* gdb.threads/linux-dp.exp: Unset 'seen' before 'array set'.
[deliverable/binutils-gdb.git] / gdb / symtab.c
... / ...
CommitLineData
1/* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2004, 2007-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "symtab.h"
22#include "gdbtypes.h"
23#include "gdbcore.h"
24#include "frame.h"
25#include "target.h"
26#include "value.h"
27#include "symfile.h"
28#include "objfiles.h"
29#include "gdbcmd.h"
30#include "call-cmds.h"
31#include "gdb_regex.h"
32#include "expression.h"
33#include "language.h"
34#include "demangle.h"
35#include "inferior.h"
36#include "linespec.h"
37#include "source.h"
38#include "filenames.h" /* for FILENAME_CMP */
39#include "objc-lang.h"
40#include "d-lang.h"
41#include "ada-lang.h"
42#include "p-lang.h"
43#include "addrmap.h"
44
45#include "hashtab.h"
46
47#include "gdb_obstack.h"
48#include "block.h"
49#include "dictionary.h"
50
51#include <sys/types.h>
52#include <fcntl.h>
53#include "gdb_string.h"
54#include "gdb_stat.h"
55#include <ctype.h>
56#include "cp-abi.h"
57#include "cp-support.h"
58#include "observer.h"
59#include "gdb_assert.h"
60#include "solist.h"
61#include "macrotab.h"
62#include "macroscope.h"
63
64#include "psymtab.h"
65
66/* Prototypes for local functions */
67
68static void rbreak_command (char *, int);
69
70static void types_info (char *, int);
71
72static void functions_info (char *, int);
73
74static void variables_info (char *, int);
75
76static void sources_info (char *, int);
77
78static void output_source_filename (const char *, int *);
79
80static int find_line_common (struct linetable *, int, int *, int);
81
82static struct symbol *lookup_symbol_aux (const char *name,
83 const struct block *block,
84 const domain_enum domain,
85 enum language language,
86 int *is_a_field_of_this);
87
88static
89struct symbol *lookup_symbol_aux_local (const char *name,
90 const struct block *block,
91 const domain_enum domain,
92 enum language language);
93
94static
95struct symbol *lookup_symbol_aux_symtabs (int block_index,
96 const char *name,
97 const domain_enum domain);
98
99static
100struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
101 int block_index,
102 const char *name,
103 const domain_enum domain);
104
105static void print_msymbol_info (struct minimal_symbol *);
106
107void _initialize_symtab (void);
108
109/* */
110
111/* Non-zero if a file may be known by two different basenames.
112 This is the uncommon case, and significantly slows down gdb.
113 Default set to "off" to not slow down the common case. */
114int basenames_may_differ = 0;
115
116/* Allow the user to configure the debugger behavior with respect
117 to multiple-choice menus when more than one symbol matches during
118 a symbol lookup. */
119
120const char multiple_symbols_ask[] = "ask";
121const char multiple_symbols_all[] = "all";
122const char multiple_symbols_cancel[] = "cancel";
123static const char *const multiple_symbols_modes[] =
124{
125 multiple_symbols_ask,
126 multiple_symbols_all,
127 multiple_symbols_cancel,
128 NULL
129};
130static const char *multiple_symbols_mode = multiple_symbols_all;
131
132/* Read-only accessor to AUTO_SELECT_MODE. */
133
134const char *
135multiple_symbols_select_mode (void)
136{
137 return multiple_symbols_mode;
138}
139
140/* Block in which the most recently searched-for symbol was found.
141 Might be better to make this a parameter to lookup_symbol and
142 value_of_this. */
143
144const struct block *block_found;
145
146/* See whether FILENAME matches SEARCH_NAME using the rule that we
147 advertise to the user. (The manual's description of linespecs
148 describes what we advertise). SEARCH_LEN is the length of
149 SEARCH_NAME. We assume that SEARCH_NAME is a relative path.
150 Returns true if they match, false otherwise. */
151
152int
153compare_filenames_for_search (const char *filename, const char *search_name,
154 int search_len)
155{
156 int len = strlen (filename);
157 int offset;
158
159 if (len < search_len)
160 return 0;
161
162 /* The tail of FILENAME must match. */
163 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
164 return 0;
165
166 /* Either the names must completely match, or the character
167 preceding the trailing SEARCH_NAME segment of FILENAME must be a
168 directory separator. */
169 return (len == search_len
170 || IS_DIR_SEPARATOR (filename[len - search_len - 1])
171 || (HAS_DRIVE_SPEC (filename)
172 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
173}
174
175/* Check for a symtab of a specific name by searching some symtabs.
176 This is a helper function for callbacks of iterate_over_symtabs.
177
178 The return value, NAME, FULL_PATH, REAL_PATH, CALLBACK, and DATA
179 are identical to the `map_symtabs_matching_filename' method of
180 quick_symbol_functions.
181
182 FIRST and AFTER_LAST indicate the range of symtabs to search.
183 AFTER_LAST is one past the last symtab to search; NULL means to
184 search until the end of the list. */
185
186int
187iterate_over_some_symtabs (const char *name,
188 const char *full_path,
189 const char *real_path,
190 int (*callback) (struct symtab *symtab,
191 void *data),
192 void *data,
193 struct symtab *first,
194 struct symtab *after_last)
195{
196 struct symtab *s = NULL;
197 struct cleanup *cleanup;
198 const char* base_name = lbasename (name);
199 int name_len = strlen (name);
200 int is_abs = IS_ABSOLUTE_PATH (name);
201
202 for (s = first; s != NULL && s != after_last; s = s->next)
203 {
204 /* Exact match is always ok. */
205 if (FILENAME_CMP (name, s->filename) == 0)
206 {
207 if (callback (s, data))
208 return 1;
209 }
210
211 if (!is_abs && compare_filenames_for_search (s->filename, name, name_len))
212 {
213 if (callback (s, data))
214 return 1;
215 }
216
217 /* Before we invoke realpath, which can get expensive when many
218 files are involved, do a quick comparison of the basenames. */
219 if (! basenames_may_differ
220 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
221 continue;
222
223 /* If the user gave us an absolute path, try to find the file in
224 this symtab and use its absolute path. */
225
226 if (full_path != NULL)
227 {
228 const char *fp = symtab_to_fullname (s);
229
230 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
231 {
232 if (callback (s, data))
233 return 1;
234 }
235
236 if (fp != NULL && !is_abs && compare_filenames_for_search (fp, name,
237 name_len))
238 {
239 if (callback (s, data))
240 return 1;
241 }
242 }
243
244 if (real_path != NULL)
245 {
246 char *fullname = symtab_to_fullname (s);
247
248 if (fullname != NULL)
249 {
250 char *rp = gdb_realpath (fullname);
251
252 make_cleanup (xfree, rp);
253 if (FILENAME_CMP (real_path, rp) == 0)
254 {
255 if (callback (s, data))
256 return 1;
257 }
258
259 if (!is_abs && compare_filenames_for_search (rp, name, name_len))
260 {
261 if (callback (s, data))
262 return 1;
263 }
264 }
265 }
266 }
267
268 return 0;
269}
270
271/* Check for a symtab of a specific name; first in symtabs, then in
272 psymtabs. *If* there is no '/' in the name, a match after a '/'
273 in the symtab filename will also work.
274
275 Calls CALLBACK with each symtab that is found and with the supplied
276 DATA. If CALLBACK returns true, the search stops. */
277
278void
279iterate_over_symtabs (const char *name,
280 int (*callback) (struct symtab *symtab,
281 void *data),
282 void *data)
283{
284 struct symtab *s = NULL;
285 struct objfile *objfile;
286 char *real_path = NULL;
287 char *full_path = NULL;
288 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
289
290 /* Here we are interested in canonicalizing an absolute path, not
291 absolutizing a relative path. */
292 if (IS_ABSOLUTE_PATH (name))
293 {
294 full_path = xfullpath (name);
295 make_cleanup (xfree, full_path);
296 real_path = gdb_realpath (name);
297 make_cleanup (xfree, real_path);
298 }
299
300 ALL_OBJFILES (objfile)
301 {
302 if (iterate_over_some_symtabs (name, full_path, real_path, callback, data,
303 objfile->symtabs, NULL))
304 {
305 do_cleanups (cleanups);
306 return;
307 }
308 }
309
310 /* Same search rules as above apply here, but now we look thru the
311 psymtabs. */
312
313 ALL_OBJFILES (objfile)
314 {
315 if (objfile->sf
316 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
317 name,
318 full_path,
319 real_path,
320 callback,
321 data))
322 {
323 do_cleanups (cleanups);
324 return;
325 }
326 }
327
328 do_cleanups (cleanups);
329}
330
331/* The callback function used by lookup_symtab. */
332
333static int
334lookup_symtab_callback (struct symtab *symtab, void *data)
335{
336 struct symtab **result_ptr = data;
337
338 *result_ptr = symtab;
339 return 1;
340}
341
342/* A wrapper for iterate_over_symtabs that returns the first matching
343 symtab, or NULL. */
344
345struct symtab *
346lookup_symtab (const char *name)
347{
348 struct symtab *result = NULL;
349
350 iterate_over_symtabs (name, lookup_symtab_callback, &result);
351 return result;
352}
353
354\f
355/* Mangle a GDB method stub type. This actually reassembles the pieces of the
356 full method name, which consist of the class name (from T), the unadorned
357 method name from METHOD_ID, and the signature for the specific overload,
358 specified by SIGNATURE_ID. Note that this function is g++ specific. */
359
360char *
361gdb_mangle_name (struct type *type, int method_id, int signature_id)
362{
363 int mangled_name_len;
364 char *mangled_name;
365 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
366 struct fn_field *method = &f[signature_id];
367 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
368 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
369 const char *newname = type_name_no_tag (type);
370
371 /* Does the form of physname indicate that it is the full mangled name
372 of a constructor (not just the args)? */
373 int is_full_physname_constructor;
374
375 int is_constructor;
376 int is_destructor = is_destructor_name (physname);
377 /* Need a new type prefix. */
378 char *const_prefix = method->is_const ? "C" : "";
379 char *volatile_prefix = method->is_volatile ? "V" : "";
380 char buf[20];
381 int len = (newname == NULL ? 0 : strlen (newname));
382
383 /* Nothing to do if physname already contains a fully mangled v3 abi name
384 or an operator name. */
385 if ((physname[0] == '_' && physname[1] == 'Z')
386 || is_operator_name (field_name))
387 return xstrdup (physname);
388
389 is_full_physname_constructor = is_constructor_name (physname);
390
391 is_constructor = is_full_physname_constructor
392 || (newname && strcmp (field_name, newname) == 0);
393
394 if (!is_destructor)
395 is_destructor = (strncmp (physname, "__dt", 4) == 0);
396
397 if (is_destructor || is_full_physname_constructor)
398 {
399 mangled_name = (char *) xmalloc (strlen (physname) + 1);
400 strcpy (mangled_name, physname);
401 return mangled_name;
402 }
403
404 if (len == 0)
405 {
406 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
407 }
408 else if (physname[0] == 't' || physname[0] == 'Q')
409 {
410 /* The physname for template and qualified methods already includes
411 the class name. */
412 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
413 newname = NULL;
414 len = 0;
415 }
416 else
417 {
418 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
419 }
420 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
421 + strlen (buf) + len + strlen (physname) + 1);
422
423 mangled_name = (char *) xmalloc (mangled_name_len);
424 if (is_constructor)
425 mangled_name[0] = '\0';
426 else
427 strcpy (mangled_name, field_name);
428
429 strcat (mangled_name, buf);
430 /* If the class doesn't have a name, i.e. newname NULL, then we just
431 mangle it using 0 for the length of the class. Thus it gets mangled
432 as something starting with `::' rather than `classname::'. */
433 if (newname != NULL)
434 strcat (mangled_name, newname);
435
436 strcat (mangled_name, physname);
437 return (mangled_name);
438}
439
440/* Initialize the cplus_specific structure. 'cplus_specific' should
441 only be allocated for use with cplus symbols. */
442
443static void
444symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
445 struct objfile *objfile)
446{
447 /* A language_specific structure should not have been previously
448 initialized. */
449 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
450 gdb_assert (objfile != NULL);
451
452 gsymbol->language_specific.cplus_specific =
453 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
454}
455
456/* Set the demangled name of GSYMBOL to NAME. NAME must be already
457 correctly allocated. For C++ symbols a cplus_specific struct is
458 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
459 OBJFILE can be NULL. */
460
461void
462symbol_set_demangled_name (struct general_symbol_info *gsymbol,
463 char *name,
464 struct objfile *objfile)
465{
466 if (gsymbol->language == language_cplus)
467 {
468 if (gsymbol->language_specific.cplus_specific == NULL)
469 symbol_init_cplus_specific (gsymbol, objfile);
470
471 gsymbol->language_specific.cplus_specific->demangled_name = name;
472 }
473 else
474 gsymbol->language_specific.mangled_lang.demangled_name = name;
475}
476
477/* Return the demangled name of GSYMBOL. */
478
479const char *
480symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
481{
482 if (gsymbol->language == language_cplus)
483 {
484 if (gsymbol->language_specific.cplus_specific != NULL)
485 return gsymbol->language_specific.cplus_specific->demangled_name;
486 else
487 return NULL;
488 }
489 else
490 return gsymbol->language_specific.mangled_lang.demangled_name;
491}
492
493\f
494/* Initialize the language dependent portion of a symbol
495 depending upon the language for the symbol. */
496
497void
498symbol_set_language (struct general_symbol_info *gsymbol,
499 enum language language)
500{
501 gsymbol->language = language;
502 if (gsymbol->language == language_d
503 || gsymbol->language == language_java
504 || gsymbol->language == language_objc
505 || gsymbol->language == language_fortran)
506 {
507 symbol_set_demangled_name (gsymbol, NULL, NULL);
508 }
509 else if (gsymbol->language == language_cplus)
510 gsymbol->language_specific.cplus_specific = NULL;
511 else
512 {
513 memset (&gsymbol->language_specific, 0,
514 sizeof (gsymbol->language_specific));
515 }
516}
517
518/* Functions to initialize a symbol's mangled name. */
519
520/* Objects of this type are stored in the demangled name hash table. */
521struct demangled_name_entry
522{
523 char *mangled;
524 char demangled[1];
525};
526
527/* Hash function for the demangled name hash. */
528
529static hashval_t
530hash_demangled_name_entry (const void *data)
531{
532 const struct demangled_name_entry *e = data;
533
534 return htab_hash_string (e->mangled);
535}
536
537/* Equality function for the demangled name hash. */
538
539static int
540eq_demangled_name_entry (const void *a, const void *b)
541{
542 const struct demangled_name_entry *da = a;
543 const struct demangled_name_entry *db = b;
544
545 return strcmp (da->mangled, db->mangled) == 0;
546}
547
548/* Create the hash table used for demangled names. Each hash entry is
549 a pair of strings; one for the mangled name and one for the demangled
550 name. The entry is hashed via just the mangled name. */
551
552static void
553create_demangled_names_hash (struct objfile *objfile)
554{
555 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
556 The hash table code will round this up to the next prime number.
557 Choosing a much larger table size wastes memory, and saves only about
558 1% in symbol reading. */
559
560 objfile->demangled_names_hash = htab_create_alloc
561 (256, hash_demangled_name_entry, eq_demangled_name_entry,
562 NULL, xcalloc, xfree);
563}
564
565/* Try to determine the demangled name for a symbol, based on the
566 language of that symbol. If the language is set to language_auto,
567 it will attempt to find any demangling algorithm that works and
568 then set the language appropriately. The returned name is allocated
569 by the demangler and should be xfree'd. */
570
571static char *
572symbol_find_demangled_name (struct general_symbol_info *gsymbol,
573 const char *mangled)
574{
575 char *demangled = NULL;
576
577 if (gsymbol->language == language_unknown)
578 gsymbol->language = language_auto;
579
580 if (gsymbol->language == language_objc
581 || gsymbol->language == language_auto)
582 {
583 demangled =
584 objc_demangle (mangled, 0);
585 if (demangled != NULL)
586 {
587 gsymbol->language = language_objc;
588 return demangled;
589 }
590 }
591 if (gsymbol->language == language_cplus
592 || gsymbol->language == language_auto)
593 {
594 demangled =
595 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
596 if (demangled != NULL)
597 {
598 gsymbol->language = language_cplus;
599 return demangled;
600 }
601 }
602 if (gsymbol->language == language_java)
603 {
604 demangled =
605 cplus_demangle (mangled,
606 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
607 if (demangled != NULL)
608 {
609 gsymbol->language = language_java;
610 return demangled;
611 }
612 }
613 if (gsymbol->language == language_d
614 || gsymbol->language == language_auto)
615 {
616 demangled = d_demangle(mangled, 0);
617 if (demangled != NULL)
618 {
619 gsymbol->language = language_d;
620 return demangled;
621 }
622 }
623 /* We could support `gsymbol->language == language_fortran' here to provide
624 module namespaces also for inferiors with only minimal symbol table (ELF
625 symbols). Just the mangling standard is not standardized across compilers
626 and there is no DW_AT_producer available for inferiors with only the ELF
627 symbols to check the mangling kind. */
628 return NULL;
629}
630
631/* Set both the mangled and demangled (if any) names for GSYMBOL based
632 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
633 objfile's obstack; but if COPY_NAME is 0 and if NAME is
634 NUL-terminated, then this function assumes that NAME is already
635 correctly saved (either permanently or with a lifetime tied to the
636 objfile), and it will not be copied.
637
638 The hash table corresponding to OBJFILE is used, and the memory
639 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
640 so the pointer can be discarded after calling this function. */
641
642/* We have to be careful when dealing with Java names: when we run
643 into a Java minimal symbol, we don't know it's a Java symbol, so it
644 gets demangled as a C++ name. This is unfortunate, but there's not
645 much we can do about it: but when demangling partial symbols and
646 regular symbols, we'd better not reuse the wrong demangled name.
647 (See PR gdb/1039.) We solve this by putting a distinctive prefix
648 on Java names when storing them in the hash table. */
649
650/* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
651 don't mind the Java prefix so much: different languages have
652 different demangling requirements, so it's only natural that we
653 need to keep language data around in our demangling cache. But
654 it's not good that the minimal symbol has the wrong demangled name.
655 Unfortunately, I can't think of any easy solution to that
656 problem. */
657
658#define JAVA_PREFIX "##JAVA$$"
659#define JAVA_PREFIX_LEN 8
660
661void
662symbol_set_names (struct general_symbol_info *gsymbol,
663 const char *linkage_name, int len, int copy_name,
664 struct objfile *objfile)
665{
666 struct demangled_name_entry **slot;
667 /* A 0-terminated copy of the linkage name. */
668 const char *linkage_name_copy;
669 /* A copy of the linkage name that might have a special Java prefix
670 added to it, for use when looking names up in the hash table. */
671 const char *lookup_name;
672 /* The length of lookup_name. */
673 int lookup_len;
674 struct demangled_name_entry entry;
675
676 if (gsymbol->language == language_ada)
677 {
678 /* In Ada, we do the symbol lookups using the mangled name, so
679 we can save some space by not storing the demangled name.
680
681 As a side note, we have also observed some overlap between
682 the C++ mangling and Ada mangling, similarly to what has
683 been observed with Java. Because we don't store the demangled
684 name with the symbol, we don't need to use the same trick
685 as Java. */
686 if (!copy_name)
687 gsymbol->name = linkage_name;
688 else
689 {
690 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
691
692 memcpy (name, linkage_name, len);
693 name[len] = '\0';
694 gsymbol->name = name;
695 }
696 symbol_set_demangled_name (gsymbol, NULL, NULL);
697
698 return;
699 }
700
701 if (objfile->demangled_names_hash == NULL)
702 create_demangled_names_hash (objfile);
703
704 /* The stabs reader generally provides names that are not
705 NUL-terminated; most of the other readers don't do this, so we
706 can just use the given copy, unless we're in the Java case. */
707 if (gsymbol->language == language_java)
708 {
709 char *alloc_name;
710
711 lookup_len = len + JAVA_PREFIX_LEN;
712 alloc_name = alloca (lookup_len + 1);
713 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
714 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
715 alloc_name[lookup_len] = '\0';
716
717 lookup_name = alloc_name;
718 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
719 }
720 else if (linkage_name[len] != '\0')
721 {
722 char *alloc_name;
723
724 lookup_len = len;
725 alloc_name = alloca (lookup_len + 1);
726 memcpy (alloc_name, linkage_name, len);
727 alloc_name[lookup_len] = '\0';
728
729 lookup_name = alloc_name;
730 linkage_name_copy = alloc_name;
731 }
732 else
733 {
734 lookup_len = len;
735 lookup_name = linkage_name;
736 linkage_name_copy = linkage_name;
737 }
738
739 entry.mangled = (char *) lookup_name;
740 slot = ((struct demangled_name_entry **)
741 htab_find_slot (objfile->demangled_names_hash,
742 &entry, INSERT));
743
744 /* If this name is not in the hash table, add it. */
745 if (*slot == NULL)
746 {
747 char *demangled_name = symbol_find_demangled_name (gsymbol,
748 linkage_name_copy);
749 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
750
751 /* Suppose we have demangled_name==NULL, copy_name==0, and
752 lookup_name==linkage_name. In this case, we already have the
753 mangled name saved, and we don't have a demangled name. So,
754 you might think we could save a little space by not recording
755 this in the hash table at all.
756
757 It turns out that it is actually important to still save such
758 an entry in the hash table, because storing this name gives
759 us better bcache hit rates for partial symbols. */
760 if (!copy_name && lookup_name == linkage_name)
761 {
762 *slot = obstack_alloc (&objfile->objfile_obstack,
763 offsetof (struct demangled_name_entry,
764 demangled)
765 + demangled_len + 1);
766 (*slot)->mangled = (char *) lookup_name;
767 }
768 else
769 {
770 /* If we must copy the mangled name, put it directly after
771 the demangled name so we can have a single
772 allocation. */
773 *slot = obstack_alloc (&objfile->objfile_obstack,
774 offsetof (struct demangled_name_entry,
775 demangled)
776 + lookup_len + demangled_len + 2);
777 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
778 strcpy ((*slot)->mangled, lookup_name);
779 }
780
781 if (demangled_name != NULL)
782 {
783 strcpy ((*slot)->demangled, demangled_name);
784 xfree (demangled_name);
785 }
786 else
787 (*slot)->demangled[0] = '\0';
788 }
789
790 gsymbol->name = (*slot)->mangled + lookup_len - len;
791 if ((*slot)->demangled[0] != '\0')
792 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
793 else
794 symbol_set_demangled_name (gsymbol, NULL, objfile);
795}
796
797/* Return the source code name of a symbol. In languages where
798 demangling is necessary, this is the demangled name. */
799
800const char *
801symbol_natural_name (const struct general_symbol_info *gsymbol)
802{
803 switch (gsymbol->language)
804 {
805 case language_cplus:
806 case language_d:
807 case language_java:
808 case language_objc:
809 case language_fortran:
810 if (symbol_get_demangled_name (gsymbol) != NULL)
811 return symbol_get_demangled_name (gsymbol);
812 break;
813 case language_ada:
814 if (symbol_get_demangled_name (gsymbol) != NULL)
815 return symbol_get_demangled_name (gsymbol);
816 else
817 return ada_decode_symbol (gsymbol);
818 break;
819 default:
820 break;
821 }
822 return gsymbol->name;
823}
824
825/* Return the demangled name for a symbol based on the language for
826 that symbol. If no demangled name exists, return NULL. */
827
828const char *
829symbol_demangled_name (const struct general_symbol_info *gsymbol)
830{
831 switch (gsymbol->language)
832 {
833 case language_cplus:
834 case language_d:
835 case language_java:
836 case language_objc:
837 case language_fortran:
838 if (symbol_get_demangled_name (gsymbol) != NULL)
839 return symbol_get_demangled_name (gsymbol);
840 break;
841 case language_ada:
842 if (symbol_get_demangled_name (gsymbol) != NULL)
843 return symbol_get_demangled_name (gsymbol);
844 else
845 return ada_decode_symbol (gsymbol);
846 break;
847 default:
848 break;
849 }
850 return NULL;
851}
852
853/* Return the search name of a symbol---generally the demangled or
854 linkage name of the symbol, depending on how it will be searched for.
855 If there is no distinct demangled name, then returns the same value
856 (same pointer) as SYMBOL_LINKAGE_NAME. */
857
858const char *
859symbol_search_name (const struct general_symbol_info *gsymbol)
860{
861 if (gsymbol->language == language_ada)
862 return gsymbol->name;
863 else
864 return symbol_natural_name (gsymbol);
865}
866
867/* Initialize the structure fields to zero values. */
868
869void
870init_sal (struct symtab_and_line *sal)
871{
872 sal->pspace = NULL;
873 sal->symtab = 0;
874 sal->section = 0;
875 sal->line = 0;
876 sal->pc = 0;
877 sal->end = 0;
878 sal->explicit_pc = 0;
879 sal->explicit_line = 0;
880}
881\f
882
883/* Return 1 if the two sections are the same, or if they could
884 plausibly be copies of each other, one in an original object
885 file and another in a separated debug file. */
886
887int
888matching_obj_sections (struct obj_section *obj_first,
889 struct obj_section *obj_second)
890{
891 asection *first = obj_first? obj_first->the_bfd_section : NULL;
892 asection *second = obj_second? obj_second->the_bfd_section : NULL;
893 struct objfile *obj;
894
895 /* If they're the same section, then they match. */
896 if (first == second)
897 return 1;
898
899 /* If either is NULL, give up. */
900 if (first == NULL || second == NULL)
901 return 0;
902
903 /* This doesn't apply to absolute symbols. */
904 if (first->owner == NULL || second->owner == NULL)
905 return 0;
906
907 /* If they're in the same object file, they must be different sections. */
908 if (first->owner == second->owner)
909 return 0;
910
911 /* Check whether the two sections are potentially corresponding. They must
912 have the same size, address, and name. We can't compare section indexes,
913 which would be more reliable, because some sections may have been
914 stripped. */
915 if (bfd_get_section_size (first) != bfd_get_section_size (second))
916 return 0;
917
918 /* In-memory addresses may start at a different offset, relativize them. */
919 if (bfd_get_section_vma (first->owner, first)
920 - bfd_get_start_address (first->owner)
921 != bfd_get_section_vma (second->owner, second)
922 - bfd_get_start_address (second->owner))
923 return 0;
924
925 if (bfd_get_section_name (first->owner, first) == NULL
926 || bfd_get_section_name (second->owner, second) == NULL
927 || strcmp (bfd_get_section_name (first->owner, first),
928 bfd_get_section_name (second->owner, second)) != 0)
929 return 0;
930
931 /* Otherwise check that they are in corresponding objfiles. */
932
933 ALL_OBJFILES (obj)
934 if (obj->obfd == first->owner)
935 break;
936 gdb_assert (obj != NULL);
937
938 if (obj->separate_debug_objfile != NULL
939 && obj->separate_debug_objfile->obfd == second->owner)
940 return 1;
941 if (obj->separate_debug_objfile_backlink != NULL
942 && obj->separate_debug_objfile_backlink->obfd == second->owner)
943 return 1;
944
945 return 0;
946}
947
948struct symtab *
949find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
950{
951 struct objfile *objfile;
952 struct minimal_symbol *msymbol;
953
954 /* If we know that this is not a text address, return failure. This is
955 necessary because we loop based on texthigh and textlow, which do
956 not include the data ranges. */
957 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
958 if (msymbol
959 && (MSYMBOL_TYPE (msymbol) == mst_data
960 || MSYMBOL_TYPE (msymbol) == mst_bss
961 || MSYMBOL_TYPE (msymbol) == mst_abs
962 || MSYMBOL_TYPE (msymbol) == mst_file_data
963 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
964 return NULL;
965
966 ALL_OBJFILES (objfile)
967 {
968 struct symtab *result = NULL;
969
970 if (objfile->sf)
971 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
972 pc, section, 0);
973 if (result)
974 return result;
975 }
976
977 return NULL;
978}
979\f
980/* Debug symbols usually don't have section information. We need to dig that
981 out of the minimal symbols and stash that in the debug symbol. */
982
983void
984fixup_section (struct general_symbol_info *ginfo,
985 CORE_ADDR addr, struct objfile *objfile)
986{
987 struct minimal_symbol *msym;
988
989 /* First, check whether a minimal symbol with the same name exists
990 and points to the same address. The address check is required
991 e.g. on PowerPC64, where the minimal symbol for a function will
992 point to the function descriptor, while the debug symbol will
993 point to the actual function code. */
994 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
995 if (msym)
996 {
997 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
998 ginfo->section = SYMBOL_SECTION (msym);
999 }
1000 else
1001 {
1002 /* Static, function-local variables do appear in the linker
1003 (minimal) symbols, but are frequently given names that won't
1004 be found via lookup_minimal_symbol(). E.g., it has been
1005 observed in frv-uclinux (ELF) executables that a static,
1006 function-local variable named "foo" might appear in the
1007 linker symbols as "foo.6" or "foo.3". Thus, there is no
1008 point in attempting to extend the lookup-by-name mechanism to
1009 handle this case due to the fact that there can be multiple
1010 names.
1011
1012 So, instead, search the section table when lookup by name has
1013 failed. The ``addr'' and ``endaddr'' fields may have already
1014 been relocated. If so, the relocation offset (i.e. the
1015 ANOFFSET value) needs to be subtracted from these values when
1016 performing the comparison. We unconditionally subtract it,
1017 because, when no relocation has been performed, the ANOFFSET
1018 value will simply be zero.
1019
1020 The address of the symbol whose section we're fixing up HAS
1021 NOT BEEN adjusted (relocated) yet. It can't have been since
1022 the section isn't yet known and knowing the section is
1023 necessary in order to add the correct relocation value. In
1024 other words, we wouldn't even be in this function (attempting
1025 to compute the section) if it were already known.
1026
1027 Note that it is possible to search the minimal symbols
1028 (subtracting the relocation value if necessary) to find the
1029 matching minimal symbol, but this is overkill and much less
1030 efficient. It is not necessary to find the matching minimal
1031 symbol, only its section.
1032
1033 Note that this technique (of doing a section table search)
1034 can fail when unrelocated section addresses overlap. For
1035 this reason, we still attempt a lookup by name prior to doing
1036 a search of the section table. */
1037
1038 struct obj_section *s;
1039
1040 ALL_OBJFILE_OSECTIONS (objfile, s)
1041 {
1042 int idx = s->the_bfd_section->index;
1043 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1044
1045 if (obj_section_addr (s) - offset <= addr
1046 && addr < obj_section_endaddr (s) - offset)
1047 {
1048 ginfo->obj_section = s;
1049 ginfo->section = idx;
1050 return;
1051 }
1052 }
1053 }
1054}
1055
1056struct symbol *
1057fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1058{
1059 CORE_ADDR addr;
1060
1061 if (!sym)
1062 return NULL;
1063
1064 if (SYMBOL_OBJ_SECTION (sym))
1065 return sym;
1066
1067 /* We either have an OBJFILE, or we can get at it from the sym's
1068 symtab. Anything else is a bug. */
1069 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1070
1071 if (objfile == NULL)
1072 objfile = SYMBOL_SYMTAB (sym)->objfile;
1073
1074 /* We should have an objfile by now. */
1075 gdb_assert (objfile);
1076
1077 switch (SYMBOL_CLASS (sym))
1078 {
1079 case LOC_STATIC:
1080 case LOC_LABEL:
1081 addr = SYMBOL_VALUE_ADDRESS (sym);
1082 break;
1083 case LOC_BLOCK:
1084 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1085 break;
1086
1087 default:
1088 /* Nothing else will be listed in the minsyms -- no use looking
1089 it up. */
1090 return sym;
1091 }
1092
1093 fixup_section (&sym->ginfo, addr, objfile);
1094
1095 return sym;
1096}
1097
1098/* Compute the demangled form of NAME as used by the various symbol
1099 lookup functions. The result is stored in *RESULT_NAME. Returns a
1100 cleanup which can be used to clean up the result.
1101
1102 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1103 Normally, Ada symbol lookups are performed using the encoded name
1104 rather than the demangled name, and so it might seem to make sense
1105 for this function to return an encoded version of NAME.
1106 Unfortunately, we cannot do this, because this function is used in
1107 circumstances where it is not appropriate to try to encode NAME.
1108 For instance, when displaying the frame info, we demangle the name
1109 of each parameter, and then perform a symbol lookup inside our
1110 function using that demangled name. In Ada, certain functions
1111 have internally-generated parameters whose name contain uppercase
1112 characters. Encoding those name would result in those uppercase
1113 characters to become lowercase, and thus cause the symbol lookup
1114 to fail. */
1115
1116struct cleanup *
1117demangle_for_lookup (const char *name, enum language lang,
1118 const char **result_name)
1119{
1120 char *demangled_name = NULL;
1121 const char *modified_name = NULL;
1122 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1123
1124 modified_name = name;
1125
1126 /* If we are using C++, D, or Java, demangle the name before doing a
1127 lookup, so we can always binary search. */
1128 if (lang == language_cplus)
1129 {
1130 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1131 if (demangled_name)
1132 {
1133 modified_name = demangled_name;
1134 make_cleanup (xfree, demangled_name);
1135 }
1136 else
1137 {
1138 /* If we were given a non-mangled name, canonicalize it
1139 according to the language (so far only for C++). */
1140 demangled_name = cp_canonicalize_string (name);
1141 if (demangled_name)
1142 {
1143 modified_name = demangled_name;
1144 make_cleanup (xfree, demangled_name);
1145 }
1146 }
1147 }
1148 else if (lang == language_java)
1149 {
1150 demangled_name = cplus_demangle (name,
1151 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1152 if (demangled_name)
1153 {
1154 modified_name = demangled_name;
1155 make_cleanup (xfree, demangled_name);
1156 }
1157 }
1158 else if (lang == language_d)
1159 {
1160 demangled_name = d_demangle (name, 0);
1161 if (demangled_name)
1162 {
1163 modified_name = demangled_name;
1164 make_cleanup (xfree, demangled_name);
1165 }
1166 }
1167
1168 *result_name = modified_name;
1169 return cleanup;
1170}
1171
1172/* Find the definition for a specified symbol name NAME
1173 in domain DOMAIN, visible from lexical block BLOCK.
1174 Returns the struct symbol pointer, or zero if no symbol is found.
1175 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1176 NAME is a field of the current implied argument `this'. If so set
1177 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1178 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1179 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1180
1181/* This function (or rather its subordinates) have a bunch of loops and
1182 it would seem to be attractive to put in some QUIT's (though I'm not really
1183 sure whether it can run long enough to be really important). But there
1184 are a few calls for which it would appear to be bad news to quit
1185 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1186 that there is C++ code below which can error(), but that probably
1187 doesn't affect these calls since they are looking for a known
1188 variable and thus can probably assume it will never hit the C++
1189 code). */
1190
1191struct symbol *
1192lookup_symbol_in_language (const char *name, const struct block *block,
1193 const domain_enum domain, enum language lang,
1194 int *is_a_field_of_this)
1195{
1196 const char *modified_name;
1197 struct symbol *returnval;
1198 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1199
1200 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1201 is_a_field_of_this);
1202 do_cleanups (cleanup);
1203
1204 return returnval;
1205}
1206
1207/* Behave like lookup_symbol_in_language, but performed with the
1208 current language. */
1209
1210struct symbol *
1211lookup_symbol (const char *name, const struct block *block,
1212 domain_enum domain, int *is_a_field_of_this)
1213{
1214 return lookup_symbol_in_language (name, block, domain,
1215 current_language->la_language,
1216 is_a_field_of_this);
1217}
1218
1219/* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1220 found, or NULL if not found. */
1221
1222struct symbol *
1223lookup_language_this (const struct language_defn *lang,
1224 const struct block *block)
1225{
1226 if (lang->la_name_of_this == NULL || block == NULL)
1227 return NULL;
1228
1229 while (block)
1230 {
1231 struct symbol *sym;
1232
1233 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1234 if (sym != NULL)
1235 {
1236 block_found = block;
1237 return sym;
1238 }
1239 if (BLOCK_FUNCTION (block))
1240 break;
1241 block = BLOCK_SUPERBLOCK (block);
1242 }
1243
1244 return NULL;
1245}
1246
1247/* Behave like lookup_symbol except that NAME is the natural name
1248 (e.g., demangled name) of the symbol that we're looking for. */
1249
1250static struct symbol *
1251lookup_symbol_aux (const char *name, const struct block *block,
1252 const domain_enum domain, enum language language,
1253 int *is_a_field_of_this)
1254{
1255 struct symbol *sym;
1256 const struct language_defn *langdef;
1257
1258 /* Make sure we do something sensible with is_a_field_of_this, since
1259 the callers that set this parameter to some non-null value will
1260 certainly use it later and expect it to be either 0 or 1.
1261 If we don't set it, the contents of is_a_field_of_this are
1262 undefined. */
1263 if (is_a_field_of_this != NULL)
1264 *is_a_field_of_this = 0;
1265
1266 /* Search specified block and its superiors. Don't search
1267 STATIC_BLOCK or GLOBAL_BLOCK. */
1268
1269 sym = lookup_symbol_aux_local (name, block, domain, language);
1270 if (sym != NULL)
1271 return sym;
1272
1273 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1274 check to see if NAME is a field of `this'. */
1275
1276 langdef = language_def (language);
1277
1278 if (is_a_field_of_this != NULL)
1279 {
1280 struct symbol *sym = lookup_language_this (langdef, block);
1281
1282 if (sym)
1283 {
1284 struct type *t = sym->type;
1285
1286 /* I'm not really sure that type of this can ever
1287 be typedefed; just be safe. */
1288 CHECK_TYPEDEF (t);
1289 if (TYPE_CODE (t) == TYPE_CODE_PTR
1290 || TYPE_CODE (t) == TYPE_CODE_REF)
1291 t = TYPE_TARGET_TYPE (t);
1292
1293 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1294 && TYPE_CODE (t) != TYPE_CODE_UNION)
1295 error (_("Internal error: `%s' is not an aggregate"),
1296 langdef->la_name_of_this);
1297
1298 if (check_field (t, name))
1299 {
1300 *is_a_field_of_this = 1;
1301 return NULL;
1302 }
1303 }
1304 }
1305
1306 /* Now do whatever is appropriate for LANGUAGE to look
1307 up static and global variables. */
1308
1309 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1310 if (sym != NULL)
1311 return sym;
1312
1313 /* Now search all static file-level symbols. Not strictly correct,
1314 but more useful than an error. */
1315
1316 return lookup_static_symbol_aux (name, domain);
1317}
1318
1319/* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1320 first, then check the psymtabs. If a psymtab indicates the existence of the
1321 desired name as a file-level static, then do psymtab-to-symtab conversion on
1322 the fly and return the found symbol. */
1323
1324struct symbol *
1325lookup_static_symbol_aux (const char *name, const domain_enum domain)
1326{
1327 struct objfile *objfile;
1328 struct symbol *sym;
1329
1330 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1331 if (sym != NULL)
1332 return sym;
1333
1334 ALL_OBJFILES (objfile)
1335 {
1336 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1337 if (sym != NULL)
1338 return sym;
1339 }
1340
1341 return NULL;
1342}
1343
1344/* Check to see if the symbol is defined in BLOCK or its superiors.
1345 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1346
1347static struct symbol *
1348lookup_symbol_aux_local (const char *name, const struct block *block,
1349 const domain_enum domain,
1350 enum language language)
1351{
1352 struct symbol *sym;
1353 const struct block *static_block = block_static_block (block);
1354 const char *scope = block_scope (block);
1355
1356 /* Check if either no block is specified or it's a global block. */
1357
1358 if (static_block == NULL)
1359 return NULL;
1360
1361 while (block != static_block)
1362 {
1363 sym = lookup_symbol_aux_block (name, block, domain);
1364 if (sym != NULL)
1365 return sym;
1366
1367 if (language == language_cplus || language == language_fortran)
1368 {
1369 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1370 domain);
1371 if (sym != NULL)
1372 return sym;
1373 }
1374
1375 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1376 break;
1377 block = BLOCK_SUPERBLOCK (block);
1378 }
1379
1380 /* We've reached the edge of the function without finding a result. */
1381
1382 return NULL;
1383}
1384
1385/* Look up OBJFILE to BLOCK. */
1386
1387struct objfile *
1388lookup_objfile_from_block (const struct block *block)
1389{
1390 struct objfile *obj;
1391 struct symtab *s;
1392
1393 if (block == NULL)
1394 return NULL;
1395
1396 block = block_global_block (block);
1397 /* Go through SYMTABS. */
1398 ALL_SYMTABS (obj, s)
1399 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1400 {
1401 if (obj->separate_debug_objfile_backlink)
1402 obj = obj->separate_debug_objfile_backlink;
1403
1404 return obj;
1405 }
1406
1407 return NULL;
1408}
1409
1410/* Look up a symbol in a block; if found, fixup the symbol, and set
1411 block_found appropriately. */
1412
1413struct symbol *
1414lookup_symbol_aux_block (const char *name, const struct block *block,
1415 const domain_enum domain)
1416{
1417 struct symbol *sym;
1418
1419 sym = lookup_block_symbol (block, name, domain);
1420 if (sym)
1421 {
1422 block_found = block;
1423 return fixup_symbol_section (sym, NULL);
1424 }
1425
1426 return NULL;
1427}
1428
1429/* Check all global symbols in OBJFILE in symtabs and
1430 psymtabs. */
1431
1432struct symbol *
1433lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1434 const char *name,
1435 const domain_enum domain)
1436{
1437 const struct objfile *objfile;
1438 struct symbol *sym;
1439 struct blockvector *bv;
1440 const struct block *block;
1441 struct symtab *s;
1442
1443 for (objfile = main_objfile;
1444 objfile;
1445 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1446 {
1447 /* Go through symtabs. */
1448 ALL_OBJFILE_SYMTABS (objfile, s)
1449 {
1450 bv = BLOCKVECTOR (s);
1451 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1452 sym = lookup_block_symbol (block, name, domain);
1453 if (sym)
1454 {
1455 block_found = block;
1456 return fixup_symbol_section (sym, (struct objfile *)objfile);
1457 }
1458 }
1459
1460 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1461 name, domain);
1462 if (sym)
1463 return sym;
1464 }
1465
1466 return NULL;
1467}
1468
1469/* Check to see if the symbol is defined in one of the symtabs.
1470 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1471 depending on whether or not we want to search global symbols or
1472 static symbols. */
1473
1474static struct symbol *
1475lookup_symbol_aux_symtabs (int block_index, const char *name,
1476 const domain_enum domain)
1477{
1478 struct symbol *sym;
1479 struct objfile *objfile;
1480 struct blockvector *bv;
1481 const struct block *block;
1482 struct symtab *s;
1483
1484 ALL_OBJFILES (objfile)
1485 {
1486 if (objfile->sf)
1487 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1488 block_index,
1489 name, domain);
1490
1491 ALL_OBJFILE_SYMTABS (objfile, s)
1492 if (s->primary)
1493 {
1494 bv = BLOCKVECTOR (s);
1495 block = BLOCKVECTOR_BLOCK (bv, block_index);
1496 sym = lookup_block_symbol (block, name, domain);
1497 if (sym)
1498 {
1499 block_found = block;
1500 return fixup_symbol_section (sym, objfile);
1501 }
1502 }
1503 }
1504
1505 return NULL;
1506}
1507
1508/* A helper function for lookup_symbol_aux that interfaces with the
1509 "quick" symbol table functions. */
1510
1511static struct symbol *
1512lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1513 const char *name, const domain_enum domain)
1514{
1515 struct symtab *symtab;
1516 struct blockvector *bv;
1517 const struct block *block;
1518 struct symbol *sym;
1519
1520 if (!objfile->sf)
1521 return NULL;
1522 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1523 if (!symtab)
1524 return NULL;
1525
1526 bv = BLOCKVECTOR (symtab);
1527 block = BLOCKVECTOR_BLOCK (bv, kind);
1528 sym = lookup_block_symbol (block, name, domain);
1529 if (!sym)
1530 {
1531 /* This shouldn't be necessary, but as a last resort try
1532 looking in the statics even though the psymtab claimed
1533 the symbol was global, or vice-versa. It's possible
1534 that the psymtab gets it wrong in some cases. */
1535
1536 /* FIXME: carlton/2002-09-30: Should we really do that?
1537 If that happens, isn't it likely to be a GDB error, in
1538 which case we should fix the GDB error rather than
1539 silently dealing with it here? So I'd vote for
1540 removing the check for the symbol in the other
1541 block. */
1542 block = BLOCKVECTOR_BLOCK (bv,
1543 kind == GLOBAL_BLOCK ?
1544 STATIC_BLOCK : GLOBAL_BLOCK);
1545 sym = lookup_block_symbol (block, name, domain);
1546 if (!sym)
1547 error (_("\
1548Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1549%s may be an inlined function, or may be a template function\n\
1550(if a template, try specifying an instantiation: %s<type>)."),
1551 kind == GLOBAL_BLOCK ? "global" : "static",
1552 name, symtab->filename, name, name);
1553 }
1554 return fixup_symbol_section (sym, objfile);
1555}
1556
1557/* A default version of lookup_symbol_nonlocal for use by languages
1558 that can't think of anything better to do. This implements the C
1559 lookup rules. */
1560
1561struct symbol *
1562basic_lookup_symbol_nonlocal (const char *name,
1563 const struct block *block,
1564 const domain_enum domain)
1565{
1566 struct symbol *sym;
1567
1568 /* NOTE: carlton/2003-05-19: The comments below were written when
1569 this (or what turned into this) was part of lookup_symbol_aux;
1570 I'm much less worried about these questions now, since these
1571 decisions have turned out well, but I leave these comments here
1572 for posterity. */
1573
1574 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1575 not it would be appropriate to search the current global block
1576 here as well. (That's what this code used to do before the
1577 is_a_field_of_this check was moved up.) On the one hand, it's
1578 redundant with the lookup_symbol_aux_symtabs search that happens
1579 next. On the other hand, if decode_line_1 is passed an argument
1580 like filename:var, then the user presumably wants 'var' to be
1581 searched for in filename. On the third hand, there shouldn't be
1582 multiple global variables all of which are named 'var', and it's
1583 not like decode_line_1 has ever restricted its search to only
1584 global variables in a single filename. All in all, only
1585 searching the static block here seems best: it's correct and it's
1586 cleanest. */
1587
1588 /* NOTE: carlton/2002-12-05: There's also a possible performance
1589 issue here: if you usually search for global symbols in the
1590 current file, then it would be slightly better to search the
1591 current global block before searching all the symtabs. But there
1592 are other factors that have a much greater effect on performance
1593 than that one, so I don't think we should worry about that for
1594 now. */
1595
1596 sym = lookup_symbol_static (name, block, domain);
1597 if (sym != NULL)
1598 return sym;
1599
1600 return lookup_symbol_global (name, block, domain);
1601}
1602
1603/* Lookup a symbol in the static block associated to BLOCK, if there
1604 is one; do nothing if BLOCK is NULL or a global block. */
1605
1606struct symbol *
1607lookup_symbol_static (const char *name,
1608 const struct block *block,
1609 const domain_enum domain)
1610{
1611 const struct block *static_block = block_static_block (block);
1612
1613 if (static_block != NULL)
1614 return lookup_symbol_aux_block (name, static_block, domain);
1615 else
1616 return NULL;
1617}
1618
1619/* Lookup a symbol in all files' global blocks (searching psymtabs if
1620 necessary). */
1621
1622struct symbol *
1623lookup_symbol_global (const char *name,
1624 const struct block *block,
1625 const domain_enum domain)
1626{
1627 struct symbol *sym = NULL;
1628 struct objfile *objfile = NULL;
1629
1630 /* Call library-specific lookup procedure. */
1631 objfile = lookup_objfile_from_block (block);
1632 if (objfile != NULL)
1633 sym = solib_global_lookup (objfile, name, domain);
1634 if (sym != NULL)
1635 return sym;
1636
1637 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1638 if (sym != NULL)
1639 return sym;
1640
1641 ALL_OBJFILES (objfile)
1642 {
1643 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1644 if (sym)
1645 return sym;
1646 }
1647
1648 return NULL;
1649}
1650
1651int
1652symbol_matches_domain (enum language symbol_language,
1653 domain_enum symbol_domain,
1654 domain_enum domain)
1655{
1656 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1657 A Java class declaration also defines a typedef for the class.
1658 Similarly, any Ada type declaration implicitly defines a typedef. */
1659 if (symbol_language == language_cplus
1660 || symbol_language == language_d
1661 || symbol_language == language_java
1662 || symbol_language == language_ada)
1663 {
1664 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1665 && symbol_domain == STRUCT_DOMAIN)
1666 return 1;
1667 }
1668 /* For all other languages, strict match is required. */
1669 return (symbol_domain == domain);
1670}
1671
1672/* Look up a type named NAME in the struct_domain. The type returned
1673 must not be opaque -- i.e., must have at least one field
1674 defined. */
1675
1676struct type *
1677lookup_transparent_type (const char *name)
1678{
1679 return current_language->la_lookup_transparent_type (name);
1680}
1681
1682/* A helper for basic_lookup_transparent_type that interfaces with the
1683 "quick" symbol table functions. */
1684
1685static struct type *
1686basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1687 const char *name)
1688{
1689 struct symtab *symtab;
1690 struct blockvector *bv;
1691 struct block *block;
1692 struct symbol *sym;
1693
1694 if (!objfile->sf)
1695 return NULL;
1696 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1697 if (!symtab)
1698 return NULL;
1699
1700 bv = BLOCKVECTOR (symtab);
1701 block = BLOCKVECTOR_BLOCK (bv, kind);
1702 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1703 if (!sym)
1704 {
1705 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1706
1707 /* This shouldn't be necessary, but as a last resort
1708 * try looking in the 'other kind' even though the psymtab
1709 * claimed the symbol was one thing. It's possible that
1710 * the psymtab gets it wrong in some cases.
1711 */
1712 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1713 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1714 if (!sym)
1715 /* FIXME; error is wrong in one case. */
1716 error (_("\
1717Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1718%s may be an inlined function, or may be a template function\n\
1719(if a template, try specifying an instantiation: %s<type>)."),
1720 name, symtab->filename, name, name);
1721 }
1722 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1723 return SYMBOL_TYPE (sym);
1724
1725 return NULL;
1726}
1727
1728/* The standard implementation of lookup_transparent_type. This code
1729 was modeled on lookup_symbol -- the parts not relevant to looking
1730 up types were just left out. In particular it's assumed here that
1731 types are available in struct_domain and only at file-static or
1732 global blocks. */
1733
1734struct type *
1735basic_lookup_transparent_type (const char *name)
1736{
1737 struct symbol *sym;
1738 struct symtab *s = NULL;
1739 struct blockvector *bv;
1740 struct objfile *objfile;
1741 struct block *block;
1742 struct type *t;
1743
1744 /* Now search all the global symbols. Do the symtab's first, then
1745 check the psymtab's. If a psymtab indicates the existence
1746 of the desired name as a global, then do psymtab-to-symtab
1747 conversion on the fly and return the found symbol. */
1748
1749 ALL_OBJFILES (objfile)
1750 {
1751 if (objfile->sf)
1752 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1753 GLOBAL_BLOCK,
1754 name, STRUCT_DOMAIN);
1755
1756 ALL_OBJFILE_SYMTABS (objfile, s)
1757 if (s->primary)
1758 {
1759 bv = BLOCKVECTOR (s);
1760 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1761 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1762 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1763 {
1764 return SYMBOL_TYPE (sym);
1765 }
1766 }
1767 }
1768
1769 ALL_OBJFILES (objfile)
1770 {
1771 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1772 if (t)
1773 return t;
1774 }
1775
1776 /* Now search the static file-level symbols.
1777 Not strictly correct, but more useful than an error.
1778 Do the symtab's first, then
1779 check the psymtab's. If a psymtab indicates the existence
1780 of the desired name as a file-level static, then do psymtab-to-symtab
1781 conversion on the fly and return the found symbol. */
1782
1783 ALL_OBJFILES (objfile)
1784 {
1785 if (objfile->sf)
1786 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1787 name, STRUCT_DOMAIN);
1788
1789 ALL_OBJFILE_SYMTABS (objfile, s)
1790 {
1791 bv = BLOCKVECTOR (s);
1792 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1793 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1794 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1795 {
1796 return SYMBOL_TYPE (sym);
1797 }
1798 }
1799 }
1800
1801 ALL_OBJFILES (objfile)
1802 {
1803 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1804 if (t)
1805 return t;
1806 }
1807
1808 return (struct type *) 0;
1809}
1810
1811/* Find the name of the file containing main(). */
1812/* FIXME: What about languages without main() or specially linked
1813 executables that have no main() ? */
1814
1815const char *
1816find_main_filename (void)
1817{
1818 struct objfile *objfile;
1819 char *name = main_name ();
1820
1821 ALL_OBJFILES (objfile)
1822 {
1823 const char *result;
1824
1825 if (!objfile->sf)
1826 continue;
1827 result = objfile->sf->qf->find_symbol_file (objfile, name);
1828 if (result)
1829 return result;
1830 }
1831 return (NULL);
1832}
1833
1834/* Search BLOCK for symbol NAME in DOMAIN.
1835
1836 Note that if NAME is the demangled form of a C++ symbol, we will fail
1837 to find a match during the binary search of the non-encoded names, but
1838 for now we don't worry about the slight inefficiency of looking for
1839 a match we'll never find, since it will go pretty quick. Once the
1840 binary search terminates, we drop through and do a straight linear
1841 search on the symbols. Each symbol which is marked as being a ObjC/C++
1842 symbol (language_cplus or language_objc set) has both the encoded and
1843 non-encoded names tested for a match. */
1844
1845struct symbol *
1846lookup_block_symbol (const struct block *block, const char *name,
1847 const domain_enum domain)
1848{
1849 struct dict_iterator iter;
1850 struct symbol *sym;
1851
1852 if (!BLOCK_FUNCTION (block))
1853 {
1854 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1855 sym != NULL;
1856 sym = dict_iter_name_next (name, &iter))
1857 {
1858 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1859 SYMBOL_DOMAIN (sym), domain))
1860 return sym;
1861 }
1862 return NULL;
1863 }
1864 else
1865 {
1866 /* Note that parameter symbols do not always show up last in the
1867 list; this loop makes sure to take anything else other than
1868 parameter symbols first; it only uses parameter symbols as a
1869 last resort. Note that this only takes up extra computation
1870 time on a match. */
1871
1872 struct symbol *sym_found = NULL;
1873
1874 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1875 sym != NULL;
1876 sym = dict_iter_name_next (name, &iter))
1877 {
1878 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1879 SYMBOL_DOMAIN (sym), domain))
1880 {
1881 sym_found = sym;
1882 if (!SYMBOL_IS_ARGUMENT (sym))
1883 {
1884 break;
1885 }
1886 }
1887 }
1888 return (sym_found); /* Will be NULL if not found. */
1889 }
1890}
1891
1892/* Iterate over the symbols named NAME, matching DOMAIN, starting with
1893 BLOCK.
1894
1895 For each symbol that matches, CALLBACK is called. The symbol and
1896 DATA are passed to the callback.
1897
1898 If CALLBACK returns zero, the iteration ends. Otherwise, the
1899 search continues. This function iterates upward through blocks.
1900 When the outermost block has been finished, the function
1901 returns. */
1902
1903void
1904iterate_over_symbols (const struct block *block, const char *name,
1905 const domain_enum domain,
1906 symbol_found_callback_ftype *callback,
1907 void *data)
1908{
1909 while (block)
1910 {
1911 struct dict_iterator iter;
1912 struct symbol *sym;
1913
1914 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1915 sym != NULL;
1916 sym = dict_iter_name_next (name, &iter))
1917 {
1918 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1919 SYMBOL_DOMAIN (sym), domain))
1920 {
1921 if (!callback (sym, data))
1922 return;
1923 }
1924 }
1925
1926 block = BLOCK_SUPERBLOCK (block);
1927 }
1928}
1929
1930/* Find the symtab associated with PC and SECTION. Look through the
1931 psymtabs and read in another symtab if necessary. */
1932
1933struct symtab *
1934find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1935{
1936 struct block *b;
1937 struct blockvector *bv;
1938 struct symtab *s = NULL;
1939 struct symtab *best_s = NULL;
1940 struct objfile *objfile;
1941 struct program_space *pspace;
1942 CORE_ADDR distance = 0;
1943 struct minimal_symbol *msymbol;
1944
1945 pspace = current_program_space;
1946
1947 /* If we know that this is not a text address, return failure. This is
1948 necessary because we loop based on the block's high and low code
1949 addresses, which do not include the data ranges, and because
1950 we call find_pc_sect_psymtab which has a similar restriction based
1951 on the partial_symtab's texthigh and textlow. */
1952 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1953 if (msymbol
1954 && (MSYMBOL_TYPE (msymbol) == mst_data
1955 || MSYMBOL_TYPE (msymbol) == mst_bss
1956 || MSYMBOL_TYPE (msymbol) == mst_abs
1957 || MSYMBOL_TYPE (msymbol) == mst_file_data
1958 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1959 return NULL;
1960
1961 /* Search all symtabs for the one whose file contains our address, and which
1962 is the smallest of all the ones containing the address. This is designed
1963 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1964 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1965 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1966
1967 This happens for native ecoff format, where code from included files
1968 gets its own symtab. The symtab for the included file should have
1969 been read in already via the dependency mechanism.
1970 It might be swifter to create several symtabs with the same name
1971 like xcoff does (I'm not sure).
1972
1973 It also happens for objfiles that have their functions reordered.
1974 For these, the symtab we are looking for is not necessarily read in. */
1975
1976 ALL_PRIMARY_SYMTABS (objfile, s)
1977 {
1978 bv = BLOCKVECTOR (s);
1979 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1980
1981 if (BLOCK_START (b) <= pc
1982 && BLOCK_END (b) > pc
1983 && (distance == 0
1984 || BLOCK_END (b) - BLOCK_START (b) < distance))
1985 {
1986 /* For an objfile that has its functions reordered,
1987 find_pc_psymtab will find the proper partial symbol table
1988 and we simply return its corresponding symtab. */
1989 /* In order to better support objfiles that contain both
1990 stabs and coff debugging info, we continue on if a psymtab
1991 can't be found. */
1992 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1993 {
1994 struct symtab *result;
1995
1996 result
1997 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1998 msymbol,
1999 pc, section,
2000 0);
2001 if (result)
2002 return result;
2003 }
2004 if (section != 0)
2005 {
2006 struct dict_iterator iter;
2007 struct symbol *sym = NULL;
2008
2009 ALL_BLOCK_SYMBOLS (b, iter, sym)
2010 {
2011 fixup_symbol_section (sym, objfile);
2012 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2013 break;
2014 }
2015 if (sym == NULL)
2016 continue; /* No symbol in this symtab matches
2017 section. */
2018 }
2019 distance = BLOCK_END (b) - BLOCK_START (b);
2020 best_s = s;
2021 }
2022 }
2023
2024 if (best_s != NULL)
2025 return (best_s);
2026
2027 ALL_OBJFILES (objfile)
2028 {
2029 struct symtab *result;
2030
2031 if (!objfile->sf)
2032 continue;
2033 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2034 msymbol,
2035 pc, section,
2036 1);
2037 if (result)
2038 return result;
2039 }
2040
2041 return NULL;
2042}
2043
2044/* Find the symtab associated with PC. Look through the psymtabs and read
2045 in another symtab if necessary. Backward compatibility, no section. */
2046
2047struct symtab *
2048find_pc_symtab (CORE_ADDR pc)
2049{
2050 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2051}
2052\f
2053
2054/* Find the source file and line number for a given PC value and SECTION.
2055 Return a structure containing a symtab pointer, a line number,
2056 and a pc range for the entire source line.
2057 The value's .pc field is NOT the specified pc.
2058 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2059 use the line that ends there. Otherwise, in that case, the line
2060 that begins there is used. */
2061
2062/* The big complication here is that a line may start in one file, and end just
2063 before the start of another file. This usually occurs when you #include
2064 code in the middle of a subroutine. To properly find the end of a line's PC
2065 range, we must search all symtabs associated with this compilation unit, and
2066 find the one whose first PC is closer than that of the next line in this
2067 symtab. */
2068
2069/* If it's worth the effort, we could be using a binary search. */
2070
2071struct symtab_and_line
2072find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2073{
2074 struct symtab *s;
2075 struct linetable *l;
2076 int len;
2077 int i;
2078 struct linetable_entry *item;
2079 struct symtab_and_line val;
2080 struct blockvector *bv;
2081 struct minimal_symbol *msymbol;
2082 struct minimal_symbol *mfunsym;
2083 struct objfile *objfile;
2084
2085 /* Info on best line seen so far, and where it starts, and its file. */
2086
2087 struct linetable_entry *best = NULL;
2088 CORE_ADDR best_end = 0;
2089 struct symtab *best_symtab = 0;
2090
2091 /* Store here the first line number
2092 of a file which contains the line at the smallest pc after PC.
2093 If we don't find a line whose range contains PC,
2094 we will use a line one less than this,
2095 with a range from the start of that file to the first line's pc. */
2096 struct linetable_entry *alt = NULL;
2097 struct symtab *alt_symtab = 0;
2098
2099 /* Info on best line seen in this file. */
2100
2101 struct linetable_entry *prev;
2102
2103 /* If this pc is not from the current frame,
2104 it is the address of the end of a call instruction.
2105 Quite likely that is the start of the following statement.
2106 But what we want is the statement containing the instruction.
2107 Fudge the pc to make sure we get that. */
2108
2109 init_sal (&val); /* initialize to zeroes */
2110
2111 val.pspace = current_program_space;
2112
2113 /* It's tempting to assume that, if we can't find debugging info for
2114 any function enclosing PC, that we shouldn't search for line
2115 number info, either. However, GAS can emit line number info for
2116 assembly files --- very helpful when debugging hand-written
2117 assembly code. In such a case, we'd have no debug info for the
2118 function, but we would have line info. */
2119
2120 if (notcurrent)
2121 pc -= 1;
2122
2123 /* elz: added this because this function returned the wrong
2124 information if the pc belongs to a stub (import/export)
2125 to call a shlib function. This stub would be anywhere between
2126 two functions in the target, and the line info was erroneously
2127 taken to be the one of the line before the pc. */
2128
2129 /* RT: Further explanation:
2130
2131 * We have stubs (trampolines) inserted between procedures.
2132 *
2133 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2134 * exists in the main image.
2135 *
2136 * In the minimal symbol table, we have a bunch of symbols
2137 * sorted by start address. The stubs are marked as "trampoline",
2138 * the others appear as text. E.g.:
2139 *
2140 * Minimal symbol table for main image
2141 * main: code for main (text symbol)
2142 * shr1: stub (trampoline symbol)
2143 * foo: code for foo (text symbol)
2144 * ...
2145 * Minimal symbol table for "shr1" image:
2146 * ...
2147 * shr1: code for shr1 (text symbol)
2148 * ...
2149 *
2150 * So the code below is trying to detect if we are in the stub
2151 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2152 * and if found, do the symbolization from the real-code address
2153 * rather than the stub address.
2154 *
2155 * Assumptions being made about the minimal symbol table:
2156 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2157 * if we're really in the trampoline.s If we're beyond it (say
2158 * we're in "foo" in the above example), it'll have a closer
2159 * symbol (the "foo" text symbol for example) and will not
2160 * return the trampoline.
2161 * 2. lookup_minimal_symbol_text() will find a real text symbol
2162 * corresponding to the trampoline, and whose address will
2163 * be different than the trampoline address. I put in a sanity
2164 * check for the address being the same, to avoid an
2165 * infinite recursion.
2166 */
2167 msymbol = lookup_minimal_symbol_by_pc (pc);
2168 if (msymbol != NULL)
2169 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2170 {
2171 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2172 NULL);
2173 if (mfunsym == NULL)
2174 /* I eliminated this warning since it is coming out
2175 * in the following situation:
2176 * gdb shmain // test program with shared libraries
2177 * (gdb) break shr1 // function in shared lib
2178 * Warning: In stub for ...
2179 * In the above situation, the shared lib is not loaded yet,
2180 * so of course we can't find the real func/line info,
2181 * but the "break" still works, and the warning is annoying.
2182 * So I commented out the warning. RT */
2183 /* warning ("In stub for %s; unable to find real function/line info",
2184 SYMBOL_LINKAGE_NAME (msymbol)); */
2185 ;
2186 /* fall through */
2187 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2188 == SYMBOL_VALUE_ADDRESS (msymbol))
2189 /* Avoid infinite recursion */
2190 /* See above comment about why warning is commented out. */
2191 /* warning ("In stub for %s; unable to find real function/line info",
2192 SYMBOL_LINKAGE_NAME (msymbol)); */
2193 ;
2194 /* fall through */
2195 else
2196 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2197 }
2198
2199
2200 s = find_pc_sect_symtab (pc, section);
2201 if (!s)
2202 {
2203 /* If no symbol information, return previous pc. */
2204 if (notcurrent)
2205 pc++;
2206 val.pc = pc;
2207 return val;
2208 }
2209
2210 bv = BLOCKVECTOR (s);
2211 objfile = s->objfile;
2212
2213 /* Look at all the symtabs that share this blockvector.
2214 They all have the same apriori range, that we found was right;
2215 but they have different line tables. */
2216
2217 ALL_OBJFILE_SYMTABS (objfile, s)
2218 {
2219 if (BLOCKVECTOR (s) != bv)
2220 continue;
2221
2222 /* Find the best line in this symtab. */
2223 l = LINETABLE (s);
2224 if (!l)
2225 continue;
2226 len = l->nitems;
2227 if (len <= 0)
2228 {
2229 /* I think len can be zero if the symtab lacks line numbers
2230 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2231 I'm not sure which, and maybe it depends on the symbol
2232 reader). */
2233 continue;
2234 }
2235
2236 prev = NULL;
2237 item = l->item; /* Get first line info. */
2238
2239 /* Is this file's first line closer than the first lines of other files?
2240 If so, record this file, and its first line, as best alternate. */
2241 if (item->pc > pc && (!alt || item->pc < alt->pc))
2242 {
2243 alt = item;
2244 alt_symtab = s;
2245 }
2246
2247 for (i = 0; i < len; i++, item++)
2248 {
2249 /* Leave prev pointing to the linetable entry for the last line
2250 that started at or before PC. */
2251 if (item->pc > pc)
2252 break;
2253
2254 prev = item;
2255 }
2256
2257 /* At this point, prev points at the line whose start addr is <= pc, and
2258 item points at the next line. If we ran off the end of the linetable
2259 (pc >= start of the last line), then prev == item. If pc < start of
2260 the first line, prev will not be set. */
2261
2262 /* Is this file's best line closer than the best in the other files?
2263 If so, record this file, and its best line, as best so far. Don't
2264 save prev if it represents the end of a function (i.e. line number
2265 0) instead of a real line. */
2266
2267 if (prev && prev->line && (!best || prev->pc > best->pc))
2268 {
2269 best = prev;
2270 best_symtab = s;
2271
2272 /* Discard BEST_END if it's before the PC of the current BEST. */
2273 if (best_end <= best->pc)
2274 best_end = 0;
2275 }
2276
2277 /* If another line (denoted by ITEM) is in the linetable and its
2278 PC is after BEST's PC, but before the current BEST_END, then
2279 use ITEM's PC as the new best_end. */
2280 if (best && i < len && item->pc > best->pc
2281 && (best_end == 0 || best_end > item->pc))
2282 best_end = item->pc;
2283 }
2284
2285 if (!best_symtab)
2286 {
2287 /* If we didn't find any line number info, just return zeros.
2288 We used to return alt->line - 1 here, but that could be
2289 anywhere; if we don't have line number info for this PC,
2290 don't make some up. */
2291 val.pc = pc;
2292 }
2293 else if (best->line == 0)
2294 {
2295 /* If our best fit is in a range of PC's for which no line
2296 number info is available (line number is zero) then we didn't
2297 find any valid line information. */
2298 val.pc = pc;
2299 }
2300 else
2301 {
2302 val.symtab = best_symtab;
2303 val.line = best->line;
2304 val.pc = best->pc;
2305 if (best_end && (!alt || best_end < alt->pc))
2306 val.end = best_end;
2307 else if (alt)
2308 val.end = alt->pc;
2309 else
2310 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2311 }
2312 val.section = section;
2313 return val;
2314}
2315
2316/* Backward compatibility (no section). */
2317
2318struct symtab_and_line
2319find_pc_line (CORE_ADDR pc, int notcurrent)
2320{
2321 struct obj_section *section;
2322
2323 section = find_pc_overlay (pc);
2324 if (pc_in_unmapped_range (pc, section))
2325 pc = overlay_mapped_address (pc, section);
2326 return find_pc_sect_line (pc, section, notcurrent);
2327}
2328\f
2329/* Find line number LINE in any symtab whose name is the same as
2330 SYMTAB.
2331
2332 If found, return the symtab that contains the linetable in which it was
2333 found, set *INDEX to the index in the linetable of the best entry
2334 found, and set *EXACT_MATCH nonzero if the value returned is an
2335 exact match.
2336
2337 If not found, return NULL. */
2338
2339struct symtab *
2340find_line_symtab (struct symtab *symtab, int line,
2341 int *index, int *exact_match)
2342{
2343 int exact = 0; /* Initialized here to avoid a compiler warning. */
2344
2345 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2346 so far seen. */
2347
2348 int best_index;
2349 struct linetable *best_linetable;
2350 struct symtab *best_symtab;
2351
2352 /* First try looking it up in the given symtab. */
2353 best_linetable = LINETABLE (symtab);
2354 best_symtab = symtab;
2355 best_index = find_line_common (best_linetable, line, &exact, 0);
2356 if (best_index < 0 || !exact)
2357 {
2358 /* Didn't find an exact match. So we better keep looking for
2359 another symtab with the same name. In the case of xcoff,
2360 multiple csects for one source file (produced by IBM's FORTRAN
2361 compiler) produce multiple symtabs (this is unavoidable
2362 assuming csects can be at arbitrary places in memory and that
2363 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2364
2365 /* BEST is the smallest linenumber > LINE so far seen,
2366 or 0 if none has been seen so far.
2367 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2368 int best;
2369
2370 struct objfile *objfile;
2371 struct symtab *s;
2372
2373 if (best_index >= 0)
2374 best = best_linetable->item[best_index].line;
2375 else
2376 best = 0;
2377
2378 ALL_OBJFILES (objfile)
2379 {
2380 if (objfile->sf)
2381 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2382 symtab->filename);
2383 }
2384
2385 /* Get symbol full file name if possible. */
2386 symtab_to_fullname (symtab);
2387
2388 ALL_SYMTABS (objfile, s)
2389 {
2390 struct linetable *l;
2391 int ind;
2392
2393 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2394 continue;
2395 if (symtab->fullname != NULL
2396 && symtab_to_fullname (s) != NULL
2397 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2398 continue;
2399 l = LINETABLE (s);
2400 ind = find_line_common (l, line, &exact, 0);
2401 if (ind >= 0)
2402 {
2403 if (exact)
2404 {
2405 best_index = ind;
2406 best_linetable = l;
2407 best_symtab = s;
2408 goto done;
2409 }
2410 if (best == 0 || l->item[ind].line < best)
2411 {
2412 best = l->item[ind].line;
2413 best_index = ind;
2414 best_linetable = l;
2415 best_symtab = s;
2416 }
2417 }
2418 }
2419 }
2420done:
2421 if (best_index < 0)
2422 return NULL;
2423
2424 if (index)
2425 *index = best_index;
2426 if (exact_match)
2427 *exact_match = exact;
2428
2429 return best_symtab;
2430}
2431
2432/* Given SYMTAB, returns all the PCs function in the symtab that
2433 exactly match LINE. Returns NULL if there are no exact matches,
2434 but updates BEST_ITEM in this case. */
2435
2436VEC (CORE_ADDR) *
2437find_pcs_for_symtab_line (struct symtab *symtab, int line,
2438 struct linetable_entry **best_item)
2439{
2440 int start = 0, ix;
2441 struct symbol *previous_function = NULL;
2442 VEC (CORE_ADDR) *result = NULL;
2443
2444 /* First, collect all the PCs that are at this line. */
2445 while (1)
2446 {
2447 int was_exact;
2448 int idx;
2449
2450 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2451 if (idx < 0)
2452 break;
2453
2454 if (!was_exact)
2455 {
2456 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2457
2458 if (*best_item == NULL || item->line < (*best_item)->line)
2459 *best_item = item;
2460
2461 break;
2462 }
2463
2464 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2465 start = idx + 1;
2466 }
2467
2468 return result;
2469}
2470
2471\f
2472/* Set the PC value for a given source file and line number and return true.
2473 Returns zero for invalid line number (and sets the PC to 0).
2474 The source file is specified with a struct symtab. */
2475
2476int
2477find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2478{
2479 struct linetable *l;
2480 int ind;
2481
2482 *pc = 0;
2483 if (symtab == 0)
2484 return 0;
2485
2486 symtab = find_line_symtab (symtab, line, &ind, NULL);
2487 if (symtab != NULL)
2488 {
2489 l = LINETABLE (symtab);
2490 *pc = l->item[ind].pc;
2491 return 1;
2492 }
2493 else
2494 return 0;
2495}
2496
2497/* Find the range of pc values in a line.
2498 Store the starting pc of the line into *STARTPTR
2499 and the ending pc (start of next line) into *ENDPTR.
2500 Returns 1 to indicate success.
2501 Returns 0 if could not find the specified line. */
2502
2503int
2504find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2505 CORE_ADDR *endptr)
2506{
2507 CORE_ADDR startaddr;
2508 struct symtab_and_line found_sal;
2509
2510 startaddr = sal.pc;
2511 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2512 return 0;
2513
2514 /* This whole function is based on address. For example, if line 10 has
2515 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2516 "info line *0x123" should say the line goes from 0x100 to 0x200
2517 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2518 This also insures that we never give a range like "starts at 0x134
2519 and ends at 0x12c". */
2520
2521 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2522 if (found_sal.line != sal.line)
2523 {
2524 /* The specified line (sal) has zero bytes. */
2525 *startptr = found_sal.pc;
2526 *endptr = found_sal.pc;
2527 }
2528 else
2529 {
2530 *startptr = found_sal.pc;
2531 *endptr = found_sal.end;
2532 }
2533 return 1;
2534}
2535
2536/* Given a line table and a line number, return the index into the line
2537 table for the pc of the nearest line whose number is >= the specified one.
2538 Return -1 if none is found. The value is >= 0 if it is an index.
2539 START is the index at which to start searching the line table.
2540
2541 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2542
2543static int
2544find_line_common (struct linetable *l, int lineno,
2545 int *exact_match, int start)
2546{
2547 int i;
2548 int len;
2549
2550 /* BEST is the smallest linenumber > LINENO so far seen,
2551 or 0 if none has been seen so far.
2552 BEST_INDEX identifies the item for it. */
2553
2554 int best_index = -1;
2555 int best = 0;
2556
2557 *exact_match = 0;
2558
2559 if (lineno <= 0)
2560 return -1;
2561 if (l == 0)
2562 return -1;
2563
2564 len = l->nitems;
2565 for (i = start; i < len; i++)
2566 {
2567 struct linetable_entry *item = &(l->item[i]);
2568
2569 if (item->line == lineno)
2570 {
2571 /* Return the first (lowest address) entry which matches. */
2572 *exact_match = 1;
2573 return i;
2574 }
2575
2576 if (item->line > lineno && (best == 0 || item->line < best))
2577 {
2578 best = item->line;
2579 best_index = i;
2580 }
2581 }
2582
2583 /* If we got here, we didn't get an exact match. */
2584 return best_index;
2585}
2586
2587int
2588find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2589{
2590 struct symtab_and_line sal;
2591
2592 sal = find_pc_line (pc, 0);
2593 *startptr = sal.pc;
2594 *endptr = sal.end;
2595 return sal.symtab != 0;
2596}
2597
2598/* Given a function start address FUNC_ADDR and SYMTAB, find the first
2599 address for that function that has an entry in SYMTAB's line info
2600 table. If such an entry cannot be found, return FUNC_ADDR
2601 unaltered. */
2602
2603static CORE_ADDR
2604skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2605{
2606 CORE_ADDR func_start, func_end;
2607 struct linetable *l;
2608 int i;
2609
2610 /* Give up if this symbol has no lineinfo table. */
2611 l = LINETABLE (symtab);
2612 if (l == NULL)
2613 return func_addr;
2614
2615 /* Get the range for the function's PC values, or give up if we
2616 cannot, for some reason. */
2617 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2618 return func_addr;
2619
2620 /* Linetable entries are ordered by PC values, see the commentary in
2621 symtab.h where `struct linetable' is defined. Thus, the first
2622 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2623 address we are looking for. */
2624 for (i = 0; i < l->nitems; i++)
2625 {
2626 struct linetable_entry *item = &(l->item[i]);
2627
2628 /* Don't use line numbers of zero, they mark special entries in
2629 the table. See the commentary on symtab.h before the
2630 definition of struct linetable. */
2631 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2632 return item->pc;
2633 }
2634
2635 return func_addr;
2636}
2637
2638/* Given a function symbol SYM, find the symtab and line for the start
2639 of the function.
2640 If the argument FUNFIRSTLINE is nonzero, we want the first line
2641 of real code inside the function. */
2642
2643struct symtab_and_line
2644find_function_start_sal (struct symbol *sym, int funfirstline)
2645{
2646 struct symtab_and_line sal;
2647
2648 fixup_symbol_section (sym, NULL);
2649 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2650 SYMBOL_OBJ_SECTION (sym), 0);
2651
2652 /* We always should have a line for the function start address.
2653 If we don't, something is odd. Create a plain SAL refering
2654 just the PC and hope that skip_prologue_sal (if requested)
2655 can find a line number for after the prologue. */
2656 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2657 {
2658 init_sal (&sal);
2659 sal.pspace = current_program_space;
2660 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2661 sal.section = SYMBOL_OBJ_SECTION (sym);
2662 }
2663
2664 if (funfirstline)
2665 skip_prologue_sal (&sal);
2666
2667 return sal;
2668}
2669
2670/* Adjust SAL to the first instruction past the function prologue.
2671 If the PC was explicitly specified, the SAL is not changed.
2672 If the line number was explicitly specified, at most the SAL's PC
2673 is updated. If SAL is already past the prologue, then do nothing. */
2674
2675void
2676skip_prologue_sal (struct symtab_and_line *sal)
2677{
2678 struct symbol *sym;
2679 struct symtab_and_line start_sal;
2680 struct cleanup *old_chain;
2681 CORE_ADDR pc, saved_pc;
2682 struct obj_section *section;
2683 const char *name;
2684 struct objfile *objfile;
2685 struct gdbarch *gdbarch;
2686 struct block *b, *function_block;
2687 int force_skip, skip;
2688
2689 /* Do not change the SAL is PC was specified explicitly. */
2690 if (sal->explicit_pc)
2691 return;
2692
2693 old_chain = save_current_space_and_thread ();
2694 switch_to_program_space_and_thread (sal->pspace);
2695
2696 sym = find_pc_sect_function (sal->pc, sal->section);
2697 if (sym != NULL)
2698 {
2699 fixup_symbol_section (sym, NULL);
2700
2701 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2702 section = SYMBOL_OBJ_SECTION (sym);
2703 name = SYMBOL_LINKAGE_NAME (sym);
2704 objfile = SYMBOL_SYMTAB (sym)->objfile;
2705 }
2706 else
2707 {
2708 struct minimal_symbol *msymbol
2709 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2710
2711 if (msymbol == NULL)
2712 {
2713 do_cleanups (old_chain);
2714 return;
2715 }
2716
2717 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2718 section = SYMBOL_OBJ_SECTION (msymbol);
2719 name = SYMBOL_LINKAGE_NAME (msymbol);
2720 objfile = msymbol_objfile (msymbol);
2721 }
2722
2723 gdbarch = get_objfile_arch (objfile);
2724
2725 /* Process the prologue in two passes. In the first pass try to skip the
2726 prologue (SKIP is true) and verify there is a real need for it (indicated
2727 by FORCE_SKIP). If no such reason was found run a second pass where the
2728 prologue is not skipped (SKIP is false). */
2729
2730 skip = 1;
2731 force_skip = 1;
2732
2733 /* Be conservative - allow direct PC (without skipping prologue) only if we
2734 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2735 have to be set by the caller so we use SYM instead. */
2736 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2737 force_skip = 0;
2738
2739 saved_pc = pc;
2740 do
2741 {
2742 pc = saved_pc;
2743
2744 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2745 so that gdbarch_skip_prologue has something unique to work on. */
2746 if (section_is_overlay (section) && !section_is_mapped (section))
2747 pc = overlay_unmapped_address (pc, section);
2748
2749 /* Skip "first line" of function (which is actually its prologue). */
2750 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2751 if (skip)
2752 pc = gdbarch_skip_prologue (gdbarch, pc);
2753
2754 /* For overlays, map pc back into its mapped VMA range. */
2755 pc = overlay_mapped_address (pc, section);
2756
2757 /* Calculate line number. */
2758 start_sal = find_pc_sect_line (pc, section, 0);
2759
2760 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2761 line is still part of the same function. */
2762 if (skip && start_sal.pc != pc
2763 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2764 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2765 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2766 == lookup_minimal_symbol_by_pc_section (pc, section))))
2767 {
2768 /* First pc of next line */
2769 pc = start_sal.end;
2770 /* Recalculate the line number (might not be N+1). */
2771 start_sal = find_pc_sect_line (pc, section, 0);
2772 }
2773
2774 /* On targets with executable formats that don't have a concept of
2775 constructors (ELF with .init has, PE doesn't), gcc emits a call
2776 to `__main' in `main' between the prologue and before user
2777 code. */
2778 if (gdbarch_skip_main_prologue_p (gdbarch)
2779 && name && strcmp_iw (name, "main") == 0)
2780 {
2781 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2782 /* Recalculate the line number (might not be N+1). */
2783 start_sal = find_pc_sect_line (pc, section, 0);
2784 force_skip = 1;
2785 }
2786 }
2787 while (!force_skip && skip--);
2788
2789 /* If we still don't have a valid source line, try to find the first
2790 PC in the lineinfo table that belongs to the same function. This
2791 happens with COFF debug info, which does not seem to have an
2792 entry in lineinfo table for the code after the prologue which has
2793 no direct relation to source. For example, this was found to be
2794 the case with the DJGPP target using "gcc -gcoff" when the
2795 compiler inserted code after the prologue to make sure the stack
2796 is aligned. */
2797 if (!force_skip && sym && start_sal.symtab == NULL)
2798 {
2799 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2800 /* Recalculate the line number. */
2801 start_sal = find_pc_sect_line (pc, section, 0);
2802 }
2803
2804 do_cleanups (old_chain);
2805
2806 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2807 forward SAL to the end of the prologue. */
2808 if (sal->pc >= pc)
2809 return;
2810
2811 sal->pc = pc;
2812 sal->section = section;
2813
2814 /* Unless the explicit_line flag was set, update the SAL line
2815 and symtab to correspond to the modified PC location. */
2816 if (sal->explicit_line)
2817 return;
2818
2819 sal->symtab = start_sal.symtab;
2820 sal->line = start_sal.line;
2821 sal->end = start_sal.end;
2822
2823 /* Check if we are now inside an inlined function. If we can,
2824 use the call site of the function instead. */
2825 b = block_for_pc_sect (sal->pc, sal->section);
2826 function_block = NULL;
2827 while (b != NULL)
2828 {
2829 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2830 function_block = b;
2831 else if (BLOCK_FUNCTION (b) != NULL)
2832 break;
2833 b = BLOCK_SUPERBLOCK (b);
2834 }
2835 if (function_block != NULL
2836 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2837 {
2838 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2839 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2840 }
2841}
2842
2843/* If P is of the form "operator[ \t]+..." where `...' is
2844 some legitimate operator text, return a pointer to the
2845 beginning of the substring of the operator text.
2846 Otherwise, return "". */
2847
2848static char *
2849operator_chars (char *p, char **end)
2850{
2851 *end = "";
2852 if (strncmp (p, "operator", 8))
2853 return *end;
2854 p += 8;
2855
2856 /* Don't get faked out by `operator' being part of a longer
2857 identifier. */
2858 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2859 return *end;
2860
2861 /* Allow some whitespace between `operator' and the operator symbol. */
2862 while (*p == ' ' || *p == '\t')
2863 p++;
2864
2865 /* Recognize 'operator TYPENAME'. */
2866
2867 if (isalpha (*p) || *p == '_' || *p == '$')
2868 {
2869 char *q = p + 1;
2870
2871 while (isalnum (*q) || *q == '_' || *q == '$')
2872 q++;
2873 *end = q;
2874 return p;
2875 }
2876
2877 while (*p)
2878 switch (*p)
2879 {
2880 case '\\': /* regexp quoting */
2881 if (p[1] == '*')
2882 {
2883 if (p[2] == '=') /* 'operator\*=' */
2884 *end = p + 3;
2885 else /* 'operator\*' */
2886 *end = p + 2;
2887 return p;
2888 }
2889 else if (p[1] == '[')
2890 {
2891 if (p[2] == ']')
2892 error (_("mismatched quoting on brackets, "
2893 "try 'operator\\[\\]'"));
2894 else if (p[2] == '\\' && p[3] == ']')
2895 {
2896 *end = p + 4; /* 'operator\[\]' */
2897 return p;
2898 }
2899 else
2900 error (_("nothing is allowed between '[' and ']'"));
2901 }
2902 else
2903 {
2904 /* Gratuitous qoute: skip it and move on. */
2905 p++;
2906 continue;
2907 }
2908 break;
2909 case '!':
2910 case '=':
2911 case '*':
2912 case '/':
2913 case '%':
2914 case '^':
2915 if (p[1] == '=')
2916 *end = p + 2;
2917 else
2918 *end = p + 1;
2919 return p;
2920 case '<':
2921 case '>':
2922 case '+':
2923 case '-':
2924 case '&':
2925 case '|':
2926 if (p[0] == '-' && p[1] == '>')
2927 {
2928 /* Struct pointer member operator 'operator->'. */
2929 if (p[2] == '*')
2930 {
2931 *end = p + 3; /* 'operator->*' */
2932 return p;
2933 }
2934 else if (p[2] == '\\')
2935 {
2936 *end = p + 4; /* Hopefully 'operator->\*' */
2937 return p;
2938 }
2939 else
2940 {
2941 *end = p + 2; /* 'operator->' */
2942 return p;
2943 }
2944 }
2945 if (p[1] == '=' || p[1] == p[0])
2946 *end = p + 2;
2947 else
2948 *end = p + 1;
2949 return p;
2950 case '~':
2951 case ',':
2952 *end = p + 1;
2953 return p;
2954 case '(':
2955 if (p[1] != ')')
2956 error (_("`operator ()' must be specified "
2957 "without whitespace in `()'"));
2958 *end = p + 2;
2959 return p;
2960 case '?':
2961 if (p[1] != ':')
2962 error (_("`operator ?:' must be specified "
2963 "without whitespace in `?:'"));
2964 *end = p + 2;
2965 return p;
2966 case '[':
2967 if (p[1] != ']')
2968 error (_("`operator []' must be specified "
2969 "without whitespace in `[]'"));
2970 *end = p + 2;
2971 return p;
2972 default:
2973 error (_("`operator %s' not supported"), p);
2974 break;
2975 }
2976
2977 *end = "";
2978 return *end;
2979}
2980\f
2981
2982/* If FILE is not already in the table of files, return zero;
2983 otherwise return non-zero. Optionally add FILE to the table if ADD
2984 is non-zero. If *FIRST is non-zero, forget the old table
2985 contents. */
2986
2987static int
2988filename_seen (const char *file, int add, int *first)
2989{
2990 /* Table of files seen so far. */
2991 static const char **tab = NULL;
2992 /* Allocated size of tab in elements.
2993 Start with one 256-byte block (when using GNU malloc.c).
2994 24 is the malloc overhead when range checking is in effect. */
2995 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2996 /* Current size of tab in elements. */
2997 static int tab_cur_size;
2998 const char **p;
2999
3000 if (*first)
3001 {
3002 if (tab == NULL)
3003 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
3004 tab_cur_size = 0;
3005 }
3006
3007 /* Is FILE in tab? */
3008 for (p = tab; p < tab + tab_cur_size; p++)
3009 if (filename_cmp (*p, file) == 0)
3010 return 1;
3011
3012 /* No; maybe add it to tab. */
3013 if (add)
3014 {
3015 if (tab_cur_size == tab_alloc_size)
3016 {
3017 tab_alloc_size *= 2;
3018 tab = (const char **) xrealloc ((char *) tab,
3019 tab_alloc_size * sizeof (*tab));
3020 }
3021 tab[tab_cur_size++] = file;
3022 }
3023
3024 return 0;
3025}
3026
3027/* Slave routine for sources_info. Force line breaks at ,'s.
3028 NAME is the name to print and *FIRST is nonzero if this is the first
3029 name printed. Set *FIRST to zero. */
3030
3031static void
3032output_source_filename (const char *name, int *first)
3033{
3034 /* Since a single source file can result in several partial symbol
3035 tables, we need to avoid printing it more than once. Note: if
3036 some of the psymtabs are read in and some are not, it gets
3037 printed both under "Source files for which symbols have been
3038 read" and "Source files for which symbols will be read in on
3039 demand". I consider this a reasonable way to deal with the
3040 situation. I'm not sure whether this can also happen for
3041 symtabs; it doesn't hurt to check. */
3042
3043 /* Was NAME already seen? */
3044 if (filename_seen (name, 1, first))
3045 {
3046 /* Yes; don't print it again. */
3047 return;
3048 }
3049 /* No; print it and reset *FIRST. */
3050 if (*first)
3051 {
3052 *first = 0;
3053 }
3054 else
3055 {
3056 printf_filtered (", ");
3057 }
3058
3059 wrap_here ("");
3060 fputs_filtered (name, gdb_stdout);
3061}
3062
3063/* A callback for map_partial_symbol_filenames. */
3064
3065static void
3066output_partial_symbol_filename (const char *filename, const char *fullname,
3067 void *data)
3068{
3069 output_source_filename (fullname ? fullname : filename, data);
3070}
3071
3072static void
3073sources_info (char *ignore, int from_tty)
3074{
3075 struct symtab *s;
3076 struct objfile *objfile;
3077 int first;
3078
3079 if (!have_full_symbols () && !have_partial_symbols ())
3080 {
3081 error (_("No symbol table is loaded. Use the \"file\" command."));
3082 }
3083
3084 printf_filtered ("Source files for which symbols have been read in:\n\n");
3085
3086 first = 1;
3087 ALL_SYMTABS (objfile, s)
3088 {
3089 const char *fullname = symtab_to_fullname (s);
3090
3091 output_source_filename (fullname ? fullname : s->filename, &first);
3092 }
3093 printf_filtered ("\n\n");
3094
3095 printf_filtered ("Source files for which symbols "
3096 "will be read in on demand:\n\n");
3097
3098 first = 1;
3099 map_partial_symbol_filenames (output_partial_symbol_filename, &first,
3100 1 /*need_fullname*/);
3101 printf_filtered ("\n");
3102}
3103
3104static int
3105file_matches (const char *file, char *files[], int nfiles)
3106{
3107 int i;
3108
3109 if (file != NULL && nfiles != 0)
3110 {
3111 for (i = 0; i < nfiles; i++)
3112 {
3113 if (filename_cmp (files[i], lbasename (file)) == 0)
3114 return 1;
3115 }
3116 }
3117 else if (nfiles == 0)
3118 return 1;
3119 return 0;
3120}
3121
3122/* Free any memory associated with a search. */
3123
3124void
3125free_search_symbols (struct symbol_search *symbols)
3126{
3127 struct symbol_search *p;
3128 struct symbol_search *next;
3129
3130 for (p = symbols; p != NULL; p = next)
3131 {
3132 next = p->next;
3133 xfree (p);
3134 }
3135}
3136
3137static void
3138do_free_search_symbols_cleanup (void *symbols)
3139{
3140 free_search_symbols (symbols);
3141}
3142
3143struct cleanup *
3144make_cleanup_free_search_symbols (struct symbol_search *symbols)
3145{
3146 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3147}
3148
3149/* Helper function for sort_search_symbols and qsort. Can only
3150 sort symbols, not minimal symbols. */
3151
3152static int
3153compare_search_syms (const void *sa, const void *sb)
3154{
3155 struct symbol_search **sym_a = (struct symbol_search **) sa;
3156 struct symbol_search **sym_b = (struct symbol_search **) sb;
3157
3158 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3159 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3160}
3161
3162/* Sort the ``nfound'' symbols in the list after prevtail. Leave
3163 prevtail where it is, but update its next pointer to point to
3164 the first of the sorted symbols. */
3165
3166static struct symbol_search *
3167sort_search_symbols (struct symbol_search *prevtail, int nfound)
3168{
3169 struct symbol_search **symbols, *symp, *old_next;
3170 int i;
3171
3172 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3173 * nfound);
3174 symp = prevtail->next;
3175 for (i = 0; i < nfound; i++)
3176 {
3177 symbols[i] = symp;
3178 symp = symp->next;
3179 }
3180 /* Generally NULL. */
3181 old_next = symp;
3182
3183 qsort (symbols, nfound, sizeof (struct symbol_search *),
3184 compare_search_syms);
3185
3186 symp = prevtail;
3187 for (i = 0; i < nfound; i++)
3188 {
3189 symp->next = symbols[i];
3190 symp = symp->next;
3191 }
3192 symp->next = old_next;
3193
3194 xfree (symbols);
3195 return symp;
3196}
3197
3198/* An object of this type is passed as the user_data to the
3199 expand_symtabs_matching method. */
3200struct search_symbols_data
3201{
3202 int nfiles;
3203 char **files;
3204
3205 /* It is true if PREG contains valid data, false otherwise. */
3206 unsigned preg_p : 1;
3207 regex_t preg;
3208};
3209
3210/* A callback for expand_symtabs_matching. */
3211
3212static int
3213search_symbols_file_matches (const char *filename, void *user_data)
3214{
3215 struct search_symbols_data *data = user_data;
3216
3217 return file_matches (filename, data->files, data->nfiles);
3218}
3219
3220/* A callback for expand_symtabs_matching. */
3221
3222static int
3223search_symbols_name_matches (const char *symname, void *user_data)
3224{
3225 struct search_symbols_data *data = user_data;
3226
3227 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3228}
3229
3230/* Search the symbol table for matches to the regular expression REGEXP,
3231 returning the results in *MATCHES.
3232
3233 Only symbols of KIND are searched:
3234 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3235 and constants (enums)
3236 FUNCTIONS_DOMAIN - search all functions
3237 TYPES_DOMAIN - search all type names
3238 ALL_DOMAIN - an internal error for this function
3239
3240 free_search_symbols should be called when *MATCHES is no longer needed.
3241
3242 The results are sorted locally; each symtab's global and static blocks are
3243 separately alphabetized. */
3244
3245void
3246search_symbols (char *regexp, enum search_domain kind,
3247 int nfiles, char *files[],
3248 struct symbol_search **matches)
3249{
3250 struct symtab *s;
3251 struct blockvector *bv;
3252 struct block *b;
3253 int i = 0;
3254 struct dict_iterator iter;
3255 struct symbol *sym;
3256 struct objfile *objfile;
3257 struct minimal_symbol *msymbol;
3258 char *val;
3259 int found_misc = 0;
3260 static const enum minimal_symbol_type types[]
3261 = {mst_data, mst_text, mst_abs};
3262 static const enum minimal_symbol_type types2[]
3263 = {mst_bss, mst_file_text, mst_abs};
3264 static const enum minimal_symbol_type types3[]
3265 = {mst_file_data, mst_solib_trampoline, mst_abs};
3266 static const enum minimal_symbol_type types4[]
3267 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3268 enum minimal_symbol_type ourtype;
3269 enum minimal_symbol_type ourtype2;
3270 enum minimal_symbol_type ourtype3;
3271 enum minimal_symbol_type ourtype4;
3272 struct symbol_search *sr;
3273 struct symbol_search *psr;
3274 struct symbol_search *tail;
3275 struct search_symbols_data datum;
3276
3277 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3278 CLEANUP_CHAIN is freed only in the case of an error. */
3279 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3280 struct cleanup *retval_chain;
3281
3282 gdb_assert (kind <= TYPES_DOMAIN);
3283
3284 ourtype = types[kind];
3285 ourtype2 = types2[kind];
3286 ourtype3 = types3[kind];
3287 ourtype4 = types4[kind];
3288
3289 sr = *matches = NULL;
3290 tail = NULL;
3291 datum.preg_p = 0;
3292
3293 if (regexp != NULL)
3294 {
3295 /* Make sure spacing is right for C++ operators.
3296 This is just a courtesy to make the matching less sensitive
3297 to how many spaces the user leaves between 'operator'
3298 and <TYPENAME> or <OPERATOR>. */
3299 char *opend;
3300 char *opname = operator_chars (regexp, &opend);
3301 int errcode;
3302
3303 if (*opname)
3304 {
3305 int fix = -1; /* -1 means ok; otherwise number of
3306 spaces needed. */
3307
3308 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3309 {
3310 /* There should 1 space between 'operator' and 'TYPENAME'. */
3311 if (opname[-1] != ' ' || opname[-2] == ' ')
3312 fix = 1;
3313 }
3314 else
3315 {
3316 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3317 if (opname[-1] == ' ')
3318 fix = 0;
3319 }
3320 /* If wrong number of spaces, fix it. */
3321 if (fix >= 0)
3322 {
3323 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3324
3325 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3326 regexp = tmp;
3327 }
3328 }
3329
3330 errcode = regcomp (&datum.preg, regexp,
3331 REG_NOSUB | (case_sensitivity == case_sensitive_off
3332 ? REG_ICASE : 0));
3333 if (errcode != 0)
3334 {
3335 char *err = get_regcomp_error (errcode, &datum.preg);
3336
3337 make_cleanup (xfree, err);
3338 error (_("Invalid regexp (%s): %s"), err, regexp);
3339 }
3340 datum.preg_p = 1;
3341 make_regfree_cleanup (&datum.preg);
3342 }
3343
3344 /* Search through the partial symtabs *first* for all symbols
3345 matching the regexp. That way we don't have to reproduce all of
3346 the machinery below. */
3347
3348 datum.nfiles = nfiles;
3349 datum.files = files;
3350 ALL_OBJFILES (objfile)
3351 {
3352 if (objfile->sf)
3353 objfile->sf->qf->expand_symtabs_matching (objfile,
3354 search_symbols_file_matches,
3355 search_symbols_name_matches,
3356 kind,
3357 &datum);
3358 }
3359
3360 retval_chain = old_chain;
3361
3362 /* Here, we search through the minimal symbol tables for functions
3363 and variables that match, and force their symbols to be read.
3364 This is in particular necessary for demangled variable names,
3365 which are no longer put into the partial symbol tables.
3366 The symbol will then be found during the scan of symtabs below.
3367
3368 For functions, find_pc_symtab should succeed if we have debug info
3369 for the function, for variables we have to call lookup_symbol
3370 to determine if the variable has debug info.
3371 If the lookup fails, set found_misc so that we will rescan to print
3372 any matching symbols without debug info. */
3373
3374 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3375 {
3376 ALL_MSYMBOLS (objfile, msymbol)
3377 {
3378 QUIT;
3379
3380 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3381 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3382 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3383 MSYMBOL_TYPE (msymbol) == ourtype4)
3384 {
3385 if (!datum.preg_p
3386 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3387 NULL, 0) == 0)
3388 {
3389 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3390 {
3391 /* FIXME: carlton/2003-02-04: Given that the
3392 semantics of lookup_symbol keeps on changing
3393 slightly, it would be a nice idea if we had a
3394 function lookup_symbol_minsym that found the
3395 symbol associated to a given minimal symbol (if
3396 any). */
3397 if (kind == FUNCTIONS_DOMAIN
3398 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3399 (struct block *) NULL,
3400 VAR_DOMAIN, 0)
3401 == NULL)
3402 found_misc = 1;
3403 }
3404 }
3405 }
3406 }
3407 }
3408
3409 ALL_PRIMARY_SYMTABS (objfile, s)
3410 {
3411 bv = BLOCKVECTOR (s);
3412 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3413 {
3414 struct symbol_search *prevtail = tail;
3415 int nfound = 0;
3416
3417 b = BLOCKVECTOR_BLOCK (bv, i);
3418 ALL_BLOCK_SYMBOLS (b, iter, sym)
3419 {
3420 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3421
3422 QUIT;
3423
3424 if (file_matches (real_symtab->filename, files, nfiles)
3425 && ((!datum.preg_p
3426 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3427 NULL, 0) == 0)
3428 && ((kind == VARIABLES_DOMAIN
3429 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3430 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3431 && SYMBOL_CLASS (sym) != LOC_BLOCK
3432 /* LOC_CONST can be used for more than just enums,
3433 e.g., c++ static const members.
3434 We only want to skip enums here. */
3435 && !(SYMBOL_CLASS (sym) == LOC_CONST
3436 && TYPE_CODE (SYMBOL_TYPE (sym))
3437 == TYPE_CODE_ENUM))
3438 || (kind == FUNCTIONS_DOMAIN
3439 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3440 || (kind == TYPES_DOMAIN
3441 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3442 {
3443 /* match */
3444 psr = (struct symbol_search *)
3445 xmalloc (sizeof (struct symbol_search));
3446 psr->block = i;
3447 psr->symtab = real_symtab;
3448 psr->symbol = sym;
3449 psr->msymbol = NULL;
3450 psr->next = NULL;
3451 if (tail == NULL)
3452 sr = psr;
3453 else
3454 tail->next = psr;
3455 tail = psr;
3456 nfound ++;
3457 }
3458 }
3459 if (nfound > 0)
3460 {
3461 if (prevtail == NULL)
3462 {
3463 struct symbol_search dummy;
3464
3465 dummy.next = sr;
3466 tail = sort_search_symbols (&dummy, nfound);
3467 sr = dummy.next;
3468
3469 make_cleanup_free_search_symbols (sr);
3470 }
3471 else
3472 tail = sort_search_symbols (prevtail, nfound);
3473 }
3474 }
3475 }
3476
3477 /* If there are no eyes, avoid all contact. I mean, if there are
3478 no debug symbols, then print directly from the msymbol_vector. */
3479
3480 if (found_misc || kind != FUNCTIONS_DOMAIN)
3481 {
3482 ALL_MSYMBOLS (objfile, msymbol)
3483 {
3484 QUIT;
3485
3486 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3487 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3488 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3489 MSYMBOL_TYPE (msymbol) == ourtype4)
3490 {
3491 if (!datum.preg_p
3492 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3493 NULL, 0) == 0)
3494 {
3495 /* Functions: Look up by address. */
3496 if (kind != FUNCTIONS_DOMAIN ||
3497 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3498 {
3499 /* Variables/Absolutes: Look up by name. */
3500 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3501 (struct block *) NULL, VAR_DOMAIN, 0)
3502 == NULL)
3503 {
3504 /* match */
3505 psr = (struct symbol_search *)
3506 xmalloc (sizeof (struct symbol_search));
3507 psr->block = i;
3508 psr->msymbol = msymbol;
3509 psr->symtab = NULL;
3510 psr->symbol = NULL;
3511 psr->next = NULL;
3512 if (tail == NULL)
3513 {
3514 sr = psr;
3515 make_cleanup_free_search_symbols (sr);
3516 }
3517 else
3518 tail->next = psr;
3519 tail = psr;
3520 }
3521 }
3522 }
3523 }
3524 }
3525 }
3526
3527 discard_cleanups (retval_chain);
3528 do_cleanups (old_chain);
3529 *matches = sr;
3530}
3531
3532/* Helper function for symtab_symbol_info, this function uses
3533 the data returned from search_symbols() to print information
3534 regarding the match to gdb_stdout. */
3535
3536static void
3537print_symbol_info (enum search_domain kind,
3538 struct symtab *s, struct symbol *sym,
3539 int block, char *last)
3540{
3541 if (last == NULL || filename_cmp (last, s->filename) != 0)
3542 {
3543 fputs_filtered ("\nFile ", gdb_stdout);
3544 fputs_filtered (s->filename, gdb_stdout);
3545 fputs_filtered (":\n", gdb_stdout);
3546 }
3547
3548 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3549 printf_filtered ("static ");
3550
3551 /* Typedef that is not a C++ class. */
3552 if (kind == TYPES_DOMAIN
3553 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3554 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3555 /* variable, func, or typedef-that-is-c++-class. */
3556 else if (kind < TYPES_DOMAIN ||
3557 (kind == TYPES_DOMAIN &&
3558 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3559 {
3560 type_print (SYMBOL_TYPE (sym),
3561 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3562 ? "" : SYMBOL_PRINT_NAME (sym)),
3563 gdb_stdout, 0);
3564
3565 printf_filtered (";\n");
3566 }
3567}
3568
3569/* This help function for symtab_symbol_info() prints information
3570 for non-debugging symbols to gdb_stdout. */
3571
3572static void
3573print_msymbol_info (struct minimal_symbol *msymbol)
3574{
3575 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3576 char *tmp;
3577
3578 if (gdbarch_addr_bit (gdbarch) <= 32)
3579 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3580 & (CORE_ADDR) 0xffffffff,
3581 8);
3582 else
3583 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3584 16);
3585 printf_filtered ("%s %s\n",
3586 tmp, SYMBOL_PRINT_NAME (msymbol));
3587}
3588
3589/* This is the guts of the commands "info functions", "info types", and
3590 "info variables". It calls search_symbols to find all matches and then
3591 print_[m]symbol_info to print out some useful information about the
3592 matches. */
3593
3594static void
3595symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3596{
3597 static const char * const classnames[] =
3598 {"variable", "function", "type"};
3599 struct symbol_search *symbols;
3600 struct symbol_search *p;
3601 struct cleanup *old_chain;
3602 char *last_filename = NULL;
3603 int first = 1;
3604
3605 gdb_assert (kind <= TYPES_DOMAIN);
3606
3607 /* Must make sure that if we're interrupted, symbols gets freed. */
3608 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3609 old_chain = make_cleanup_free_search_symbols (symbols);
3610
3611 printf_filtered (regexp
3612 ? "All %ss matching regular expression \"%s\":\n"
3613 : "All defined %ss:\n",
3614 classnames[kind], regexp);
3615
3616 for (p = symbols; p != NULL; p = p->next)
3617 {
3618 QUIT;
3619
3620 if (p->msymbol != NULL)
3621 {
3622 if (first)
3623 {
3624 printf_filtered ("\nNon-debugging symbols:\n");
3625 first = 0;
3626 }
3627 print_msymbol_info (p->msymbol);
3628 }
3629 else
3630 {
3631 print_symbol_info (kind,
3632 p->symtab,
3633 p->symbol,
3634 p->block,
3635 last_filename);
3636 last_filename = p->symtab->filename;
3637 }
3638 }
3639
3640 do_cleanups (old_chain);
3641}
3642
3643static void
3644variables_info (char *regexp, int from_tty)
3645{
3646 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3647}
3648
3649static void
3650functions_info (char *regexp, int from_tty)
3651{
3652 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3653}
3654
3655
3656static void
3657types_info (char *regexp, int from_tty)
3658{
3659 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3660}
3661
3662/* Breakpoint all functions matching regular expression. */
3663
3664void
3665rbreak_command_wrapper (char *regexp, int from_tty)
3666{
3667 rbreak_command (regexp, from_tty);
3668}
3669
3670/* A cleanup function that calls end_rbreak_breakpoints. */
3671
3672static void
3673do_end_rbreak_breakpoints (void *ignore)
3674{
3675 end_rbreak_breakpoints ();
3676}
3677
3678static void
3679rbreak_command (char *regexp, int from_tty)
3680{
3681 struct symbol_search *ss;
3682 struct symbol_search *p;
3683 struct cleanup *old_chain;
3684 char *string = NULL;
3685 int len = 0;
3686 char **files = NULL, *file_name;
3687 int nfiles = 0;
3688
3689 if (regexp)
3690 {
3691 char *colon = strchr (regexp, ':');
3692
3693 if (colon && *(colon + 1) != ':')
3694 {
3695 int colon_index;
3696
3697 colon_index = colon - regexp;
3698 file_name = alloca (colon_index + 1);
3699 memcpy (file_name, regexp, colon_index);
3700 file_name[colon_index--] = 0;
3701 while (isspace (file_name[colon_index]))
3702 file_name[colon_index--] = 0;
3703 files = &file_name;
3704 nfiles = 1;
3705 regexp = colon + 1;
3706 while (isspace (*regexp)) regexp++;
3707 }
3708 }
3709
3710 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3711 old_chain = make_cleanup_free_search_symbols (ss);
3712 make_cleanup (free_current_contents, &string);
3713
3714 start_rbreak_breakpoints ();
3715 make_cleanup (do_end_rbreak_breakpoints, NULL);
3716 for (p = ss; p != NULL; p = p->next)
3717 {
3718 if (p->msymbol == NULL)
3719 {
3720 int newlen = (strlen (p->symtab->filename)
3721 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3722 + 4);
3723
3724 if (newlen > len)
3725 {
3726 string = xrealloc (string, newlen);
3727 len = newlen;
3728 }
3729 strcpy (string, p->symtab->filename);
3730 strcat (string, ":'");
3731 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3732 strcat (string, "'");
3733 break_command (string, from_tty);
3734 print_symbol_info (FUNCTIONS_DOMAIN,
3735 p->symtab,
3736 p->symbol,
3737 p->block,
3738 p->symtab->filename);
3739 }
3740 else
3741 {
3742 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3743
3744 if (newlen > len)
3745 {
3746 string = xrealloc (string, newlen);
3747 len = newlen;
3748 }
3749 strcpy (string, "'");
3750 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3751 strcat (string, "'");
3752
3753 break_command (string, from_tty);
3754 printf_filtered ("<function, no debug info> %s;\n",
3755 SYMBOL_PRINT_NAME (p->msymbol));
3756 }
3757 }
3758
3759 do_cleanups (old_chain);
3760}
3761\f
3762
3763/* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3764
3765 Either sym_text[sym_text_len] != '(' and then we search for any
3766 symbol starting with SYM_TEXT text.
3767
3768 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3769 be terminated at that point. Partial symbol tables do not have parameters
3770 information. */
3771
3772static int
3773compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3774{
3775 int (*ncmp) (const char *, const char *, size_t);
3776
3777 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3778
3779 if (ncmp (name, sym_text, sym_text_len) != 0)
3780 return 0;
3781
3782 if (sym_text[sym_text_len] == '(')
3783 {
3784 /* User searches for `name(someth...'. Require NAME to be terminated.
3785 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3786 present but accept even parameters presence. In this case this
3787 function is in fact strcmp_iw but whitespace skipping is not supported
3788 for tab completion. */
3789
3790 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3791 return 0;
3792 }
3793
3794 return 1;
3795}
3796
3797/* Free any memory associated with a completion list. */
3798
3799static void
3800free_completion_list (char ***list_ptr)
3801{
3802 int i = 0;
3803 char **list = *list_ptr;
3804
3805 while (list[i] != NULL)
3806 {
3807 xfree (list[i]);
3808 i++;
3809 }
3810 xfree (list);
3811}
3812
3813/* Callback for make_cleanup. */
3814
3815static void
3816do_free_completion_list (void *list)
3817{
3818 free_completion_list (list);
3819}
3820
3821/* Helper routine for make_symbol_completion_list. */
3822
3823static int return_val_size;
3824static int return_val_index;
3825static char **return_val;
3826
3827#define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3828 completion_list_add_name \
3829 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3830
3831/* Test to see if the symbol specified by SYMNAME (which is already
3832 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3833 characters. If so, add it to the current completion list. */
3834
3835static void
3836completion_list_add_name (const char *symname,
3837 const char *sym_text, int sym_text_len,
3838 const char *text, const char *word)
3839{
3840 int newsize;
3841
3842 /* Clip symbols that cannot match. */
3843 if (!compare_symbol_name (symname, sym_text, sym_text_len))
3844 return;
3845
3846 /* We have a match for a completion, so add SYMNAME to the current list
3847 of matches. Note that the name is moved to freshly malloc'd space. */
3848
3849 {
3850 char *new;
3851
3852 if (word == sym_text)
3853 {
3854 new = xmalloc (strlen (symname) + 5);
3855 strcpy (new, symname);
3856 }
3857 else if (word > sym_text)
3858 {
3859 /* Return some portion of symname. */
3860 new = xmalloc (strlen (symname) + 5);
3861 strcpy (new, symname + (word - sym_text));
3862 }
3863 else
3864 {
3865 /* Return some of SYM_TEXT plus symname. */
3866 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3867 strncpy (new, word, sym_text - word);
3868 new[sym_text - word] = '\0';
3869 strcat (new, symname);
3870 }
3871
3872 if (return_val_index + 3 > return_val_size)
3873 {
3874 newsize = (return_val_size *= 2) * sizeof (char *);
3875 return_val = (char **) xrealloc ((char *) return_val, newsize);
3876 }
3877 return_val[return_val_index++] = new;
3878 return_val[return_val_index] = NULL;
3879 }
3880}
3881
3882/* ObjC: In case we are completing on a selector, look as the msymbol
3883 again and feed all the selectors into the mill. */
3884
3885static void
3886completion_list_objc_symbol (struct minimal_symbol *msymbol,
3887 const char *sym_text, int sym_text_len,
3888 const char *text, const char *word)
3889{
3890 static char *tmp = NULL;
3891 static unsigned int tmplen = 0;
3892
3893 const char *method, *category, *selector;
3894 char *tmp2 = NULL;
3895
3896 method = SYMBOL_NATURAL_NAME (msymbol);
3897
3898 /* Is it a method? */
3899 if ((method[0] != '-') && (method[0] != '+'))
3900 return;
3901
3902 if (sym_text[0] == '[')
3903 /* Complete on shortened method method. */
3904 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3905
3906 while ((strlen (method) + 1) >= tmplen)
3907 {
3908 if (tmplen == 0)
3909 tmplen = 1024;
3910 else
3911 tmplen *= 2;
3912 tmp = xrealloc (tmp, tmplen);
3913 }
3914 selector = strchr (method, ' ');
3915 if (selector != NULL)
3916 selector++;
3917
3918 category = strchr (method, '(');
3919
3920 if ((category != NULL) && (selector != NULL))
3921 {
3922 memcpy (tmp, method, (category - method));
3923 tmp[category - method] = ' ';
3924 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3925 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3926 if (sym_text[0] == '[')
3927 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3928 }
3929
3930 if (selector != NULL)
3931 {
3932 /* Complete on selector only. */
3933 strcpy (tmp, selector);
3934 tmp2 = strchr (tmp, ']');
3935 if (tmp2 != NULL)
3936 *tmp2 = '\0';
3937
3938 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3939 }
3940}
3941
3942/* Break the non-quoted text based on the characters which are in
3943 symbols. FIXME: This should probably be language-specific. */
3944
3945static char *
3946language_search_unquoted_string (char *text, char *p)
3947{
3948 for (; p > text; --p)
3949 {
3950 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3951 continue;
3952 else
3953 {
3954 if ((current_language->la_language == language_objc))
3955 {
3956 if (p[-1] == ':') /* Might be part of a method name. */
3957 continue;
3958 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3959 p -= 2; /* Beginning of a method name. */
3960 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3961 { /* Might be part of a method name. */
3962 char *t = p;
3963
3964 /* Seeing a ' ' or a '(' is not conclusive evidence
3965 that we are in the middle of a method name. However,
3966 finding "-[" or "+[" should be pretty un-ambiguous.
3967 Unfortunately we have to find it now to decide. */
3968
3969 while (t > text)
3970 if (isalnum (t[-1]) || t[-1] == '_' ||
3971 t[-1] == ' ' || t[-1] == ':' ||
3972 t[-1] == '(' || t[-1] == ')')
3973 --t;
3974 else
3975 break;
3976
3977 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3978 p = t - 2; /* Method name detected. */
3979 /* Else we leave with p unchanged. */
3980 }
3981 }
3982 break;
3983 }
3984 }
3985 return p;
3986}
3987
3988static void
3989completion_list_add_fields (struct symbol *sym, char *sym_text,
3990 int sym_text_len, char *text, char *word)
3991{
3992 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3993 {
3994 struct type *t = SYMBOL_TYPE (sym);
3995 enum type_code c = TYPE_CODE (t);
3996 int j;
3997
3998 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3999 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4000 if (TYPE_FIELD_NAME (t, j))
4001 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4002 sym_text, sym_text_len, text, word);
4003 }
4004}
4005
4006/* Type of the user_data argument passed to add_macro_name or
4007 expand_partial_symbol_name. The contents are simply whatever is
4008 needed by completion_list_add_name. */
4009struct add_name_data
4010{
4011 char *sym_text;
4012 int sym_text_len;
4013 char *text;
4014 char *word;
4015};
4016
4017/* A callback used with macro_for_each and macro_for_each_in_scope.
4018 This adds a macro's name to the current completion list. */
4019
4020static void
4021add_macro_name (const char *name, const struct macro_definition *ignore,
4022 struct macro_source_file *ignore2, int ignore3,
4023 void *user_data)
4024{
4025 struct add_name_data *datum = (struct add_name_data *) user_data;
4026
4027 completion_list_add_name ((char *) name,
4028 datum->sym_text, datum->sym_text_len,
4029 datum->text, datum->word);
4030}
4031
4032/* A callback for expand_partial_symbol_names. */
4033
4034static int
4035expand_partial_symbol_name (const char *name, void *user_data)
4036{
4037 struct add_name_data *datum = (struct add_name_data *) user_data;
4038
4039 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4040}
4041
4042char **
4043default_make_symbol_completion_list_break_on (char *text, char *word,
4044 const char *break_on)
4045{
4046 /* Problem: All of the symbols have to be copied because readline
4047 frees them. I'm not going to worry about this; hopefully there
4048 won't be that many. */
4049
4050 struct symbol *sym;
4051 struct symtab *s;
4052 struct minimal_symbol *msymbol;
4053 struct objfile *objfile;
4054 struct block *b;
4055 const struct block *surrounding_static_block, *surrounding_global_block;
4056 struct dict_iterator iter;
4057 /* The symbol we are completing on. Points in same buffer as text. */
4058 char *sym_text;
4059 /* Length of sym_text. */
4060 int sym_text_len;
4061 struct add_name_data datum;
4062 struct cleanup *back_to;
4063
4064 /* Now look for the symbol we are supposed to complete on. */
4065 {
4066 char *p;
4067 char quote_found;
4068 char *quote_pos = NULL;
4069
4070 /* First see if this is a quoted string. */
4071 quote_found = '\0';
4072 for (p = text; *p != '\0'; ++p)
4073 {
4074 if (quote_found != '\0')
4075 {
4076 if (*p == quote_found)
4077 /* Found close quote. */
4078 quote_found = '\0';
4079 else if (*p == '\\' && p[1] == quote_found)
4080 /* A backslash followed by the quote character
4081 doesn't end the string. */
4082 ++p;
4083 }
4084 else if (*p == '\'' || *p == '"')
4085 {
4086 quote_found = *p;
4087 quote_pos = p;
4088 }
4089 }
4090 if (quote_found == '\'')
4091 /* A string within single quotes can be a symbol, so complete on it. */
4092 sym_text = quote_pos + 1;
4093 else if (quote_found == '"')
4094 /* A double-quoted string is never a symbol, nor does it make sense
4095 to complete it any other way. */
4096 {
4097 return_val = (char **) xmalloc (sizeof (char *));
4098 return_val[0] = NULL;
4099 return return_val;
4100 }
4101 else
4102 {
4103 /* It is not a quoted string. Break it based on the characters
4104 which are in symbols. */
4105 while (p > text)
4106 {
4107 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4108 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4109 --p;
4110 else
4111 break;
4112 }
4113 sym_text = p;
4114 }
4115 }
4116
4117 sym_text_len = strlen (sym_text);
4118
4119 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4120
4121 if (current_language->la_language == language_cplus
4122 || current_language->la_language == language_java
4123 || current_language->la_language == language_fortran)
4124 {
4125 /* These languages may have parameters entered by user but they are never
4126 present in the partial symbol tables. */
4127
4128 const char *cs = memchr (sym_text, '(', sym_text_len);
4129
4130 if (cs)
4131 sym_text_len = cs - sym_text;
4132 }
4133 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4134
4135 return_val_size = 100;
4136 return_val_index = 0;
4137 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4138 return_val[0] = NULL;
4139 back_to = make_cleanup (do_free_completion_list, &return_val);
4140
4141 datum.sym_text = sym_text;
4142 datum.sym_text_len = sym_text_len;
4143 datum.text = text;
4144 datum.word = word;
4145
4146 /* Look through the partial symtabs for all symbols which begin
4147 by matching SYM_TEXT. Expand all CUs that you find to the list.
4148 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4149 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4150
4151 /* At this point scan through the misc symbol vectors and add each
4152 symbol you find to the list. Eventually we want to ignore
4153 anything that isn't a text symbol (everything else will be
4154 handled by the psymtab code above). */
4155
4156 ALL_MSYMBOLS (objfile, msymbol)
4157 {
4158 QUIT;
4159 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
4160
4161 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
4162 }
4163
4164 /* Search upwards from currently selected frame (so that we can
4165 complete on local vars). Also catch fields of types defined in
4166 this places which match our text string. Only complete on types
4167 visible from current context. */
4168
4169 b = get_selected_block (0);
4170 surrounding_static_block = block_static_block (b);
4171 surrounding_global_block = block_global_block (b);
4172 if (surrounding_static_block != NULL)
4173 while (b != surrounding_static_block)
4174 {
4175 QUIT;
4176
4177 ALL_BLOCK_SYMBOLS (b, iter, sym)
4178 {
4179 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4180 word);
4181 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4182 word);
4183 }
4184
4185 /* Stop when we encounter an enclosing function. Do not stop for
4186 non-inlined functions - the locals of the enclosing function
4187 are in scope for a nested function. */
4188 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4189 break;
4190 b = BLOCK_SUPERBLOCK (b);
4191 }
4192
4193 /* Add fields from the file's types; symbols will be added below. */
4194
4195 if (surrounding_static_block != NULL)
4196 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4197 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4198
4199 if (surrounding_global_block != NULL)
4200 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4201 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4202
4203 /* Go through the symtabs and check the externs and statics for
4204 symbols which match. */
4205
4206 ALL_PRIMARY_SYMTABS (objfile, s)
4207 {
4208 QUIT;
4209 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4210 ALL_BLOCK_SYMBOLS (b, iter, sym)
4211 {
4212 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4213 }
4214 }
4215
4216 ALL_PRIMARY_SYMTABS (objfile, s)
4217 {
4218 QUIT;
4219 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4220 ALL_BLOCK_SYMBOLS (b, iter, sym)
4221 {
4222 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4223 }
4224 }
4225
4226 if (current_language->la_macro_expansion == macro_expansion_c)
4227 {
4228 struct macro_scope *scope;
4229
4230 /* Add any macros visible in the default scope. Note that this
4231 may yield the occasional wrong result, because an expression
4232 might be evaluated in a scope other than the default. For
4233 example, if the user types "break file:line if <TAB>", the
4234 resulting expression will be evaluated at "file:line" -- but
4235 at there does not seem to be a way to detect this at
4236 completion time. */
4237 scope = default_macro_scope ();
4238 if (scope)
4239 {
4240 macro_for_each_in_scope (scope->file, scope->line,
4241 add_macro_name, &datum);
4242 xfree (scope);
4243 }
4244
4245 /* User-defined macros are always visible. */
4246 macro_for_each (macro_user_macros, add_macro_name, &datum);
4247 }
4248
4249 discard_cleanups (back_to);
4250 return (return_val);
4251}
4252
4253char **
4254default_make_symbol_completion_list (char *text, char *word)
4255{
4256 return default_make_symbol_completion_list_break_on (text, word, "");
4257}
4258
4259/* Return a NULL terminated array of all symbols (regardless of class)
4260 which begin by matching TEXT. If the answer is no symbols, then
4261 the return value is an array which contains only a NULL pointer. */
4262
4263char **
4264make_symbol_completion_list (char *text, char *word)
4265{
4266 return current_language->la_make_symbol_completion_list (text, word);
4267}
4268
4269/* Like make_symbol_completion_list, but suitable for use as a
4270 completion function. */
4271
4272char **
4273make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4274 char *text, char *word)
4275{
4276 return make_symbol_completion_list (text, word);
4277}
4278
4279/* Like make_symbol_completion_list, but returns a list of symbols
4280 defined in a source file FILE. */
4281
4282char **
4283make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4284{
4285 struct symbol *sym;
4286 struct symtab *s;
4287 struct block *b;
4288 struct dict_iterator iter;
4289 /* The symbol we are completing on. Points in same buffer as text. */
4290 char *sym_text;
4291 /* Length of sym_text. */
4292 int sym_text_len;
4293
4294 /* Now look for the symbol we are supposed to complete on.
4295 FIXME: This should be language-specific. */
4296 {
4297 char *p;
4298 char quote_found;
4299 char *quote_pos = NULL;
4300
4301 /* First see if this is a quoted string. */
4302 quote_found = '\0';
4303 for (p = text; *p != '\0'; ++p)
4304 {
4305 if (quote_found != '\0')
4306 {
4307 if (*p == quote_found)
4308 /* Found close quote. */
4309 quote_found = '\0';
4310 else if (*p == '\\' && p[1] == quote_found)
4311 /* A backslash followed by the quote character
4312 doesn't end the string. */
4313 ++p;
4314 }
4315 else if (*p == '\'' || *p == '"')
4316 {
4317 quote_found = *p;
4318 quote_pos = p;
4319 }
4320 }
4321 if (quote_found == '\'')
4322 /* A string within single quotes can be a symbol, so complete on it. */
4323 sym_text = quote_pos + 1;
4324 else if (quote_found == '"')
4325 /* A double-quoted string is never a symbol, nor does it make sense
4326 to complete it any other way. */
4327 {
4328 return_val = (char **) xmalloc (sizeof (char *));
4329 return_val[0] = NULL;
4330 return return_val;
4331 }
4332 else
4333 {
4334 /* Not a quoted string. */
4335 sym_text = language_search_unquoted_string (text, p);
4336 }
4337 }
4338
4339 sym_text_len = strlen (sym_text);
4340
4341 return_val_size = 10;
4342 return_val_index = 0;
4343 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4344 return_val[0] = NULL;
4345
4346 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4347 in). */
4348 s = lookup_symtab (srcfile);
4349 if (s == NULL)
4350 {
4351 /* Maybe they typed the file with leading directories, while the
4352 symbol tables record only its basename. */
4353 const char *tail = lbasename (srcfile);
4354
4355 if (tail > srcfile)
4356 s = lookup_symtab (tail);
4357 }
4358
4359 /* If we have no symtab for that file, return an empty list. */
4360 if (s == NULL)
4361 return (return_val);
4362
4363 /* Go through this symtab and check the externs and statics for
4364 symbols which match. */
4365
4366 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4367 ALL_BLOCK_SYMBOLS (b, iter, sym)
4368 {
4369 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4370 }
4371
4372 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4373 ALL_BLOCK_SYMBOLS (b, iter, sym)
4374 {
4375 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4376 }
4377
4378 return (return_val);
4379}
4380
4381/* A helper function for make_source_files_completion_list. It adds
4382 another file name to a list of possible completions, growing the
4383 list as necessary. */
4384
4385static void
4386add_filename_to_list (const char *fname, char *text, char *word,
4387 char ***list, int *list_used, int *list_alloced)
4388{
4389 char *new;
4390 size_t fnlen = strlen (fname);
4391
4392 if (*list_used + 1 >= *list_alloced)
4393 {
4394 *list_alloced *= 2;
4395 *list = (char **) xrealloc ((char *) *list,
4396 *list_alloced * sizeof (char *));
4397 }
4398
4399 if (word == text)
4400 {
4401 /* Return exactly fname. */
4402 new = xmalloc (fnlen + 5);
4403 strcpy (new, fname);
4404 }
4405 else if (word > text)
4406 {
4407 /* Return some portion of fname. */
4408 new = xmalloc (fnlen + 5);
4409 strcpy (new, fname + (word - text));
4410 }
4411 else
4412 {
4413 /* Return some of TEXT plus fname. */
4414 new = xmalloc (fnlen + (text - word) + 5);
4415 strncpy (new, word, text - word);
4416 new[text - word] = '\0';
4417 strcat (new, fname);
4418 }
4419 (*list)[*list_used] = new;
4420 (*list)[++*list_used] = NULL;
4421}
4422
4423static int
4424not_interesting_fname (const char *fname)
4425{
4426 static const char *illegal_aliens[] = {
4427 "_globals_", /* inserted by coff_symtab_read */
4428 NULL
4429 };
4430 int i;
4431
4432 for (i = 0; illegal_aliens[i]; i++)
4433 {
4434 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4435 return 1;
4436 }
4437 return 0;
4438}
4439
4440/* An object of this type is passed as the user_data argument to
4441 map_partial_symbol_filenames. */
4442struct add_partial_filename_data
4443{
4444 int *first;
4445 char *text;
4446 char *word;
4447 int text_len;
4448 char ***list;
4449 int *list_used;
4450 int *list_alloced;
4451};
4452
4453/* A callback for map_partial_symbol_filenames. */
4454
4455static void
4456maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4457 void *user_data)
4458{
4459 struct add_partial_filename_data *data = user_data;
4460
4461 if (not_interesting_fname (filename))
4462 return;
4463 if (!filename_seen (filename, 1, data->first)
4464 && filename_ncmp (filename, data->text, data->text_len) == 0)
4465 {
4466 /* This file matches for a completion; add it to the
4467 current list of matches. */
4468 add_filename_to_list (filename, data->text, data->word,
4469 data->list, data->list_used, data->list_alloced);
4470 }
4471 else
4472 {
4473 const char *base_name = lbasename (filename);
4474
4475 if (base_name != filename
4476 && !filename_seen (base_name, 1, data->first)
4477 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4478 add_filename_to_list (base_name, data->text, data->word,
4479 data->list, data->list_used, data->list_alloced);
4480 }
4481}
4482
4483/* Return a NULL terminated array of all source files whose names
4484 begin with matching TEXT. The file names are looked up in the
4485 symbol tables of this program. If the answer is no matchess, then
4486 the return value is an array which contains only a NULL pointer. */
4487
4488char **
4489make_source_files_completion_list (char *text, char *word)
4490{
4491 struct symtab *s;
4492 struct objfile *objfile;
4493 int first = 1;
4494 int list_alloced = 1;
4495 int list_used = 0;
4496 size_t text_len = strlen (text);
4497 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4498 const char *base_name;
4499 struct add_partial_filename_data datum;
4500 struct cleanup *back_to;
4501
4502 list[0] = NULL;
4503
4504 if (!have_full_symbols () && !have_partial_symbols ())
4505 return list;
4506
4507 back_to = make_cleanup (do_free_completion_list, &list);
4508
4509 ALL_SYMTABS (objfile, s)
4510 {
4511 if (not_interesting_fname (s->filename))
4512 continue;
4513 if (!filename_seen (s->filename, 1, &first)
4514 && filename_ncmp (s->filename, text, text_len) == 0)
4515 {
4516 /* This file matches for a completion; add it to the current
4517 list of matches. */
4518 add_filename_to_list (s->filename, text, word,
4519 &list, &list_used, &list_alloced);
4520 }
4521 else
4522 {
4523 /* NOTE: We allow the user to type a base name when the
4524 debug info records leading directories, but not the other
4525 way around. This is what subroutines of breakpoint
4526 command do when they parse file names. */
4527 base_name = lbasename (s->filename);
4528 if (base_name != s->filename
4529 && !filename_seen (base_name, 1, &first)
4530 && filename_ncmp (base_name, text, text_len) == 0)
4531 add_filename_to_list (base_name, text, word,
4532 &list, &list_used, &list_alloced);
4533 }
4534 }
4535
4536 datum.first = &first;
4537 datum.text = text;
4538 datum.word = word;
4539 datum.text_len = text_len;
4540 datum.list = &list;
4541 datum.list_used = &list_used;
4542 datum.list_alloced = &list_alloced;
4543 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4544 0 /*need_fullname*/);
4545 discard_cleanups (back_to);
4546
4547 return list;
4548}
4549
4550/* Determine if PC is in the prologue of a function. The prologue is the area
4551 between the first instruction of a function, and the first executable line.
4552 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4553
4554 If non-zero, func_start is where we think the prologue starts, possibly
4555 by previous examination of symbol table information. */
4556
4557int
4558in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4559{
4560 struct symtab_and_line sal;
4561 CORE_ADDR func_addr, func_end;
4562
4563 /* We have several sources of information we can consult to figure
4564 this out.
4565 - Compilers usually emit line number info that marks the prologue
4566 as its own "source line". So the ending address of that "line"
4567 is the end of the prologue. If available, this is the most
4568 reliable method.
4569 - The minimal symbols and partial symbols, which can usually tell
4570 us the starting and ending addresses of a function.
4571 - If we know the function's start address, we can call the
4572 architecture-defined gdbarch_skip_prologue function to analyze the
4573 instruction stream and guess where the prologue ends.
4574 - Our `func_start' argument; if non-zero, this is the caller's
4575 best guess as to the function's entry point. At the time of
4576 this writing, handle_inferior_event doesn't get this right, so
4577 it should be our last resort. */
4578
4579 /* Consult the partial symbol table, to find which function
4580 the PC is in. */
4581 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4582 {
4583 CORE_ADDR prologue_end;
4584
4585 /* We don't even have minsym information, so fall back to using
4586 func_start, if given. */
4587 if (! func_start)
4588 return 1; /* We *might* be in a prologue. */
4589
4590 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4591
4592 return func_start <= pc && pc < prologue_end;
4593 }
4594
4595 /* If we have line number information for the function, that's
4596 usually pretty reliable. */
4597 sal = find_pc_line (func_addr, 0);
4598
4599 /* Now sal describes the source line at the function's entry point,
4600 which (by convention) is the prologue. The end of that "line",
4601 sal.end, is the end of the prologue.
4602
4603 Note that, for functions whose source code is all on a single
4604 line, the line number information doesn't always end up this way.
4605 So we must verify that our purported end-of-prologue address is
4606 *within* the function, not at its start or end. */
4607 if (sal.line == 0
4608 || sal.end <= func_addr
4609 || func_end <= sal.end)
4610 {
4611 /* We don't have any good line number info, so use the minsym
4612 information, together with the architecture-specific prologue
4613 scanning code. */
4614 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4615
4616 return func_addr <= pc && pc < prologue_end;
4617 }
4618
4619 /* We have line number info, and it looks good. */
4620 return func_addr <= pc && pc < sal.end;
4621}
4622
4623/* Given PC at the function's start address, attempt to find the
4624 prologue end using SAL information. Return zero if the skip fails.
4625
4626 A non-optimized prologue traditionally has one SAL for the function
4627 and a second for the function body. A single line function has
4628 them both pointing at the same line.
4629
4630 An optimized prologue is similar but the prologue may contain
4631 instructions (SALs) from the instruction body. Need to skip those
4632 while not getting into the function body.
4633
4634 The functions end point and an increasing SAL line are used as
4635 indicators of the prologue's endpoint.
4636
4637 This code is based on the function refine_prologue_limit
4638 (found in ia64). */
4639
4640CORE_ADDR
4641skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4642{
4643 struct symtab_and_line prologue_sal;
4644 CORE_ADDR start_pc;
4645 CORE_ADDR end_pc;
4646 struct block *bl;
4647
4648 /* Get an initial range for the function. */
4649 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4650 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4651
4652 prologue_sal = find_pc_line (start_pc, 0);
4653 if (prologue_sal.line != 0)
4654 {
4655 /* For languages other than assembly, treat two consecutive line
4656 entries at the same address as a zero-instruction prologue.
4657 The GNU assembler emits separate line notes for each instruction
4658 in a multi-instruction macro, but compilers generally will not
4659 do this. */
4660 if (prologue_sal.symtab->language != language_asm)
4661 {
4662 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4663 int idx = 0;
4664
4665 /* Skip any earlier lines, and any end-of-sequence marker
4666 from a previous function. */
4667 while (linetable->item[idx].pc != prologue_sal.pc
4668 || linetable->item[idx].line == 0)
4669 idx++;
4670
4671 if (idx+1 < linetable->nitems
4672 && linetable->item[idx+1].line != 0
4673 && linetable->item[idx+1].pc == start_pc)
4674 return start_pc;
4675 }
4676
4677 /* If there is only one sal that covers the entire function,
4678 then it is probably a single line function, like
4679 "foo(){}". */
4680 if (prologue_sal.end >= end_pc)
4681 return 0;
4682
4683 while (prologue_sal.end < end_pc)
4684 {
4685 struct symtab_and_line sal;
4686
4687 sal = find_pc_line (prologue_sal.end, 0);
4688 if (sal.line == 0)
4689 break;
4690 /* Assume that a consecutive SAL for the same (or larger)
4691 line mark the prologue -> body transition. */
4692 if (sal.line >= prologue_sal.line)
4693 break;
4694
4695 /* The line number is smaller. Check that it's from the
4696 same function, not something inlined. If it's inlined,
4697 then there is no point comparing the line numbers. */
4698 bl = block_for_pc (prologue_sal.end);
4699 while (bl)
4700 {
4701 if (block_inlined_p (bl))
4702 break;
4703 if (BLOCK_FUNCTION (bl))
4704 {
4705 bl = NULL;
4706 break;
4707 }
4708 bl = BLOCK_SUPERBLOCK (bl);
4709 }
4710 if (bl != NULL)
4711 break;
4712
4713 /* The case in which compiler's optimizer/scheduler has
4714 moved instructions into the prologue. We look ahead in
4715 the function looking for address ranges whose
4716 corresponding line number is less the first one that we
4717 found for the function. This is more conservative then
4718 refine_prologue_limit which scans a large number of SALs
4719 looking for any in the prologue. */
4720 prologue_sal = sal;
4721 }
4722 }
4723
4724 if (prologue_sal.end < end_pc)
4725 /* Return the end of this line, or zero if we could not find a
4726 line. */
4727 return prologue_sal.end;
4728 else
4729 /* Don't return END_PC, which is past the end of the function. */
4730 return prologue_sal.pc;
4731}
4732\f
4733struct symtabs_and_lines
4734decode_line_spec (char *string, int flags)
4735{
4736 struct symtabs_and_lines sals;
4737 struct symtab_and_line cursal;
4738
4739 if (string == 0)
4740 error (_("Empty line specification."));
4741
4742 /* We use whatever is set as the current source line. We do not try
4743 and get a default or it will recursively call us! */
4744 cursal = get_current_source_symtab_and_line ();
4745
4746 sals = decode_line_1 (&string, flags,
4747 cursal.symtab, cursal.line);
4748
4749 if (*string)
4750 error (_("Junk at end of line specification: %s"), string);
4751 return sals;
4752}
4753
4754/* Track MAIN */
4755static char *name_of_main;
4756enum language language_of_main = language_unknown;
4757
4758void
4759set_main_name (const char *name)
4760{
4761 if (name_of_main != NULL)
4762 {
4763 xfree (name_of_main);
4764 name_of_main = NULL;
4765 language_of_main = language_unknown;
4766 }
4767 if (name != NULL)
4768 {
4769 name_of_main = xstrdup (name);
4770 language_of_main = language_unknown;
4771 }
4772}
4773
4774/* Deduce the name of the main procedure, and set NAME_OF_MAIN
4775 accordingly. */
4776
4777static void
4778find_main_name (void)
4779{
4780 const char *new_main_name;
4781
4782 /* Try to see if the main procedure is in Ada. */
4783 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4784 be to add a new method in the language vector, and call this
4785 method for each language until one of them returns a non-empty
4786 name. This would allow us to remove this hard-coded call to
4787 an Ada function. It is not clear that this is a better approach
4788 at this point, because all methods need to be written in a way
4789 such that false positives never be returned. For instance, it is
4790 important that a method does not return a wrong name for the main
4791 procedure if the main procedure is actually written in a different
4792 language. It is easy to guaranty this with Ada, since we use a
4793 special symbol generated only when the main in Ada to find the name
4794 of the main procedure. It is difficult however to see how this can
4795 be guarantied for languages such as C, for instance. This suggests
4796 that order of call for these methods becomes important, which means
4797 a more complicated approach. */
4798 new_main_name = ada_main_name ();
4799 if (new_main_name != NULL)
4800 {
4801 set_main_name (new_main_name);
4802 return;
4803 }
4804
4805 new_main_name = pascal_main_name ();
4806 if (new_main_name != NULL)
4807 {
4808 set_main_name (new_main_name);
4809 return;
4810 }
4811
4812 /* The languages above didn't identify the name of the main procedure.
4813 Fallback to "main". */
4814 set_main_name ("main");
4815}
4816
4817char *
4818main_name (void)
4819{
4820 if (name_of_main == NULL)
4821 find_main_name ();
4822
4823 return name_of_main;
4824}
4825
4826/* Handle ``executable_changed'' events for the symtab module. */
4827
4828static void
4829symtab_observer_executable_changed (void)
4830{
4831 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4832 set_main_name (NULL);
4833}
4834
4835/* Return 1 if the supplied producer string matches the ARM RealView
4836 compiler (armcc). */
4837
4838int
4839producer_is_realview (const char *producer)
4840{
4841 static const char *const arm_idents[] = {
4842 "ARM C Compiler, ADS",
4843 "Thumb C Compiler, ADS",
4844 "ARM C++ Compiler, ADS",
4845 "Thumb C++ Compiler, ADS",
4846 "ARM/Thumb C/C++ Compiler, RVCT",
4847 "ARM C/C++ Compiler, RVCT"
4848 };
4849 int i;
4850
4851 if (producer == NULL)
4852 return 0;
4853
4854 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4855 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4856 return 1;
4857
4858 return 0;
4859}
4860
4861void
4862_initialize_symtab (void)
4863{
4864 add_info ("variables", variables_info, _("\
4865All global and static variable names, or those matching REGEXP."));
4866 if (dbx_commands)
4867 add_com ("whereis", class_info, variables_info, _("\
4868All global and static variable names, or those matching REGEXP."));
4869
4870 add_info ("functions", functions_info,
4871 _("All function names, or those matching REGEXP."));
4872
4873 /* FIXME: This command has at least the following problems:
4874 1. It prints builtin types (in a very strange and confusing fashion).
4875 2. It doesn't print right, e.g. with
4876 typedef struct foo *FOO
4877 type_print prints "FOO" when we want to make it (in this situation)
4878 print "struct foo *".
4879 I also think "ptype" or "whatis" is more likely to be useful (but if
4880 there is much disagreement "info types" can be fixed). */
4881 add_info ("types", types_info,
4882 _("All type names, or those matching REGEXP."));
4883
4884 add_info ("sources", sources_info,
4885 _("Source files in the program."));
4886
4887 add_com ("rbreak", class_breakpoint, rbreak_command,
4888 _("Set a breakpoint for all functions matching REGEXP."));
4889
4890 if (xdb_commands)
4891 {
4892 add_com ("lf", class_info, sources_info,
4893 _("Source files in the program"));
4894 add_com ("lg", class_info, variables_info, _("\
4895All global and static variable names, or those matching REGEXP."));
4896 }
4897
4898 add_setshow_enum_cmd ("multiple-symbols", no_class,
4899 multiple_symbols_modes, &multiple_symbols_mode,
4900 _("\
4901Set the debugger behavior when more than one symbol are possible matches\n\
4902in an expression."), _("\
4903Show how the debugger handles ambiguities in expressions."), _("\
4904Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4905 NULL, NULL, &setlist, &showlist);
4906
4907 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
4908 &basenames_may_differ, _("\
4909Set whether a source file may have multiple base names."), _("\
4910Show whether a source file may have multiple base names."), _("\
4911(A \"base name\" is the name of a file with the directory part removed.\n\
4912Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
4913If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
4914before comparing them. Canonicalization is an expensive operation,\n\
4915but it allows the same file be known by more than one base name.\n\
4916If not set (the default), all source files are assumed to have just\n\
4917one base name, and gdb will do file name comparisons more efficiently."),
4918 NULL, NULL,
4919 &setlist, &showlist);
4920
4921 observer_attach_executable_changed (symtab_observer_executable_changed);
4922}
This page took 0.038866 seconds and 4 git commands to generate.