Remove language param from name_matcher in struct quick_symbol_functions
[deliverable/binutils-gdb.git] / gdb / symtab.c
... / ...
CommitLineData
1/* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2004, 2007-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "symtab.h"
22#include "gdbtypes.h"
23#include "gdbcore.h"
24#include "frame.h"
25#include "target.h"
26#include "value.h"
27#include "symfile.h"
28#include "objfiles.h"
29#include "gdbcmd.h"
30#include "call-cmds.h"
31#include "gdb_regex.h"
32#include "expression.h"
33#include "language.h"
34#include "demangle.h"
35#include "inferior.h"
36#include "linespec.h"
37#include "source.h"
38#include "filenames.h" /* for FILENAME_CMP */
39#include "objc-lang.h"
40#include "d-lang.h"
41#include "ada-lang.h"
42#include "p-lang.h"
43#include "addrmap.h"
44
45#include "hashtab.h"
46
47#include "gdb_obstack.h"
48#include "block.h"
49#include "dictionary.h"
50
51#include <sys/types.h>
52#include <fcntl.h>
53#include "gdb_string.h"
54#include "gdb_stat.h"
55#include <ctype.h>
56#include "cp-abi.h"
57#include "cp-support.h"
58#include "observer.h"
59#include "gdb_assert.h"
60#include "solist.h"
61#include "macrotab.h"
62#include "macroscope.h"
63
64#include "psymtab.h"
65
66/* Prototypes for local functions */
67
68static void completion_list_add_name (char *, char *, int, char *, char *);
69
70static void rbreak_command (char *, int);
71
72static void types_info (char *, int);
73
74static void functions_info (char *, int);
75
76static void variables_info (char *, int);
77
78static void sources_info (char *, int);
79
80static void output_source_filename (const char *, int *);
81
82static int find_line_common (struct linetable *, int, int *, int);
83
84static struct symbol *lookup_symbol_aux (const char *name,
85 const struct block *block,
86 const domain_enum domain,
87 enum language language,
88 int *is_a_field_of_this);
89
90static
91struct symbol *lookup_symbol_aux_local (const char *name,
92 const struct block *block,
93 const domain_enum domain,
94 enum language language);
95
96static
97struct symbol *lookup_symbol_aux_symtabs (int block_index,
98 const char *name,
99 const domain_enum domain);
100
101static
102struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
103 int block_index,
104 const char *name,
105 const domain_enum domain);
106
107static void print_msymbol_info (struct minimal_symbol *);
108
109void _initialize_symtab (void);
110
111/* */
112
113/* Non-zero if a file may be known by two different basenames.
114 This is the uncommon case, and significantly slows down gdb.
115 Default set to "off" to not slow down the common case. */
116int basenames_may_differ = 0;
117
118/* Allow the user to configure the debugger behavior with respect
119 to multiple-choice menus when more than one symbol matches during
120 a symbol lookup. */
121
122const char multiple_symbols_ask[] = "ask";
123const char multiple_symbols_all[] = "all";
124const char multiple_symbols_cancel[] = "cancel";
125static const char *multiple_symbols_modes[] =
126{
127 multiple_symbols_ask,
128 multiple_symbols_all,
129 multiple_symbols_cancel,
130 NULL
131};
132static const char *multiple_symbols_mode = multiple_symbols_all;
133
134/* Read-only accessor to AUTO_SELECT_MODE. */
135
136const char *
137multiple_symbols_select_mode (void)
138{
139 return multiple_symbols_mode;
140}
141
142/* Block in which the most recently searched-for symbol was found.
143 Might be better to make this a parameter to lookup_symbol and
144 value_of_this. */
145
146const struct block *block_found;
147
148/* See whether FILENAME matches SEARCH_NAME using the rule that we
149 advertise to the user. (The manual's description of linespecs
150 describes what we advertise). SEARCH_LEN is the length of
151 SEARCH_NAME. We assume that SEARCH_NAME is a relative path.
152 Returns true if they match, false otherwise. */
153
154int
155compare_filenames_for_search (const char *filename, const char *search_name,
156 int search_len)
157{
158 int len = strlen (filename);
159 int offset;
160
161 if (len < search_len)
162 return 0;
163
164 /* The tail of FILENAME must match. */
165 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
166 return 0;
167
168 /* Either the names must completely match, or the character
169 preceding the trailing SEARCH_NAME segment of FILENAME must be a
170 directory separator. */
171 return (len == search_len
172 || IS_DIR_SEPARATOR (filename[len - search_len - 1])
173 || (HAS_DRIVE_SPEC (filename)
174 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
175}
176
177/* Check for a symtab of a specific name by searching some symtabs.
178 This is a helper function for callbacks of iterate_over_symtabs.
179
180 The return value, NAME, FULL_PATH, REAL_PATH, CALLBACK, and DATA
181 are identical to the `map_symtabs_matching_filename' method of
182 quick_symbol_functions.
183
184 FIRST and AFTER_LAST indicate the range of symtabs to search.
185 AFTER_LAST is one past the last symtab to search; NULL means to
186 search until the end of the list. */
187
188int
189iterate_over_some_symtabs (const char *name,
190 const char *full_path,
191 const char *real_path,
192 int (*callback) (struct symtab *symtab,
193 void *data),
194 void *data,
195 struct symtab *first,
196 struct symtab *after_last)
197{
198 struct symtab *s = NULL;
199 struct cleanup *cleanup;
200 const char* base_name = lbasename (name);
201 int name_len = strlen (name);
202 int is_abs = IS_ABSOLUTE_PATH (name);
203
204 for (s = first; s != NULL && s != after_last; s = s->next)
205 {
206 /* Exact match is always ok. */
207 if (FILENAME_CMP (name, s->filename) == 0)
208 {
209 if (callback (s, data))
210 return 1;
211 }
212
213 if (!is_abs && compare_filenames_for_search (s->filename, name, name_len))
214 {
215 if (callback (s, data))
216 return 1;
217 }
218
219 /* Before we invoke realpath, which can get expensive when many
220 files are involved, do a quick comparison of the basenames. */
221 if (! basenames_may_differ
222 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
223 continue;
224
225 /* If the user gave us an absolute path, try to find the file in
226 this symtab and use its absolute path. */
227
228 if (full_path != NULL)
229 {
230 const char *fp = symtab_to_fullname (s);
231
232 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
233 {
234 if (callback (s, data))
235 return 1;
236 }
237
238 if (fp != NULL && !is_abs && compare_filenames_for_search (fp, name,
239 name_len))
240 {
241 if (callback (s, data))
242 return 1;
243 }
244 }
245
246 if (real_path != NULL)
247 {
248 char *fullname = symtab_to_fullname (s);
249
250 if (fullname != NULL)
251 {
252 char *rp = gdb_realpath (fullname);
253
254 make_cleanup (xfree, rp);
255 if (FILENAME_CMP (real_path, rp) == 0)
256 {
257 if (callback (s, data))
258 return 1;
259 }
260
261 if (!is_abs && compare_filenames_for_search (rp, name, name_len))
262 {
263 if (callback (s, data))
264 return 1;
265 }
266 }
267 }
268 }
269
270 return 0;
271}
272
273/* Check for a symtab of a specific name; first in symtabs, then in
274 psymtabs. *If* there is no '/' in the name, a match after a '/'
275 in the symtab filename will also work.
276
277 Calls CALLBACK with each symtab that is found and with the supplied
278 DATA. If CALLBACK returns true, the search stops. */
279
280void
281iterate_over_symtabs (const char *name,
282 int (*callback) (struct symtab *symtab,
283 void *data),
284 void *data)
285{
286 struct symtab *s = NULL;
287 struct objfile *objfile;
288 char *real_path = NULL;
289 char *full_path = NULL;
290 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
291
292 /* Here we are interested in canonicalizing an absolute path, not
293 absolutizing a relative path. */
294 if (IS_ABSOLUTE_PATH (name))
295 {
296 full_path = xfullpath (name);
297 make_cleanup (xfree, full_path);
298 real_path = gdb_realpath (name);
299 make_cleanup (xfree, real_path);
300 }
301
302 ALL_OBJFILES (objfile)
303 {
304 if (iterate_over_some_symtabs (name, full_path, real_path, callback, data,
305 objfile->symtabs, NULL))
306 {
307 do_cleanups (cleanups);
308 return;
309 }
310 }
311
312 /* Same search rules as above apply here, but now we look thru the
313 psymtabs. */
314
315 ALL_OBJFILES (objfile)
316 {
317 if (objfile->sf
318 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
319 name,
320 full_path,
321 real_path,
322 callback,
323 data))
324 {
325 do_cleanups (cleanups);
326 return;
327 }
328 }
329
330 do_cleanups (cleanups);
331}
332
333/* The callback function used by lookup_symtab. */
334
335static int
336lookup_symtab_callback (struct symtab *symtab, void *data)
337{
338 struct symtab **result_ptr = data;
339
340 *result_ptr = symtab;
341 return 1;
342}
343
344/* A wrapper for iterate_over_symtabs that returns the first matching
345 symtab, or NULL. */
346
347struct symtab *
348lookup_symtab (const char *name)
349{
350 struct symtab *result = NULL;
351
352 iterate_over_symtabs (name, lookup_symtab_callback, &result);
353 return result;
354}
355
356\f
357/* Mangle a GDB method stub type. This actually reassembles the pieces of the
358 full method name, which consist of the class name (from T), the unadorned
359 method name from METHOD_ID, and the signature for the specific overload,
360 specified by SIGNATURE_ID. Note that this function is g++ specific. */
361
362char *
363gdb_mangle_name (struct type *type, int method_id, int signature_id)
364{
365 int mangled_name_len;
366 char *mangled_name;
367 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
368 struct fn_field *method = &f[signature_id];
369 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
370 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
371 char *newname = type_name_no_tag (type);
372
373 /* Does the form of physname indicate that it is the full mangled name
374 of a constructor (not just the args)? */
375 int is_full_physname_constructor;
376
377 int is_constructor;
378 int is_destructor = is_destructor_name (physname);
379 /* Need a new type prefix. */
380 char *const_prefix = method->is_const ? "C" : "";
381 char *volatile_prefix = method->is_volatile ? "V" : "";
382 char buf[20];
383 int len = (newname == NULL ? 0 : strlen (newname));
384
385 /* Nothing to do if physname already contains a fully mangled v3 abi name
386 or an operator name. */
387 if ((physname[0] == '_' && physname[1] == 'Z')
388 || is_operator_name (field_name))
389 return xstrdup (physname);
390
391 is_full_physname_constructor = is_constructor_name (physname);
392
393 is_constructor = is_full_physname_constructor
394 || (newname && strcmp (field_name, newname) == 0);
395
396 if (!is_destructor)
397 is_destructor = (strncmp (physname, "__dt", 4) == 0);
398
399 if (is_destructor || is_full_physname_constructor)
400 {
401 mangled_name = (char *) xmalloc (strlen (physname) + 1);
402 strcpy (mangled_name, physname);
403 return mangled_name;
404 }
405
406 if (len == 0)
407 {
408 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
409 }
410 else if (physname[0] == 't' || physname[0] == 'Q')
411 {
412 /* The physname for template and qualified methods already includes
413 the class name. */
414 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
415 newname = NULL;
416 len = 0;
417 }
418 else
419 {
420 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
421 }
422 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
423 + strlen (buf) + len + strlen (physname) + 1);
424
425 mangled_name = (char *) xmalloc (mangled_name_len);
426 if (is_constructor)
427 mangled_name[0] = '\0';
428 else
429 strcpy (mangled_name, field_name);
430
431 strcat (mangled_name, buf);
432 /* If the class doesn't have a name, i.e. newname NULL, then we just
433 mangle it using 0 for the length of the class. Thus it gets mangled
434 as something starting with `::' rather than `classname::'. */
435 if (newname != NULL)
436 strcat (mangled_name, newname);
437
438 strcat (mangled_name, physname);
439 return (mangled_name);
440}
441
442/* Initialize the cplus_specific structure. 'cplus_specific' should
443 only be allocated for use with cplus symbols. */
444
445static void
446symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
447 struct objfile *objfile)
448{
449 /* A language_specific structure should not have been previously
450 initialized. */
451 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
452 gdb_assert (objfile != NULL);
453
454 gsymbol->language_specific.cplus_specific =
455 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
456}
457
458/* Set the demangled name of GSYMBOL to NAME. NAME must be already
459 correctly allocated. For C++ symbols a cplus_specific struct is
460 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
461 OBJFILE can be NULL. */
462void
463symbol_set_demangled_name (struct general_symbol_info *gsymbol,
464 char *name,
465 struct objfile *objfile)
466{
467 if (gsymbol->language == language_cplus)
468 {
469 if (gsymbol->language_specific.cplus_specific == NULL)
470 symbol_init_cplus_specific (gsymbol, objfile);
471
472 gsymbol->language_specific.cplus_specific->demangled_name = name;
473 }
474 else
475 gsymbol->language_specific.mangled_lang.demangled_name = name;
476}
477
478/* Return the demangled name of GSYMBOL. */
479char *
480symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
481{
482 if (gsymbol->language == language_cplus)
483 {
484 if (gsymbol->language_specific.cplus_specific != NULL)
485 return gsymbol->language_specific.cplus_specific->demangled_name;
486 else
487 return NULL;
488 }
489 else
490 return gsymbol->language_specific.mangled_lang.demangled_name;
491}
492
493\f
494/* Initialize the language dependent portion of a symbol
495 depending upon the language for the symbol. */
496void
497symbol_set_language (struct general_symbol_info *gsymbol,
498 enum language language)
499{
500 gsymbol->language = language;
501 if (gsymbol->language == language_d
502 || gsymbol->language == language_java
503 || gsymbol->language == language_objc
504 || gsymbol->language == language_fortran)
505 {
506 symbol_set_demangled_name (gsymbol, NULL, NULL);
507 }
508 else if (gsymbol->language == language_cplus)
509 gsymbol->language_specific.cplus_specific = NULL;
510 else
511 {
512 memset (&gsymbol->language_specific, 0,
513 sizeof (gsymbol->language_specific));
514 }
515}
516
517/* Functions to initialize a symbol's mangled name. */
518
519/* Objects of this type are stored in the demangled name hash table. */
520struct demangled_name_entry
521{
522 char *mangled;
523 char demangled[1];
524};
525
526/* Hash function for the demangled name hash. */
527static hashval_t
528hash_demangled_name_entry (const void *data)
529{
530 const struct demangled_name_entry *e = data;
531
532 return htab_hash_string (e->mangled);
533}
534
535/* Equality function for the demangled name hash. */
536static int
537eq_demangled_name_entry (const void *a, const void *b)
538{
539 const struct demangled_name_entry *da = a;
540 const struct demangled_name_entry *db = b;
541
542 return strcmp (da->mangled, db->mangled) == 0;
543}
544
545/* Create the hash table used for demangled names. Each hash entry is
546 a pair of strings; one for the mangled name and one for the demangled
547 name. The entry is hashed via just the mangled name. */
548
549static void
550create_demangled_names_hash (struct objfile *objfile)
551{
552 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
553 The hash table code will round this up to the next prime number.
554 Choosing a much larger table size wastes memory, and saves only about
555 1% in symbol reading. */
556
557 objfile->demangled_names_hash = htab_create_alloc
558 (256, hash_demangled_name_entry, eq_demangled_name_entry,
559 NULL, xcalloc, xfree);
560}
561
562/* Try to determine the demangled name for a symbol, based on the
563 language of that symbol. If the language is set to language_auto,
564 it will attempt to find any demangling algorithm that works and
565 then set the language appropriately. The returned name is allocated
566 by the demangler and should be xfree'd. */
567
568static char *
569symbol_find_demangled_name (struct general_symbol_info *gsymbol,
570 const char *mangled)
571{
572 char *demangled = NULL;
573
574 if (gsymbol->language == language_unknown)
575 gsymbol->language = language_auto;
576
577 if (gsymbol->language == language_objc
578 || gsymbol->language == language_auto)
579 {
580 demangled =
581 objc_demangle (mangled, 0);
582 if (demangled != NULL)
583 {
584 gsymbol->language = language_objc;
585 return demangled;
586 }
587 }
588 if (gsymbol->language == language_cplus
589 || gsymbol->language == language_auto)
590 {
591 demangled =
592 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
593 if (demangled != NULL)
594 {
595 gsymbol->language = language_cplus;
596 return demangled;
597 }
598 }
599 if (gsymbol->language == language_java)
600 {
601 demangled =
602 cplus_demangle (mangled,
603 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
604 if (demangled != NULL)
605 {
606 gsymbol->language = language_java;
607 return demangled;
608 }
609 }
610 if (gsymbol->language == language_d
611 || gsymbol->language == language_auto)
612 {
613 demangled = d_demangle(mangled, 0);
614 if (demangled != NULL)
615 {
616 gsymbol->language = language_d;
617 return demangled;
618 }
619 }
620 /* We could support `gsymbol->language == language_fortran' here to provide
621 module namespaces also for inferiors with only minimal symbol table (ELF
622 symbols). Just the mangling standard is not standardized across compilers
623 and there is no DW_AT_producer available for inferiors with only the ELF
624 symbols to check the mangling kind. */
625 return NULL;
626}
627
628/* Set both the mangled and demangled (if any) names for GSYMBOL based
629 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
630 objfile's obstack; but if COPY_NAME is 0 and if NAME is
631 NUL-terminated, then this function assumes that NAME is already
632 correctly saved (either permanently or with a lifetime tied to the
633 objfile), and it will not be copied.
634
635 The hash table corresponding to OBJFILE is used, and the memory
636 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
637 so the pointer can be discarded after calling this function. */
638
639/* We have to be careful when dealing with Java names: when we run
640 into a Java minimal symbol, we don't know it's a Java symbol, so it
641 gets demangled as a C++ name. This is unfortunate, but there's not
642 much we can do about it: but when demangling partial symbols and
643 regular symbols, we'd better not reuse the wrong demangled name.
644 (See PR gdb/1039.) We solve this by putting a distinctive prefix
645 on Java names when storing them in the hash table. */
646
647/* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
648 don't mind the Java prefix so much: different languages have
649 different demangling requirements, so it's only natural that we
650 need to keep language data around in our demangling cache. But
651 it's not good that the minimal symbol has the wrong demangled name.
652 Unfortunately, I can't think of any easy solution to that
653 problem. */
654
655#define JAVA_PREFIX "##JAVA$$"
656#define JAVA_PREFIX_LEN 8
657
658void
659symbol_set_names (struct general_symbol_info *gsymbol,
660 const char *linkage_name, int len, int copy_name,
661 struct objfile *objfile)
662{
663 struct demangled_name_entry **slot;
664 /* A 0-terminated copy of the linkage name. */
665 const char *linkage_name_copy;
666 /* A copy of the linkage name that might have a special Java prefix
667 added to it, for use when looking names up in the hash table. */
668 const char *lookup_name;
669 /* The length of lookup_name. */
670 int lookup_len;
671 struct demangled_name_entry entry;
672
673 if (gsymbol->language == language_ada)
674 {
675 /* In Ada, we do the symbol lookups using the mangled name, so
676 we can save some space by not storing the demangled name.
677
678 As a side note, we have also observed some overlap between
679 the C++ mangling and Ada mangling, similarly to what has
680 been observed with Java. Because we don't store the demangled
681 name with the symbol, we don't need to use the same trick
682 as Java. */
683 if (!copy_name)
684 gsymbol->name = (char *) linkage_name;
685 else
686 {
687 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
688 memcpy (gsymbol->name, linkage_name, len);
689 gsymbol->name[len] = '\0';
690 }
691 symbol_set_demangled_name (gsymbol, NULL, NULL);
692
693 return;
694 }
695
696 if (objfile->demangled_names_hash == NULL)
697 create_demangled_names_hash (objfile);
698
699 /* The stabs reader generally provides names that are not
700 NUL-terminated; most of the other readers don't do this, so we
701 can just use the given copy, unless we're in the Java case. */
702 if (gsymbol->language == language_java)
703 {
704 char *alloc_name;
705
706 lookup_len = len + JAVA_PREFIX_LEN;
707 alloc_name = alloca (lookup_len + 1);
708 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
709 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
710 alloc_name[lookup_len] = '\0';
711
712 lookup_name = alloc_name;
713 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
714 }
715 else if (linkage_name[len] != '\0')
716 {
717 char *alloc_name;
718
719 lookup_len = len;
720 alloc_name = alloca (lookup_len + 1);
721 memcpy (alloc_name, linkage_name, len);
722 alloc_name[lookup_len] = '\0';
723
724 lookup_name = alloc_name;
725 linkage_name_copy = alloc_name;
726 }
727 else
728 {
729 lookup_len = len;
730 lookup_name = linkage_name;
731 linkage_name_copy = linkage_name;
732 }
733
734 entry.mangled = (char *) lookup_name;
735 slot = ((struct demangled_name_entry **)
736 htab_find_slot (objfile->demangled_names_hash,
737 &entry, INSERT));
738
739 /* If this name is not in the hash table, add it. */
740 if (*slot == NULL)
741 {
742 char *demangled_name = symbol_find_demangled_name (gsymbol,
743 linkage_name_copy);
744 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
745
746 /* Suppose we have demangled_name==NULL, copy_name==0, and
747 lookup_name==linkage_name. In this case, we already have the
748 mangled name saved, and we don't have a demangled name. So,
749 you might think we could save a little space by not recording
750 this in the hash table at all.
751
752 It turns out that it is actually important to still save such
753 an entry in the hash table, because storing this name gives
754 us better bcache hit rates for partial symbols. */
755 if (!copy_name && lookup_name == linkage_name)
756 {
757 *slot = obstack_alloc (&objfile->objfile_obstack,
758 offsetof (struct demangled_name_entry,
759 demangled)
760 + demangled_len + 1);
761 (*slot)->mangled = (char *) lookup_name;
762 }
763 else
764 {
765 /* If we must copy the mangled name, put it directly after
766 the demangled name so we can have a single
767 allocation. */
768 *slot = obstack_alloc (&objfile->objfile_obstack,
769 offsetof (struct demangled_name_entry,
770 demangled)
771 + lookup_len + demangled_len + 2);
772 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
773 strcpy ((*slot)->mangled, lookup_name);
774 }
775
776 if (demangled_name != NULL)
777 {
778 strcpy ((*slot)->demangled, demangled_name);
779 xfree (demangled_name);
780 }
781 else
782 (*slot)->demangled[0] = '\0';
783 }
784
785 gsymbol->name = (*slot)->mangled + lookup_len - len;
786 if ((*slot)->demangled[0] != '\0')
787 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
788 else
789 symbol_set_demangled_name (gsymbol, NULL, objfile);
790}
791
792/* Return the source code name of a symbol. In languages where
793 demangling is necessary, this is the demangled name. */
794
795char *
796symbol_natural_name (const struct general_symbol_info *gsymbol)
797{
798 switch (gsymbol->language)
799 {
800 case language_cplus:
801 case language_d:
802 case language_java:
803 case language_objc:
804 case language_fortran:
805 if (symbol_get_demangled_name (gsymbol) != NULL)
806 return symbol_get_demangled_name (gsymbol);
807 break;
808 case language_ada:
809 if (symbol_get_demangled_name (gsymbol) != NULL)
810 return symbol_get_demangled_name (gsymbol);
811 else
812 return ada_decode_symbol (gsymbol);
813 break;
814 default:
815 break;
816 }
817 return gsymbol->name;
818}
819
820/* Return the demangled name for a symbol based on the language for
821 that symbol. If no demangled name exists, return NULL. */
822char *
823symbol_demangled_name (const struct general_symbol_info *gsymbol)
824{
825 switch (gsymbol->language)
826 {
827 case language_cplus:
828 case language_d:
829 case language_java:
830 case language_objc:
831 case language_fortran:
832 if (symbol_get_demangled_name (gsymbol) != NULL)
833 return symbol_get_demangled_name (gsymbol);
834 break;
835 case language_ada:
836 if (symbol_get_demangled_name (gsymbol) != NULL)
837 return symbol_get_demangled_name (gsymbol);
838 else
839 return ada_decode_symbol (gsymbol);
840 break;
841 default:
842 break;
843 }
844 return NULL;
845}
846
847/* Return the search name of a symbol---generally the demangled or
848 linkage name of the symbol, depending on how it will be searched for.
849 If there is no distinct demangled name, then returns the same value
850 (same pointer) as SYMBOL_LINKAGE_NAME. */
851char *
852symbol_search_name (const struct general_symbol_info *gsymbol)
853{
854 if (gsymbol->language == language_ada)
855 return gsymbol->name;
856 else
857 return symbol_natural_name (gsymbol);
858}
859
860/* Initialize the structure fields to zero values. */
861void
862init_sal (struct symtab_and_line *sal)
863{
864 sal->pspace = NULL;
865 sal->symtab = 0;
866 sal->section = 0;
867 sal->line = 0;
868 sal->pc = 0;
869 sal->end = 0;
870 sal->explicit_pc = 0;
871 sal->explicit_line = 0;
872}
873\f
874
875/* Return 1 if the two sections are the same, or if they could
876 plausibly be copies of each other, one in an original object
877 file and another in a separated debug file. */
878
879int
880matching_obj_sections (struct obj_section *obj_first,
881 struct obj_section *obj_second)
882{
883 asection *first = obj_first? obj_first->the_bfd_section : NULL;
884 asection *second = obj_second? obj_second->the_bfd_section : NULL;
885 struct objfile *obj;
886
887 /* If they're the same section, then they match. */
888 if (first == second)
889 return 1;
890
891 /* If either is NULL, give up. */
892 if (first == NULL || second == NULL)
893 return 0;
894
895 /* This doesn't apply to absolute symbols. */
896 if (first->owner == NULL || second->owner == NULL)
897 return 0;
898
899 /* If they're in the same object file, they must be different sections. */
900 if (first->owner == second->owner)
901 return 0;
902
903 /* Check whether the two sections are potentially corresponding. They must
904 have the same size, address, and name. We can't compare section indexes,
905 which would be more reliable, because some sections may have been
906 stripped. */
907 if (bfd_get_section_size (first) != bfd_get_section_size (second))
908 return 0;
909
910 /* In-memory addresses may start at a different offset, relativize them. */
911 if (bfd_get_section_vma (first->owner, first)
912 - bfd_get_start_address (first->owner)
913 != bfd_get_section_vma (second->owner, second)
914 - bfd_get_start_address (second->owner))
915 return 0;
916
917 if (bfd_get_section_name (first->owner, first) == NULL
918 || bfd_get_section_name (second->owner, second) == NULL
919 || strcmp (bfd_get_section_name (first->owner, first),
920 bfd_get_section_name (second->owner, second)) != 0)
921 return 0;
922
923 /* Otherwise check that they are in corresponding objfiles. */
924
925 ALL_OBJFILES (obj)
926 if (obj->obfd == first->owner)
927 break;
928 gdb_assert (obj != NULL);
929
930 if (obj->separate_debug_objfile != NULL
931 && obj->separate_debug_objfile->obfd == second->owner)
932 return 1;
933 if (obj->separate_debug_objfile_backlink != NULL
934 && obj->separate_debug_objfile_backlink->obfd == second->owner)
935 return 1;
936
937 return 0;
938}
939
940struct symtab *
941find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
942{
943 struct objfile *objfile;
944 struct minimal_symbol *msymbol;
945
946 /* If we know that this is not a text address, return failure. This is
947 necessary because we loop based on texthigh and textlow, which do
948 not include the data ranges. */
949 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
950 if (msymbol
951 && (MSYMBOL_TYPE (msymbol) == mst_data
952 || MSYMBOL_TYPE (msymbol) == mst_bss
953 || MSYMBOL_TYPE (msymbol) == mst_abs
954 || MSYMBOL_TYPE (msymbol) == mst_file_data
955 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
956 return NULL;
957
958 ALL_OBJFILES (objfile)
959 {
960 struct symtab *result = NULL;
961
962 if (objfile->sf)
963 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
964 pc, section, 0);
965 if (result)
966 return result;
967 }
968
969 return NULL;
970}
971\f
972/* Debug symbols usually don't have section information. We need to dig that
973 out of the minimal symbols and stash that in the debug symbol. */
974
975void
976fixup_section (struct general_symbol_info *ginfo,
977 CORE_ADDR addr, struct objfile *objfile)
978{
979 struct minimal_symbol *msym;
980
981 /* First, check whether a minimal symbol with the same name exists
982 and points to the same address. The address check is required
983 e.g. on PowerPC64, where the minimal symbol for a function will
984 point to the function descriptor, while the debug symbol will
985 point to the actual function code. */
986 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
987 if (msym)
988 {
989 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
990 ginfo->section = SYMBOL_SECTION (msym);
991 }
992 else
993 {
994 /* Static, function-local variables do appear in the linker
995 (minimal) symbols, but are frequently given names that won't
996 be found via lookup_minimal_symbol(). E.g., it has been
997 observed in frv-uclinux (ELF) executables that a static,
998 function-local variable named "foo" might appear in the
999 linker symbols as "foo.6" or "foo.3". Thus, there is no
1000 point in attempting to extend the lookup-by-name mechanism to
1001 handle this case due to the fact that there can be multiple
1002 names.
1003
1004 So, instead, search the section table when lookup by name has
1005 failed. The ``addr'' and ``endaddr'' fields may have already
1006 been relocated. If so, the relocation offset (i.e. the
1007 ANOFFSET value) needs to be subtracted from these values when
1008 performing the comparison. We unconditionally subtract it,
1009 because, when no relocation has been performed, the ANOFFSET
1010 value will simply be zero.
1011
1012 The address of the symbol whose section we're fixing up HAS
1013 NOT BEEN adjusted (relocated) yet. It can't have been since
1014 the section isn't yet known and knowing the section is
1015 necessary in order to add the correct relocation value. In
1016 other words, we wouldn't even be in this function (attempting
1017 to compute the section) if it were already known.
1018
1019 Note that it is possible to search the minimal symbols
1020 (subtracting the relocation value if necessary) to find the
1021 matching minimal symbol, but this is overkill and much less
1022 efficient. It is not necessary to find the matching minimal
1023 symbol, only its section.
1024
1025 Note that this technique (of doing a section table search)
1026 can fail when unrelocated section addresses overlap. For
1027 this reason, we still attempt a lookup by name prior to doing
1028 a search of the section table. */
1029
1030 struct obj_section *s;
1031
1032 ALL_OBJFILE_OSECTIONS (objfile, s)
1033 {
1034 int idx = s->the_bfd_section->index;
1035 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1036
1037 if (obj_section_addr (s) - offset <= addr
1038 && addr < obj_section_endaddr (s) - offset)
1039 {
1040 ginfo->obj_section = s;
1041 ginfo->section = idx;
1042 return;
1043 }
1044 }
1045 }
1046}
1047
1048struct symbol *
1049fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1050{
1051 CORE_ADDR addr;
1052
1053 if (!sym)
1054 return NULL;
1055
1056 if (SYMBOL_OBJ_SECTION (sym))
1057 return sym;
1058
1059 /* We either have an OBJFILE, or we can get at it from the sym's
1060 symtab. Anything else is a bug. */
1061 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1062
1063 if (objfile == NULL)
1064 objfile = SYMBOL_SYMTAB (sym)->objfile;
1065
1066 /* We should have an objfile by now. */
1067 gdb_assert (objfile);
1068
1069 switch (SYMBOL_CLASS (sym))
1070 {
1071 case LOC_STATIC:
1072 case LOC_LABEL:
1073 addr = SYMBOL_VALUE_ADDRESS (sym);
1074 break;
1075 case LOC_BLOCK:
1076 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1077 break;
1078
1079 default:
1080 /* Nothing else will be listed in the minsyms -- no use looking
1081 it up. */
1082 return sym;
1083 }
1084
1085 fixup_section (&sym->ginfo, addr, objfile);
1086
1087 return sym;
1088}
1089
1090/* Compute the demangled form of NAME as used by the various symbol
1091 lookup functions. The result is stored in *RESULT_NAME. Returns a
1092 cleanup which can be used to clean up the result.
1093
1094 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1095 Normally, Ada symbol lookups are performed using the encoded name
1096 rather than the demangled name, and so it might seem to make sense
1097 for this function to return an encoded version of NAME.
1098 Unfortunately, we cannot do this, because this function is used in
1099 circumstances where it is not appropriate to try to encode NAME.
1100 For instance, when displaying the frame info, we demangle the name
1101 of each parameter, and then perform a symbol lookup inside our
1102 function using that demangled name. In Ada, certain functions
1103 have internally-generated parameters whose name contain uppercase
1104 characters. Encoding those name would result in those uppercase
1105 characters to become lowercase, and thus cause the symbol lookup
1106 to fail. */
1107
1108struct cleanup *
1109demangle_for_lookup (const char *name, enum language lang,
1110 const char **result_name)
1111{
1112 char *demangled_name = NULL;
1113 const char *modified_name = NULL;
1114 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1115
1116 modified_name = name;
1117
1118 /* If we are using C++, D, or Java, demangle the name before doing a
1119 lookup, so we can always binary search. */
1120 if (lang == language_cplus)
1121 {
1122 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1123 if (demangled_name)
1124 {
1125 modified_name = demangled_name;
1126 make_cleanup (xfree, demangled_name);
1127 }
1128 else
1129 {
1130 /* If we were given a non-mangled name, canonicalize it
1131 according to the language (so far only for C++). */
1132 demangled_name = cp_canonicalize_string (name);
1133 if (demangled_name)
1134 {
1135 modified_name = demangled_name;
1136 make_cleanup (xfree, demangled_name);
1137 }
1138 }
1139 }
1140 else if (lang == language_java)
1141 {
1142 demangled_name = cplus_demangle (name,
1143 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1144 if (demangled_name)
1145 {
1146 modified_name = demangled_name;
1147 make_cleanup (xfree, demangled_name);
1148 }
1149 }
1150 else if (lang == language_d)
1151 {
1152 demangled_name = d_demangle (name, 0);
1153 if (demangled_name)
1154 {
1155 modified_name = demangled_name;
1156 make_cleanup (xfree, demangled_name);
1157 }
1158 }
1159
1160 *result_name = modified_name;
1161 return cleanup;
1162}
1163
1164/* Find the definition for a specified symbol name NAME
1165 in domain DOMAIN, visible from lexical block BLOCK.
1166 Returns the struct symbol pointer, or zero if no symbol is found.
1167 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1168 NAME is a field of the current implied argument `this'. If so set
1169 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1170 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1171 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1172
1173/* This function has a bunch of loops in it and it would seem to be
1174 attractive to put in some QUIT's (though I'm not really sure
1175 whether it can run long enough to be really important). But there
1176 are a few calls for which it would appear to be bad news to quit
1177 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1178 that there is C++ code below which can error(), but that probably
1179 doesn't affect these calls since they are looking for a known
1180 variable and thus can probably assume it will never hit the C++
1181 code). */
1182
1183struct symbol *
1184lookup_symbol_in_language (const char *name, const struct block *block,
1185 const domain_enum domain, enum language lang,
1186 int *is_a_field_of_this)
1187{
1188 const char *modified_name;
1189 struct symbol *returnval;
1190 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1191
1192 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1193 is_a_field_of_this);
1194 do_cleanups (cleanup);
1195
1196 return returnval;
1197}
1198
1199/* Behave like lookup_symbol_in_language, but performed with the
1200 current language. */
1201
1202struct symbol *
1203lookup_symbol (const char *name, const struct block *block,
1204 domain_enum domain, int *is_a_field_of_this)
1205{
1206 return lookup_symbol_in_language (name, block, domain,
1207 current_language->la_language,
1208 is_a_field_of_this);
1209}
1210
1211/* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1212 found, or NULL if not found. */
1213
1214struct symbol *
1215lookup_language_this (const struct language_defn *lang,
1216 const struct block *block)
1217{
1218 if (lang->la_name_of_this == NULL || block == NULL)
1219 return NULL;
1220
1221 while (block)
1222 {
1223 struct symbol *sym;
1224
1225 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1226 if (sym != NULL)
1227 return sym;
1228 if (BLOCK_FUNCTION (block))
1229 break;
1230 block = BLOCK_SUPERBLOCK (block);
1231 }
1232
1233 return NULL;
1234}
1235
1236/* Behave like lookup_symbol except that NAME is the natural name
1237 of the symbol that we're looking for and, if LINKAGE_NAME is
1238 non-NULL, ensure that the symbol's linkage name matches as
1239 well. */
1240
1241static struct symbol *
1242lookup_symbol_aux (const char *name, const struct block *block,
1243 const domain_enum domain, enum language language,
1244 int *is_a_field_of_this)
1245{
1246 struct symbol *sym;
1247 const struct language_defn *langdef;
1248
1249 /* Make sure we do something sensible with is_a_field_of_this, since
1250 the callers that set this parameter to some non-null value will
1251 certainly use it later and expect it to be either 0 or 1.
1252 If we don't set it, the contents of is_a_field_of_this are
1253 undefined. */
1254 if (is_a_field_of_this != NULL)
1255 *is_a_field_of_this = 0;
1256
1257 /* Search specified block and its superiors. Don't search
1258 STATIC_BLOCK or GLOBAL_BLOCK. */
1259
1260 sym = lookup_symbol_aux_local (name, block, domain, language);
1261 if (sym != NULL)
1262 return sym;
1263
1264 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1265 check to see if NAME is a field of `this'. */
1266
1267 langdef = language_def (language);
1268
1269 if (is_a_field_of_this != NULL)
1270 {
1271 struct symbol *sym = lookup_language_this (langdef, block);
1272
1273 if (sym)
1274 {
1275 struct type *t = sym->type;
1276
1277 /* I'm not really sure that type of this can ever
1278 be typedefed; just be safe. */
1279 CHECK_TYPEDEF (t);
1280 if (TYPE_CODE (t) == TYPE_CODE_PTR
1281 || TYPE_CODE (t) == TYPE_CODE_REF)
1282 t = TYPE_TARGET_TYPE (t);
1283
1284 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1285 && TYPE_CODE (t) != TYPE_CODE_UNION)
1286 error (_("Internal error: `%s' is not an aggregate"),
1287 langdef->la_name_of_this);
1288
1289 if (check_field (t, name))
1290 {
1291 *is_a_field_of_this = 1;
1292 return NULL;
1293 }
1294 }
1295 }
1296
1297 /* Now do whatever is appropriate for LANGUAGE to look
1298 up static and global variables. */
1299
1300 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1301 if (sym != NULL)
1302 return sym;
1303
1304 /* Now search all static file-level symbols. Not strictly correct,
1305 but more useful than an error. */
1306
1307 return lookup_static_symbol_aux (name, domain);
1308}
1309
1310/* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1311 first, then check the psymtabs. If a psymtab indicates the existence of the
1312 desired name as a file-level static, then do psymtab-to-symtab conversion on
1313 the fly and return the found symbol. */
1314
1315struct symbol *
1316lookup_static_symbol_aux (const char *name, const domain_enum domain)
1317{
1318 struct objfile *objfile;
1319 struct symbol *sym;
1320
1321 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1322 if (sym != NULL)
1323 return sym;
1324
1325 ALL_OBJFILES (objfile)
1326 {
1327 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1328 if (sym != NULL)
1329 return sym;
1330 }
1331
1332 return NULL;
1333}
1334
1335/* Check to see if the symbol is defined in BLOCK or its superiors.
1336 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1337
1338static struct symbol *
1339lookup_symbol_aux_local (const char *name, const struct block *block,
1340 const domain_enum domain,
1341 enum language language)
1342{
1343 struct symbol *sym;
1344 const struct block *static_block = block_static_block (block);
1345 const char *scope = block_scope (block);
1346
1347 /* Check if either no block is specified or it's a global block. */
1348
1349 if (static_block == NULL)
1350 return NULL;
1351
1352 while (block != static_block)
1353 {
1354 sym = lookup_symbol_aux_block (name, block, domain);
1355 if (sym != NULL)
1356 return sym;
1357
1358 if (language == language_cplus || language == language_fortran)
1359 {
1360 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1361 domain);
1362 if (sym != NULL)
1363 return sym;
1364 }
1365
1366 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1367 break;
1368 block = BLOCK_SUPERBLOCK (block);
1369 }
1370
1371 /* We've reached the edge of the function without finding a result. */
1372
1373 return NULL;
1374}
1375
1376/* Look up OBJFILE to BLOCK. */
1377
1378struct objfile *
1379lookup_objfile_from_block (const struct block *block)
1380{
1381 struct objfile *obj;
1382 struct symtab *s;
1383
1384 if (block == NULL)
1385 return NULL;
1386
1387 block = block_global_block (block);
1388 /* Go through SYMTABS. */
1389 ALL_SYMTABS (obj, s)
1390 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1391 {
1392 if (obj->separate_debug_objfile_backlink)
1393 obj = obj->separate_debug_objfile_backlink;
1394
1395 return obj;
1396 }
1397
1398 return NULL;
1399}
1400
1401/* Look up a symbol in a block; if found, fixup the symbol, and set
1402 block_found appropriately. */
1403
1404struct symbol *
1405lookup_symbol_aux_block (const char *name, const struct block *block,
1406 const domain_enum domain)
1407{
1408 struct symbol *sym;
1409
1410 sym = lookup_block_symbol (block, name, domain);
1411 if (sym)
1412 {
1413 block_found = block;
1414 return fixup_symbol_section (sym, NULL);
1415 }
1416
1417 return NULL;
1418}
1419
1420/* Check all global symbols in OBJFILE in symtabs and
1421 psymtabs. */
1422
1423struct symbol *
1424lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1425 const char *name,
1426 const domain_enum domain)
1427{
1428 const struct objfile *objfile;
1429 struct symbol *sym;
1430 struct blockvector *bv;
1431 const struct block *block;
1432 struct symtab *s;
1433
1434 for (objfile = main_objfile;
1435 objfile;
1436 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1437 {
1438 /* Go through symtabs. */
1439 ALL_OBJFILE_SYMTABS (objfile, s)
1440 {
1441 bv = BLOCKVECTOR (s);
1442 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1443 sym = lookup_block_symbol (block, name, domain);
1444 if (sym)
1445 {
1446 block_found = block;
1447 return fixup_symbol_section (sym, (struct objfile *)objfile);
1448 }
1449 }
1450
1451 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1452 name, domain);
1453 if (sym)
1454 return sym;
1455 }
1456
1457 return NULL;
1458}
1459
1460/* Check to see if the symbol is defined in one of the symtabs.
1461 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1462 depending on whether or not we want to search global symbols or
1463 static symbols. */
1464
1465static struct symbol *
1466lookup_symbol_aux_symtabs (int block_index, const char *name,
1467 const domain_enum domain)
1468{
1469 struct symbol *sym;
1470 struct objfile *objfile;
1471 struct blockvector *bv;
1472 const struct block *block;
1473 struct symtab *s;
1474
1475 ALL_OBJFILES (objfile)
1476 {
1477 if (objfile->sf)
1478 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1479 block_index,
1480 name, domain);
1481
1482 ALL_OBJFILE_SYMTABS (objfile, s)
1483 if (s->primary)
1484 {
1485 bv = BLOCKVECTOR (s);
1486 block = BLOCKVECTOR_BLOCK (bv, block_index);
1487 sym = lookup_block_symbol (block, name, domain);
1488 if (sym)
1489 {
1490 block_found = block;
1491 return fixup_symbol_section (sym, objfile);
1492 }
1493 }
1494 }
1495
1496 return NULL;
1497}
1498
1499/* A helper function for lookup_symbol_aux that interfaces with the
1500 "quick" symbol table functions. */
1501
1502static struct symbol *
1503lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1504 const char *name, const domain_enum domain)
1505{
1506 struct symtab *symtab;
1507 struct blockvector *bv;
1508 const struct block *block;
1509 struct symbol *sym;
1510
1511 if (!objfile->sf)
1512 return NULL;
1513 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1514 if (!symtab)
1515 return NULL;
1516
1517 bv = BLOCKVECTOR (symtab);
1518 block = BLOCKVECTOR_BLOCK (bv, kind);
1519 sym = lookup_block_symbol (block, name, domain);
1520 if (!sym)
1521 {
1522 /* This shouldn't be necessary, but as a last resort try
1523 looking in the statics even though the psymtab claimed
1524 the symbol was global, or vice-versa. It's possible
1525 that the psymtab gets it wrong in some cases. */
1526
1527 /* FIXME: carlton/2002-09-30: Should we really do that?
1528 If that happens, isn't it likely to be a GDB error, in
1529 which case we should fix the GDB error rather than
1530 silently dealing with it here? So I'd vote for
1531 removing the check for the symbol in the other
1532 block. */
1533 block = BLOCKVECTOR_BLOCK (bv,
1534 kind == GLOBAL_BLOCK ?
1535 STATIC_BLOCK : GLOBAL_BLOCK);
1536 sym = lookup_block_symbol (block, name, domain);
1537 if (!sym)
1538 error (_("\
1539Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1540%s may be an inlined function, or may be a template function\n\
1541(if a template, try specifying an instantiation: %s<type>)."),
1542 kind == GLOBAL_BLOCK ? "global" : "static",
1543 name, symtab->filename, name, name);
1544 }
1545 return fixup_symbol_section (sym, objfile);
1546}
1547
1548/* A default version of lookup_symbol_nonlocal for use by languages
1549 that can't think of anything better to do. This implements the C
1550 lookup rules. */
1551
1552struct symbol *
1553basic_lookup_symbol_nonlocal (const char *name,
1554 const struct block *block,
1555 const domain_enum domain)
1556{
1557 struct symbol *sym;
1558
1559 /* NOTE: carlton/2003-05-19: The comments below were written when
1560 this (or what turned into this) was part of lookup_symbol_aux;
1561 I'm much less worried about these questions now, since these
1562 decisions have turned out well, but I leave these comments here
1563 for posterity. */
1564
1565 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1566 not it would be appropriate to search the current global block
1567 here as well. (That's what this code used to do before the
1568 is_a_field_of_this check was moved up.) On the one hand, it's
1569 redundant with the lookup_symbol_aux_symtabs search that happens
1570 next. On the other hand, if decode_line_1 is passed an argument
1571 like filename:var, then the user presumably wants 'var' to be
1572 searched for in filename. On the third hand, there shouldn't be
1573 multiple global variables all of which are named 'var', and it's
1574 not like decode_line_1 has ever restricted its search to only
1575 global variables in a single filename. All in all, only
1576 searching the static block here seems best: it's correct and it's
1577 cleanest. */
1578
1579 /* NOTE: carlton/2002-12-05: There's also a possible performance
1580 issue here: if you usually search for global symbols in the
1581 current file, then it would be slightly better to search the
1582 current global block before searching all the symtabs. But there
1583 are other factors that have a much greater effect on performance
1584 than that one, so I don't think we should worry about that for
1585 now. */
1586
1587 sym = lookup_symbol_static (name, block, domain);
1588 if (sym != NULL)
1589 return sym;
1590
1591 return lookup_symbol_global (name, block, domain);
1592}
1593
1594/* Lookup a symbol in the static block associated to BLOCK, if there
1595 is one; do nothing if BLOCK is NULL or a global block. */
1596
1597struct symbol *
1598lookup_symbol_static (const char *name,
1599 const struct block *block,
1600 const domain_enum domain)
1601{
1602 const struct block *static_block = block_static_block (block);
1603
1604 if (static_block != NULL)
1605 return lookup_symbol_aux_block (name, static_block, domain);
1606 else
1607 return NULL;
1608}
1609
1610/* Lookup a symbol in all files' global blocks (searching psymtabs if
1611 necessary). */
1612
1613struct symbol *
1614lookup_symbol_global (const char *name,
1615 const struct block *block,
1616 const domain_enum domain)
1617{
1618 struct symbol *sym = NULL;
1619 struct objfile *objfile = NULL;
1620
1621 /* Call library-specific lookup procedure. */
1622 objfile = lookup_objfile_from_block (block);
1623 if (objfile != NULL)
1624 sym = solib_global_lookup (objfile, name, domain);
1625 if (sym != NULL)
1626 return sym;
1627
1628 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1629 if (sym != NULL)
1630 return sym;
1631
1632 ALL_OBJFILES (objfile)
1633 {
1634 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1635 if (sym)
1636 return sym;
1637 }
1638
1639 return NULL;
1640}
1641
1642int
1643symbol_matches_domain (enum language symbol_language,
1644 domain_enum symbol_domain,
1645 domain_enum domain)
1646{
1647 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1648 A Java class declaration also defines a typedef for the class.
1649 Similarly, any Ada type declaration implicitly defines a typedef. */
1650 if (symbol_language == language_cplus
1651 || symbol_language == language_d
1652 || symbol_language == language_java
1653 || symbol_language == language_ada)
1654 {
1655 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1656 && symbol_domain == STRUCT_DOMAIN)
1657 return 1;
1658 }
1659 /* For all other languages, strict match is required. */
1660 return (symbol_domain == domain);
1661}
1662
1663/* Look up a type named NAME in the struct_domain. The type returned
1664 must not be opaque -- i.e., must have at least one field
1665 defined. */
1666
1667struct type *
1668lookup_transparent_type (const char *name)
1669{
1670 return current_language->la_lookup_transparent_type (name);
1671}
1672
1673/* A helper for basic_lookup_transparent_type that interfaces with the
1674 "quick" symbol table functions. */
1675
1676static struct type *
1677basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1678 const char *name)
1679{
1680 struct symtab *symtab;
1681 struct blockvector *bv;
1682 struct block *block;
1683 struct symbol *sym;
1684
1685 if (!objfile->sf)
1686 return NULL;
1687 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1688 if (!symtab)
1689 return NULL;
1690
1691 bv = BLOCKVECTOR (symtab);
1692 block = BLOCKVECTOR_BLOCK (bv, kind);
1693 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1694 if (!sym)
1695 {
1696 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1697
1698 /* This shouldn't be necessary, but as a last resort
1699 * try looking in the 'other kind' even though the psymtab
1700 * claimed the symbol was one thing. It's possible that
1701 * the psymtab gets it wrong in some cases.
1702 */
1703 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1704 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1705 if (!sym)
1706 /* FIXME; error is wrong in one case. */
1707 error (_("\
1708Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1709%s may be an inlined function, or may be a template function\n\
1710(if a template, try specifying an instantiation: %s<type>)."),
1711 name, symtab->filename, name, name);
1712 }
1713 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1714 return SYMBOL_TYPE (sym);
1715
1716 return NULL;
1717}
1718
1719/* The standard implementation of lookup_transparent_type. This code
1720 was modeled on lookup_symbol -- the parts not relevant to looking
1721 up types were just left out. In particular it's assumed here that
1722 types are available in struct_domain and only at file-static or
1723 global blocks. */
1724
1725struct type *
1726basic_lookup_transparent_type (const char *name)
1727{
1728 struct symbol *sym;
1729 struct symtab *s = NULL;
1730 struct blockvector *bv;
1731 struct objfile *objfile;
1732 struct block *block;
1733 struct type *t;
1734
1735 /* Now search all the global symbols. Do the symtab's first, then
1736 check the psymtab's. If a psymtab indicates the existence
1737 of the desired name as a global, then do psymtab-to-symtab
1738 conversion on the fly and return the found symbol. */
1739
1740 ALL_OBJFILES (objfile)
1741 {
1742 if (objfile->sf)
1743 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1744 GLOBAL_BLOCK,
1745 name, STRUCT_DOMAIN);
1746
1747 ALL_OBJFILE_SYMTABS (objfile, s)
1748 if (s->primary)
1749 {
1750 bv = BLOCKVECTOR (s);
1751 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1752 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1753 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1754 {
1755 return SYMBOL_TYPE (sym);
1756 }
1757 }
1758 }
1759
1760 ALL_OBJFILES (objfile)
1761 {
1762 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1763 if (t)
1764 return t;
1765 }
1766
1767 /* Now search the static file-level symbols.
1768 Not strictly correct, but more useful than an error.
1769 Do the symtab's first, then
1770 check the psymtab's. If a psymtab indicates the existence
1771 of the desired name as a file-level static, then do psymtab-to-symtab
1772 conversion on the fly and return the found symbol. */
1773
1774 ALL_OBJFILES (objfile)
1775 {
1776 if (objfile->sf)
1777 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1778 name, STRUCT_DOMAIN);
1779
1780 ALL_OBJFILE_SYMTABS (objfile, s)
1781 {
1782 bv = BLOCKVECTOR (s);
1783 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1784 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1785 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1786 {
1787 return SYMBOL_TYPE (sym);
1788 }
1789 }
1790 }
1791
1792 ALL_OBJFILES (objfile)
1793 {
1794 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1795 if (t)
1796 return t;
1797 }
1798
1799 return (struct type *) 0;
1800}
1801
1802
1803/* Find the name of the file containing main(). */
1804/* FIXME: What about languages without main() or specially linked
1805 executables that have no main() ? */
1806
1807const char *
1808find_main_filename (void)
1809{
1810 struct objfile *objfile;
1811 char *name = main_name ();
1812
1813 ALL_OBJFILES (objfile)
1814 {
1815 const char *result;
1816
1817 if (!objfile->sf)
1818 continue;
1819 result = objfile->sf->qf->find_symbol_file (objfile, name);
1820 if (result)
1821 return result;
1822 }
1823 return (NULL);
1824}
1825
1826/* Search BLOCK for symbol NAME in DOMAIN.
1827
1828 Note that if NAME is the demangled form of a C++ symbol, we will fail
1829 to find a match during the binary search of the non-encoded names, but
1830 for now we don't worry about the slight inefficiency of looking for
1831 a match we'll never find, since it will go pretty quick. Once the
1832 binary search terminates, we drop through and do a straight linear
1833 search on the symbols. Each symbol which is marked as being a ObjC/C++
1834 symbol (language_cplus or language_objc set) has both the encoded and
1835 non-encoded names tested for a match. */
1836
1837struct symbol *
1838lookup_block_symbol (const struct block *block, const char *name,
1839 const domain_enum domain)
1840{
1841 struct dict_iterator iter;
1842 struct symbol *sym;
1843
1844 if (!BLOCK_FUNCTION (block))
1845 {
1846 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1847 sym != NULL;
1848 sym = dict_iter_name_next (name, &iter))
1849 {
1850 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1851 SYMBOL_DOMAIN (sym), domain))
1852 return sym;
1853 }
1854 return NULL;
1855 }
1856 else
1857 {
1858 /* Note that parameter symbols do not always show up last in the
1859 list; this loop makes sure to take anything else other than
1860 parameter symbols first; it only uses parameter symbols as a
1861 last resort. Note that this only takes up extra computation
1862 time on a match. */
1863
1864 struct symbol *sym_found = NULL;
1865
1866 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1867 sym != NULL;
1868 sym = dict_iter_name_next (name, &iter))
1869 {
1870 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1871 SYMBOL_DOMAIN (sym), domain))
1872 {
1873 sym_found = sym;
1874 if (!SYMBOL_IS_ARGUMENT (sym))
1875 {
1876 break;
1877 }
1878 }
1879 }
1880 return (sym_found); /* Will be NULL if not found. */
1881 }
1882}
1883
1884/* Iterate over the symbols named NAME, matching DOMAIN, starting with
1885 BLOCK.
1886
1887 For each symbol that matches, CALLBACK is called. The symbol and
1888 DATA are passed to the callback.
1889
1890 If CALLBACK returns zero, the iteration ends. Otherwise, the
1891 search continues. This function iterates upward through blocks.
1892 When the outermost block has been finished, the function
1893 returns. */
1894
1895void
1896iterate_over_symbols (const struct block *block, const char *name,
1897 const domain_enum domain,
1898 int (*callback) (struct symbol *, void *),
1899 void *data)
1900{
1901 while (block)
1902 {
1903 struct dict_iterator iter;
1904 struct symbol *sym;
1905
1906 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1907 sym != NULL;
1908 sym = dict_iter_name_next (name, &iter))
1909 {
1910 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1911 SYMBOL_DOMAIN (sym), domain))
1912 {
1913 if (!callback (sym, data))
1914 return;
1915 }
1916 }
1917
1918 block = BLOCK_SUPERBLOCK (block);
1919 }
1920}
1921
1922/* Find the symtab associated with PC and SECTION. Look through the
1923 psymtabs and read in another symtab if necessary. */
1924
1925struct symtab *
1926find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1927{
1928 struct block *b;
1929 struct blockvector *bv;
1930 struct symtab *s = NULL;
1931 struct symtab *best_s = NULL;
1932 struct objfile *objfile;
1933 struct program_space *pspace;
1934 CORE_ADDR distance = 0;
1935 struct minimal_symbol *msymbol;
1936
1937 pspace = current_program_space;
1938
1939 /* If we know that this is not a text address, return failure. This is
1940 necessary because we loop based on the block's high and low code
1941 addresses, which do not include the data ranges, and because
1942 we call find_pc_sect_psymtab which has a similar restriction based
1943 on the partial_symtab's texthigh and textlow. */
1944 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1945 if (msymbol
1946 && (MSYMBOL_TYPE (msymbol) == mst_data
1947 || MSYMBOL_TYPE (msymbol) == mst_bss
1948 || MSYMBOL_TYPE (msymbol) == mst_abs
1949 || MSYMBOL_TYPE (msymbol) == mst_file_data
1950 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1951 return NULL;
1952
1953 /* Search all symtabs for the one whose file contains our address, and which
1954 is the smallest of all the ones containing the address. This is designed
1955 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1956 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1957 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1958
1959 This happens for native ecoff format, where code from included files
1960 gets its own symtab. The symtab for the included file should have
1961 been read in already via the dependency mechanism.
1962 It might be swifter to create several symtabs with the same name
1963 like xcoff does (I'm not sure).
1964
1965 It also happens for objfiles that have their functions reordered.
1966 For these, the symtab we are looking for is not necessarily read in. */
1967
1968 ALL_PRIMARY_SYMTABS (objfile, s)
1969 {
1970 bv = BLOCKVECTOR (s);
1971 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1972
1973 if (BLOCK_START (b) <= pc
1974 && BLOCK_END (b) > pc
1975 && (distance == 0
1976 || BLOCK_END (b) - BLOCK_START (b) < distance))
1977 {
1978 /* For an objfile that has its functions reordered,
1979 find_pc_psymtab will find the proper partial symbol table
1980 and we simply return its corresponding symtab. */
1981 /* In order to better support objfiles that contain both
1982 stabs and coff debugging info, we continue on if a psymtab
1983 can't be found. */
1984 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1985 {
1986 struct symtab *result;
1987
1988 result
1989 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1990 msymbol,
1991 pc, section,
1992 0);
1993 if (result)
1994 return result;
1995 }
1996 if (section != 0)
1997 {
1998 struct dict_iterator iter;
1999 struct symbol *sym = NULL;
2000
2001 ALL_BLOCK_SYMBOLS (b, iter, sym)
2002 {
2003 fixup_symbol_section (sym, objfile);
2004 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2005 break;
2006 }
2007 if (sym == NULL)
2008 continue; /* No symbol in this symtab matches
2009 section. */
2010 }
2011 distance = BLOCK_END (b) - BLOCK_START (b);
2012 best_s = s;
2013 }
2014 }
2015
2016 if (best_s != NULL)
2017 return (best_s);
2018
2019 ALL_OBJFILES (objfile)
2020 {
2021 struct symtab *result;
2022
2023 if (!objfile->sf)
2024 continue;
2025 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2026 msymbol,
2027 pc, section,
2028 1);
2029 if (result)
2030 return result;
2031 }
2032
2033 return NULL;
2034}
2035
2036/* Find the symtab associated with PC. Look through the psymtabs and read
2037 in another symtab if necessary. Backward compatibility, no section. */
2038
2039struct symtab *
2040find_pc_symtab (CORE_ADDR pc)
2041{
2042 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2043}
2044\f
2045
2046/* Find the source file and line number for a given PC value and SECTION.
2047 Return a structure containing a symtab pointer, a line number,
2048 and a pc range for the entire source line.
2049 The value's .pc field is NOT the specified pc.
2050 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2051 use the line that ends there. Otherwise, in that case, the line
2052 that begins there is used. */
2053
2054/* The big complication here is that a line may start in one file, and end just
2055 before the start of another file. This usually occurs when you #include
2056 code in the middle of a subroutine. To properly find the end of a line's PC
2057 range, we must search all symtabs associated with this compilation unit, and
2058 find the one whose first PC is closer than that of the next line in this
2059 symtab. */
2060
2061/* If it's worth the effort, we could be using a binary search. */
2062
2063struct symtab_and_line
2064find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2065{
2066 struct symtab *s;
2067 struct linetable *l;
2068 int len;
2069 int i;
2070 struct linetable_entry *item;
2071 struct symtab_and_line val;
2072 struct blockvector *bv;
2073 struct minimal_symbol *msymbol;
2074 struct minimal_symbol *mfunsym;
2075 struct objfile *objfile;
2076
2077 /* Info on best line seen so far, and where it starts, and its file. */
2078
2079 struct linetable_entry *best = NULL;
2080 CORE_ADDR best_end = 0;
2081 struct symtab *best_symtab = 0;
2082
2083 /* Store here the first line number
2084 of a file which contains the line at the smallest pc after PC.
2085 If we don't find a line whose range contains PC,
2086 we will use a line one less than this,
2087 with a range from the start of that file to the first line's pc. */
2088 struct linetable_entry *alt = NULL;
2089 struct symtab *alt_symtab = 0;
2090
2091 /* Info on best line seen in this file. */
2092
2093 struct linetable_entry *prev;
2094
2095 /* If this pc is not from the current frame,
2096 it is the address of the end of a call instruction.
2097 Quite likely that is the start of the following statement.
2098 But what we want is the statement containing the instruction.
2099 Fudge the pc to make sure we get that. */
2100
2101 init_sal (&val); /* initialize to zeroes */
2102
2103 val.pspace = current_program_space;
2104
2105 /* It's tempting to assume that, if we can't find debugging info for
2106 any function enclosing PC, that we shouldn't search for line
2107 number info, either. However, GAS can emit line number info for
2108 assembly files --- very helpful when debugging hand-written
2109 assembly code. In such a case, we'd have no debug info for the
2110 function, but we would have line info. */
2111
2112 if (notcurrent)
2113 pc -= 1;
2114
2115 /* elz: added this because this function returned the wrong
2116 information if the pc belongs to a stub (import/export)
2117 to call a shlib function. This stub would be anywhere between
2118 two functions in the target, and the line info was erroneously
2119 taken to be the one of the line before the pc. */
2120
2121 /* RT: Further explanation:
2122
2123 * We have stubs (trampolines) inserted between procedures.
2124 *
2125 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2126 * exists in the main image.
2127 *
2128 * In the minimal symbol table, we have a bunch of symbols
2129 * sorted by start address. The stubs are marked as "trampoline",
2130 * the others appear as text. E.g.:
2131 *
2132 * Minimal symbol table for main image
2133 * main: code for main (text symbol)
2134 * shr1: stub (trampoline symbol)
2135 * foo: code for foo (text symbol)
2136 * ...
2137 * Minimal symbol table for "shr1" image:
2138 * ...
2139 * shr1: code for shr1 (text symbol)
2140 * ...
2141 *
2142 * So the code below is trying to detect if we are in the stub
2143 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2144 * and if found, do the symbolization from the real-code address
2145 * rather than the stub address.
2146 *
2147 * Assumptions being made about the minimal symbol table:
2148 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2149 * if we're really in the trampoline.s If we're beyond it (say
2150 * we're in "foo" in the above example), it'll have a closer
2151 * symbol (the "foo" text symbol for example) and will not
2152 * return the trampoline.
2153 * 2. lookup_minimal_symbol_text() will find a real text symbol
2154 * corresponding to the trampoline, and whose address will
2155 * be different than the trampoline address. I put in a sanity
2156 * check for the address being the same, to avoid an
2157 * infinite recursion.
2158 */
2159 msymbol = lookup_minimal_symbol_by_pc (pc);
2160 if (msymbol != NULL)
2161 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2162 {
2163 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2164 NULL);
2165 if (mfunsym == NULL)
2166 /* I eliminated this warning since it is coming out
2167 * in the following situation:
2168 * gdb shmain // test program with shared libraries
2169 * (gdb) break shr1 // function in shared lib
2170 * Warning: In stub for ...
2171 * In the above situation, the shared lib is not loaded yet,
2172 * so of course we can't find the real func/line info,
2173 * but the "break" still works, and the warning is annoying.
2174 * So I commented out the warning. RT */
2175 /* warning ("In stub for %s; unable to find real function/line info",
2176 SYMBOL_LINKAGE_NAME (msymbol)); */
2177 ;
2178 /* fall through */
2179 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2180 == SYMBOL_VALUE_ADDRESS (msymbol))
2181 /* Avoid infinite recursion */
2182 /* See above comment about why warning is commented out. */
2183 /* warning ("In stub for %s; unable to find real function/line info",
2184 SYMBOL_LINKAGE_NAME (msymbol)); */
2185 ;
2186 /* fall through */
2187 else
2188 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2189 }
2190
2191
2192 s = find_pc_sect_symtab (pc, section);
2193 if (!s)
2194 {
2195 /* If no symbol information, return previous pc. */
2196 if (notcurrent)
2197 pc++;
2198 val.pc = pc;
2199 return val;
2200 }
2201
2202 bv = BLOCKVECTOR (s);
2203 objfile = s->objfile;
2204
2205 /* Look at all the symtabs that share this blockvector.
2206 They all have the same apriori range, that we found was right;
2207 but they have different line tables. */
2208
2209 ALL_OBJFILE_SYMTABS (objfile, s)
2210 {
2211 if (BLOCKVECTOR (s) != bv)
2212 continue;
2213
2214 /* Find the best line in this symtab. */
2215 l = LINETABLE (s);
2216 if (!l)
2217 continue;
2218 len = l->nitems;
2219 if (len <= 0)
2220 {
2221 /* I think len can be zero if the symtab lacks line numbers
2222 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2223 I'm not sure which, and maybe it depends on the symbol
2224 reader). */
2225 continue;
2226 }
2227
2228 prev = NULL;
2229 item = l->item; /* Get first line info. */
2230
2231 /* Is this file's first line closer than the first lines of other files?
2232 If so, record this file, and its first line, as best alternate. */
2233 if (item->pc > pc && (!alt || item->pc < alt->pc))
2234 {
2235 alt = item;
2236 alt_symtab = s;
2237 }
2238
2239 for (i = 0; i < len; i++, item++)
2240 {
2241 /* Leave prev pointing to the linetable entry for the last line
2242 that started at or before PC. */
2243 if (item->pc > pc)
2244 break;
2245
2246 prev = item;
2247 }
2248
2249 /* At this point, prev points at the line whose start addr is <= pc, and
2250 item points at the next line. If we ran off the end of the linetable
2251 (pc >= start of the last line), then prev == item. If pc < start of
2252 the first line, prev will not be set. */
2253
2254 /* Is this file's best line closer than the best in the other files?
2255 If so, record this file, and its best line, as best so far. Don't
2256 save prev if it represents the end of a function (i.e. line number
2257 0) instead of a real line. */
2258
2259 if (prev && prev->line && (!best || prev->pc > best->pc))
2260 {
2261 best = prev;
2262 best_symtab = s;
2263
2264 /* Discard BEST_END if it's before the PC of the current BEST. */
2265 if (best_end <= best->pc)
2266 best_end = 0;
2267 }
2268
2269 /* If another line (denoted by ITEM) is in the linetable and its
2270 PC is after BEST's PC, but before the current BEST_END, then
2271 use ITEM's PC as the new best_end. */
2272 if (best && i < len && item->pc > best->pc
2273 && (best_end == 0 || best_end > item->pc))
2274 best_end = item->pc;
2275 }
2276
2277 if (!best_symtab)
2278 {
2279 /* If we didn't find any line number info, just return zeros.
2280 We used to return alt->line - 1 here, but that could be
2281 anywhere; if we don't have line number info for this PC,
2282 don't make some up. */
2283 val.pc = pc;
2284 }
2285 else if (best->line == 0)
2286 {
2287 /* If our best fit is in a range of PC's for which no line
2288 number info is available (line number is zero) then we didn't
2289 find any valid line information. */
2290 val.pc = pc;
2291 }
2292 else
2293 {
2294 val.symtab = best_symtab;
2295 val.line = best->line;
2296 val.pc = best->pc;
2297 if (best_end && (!alt || best_end < alt->pc))
2298 val.end = best_end;
2299 else if (alt)
2300 val.end = alt->pc;
2301 else
2302 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2303 }
2304 val.section = section;
2305 return val;
2306}
2307
2308/* Backward compatibility (no section). */
2309
2310struct symtab_and_line
2311find_pc_line (CORE_ADDR pc, int notcurrent)
2312{
2313 struct obj_section *section;
2314
2315 section = find_pc_overlay (pc);
2316 if (pc_in_unmapped_range (pc, section))
2317 pc = overlay_mapped_address (pc, section);
2318 return find_pc_sect_line (pc, section, notcurrent);
2319}
2320\f
2321/* Find line number LINE in any symtab whose name is the same as
2322 SYMTAB.
2323
2324 If found, return the symtab that contains the linetable in which it was
2325 found, set *INDEX to the index in the linetable of the best entry
2326 found, and set *EXACT_MATCH nonzero if the value returned is an
2327 exact match.
2328
2329 If not found, return NULL. */
2330
2331struct symtab *
2332find_line_symtab (struct symtab *symtab, int line,
2333 int *index, int *exact_match)
2334{
2335 int exact = 0; /* Initialized here to avoid a compiler warning. */
2336
2337 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2338 so far seen. */
2339
2340 int best_index;
2341 struct linetable *best_linetable;
2342 struct symtab *best_symtab;
2343
2344 /* First try looking it up in the given symtab. */
2345 best_linetable = LINETABLE (symtab);
2346 best_symtab = symtab;
2347 best_index = find_line_common (best_linetable, line, &exact, 0);
2348 if (best_index < 0 || !exact)
2349 {
2350 /* Didn't find an exact match. So we better keep looking for
2351 another symtab with the same name. In the case of xcoff,
2352 multiple csects for one source file (produced by IBM's FORTRAN
2353 compiler) produce multiple symtabs (this is unavoidable
2354 assuming csects can be at arbitrary places in memory and that
2355 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2356
2357 /* BEST is the smallest linenumber > LINE so far seen,
2358 or 0 if none has been seen so far.
2359 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2360 int best;
2361
2362 struct objfile *objfile;
2363 struct symtab *s;
2364
2365 if (best_index >= 0)
2366 best = best_linetable->item[best_index].line;
2367 else
2368 best = 0;
2369
2370 ALL_OBJFILES (objfile)
2371 {
2372 if (objfile->sf)
2373 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2374 symtab->filename);
2375 }
2376
2377 /* Get symbol full file name if possible. */
2378 symtab_to_fullname (symtab);
2379
2380 ALL_SYMTABS (objfile, s)
2381 {
2382 struct linetable *l;
2383 int ind;
2384
2385 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2386 continue;
2387 if (symtab->fullname != NULL
2388 && symtab_to_fullname (s) != NULL
2389 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2390 continue;
2391 l = LINETABLE (s);
2392 ind = find_line_common (l, line, &exact, 0);
2393 if (ind >= 0)
2394 {
2395 if (exact)
2396 {
2397 best_index = ind;
2398 best_linetable = l;
2399 best_symtab = s;
2400 goto done;
2401 }
2402 if (best == 0 || l->item[ind].line < best)
2403 {
2404 best = l->item[ind].line;
2405 best_index = ind;
2406 best_linetable = l;
2407 best_symtab = s;
2408 }
2409 }
2410 }
2411 }
2412done:
2413 if (best_index < 0)
2414 return NULL;
2415
2416 if (index)
2417 *index = best_index;
2418 if (exact_match)
2419 *exact_match = exact;
2420
2421 return best_symtab;
2422}
2423
2424/* Given SYMTAB, returns all the PCs function in the symtab that
2425 exactly match LINE. Returns NULL if there are no exact matches,
2426 but updates BEST_ITEM in this case. */
2427
2428VEC (CORE_ADDR) *
2429find_pcs_for_symtab_line (struct symtab *symtab, int line,
2430 struct linetable_entry **best_item)
2431{
2432 int start = 0, ix;
2433 struct symbol *previous_function = NULL;
2434 VEC (CORE_ADDR) *result = NULL;
2435
2436 /* First, collect all the PCs that are at this line. */
2437 while (1)
2438 {
2439 int was_exact;
2440 int idx;
2441
2442 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2443 if (idx < 0)
2444 break;
2445
2446 if (!was_exact)
2447 {
2448 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2449
2450 if (*best_item == NULL || item->line < (*best_item)->line)
2451 *best_item = item;
2452
2453 break;
2454 }
2455
2456 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2457 start = idx + 1;
2458 }
2459
2460 return result;
2461}
2462
2463\f
2464/* Set the PC value for a given source file and line number and return true.
2465 Returns zero for invalid line number (and sets the PC to 0).
2466 The source file is specified with a struct symtab. */
2467
2468int
2469find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2470{
2471 struct linetable *l;
2472 int ind;
2473
2474 *pc = 0;
2475 if (symtab == 0)
2476 return 0;
2477
2478 symtab = find_line_symtab (symtab, line, &ind, NULL);
2479 if (symtab != NULL)
2480 {
2481 l = LINETABLE (symtab);
2482 *pc = l->item[ind].pc;
2483 return 1;
2484 }
2485 else
2486 return 0;
2487}
2488
2489/* Find the range of pc values in a line.
2490 Store the starting pc of the line into *STARTPTR
2491 and the ending pc (start of next line) into *ENDPTR.
2492 Returns 1 to indicate success.
2493 Returns 0 if could not find the specified line. */
2494
2495int
2496find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2497 CORE_ADDR *endptr)
2498{
2499 CORE_ADDR startaddr;
2500 struct symtab_and_line found_sal;
2501
2502 startaddr = sal.pc;
2503 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2504 return 0;
2505
2506 /* This whole function is based on address. For example, if line 10 has
2507 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2508 "info line *0x123" should say the line goes from 0x100 to 0x200
2509 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2510 This also insures that we never give a range like "starts at 0x134
2511 and ends at 0x12c". */
2512
2513 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2514 if (found_sal.line != sal.line)
2515 {
2516 /* The specified line (sal) has zero bytes. */
2517 *startptr = found_sal.pc;
2518 *endptr = found_sal.pc;
2519 }
2520 else
2521 {
2522 *startptr = found_sal.pc;
2523 *endptr = found_sal.end;
2524 }
2525 return 1;
2526}
2527
2528/* Given a line table and a line number, return the index into the line
2529 table for the pc of the nearest line whose number is >= the specified one.
2530 Return -1 if none is found. The value is >= 0 if it is an index.
2531 START is the index at which to start searching the line table.
2532
2533 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2534
2535static int
2536find_line_common (struct linetable *l, int lineno,
2537 int *exact_match, int start)
2538{
2539 int i;
2540 int len;
2541
2542 /* BEST is the smallest linenumber > LINENO so far seen,
2543 or 0 if none has been seen so far.
2544 BEST_INDEX identifies the item for it. */
2545
2546 int best_index = -1;
2547 int best = 0;
2548
2549 *exact_match = 0;
2550
2551 if (lineno <= 0)
2552 return -1;
2553 if (l == 0)
2554 return -1;
2555
2556 len = l->nitems;
2557 for (i = start; i < len; i++)
2558 {
2559 struct linetable_entry *item = &(l->item[i]);
2560
2561 if (item->line == lineno)
2562 {
2563 /* Return the first (lowest address) entry which matches. */
2564 *exact_match = 1;
2565 return i;
2566 }
2567
2568 if (item->line > lineno && (best == 0 || item->line < best))
2569 {
2570 best = item->line;
2571 best_index = i;
2572 }
2573 }
2574
2575 /* If we got here, we didn't get an exact match. */
2576 return best_index;
2577}
2578
2579int
2580find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2581{
2582 struct symtab_and_line sal;
2583
2584 sal = find_pc_line (pc, 0);
2585 *startptr = sal.pc;
2586 *endptr = sal.end;
2587 return sal.symtab != 0;
2588}
2589
2590/* Given a function start address FUNC_ADDR and SYMTAB, find the first
2591 address for that function that has an entry in SYMTAB's line info
2592 table. If such an entry cannot be found, return FUNC_ADDR
2593 unaltered. */
2594CORE_ADDR
2595skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2596{
2597 CORE_ADDR func_start, func_end;
2598 struct linetable *l;
2599 int i;
2600
2601 /* Give up if this symbol has no lineinfo table. */
2602 l = LINETABLE (symtab);
2603 if (l == NULL)
2604 return func_addr;
2605
2606 /* Get the range for the function's PC values, or give up if we
2607 cannot, for some reason. */
2608 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2609 return func_addr;
2610
2611 /* Linetable entries are ordered by PC values, see the commentary in
2612 symtab.h where `struct linetable' is defined. Thus, the first
2613 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2614 address we are looking for. */
2615 for (i = 0; i < l->nitems; i++)
2616 {
2617 struct linetable_entry *item = &(l->item[i]);
2618
2619 /* Don't use line numbers of zero, they mark special entries in
2620 the table. See the commentary on symtab.h before the
2621 definition of struct linetable. */
2622 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2623 return item->pc;
2624 }
2625
2626 return func_addr;
2627}
2628
2629/* Given a function symbol SYM, find the symtab and line for the start
2630 of the function.
2631 If the argument FUNFIRSTLINE is nonzero, we want the first line
2632 of real code inside the function. */
2633
2634struct symtab_and_line
2635find_function_start_sal (struct symbol *sym, int funfirstline)
2636{
2637 struct symtab_and_line sal;
2638
2639 fixup_symbol_section (sym, NULL);
2640 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2641 SYMBOL_OBJ_SECTION (sym), 0);
2642
2643 /* We always should have a line for the function start address.
2644 If we don't, something is odd. Create a plain SAL refering
2645 just the PC and hope that skip_prologue_sal (if requested)
2646 can find a line number for after the prologue. */
2647 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2648 {
2649 init_sal (&sal);
2650 sal.pspace = current_program_space;
2651 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2652 sal.section = SYMBOL_OBJ_SECTION (sym);
2653 }
2654
2655 if (funfirstline)
2656 skip_prologue_sal (&sal);
2657
2658 return sal;
2659}
2660
2661/* Adjust SAL to the first instruction past the function prologue.
2662 If the PC was explicitly specified, the SAL is not changed.
2663 If the line number was explicitly specified, at most the SAL's PC
2664 is updated. If SAL is already past the prologue, then do nothing. */
2665void
2666skip_prologue_sal (struct symtab_and_line *sal)
2667{
2668 struct symbol *sym;
2669 struct symtab_and_line start_sal;
2670 struct cleanup *old_chain;
2671 CORE_ADDR pc, saved_pc;
2672 struct obj_section *section;
2673 const char *name;
2674 struct objfile *objfile;
2675 struct gdbarch *gdbarch;
2676 struct block *b, *function_block;
2677 int force_skip, skip;
2678
2679 /* Do not change the SAL is PC was specified explicitly. */
2680 if (sal->explicit_pc)
2681 return;
2682
2683 old_chain = save_current_space_and_thread ();
2684 switch_to_program_space_and_thread (sal->pspace);
2685
2686 sym = find_pc_sect_function (sal->pc, sal->section);
2687 if (sym != NULL)
2688 {
2689 fixup_symbol_section (sym, NULL);
2690
2691 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2692 section = SYMBOL_OBJ_SECTION (sym);
2693 name = SYMBOL_LINKAGE_NAME (sym);
2694 objfile = SYMBOL_SYMTAB (sym)->objfile;
2695 }
2696 else
2697 {
2698 struct minimal_symbol *msymbol
2699 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2700
2701 if (msymbol == NULL)
2702 {
2703 do_cleanups (old_chain);
2704 return;
2705 }
2706
2707 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2708 section = SYMBOL_OBJ_SECTION (msymbol);
2709 name = SYMBOL_LINKAGE_NAME (msymbol);
2710 objfile = msymbol_objfile (msymbol);
2711 }
2712
2713 gdbarch = get_objfile_arch (objfile);
2714
2715 /* Process the prologue in two passes. In the first pass try to skip the
2716 prologue (SKIP is true) and verify there is a real need for it (indicated
2717 by FORCE_SKIP). If no such reason was found run a second pass where the
2718 prologue is not skipped (SKIP is false). */
2719
2720 skip = 1;
2721 force_skip = 1;
2722
2723 /* Be conservative - allow direct PC (without skipping prologue) only if we
2724 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2725 have to be set by the caller so we use SYM instead. */
2726 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2727 force_skip = 0;
2728
2729 saved_pc = pc;
2730 do
2731 {
2732 pc = saved_pc;
2733
2734 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2735 so that gdbarch_skip_prologue has something unique to work on. */
2736 if (section_is_overlay (section) && !section_is_mapped (section))
2737 pc = overlay_unmapped_address (pc, section);
2738
2739 /* Skip "first line" of function (which is actually its prologue). */
2740 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2741 if (skip)
2742 pc = gdbarch_skip_prologue (gdbarch, pc);
2743
2744 /* For overlays, map pc back into its mapped VMA range. */
2745 pc = overlay_mapped_address (pc, section);
2746
2747 /* Calculate line number. */
2748 start_sal = find_pc_sect_line (pc, section, 0);
2749
2750 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2751 line is still part of the same function. */
2752 if (skip && start_sal.pc != pc
2753 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2754 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2755 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2756 == lookup_minimal_symbol_by_pc_section (pc, section))))
2757 {
2758 /* First pc of next line */
2759 pc = start_sal.end;
2760 /* Recalculate the line number (might not be N+1). */
2761 start_sal = find_pc_sect_line (pc, section, 0);
2762 }
2763
2764 /* On targets with executable formats that don't have a concept of
2765 constructors (ELF with .init has, PE doesn't), gcc emits a call
2766 to `__main' in `main' between the prologue and before user
2767 code. */
2768 if (gdbarch_skip_main_prologue_p (gdbarch)
2769 && name && strcmp (name, "main") == 0)
2770 {
2771 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2772 /* Recalculate the line number (might not be N+1). */
2773 start_sal = find_pc_sect_line (pc, section, 0);
2774 force_skip = 1;
2775 }
2776 }
2777 while (!force_skip && skip--);
2778
2779 /* If we still don't have a valid source line, try to find the first
2780 PC in the lineinfo table that belongs to the same function. This
2781 happens with COFF debug info, which does not seem to have an
2782 entry in lineinfo table for the code after the prologue which has
2783 no direct relation to source. For example, this was found to be
2784 the case with the DJGPP target using "gcc -gcoff" when the
2785 compiler inserted code after the prologue to make sure the stack
2786 is aligned. */
2787 if (!force_skip && sym && start_sal.symtab == NULL)
2788 {
2789 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2790 /* Recalculate the line number. */
2791 start_sal = find_pc_sect_line (pc, section, 0);
2792 }
2793
2794 do_cleanups (old_chain);
2795
2796 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2797 forward SAL to the end of the prologue. */
2798 if (sal->pc >= pc)
2799 return;
2800
2801 sal->pc = pc;
2802 sal->section = section;
2803
2804 /* Unless the explicit_line flag was set, update the SAL line
2805 and symtab to correspond to the modified PC location. */
2806 if (sal->explicit_line)
2807 return;
2808
2809 sal->symtab = start_sal.symtab;
2810 sal->line = start_sal.line;
2811 sal->end = start_sal.end;
2812
2813 /* Check if we are now inside an inlined function. If we can,
2814 use the call site of the function instead. */
2815 b = block_for_pc_sect (sal->pc, sal->section);
2816 function_block = NULL;
2817 while (b != NULL)
2818 {
2819 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2820 function_block = b;
2821 else if (BLOCK_FUNCTION (b) != NULL)
2822 break;
2823 b = BLOCK_SUPERBLOCK (b);
2824 }
2825 if (function_block != NULL
2826 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2827 {
2828 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2829 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2830 }
2831}
2832
2833/* If P is of the form "operator[ \t]+..." where `...' is
2834 some legitimate operator text, return a pointer to the
2835 beginning of the substring of the operator text.
2836 Otherwise, return "". */
2837static char *
2838operator_chars (char *p, char **end)
2839{
2840 *end = "";
2841 if (strncmp (p, "operator", 8))
2842 return *end;
2843 p += 8;
2844
2845 /* Don't get faked out by `operator' being part of a longer
2846 identifier. */
2847 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2848 return *end;
2849
2850 /* Allow some whitespace between `operator' and the operator symbol. */
2851 while (*p == ' ' || *p == '\t')
2852 p++;
2853
2854 /* Recognize 'operator TYPENAME'. */
2855
2856 if (isalpha (*p) || *p == '_' || *p == '$')
2857 {
2858 char *q = p + 1;
2859
2860 while (isalnum (*q) || *q == '_' || *q == '$')
2861 q++;
2862 *end = q;
2863 return p;
2864 }
2865
2866 while (*p)
2867 switch (*p)
2868 {
2869 case '\\': /* regexp quoting */
2870 if (p[1] == '*')
2871 {
2872 if (p[2] == '=') /* 'operator\*=' */
2873 *end = p + 3;
2874 else /* 'operator\*' */
2875 *end = p + 2;
2876 return p;
2877 }
2878 else if (p[1] == '[')
2879 {
2880 if (p[2] == ']')
2881 error (_("mismatched quoting on brackets, "
2882 "try 'operator\\[\\]'"));
2883 else if (p[2] == '\\' && p[3] == ']')
2884 {
2885 *end = p + 4; /* 'operator\[\]' */
2886 return p;
2887 }
2888 else
2889 error (_("nothing is allowed between '[' and ']'"));
2890 }
2891 else
2892 {
2893 /* Gratuitous qoute: skip it and move on. */
2894 p++;
2895 continue;
2896 }
2897 break;
2898 case '!':
2899 case '=':
2900 case '*':
2901 case '/':
2902 case '%':
2903 case '^':
2904 if (p[1] == '=')
2905 *end = p + 2;
2906 else
2907 *end = p + 1;
2908 return p;
2909 case '<':
2910 case '>':
2911 case '+':
2912 case '-':
2913 case '&':
2914 case '|':
2915 if (p[0] == '-' && p[1] == '>')
2916 {
2917 /* Struct pointer member operator 'operator->'. */
2918 if (p[2] == '*')
2919 {
2920 *end = p + 3; /* 'operator->*' */
2921 return p;
2922 }
2923 else if (p[2] == '\\')
2924 {
2925 *end = p + 4; /* Hopefully 'operator->\*' */
2926 return p;
2927 }
2928 else
2929 {
2930 *end = p + 2; /* 'operator->' */
2931 return p;
2932 }
2933 }
2934 if (p[1] == '=' || p[1] == p[0])
2935 *end = p + 2;
2936 else
2937 *end = p + 1;
2938 return p;
2939 case '~':
2940 case ',':
2941 *end = p + 1;
2942 return p;
2943 case '(':
2944 if (p[1] != ')')
2945 error (_("`operator ()' must be specified "
2946 "without whitespace in `()'"));
2947 *end = p + 2;
2948 return p;
2949 case '?':
2950 if (p[1] != ':')
2951 error (_("`operator ?:' must be specified "
2952 "without whitespace in `?:'"));
2953 *end = p + 2;
2954 return p;
2955 case '[':
2956 if (p[1] != ']')
2957 error (_("`operator []' must be specified "
2958 "without whitespace in `[]'"));
2959 *end = p + 2;
2960 return p;
2961 default:
2962 error (_("`operator %s' not supported"), p);
2963 break;
2964 }
2965
2966 *end = "";
2967 return *end;
2968}
2969\f
2970
2971/* If FILE is not already in the table of files, return zero;
2972 otherwise return non-zero. Optionally add FILE to the table if ADD
2973 is non-zero. If *FIRST is non-zero, forget the old table
2974 contents. */
2975static int
2976filename_seen (const char *file, int add, int *first)
2977{
2978 /* Table of files seen so far. */
2979 static const char **tab = NULL;
2980 /* Allocated size of tab in elements.
2981 Start with one 256-byte block (when using GNU malloc.c).
2982 24 is the malloc overhead when range checking is in effect. */
2983 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2984 /* Current size of tab in elements. */
2985 static int tab_cur_size;
2986 const char **p;
2987
2988 if (*first)
2989 {
2990 if (tab == NULL)
2991 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2992 tab_cur_size = 0;
2993 }
2994
2995 /* Is FILE in tab? */
2996 for (p = tab; p < tab + tab_cur_size; p++)
2997 if (filename_cmp (*p, file) == 0)
2998 return 1;
2999
3000 /* No; maybe add it to tab. */
3001 if (add)
3002 {
3003 if (tab_cur_size == tab_alloc_size)
3004 {
3005 tab_alloc_size *= 2;
3006 tab = (const char **) xrealloc ((char *) tab,
3007 tab_alloc_size * sizeof (*tab));
3008 }
3009 tab[tab_cur_size++] = file;
3010 }
3011
3012 return 0;
3013}
3014
3015/* Slave routine for sources_info. Force line breaks at ,'s.
3016 NAME is the name to print and *FIRST is nonzero if this is the first
3017 name printed. Set *FIRST to zero. */
3018static void
3019output_source_filename (const char *name, int *first)
3020{
3021 /* Since a single source file can result in several partial symbol
3022 tables, we need to avoid printing it more than once. Note: if
3023 some of the psymtabs are read in and some are not, it gets
3024 printed both under "Source files for which symbols have been
3025 read" and "Source files for which symbols will be read in on
3026 demand". I consider this a reasonable way to deal with the
3027 situation. I'm not sure whether this can also happen for
3028 symtabs; it doesn't hurt to check. */
3029
3030 /* Was NAME already seen? */
3031 if (filename_seen (name, 1, first))
3032 {
3033 /* Yes; don't print it again. */
3034 return;
3035 }
3036 /* No; print it and reset *FIRST. */
3037 if (*first)
3038 {
3039 *first = 0;
3040 }
3041 else
3042 {
3043 printf_filtered (", ");
3044 }
3045
3046 wrap_here ("");
3047 fputs_filtered (name, gdb_stdout);
3048}
3049
3050/* A callback for map_partial_symbol_filenames. */
3051static void
3052output_partial_symbol_filename (const char *filename, const char *fullname,
3053 void *data)
3054{
3055 output_source_filename (fullname ? fullname : filename, data);
3056}
3057
3058static void
3059sources_info (char *ignore, int from_tty)
3060{
3061 struct symtab *s;
3062 struct objfile *objfile;
3063 int first;
3064
3065 if (!have_full_symbols () && !have_partial_symbols ())
3066 {
3067 error (_("No symbol table is loaded. Use the \"file\" command."));
3068 }
3069
3070 printf_filtered ("Source files for which symbols have been read in:\n\n");
3071
3072 first = 1;
3073 ALL_SYMTABS (objfile, s)
3074 {
3075 const char *fullname = symtab_to_fullname (s);
3076
3077 output_source_filename (fullname ? fullname : s->filename, &first);
3078 }
3079 printf_filtered ("\n\n");
3080
3081 printf_filtered ("Source files for which symbols "
3082 "will be read in on demand:\n\n");
3083
3084 first = 1;
3085 map_partial_symbol_filenames (output_partial_symbol_filename, &first,
3086 1 /*need_fullname*/);
3087 printf_filtered ("\n");
3088}
3089
3090static int
3091file_matches (const char *file, char *files[], int nfiles)
3092{
3093 int i;
3094
3095 if (file != NULL && nfiles != 0)
3096 {
3097 for (i = 0; i < nfiles; i++)
3098 {
3099 if (filename_cmp (files[i], lbasename (file)) == 0)
3100 return 1;
3101 }
3102 }
3103 else if (nfiles == 0)
3104 return 1;
3105 return 0;
3106}
3107
3108/* Free any memory associated with a search. */
3109void
3110free_search_symbols (struct symbol_search *symbols)
3111{
3112 struct symbol_search *p;
3113 struct symbol_search *next;
3114
3115 for (p = symbols; p != NULL; p = next)
3116 {
3117 next = p->next;
3118 xfree (p);
3119 }
3120}
3121
3122static void
3123do_free_search_symbols_cleanup (void *symbols)
3124{
3125 free_search_symbols (symbols);
3126}
3127
3128struct cleanup *
3129make_cleanup_free_search_symbols (struct symbol_search *symbols)
3130{
3131 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3132}
3133
3134/* Helper function for sort_search_symbols and qsort. Can only
3135 sort symbols, not minimal symbols. */
3136static int
3137compare_search_syms (const void *sa, const void *sb)
3138{
3139 struct symbol_search **sym_a = (struct symbol_search **) sa;
3140 struct symbol_search **sym_b = (struct symbol_search **) sb;
3141
3142 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3143 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3144}
3145
3146/* Sort the ``nfound'' symbols in the list after prevtail. Leave
3147 prevtail where it is, but update its next pointer to point to
3148 the first of the sorted symbols. */
3149static struct symbol_search *
3150sort_search_symbols (struct symbol_search *prevtail, int nfound)
3151{
3152 struct symbol_search **symbols, *symp, *old_next;
3153 int i;
3154
3155 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3156 * nfound);
3157 symp = prevtail->next;
3158 for (i = 0; i < nfound; i++)
3159 {
3160 symbols[i] = symp;
3161 symp = symp->next;
3162 }
3163 /* Generally NULL. */
3164 old_next = symp;
3165
3166 qsort (symbols, nfound, sizeof (struct symbol_search *),
3167 compare_search_syms);
3168
3169 symp = prevtail;
3170 for (i = 0; i < nfound; i++)
3171 {
3172 symp->next = symbols[i];
3173 symp = symp->next;
3174 }
3175 symp->next = old_next;
3176
3177 xfree (symbols);
3178 return symp;
3179}
3180
3181/* An object of this type is passed as the user_data to the
3182 expand_symtabs_matching method. */
3183struct search_symbols_data
3184{
3185 int nfiles;
3186 char **files;
3187
3188 /* It is true if PREG contains valid data, false otherwise. */
3189 unsigned preg_p : 1;
3190 regex_t preg;
3191};
3192
3193/* A callback for expand_symtabs_matching. */
3194static int
3195search_symbols_file_matches (const char *filename, void *user_data)
3196{
3197 struct search_symbols_data *data = user_data;
3198
3199 return file_matches (filename, data->files, data->nfiles);
3200}
3201
3202/* A callback for expand_symtabs_matching. */
3203static int
3204search_symbols_name_matches (const char *symname, void *user_data)
3205{
3206 struct search_symbols_data *data = user_data;
3207
3208 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3209}
3210
3211/* Search the symbol table for matches to the regular expression REGEXP,
3212 returning the results in *MATCHES.
3213
3214 Only symbols of KIND are searched:
3215 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3216 and constants (enums)
3217 FUNCTIONS_DOMAIN - search all functions
3218 TYPES_DOMAIN - search all type names
3219 ALL_DOMAIN - an internal error for this function
3220
3221 free_search_symbols should be called when *MATCHES is no longer needed.
3222
3223 The results are sorted locally; each symtab's global and static blocks are
3224 separately alphabetized. */
3225
3226void
3227search_symbols (char *regexp, enum search_domain kind,
3228 int nfiles, char *files[],
3229 struct symbol_search **matches)
3230{
3231 struct symtab *s;
3232 struct blockvector *bv;
3233 struct block *b;
3234 int i = 0;
3235 struct dict_iterator iter;
3236 struct symbol *sym;
3237 struct objfile *objfile;
3238 struct minimal_symbol *msymbol;
3239 char *val;
3240 int found_misc = 0;
3241 static const enum minimal_symbol_type types[]
3242 = {mst_data, mst_text, mst_abs};
3243 static const enum minimal_symbol_type types2[]
3244 = {mst_bss, mst_file_text, mst_abs};
3245 static const enum minimal_symbol_type types3[]
3246 = {mst_file_data, mst_solib_trampoline, mst_abs};
3247 static const enum minimal_symbol_type types4[]
3248 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3249 enum minimal_symbol_type ourtype;
3250 enum minimal_symbol_type ourtype2;
3251 enum minimal_symbol_type ourtype3;
3252 enum minimal_symbol_type ourtype4;
3253 struct symbol_search *sr;
3254 struct symbol_search *psr;
3255 struct symbol_search *tail;
3256 struct search_symbols_data datum;
3257
3258 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3259 CLEANUP_CHAIN is freed only in the case of an error. */
3260 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3261 struct cleanup *retval_chain;
3262
3263 gdb_assert (kind <= TYPES_DOMAIN);
3264
3265 ourtype = types[kind];
3266 ourtype2 = types2[kind];
3267 ourtype3 = types3[kind];
3268 ourtype4 = types4[kind];
3269
3270 sr = *matches = NULL;
3271 tail = NULL;
3272 datum.preg_p = 0;
3273
3274 if (regexp != NULL)
3275 {
3276 /* Make sure spacing is right for C++ operators.
3277 This is just a courtesy to make the matching less sensitive
3278 to how many spaces the user leaves between 'operator'
3279 and <TYPENAME> or <OPERATOR>. */
3280 char *opend;
3281 char *opname = operator_chars (regexp, &opend);
3282 int errcode;
3283
3284 if (*opname)
3285 {
3286 int fix = -1; /* -1 means ok; otherwise number of
3287 spaces needed. */
3288
3289 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3290 {
3291 /* There should 1 space between 'operator' and 'TYPENAME'. */
3292 if (opname[-1] != ' ' || opname[-2] == ' ')
3293 fix = 1;
3294 }
3295 else
3296 {
3297 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3298 if (opname[-1] == ' ')
3299 fix = 0;
3300 }
3301 /* If wrong number of spaces, fix it. */
3302 if (fix >= 0)
3303 {
3304 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3305
3306 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3307 regexp = tmp;
3308 }
3309 }
3310
3311 errcode = regcomp (&datum.preg, regexp,
3312 REG_NOSUB | (case_sensitivity == case_sensitive_off
3313 ? REG_ICASE : 0));
3314 if (errcode != 0)
3315 {
3316 char *err = get_regcomp_error (errcode, &datum.preg);
3317
3318 make_cleanup (xfree, err);
3319 error (_("Invalid regexp (%s): %s"), err, regexp);
3320 }
3321 datum.preg_p = 1;
3322 make_regfree_cleanup (&datum.preg);
3323 }
3324
3325 /* Search through the partial symtabs *first* for all symbols
3326 matching the regexp. That way we don't have to reproduce all of
3327 the machinery below. */
3328
3329 datum.nfiles = nfiles;
3330 datum.files = files;
3331 ALL_OBJFILES (objfile)
3332 {
3333 if (objfile->sf)
3334 objfile->sf->qf->expand_symtabs_matching (objfile,
3335 search_symbols_file_matches,
3336 search_symbols_name_matches,
3337 kind,
3338 &datum);
3339 }
3340
3341 retval_chain = old_chain;
3342
3343 /* Here, we search through the minimal symbol tables for functions
3344 and variables that match, and force their symbols to be read.
3345 This is in particular necessary for demangled variable names,
3346 which are no longer put into the partial symbol tables.
3347 The symbol will then be found during the scan of symtabs below.
3348
3349 For functions, find_pc_symtab should succeed if we have debug info
3350 for the function, for variables we have to call lookup_symbol
3351 to determine if the variable has debug info.
3352 If the lookup fails, set found_misc so that we will rescan to print
3353 any matching symbols without debug info. */
3354
3355 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3356 {
3357 ALL_MSYMBOLS (objfile, msymbol)
3358 {
3359 QUIT;
3360
3361 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3362 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3363 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3364 MSYMBOL_TYPE (msymbol) == ourtype4)
3365 {
3366 if (!datum.preg_p
3367 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3368 NULL, 0) == 0)
3369 {
3370 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3371 {
3372 /* FIXME: carlton/2003-02-04: Given that the
3373 semantics of lookup_symbol keeps on changing
3374 slightly, it would be a nice idea if we had a
3375 function lookup_symbol_minsym that found the
3376 symbol associated to a given minimal symbol (if
3377 any). */
3378 if (kind == FUNCTIONS_DOMAIN
3379 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3380 (struct block *) NULL,
3381 VAR_DOMAIN, 0)
3382 == NULL)
3383 found_misc = 1;
3384 }
3385 }
3386 }
3387 }
3388 }
3389
3390 ALL_PRIMARY_SYMTABS (objfile, s)
3391 {
3392 bv = BLOCKVECTOR (s);
3393 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3394 {
3395 struct symbol_search *prevtail = tail;
3396 int nfound = 0;
3397
3398 b = BLOCKVECTOR_BLOCK (bv, i);
3399 ALL_BLOCK_SYMBOLS (b, iter, sym)
3400 {
3401 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3402
3403 QUIT;
3404
3405 if (file_matches (real_symtab->filename, files, nfiles)
3406 && ((!datum.preg_p
3407 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3408 NULL, 0) == 0)
3409 && ((kind == VARIABLES_DOMAIN
3410 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3411 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3412 && SYMBOL_CLASS (sym) != LOC_BLOCK
3413 /* LOC_CONST can be used for more than just enums,
3414 e.g., c++ static const members.
3415 We only want to skip enums here. */
3416 && !(SYMBOL_CLASS (sym) == LOC_CONST
3417 && TYPE_CODE (SYMBOL_TYPE (sym))
3418 == TYPE_CODE_ENUM))
3419 || (kind == FUNCTIONS_DOMAIN
3420 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3421 || (kind == TYPES_DOMAIN
3422 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3423 {
3424 /* match */
3425 psr = (struct symbol_search *)
3426 xmalloc (sizeof (struct symbol_search));
3427 psr->block = i;
3428 psr->symtab = real_symtab;
3429 psr->symbol = sym;
3430 psr->msymbol = NULL;
3431 psr->next = NULL;
3432 if (tail == NULL)
3433 sr = psr;
3434 else
3435 tail->next = psr;
3436 tail = psr;
3437 nfound ++;
3438 }
3439 }
3440 if (nfound > 0)
3441 {
3442 if (prevtail == NULL)
3443 {
3444 struct symbol_search dummy;
3445
3446 dummy.next = sr;
3447 tail = sort_search_symbols (&dummy, nfound);
3448 sr = dummy.next;
3449
3450 make_cleanup_free_search_symbols (sr);
3451 }
3452 else
3453 tail = sort_search_symbols (prevtail, nfound);
3454 }
3455 }
3456 }
3457
3458 /* If there are no eyes, avoid all contact. I mean, if there are
3459 no debug symbols, then print directly from the msymbol_vector. */
3460
3461 if (found_misc || kind != FUNCTIONS_DOMAIN)
3462 {
3463 ALL_MSYMBOLS (objfile, msymbol)
3464 {
3465 QUIT;
3466
3467 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3468 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3469 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3470 MSYMBOL_TYPE (msymbol) == ourtype4)
3471 {
3472 if (!datum.preg_p
3473 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3474 NULL, 0) == 0)
3475 {
3476 /* Functions: Look up by address. */
3477 if (kind != FUNCTIONS_DOMAIN ||
3478 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3479 {
3480 /* Variables/Absolutes: Look up by name. */
3481 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3482 (struct block *) NULL, VAR_DOMAIN, 0)
3483 == NULL)
3484 {
3485 /* match */
3486 psr = (struct symbol_search *)
3487 xmalloc (sizeof (struct symbol_search));
3488 psr->block = i;
3489 psr->msymbol = msymbol;
3490 psr->symtab = NULL;
3491 psr->symbol = NULL;
3492 psr->next = NULL;
3493 if (tail == NULL)
3494 {
3495 sr = psr;
3496 make_cleanup_free_search_symbols (sr);
3497 }
3498 else
3499 tail->next = psr;
3500 tail = psr;
3501 }
3502 }
3503 }
3504 }
3505 }
3506 }
3507
3508 discard_cleanups (retval_chain);
3509 do_cleanups (old_chain);
3510 *matches = sr;
3511}
3512
3513/* Helper function for symtab_symbol_info, this function uses
3514 the data returned from search_symbols() to print information
3515 regarding the match to gdb_stdout. */
3516
3517static void
3518print_symbol_info (enum search_domain kind,
3519 struct symtab *s, struct symbol *sym,
3520 int block, char *last)
3521{
3522 if (last == NULL || filename_cmp (last, s->filename) != 0)
3523 {
3524 fputs_filtered ("\nFile ", gdb_stdout);
3525 fputs_filtered (s->filename, gdb_stdout);
3526 fputs_filtered (":\n", gdb_stdout);
3527 }
3528
3529 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3530 printf_filtered ("static ");
3531
3532 /* Typedef that is not a C++ class. */
3533 if (kind == TYPES_DOMAIN
3534 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3535 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3536 /* variable, func, or typedef-that-is-c++-class. */
3537 else if (kind < TYPES_DOMAIN ||
3538 (kind == TYPES_DOMAIN &&
3539 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3540 {
3541 type_print (SYMBOL_TYPE (sym),
3542 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3543 ? "" : SYMBOL_PRINT_NAME (sym)),
3544 gdb_stdout, 0);
3545
3546 printf_filtered (";\n");
3547 }
3548}
3549
3550/* This help function for symtab_symbol_info() prints information
3551 for non-debugging symbols to gdb_stdout. */
3552
3553static void
3554print_msymbol_info (struct minimal_symbol *msymbol)
3555{
3556 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3557 char *tmp;
3558
3559 if (gdbarch_addr_bit (gdbarch) <= 32)
3560 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3561 & (CORE_ADDR) 0xffffffff,
3562 8);
3563 else
3564 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3565 16);
3566 printf_filtered ("%s %s\n",
3567 tmp, SYMBOL_PRINT_NAME (msymbol));
3568}
3569
3570/* This is the guts of the commands "info functions", "info types", and
3571 "info variables". It calls search_symbols to find all matches and then
3572 print_[m]symbol_info to print out some useful information about the
3573 matches. */
3574
3575static void
3576symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3577{
3578 static const char * const classnames[] =
3579 {"variable", "function", "type"};
3580 struct symbol_search *symbols;
3581 struct symbol_search *p;
3582 struct cleanup *old_chain;
3583 char *last_filename = NULL;
3584 int first = 1;
3585
3586 gdb_assert (kind <= TYPES_DOMAIN);
3587
3588 /* Must make sure that if we're interrupted, symbols gets freed. */
3589 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3590 old_chain = make_cleanup_free_search_symbols (symbols);
3591
3592 printf_filtered (regexp
3593 ? "All %ss matching regular expression \"%s\":\n"
3594 : "All defined %ss:\n",
3595 classnames[kind], regexp);
3596
3597 for (p = symbols; p != NULL; p = p->next)
3598 {
3599 QUIT;
3600
3601 if (p->msymbol != NULL)
3602 {
3603 if (first)
3604 {
3605 printf_filtered ("\nNon-debugging symbols:\n");
3606 first = 0;
3607 }
3608 print_msymbol_info (p->msymbol);
3609 }
3610 else
3611 {
3612 print_symbol_info (kind,
3613 p->symtab,
3614 p->symbol,
3615 p->block,
3616 last_filename);
3617 last_filename = p->symtab->filename;
3618 }
3619 }
3620
3621 do_cleanups (old_chain);
3622}
3623
3624static void
3625variables_info (char *regexp, int from_tty)
3626{
3627 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3628}
3629
3630static void
3631functions_info (char *regexp, int from_tty)
3632{
3633 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3634}
3635
3636
3637static void
3638types_info (char *regexp, int from_tty)
3639{
3640 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3641}
3642
3643/* Breakpoint all functions matching regular expression. */
3644
3645void
3646rbreak_command_wrapper (char *regexp, int from_tty)
3647{
3648 rbreak_command (regexp, from_tty);
3649}
3650
3651/* A cleanup function that calls end_rbreak_breakpoints. */
3652
3653static void
3654do_end_rbreak_breakpoints (void *ignore)
3655{
3656 end_rbreak_breakpoints ();
3657}
3658
3659static void
3660rbreak_command (char *regexp, int from_tty)
3661{
3662 struct symbol_search *ss;
3663 struct symbol_search *p;
3664 struct cleanup *old_chain;
3665 char *string = NULL;
3666 int len = 0;
3667 char **files = NULL, *file_name;
3668 int nfiles = 0;
3669
3670 if (regexp)
3671 {
3672 char *colon = strchr (regexp, ':');
3673
3674 if (colon && *(colon + 1) != ':')
3675 {
3676 int colon_index;
3677
3678 colon_index = colon - regexp;
3679 file_name = alloca (colon_index + 1);
3680 memcpy (file_name, regexp, colon_index);
3681 file_name[colon_index--] = 0;
3682 while (isspace (file_name[colon_index]))
3683 file_name[colon_index--] = 0;
3684 files = &file_name;
3685 nfiles = 1;
3686 regexp = colon + 1;
3687 while (isspace (*regexp)) regexp++;
3688 }
3689 }
3690
3691 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3692 old_chain = make_cleanup_free_search_symbols (ss);
3693 make_cleanup (free_current_contents, &string);
3694
3695 start_rbreak_breakpoints ();
3696 make_cleanup (do_end_rbreak_breakpoints, NULL);
3697 for (p = ss; p != NULL; p = p->next)
3698 {
3699 if (p->msymbol == NULL)
3700 {
3701 int newlen = (strlen (p->symtab->filename)
3702 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3703 + 4);
3704
3705 if (newlen > len)
3706 {
3707 string = xrealloc (string, newlen);
3708 len = newlen;
3709 }
3710 strcpy (string, p->symtab->filename);
3711 strcat (string, ":'");
3712 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3713 strcat (string, "'");
3714 break_command (string, from_tty);
3715 print_symbol_info (FUNCTIONS_DOMAIN,
3716 p->symtab,
3717 p->symbol,
3718 p->block,
3719 p->symtab->filename);
3720 }
3721 else
3722 {
3723 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3724
3725 if (newlen > len)
3726 {
3727 string = xrealloc (string, newlen);
3728 len = newlen;
3729 }
3730 strcpy (string, "'");
3731 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3732 strcat (string, "'");
3733
3734 break_command (string, from_tty);
3735 printf_filtered ("<function, no debug info> %s;\n",
3736 SYMBOL_PRINT_NAME (p->msymbol));
3737 }
3738 }
3739
3740 do_cleanups (old_chain);
3741}
3742\f
3743
3744/* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3745
3746 Either sym_text[sym_text_len] != '(' and then we search for any
3747 symbol starting with SYM_TEXT text.
3748
3749 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3750 be terminated at that point. Partial symbol tables do not have parameters
3751 information. */
3752
3753static int
3754compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3755{
3756 int (*ncmp) (const char *, const char *, size_t);
3757
3758 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3759
3760 if (ncmp (name, sym_text, sym_text_len) != 0)
3761 return 0;
3762
3763 if (sym_text[sym_text_len] == '(')
3764 {
3765 /* User searches for `name(someth...'. Require NAME to be terminated.
3766 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3767 present but accept even parameters presence. In this case this
3768 function is in fact strcmp_iw but whitespace skipping is not supported
3769 for tab completion. */
3770
3771 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3772 return 0;
3773 }
3774
3775 return 1;
3776}
3777
3778/* Free any memory associated with a completion list. */
3779
3780static void
3781free_completion_list (char ***list_ptr)
3782{
3783 int i = 0;
3784 char **list = *list_ptr;
3785
3786 while (list[i] != NULL)
3787 {
3788 xfree (list[i]);
3789 i++;
3790 }
3791 xfree (list);
3792}
3793
3794/* Callback for make_cleanup. */
3795
3796static void
3797do_free_completion_list (void *list)
3798{
3799 free_completion_list (list);
3800}
3801
3802/* Helper routine for make_symbol_completion_list. */
3803
3804static int return_val_size;
3805static int return_val_index;
3806static char **return_val;
3807
3808#define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3809 completion_list_add_name \
3810 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3811
3812/* Test to see if the symbol specified by SYMNAME (which is already
3813 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3814 characters. If so, add it to the current completion list. */
3815
3816static void
3817completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3818 char *text, char *word)
3819{
3820 int newsize;
3821
3822 /* Clip symbols that cannot match. */
3823 if (!compare_symbol_name (symname, sym_text, sym_text_len))
3824 return;
3825
3826 /* We have a match for a completion, so add SYMNAME to the current list
3827 of matches. Note that the name is moved to freshly malloc'd space. */
3828
3829 {
3830 char *new;
3831
3832 if (word == sym_text)
3833 {
3834 new = xmalloc (strlen (symname) + 5);
3835 strcpy (new, symname);
3836 }
3837 else if (word > sym_text)
3838 {
3839 /* Return some portion of symname. */
3840 new = xmalloc (strlen (symname) + 5);
3841 strcpy (new, symname + (word - sym_text));
3842 }
3843 else
3844 {
3845 /* Return some of SYM_TEXT plus symname. */
3846 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3847 strncpy (new, word, sym_text - word);
3848 new[sym_text - word] = '\0';
3849 strcat (new, symname);
3850 }
3851
3852 if (return_val_index + 3 > return_val_size)
3853 {
3854 newsize = (return_val_size *= 2) * sizeof (char *);
3855 return_val = (char **) xrealloc ((char *) return_val, newsize);
3856 }
3857 return_val[return_val_index++] = new;
3858 return_val[return_val_index] = NULL;
3859 }
3860}
3861
3862/* ObjC: In case we are completing on a selector, look as the msymbol
3863 again and feed all the selectors into the mill. */
3864
3865static void
3866completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3867 int sym_text_len, char *text, char *word)
3868{
3869 static char *tmp = NULL;
3870 static unsigned int tmplen = 0;
3871
3872 char *method, *category, *selector;
3873 char *tmp2 = NULL;
3874
3875 method = SYMBOL_NATURAL_NAME (msymbol);
3876
3877 /* Is it a method? */
3878 if ((method[0] != '-') && (method[0] != '+'))
3879 return;
3880
3881 if (sym_text[0] == '[')
3882 /* Complete on shortened method method. */
3883 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3884
3885 while ((strlen (method) + 1) >= tmplen)
3886 {
3887 if (tmplen == 0)
3888 tmplen = 1024;
3889 else
3890 tmplen *= 2;
3891 tmp = xrealloc (tmp, tmplen);
3892 }
3893 selector = strchr (method, ' ');
3894 if (selector != NULL)
3895 selector++;
3896
3897 category = strchr (method, '(');
3898
3899 if ((category != NULL) && (selector != NULL))
3900 {
3901 memcpy (tmp, method, (category - method));
3902 tmp[category - method] = ' ';
3903 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3904 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3905 if (sym_text[0] == '[')
3906 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3907 }
3908
3909 if (selector != NULL)
3910 {
3911 /* Complete on selector only. */
3912 strcpy (tmp, selector);
3913 tmp2 = strchr (tmp, ']');
3914 if (tmp2 != NULL)
3915 *tmp2 = '\0';
3916
3917 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3918 }
3919}
3920
3921/* Break the non-quoted text based on the characters which are in
3922 symbols. FIXME: This should probably be language-specific. */
3923
3924static char *
3925language_search_unquoted_string (char *text, char *p)
3926{
3927 for (; p > text; --p)
3928 {
3929 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3930 continue;
3931 else
3932 {
3933 if ((current_language->la_language == language_objc))
3934 {
3935 if (p[-1] == ':') /* Might be part of a method name. */
3936 continue;
3937 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3938 p -= 2; /* Beginning of a method name. */
3939 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3940 { /* Might be part of a method name. */
3941 char *t = p;
3942
3943 /* Seeing a ' ' or a '(' is not conclusive evidence
3944 that we are in the middle of a method name. However,
3945 finding "-[" or "+[" should be pretty un-ambiguous.
3946 Unfortunately we have to find it now to decide. */
3947
3948 while (t > text)
3949 if (isalnum (t[-1]) || t[-1] == '_' ||
3950 t[-1] == ' ' || t[-1] == ':' ||
3951 t[-1] == '(' || t[-1] == ')')
3952 --t;
3953 else
3954 break;
3955
3956 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3957 p = t - 2; /* Method name detected. */
3958 /* Else we leave with p unchanged. */
3959 }
3960 }
3961 break;
3962 }
3963 }
3964 return p;
3965}
3966
3967static void
3968completion_list_add_fields (struct symbol *sym, char *sym_text,
3969 int sym_text_len, char *text, char *word)
3970{
3971 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3972 {
3973 struct type *t = SYMBOL_TYPE (sym);
3974 enum type_code c = TYPE_CODE (t);
3975 int j;
3976
3977 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3978 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3979 if (TYPE_FIELD_NAME (t, j))
3980 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3981 sym_text, sym_text_len, text, word);
3982 }
3983}
3984
3985/* Type of the user_data argument passed to add_macro_name or
3986 expand_partial_symbol_name. The contents are simply whatever is
3987 needed by completion_list_add_name. */
3988struct add_name_data
3989{
3990 char *sym_text;
3991 int sym_text_len;
3992 char *text;
3993 char *word;
3994};
3995
3996/* A callback used with macro_for_each and macro_for_each_in_scope.
3997 This adds a macro's name to the current completion list. */
3998static void
3999add_macro_name (const char *name, const struct macro_definition *ignore,
4000 struct macro_source_file *ignore2, int ignore3,
4001 void *user_data)
4002{
4003 struct add_name_data *datum = (struct add_name_data *) user_data;
4004
4005 completion_list_add_name ((char *) name,
4006 datum->sym_text, datum->sym_text_len,
4007 datum->text, datum->word);
4008}
4009
4010/* A callback for expand_partial_symbol_names. */
4011static int
4012expand_partial_symbol_name (const char *name, void *user_data)
4013{
4014 struct add_name_data *datum = (struct add_name_data *) user_data;
4015
4016 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4017}
4018
4019char **
4020default_make_symbol_completion_list_break_on (char *text, char *word,
4021 const char *break_on)
4022{
4023 /* Problem: All of the symbols have to be copied because readline
4024 frees them. I'm not going to worry about this; hopefully there
4025 won't be that many. */
4026
4027 struct symbol *sym;
4028 struct symtab *s;
4029 struct minimal_symbol *msymbol;
4030 struct objfile *objfile;
4031 struct block *b;
4032 const struct block *surrounding_static_block, *surrounding_global_block;
4033 struct dict_iterator iter;
4034 /* The symbol we are completing on. Points in same buffer as text. */
4035 char *sym_text;
4036 /* Length of sym_text. */
4037 int sym_text_len;
4038 struct add_name_data datum;
4039 struct cleanup *back_to;
4040
4041 /* Now look for the symbol we are supposed to complete on. */
4042 {
4043 char *p;
4044 char quote_found;
4045 char *quote_pos = NULL;
4046
4047 /* First see if this is a quoted string. */
4048 quote_found = '\0';
4049 for (p = text; *p != '\0'; ++p)
4050 {
4051 if (quote_found != '\0')
4052 {
4053 if (*p == quote_found)
4054 /* Found close quote. */
4055 quote_found = '\0';
4056 else if (*p == '\\' && p[1] == quote_found)
4057 /* A backslash followed by the quote character
4058 doesn't end the string. */
4059 ++p;
4060 }
4061 else if (*p == '\'' || *p == '"')
4062 {
4063 quote_found = *p;
4064 quote_pos = p;
4065 }
4066 }
4067 if (quote_found == '\'')
4068 /* A string within single quotes can be a symbol, so complete on it. */
4069 sym_text = quote_pos + 1;
4070 else if (quote_found == '"')
4071 /* A double-quoted string is never a symbol, nor does it make sense
4072 to complete it any other way. */
4073 {
4074 return_val = (char **) xmalloc (sizeof (char *));
4075 return_val[0] = NULL;
4076 return return_val;
4077 }
4078 else
4079 {
4080 /* It is not a quoted string. Break it based on the characters
4081 which are in symbols. */
4082 while (p > text)
4083 {
4084 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4085 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4086 --p;
4087 else
4088 break;
4089 }
4090 sym_text = p;
4091 }
4092 }
4093
4094 sym_text_len = strlen (sym_text);
4095
4096 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4097
4098 if (current_language->la_language == language_cplus
4099 || current_language->la_language == language_java
4100 || current_language->la_language == language_fortran)
4101 {
4102 /* These languages may have parameters entered by user but they are never
4103 present in the partial symbol tables. */
4104
4105 const char *cs = memchr (sym_text, '(', sym_text_len);
4106
4107 if (cs)
4108 sym_text_len = cs - sym_text;
4109 }
4110 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4111
4112 return_val_size = 100;
4113 return_val_index = 0;
4114 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4115 return_val[0] = NULL;
4116 back_to = make_cleanup (do_free_completion_list, &return_val);
4117
4118 datum.sym_text = sym_text;
4119 datum.sym_text_len = sym_text_len;
4120 datum.text = text;
4121 datum.word = word;
4122
4123 /* Look through the partial symtabs for all symbols which begin
4124 by matching SYM_TEXT. Expand all CUs that you find to the list.
4125 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4126 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4127
4128 /* At this point scan through the misc symbol vectors and add each
4129 symbol you find to the list. Eventually we want to ignore
4130 anything that isn't a text symbol (everything else will be
4131 handled by the psymtab code above). */
4132
4133 ALL_MSYMBOLS (objfile, msymbol)
4134 {
4135 QUIT;
4136 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
4137
4138 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
4139 }
4140
4141 /* Search upwards from currently selected frame (so that we can
4142 complete on local vars). Also catch fields of types defined in
4143 this places which match our text string. Only complete on types
4144 visible from current context. */
4145
4146 b = get_selected_block (0);
4147 surrounding_static_block = block_static_block (b);
4148 surrounding_global_block = block_global_block (b);
4149 if (surrounding_static_block != NULL)
4150 while (b != surrounding_static_block)
4151 {
4152 QUIT;
4153
4154 ALL_BLOCK_SYMBOLS (b, iter, sym)
4155 {
4156 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4157 word);
4158 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4159 word);
4160 }
4161
4162 /* Stop when we encounter an enclosing function. Do not stop for
4163 non-inlined functions - the locals of the enclosing function
4164 are in scope for a nested function. */
4165 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4166 break;
4167 b = BLOCK_SUPERBLOCK (b);
4168 }
4169
4170 /* Add fields from the file's types; symbols will be added below. */
4171
4172 if (surrounding_static_block != NULL)
4173 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4174 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4175
4176 if (surrounding_global_block != NULL)
4177 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4178 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4179
4180 /* Go through the symtabs and check the externs and statics for
4181 symbols which match. */
4182
4183 ALL_PRIMARY_SYMTABS (objfile, s)
4184 {
4185 QUIT;
4186 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4187 ALL_BLOCK_SYMBOLS (b, iter, sym)
4188 {
4189 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4190 }
4191 }
4192
4193 ALL_PRIMARY_SYMTABS (objfile, s)
4194 {
4195 QUIT;
4196 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4197 ALL_BLOCK_SYMBOLS (b, iter, sym)
4198 {
4199 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4200 }
4201 }
4202
4203 if (current_language->la_macro_expansion == macro_expansion_c)
4204 {
4205 struct macro_scope *scope;
4206
4207 /* Add any macros visible in the default scope. Note that this
4208 may yield the occasional wrong result, because an expression
4209 might be evaluated in a scope other than the default. For
4210 example, if the user types "break file:line if <TAB>", the
4211 resulting expression will be evaluated at "file:line" -- but
4212 at there does not seem to be a way to detect this at
4213 completion time. */
4214 scope = default_macro_scope ();
4215 if (scope)
4216 {
4217 macro_for_each_in_scope (scope->file, scope->line,
4218 add_macro_name, &datum);
4219 xfree (scope);
4220 }
4221
4222 /* User-defined macros are always visible. */
4223 macro_for_each (macro_user_macros, add_macro_name, &datum);
4224 }
4225
4226 discard_cleanups (back_to);
4227 return (return_val);
4228}
4229
4230char **
4231default_make_symbol_completion_list (char *text, char *word)
4232{
4233 return default_make_symbol_completion_list_break_on (text, word, "");
4234}
4235
4236/* Return a NULL terminated array of all symbols (regardless of class)
4237 which begin by matching TEXT. If the answer is no symbols, then
4238 the return value is an array which contains only a NULL pointer. */
4239
4240char **
4241make_symbol_completion_list (char *text, char *word)
4242{
4243 return current_language->la_make_symbol_completion_list (text, word);
4244}
4245
4246/* Like make_symbol_completion_list, but suitable for use as a
4247 completion function. */
4248
4249char **
4250make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4251 char *text, char *word)
4252{
4253 return make_symbol_completion_list (text, word);
4254}
4255
4256/* Like make_symbol_completion_list, but returns a list of symbols
4257 defined in a source file FILE. */
4258
4259char **
4260make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4261{
4262 struct symbol *sym;
4263 struct symtab *s;
4264 struct block *b;
4265 struct dict_iterator iter;
4266 /* The symbol we are completing on. Points in same buffer as text. */
4267 char *sym_text;
4268 /* Length of sym_text. */
4269 int sym_text_len;
4270
4271 /* Now look for the symbol we are supposed to complete on.
4272 FIXME: This should be language-specific. */
4273 {
4274 char *p;
4275 char quote_found;
4276 char *quote_pos = NULL;
4277
4278 /* First see if this is a quoted string. */
4279 quote_found = '\0';
4280 for (p = text; *p != '\0'; ++p)
4281 {
4282 if (quote_found != '\0')
4283 {
4284 if (*p == quote_found)
4285 /* Found close quote. */
4286 quote_found = '\0';
4287 else if (*p == '\\' && p[1] == quote_found)
4288 /* A backslash followed by the quote character
4289 doesn't end the string. */
4290 ++p;
4291 }
4292 else if (*p == '\'' || *p == '"')
4293 {
4294 quote_found = *p;
4295 quote_pos = p;
4296 }
4297 }
4298 if (quote_found == '\'')
4299 /* A string within single quotes can be a symbol, so complete on it. */
4300 sym_text = quote_pos + 1;
4301 else if (quote_found == '"')
4302 /* A double-quoted string is never a symbol, nor does it make sense
4303 to complete it any other way. */
4304 {
4305 return_val = (char **) xmalloc (sizeof (char *));
4306 return_val[0] = NULL;
4307 return return_val;
4308 }
4309 else
4310 {
4311 /* Not a quoted string. */
4312 sym_text = language_search_unquoted_string (text, p);
4313 }
4314 }
4315
4316 sym_text_len = strlen (sym_text);
4317
4318 return_val_size = 10;
4319 return_val_index = 0;
4320 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4321 return_val[0] = NULL;
4322
4323 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4324 in). */
4325 s = lookup_symtab (srcfile);
4326 if (s == NULL)
4327 {
4328 /* Maybe they typed the file with leading directories, while the
4329 symbol tables record only its basename. */
4330 const char *tail = lbasename (srcfile);
4331
4332 if (tail > srcfile)
4333 s = lookup_symtab (tail);
4334 }
4335
4336 /* If we have no symtab for that file, return an empty list. */
4337 if (s == NULL)
4338 return (return_val);
4339
4340 /* Go through this symtab and check the externs and statics for
4341 symbols which match. */
4342
4343 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4344 ALL_BLOCK_SYMBOLS (b, iter, sym)
4345 {
4346 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4347 }
4348
4349 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4350 ALL_BLOCK_SYMBOLS (b, iter, sym)
4351 {
4352 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4353 }
4354
4355 return (return_val);
4356}
4357
4358/* A helper function for make_source_files_completion_list. It adds
4359 another file name to a list of possible completions, growing the
4360 list as necessary. */
4361
4362static void
4363add_filename_to_list (const char *fname, char *text, char *word,
4364 char ***list, int *list_used, int *list_alloced)
4365{
4366 char *new;
4367 size_t fnlen = strlen (fname);
4368
4369 if (*list_used + 1 >= *list_alloced)
4370 {
4371 *list_alloced *= 2;
4372 *list = (char **) xrealloc ((char *) *list,
4373 *list_alloced * sizeof (char *));
4374 }
4375
4376 if (word == text)
4377 {
4378 /* Return exactly fname. */
4379 new = xmalloc (fnlen + 5);
4380 strcpy (new, fname);
4381 }
4382 else if (word > text)
4383 {
4384 /* Return some portion of fname. */
4385 new = xmalloc (fnlen + 5);
4386 strcpy (new, fname + (word - text));
4387 }
4388 else
4389 {
4390 /* Return some of TEXT plus fname. */
4391 new = xmalloc (fnlen + (text - word) + 5);
4392 strncpy (new, word, text - word);
4393 new[text - word] = '\0';
4394 strcat (new, fname);
4395 }
4396 (*list)[*list_used] = new;
4397 (*list)[++*list_used] = NULL;
4398}
4399
4400static int
4401not_interesting_fname (const char *fname)
4402{
4403 static const char *illegal_aliens[] = {
4404 "_globals_", /* inserted by coff_symtab_read */
4405 NULL
4406 };
4407 int i;
4408
4409 for (i = 0; illegal_aliens[i]; i++)
4410 {
4411 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4412 return 1;
4413 }
4414 return 0;
4415}
4416
4417/* An object of this type is passed as the user_data argument to
4418 map_partial_symbol_filenames. */
4419struct add_partial_filename_data
4420{
4421 int *first;
4422 char *text;
4423 char *word;
4424 int text_len;
4425 char ***list;
4426 int *list_used;
4427 int *list_alloced;
4428};
4429
4430/* A callback for map_partial_symbol_filenames. */
4431static void
4432maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4433 void *user_data)
4434{
4435 struct add_partial_filename_data *data = user_data;
4436
4437 if (not_interesting_fname (filename))
4438 return;
4439 if (!filename_seen (filename, 1, data->first)
4440 && filename_ncmp (filename, data->text, data->text_len) == 0)
4441 {
4442 /* This file matches for a completion; add it to the
4443 current list of matches. */
4444 add_filename_to_list (filename, data->text, data->word,
4445 data->list, data->list_used, data->list_alloced);
4446 }
4447 else
4448 {
4449 const char *base_name = lbasename (filename);
4450
4451 if (base_name != filename
4452 && !filename_seen (base_name, 1, data->first)
4453 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4454 add_filename_to_list (base_name, data->text, data->word,
4455 data->list, data->list_used, data->list_alloced);
4456 }
4457}
4458
4459/* Return a NULL terminated array of all source files whose names
4460 begin with matching TEXT. The file names are looked up in the
4461 symbol tables of this program. If the answer is no matchess, then
4462 the return value is an array which contains only a NULL pointer. */
4463
4464char **
4465make_source_files_completion_list (char *text, char *word)
4466{
4467 struct symtab *s;
4468 struct objfile *objfile;
4469 int first = 1;
4470 int list_alloced = 1;
4471 int list_used = 0;
4472 size_t text_len = strlen (text);
4473 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4474 const char *base_name;
4475 struct add_partial_filename_data datum;
4476 struct cleanup *back_to;
4477
4478 list[0] = NULL;
4479
4480 if (!have_full_symbols () && !have_partial_symbols ())
4481 return list;
4482
4483 back_to = make_cleanup (do_free_completion_list, &list);
4484
4485 ALL_SYMTABS (objfile, s)
4486 {
4487 if (not_interesting_fname (s->filename))
4488 continue;
4489 if (!filename_seen (s->filename, 1, &first)
4490 && filename_ncmp (s->filename, text, text_len) == 0)
4491 {
4492 /* This file matches for a completion; add it to the current
4493 list of matches. */
4494 add_filename_to_list (s->filename, text, word,
4495 &list, &list_used, &list_alloced);
4496 }
4497 else
4498 {
4499 /* NOTE: We allow the user to type a base name when the
4500 debug info records leading directories, but not the other
4501 way around. This is what subroutines of breakpoint
4502 command do when they parse file names. */
4503 base_name = lbasename (s->filename);
4504 if (base_name != s->filename
4505 && !filename_seen (base_name, 1, &first)
4506 && filename_ncmp (base_name, text, text_len) == 0)
4507 add_filename_to_list (base_name, text, word,
4508 &list, &list_used, &list_alloced);
4509 }
4510 }
4511
4512 datum.first = &first;
4513 datum.text = text;
4514 datum.word = word;
4515 datum.text_len = text_len;
4516 datum.list = &list;
4517 datum.list_used = &list_used;
4518 datum.list_alloced = &list_alloced;
4519 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4520 0 /*need_fullname*/);
4521 discard_cleanups (back_to);
4522
4523 return list;
4524}
4525
4526/* Determine if PC is in the prologue of a function. The prologue is the area
4527 between the first instruction of a function, and the first executable line.
4528 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4529
4530 If non-zero, func_start is where we think the prologue starts, possibly
4531 by previous examination of symbol table information. */
4532
4533int
4534in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4535{
4536 struct symtab_and_line sal;
4537 CORE_ADDR func_addr, func_end;
4538
4539 /* We have several sources of information we can consult to figure
4540 this out.
4541 - Compilers usually emit line number info that marks the prologue
4542 as its own "source line". So the ending address of that "line"
4543 is the end of the prologue. If available, this is the most
4544 reliable method.
4545 - The minimal symbols and partial symbols, which can usually tell
4546 us the starting and ending addresses of a function.
4547 - If we know the function's start address, we can call the
4548 architecture-defined gdbarch_skip_prologue function to analyze the
4549 instruction stream and guess where the prologue ends.
4550 - Our `func_start' argument; if non-zero, this is the caller's
4551 best guess as to the function's entry point. At the time of
4552 this writing, handle_inferior_event doesn't get this right, so
4553 it should be our last resort. */
4554
4555 /* Consult the partial symbol table, to find which function
4556 the PC is in. */
4557 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4558 {
4559 CORE_ADDR prologue_end;
4560
4561 /* We don't even have minsym information, so fall back to using
4562 func_start, if given. */
4563 if (! func_start)
4564 return 1; /* We *might* be in a prologue. */
4565
4566 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4567
4568 return func_start <= pc && pc < prologue_end;
4569 }
4570
4571 /* If we have line number information for the function, that's
4572 usually pretty reliable. */
4573 sal = find_pc_line (func_addr, 0);
4574
4575 /* Now sal describes the source line at the function's entry point,
4576 which (by convention) is the prologue. The end of that "line",
4577 sal.end, is the end of the prologue.
4578
4579 Note that, for functions whose source code is all on a single
4580 line, the line number information doesn't always end up this way.
4581 So we must verify that our purported end-of-prologue address is
4582 *within* the function, not at its start or end. */
4583 if (sal.line == 0
4584 || sal.end <= func_addr
4585 || func_end <= sal.end)
4586 {
4587 /* We don't have any good line number info, so use the minsym
4588 information, together with the architecture-specific prologue
4589 scanning code. */
4590 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4591
4592 return func_addr <= pc && pc < prologue_end;
4593 }
4594
4595 /* We have line number info, and it looks good. */
4596 return func_addr <= pc && pc < sal.end;
4597}
4598
4599/* Given PC at the function's start address, attempt to find the
4600 prologue end using SAL information. Return zero if the skip fails.
4601
4602 A non-optimized prologue traditionally has one SAL for the function
4603 and a second for the function body. A single line function has
4604 them both pointing at the same line.
4605
4606 An optimized prologue is similar but the prologue may contain
4607 instructions (SALs) from the instruction body. Need to skip those
4608 while not getting into the function body.
4609
4610 The functions end point and an increasing SAL line are used as
4611 indicators of the prologue's endpoint.
4612
4613 This code is based on the function refine_prologue_limit
4614 (found in ia64). */
4615
4616CORE_ADDR
4617skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4618{
4619 struct symtab_and_line prologue_sal;
4620 CORE_ADDR start_pc;
4621 CORE_ADDR end_pc;
4622 struct block *bl;
4623
4624 /* Get an initial range for the function. */
4625 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4626 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4627
4628 prologue_sal = find_pc_line (start_pc, 0);
4629 if (prologue_sal.line != 0)
4630 {
4631 /* For languages other than assembly, treat two consecutive line
4632 entries at the same address as a zero-instruction prologue.
4633 The GNU assembler emits separate line notes for each instruction
4634 in a multi-instruction macro, but compilers generally will not
4635 do this. */
4636 if (prologue_sal.symtab->language != language_asm)
4637 {
4638 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4639 int idx = 0;
4640
4641 /* Skip any earlier lines, and any end-of-sequence marker
4642 from a previous function. */
4643 while (linetable->item[idx].pc != prologue_sal.pc
4644 || linetable->item[idx].line == 0)
4645 idx++;
4646
4647 if (idx+1 < linetable->nitems
4648 && linetable->item[idx+1].line != 0
4649 && linetable->item[idx+1].pc == start_pc)
4650 return start_pc;
4651 }
4652
4653 /* If there is only one sal that covers the entire function,
4654 then it is probably a single line function, like
4655 "foo(){}". */
4656 if (prologue_sal.end >= end_pc)
4657 return 0;
4658
4659 while (prologue_sal.end < end_pc)
4660 {
4661 struct symtab_and_line sal;
4662
4663 sal = find_pc_line (prologue_sal.end, 0);
4664 if (sal.line == 0)
4665 break;
4666 /* Assume that a consecutive SAL for the same (or larger)
4667 line mark the prologue -> body transition. */
4668 if (sal.line >= prologue_sal.line)
4669 break;
4670
4671 /* The line number is smaller. Check that it's from the
4672 same function, not something inlined. If it's inlined,
4673 then there is no point comparing the line numbers. */
4674 bl = block_for_pc (prologue_sal.end);
4675 while (bl)
4676 {
4677 if (block_inlined_p (bl))
4678 break;
4679 if (BLOCK_FUNCTION (bl))
4680 {
4681 bl = NULL;
4682 break;
4683 }
4684 bl = BLOCK_SUPERBLOCK (bl);
4685 }
4686 if (bl != NULL)
4687 break;
4688
4689 /* The case in which compiler's optimizer/scheduler has
4690 moved instructions into the prologue. We look ahead in
4691 the function looking for address ranges whose
4692 corresponding line number is less the first one that we
4693 found for the function. This is more conservative then
4694 refine_prologue_limit which scans a large number of SALs
4695 looking for any in the prologue. */
4696 prologue_sal = sal;
4697 }
4698 }
4699
4700 if (prologue_sal.end < end_pc)
4701 /* Return the end of this line, or zero if we could not find a
4702 line. */
4703 return prologue_sal.end;
4704 else
4705 /* Don't return END_PC, which is past the end of the function. */
4706 return prologue_sal.pc;
4707}
4708\f
4709struct symtabs_and_lines
4710decode_line_spec (char *string, int flags)
4711{
4712 struct symtabs_and_lines sals;
4713 struct symtab_and_line cursal;
4714
4715 if (string == 0)
4716 error (_("Empty line specification."));
4717
4718 /* We use whatever is set as the current source line. We do not try
4719 and get a default or it will recursively call us! */
4720 cursal = get_current_source_symtab_and_line ();
4721
4722 sals = decode_line_1 (&string, flags,
4723 cursal.symtab, cursal.line);
4724
4725 if (*string)
4726 error (_("Junk at end of line specification: %s"), string);
4727 return sals;
4728}
4729
4730/* Track MAIN */
4731static char *name_of_main;
4732enum language language_of_main = language_unknown;
4733
4734void
4735set_main_name (const char *name)
4736{
4737 if (name_of_main != NULL)
4738 {
4739 xfree (name_of_main);
4740 name_of_main = NULL;
4741 language_of_main = language_unknown;
4742 }
4743 if (name != NULL)
4744 {
4745 name_of_main = xstrdup (name);
4746 language_of_main = language_unknown;
4747 }
4748}
4749
4750/* Deduce the name of the main procedure, and set NAME_OF_MAIN
4751 accordingly. */
4752
4753static void
4754find_main_name (void)
4755{
4756 const char *new_main_name;
4757
4758 /* Try to see if the main procedure is in Ada. */
4759 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4760 be to add a new method in the language vector, and call this
4761 method for each language until one of them returns a non-empty
4762 name. This would allow us to remove this hard-coded call to
4763 an Ada function. It is not clear that this is a better approach
4764 at this point, because all methods need to be written in a way
4765 such that false positives never be returned. For instance, it is
4766 important that a method does not return a wrong name for the main
4767 procedure if the main procedure is actually written in a different
4768 language. It is easy to guaranty this with Ada, since we use a
4769 special symbol generated only when the main in Ada to find the name
4770 of the main procedure. It is difficult however to see how this can
4771 be guarantied for languages such as C, for instance. This suggests
4772 that order of call for these methods becomes important, which means
4773 a more complicated approach. */
4774 new_main_name = ada_main_name ();
4775 if (new_main_name != NULL)
4776 {
4777 set_main_name (new_main_name);
4778 return;
4779 }
4780
4781 new_main_name = pascal_main_name ();
4782 if (new_main_name != NULL)
4783 {
4784 set_main_name (new_main_name);
4785 return;
4786 }
4787
4788 /* The languages above didn't identify the name of the main procedure.
4789 Fallback to "main". */
4790 set_main_name ("main");
4791}
4792
4793char *
4794main_name (void)
4795{
4796 if (name_of_main == NULL)
4797 find_main_name ();
4798
4799 return name_of_main;
4800}
4801
4802/* Handle ``executable_changed'' events for the symtab module. */
4803
4804static void
4805symtab_observer_executable_changed (void)
4806{
4807 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4808 set_main_name (NULL);
4809}
4810
4811/* Return 1 if the supplied producer string matches the ARM RealView
4812 compiler (armcc). */
4813
4814int
4815producer_is_realview (const char *producer)
4816{
4817 static const char *const arm_idents[] = {
4818 "ARM C Compiler, ADS",
4819 "Thumb C Compiler, ADS",
4820 "ARM C++ Compiler, ADS",
4821 "Thumb C++ Compiler, ADS",
4822 "ARM/Thumb C/C++ Compiler, RVCT",
4823 "ARM C/C++ Compiler, RVCT"
4824 };
4825 int i;
4826
4827 if (producer == NULL)
4828 return 0;
4829
4830 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4831 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4832 return 1;
4833
4834 return 0;
4835}
4836
4837void
4838_initialize_symtab (void)
4839{
4840 add_info ("variables", variables_info, _("\
4841All global and static variable names, or those matching REGEXP."));
4842 if (dbx_commands)
4843 add_com ("whereis", class_info, variables_info, _("\
4844All global and static variable names, or those matching REGEXP."));
4845
4846 add_info ("functions", functions_info,
4847 _("All function names, or those matching REGEXP."));
4848
4849 /* FIXME: This command has at least the following problems:
4850 1. It prints builtin types (in a very strange and confusing fashion).
4851 2. It doesn't print right, e.g. with
4852 typedef struct foo *FOO
4853 type_print prints "FOO" when we want to make it (in this situation)
4854 print "struct foo *".
4855 I also think "ptype" or "whatis" is more likely to be useful (but if
4856 there is much disagreement "info types" can be fixed). */
4857 add_info ("types", types_info,
4858 _("All type names, or those matching REGEXP."));
4859
4860 add_info ("sources", sources_info,
4861 _("Source files in the program."));
4862
4863 add_com ("rbreak", class_breakpoint, rbreak_command,
4864 _("Set a breakpoint for all functions matching REGEXP."));
4865
4866 if (xdb_commands)
4867 {
4868 add_com ("lf", class_info, sources_info,
4869 _("Source files in the program"));
4870 add_com ("lg", class_info, variables_info, _("\
4871All global and static variable names, or those matching REGEXP."));
4872 }
4873
4874 add_setshow_enum_cmd ("multiple-symbols", no_class,
4875 multiple_symbols_modes, &multiple_symbols_mode,
4876 _("\
4877Set the debugger behavior when more than one symbol are possible matches\n\
4878in an expression."), _("\
4879Show how the debugger handles ambiguities in expressions."), _("\
4880Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4881 NULL, NULL, &setlist, &showlist);
4882
4883 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
4884 &basenames_may_differ, _("\
4885Set whether a source file may have multiple base names."), _("\
4886Show whether a source file may have multiple base names."), _("\
4887(A \"base name\" is the name of a file with the directory part removed.\n\
4888Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
4889If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
4890before comparing them. Canonicalization is an expensive operation,\n\
4891but it allows the same file be known by more than one base name.\n\
4892If not set (the default), all source files are assumed to have just\n\
4893one base name, and gdb will do file name comparisons more efficiently."),
4894 NULL, NULL,
4895 &setlist, &showlist);
4896
4897 observer_attach_executable_changed (symtab_observer_executable_changed);
4898}
This page took 0.038574 seconds and 4 git commands to generate.