if (ps->readin)
3263 continue;
3264
3265 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
3266 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
3267 bound = gbound;
3268
3269 /* Go through all of the symbols stored in a partial
3270 symtab in one loop. */
3271 psym = objfile->global_psymbols.list + ps->globals_offset;
3272 while (keep_going)
3273 {
3274 if (psym >= bound)
3275 {
3276 if (bound == gbound && ps->n_static_syms != 0)
3277 {
3278 psym = objfile->static_psymbols.list + ps->statics_offset;
3279 bound = sbound;
3280 }
3281 else
3282 keep_going = 0;
3283 continue;
3284 }
3285 else
3286 {
3287 QUIT;
3288
3289 /* If it would match (logic taken from loop below)
3290 load the file and go on to the next one. We check the
3291 filename here, but that's a bit bogus: we don't know
3292 what file it really comes from until we have full
3293 symtabs. The symbol might be in a header file included by
3294 this psymtab. This only affects Insight. */
3295 if (file_matches (ps->filename, files, nfiles)
3296 && ((regexp == NULL
3297 || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0)
3298 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
3299 && SYMBOL_CLASS (*psym) != LOC_UNRESOLVED
3300 && SYMBOL_CLASS (*psym) != LOC_BLOCK
3301 && SYMBOL_CLASS (*psym) != LOC_CONST)
3302 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)
3303 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF))))
3304 {
3305 PSYMTAB_TO_SYMTAB (ps);
3306 keep_going = 0;
3307 }
3308 }
3309 psym++;
3310 }
3311 }
3312
3313 /* Here, we search through the minimal symbol tables for functions
3314 and variables that match, and force their symbols to be read.
3315 This is in particular necessary for demangled variable names,
3316 which are no longer put into the partial symbol tables.
3317 The symbol will then be found during the scan of symtabs below.
3318
3319 For functions, find_pc_symtab should succeed if we have debug info
3320 for the function, for variables we have to call lookup_symbol
3321 to determine if the variable has debug info.
3322 If the lookup fails, set found_misc so that we will rescan to print
3323 any matching symbols without debug info.
3324 */
3325
3326 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3327 {
3328 ALL_MSYMBOLS (objfile, msymbol)
3329 {
3330 QUIT;
3331
3332 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3333 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3334 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3335 MSYMBOL_TYPE (msymbol) == ourtype4)
3336 {
3337 if (regexp == NULL
3338 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3339 {
3340 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3341 {
3342 /* FIXME: carlton/2003-02-04: Given that the
3343 semantics of lookup_symbol keeps on changing
3344 slightly, it would be a nice idea if we had a
3345 function lookup_symbol_minsym that found the
3346 symbol associated to a given minimal symbol (if
3347 any). */
3348 if (kind == FUNCTIONS_DOMAIN
3349 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3350 (struct block *) NULL,
3351 VAR_DOMAIN, 0)
3352 == NULL)
3353 found_misc = 1;
3354 }
3355 }
3356 }
3357 }
3358 }
3359
3360 ALL_PRIMARY_SYMTABS (objfile, s)
3361 {
3362 bv = BLOCKVECTOR (s);
3363 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3364 {
3365 struct symbol_search *prevtail = tail;
3366 int nfound = 0;
3367 b = BLOCKVECTOR_BLOCK (bv, i);
3368 ALL_BLOCK_SYMBOLS (b, iter, sym)
3369 {
3370 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3371 QUIT;
3372
3373 if (file_matches (real_symtab->filename, files, nfiles)
3374 && ((regexp == NULL
3375 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3376 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3377 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3378 && SYMBOL_CLASS (sym) != LOC_BLOCK
3379 && SYMBOL_CLASS (sym) != LOC_CONST)
3380 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3381 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3382 {
3383 /* match */
3384 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3385 psr->block = i;
3386 psr->symtab = real_symtab;
3387 psr->symbol = sym;
3388 psr->msymbol = NULL;
3389 psr->next = NULL;
3390 if (tail == NULL)
3391 sr = psr;
3392 else
3393 tail->next = psr;
3394 tail = psr;
3395 nfound ++;
3396 }
3397 }
3398 if (nfound > 0)
3399 {
3400 if (prevtail == NULL)
3401 {
3402 struct symbol_search dummy;
3403
3404 dummy.next = sr;
3405 tail = sort_search_symbols (&dummy, nfound);
3406 sr = dummy.next;
3407
3408 old_chain = make_cleanup_free_search_symbols (sr);
3409 }
3410 else
3411 tail = sort_search_symbols (prevtail, nfound);
3412 }
3413 }
3414 }
3415
3416 /* If there are no eyes, avoid all contact. I mean, if there are
3417 no debug symbols, then print directly from the msymbol_vector. */
3418
3419 if (found_misc || kind != FUNCTIONS_DOMAIN)
3420 {
3421 ALL_MSYMBOLS (objfile, msymbol)
3422 {
3423 QUIT;
3424
3425 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3426 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3427 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3428 MSYMBOL_TYPE (msymbol) == ourtype4)
3429 {
3430 if (regexp == NULL
3431 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3432 {
3433 /* Functions: Look up by address. */
3434 if (kind != FUNCTIONS_DOMAIN ||
3435 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3436 {
3437 /* Variables/Absolutes: Look up by name */
3438 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3439 (struct block *) NULL, VAR_DOMAIN, 0)
3440 == NULL)
3441 {
3442 /* match */
3443 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3444 psr->block = i;
3445 psr->msymbol = msymbol;
3446 psr->symtab = NULL;
3447 psr->symbol = NULL;
3448 psr->next = NULL;
3449 if (tail == NULL)
3450 {
3451 sr = psr;
3452 old_chain = make_cleanup_free_search_symbols (sr);
3453 }
3454 else
3455 tail->next = psr;
3456 tail = psr;
3457 }
3458 }
3459 }
3460 }
3461 }
3462 }
3463
3464 *matches = sr;
3465 if (sr != NULL)
3466 discard_cleanups (old_chain);
3467}
3468
3469/* Helper function for symtab_symbol_info, this function uses
3470 the data returned from search_symbols() to print information
3471 regarding the match to gdb_stdout.
3472 */
3473static void
3474print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3475 int block, char *last)
3476{
3477 if (last == NULL || strcmp (last, s->filename) != 0)
3478 {
3479 fputs_filtered ("\nFile ", gdb_stdout);
3480 fputs_filtered (s->filename, gdb_stdout);
3481 fputs_filtered (":\n", gdb_stdout);
3482 }
3483
3484 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3485 printf_filtered ("static ");
3486
3487 /* Typedef that is not a C++ class */
3488 if (kind == TYPES_DOMAIN
3489 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3490 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3491 /* variable, func, or typedef-that-is-c++-class */
3492 else if (kind < TYPES_DOMAIN ||
3493 (kind == TYPES_DOMAIN &&
3494 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3495 {
3496 type_print (SYMBOL_TYPE (sym),
3497 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3498 ? "" : SYMBOL_PRINT_NAME (sym)),
3499 gdb_stdout, 0);
3500
3501 printf_filtered (";\n");
3502 }
3503}
3504
3505/* This help function for symtab_symbol_info() prints information
3506 for non-debugging symbols to gdb_stdout.
3507 */
3508static void
3509print_msymbol_info (struct minimal_symbol *msymbol)
3510{
3511 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3512 char *tmp;
3513
3514 if (gdbarch_addr_bit (gdbarch) <= 32)
3515 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3516 & (CORE_ADDR) 0xffffffff,
3517 8);
3518 else
3519 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3520 16);
3521 printf_filtered ("%s %s\n",
3522 tmp, SYMBOL_PRINT_NAME (msymbol));
3523}
3524
3525/* This is the guts of the commands "info functions", "info types", and
3526 "info variables". It calls search_symbols to find all matches and then
3527 print_[m]symbol_info to print out some useful information about the
3528 matches.
3529 */
3530static void
3531symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3532{
3533 static char *classnames[]
3534 =
3535 {"variable", "function", "type", "method"};
3536 struct symbol_search *symbols;
3537 struct symbol_search *p;
3538 struct cleanup *old_chain;
3539 char *last_filename = NULL;
3540 int first = 1;
3541
3542 /* must make sure that if we're interrupted, symbols gets freed */
3543 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3544 old_chain = make_cleanup_free_search_symbols (symbols);
3545
3546 printf_filtered (regexp
3547 ? "All %ss matching regular expression \"%s\":\n"
3548 : "All defined %ss:\n",
3549 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3550
3551 for (p = symbols; p != NULL; p = p->next)
3552 {
3553 QUIT;
3554
3555 if (p->msymbol != NULL)
3556 {
3557 if (first)
3558 {
3559 printf_filtered ("\nNon-debugging symbols:\n");
3560 first = 0;
3561 }
3562 print_msymbol_info (p->msymbol);
3563 }
3564 else
3565 {
3566 print_symbol_info (kind,
3567 p->symtab,
3568 p->symbol,
3569 p->block,
3570 last_filename);
3571 last_filename = p->symtab->filename;
3572 }
3573 }
3574
3575 do_cleanups (old_chain);
3576}
3577
3578static void
3579variables_info (char *regexp, int from_tty)
3580{
3581 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3582}
3583
3584static void
3585functions_info (char *regexp, int from_tty)
3586{
3587 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3588}
3589
3590
3591static void
3592types_info (char *regexp, int from_tty)
3593{
3594 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3595}
3596
3597/* Breakpoint all functions matching regular expression. */
3598
3599void
3600rbreak_command_wrapper (char *regexp, int from_tty)
3601{
3602 rbreak_command (regexp, from_tty);
3603}
3604
3605static void
3606rbreak_command (char *regexp, int from_tty)
3607{
3608 struct symbol_search *ss;
3609 struct symbol_search *p;
3610 struct cleanup *old_chain;
3611
3612 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
3613 old_chain = make_cleanup_free_search_symbols (ss);
3614
3615 for (p = ss; p != NULL; p = p->next)
3616 {
3617 if (p->msymbol == NULL)
3618 {
3619 char *string = alloca (strlen (p->symtab->filename)
3620 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3621 + 4);
3622 strcpy (string, p->symtab->filename);
3623 strcat (string, ":'");
3624 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3625 strcat (string, "'");
3626 break_command (string, from_tty);
3627 print_symbol_info (FUNCTIONS_DOMAIN,
3628 p->symtab,
3629 p->symbol,
3630 p->block,
3631 p->symtab->filename);
3632 }
3633 else
3634 {
3635 char *string = alloca (strlen (SYMBOL_LINKAGE_NAME (p->msymbol))
3636 + 3);
3637 strcpy (string, "'");
3638 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3639 strcat (string, "'");
3640
3641 break_command (string, from_tty);
3642 printf_filtered ("<function, no debug info> %s;\n",
3643 SYMBOL_PRINT_NAME (p->msymbol));
3644 }
3645 }
3646
3647 do_cleanups (old_chain);
3648}
3649\f
3650
3651/* Helper routine for make_symbol_completion_list. */
3652
3653static int return_val_size;
3654static int return_val_index;
3655static char **return_val;
3656
3657#define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3658 completion_list_add_name \
3659 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3660
3661/* Test to see if the symbol specified by SYMNAME (which is already
3662 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3663 characters. If so, add it to the current completion list. */
3664
3665static void
3666completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3667 char *text, char *word)
3668{
3669 int newsize;
3670 int i;
3671
3672 /* clip symbols that cannot match */
3673
3674 if (strncmp (symname, sym_text, sym_text_len) != 0)
3675 {
3676 return;
3677 }
3678
3679 /* We have a match for a completion, so add SYMNAME to the current list
3680 of matches. Note that the name is moved to freshly malloc'd space. */
3681
3682 {
3683 char *new;
3684 if (word == sym_text)
3685 {
3686 new = xmalloc (strlen (symname) + 5);
3687 strcpy (new, symname);
3688 }
3689 else if (word > sym_text)
3690 {
3691 /* Return some portion of symname. */
3692 new = xmalloc (strlen (symname) + 5);
3693 strcpy (new, symname + (word - sym_text));
3694 }
3695 else
3696 {
3697 /* Return some of SYM_TEXT plus symname. */
3698 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3699 strncpy (new, word, sym_text - word);
3700 new[sym_text - word] = '\0';
3701 strcat (new, symname);
3702 }
3703
3704 if (return_val_index + 3 > return_val_size)
3705 {
3706 newsize = (return_val_size *= 2) * sizeof (char *);
3707 return_val = (char **) xrealloc ((char *) return_val, newsize);
3708 }
3709 return_val[return_val_index++] = new;
3710 return_val[return_val_index] = NULL;
3711 }
3712}
3713
3714/* ObjC: In case we are completing on a selector, look as the msymbol
3715 again and feed all the selectors into the mill. */
3716
3717static void
3718completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3719 int sym_text_len, char *text, char *word)
3720{
3721 static char *tmp = NULL;
3722 static unsigned int tmplen = 0;
3723
3724 char *method, *category, *selector;
3725 char *tmp2 = NULL;
3726
3727 method = SYMBOL_NATURAL_NAME (msymbol);
3728
3729 /* Is it a method? */
3730 if ((method[0] != '-') && (method[0] != '+'))
3731 return;
3732
3733 if (sym_text[0] == '[')
3734 /* Complete on shortened method method. */
3735 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3736
3737 while ((strlen (method) + 1) >= tmplen)
3738 {
3739 if (tmplen == 0)
3740 tmplen = 1024;
3741 else
3742 tmplen *= 2;
3743 tmp = xrealloc (tmp, tmplen);
3744 }
3745 selector = strchr (method, ' ');
3746 if (selector != NULL)
3747 selector++;
3748
3749 category = strchr (method, '(');
3750
3751 if ((category != NULL) && (selector != NULL))
3752 {
3753 memcpy (tmp, method, (category - method));
3754 tmp[category - method] = ' ';
3755 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3756 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3757 if (sym_text[0] == '[')
3758 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3759 }
3760
3761 if (selector != NULL)
3762 {
3763 /* Complete on selector only. */
3764 strcpy (tmp, selector);
3765 tmp2 = strchr (tmp, ']');
3766 if (tmp2 != NULL)
3767 *tmp2 = '\0';
3768
3769 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3770 }
3771}
3772
3773/* Break the non-quoted text based on the characters which are in
3774 symbols. FIXME: This should probably be language-specific. */
3775
3776static char *
3777language_search_unquoted_string (char *text, char *p)
3778{
3779 for (; p > text; --p)
3780 {
3781 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3782 continue;
3783 else
3784 {
3785 if ((current_language->la_language == language_objc))
3786 {
3787 if (p[-1] == ':') /* might be part of a method name */
3788 continue;
3789 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3790 p -= 2; /* beginning of a method name */
3791 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3792 { /* might be part of a method name */
3793 char *t = p;
3794
3795 /* Seeing a ' ' or a '(' is not conclusive evidence
3796 that we are in the middle of a method name. However,
3797 finding "-[" or "+[" should be pretty un-ambiguous.
3798 Unfortunately we have to find it now to decide. */
3799
3800 while (t > text)
3801 if (isalnum (t[-1]) || t[-1] == '_' ||
3802 t[-1] == ' ' || t[-1] == ':' ||
3803 t[-1] == '(' || t[-1] == ')')
3804 --t;
3805 else
3806 break;
3807
3808 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3809 p = t - 2; /* method name detected */
3810 /* else we leave with p unchanged */
3811 }
3812 }
3813 break;
3814 }
3815 }
3816 return p;
3817}
3818
3819static void
3820completion_list_add_fields (struct symbol *sym, char *sym_text,
3821 int sym_text_len, char *text, char *word)
3822{
3823 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3824 {
3825 struct type *t = SYMBOL_TYPE (sym);
3826 enum type_code c = TYPE_CODE (t);
3827 int j;
3828
3829 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3830 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3831 if (TYPE_FIELD_NAME (t, j))
3832 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3833 sym_text, sym_text_len, text, word);
3834 }
3835}
3836
3837/* Type of the user_data argument passed to add_macro_name. The
3838 contents are simply whatever is needed by
3839 completion_list_add_name. */
3840struct add_macro_name_data
3841{
3842 char *sym_text;
3843 int sym_text_len;
3844 char *text;
3845 char *word;
3846};
3847
3848/* A callback used with macro_for_each and macro_for_each_in_scope.
3849 This adds a macro's name to the current completion list. */
3850static void
3851add_macro_name (const char *name, const struct macro_definition *ignore,
3852 void *user_data)
3853{
3854 struct add_macro_name_data *datum = (struct add_macro_name_data *) user_data;
3855 completion_list_add_name ((char *) name,
3856 datum->sym_text, datum->sym_text_len,
3857 datum->text, datum->word);
3858}
3859
3860char **
3861default_make_symbol_completion_list (char *text, char *word)
3862{
3863 /* Problem: All of the symbols have to be copied because readline
3864 frees them. I'm not going to worry about this; hopefully there
3865 won't be that many. */
3866
3867 struct symbol *sym;
3868 struct symtab *s;
3869 struct partial_symtab *ps;
3870 struct minimal_symbol *msymbol;
3871 struct objfile *objfile;
3872 struct block *b;
3873 const struct block *surrounding_static_block, *surrounding_global_block;
3874 struct dict_iterator iter;
3875 struct partial_symbol **psym;
3876 /* The symbol we are completing on. Points in same buffer as text. */
3877 char *sym_text;
3878 /* Length of sym_text. */
3879 int sym_text_len;
3880
3881 /* Now look for the symbol we are supposed to complete on. */
3882 {
3883 char *p;
3884 char quote_found;
3885 char *quote_pos = NULL;
3886
3887 /* First see if this is a quoted string. */
3888 quote_found = '\0';
3889 for (p = text; *p != '\0'; ++p)
3890 {
3891 if (quote_found != '\0')
3892 {
3893 if (*p == quote_found)
3894 /* Found close quote. */
3895 quote_found = '\0';
3896 else if (*p == '\\' && p[1] == quote_found)
3897 /* A backslash followed by the quote character
3898 doesn't end the string. */
3899 ++p;
3900 }
3901 else if (*p == '\'' || *p == '"')
3902 {
3903 quote_found = *p;
3904 quote_pos = p;
3905 }
3906 }
3907 if (quote_found == '\'')
3908 /* A string within single quotes can be a symbol, so complete on it. */
3909 sym_text = quote_pos + 1;
3910 else if (quote_found == '"')
3911 /* A double-quoted string is never a symbol, nor does it make sense
3912 to complete it any other way. */
3913 {
3914 return_val = (char **) xmalloc (sizeof (char *));
3915 return_val[0] = NULL;
3916 return return_val;
3917 }
3918 else
3919 {
3920 /* It is not a quoted string. Break it based on the characters
3921 which are in symbols. */
3922 while (p > text)
3923 {
3924 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3925 || p[-1] == ':')
3926 --p;
3927 else
3928 break;
3929 }
3930 sym_text = p;
3931 }
3932 }
3933
3934 sym_text_len = strlen (sym_text);
3935
3936 return_val_size = 100;
3937 return_val_index = 0;
3938 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3939 return_val[0] = NULL;
3940
3941 /* Look through the partial symtabs for all symbols which begin
3942 by matching SYM_TEXT. Add each one that you find to the list. */
3943
3944 ALL_PSYMTABS (objfile, ps)
3945 {
3946 /* If the psymtab's been read in we'll get it when we search
3947 through the blockvector. */
3948 if (ps->readin)
3949 continue;
3950
3951 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3952 psym < (objfile->global_psymbols.list + ps->globals_offset
3953 + ps->n_global_syms);
3954 psym++)
3955 {
3956 /* If interrupted, then quit. */
3957 QUIT;
3958 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3959 }
3960
3961 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3962 psym < (objfile->static_psymbols.list + ps->statics_offset
3963 + ps->n_static_syms);
3964 psym++)
3965 {
3966 QUIT;
3967 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3968 }
3969 }
3970
3971 /* At this point scan through the misc symbol vectors and add each
3972 symbol you find to the list. Eventually we want to ignore
3973 anything that isn't a text symbol (everything else will be
3974 handled by the psymtab code above). */
3975
3976 ALL_MSYMBOLS (objfile, msymbol)
3977 {
3978 QUIT;
3979 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3980
3981 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3982 }
3983
3984 /* Search upwards from currently selected frame (so that we can
3985 complete on local vars). Also catch fields of types defined in
3986 this places which match our text string. Only complete on types
3987 visible from current context. */
3988
3989 b = get_selected_block (0);
3990 surrounding_static_block = block_static_block (b);
3991 surrounding_global_block = block_global_block (b);
3992 if (surrounding_static_block != NULL)
3993 while (b != surrounding_static_block)
3994 {
3995 QUIT;
3996
3997 ALL_BLOCK_SYMBOLS (b, iter, sym)
3998 {
3999 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4000 word);
4001 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4002 word);
4003 }
4004
4005 /* Stop when we encounter an enclosing function. Do not stop for
4006 non-inlined functions - the locals of the enclosing function
4007 are in scope for a nested function. */
4008 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4009 break;
4010 b = BLOCK_SUPERBLOCK (b);
4011 }
4012
4013 /* Add fields from the file's types; symbols will be added below. */
4014
4015 if (surrounding_static_block != NULL)
4016 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4017 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4018
4019 if (surrounding_global_block != NULL)
4020 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4021 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4022
4023 /* Go through the symtabs and check the externs and statics for
4024 symbols which match. */
4025
4026 ALL_PRIMARY_SYMTABS (objfile, s)
4027 {
4028 QUIT;
4029 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4030 ALL_BLOCK_SYMBOLS (b, iter, sym)
4031 {
4032 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4033 }
4034 }
4035
4036 ALL_PRIMARY_SYMTABS (objfile, s)
4037 {
4038 QUIT;
4039 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4040 ALL_BLOCK_SYMBOLS (b, iter, sym)
4041 {
4042 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4043 }
4044 }
4045
4046 if (current_language->la_macro_expansion == macro_expansion_c)
4047 {
4048 struct macro_scope *scope;
4049 struct add_macro_name_data datum;
4050
4051 datum.sym_text = sym_text;
4052 datum.sym_text_len = sym_text_len;
4053 datum.text = text;
4054 datum.word = word;
4055
4056 /* Add any macros visible in the default scope. Note that this
4057 may yield the occasional wrong result, because an expression
4058 might be evaluated in a scope other than the default. For
4059 example, if the user types "break file:line if <TAB>", the
4060 resulting expression will be evaluated at "file:line" -- but
4061 at there does not seem to be a way to detect this at
4062 completion time. */
4063 scope = default_macro_scope ();
4064 if (scope)
4065 {
4066 macro_for_each_in_scope (scope->file, scope->line,
4067 add_macro_name, &datum);
4068 xfree (scope);
4069 }
4070
4071 /* User-defined macros are always visible. */
4072 macro_for_each (macro_user_macros, add_macro_name, &datum);
4073 }
4074
4075 return (return_val);
4076}
4077
4078/* Return a NULL terminated array of all symbols (regardless of class)
4079 which begin by matching TEXT. If the answer is no symbols, then
4080 the return value is an array which contains only a NULL pointer. */
4081
4082char **
4083make_symbol_completion_list (char *text, char *word)
4084{
4085 return current_language->la_make_symbol_completion_list (text, word);
4086}
4087
4088/* Like make_symbol_completion_list, but suitable for use as a
4089 completion function. */
4090
4091char **
4092make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4093 char *text, char *word)
4094{
4095 return make_symbol_completion_list (text, word);
4096}
4097
4098/* Like make_symbol_completion_list, but returns a list of symbols
4099 defined in a source file FILE. */
4100
4101char **
4102make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4103{
4104 struct symbol *sym;
4105 struct symtab *s;
4106 struct block *b;
4107 struct dict_iterator iter;
4108 /* The symbol we are completing on. Points in same buffer as text. */
4109 char *sym_text;
4110 /* Length of sym_text. */
4111 int sym_text_len;
4112
4113 /* Now look for the symbol we are supposed to complete on.
4114 FIXME: This should be language-specific. */
4115 {
4116 char *p;
4117 char quote_found;
4118 char *quote_pos = NULL;
4119
4120 /* First see if this is a quoted string. */
4121 quote_found = '\0';
4122 for (p = text; *p != '\0'; ++p)
4123 {
4124 if (quote_found != '\0')
4125 {
4126 if (*p == quote_found)
4127 /* Found close quote. */
4128 quote_found = '\0';
4129 else if (*p == '\\' && p[1] == quote_found)
4130 /* A backslash followed by the quote character
4131 doesn't end the string. */
4132 ++p;
4133 }
4134 else if (*p == '\'' || *p == '"')
4135 {
4136 quote_found = *p;
4137 quote_pos = p;
4138 }
4139 }
4140 if (quote_found == '\'')
4141 /* A string within single quotes can be a symbol, so complete on it. */
4142 sym_text = quote_pos + 1;
4143 else if (quote_found == '"')
4144 /* A double-quoted string is never a symbol, nor does it make sense
4145 to complete it any other way. */
4146 {
4147 return_val = (char **) xmalloc (sizeof (char *));
4148 return_val[0] = NULL;
4149 return return_val;
4150 }
4151 else
4152 {
4153 /* Not a quoted string. */
4154 sym_text = language_search_unquoted_string (text, p);
4155 }
4156 }
4157
4158 sym_text_len = strlen (sym_text);
4159
4160 return_val_size = 10;
4161 return_val_index = 0;
4162 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4163 return_val[0] = NULL;
4164
4165 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4166 in). */
4167 s = lookup_symtab (srcfile);
4168 if (s == NULL)
4169 {
4170 /* Maybe they typed the file with leading directories, while the
4171 symbol tables record only its basename. */
4172 const char *tail = lbasename (srcfile);
4173
4174 if (tail > srcfile)
4175 s = lookup_symtab (tail);
4176 }
4177
4178 /* If we have no symtab for that file, return an empty list. */
4179 if (s == NULL)
4180 return (return_val);
4181
4182 /* Go through this symtab and check the externs and statics for
4183 symbols which match. */
4184
4185 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4186 ALL_BLOCK_SYMBOLS (b, iter, sym)
4187 {
4188 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4189 }
4190
4191 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4192 ALL_BLOCK_SYMBOLS (b, iter, sym)
4193 {
4194 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4195 }
4196
4197 return (return_val);
4198}
4199
4200/* A helper function for make_source_files_completion_list. It adds
4201 another file name to a list of possible completions, growing the
4202 list as necessary. */
4203
4204static void
4205add_filename_to_list (const char *fname, char *text, char *word,
4206 char ***list, int *list_used, int *list_alloced)
4207{
4208 char *new;
4209 size_t fnlen = strlen (fname);
4210
4211 if (*list_used + 1 >= *list_alloced)
4212 {
4213 *list_alloced *= 2;
4214 *list = (char **) xrealloc ((char *) *list,
4215 *list_alloced * sizeof (char *));
4216 }
4217
4218 if (word == text)
4219 {
4220 /* Return exactly fname. */
4221 new = xmalloc (fnlen + 5);
4222 strcpy (new, fname);
4223 }
4224 else if (word > text)
4225 {
4226 /* Return some portion of fname. */
4227 new = xmalloc (fnlen + 5);
4228 strcpy (new, fname + (word - text));
4229 }
4230 else
4231 {
4232 /* Return some of TEXT plus fname. */
4233 new = xmalloc (fnlen + (text - word) + 5);
4234 strncpy (new, word, text - word);
4235 new[text - word] = '\0';
4236 strcat (new, fname);
4237 }
4238 (*list)[*list_used] = new;
4239 (*list)[++*list_used] = NULL;
4240}
4241
4242static int
4243not_interesting_fname (const char *fname)
4244{
4245 static const char *illegal_aliens[] = {
4246 "_globals_", /* inserted by coff_symtab_read */
4247 NULL
4248 };
4249 int i;
4250
4251 for (i = 0; illegal_aliens[i]; i++)
4252 {
4253 if (strcmp (fname, illegal_aliens[i]) == 0)
4254 return 1;
4255 }
4256 return 0;
4257}
4258
4259/* Return a NULL terminated array of all source files whose names
4260 begin with matching TEXT. The file names are looked up in the
4261 symbol tables of this program. If the answer is no matchess, then
4262 the return value is an array which contains only a NULL pointer. */
4263
4264char **
4265make_source_files_completion_list (char *text, char *word)
4266{
4267 struct symtab *s;
4268 struct partial_symtab *ps;
4269 struct objfile *objfile;
4270 int first = 1;
4271 int list_alloced = 1;
4272 int list_used = 0;
4273 size_t text_len = strlen (text);
4274 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4275 const char *base_name;
4276
4277 list[0] = NULL;
4278
4279 if (!have_full_symbols () && !have_partial_symbols ())
4280 return list;
4281
4282 ALL_SYMTABS (objfile, s)
4283 {
4284 if (not_interesting_fname (s->filename))
4285 continue;
4286 if (!filename_seen (s->filename, 1, &first)
4287#if HAVE_DOS_BASED_FILE_SYSTEM
4288 && strncasecmp (s->filename, text, text_len) == 0
4289#else
4290 && strncmp (s->filename, text, text_len) == 0
4291#endif
4292 )
4293 {
4294 /* This file matches for a completion; add it to the current
4295 list of matches. */
4296 add_filename_to_list (s->filename, text, word,
4297 &list, &list_used, &list_alloced);
4298 }
4299 else
4300 {
4301 /* NOTE: We allow the user to type a base name when the
4302 debug info records leading directories, but not the other
4303 way around. This is what subroutines of breakpoint
4304 command do when they parse file names. */
4305 base_name = lbasename (s->filename);
4306 if (base_name != s->filename
4307 && !filename_seen (base_name, 1, &first)
4308#if HAVE_DOS_BASED_FILE_SYSTEM
4309 && strncasecmp (base_name, text, text_len) == 0
4310#else
4311 && strncmp (base_name, text, text_len) == 0
4312#endif
4313 )
4314 add_filename_to_list (base_name, text, word,
4315 &list, &list_used, &list_alloced);
4316 }
4317 }
4318
4319 ALL_PSYMTABS (objfile, ps)
4320 {
4321 if (not_interesting_fname (ps->filename))
4322 continue;
4323 if (!ps->readin)
4324 {
4325 if (!filename_seen (ps->filename, 1, &first)
4326#if HAVE_DOS_BASED_FILE_SYSTEM
4327 && strncasecmp (ps->filename, text, text_len) == 0
4328#else
4329 && strncmp (ps->filename, text, text_len) == 0
4330#endif
4331 )
4332 {
4333 /* This file matches for a completion; add it to the
4334 current list of matches. */
4335 add_filename_to_list (ps->filename, text, word,
4336 &list, &list_used, &list_alloced);
4337
4338 }
4339 else
4340 {
4341 base_name = lbasename (ps->filename);
4342 if (base_name != ps->filename
4343 && !filename_seen (base_name, 1, &first)
4344#if HAVE_DOS_BASED_FILE_SYSTEM
4345 && strncasecmp (base_name, text, text_len) == 0
4346#else
4347 && strncmp (base_name, text, text_len) == 0
4348#endif
4349 )
4350 add_filename_to_list (base_name, text, word,
4351 &list, &list_used, &list_alloced);
4352 }
4353 }
4354 }
4355
4356 return list;
4357}
4358
4359/* Determine if PC is in the prologue of a function. The prologue is the area
4360 between the first instruction of a function, and the first executable line.
4361 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4362
4363 If non-zero, func_start is where we think the prologue starts, possibly
4364 by previous examination of symbol table information.
4365 */
4366
4367int
4368in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4369{
4370 struct symtab_and_line sal;
4371 CORE_ADDR func_addr, func_end;
4372
4373 /* We have several sources of information we can consult to figure
4374 this out.
4375 - Compilers usually emit line number info that marks the prologue
4376 as its own "source line". So the ending address of that "line"
4377 is the end of the prologue. If available, this is the most
4378 reliable method.
4379 - The minimal symbols and partial symbols, which can usually tell
4380 us the starting and ending addresses of a function.
4381 - If we know the function's start address, we can call the
4382 architecture-defined gdbarch_skip_prologue function to analyze the
4383 instruction stream and guess where the prologue ends.
4384 - Our `func_start' argument; if non-zero, this is the caller's
4385 best guess as to the function's entry point. At the time of
4386 this writing, handle_inferior_event doesn't get this right, so
4387 it should be our last resort. */
4388
4389 /* Consult the partial symbol table, to find which function
4390 the PC is in. */
4391 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4392 {
4393 CORE_ADDR prologue_end;
4394
4395 /* We don't even have minsym information, so fall back to using
4396 func_start, if given. */
4397 if (! func_start)
4398 return 1; /* We *might* be in a prologue. */
4399
4400 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4401
4402 return func_start <= pc && pc < prologue_end;
4403 }
4404
4405 /* If we have line number information for the function, that's
4406 usually pretty reliable. */
4407 sal = find_pc_line (func_addr, 0);
4408
4409 /* Now sal describes the source line at the function's entry point,
4410 which (by convention) is the prologue. The end of that "line",
4411 sal.end, is the end of the prologue.
4412
4413 Note that, for functions whose source code is all on a single
4414 line, the line number information doesn't always end up this way.
4415 So we must verify that our purported end-of-prologue address is
4416 *within* the function, not at its start or end. */
4417 if (sal.line == 0
4418 || sal.end <= func_addr
4419 || func_end <= sal.end)
4420 {
4421 /* We don't have any good line number info, so use the minsym
4422 information, together with the architecture-specific prologue
4423 scanning code. */
4424 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4425
4426 return func_addr <= pc && pc < prologue_end;
4427 }
4428
4429 /* We have line number info, and it looks good. */
4430 return func_addr <= pc && pc < sal.end;
4431}
4432
4433/* Given PC at the function's start address, attempt to find the
4434 prologue end using SAL information. Return zero if the skip fails.
4435
4436 A non-optimized prologue traditionally has one SAL for the function
4437 and a second for the function body. A single line function has
4438 them both pointing at the same line.
4439
4440 An optimized prologue is similar but the prologue may contain
4441 instructions (SALs) from the instruction body. Need to skip those
4442 while not getting into the function body.
4443
4444 The functions end point and an increasing SAL line are used as
4445 indicators of the prologue's endpoint.
4446
4447 This code is based on the function refine_prologue_limit (versions
4448 found in both ia64 and ppc). */
4449
4450CORE_ADDR
4451skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4452{
4453 struct symtab_and_line prologue_sal;
4454 CORE_ADDR start_pc;
4455 CORE_ADDR end_pc;
4456 struct block *bl;
4457
4458 /* Get an initial range for the function. */
4459 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4460 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4461
4462 prologue_sal = find_pc_line (start_pc, 0);
4463 if (prologue_sal.line != 0)
4464 {
4465 /* For langauges other than assembly, treat two consecutive line
4466 entries at the same address as a zero-instruction prologue.
4467 The GNU assembler emits separate line notes for each instruction
4468 in a multi-instruction macro, but compilers generally will not
4469 do this. */
4470 if (prologue_sal.symtab->language != language_asm)
4471 {
4472 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4473 int exact;
4474 int idx = 0;
4475
4476 /* Skip any earlier lines, and any end-of-sequence marker
4477 from a previous function. */
4478 while (linetable->item[idx].pc != prologue_sal.pc
4479 || linetable->item[idx].line == 0)
4480 idx++;
4481
4482 if (idx+1 < linetable->nitems
4483 && linetable->item[idx+1].line != 0
4484 && linetable->item[idx+1].pc == start_pc)
4485 return start_pc;
4486 }
4487
4488 /* If there is only one sal that covers the entire function,
4489 then it is probably a single line function, like
4490 "foo(){}". */
4491 if (prologue_sal.end >= end_pc)
4492 return 0;
4493
4494 while (prologue_sal.end < end_pc)
4495 {
4496 struct symtab_and_line sal;
4497
4498 sal = find_pc_line (prologue_sal.end, 0);
4499 if (sal.line == 0)
4500 break;
4501 /* Assume that a consecutive SAL for the same (or larger)
4502 line mark the prologue -> body transition. */
4503 if (sal.line >= prologue_sal.line)
4504 break;
4505
4506 /* The line number is smaller. Check that it's from the
4507 same function, not something inlined. If it's inlined,
4508 then there is no point comparing the line numbers. */
4509 bl = block_for_pc (prologue_sal.end);
4510 while (bl)
4511 {
4512 if (block_inlined_p (bl))
4513 break;
4514 if (BLOCK_FUNCTION (bl))
4515 {
4516 bl = NULL;
4517 break;
4518 }
4519 bl = BLOCK_SUPERBLOCK (bl);
4520 }
4521 if (bl != NULL)
4522 break;
4523
4524 /* The case in which compiler's optimizer/scheduler has
4525 moved instructions into the prologue. We look ahead in
4526 the function looking for address ranges whose
4527 corresponding line number is less the first one that we
4528 found for the function. This is more conservative then
4529 refine_prologue_limit which scans a large number of SALs
4530 looking for any in the prologue */
4531 prologue_sal = sal;
4532 }
4533 }
4534
4535 if (prologue_sal.end < end_pc)
4536 /* Return the end of this line, or zero if we could not find a
4537 line. */
4538 return prologue_sal.end;
4539 else
4540 /* Don't return END_PC, which is past the end of the function. */
4541 return prologue_sal.pc;
4542}
4543\f
4544struct symtabs_and_lines
4545decode_line_spec (char *string, int funfirstline)
4546{
4547 struct symtabs_and_lines sals;
4548 struct symtab_and_line cursal;
4549
4550 if (string == 0)
4551 error (_("Empty line specification."));
4552
4553 /* We use whatever is set as the current source line. We do not try
4554 and get a default or it will recursively call us! */
4555 cursal = get_current_source_symtab_and_line ();
4556
4557 sals = decode_line_1 (&string, funfirstline,
4558 cursal.symtab, cursal.line,
4559 (char ***) NULL, NULL);
4560
4561 if (*string)
4562 error (_("Junk at end of line specification: %s"), string);
4563 return sals;
4564}
4565
4566/* Track MAIN */
4567static char *name_of_main;
4568
4569void
4570set_main_name (const char *name)
4571{
4572 if (name_of_main != NULL)
4573 {
4574 xfree (name_of_main);
4575 name_of_main = NULL;
4576 }
4577 if (name != NULL)
4578 {
4579 name_of_main = xstrdup (name);
4580 }
4581}
4582
4583/* Deduce the name of the main procedure, and set NAME_OF_MAIN
4584 accordingly. */
4585
4586static void
4587find_main_name (void)
4588{
4589 const char *new_main_name;
4590
4591 /* Try to see if the main procedure is in Ada. */
4592 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4593 be to add a new method in the language vector, and call this
4594 method for each language until one of them returns a non-empty
4595 name. This would allow us to remove this hard-coded call to
4596 an Ada function. It is not clear that this is a better approach
4597 at this point, because all methods need to be written in a way
4598 such that false positives never be returned. For instance, it is
4599 important that a method does not return a wrong name for the main
4600 procedure if the main procedure is actually written in a different
4601 language. It is easy to guaranty this with Ada, since we use a
4602 special symbol generated only when the main in Ada to find the name
4603 of the main procedure. It is difficult however to see how this can
4604 be guarantied for languages such as C, for instance. This suggests
4605 that order of call for these methods becomes important, which means
4606 a more complicated approach. */
4607 new_main_name = ada_main_name ();
4608 if (new_main_name != NULL)
4609 {
4610 set_main_name (new_main_name);
4611 return;
4612 }
4613
4614 new_main_name = pascal_main_name ();
4615 if (new_main_name != NULL)
4616 {
4617 set_main_name (new_main_name);
4618 return;
4619 }
4620
4621 /* The languages above didn't identify the name of the main procedure.
4622 Fallback to "main". */
4623 set_main_name ("main");
4624}
4625
4626char *
4627main_name (void)
4628{
4629 if (name_of_main == NULL)
4630 find_main_name ();
4631
4632 return name_of_main;
4633}
4634
4635/* Handle ``executable_changed'' events for the symtab module. */
4636
4637static void
4638symtab_observer_executable_changed (void)
4639{
4640 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4641 set_main_name (NULL);
4642}
4643
4644/* Helper to expand_line_sal below. Appends new sal to SAL,
4645 initializing it from SYMTAB, LINENO and PC. */
4646static void
4647append_expanded_sal (struct symtabs_and_lines *sal,
4648 struct program_space *pspace,
4649 struct symtab *symtab,
4650 int lineno, CORE_ADDR pc)
4651{
4652 sal->sals = xrealloc (sal->sals,
4653 sizeof (sal->sals[0])
4654 * (sal->nelts + 1));
4655 init_sal (sal->sals + sal->nelts);
4656 sal->sals[sal->nelts].pspace = pspace;
4657 sal->sals[sal->nelts].symtab = symtab;
4658 sal->sals[sal->nelts].section = NULL;
4659 sal->sals[sal->nelts].end = 0;
4660 sal->sals[sal->nelts].line = lineno;
4661 sal->sals[sal->nelts].pc = pc;
4662 ++sal->nelts;
4663}
4664
4665/* Helper to expand_line_sal below. Search in the symtabs for any
4666 linetable entry that exactly matches FULLNAME and LINENO and append
4667 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4668 use FILENAME and LINENO instead. If there is at least one match,
4669 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4670 and BEST_SYMTAB. */
4671
4672static int
4673append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4674 struct symtabs_and_lines *ret,
4675 struct linetable_entry **best_item,
4676 struct symtab **best_symtab)
4677{
4678 struct program_space *pspace;
4679 struct objfile *objfile;
4680 struct symtab *symtab;
4681 int exact = 0;
4682 int j;
4683 *best_item = 0;
4684 *best_symtab = 0;
4685
4686 ALL_PSPACES (pspace)
4687 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4688 {
4689 if (FILENAME_CMP (filename, symtab->filename) == 0)
4690 {
4691 struct linetable *l;
4692 int len;
4693 if (fullname != NULL
4694 && symtab_to_fullname (symtab) != NULL
4695 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4696 continue;
4697 l = LINETABLE (symtab);
4698 if (!l)
4699 continue;
4700 len = l->nitems;
4701
4702 for (j = 0; j < len; j++)
4703 {
4704 struct linetable_entry *item = &(l->item[j]);
4705
4706 if (item->line == lineno)
4707 {
4708 exact = 1;
4709 append_expanded_sal (ret, objfile->pspace,
4710 symtab, lineno, item->pc);
4711 }
4712 else if (!exact && item->line > lineno
4713 && (*best_item == NULL
4714 || item->line < (*best_item)->line))
4715 {
4716 *best_item = item;
4717 *best_symtab = symtab;
4718 }
4719 }
4720 }
4721 }
4722 return exact;
4723}
4724
4725/* Compute a set of all sals in all program spaces that correspond to
4726 same file and line as SAL and return those. If there are several
4727 sals that belong to the same block, only one sal for the block is
4728 included in results. */
4729
4730struct symtabs_and_lines
4731expand_line_sal (struct symtab_and_line sal)
4732{
4733 struct symtabs_and_lines ret, this_line;
4734 int i, j;
4735 struct objfile *objfile;
4736 struct partial_symtab *psymtab;
4737 struct symtab *symtab;
4738 int lineno;
4739 int deleted = 0;
4740 struct block **blocks = NULL;
4741 int *filter;
4742 struct cleanup *old_chain;
4743
4744 ret.nelts = 0;
4745 ret.sals = NULL;
4746
4747 /* Only expand sals that represent file.c:line. */
4748 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4749 {
4750 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4751 ret.sals[0] = sal;
4752 ret.nelts = 1;
4753 return ret;
4754 }
4755 else
4756 {
4757 struct program_space *pspace;
4758 struct linetable_entry *best_item = 0;
4759 struct symtab *best_symtab = 0;
4760 int exact = 0;
4761 char *match_filename;
4762
4763 lineno = sal.line;
4764 match_filename = sal.symtab->filename;
4765
4766 /* We need to find all symtabs for a file which name
4767 is described by sal. We cannot just directly
4768 iterate over symtabs, since a symtab might not be
4769 yet created. We also cannot iterate over psymtabs,
4770 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4771 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4772 corresponding to an included file. Therefore, we do
4773 first pass over psymtabs, reading in those with
4774 the right name. Then, we iterate over symtabs, knowing
4775 that all symtabs we're interested in are loaded. */
4776
4777 old_chain = save_current_program_space ();
4778 ALL_PSPACES (pspace)
4779 ALL_PSPACE_PSYMTABS (pspace, objfile, psymtab)
4780 {
4781 if (FILENAME_CMP (match_filename, psymtab->filename) == 0)
4782 {
4783 set_current_program_space (pspace);
4784
4785 PSYMTAB_TO_SYMTAB (psymtab);
4786 }
4787 }
4788 do_cleanups (old_chain);
4789
4790 /* Now search the symtab for exact matches and append them. If
4791 none is found, append the best_item and all its exact
4792 matches. */
4793 symtab_to_fullname (sal.symtab);
4794 exact = append_exact_match_to_sals (sal.symtab->filename,
4795 sal.symtab->fullname, lineno,
4796 &ret, &best_item, &best_symtab);
4797 if (!exact && best_item)
4798 append_exact_match_to_sals (best_symtab->filename,
4799 best_symtab->fullname, best_item->line,
4800 &ret, &best_item, &best_symtab);
4801 }
4802
4803 /* For optimized code, compiler can scatter one source line accross
4804 disjoint ranges of PC values, even when no duplicate functions
4805 or inline functions are involved. For example, 'for (;;)' inside
4806 non-template non-inline non-ctor-or-dtor function can result
4807 in two PC ranges. In this case, we don't want to set breakpoint
4808 on first PC of each range. To filter such cases, we use containing
4809 blocks -- for each PC found above we see if there are other PCs
4810 that are in the same block. If yes, the other PCs are filtered out. */
4811
4812 old_chain = save_current_program_space ();
4813 filter = alloca (ret.nelts * sizeof (int));
4814 blocks = alloca (ret.nelts * sizeof (struct block *));
4815 for (i = 0; i < ret.nelts; ++i)
4816 {
4817 struct blockvector *bl;
4818 struct block *b;
4819
4820 set_current_program_space (ret.sals[i].pspace);
4821
4822 filter[i] = 1;
4823 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4824
4825 }
4826 do_cleanups (old_chain);
4827
4828 for (i = 0; i < ret.nelts; ++i)
4829 if (blocks[i] != NULL)
4830 for (j = i+1; j < ret.nelts; ++j)
4831 if (blocks[j] == blocks[i])
4832 {
4833 filter[j] = 0;
4834 ++deleted;
4835 break;
4836 }
4837
4838 {
4839 struct symtab_and_line *final =
4840 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4841
4842 for (i = 0, j = 0; i < ret.nelts; ++i)
4843 if (filter[i])
4844 final[j++] = ret.sals[i];
4845
4846 ret.nelts -= deleted;
4847 xfree (ret.sals);
4848 ret.sals = final;
4849 }
4850
4851 return ret;
4852}
4853
4854
4855void
4856_initialize_symtab (void)
4857{
4858 add_info ("variables", variables_info, _("\
4859All global and static variable names, or those matching REGEXP."));
4860 if (dbx_commands)
4861 add_com ("whereis", class_info, variables_info, _("\
4862All global and static variable names, or those matching REGEXP."));
4863
4864 add_info ("functions", functions_info,
4865 _("All function names, or those matching REGEXP."));
4866
4867 /* FIXME: This command has at least the following problems:
4868 1. It prints builtin types (in a very strange and confusing fashion).
4869 2. It doesn't print right, e.g. with
4870 typedef struct foo *FOO
4871 type_print prints "FOO" when we want to make it (in this situation)
4872 print "struct foo *".
4873 I also think "ptype" or "whatis" is more likely to be useful (but if
4874 there is much disagreement "info types" can be fixed). */
4875 add_info ("types", types_info,
4876 _("All type names, or those matching REGEXP."));
4877
4878 add_info ("sources", sources_info,
4879 _("Source files in the program."));
4880
4881 add_com ("rbreak", class_breakpoint, rbreak_command,
4882 _("Set a breakpoint for all functions matching REGEXP."));
4883
4884 if (xdb_commands)
4885 {
4886 add_com ("lf", class_info, sources_info,
4887 _("Source files in the program"));
4888 add_com ("lg", class_info, variables_info, _("\
4889All global and static variable names, or those matching REGEXP."));
4890 }
4891
4892 add_setshow_enum_cmd ("multiple-symbols", no_class,
4893 multiple_symbols_modes, &multiple_symbols_mode,
4894 _("\
4895Set the debugger behavior when more than one symbol are possible matches\n\
4896in an expression."), _("\
4897Show how the debugger handles ambiguities in expressions."), _("\
4898Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4899 NULL, NULL, &setlist, &showlist);
4900
4901 observer_attach_executable_changed (symtab_observer_executable_changed);
4902}
This page took 0.041001 seconds and 4 git commands to generate.