Implement timestamp'ed output on "make check"
[deliverable/binutils-gdb.git] / gdb / target.c
... / ...
CommitLineData
1/* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#include "defs.h"
23#include "target.h"
24#include "target-dcache.h"
25#include "gdbcmd.h"
26#include "symtab.h"
27#include "inferior.h"
28#include "infrun.h"
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
32#include "dcache.h"
33#include <signal.h>
34#include "regcache.h"
35#include "gdbcore.h"
36#include "target-descriptions.h"
37#include "gdbthread.h"
38#include "solib.h"
39#include "exec.h"
40#include "inline-frame.h"
41#include "tracepoint.h"
42#include "gdb/fileio.h"
43#include "agent.h"
44#include "auxv.h"
45#include "target-debug.h"
46#include "top.h"
47#include "event-top.h"
48#include <algorithm>
49#include "byte-vector.h"
50#include "terminal.h"
51#include <algorithm>
52#include <unordered_map>
53
54static void generic_tls_error (void) ATTRIBUTE_NORETURN;
55
56static void default_terminal_info (struct target_ops *, const char *, int);
57
58static int default_watchpoint_addr_within_range (struct target_ops *,
59 CORE_ADDR, CORE_ADDR, int);
60
61static int default_region_ok_for_hw_watchpoint (struct target_ops *,
62 CORE_ADDR, int);
63
64static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
65
66static ptid_t default_get_ada_task_ptid (struct target_ops *self,
67 long lwp, long tid);
68
69static int default_follow_fork (struct target_ops *self, int follow_child,
70 int detach_fork);
71
72static void default_mourn_inferior (struct target_ops *self);
73
74static int default_search_memory (struct target_ops *ops,
75 CORE_ADDR start_addr,
76 ULONGEST search_space_len,
77 const gdb_byte *pattern,
78 ULONGEST pattern_len,
79 CORE_ADDR *found_addrp);
80
81static int default_verify_memory (struct target_ops *self,
82 const gdb_byte *data,
83 CORE_ADDR memaddr, ULONGEST size);
84
85static struct address_space *default_thread_address_space
86 (struct target_ops *self, ptid_t ptid);
87
88static void tcomplain (void) ATTRIBUTE_NORETURN;
89
90static struct target_ops *find_default_run_target (const char *);
91
92static struct gdbarch *default_thread_architecture (struct target_ops *ops,
93 ptid_t ptid);
94
95static int dummy_find_memory_regions (struct target_ops *self,
96 find_memory_region_ftype ignore1,
97 void *ignore2);
98
99static char *dummy_make_corefile_notes (struct target_ops *self,
100 bfd *ignore1, int *ignore2);
101
102static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
103
104static enum exec_direction_kind default_execution_direction
105 (struct target_ops *self);
106
107/* Mapping between target_info objects (which have address identity)
108 and corresponding open/factory function/callback. Each add_target
109 call adds one entry to this map, and registers a "target
110 TARGET_NAME" command that when invoked calls the factory registered
111 here. The target_info object is associated with the command via
112 the command's context. */
113static std::unordered_map<const target_info *, target_open_ftype *>
114 target_factories;
115
116/* The initial current target, so that there is always a semi-valid
117 current target. */
118
119static struct target_ops *the_dummy_target;
120static struct target_ops *the_debug_target;
121
122/* The target stack. */
123
124static target_stack g_target_stack;
125
126/* Top of target stack. */
127/* The target structure we are currently using to talk to a process
128 or file or whatever "inferior" we have. */
129
130target_ops *
131current_top_target ()
132{
133 return g_target_stack.top ();
134}
135
136/* Command list for target. */
137
138static struct cmd_list_element *targetlist = NULL;
139
140/* Nonzero if we should trust readonly sections from the
141 executable when reading memory. */
142
143static int trust_readonly = 0;
144
145/* Nonzero if we should show true memory content including
146 memory breakpoint inserted by gdb. */
147
148static int show_memory_breakpoints = 0;
149
150/* These globals control whether GDB attempts to perform these
151 operations; they are useful for targets that need to prevent
152 inadvertant disruption, such as in non-stop mode. */
153
154int may_write_registers = 1;
155
156int may_write_memory = 1;
157
158int may_insert_breakpoints = 1;
159
160int may_insert_tracepoints = 1;
161
162int may_insert_fast_tracepoints = 1;
163
164int may_stop = 1;
165
166/* Non-zero if we want to see trace of target level stuff. */
167
168static unsigned int targetdebug = 0;
169
170static void
171set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
172{
173 if (targetdebug)
174 push_target (the_debug_target);
175 else
176 unpush_target (the_debug_target);
177}
178
179static void
180show_targetdebug (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182{
183 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
184}
185
186/* The user just typed 'target' without the name of a target. */
187
188static void
189target_command (const char *arg, int from_tty)
190{
191 fputs_filtered ("Argument required (target name). Try `help target'\n",
192 gdb_stdout);
193}
194
195#if GDB_SELF_TEST
196namespace selftests {
197
198/* A mock process_stratum target_ops that doesn't read/write registers
199 anywhere. */
200
201static const target_info test_target_info = {
202 "test",
203 N_("unit tests target"),
204 N_("You should never see this"),
205};
206
207const target_info &
208test_target_ops::info () const
209{
210 return test_target_info;
211}
212
213} /* namespace selftests */
214#endif /* GDB_SELF_TEST */
215
216/* Default target_has_* methods for process_stratum targets. */
217
218int
219default_child_has_all_memory ()
220{
221 /* If no inferior selected, then we can't read memory here. */
222 if (inferior_ptid == null_ptid)
223 return 0;
224
225 return 1;
226}
227
228int
229default_child_has_memory ()
230{
231 /* If no inferior selected, then we can't read memory here. */
232 if (inferior_ptid == null_ptid)
233 return 0;
234
235 return 1;
236}
237
238int
239default_child_has_stack ()
240{
241 /* If no inferior selected, there's no stack. */
242 if (inferior_ptid == null_ptid)
243 return 0;
244
245 return 1;
246}
247
248int
249default_child_has_registers ()
250{
251 /* Can't read registers from no inferior. */
252 if (inferior_ptid == null_ptid)
253 return 0;
254
255 return 1;
256}
257
258int
259default_child_has_execution (ptid_t the_ptid)
260{
261 /* If there's no thread selected, then we can't make it run through
262 hoops. */
263 if (the_ptid == null_ptid)
264 return 0;
265
266 return 1;
267}
268
269
270int
271target_has_all_memory_1 (void)
272{
273 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
274 if (t->has_all_memory ())
275 return 1;
276
277 return 0;
278}
279
280int
281target_has_memory_1 (void)
282{
283 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
284 if (t->has_memory ())
285 return 1;
286
287 return 0;
288}
289
290int
291target_has_stack_1 (void)
292{
293 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
294 if (t->has_stack ())
295 return 1;
296
297 return 0;
298}
299
300int
301target_has_registers_1 (void)
302{
303 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
304 if (t->has_registers ())
305 return 1;
306
307 return 0;
308}
309
310int
311target_has_execution_1 (ptid_t the_ptid)
312{
313 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
314 if (t->has_execution (the_ptid))
315 return 1;
316
317 return 0;
318}
319
320int
321target_has_execution_current (void)
322{
323 return target_has_execution_1 (inferior_ptid);
324}
325
326/* This is used to implement the various target commands. */
327
328static void
329open_target (const char *args, int from_tty, struct cmd_list_element *command)
330{
331 auto *ti = static_cast<target_info *> (get_cmd_context (command));
332 target_open_ftype *func = target_factories[ti];
333
334 if (targetdebug)
335 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
336 ti->shortname);
337
338 func (args, from_tty);
339
340 if (targetdebug)
341 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
342 ti->shortname, args, from_tty);
343}
344
345/* See target.h. */
346
347void
348add_target (const target_info &t, target_open_ftype *func,
349 completer_ftype *completer)
350{
351 struct cmd_list_element *c;
352
353 auto &func_slot = target_factories[&t];
354 if (func_slot != nullptr)
355 internal_error (__FILE__, __LINE__,
356 _("target already added (\"%s\")."), t.shortname);
357 func_slot = func;
358
359 if (targetlist == NULL)
360 add_prefix_cmd ("target", class_run, target_command, _("\
361Connect to a target machine or process.\n\
362The first argument is the type or protocol of the target machine.\n\
363Remaining arguments are interpreted by the target protocol. For more\n\
364information on the arguments for a particular protocol, type\n\
365`help target ' followed by the protocol name."),
366 &targetlist, "target ", 0, &cmdlist);
367 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
368 set_cmd_context (c, (void *) &t);
369 set_cmd_sfunc (c, open_target);
370 if (completer != NULL)
371 set_cmd_completer (c, completer);
372}
373
374/* See target.h. */
375
376void
377add_deprecated_target_alias (const target_info &tinfo, const char *alias)
378{
379 struct cmd_list_element *c;
380 char *alt;
381
382 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
383 see PR cli/15104. */
384 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
385 set_cmd_sfunc (c, open_target);
386 set_cmd_context (c, (void *) &tinfo);
387 alt = xstrprintf ("target %s", tinfo.shortname);
388 deprecate_cmd (c, alt);
389}
390
391/* Stub functions */
392
393void
394target_kill (void)
395{
396 current_top_target ()->kill ();
397}
398
399void
400target_load (const char *arg, int from_tty)
401{
402 target_dcache_invalidate ();
403 current_top_target ()->load (arg, from_tty);
404}
405
406/* Define it. */
407
408target_terminal_state target_terminal::m_terminal_state
409 = target_terminal_state::is_ours;
410
411/* See target/target.h. */
412
413void
414target_terminal::init (void)
415{
416 current_top_target ()->terminal_init ();
417
418 m_terminal_state = target_terminal_state::is_ours;
419}
420
421/* See target/target.h. */
422
423void
424target_terminal::inferior (void)
425{
426 struct ui *ui = current_ui;
427
428 /* A background resume (``run&'') should leave GDB in control of the
429 terminal. */
430 if (ui->prompt_state != PROMPT_BLOCKED)
431 return;
432
433 /* Since we always run the inferior in the main console (unless "set
434 inferior-tty" is in effect), when some UI other than the main one
435 calls target_terminal::inferior, then we leave the main UI's
436 terminal settings as is. */
437 if (ui != main_ui)
438 return;
439
440 /* If GDB is resuming the inferior in the foreground, install
441 inferior's terminal modes. */
442
443 struct inferior *inf = current_inferior ();
444
445 if (inf->terminal_state != target_terminal_state::is_inferior)
446 {
447 current_top_target ()->terminal_inferior ();
448 inf->terminal_state = target_terminal_state::is_inferior;
449 }
450
451 m_terminal_state = target_terminal_state::is_inferior;
452
453 /* If the user hit C-c before, pretend that it was hit right
454 here. */
455 if (check_quit_flag ())
456 target_pass_ctrlc ();
457}
458
459/* See target/target.h. */
460
461void
462target_terminal::restore_inferior (void)
463{
464 struct ui *ui = current_ui;
465
466 /* See target_terminal::inferior(). */
467 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
468 return;
469
470 /* Restore the terminal settings of inferiors that were in the
471 foreground but are now ours_for_output due to a temporary
472 target_target::ours_for_output() call. */
473
474 {
475 scoped_restore_current_inferior restore_inferior;
476
477 for (struct inferior *inf : all_inferiors ())
478 {
479 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
480 {
481 set_current_inferior (inf);
482 current_top_target ()->terminal_inferior ();
483 inf->terminal_state = target_terminal_state::is_inferior;
484 }
485 }
486 }
487
488 m_terminal_state = target_terminal_state::is_inferior;
489
490 /* If the user hit C-c before, pretend that it was hit right
491 here. */
492 if (check_quit_flag ())
493 target_pass_ctrlc ();
494}
495
496/* Switch terminal state to DESIRED_STATE, either is_ours, or
497 is_ours_for_output. */
498
499static void
500target_terminal_is_ours_kind (target_terminal_state desired_state)
501{
502 scoped_restore_current_inferior restore_inferior;
503
504 /* Must do this in two passes. First, have all inferiors save the
505 current terminal settings. Then, after all inferiors have add a
506 chance to safely save the terminal settings, restore GDB's
507 terminal settings. */
508
509 for (inferior *inf : all_inferiors ())
510 {
511 if (inf->terminal_state == target_terminal_state::is_inferior)
512 {
513 set_current_inferior (inf);
514 current_top_target ()->terminal_save_inferior ();
515 }
516 }
517
518 for (inferior *inf : all_inferiors ())
519 {
520 /* Note we don't check is_inferior here like above because we
521 need to handle 'is_ours_for_output -> is_ours' too. Careful
522 to never transition from 'is_ours' to 'is_ours_for_output',
523 though. */
524 if (inf->terminal_state != target_terminal_state::is_ours
525 && inf->terminal_state != desired_state)
526 {
527 set_current_inferior (inf);
528 if (desired_state == target_terminal_state::is_ours)
529 current_top_target ()->terminal_ours ();
530 else if (desired_state == target_terminal_state::is_ours_for_output)
531 current_top_target ()->terminal_ours_for_output ();
532 else
533 gdb_assert_not_reached ("unhandled desired state");
534 inf->terminal_state = desired_state;
535 }
536 }
537}
538
539/* See target/target.h. */
540
541void
542target_terminal::ours ()
543{
544 struct ui *ui = current_ui;
545
546 /* See target_terminal::inferior. */
547 if (ui != main_ui)
548 return;
549
550 if (m_terminal_state == target_terminal_state::is_ours)
551 return;
552
553 target_terminal_is_ours_kind (target_terminal_state::is_ours);
554 m_terminal_state = target_terminal_state::is_ours;
555}
556
557/* See target/target.h. */
558
559void
560target_terminal::ours_for_output ()
561{
562 struct ui *ui = current_ui;
563
564 /* See target_terminal::inferior. */
565 if (ui != main_ui)
566 return;
567
568 if (!target_terminal::is_inferior ())
569 return;
570
571 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
572 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
573}
574
575/* See target/target.h. */
576
577void
578target_terminal::info (const char *arg, int from_tty)
579{
580 current_top_target ()->terminal_info (arg, from_tty);
581}
582
583/* See target.h. */
584
585bool
586target_supports_terminal_ours (void)
587{
588 /* This can be called before there is any target, so we must check
589 for nullptr here. */
590 target_ops *top = current_top_target ();
591
592 if (top == nullptr)
593 return false;
594 return top->supports_terminal_ours ();
595}
596
597static void
598tcomplain (void)
599{
600 error (_("You can't do that when your target is `%s'"),
601 current_top_target ()->shortname ());
602}
603
604void
605noprocess (void)
606{
607 error (_("You can't do that without a process to debug."));
608}
609
610static void
611default_terminal_info (struct target_ops *self, const char *args, int from_tty)
612{
613 printf_unfiltered (_("No saved terminal information.\n"));
614}
615
616/* A default implementation for the to_get_ada_task_ptid target method.
617
618 This function builds the PTID by using both LWP and TID as part of
619 the PTID lwp and tid elements. The pid used is the pid of the
620 inferior_ptid. */
621
622static ptid_t
623default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
624{
625 return ptid_t (inferior_ptid.pid (), lwp, tid);
626}
627
628static enum exec_direction_kind
629default_execution_direction (struct target_ops *self)
630{
631 if (!target_can_execute_reverse)
632 return EXEC_FORWARD;
633 else if (!target_can_async_p ())
634 return EXEC_FORWARD;
635 else
636 gdb_assert_not_reached ("\
637to_execution_direction must be implemented for reverse async");
638}
639
640/* See target.h. */
641
642void
643target_stack::push (target_ops *t)
644{
645 /* If there's already a target at this stratum, remove it. */
646 if (m_stack[t->to_stratum] != NULL)
647 {
648 target_ops *prev = m_stack[t->to_stratum];
649 m_stack[t->to_stratum] = NULL;
650 target_close (prev);
651 }
652
653 /* Now add the new one. */
654 m_stack[t->to_stratum] = t;
655
656 if (m_top < t->to_stratum)
657 m_top = t->to_stratum;
658}
659
660/* See target.h. */
661
662void
663push_target (struct target_ops *t)
664{
665 g_target_stack.push (t);
666}
667
668/* See target.h. */
669
670int
671unpush_target (struct target_ops *t)
672{
673 return g_target_stack.unpush (t);
674}
675
676/* See target.h. */
677
678bool
679target_stack::unpush (target_ops *t)
680{
681 if (t->to_stratum == dummy_stratum)
682 internal_error (__FILE__, __LINE__,
683 _("Attempt to unpush the dummy target"));
684
685 gdb_assert (t != NULL);
686
687 /* Look for the specified target. Note that a target can only occur
688 once in the target stack. */
689
690 if (m_stack[t->to_stratum] != t)
691 {
692 /* If T wasn't pushed, quit. Only open targets should be
693 closed. */
694 return false;
695 }
696
697 /* Unchain the target. */
698 m_stack[t->to_stratum] = NULL;
699
700 if (m_top == t->to_stratum)
701 m_top = t->beneath ()->to_stratum;
702
703 /* Finally close the target. Note we do this after unchaining, so
704 any target method calls from within the target_close
705 implementation don't end up in T anymore. */
706 target_close (t);
707
708 return true;
709}
710
711/* Unpush TARGET and assert that it worked. */
712
713static void
714unpush_target_and_assert (struct target_ops *target)
715{
716 if (!unpush_target (target))
717 {
718 fprintf_unfiltered (gdb_stderr,
719 "pop_all_targets couldn't find target %s\n",
720 target->shortname ());
721 internal_error (__FILE__, __LINE__,
722 _("failed internal consistency check"));
723 }
724}
725
726void
727pop_all_targets_above (enum strata above_stratum)
728{
729 while ((int) (current_top_target ()->to_stratum) > (int) above_stratum)
730 unpush_target_and_assert (current_top_target ());
731}
732
733/* See target.h. */
734
735void
736pop_all_targets_at_and_above (enum strata stratum)
737{
738 while ((int) (current_top_target ()->to_stratum) >= (int) stratum)
739 unpush_target_and_assert (current_top_target ());
740}
741
742void
743pop_all_targets (void)
744{
745 pop_all_targets_above (dummy_stratum);
746}
747
748/* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
749
750int
751target_is_pushed (struct target_ops *t)
752{
753 return g_target_stack.is_pushed (t);
754}
755
756/* Default implementation of to_get_thread_local_address. */
757
758static void
759generic_tls_error (void)
760{
761 throw_error (TLS_GENERIC_ERROR,
762 _("Cannot find thread-local variables on this target"));
763}
764
765/* Using the objfile specified in OBJFILE, find the address for the
766 current thread's thread-local storage with offset OFFSET. */
767CORE_ADDR
768target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
769{
770 volatile CORE_ADDR addr = 0;
771 struct target_ops *target = current_top_target ();
772
773 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
774 {
775 ptid_t ptid = inferior_ptid;
776
777 TRY
778 {
779 CORE_ADDR lm_addr;
780
781 /* Fetch the load module address for this objfile. */
782 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
783 objfile);
784
785 addr = target->get_thread_local_address (ptid, lm_addr, offset);
786 }
787 /* If an error occurred, print TLS related messages here. Otherwise,
788 throw the error to some higher catcher. */
789 CATCH (ex, RETURN_MASK_ALL)
790 {
791 int objfile_is_library = (objfile->flags & OBJF_SHARED);
792
793 switch (ex.error)
794 {
795 case TLS_NO_LIBRARY_SUPPORT_ERROR:
796 error (_("Cannot find thread-local variables "
797 "in this thread library."));
798 break;
799 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
800 if (objfile_is_library)
801 error (_("Cannot find shared library `%s' in dynamic"
802 " linker's load module list"), objfile_name (objfile));
803 else
804 error (_("Cannot find executable file `%s' in dynamic"
805 " linker's load module list"), objfile_name (objfile));
806 break;
807 case TLS_NOT_ALLOCATED_YET_ERROR:
808 if (objfile_is_library)
809 error (_("The inferior has not yet allocated storage for"
810 " thread-local variables in\n"
811 "the shared library `%s'\n"
812 "for %s"),
813 objfile_name (objfile), target_pid_to_str (ptid));
814 else
815 error (_("The inferior has not yet allocated storage for"
816 " thread-local variables in\n"
817 "the executable `%s'\n"
818 "for %s"),
819 objfile_name (objfile), target_pid_to_str (ptid));
820 break;
821 case TLS_GENERIC_ERROR:
822 if (objfile_is_library)
823 error (_("Cannot find thread-local storage for %s, "
824 "shared library %s:\n%s"),
825 target_pid_to_str (ptid),
826 objfile_name (objfile), ex.message);
827 else
828 error (_("Cannot find thread-local storage for %s, "
829 "executable file %s:\n%s"),
830 target_pid_to_str (ptid),
831 objfile_name (objfile), ex.message);
832 break;
833 default:
834 throw_exception (ex);
835 break;
836 }
837 }
838 END_CATCH
839 }
840 /* It wouldn't be wrong here to try a gdbarch method, too; finding
841 TLS is an ABI-specific thing. But we don't do that yet. */
842 else
843 error (_("Cannot find thread-local variables on this target"));
844
845 return addr;
846}
847
848const char *
849target_xfer_status_to_string (enum target_xfer_status status)
850{
851#define CASE(X) case X: return #X
852 switch (status)
853 {
854 CASE(TARGET_XFER_E_IO);
855 CASE(TARGET_XFER_UNAVAILABLE);
856 default:
857 return "<unknown>";
858 }
859#undef CASE
860};
861
862
863#undef MIN
864#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
865
866/* target_read_string -- read a null terminated string, up to LEN bytes,
867 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
868 Set *STRING to a pointer to malloc'd memory containing the data; the caller
869 is responsible for freeing it. Return the number of bytes successfully
870 read. */
871
872int
873target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
874 int len, int *errnop)
875{
876 int tlen, offset, i;
877 gdb_byte buf[4];
878 int errcode = 0;
879 char *buffer;
880 int buffer_allocated;
881 char *bufptr;
882 unsigned int nbytes_read = 0;
883
884 gdb_assert (string);
885
886 /* Small for testing. */
887 buffer_allocated = 4;
888 buffer = (char *) xmalloc (buffer_allocated);
889 bufptr = buffer;
890
891 while (len > 0)
892 {
893 tlen = MIN (len, 4 - (memaddr & 3));
894 offset = memaddr & 3;
895
896 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
897 if (errcode != 0)
898 {
899 /* The transfer request might have crossed the boundary to an
900 unallocated region of memory. Retry the transfer, requesting
901 a single byte. */
902 tlen = 1;
903 offset = 0;
904 errcode = target_read_memory (memaddr, buf, 1);
905 if (errcode != 0)
906 goto done;
907 }
908
909 if (bufptr - buffer + tlen > buffer_allocated)
910 {
911 unsigned int bytes;
912
913 bytes = bufptr - buffer;
914 buffer_allocated *= 2;
915 buffer = (char *) xrealloc (buffer, buffer_allocated);
916 bufptr = buffer + bytes;
917 }
918
919 for (i = 0; i < tlen; i++)
920 {
921 *bufptr++ = buf[i + offset];
922 if (buf[i + offset] == '\000')
923 {
924 nbytes_read += i + 1;
925 goto done;
926 }
927 }
928
929 memaddr += tlen;
930 len -= tlen;
931 nbytes_read += tlen;
932 }
933done:
934 string->reset (buffer);
935 if (errnop != NULL)
936 *errnop = errcode;
937 return nbytes_read;
938}
939
940struct target_section_table *
941target_get_section_table (struct target_ops *target)
942{
943 return target->get_section_table ();
944}
945
946/* Find a section containing ADDR. */
947
948struct target_section *
949target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
950{
951 struct target_section_table *table = target_get_section_table (target);
952 struct target_section *secp;
953
954 if (table == NULL)
955 return NULL;
956
957 for (secp = table->sections; secp < table->sections_end; secp++)
958 {
959 if (addr >= secp->addr && addr < secp->endaddr)
960 return secp;
961 }
962 return NULL;
963}
964
965
966/* Helper for the memory xfer routines. Checks the attributes of the
967 memory region of MEMADDR against the read or write being attempted.
968 If the access is permitted returns true, otherwise returns false.
969 REGION_P is an optional output parameter. If not-NULL, it is
970 filled with a pointer to the memory region of MEMADDR. REG_LEN
971 returns LEN trimmed to the end of the region. This is how much the
972 caller can continue requesting, if the access is permitted. A
973 single xfer request must not straddle memory region boundaries. */
974
975static int
976memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
977 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
978 struct mem_region **region_p)
979{
980 struct mem_region *region;
981
982 region = lookup_mem_region (memaddr);
983
984 if (region_p != NULL)
985 *region_p = region;
986
987 switch (region->attrib.mode)
988 {
989 case MEM_RO:
990 if (writebuf != NULL)
991 return 0;
992 break;
993
994 case MEM_WO:
995 if (readbuf != NULL)
996 return 0;
997 break;
998
999 case MEM_FLASH:
1000 /* We only support writing to flash during "load" for now. */
1001 if (writebuf != NULL)
1002 error (_("Writing to flash memory forbidden in this context"));
1003 break;
1004
1005 case MEM_NONE:
1006 return 0;
1007 }
1008
1009 /* region->hi == 0 means there's no upper bound. */
1010 if (memaddr + len < region->hi || region->hi == 0)
1011 *reg_len = len;
1012 else
1013 *reg_len = region->hi - memaddr;
1014
1015 return 1;
1016}
1017
1018/* Read memory from more than one valid target. A core file, for
1019 instance, could have some of memory but delegate other bits to
1020 the target below it. So, we must manually try all targets. */
1021
1022enum target_xfer_status
1023raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1024 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1025 ULONGEST *xfered_len)
1026{
1027 enum target_xfer_status res;
1028
1029 do
1030 {
1031 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
1032 readbuf, writebuf, memaddr, len,
1033 xfered_len);
1034 if (res == TARGET_XFER_OK)
1035 break;
1036
1037 /* Stop if the target reports that the memory is not available. */
1038 if (res == TARGET_XFER_UNAVAILABLE)
1039 break;
1040
1041 /* We want to continue past core files to executables, but not
1042 past a running target's memory. */
1043 if (ops->has_all_memory ())
1044 break;
1045
1046 ops = ops->beneath ();
1047 }
1048 while (ops != NULL);
1049
1050 /* The cache works at the raw memory level. Make sure the cache
1051 gets updated with raw contents no matter what kind of memory
1052 object was originally being written. Note we do write-through
1053 first, so that if it fails, we don't write to the cache contents
1054 that never made it to the target. */
1055 if (writebuf != NULL
1056 && inferior_ptid != null_ptid
1057 && target_dcache_init_p ()
1058 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1059 {
1060 DCACHE *dcache = target_dcache_get ();
1061
1062 /* Note that writing to an area of memory which wasn't present
1063 in the cache doesn't cause it to be loaded in. */
1064 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1065 }
1066
1067 return res;
1068}
1069
1070/* Perform a partial memory transfer.
1071 For docs see target.h, to_xfer_partial. */
1072
1073static enum target_xfer_status
1074memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1075 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1076 ULONGEST len, ULONGEST *xfered_len)
1077{
1078 enum target_xfer_status res;
1079 ULONGEST reg_len;
1080 struct mem_region *region;
1081 struct inferior *inf;
1082
1083 /* For accesses to unmapped overlay sections, read directly from
1084 files. Must do this first, as MEMADDR may need adjustment. */
1085 if (readbuf != NULL && overlay_debugging)
1086 {
1087 struct obj_section *section = find_pc_overlay (memaddr);
1088
1089 if (pc_in_unmapped_range (memaddr, section))
1090 {
1091 struct target_section_table *table
1092 = target_get_section_table (ops);
1093 const char *section_name = section->the_bfd_section->name;
1094
1095 memaddr = overlay_mapped_address (memaddr, section);
1096 return section_table_xfer_memory_partial (readbuf, writebuf,
1097 memaddr, len, xfered_len,
1098 table->sections,
1099 table->sections_end,
1100 section_name);
1101 }
1102 }
1103
1104 /* Try the executable files, if "trust-readonly-sections" is set. */
1105 if (readbuf != NULL && trust_readonly)
1106 {
1107 struct target_section *secp;
1108 struct target_section_table *table;
1109
1110 secp = target_section_by_addr (ops, memaddr);
1111 if (secp != NULL
1112 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1113 secp->the_bfd_section)
1114 & SEC_READONLY))
1115 {
1116 table = target_get_section_table (ops);
1117 return section_table_xfer_memory_partial (readbuf, writebuf,
1118 memaddr, len, xfered_len,
1119 table->sections,
1120 table->sections_end,
1121 NULL);
1122 }
1123 }
1124
1125 /* Try GDB's internal data cache. */
1126
1127 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1128 &region))
1129 return TARGET_XFER_E_IO;
1130
1131 if (inferior_ptid != null_ptid)
1132 inf = current_inferior ();
1133 else
1134 inf = NULL;
1135
1136 if (inf != NULL
1137 && readbuf != NULL
1138 /* The dcache reads whole cache lines; that doesn't play well
1139 with reading from a trace buffer, because reading outside of
1140 the collected memory range fails. */
1141 && get_traceframe_number () == -1
1142 && (region->attrib.cache
1143 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1144 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1145 {
1146 DCACHE *dcache = target_dcache_get_or_init ();
1147
1148 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1149 reg_len, xfered_len);
1150 }
1151
1152 /* If none of those methods found the memory we wanted, fall back
1153 to a target partial transfer. Normally a single call to
1154 to_xfer_partial is enough; if it doesn't recognize an object
1155 it will call the to_xfer_partial of the next target down.
1156 But for memory this won't do. Memory is the only target
1157 object which can be read from more than one valid target.
1158 A core file, for instance, could have some of memory but
1159 delegate other bits to the target below it. So, we must
1160 manually try all targets. */
1161
1162 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1163 xfered_len);
1164
1165 /* If we still haven't got anything, return the last error. We
1166 give up. */
1167 return res;
1168}
1169
1170/* Perform a partial memory transfer. For docs see target.h,
1171 to_xfer_partial. */
1172
1173static enum target_xfer_status
1174memory_xfer_partial (struct target_ops *ops, enum target_object object,
1175 gdb_byte *readbuf, const gdb_byte *writebuf,
1176 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1177{
1178 enum target_xfer_status res;
1179
1180 /* Zero length requests are ok and require no work. */
1181 if (len == 0)
1182 return TARGET_XFER_EOF;
1183
1184 memaddr = address_significant (target_gdbarch (), memaddr);
1185
1186 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1187 breakpoint insns, thus hiding out from higher layers whether
1188 there are software breakpoints inserted in the code stream. */
1189 if (readbuf != NULL)
1190 {
1191 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1192 xfered_len);
1193
1194 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1195 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1196 }
1197 else
1198 {
1199 /* A large write request is likely to be partially satisfied
1200 by memory_xfer_partial_1. We will continually malloc
1201 and free a copy of the entire write request for breakpoint
1202 shadow handling even though we only end up writing a small
1203 subset of it. Cap writes to a limit specified by the target
1204 to mitigate this. */
1205 len = std::min (ops->get_memory_xfer_limit (), len);
1206
1207 gdb::byte_vector buf (writebuf, writebuf + len);
1208 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1209 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1210 xfered_len);
1211 }
1212
1213 return res;
1214}
1215
1216scoped_restore_tmpl<int>
1217make_scoped_restore_show_memory_breakpoints (int show)
1218{
1219 return make_scoped_restore (&show_memory_breakpoints, show);
1220}
1221
1222/* For docs see target.h, to_xfer_partial. */
1223
1224enum target_xfer_status
1225target_xfer_partial (struct target_ops *ops,
1226 enum target_object object, const char *annex,
1227 gdb_byte *readbuf, const gdb_byte *writebuf,
1228 ULONGEST offset, ULONGEST len,
1229 ULONGEST *xfered_len)
1230{
1231 enum target_xfer_status retval;
1232
1233 /* Transfer is done when LEN is zero. */
1234 if (len == 0)
1235 return TARGET_XFER_EOF;
1236
1237 if (writebuf && !may_write_memory)
1238 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1239 core_addr_to_string_nz (offset), plongest (len));
1240
1241 *xfered_len = 0;
1242
1243 /* If this is a memory transfer, let the memory-specific code
1244 have a look at it instead. Memory transfers are more
1245 complicated. */
1246 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1247 || object == TARGET_OBJECT_CODE_MEMORY)
1248 retval = memory_xfer_partial (ops, object, readbuf,
1249 writebuf, offset, len, xfered_len);
1250 else if (object == TARGET_OBJECT_RAW_MEMORY)
1251 {
1252 /* Skip/avoid accessing the target if the memory region
1253 attributes block the access. Check this here instead of in
1254 raw_memory_xfer_partial as otherwise we'd end up checking
1255 this twice in the case of the memory_xfer_partial path is
1256 taken; once before checking the dcache, and another in the
1257 tail call to raw_memory_xfer_partial. */
1258 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1259 NULL))
1260 return TARGET_XFER_E_IO;
1261
1262 /* Request the normal memory object from other layers. */
1263 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1264 xfered_len);
1265 }
1266 else
1267 retval = ops->xfer_partial (object, annex, readbuf,
1268 writebuf, offset, len, xfered_len);
1269
1270 if (targetdebug)
1271 {
1272 const unsigned char *myaddr = NULL;
1273
1274 fprintf_unfiltered (gdb_stdlog,
1275 "%s:target_xfer_partial "
1276 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1277 ops->shortname (),
1278 (int) object,
1279 (annex ? annex : "(null)"),
1280 host_address_to_string (readbuf),
1281 host_address_to_string (writebuf),
1282 core_addr_to_string_nz (offset),
1283 pulongest (len), retval,
1284 pulongest (*xfered_len));
1285
1286 if (readbuf)
1287 myaddr = readbuf;
1288 if (writebuf)
1289 myaddr = writebuf;
1290 if (retval == TARGET_XFER_OK && myaddr != NULL)
1291 {
1292 int i;
1293
1294 fputs_unfiltered (", bytes =", gdb_stdlog);
1295 for (i = 0; i < *xfered_len; i++)
1296 {
1297 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1298 {
1299 if (targetdebug < 2 && i > 0)
1300 {
1301 fprintf_unfiltered (gdb_stdlog, " ...");
1302 break;
1303 }
1304 fprintf_unfiltered (gdb_stdlog, "\n");
1305 }
1306
1307 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1308 }
1309 }
1310
1311 fputc_unfiltered ('\n', gdb_stdlog);
1312 }
1313
1314 /* Check implementations of to_xfer_partial update *XFERED_LEN
1315 properly. Do assertion after printing debug messages, so that we
1316 can find more clues on assertion failure from debugging messages. */
1317 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1318 gdb_assert (*xfered_len > 0);
1319
1320 return retval;
1321}
1322
1323/* Read LEN bytes of target memory at address MEMADDR, placing the
1324 results in GDB's memory at MYADDR. Returns either 0 for success or
1325 -1 if any error occurs.
1326
1327 If an error occurs, no guarantee is made about the contents of the data at
1328 MYADDR. In particular, the caller should not depend upon partial reads
1329 filling the buffer with good data. There is no way for the caller to know
1330 how much good data might have been transfered anyway. Callers that can
1331 deal with partial reads should call target_read (which will retry until
1332 it makes no progress, and then return how much was transferred). */
1333
1334int
1335target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1336{
1337 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1338 myaddr, memaddr, len) == len)
1339 return 0;
1340 else
1341 return -1;
1342}
1343
1344/* See target/target.h. */
1345
1346int
1347target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1348{
1349 gdb_byte buf[4];
1350 int r;
1351
1352 r = target_read_memory (memaddr, buf, sizeof buf);
1353 if (r != 0)
1354 return r;
1355 *result = extract_unsigned_integer (buf, sizeof buf,
1356 gdbarch_byte_order (target_gdbarch ()));
1357 return 0;
1358}
1359
1360/* Like target_read_memory, but specify explicitly that this is a read
1361 from the target's raw memory. That is, this read bypasses the
1362 dcache, breakpoint shadowing, etc. */
1363
1364int
1365target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1366{
1367 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1368 myaddr, memaddr, len) == len)
1369 return 0;
1370 else
1371 return -1;
1372}
1373
1374/* Like target_read_memory, but specify explicitly that this is a read from
1375 the target's stack. This may trigger different cache behavior. */
1376
1377int
1378target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1379{
1380 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1381 myaddr, memaddr, len) == len)
1382 return 0;
1383 else
1384 return -1;
1385}
1386
1387/* Like target_read_memory, but specify explicitly that this is a read from
1388 the target's code. This may trigger different cache behavior. */
1389
1390int
1391target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1392{
1393 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1394 myaddr, memaddr, len) == len)
1395 return 0;
1396 else
1397 return -1;
1398}
1399
1400/* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1401 Returns either 0 for success or -1 if any error occurs. If an
1402 error occurs, no guarantee is made about how much data got written.
1403 Callers that can deal with partial writes should call
1404 target_write. */
1405
1406int
1407target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1408{
1409 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1410 myaddr, memaddr, len) == len)
1411 return 0;
1412 else
1413 return -1;
1414}
1415
1416/* Write LEN bytes from MYADDR to target raw memory at address
1417 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1418 If an error occurs, no guarantee is made about how much data got
1419 written. Callers that can deal with partial writes should call
1420 target_write. */
1421
1422int
1423target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1424{
1425 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1426 myaddr, memaddr, len) == len)
1427 return 0;
1428 else
1429 return -1;
1430}
1431
1432/* Fetch the target's memory map. */
1433
1434std::vector<mem_region>
1435target_memory_map (void)
1436{
1437 std::vector<mem_region> result = current_top_target ()->memory_map ();
1438 if (result.empty ())
1439 return result;
1440
1441 std::sort (result.begin (), result.end ());
1442
1443 /* Check that regions do not overlap. Simultaneously assign
1444 a numbering for the "mem" commands to use to refer to
1445 each region. */
1446 mem_region *last_one = NULL;
1447 for (size_t ix = 0; ix < result.size (); ix++)
1448 {
1449 mem_region *this_one = &result[ix];
1450 this_one->number = ix;
1451
1452 if (last_one != NULL && last_one->hi > this_one->lo)
1453 {
1454 warning (_("Overlapping regions in memory map: ignoring"));
1455 return std::vector<mem_region> ();
1456 }
1457
1458 last_one = this_one;
1459 }
1460
1461 return result;
1462}
1463
1464void
1465target_flash_erase (ULONGEST address, LONGEST length)
1466{
1467 current_top_target ()->flash_erase (address, length);
1468}
1469
1470void
1471target_flash_done (void)
1472{
1473 current_top_target ()->flash_done ();
1474}
1475
1476static void
1477show_trust_readonly (struct ui_file *file, int from_tty,
1478 struct cmd_list_element *c, const char *value)
1479{
1480 fprintf_filtered (file,
1481 _("Mode for reading from readonly sections is %s.\n"),
1482 value);
1483}
1484
1485/* Target vector read/write partial wrapper functions. */
1486
1487static enum target_xfer_status
1488target_read_partial (struct target_ops *ops,
1489 enum target_object object,
1490 const char *annex, gdb_byte *buf,
1491 ULONGEST offset, ULONGEST len,
1492 ULONGEST *xfered_len)
1493{
1494 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1495 xfered_len);
1496}
1497
1498static enum target_xfer_status
1499target_write_partial (struct target_ops *ops,
1500 enum target_object object,
1501 const char *annex, const gdb_byte *buf,
1502 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1503{
1504 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1505 xfered_len);
1506}
1507
1508/* Wrappers to perform the full transfer. */
1509
1510/* For docs on target_read see target.h. */
1511
1512LONGEST
1513target_read (struct target_ops *ops,
1514 enum target_object object,
1515 const char *annex, gdb_byte *buf,
1516 ULONGEST offset, LONGEST len)
1517{
1518 LONGEST xfered_total = 0;
1519 int unit_size = 1;
1520
1521 /* If we are reading from a memory object, find the length of an addressable
1522 unit for that architecture. */
1523 if (object == TARGET_OBJECT_MEMORY
1524 || object == TARGET_OBJECT_STACK_MEMORY
1525 || object == TARGET_OBJECT_CODE_MEMORY
1526 || object == TARGET_OBJECT_RAW_MEMORY)
1527 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1528
1529 while (xfered_total < len)
1530 {
1531 ULONGEST xfered_partial;
1532 enum target_xfer_status status;
1533
1534 status = target_read_partial (ops, object, annex,
1535 buf + xfered_total * unit_size,
1536 offset + xfered_total, len - xfered_total,
1537 &xfered_partial);
1538
1539 /* Call an observer, notifying them of the xfer progress? */
1540 if (status == TARGET_XFER_EOF)
1541 return xfered_total;
1542 else if (status == TARGET_XFER_OK)
1543 {
1544 xfered_total += xfered_partial;
1545 QUIT;
1546 }
1547 else
1548 return TARGET_XFER_E_IO;
1549
1550 }
1551 return len;
1552}
1553
1554/* Assuming that the entire [begin, end) range of memory cannot be
1555 read, try to read whatever subrange is possible to read.
1556
1557 The function returns, in RESULT, either zero or one memory block.
1558 If there's a readable subrange at the beginning, it is completely
1559 read and returned. Any further readable subrange will not be read.
1560 Otherwise, if there's a readable subrange at the end, it will be
1561 completely read and returned. Any readable subranges before it
1562 (obviously, not starting at the beginning), will be ignored. In
1563 other cases -- either no readable subrange, or readable subrange(s)
1564 that is neither at the beginning, or end, nothing is returned.
1565
1566 The purpose of this function is to handle a read across a boundary
1567 of accessible memory in a case when memory map is not available.
1568 The above restrictions are fine for this case, but will give
1569 incorrect results if the memory is 'patchy'. However, supporting
1570 'patchy' memory would require trying to read every single byte,
1571 and it seems unacceptable solution. Explicit memory map is
1572 recommended for this case -- and target_read_memory_robust will
1573 take care of reading multiple ranges then. */
1574
1575static void
1576read_whatever_is_readable (struct target_ops *ops,
1577 const ULONGEST begin, const ULONGEST end,
1578 int unit_size,
1579 std::vector<memory_read_result> *result)
1580{
1581 ULONGEST current_begin = begin;
1582 ULONGEST current_end = end;
1583 int forward;
1584 ULONGEST xfered_len;
1585
1586 /* If we previously failed to read 1 byte, nothing can be done here. */
1587 if (end - begin <= 1)
1588 return;
1589
1590 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1591
1592 /* Check that either first or the last byte is readable, and give up
1593 if not. This heuristic is meant to permit reading accessible memory
1594 at the boundary of accessible region. */
1595 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1596 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1597 {
1598 forward = 1;
1599 ++current_begin;
1600 }
1601 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1602 buf.get () + (end - begin) - 1, end - 1, 1,
1603 &xfered_len) == TARGET_XFER_OK)
1604 {
1605 forward = 0;
1606 --current_end;
1607 }
1608 else
1609 return;
1610
1611 /* Loop invariant is that the [current_begin, current_end) was previously
1612 found to be not readable as a whole.
1613
1614 Note loop condition -- if the range has 1 byte, we can't divide the range
1615 so there's no point trying further. */
1616 while (current_end - current_begin > 1)
1617 {
1618 ULONGEST first_half_begin, first_half_end;
1619 ULONGEST second_half_begin, second_half_end;
1620 LONGEST xfer;
1621 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1622
1623 if (forward)
1624 {
1625 first_half_begin = current_begin;
1626 first_half_end = middle;
1627 second_half_begin = middle;
1628 second_half_end = current_end;
1629 }
1630 else
1631 {
1632 first_half_begin = middle;
1633 first_half_end = current_end;
1634 second_half_begin = current_begin;
1635 second_half_end = middle;
1636 }
1637
1638 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1639 buf.get () + (first_half_begin - begin) * unit_size,
1640 first_half_begin,
1641 first_half_end - first_half_begin);
1642
1643 if (xfer == first_half_end - first_half_begin)
1644 {
1645 /* This half reads up fine. So, the error must be in the
1646 other half. */
1647 current_begin = second_half_begin;
1648 current_end = second_half_end;
1649 }
1650 else
1651 {
1652 /* This half is not readable. Because we've tried one byte, we
1653 know some part of this half if actually readable. Go to the next
1654 iteration to divide again and try to read.
1655
1656 We don't handle the other half, because this function only tries
1657 to read a single readable subrange. */
1658 current_begin = first_half_begin;
1659 current_end = first_half_end;
1660 }
1661 }
1662
1663 if (forward)
1664 {
1665 /* The [begin, current_begin) range has been read. */
1666 result->emplace_back (begin, current_end, std::move (buf));
1667 }
1668 else
1669 {
1670 /* The [current_end, end) range has been read. */
1671 LONGEST region_len = end - current_end;
1672
1673 gdb::unique_xmalloc_ptr<gdb_byte> data
1674 ((gdb_byte *) xmalloc (region_len * unit_size));
1675 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1676 region_len * unit_size);
1677 result->emplace_back (current_end, end, std::move (data));
1678 }
1679}
1680
1681std::vector<memory_read_result>
1682read_memory_robust (struct target_ops *ops,
1683 const ULONGEST offset, const LONGEST len)
1684{
1685 std::vector<memory_read_result> result;
1686 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1687
1688 LONGEST xfered_total = 0;
1689 while (xfered_total < len)
1690 {
1691 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1692 LONGEST region_len;
1693
1694 /* If there is no explicit region, a fake one should be created. */
1695 gdb_assert (region);
1696
1697 if (region->hi == 0)
1698 region_len = len - xfered_total;
1699 else
1700 region_len = region->hi - offset;
1701
1702 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1703 {
1704 /* Cannot read this region. Note that we can end up here only
1705 if the region is explicitly marked inaccessible, or
1706 'inaccessible-by-default' is in effect. */
1707 xfered_total += region_len;
1708 }
1709 else
1710 {
1711 LONGEST to_read = std::min (len - xfered_total, region_len);
1712 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1713 ((gdb_byte *) xmalloc (to_read * unit_size));
1714
1715 LONGEST xfered_partial =
1716 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1717 offset + xfered_total, to_read);
1718 /* Call an observer, notifying them of the xfer progress? */
1719 if (xfered_partial <= 0)
1720 {
1721 /* Got an error reading full chunk. See if maybe we can read
1722 some subrange. */
1723 read_whatever_is_readable (ops, offset + xfered_total,
1724 offset + xfered_total + to_read,
1725 unit_size, &result);
1726 xfered_total += to_read;
1727 }
1728 else
1729 {
1730 result.emplace_back (offset + xfered_total,
1731 offset + xfered_total + xfered_partial,
1732 std::move (buffer));
1733 xfered_total += xfered_partial;
1734 }
1735 QUIT;
1736 }
1737 }
1738
1739 return result;
1740}
1741
1742
1743/* An alternative to target_write with progress callbacks. */
1744
1745LONGEST
1746target_write_with_progress (struct target_ops *ops,
1747 enum target_object object,
1748 const char *annex, const gdb_byte *buf,
1749 ULONGEST offset, LONGEST len,
1750 void (*progress) (ULONGEST, void *), void *baton)
1751{
1752 LONGEST xfered_total = 0;
1753 int unit_size = 1;
1754
1755 /* If we are writing to a memory object, find the length of an addressable
1756 unit for that architecture. */
1757 if (object == TARGET_OBJECT_MEMORY
1758 || object == TARGET_OBJECT_STACK_MEMORY
1759 || object == TARGET_OBJECT_CODE_MEMORY
1760 || object == TARGET_OBJECT_RAW_MEMORY)
1761 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1762
1763 /* Give the progress callback a chance to set up. */
1764 if (progress)
1765 (*progress) (0, baton);
1766
1767 while (xfered_total < len)
1768 {
1769 ULONGEST xfered_partial;
1770 enum target_xfer_status status;
1771
1772 status = target_write_partial (ops, object, annex,
1773 buf + xfered_total * unit_size,
1774 offset + xfered_total, len - xfered_total,
1775 &xfered_partial);
1776
1777 if (status != TARGET_XFER_OK)
1778 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1779
1780 if (progress)
1781 (*progress) (xfered_partial, baton);
1782
1783 xfered_total += xfered_partial;
1784 QUIT;
1785 }
1786 return len;
1787}
1788
1789/* For docs on target_write see target.h. */
1790
1791LONGEST
1792target_write (struct target_ops *ops,
1793 enum target_object object,
1794 const char *annex, const gdb_byte *buf,
1795 ULONGEST offset, LONGEST len)
1796{
1797 return target_write_with_progress (ops, object, annex, buf, offset, len,
1798 NULL, NULL);
1799}
1800
1801/* Help for target_read_alloc and target_read_stralloc. See their comments
1802 for details. */
1803
1804template <typename T>
1805gdb::optional<gdb::def_vector<T>>
1806target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1807 const char *annex)
1808{
1809 gdb::def_vector<T> buf;
1810 size_t buf_pos = 0;
1811 const int chunk = 4096;
1812
1813 /* This function does not have a length parameter; it reads the
1814 entire OBJECT). Also, it doesn't support objects fetched partly
1815 from one target and partly from another (in a different stratum,
1816 e.g. a core file and an executable). Both reasons make it
1817 unsuitable for reading memory. */
1818 gdb_assert (object != TARGET_OBJECT_MEMORY);
1819
1820 /* Start by reading up to 4K at a time. The target will throttle
1821 this number down if necessary. */
1822 while (1)
1823 {
1824 ULONGEST xfered_len;
1825 enum target_xfer_status status;
1826
1827 buf.resize (buf_pos + chunk);
1828
1829 status = target_read_partial (ops, object, annex,
1830 (gdb_byte *) &buf[buf_pos],
1831 buf_pos, chunk,
1832 &xfered_len);
1833
1834 if (status == TARGET_XFER_EOF)
1835 {
1836 /* Read all there was. */
1837 buf.resize (buf_pos);
1838 return buf;
1839 }
1840 else if (status != TARGET_XFER_OK)
1841 {
1842 /* An error occurred. */
1843 return {};
1844 }
1845
1846 buf_pos += xfered_len;
1847
1848 QUIT;
1849 }
1850}
1851
1852/* See target.h */
1853
1854gdb::optional<gdb::byte_vector>
1855target_read_alloc (struct target_ops *ops, enum target_object object,
1856 const char *annex)
1857{
1858 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1859}
1860
1861/* See target.h. */
1862
1863gdb::optional<gdb::char_vector>
1864target_read_stralloc (struct target_ops *ops, enum target_object object,
1865 const char *annex)
1866{
1867 gdb::optional<gdb::char_vector> buf
1868 = target_read_alloc_1<char> (ops, object, annex);
1869
1870 if (!buf)
1871 return {};
1872
1873 if (buf->back () != '\0')
1874 buf->push_back ('\0');
1875
1876 /* Check for embedded NUL bytes; but allow trailing NULs. */
1877 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1878 it != buf->end (); it++)
1879 if (*it != '\0')
1880 {
1881 warning (_("target object %d, annex %s, "
1882 "contained unexpected null characters"),
1883 (int) object, annex ? annex : "(none)");
1884 break;
1885 }
1886
1887 return buf;
1888}
1889
1890/* Memory transfer methods. */
1891
1892void
1893get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1894 LONGEST len)
1895{
1896 /* This method is used to read from an alternate, non-current
1897 target. This read must bypass the overlay support (as symbols
1898 don't match this target), and GDB's internal cache (wrong cache
1899 for this target). */
1900 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1901 != len)
1902 memory_error (TARGET_XFER_E_IO, addr);
1903}
1904
1905ULONGEST
1906get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1907 int len, enum bfd_endian byte_order)
1908{
1909 gdb_byte buf[sizeof (ULONGEST)];
1910
1911 gdb_assert (len <= sizeof (buf));
1912 get_target_memory (ops, addr, buf, len);
1913 return extract_unsigned_integer (buf, len, byte_order);
1914}
1915
1916/* See target.h. */
1917
1918int
1919target_insert_breakpoint (struct gdbarch *gdbarch,
1920 struct bp_target_info *bp_tgt)
1921{
1922 if (!may_insert_breakpoints)
1923 {
1924 warning (_("May not insert breakpoints"));
1925 return 1;
1926 }
1927
1928 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1929}
1930
1931/* See target.h. */
1932
1933int
1934target_remove_breakpoint (struct gdbarch *gdbarch,
1935 struct bp_target_info *bp_tgt,
1936 enum remove_bp_reason reason)
1937{
1938 /* This is kind of a weird case to handle, but the permission might
1939 have been changed after breakpoints were inserted - in which case
1940 we should just take the user literally and assume that any
1941 breakpoints should be left in place. */
1942 if (!may_insert_breakpoints)
1943 {
1944 warning (_("May not remove breakpoints"));
1945 return 1;
1946 }
1947
1948 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1949}
1950
1951static void
1952info_target_command (const char *args, int from_tty)
1953{
1954 int has_all_mem = 0;
1955
1956 if (symfile_objfile != NULL)
1957 printf_unfiltered (_("Symbols from \"%s\".\n"),
1958 objfile_name (symfile_objfile));
1959
1960 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1961 {
1962 if (!t->has_memory ())
1963 continue;
1964
1965 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1966 continue;
1967 if (has_all_mem)
1968 printf_unfiltered (_("\tWhile running this, "
1969 "GDB does not access memory from...\n"));
1970 printf_unfiltered ("%s:\n", t->longname ());
1971 t->files_info ();
1972 has_all_mem = t->has_all_memory ();
1973 }
1974}
1975
1976/* This function is called before any new inferior is created, e.g.
1977 by running a program, attaching, or connecting to a target.
1978 It cleans up any state from previous invocations which might
1979 change between runs. This is a subset of what target_preopen
1980 resets (things which might change between targets). */
1981
1982void
1983target_pre_inferior (int from_tty)
1984{
1985 /* Clear out solib state. Otherwise the solib state of the previous
1986 inferior might have survived and is entirely wrong for the new
1987 target. This has been observed on GNU/Linux using glibc 2.3. How
1988 to reproduce:
1989
1990 bash$ ./foo&
1991 [1] 4711
1992 bash$ ./foo&
1993 [1] 4712
1994 bash$ gdb ./foo
1995 [...]
1996 (gdb) attach 4711
1997 (gdb) detach
1998 (gdb) attach 4712
1999 Cannot access memory at address 0xdeadbeef
2000 */
2001
2002 /* In some OSs, the shared library list is the same/global/shared
2003 across inferiors. If code is shared between processes, so are
2004 memory regions and features. */
2005 if (!gdbarch_has_global_solist (target_gdbarch ()))
2006 {
2007 no_shared_libraries (NULL, from_tty);
2008
2009 invalidate_target_mem_regions ();
2010
2011 target_clear_description ();
2012 }
2013
2014 /* attach_flag may be set if the previous process associated with
2015 the inferior was attached to. */
2016 current_inferior ()->attach_flag = 0;
2017
2018 current_inferior ()->highest_thread_num = 0;
2019
2020 agent_capability_invalidate ();
2021}
2022
2023/* Callback for iterate_over_inferiors. Gets rid of the given
2024 inferior. */
2025
2026static int
2027dispose_inferior (struct inferior *inf, void *args)
2028{
2029 /* Not all killed inferiors can, or will ever be, removed from the
2030 inferior list. Killed inferiors clearly don't need to be killed
2031 again, so, we're done. */
2032 if (inf->pid == 0)
2033 return 0;
2034
2035 thread_info *thread = any_thread_of_inferior (inf);
2036 if (thread != NULL)
2037 {
2038 switch_to_thread (thread);
2039
2040 /* Core inferiors actually should be detached, not killed. */
2041 if (target_has_execution)
2042 target_kill ();
2043 else
2044 target_detach (inf, 0);
2045 }
2046
2047 return 0;
2048}
2049
2050/* This is to be called by the open routine before it does
2051 anything. */
2052
2053void
2054target_preopen (int from_tty)
2055{
2056 dont_repeat ();
2057
2058 if (have_inferiors ())
2059 {
2060 if (!from_tty
2061 || !have_live_inferiors ()
2062 || query (_("A program is being debugged already. Kill it? ")))
2063 iterate_over_inferiors (dispose_inferior, NULL);
2064 else
2065 error (_("Program not killed."));
2066 }
2067
2068 /* Calling target_kill may remove the target from the stack. But if
2069 it doesn't (which seems like a win for UDI), remove it now. */
2070 /* Leave the exec target, though. The user may be switching from a
2071 live process to a core of the same program. */
2072 pop_all_targets_above (file_stratum);
2073
2074 target_pre_inferior (from_tty);
2075}
2076
2077/* See target.h. */
2078
2079void
2080target_detach (inferior *inf, int from_tty)
2081{
2082 /* As long as some to_detach implementations rely on the current_inferior
2083 (either directly, or indirectly, like through target_gdbarch or by
2084 reading memory), INF needs to be the current inferior. When that
2085 requirement will become no longer true, then we can remove this
2086 assertion. */
2087 gdb_assert (inf == current_inferior ());
2088
2089 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2090 /* Don't remove global breakpoints here. They're removed on
2091 disconnection from the target. */
2092 ;
2093 else
2094 /* If we're in breakpoints-always-inserted mode, have to remove
2095 breakpoints before detaching. */
2096 remove_breakpoints_inf (current_inferior ());
2097
2098 prepare_for_detach ();
2099
2100 current_top_target ()->detach (inf, from_tty);
2101}
2102
2103void
2104target_disconnect (const char *args, int from_tty)
2105{
2106 /* If we're in breakpoints-always-inserted mode or if breakpoints
2107 are global across processes, we have to remove them before
2108 disconnecting. */
2109 remove_breakpoints ();
2110
2111 current_top_target ()->disconnect (args, from_tty);
2112}
2113
2114/* See target/target.h. */
2115
2116ptid_t
2117target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2118{
2119 return current_top_target ()->wait (ptid, status, options);
2120}
2121
2122/* See target.h. */
2123
2124ptid_t
2125default_target_wait (struct target_ops *ops,
2126 ptid_t ptid, struct target_waitstatus *status,
2127 int options)
2128{
2129 status->kind = TARGET_WAITKIND_IGNORE;
2130 return minus_one_ptid;
2131}
2132
2133const char *
2134target_pid_to_str (ptid_t ptid)
2135{
2136 return current_top_target ()->pid_to_str (ptid);
2137}
2138
2139const char *
2140target_thread_name (struct thread_info *info)
2141{
2142 return current_top_target ()->thread_name (info);
2143}
2144
2145struct thread_info *
2146target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2147 int handle_len,
2148 struct inferior *inf)
2149{
2150 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2151 handle_len, inf);
2152}
2153
2154void
2155target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2156{
2157 target_dcache_invalidate ();
2158
2159 current_top_target ()->resume (ptid, step, signal);
2160
2161 registers_changed_ptid (ptid);
2162 /* We only set the internal executing state here. The user/frontend
2163 running state is set at a higher level. This also clears the
2164 thread's stop_pc as side effect. */
2165 set_executing (ptid, 1);
2166 clear_inline_frame_state (ptid);
2167}
2168
2169/* If true, target_commit_resume is a nop. */
2170static int defer_target_commit_resume;
2171
2172/* See target.h. */
2173
2174void
2175target_commit_resume (void)
2176{
2177 if (defer_target_commit_resume)
2178 return;
2179
2180 current_top_target ()->commit_resume ();
2181}
2182
2183/* See target.h. */
2184
2185scoped_restore_tmpl<int>
2186make_scoped_defer_target_commit_resume ()
2187{
2188 return make_scoped_restore (&defer_target_commit_resume, 1);
2189}
2190
2191void
2192target_pass_signals (int numsigs, unsigned char *pass_signals)
2193{
2194 current_top_target ()->pass_signals (numsigs, pass_signals);
2195}
2196
2197void
2198target_program_signals (int numsigs, unsigned char *program_signals)
2199{
2200 current_top_target ()->program_signals (numsigs, program_signals);
2201}
2202
2203static int
2204default_follow_fork (struct target_ops *self, int follow_child,
2205 int detach_fork)
2206{
2207 /* Some target returned a fork event, but did not know how to follow it. */
2208 internal_error (__FILE__, __LINE__,
2209 _("could not find a target to follow fork"));
2210}
2211
2212/* Look through the list of possible targets for a target that can
2213 follow forks. */
2214
2215int
2216target_follow_fork (int follow_child, int detach_fork)
2217{
2218 return current_top_target ()->follow_fork (follow_child, detach_fork);
2219}
2220
2221/* Target wrapper for follow exec hook. */
2222
2223void
2224target_follow_exec (struct inferior *inf, char *execd_pathname)
2225{
2226 current_top_target ()->follow_exec (inf, execd_pathname);
2227}
2228
2229static void
2230default_mourn_inferior (struct target_ops *self)
2231{
2232 internal_error (__FILE__, __LINE__,
2233 _("could not find a target to follow mourn inferior"));
2234}
2235
2236void
2237target_mourn_inferior (ptid_t ptid)
2238{
2239 gdb_assert (ptid == inferior_ptid);
2240 current_top_target ()->mourn_inferior ();
2241
2242 /* We no longer need to keep handles on any of the object files.
2243 Make sure to release them to avoid unnecessarily locking any
2244 of them while we're not actually debugging. */
2245 bfd_cache_close_all ();
2246}
2247
2248/* Look for a target which can describe architectural features, starting
2249 from TARGET. If we find one, return its description. */
2250
2251const struct target_desc *
2252target_read_description (struct target_ops *target)
2253{
2254 return target->read_description ();
2255}
2256
2257/* This implements a basic search of memory, reading target memory and
2258 performing the search here (as opposed to performing the search in on the
2259 target side with, for example, gdbserver). */
2260
2261int
2262simple_search_memory (struct target_ops *ops,
2263 CORE_ADDR start_addr, ULONGEST search_space_len,
2264 const gdb_byte *pattern, ULONGEST pattern_len,
2265 CORE_ADDR *found_addrp)
2266{
2267 /* NOTE: also defined in find.c testcase. */
2268#define SEARCH_CHUNK_SIZE 16000
2269 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2270 /* Buffer to hold memory contents for searching. */
2271 unsigned search_buf_size;
2272
2273 search_buf_size = chunk_size + pattern_len - 1;
2274
2275 /* No point in trying to allocate a buffer larger than the search space. */
2276 if (search_space_len < search_buf_size)
2277 search_buf_size = search_space_len;
2278
2279 gdb::byte_vector search_buf (search_buf_size);
2280
2281 /* Prime the search buffer. */
2282
2283 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2284 search_buf.data (), start_addr, search_buf_size)
2285 != search_buf_size)
2286 {
2287 warning (_("Unable to access %s bytes of target "
2288 "memory at %s, halting search."),
2289 pulongest (search_buf_size), hex_string (start_addr));
2290 return -1;
2291 }
2292
2293 /* Perform the search.
2294
2295 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2296 When we've scanned N bytes we copy the trailing bytes to the start and
2297 read in another N bytes. */
2298
2299 while (search_space_len >= pattern_len)
2300 {
2301 gdb_byte *found_ptr;
2302 unsigned nr_search_bytes
2303 = std::min (search_space_len, (ULONGEST) search_buf_size);
2304
2305 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2306 pattern, pattern_len);
2307
2308 if (found_ptr != NULL)
2309 {
2310 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2311
2312 *found_addrp = found_addr;
2313 return 1;
2314 }
2315
2316 /* Not found in this chunk, skip to next chunk. */
2317
2318 /* Don't let search_space_len wrap here, it's unsigned. */
2319 if (search_space_len >= chunk_size)
2320 search_space_len -= chunk_size;
2321 else
2322 search_space_len = 0;
2323
2324 if (search_space_len >= pattern_len)
2325 {
2326 unsigned keep_len = search_buf_size - chunk_size;
2327 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2328 int nr_to_read;
2329
2330 /* Copy the trailing part of the previous iteration to the front
2331 of the buffer for the next iteration. */
2332 gdb_assert (keep_len == pattern_len - 1);
2333 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2334
2335 nr_to_read = std::min (search_space_len - keep_len,
2336 (ULONGEST) chunk_size);
2337
2338 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2339 &search_buf[keep_len], read_addr,
2340 nr_to_read) != nr_to_read)
2341 {
2342 warning (_("Unable to access %s bytes of target "
2343 "memory at %s, halting search."),
2344 plongest (nr_to_read),
2345 hex_string (read_addr));
2346 return -1;
2347 }
2348
2349 start_addr += chunk_size;
2350 }
2351 }
2352
2353 /* Not found. */
2354
2355 return 0;
2356}
2357
2358/* Default implementation of memory-searching. */
2359
2360static int
2361default_search_memory (struct target_ops *self,
2362 CORE_ADDR start_addr, ULONGEST search_space_len,
2363 const gdb_byte *pattern, ULONGEST pattern_len,
2364 CORE_ADDR *found_addrp)
2365{
2366 /* Start over from the top of the target stack. */
2367 return simple_search_memory (current_top_target (),
2368 start_addr, search_space_len,
2369 pattern, pattern_len, found_addrp);
2370}
2371
2372/* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2373 sequence of bytes in PATTERN with length PATTERN_LEN.
2374
2375 The result is 1 if found, 0 if not found, and -1 if there was an error
2376 requiring halting of the search (e.g. memory read error).
2377 If the pattern is found the address is recorded in FOUND_ADDRP. */
2378
2379int
2380target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2381 const gdb_byte *pattern, ULONGEST pattern_len,
2382 CORE_ADDR *found_addrp)
2383{
2384 return current_top_target ()->search_memory (start_addr, search_space_len,
2385 pattern, pattern_len, found_addrp);
2386}
2387
2388/* Look through the currently pushed targets. If none of them will
2389 be able to restart the currently running process, issue an error
2390 message. */
2391
2392void
2393target_require_runnable (void)
2394{
2395 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2396 {
2397 /* If this target knows how to create a new program, then
2398 assume we will still be able to after killing the current
2399 one. Either killing and mourning will not pop T, or else
2400 find_default_run_target will find it again. */
2401 if (t->can_create_inferior ())
2402 return;
2403
2404 /* Do not worry about targets at certain strata that can not
2405 create inferiors. Assume they will be pushed again if
2406 necessary, and continue to the process_stratum. */
2407 if (t->to_stratum > process_stratum)
2408 continue;
2409
2410 error (_("The \"%s\" target does not support \"run\". "
2411 "Try \"help target\" or \"continue\"."),
2412 t->shortname ());
2413 }
2414
2415 /* This function is only called if the target is running. In that
2416 case there should have been a process_stratum target and it
2417 should either know how to create inferiors, or not... */
2418 internal_error (__FILE__, __LINE__, _("No targets found"));
2419}
2420
2421/* Whether GDB is allowed to fall back to the default run target for
2422 "run", "attach", etc. when no target is connected yet. */
2423static int auto_connect_native_target = 1;
2424
2425static void
2426show_auto_connect_native_target (struct ui_file *file, int from_tty,
2427 struct cmd_list_element *c, const char *value)
2428{
2429 fprintf_filtered (file,
2430 _("Whether GDB may automatically connect to the "
2431 "native target is %s.\n"),
2432 value);
2433}
2434
2435/* A pointer to the target that can respond to "run" or "attach".
2436 Native targets are always singletons and instantiated early at GDB
2437 startup. */
2438static target_ops *the_native_target;
2439
2440/* See target.h. */
2441
2442void
2443set_native_target (target_ops *target)
2444{
2445 if (the_native_target != NULL)
2446 internal_error (__FILE__, __LINE__,
2447 _("native target already set (\"%s\")."),
2448 the_native_target->longname ());
2449
2450 the_native_target = target;
2451}
2452
2453/* See target.h. */
2454
2455target_ops *
2456get_native_target ()
2457{
2458 return the_native_target;
2459}
2460
2461/* Look through the list of possible targets for a target that can
2462 execute a run or attach command without any other data. This is
2463 used to locate the default process stratum.
2464
2465 If DO_MESG is not NULL, the result is always valid (error() is
2466 called for errors); else, return NULL on error. */
2467
2468static struct target_ops *
2469find_default_run_target (const char *do_mesg)
2470{
2471 if (auto_connect_native_target && the_native_target != NULL)
2472 return the_native_target;
2473
2474 if (do_mesg != NULL)
2475 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2476 return NULL;
2477}
2478
2479/* See target.h. */
2480
2481struct target_ops *
2482find_attach_target (void)
2483{
2484 /* If a target on the current stack can attach, use it. */
2485 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2486 {
2487 if (t->can_attach ())
2488 return t;
2489 }
2490
2491 /* Otherwise, use the default run target for attaching. */
2492 return find_default_run_target ("attach");
2493}
2494
2495/* See target.h. */
2496
2497struct target_ops *
2498find_run_target (void)
2499{
2500 /* If a target on the current stack can run, use it. */
2501 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2502 {
2503 if (t->can_create_inferior ())
2504 return t;
2505 }
2506
2507 /* Otherwise, use the default run target. */
2508 return find_default_run_target ("run");
2509}
2510
2511bool
2512target_ops::info_proc (const char *args, enum info_proc_what what)
2513{
2514 return false;
2515}
2516
2517/* Implement the "info proc" command. */
2518
2519int
2520target_info_proc (const char *args, enum info_proc_what what)
2521{
2522 struct target_ops *t;
2523
2524 /* If we're already connected to something that can get us OS
2525 related data, use it. Otherwise, try using the native
2526 target. */
2527 t = find_target_at (process_stratum);
2528 if (t == NULL)
2529 t = find_default_run_target (NULL);
2530
2531 for (; t != NULL; t = t->beneath ())
2532 {
2533 if (t->info_proc (args, what))
2534 {
2535 if (targetdebug)
2536 fprintf_unfiltered (gdb_stdlog,
2537 "target_info_proc (\"%s\", %d)\n", args, what);
2538
2539 return 1;
2540 }
2541 }
2542
2543 return 0;
2544}
2545
2546static int
2547find_default_supports_disable_randomization (struct target_ops *self)
2548{
2549 struct target_ops *t;
2550
2551 t = find_default_run_target (NULL);
2552 if (t != NULL)
2553 return t->supports_disable_randomization ();
2554 return 0;
2555}
2556
2557int
2558target_supports_disable_randomization (void)
2559{
2560 return current_top_target ()->supports_disable_randomization ();
2561}
2562
2563/* See target/target.h. */
2564
2565int
2566target_supports_multi_process (void)
2567{
2568 return current_top_target ()->supports_multi_process ();
2569}
2570
2571/* See target.h. */
2572
2573gdb::optional<gdb::char_vector>
2574target_get_osdata (const char *type)
2575{
2576 struct target_ops *t;
2577
2578 /* If we're already connected to something that can get us OS
2579 related data, use it. Otherwise, try using the native
2580 target. */
2581 t = find_target_at (process_stratum);
2582 if (t == NULL)
2583 t = find_default_run_target ("get OS data");
2584
2585 if (!t)
2586 return {};
2587
2588 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2589}
2590
2591static struct address_space *
2592default_thread_address_space (struct target_ops *self, ptid_t ptid)
2593{
2594 struct inferior *inf;
2595
2596 /* Fall-back to the "main" address space of the inferior. */
2597 inf = find_inferior_ptid (ptid);
2598
2599 if (inf == NULL || inf->aspace == NULL)
2600 internal_error (__FILE__, __LINE__,
2601 _("Can't determine the current "
2602 "address space of thread %s\n"),
2603 target_pid_to_str (ptid));
2604
2605 return inf->aspace;
2606}
2607
2608/* Determine the current address space of thread PTID. */
2609
2610struct address_space *
2611target_thread_address_space (ptid_t ptid)
2612{
2613 struct address_space *aspace;
2614
2615 aspace = current_top_target ()->thread_address_space (ptid);
2616 gdb_assert (aspace != NULL);
2617
2618 return aspace;
2619}
2620
2621/* See target.h. */
2622
2623target_ops *
2624target_ops::beneath () const
2625{
2626 return g_target_stack.find_beneath (this);
2627}
2628
2629void
2630target_ops::close ()
2631{
2632}
2633
2634bool
2635target_ops::can_attach ()
2636{
2637 return 0;
2638}
2639
2640void
2641target_ops::attach (const char *, int)
2642{
2643 gdb_assert_not_reached ("target_ops::attach called");
2644}
2645
2646bool
2647target_ops::can_create_inferior ()
2648{
2649 return 0;
2650}
2651
2652void
2653target_ops::create_inferior (const char *, const std::string &,
2654 char **, int)
2655{
2656 gdb_assert_not_reached ("target_ops::create_inferior called");
2657}
2658
2659bool
2660target_ops::can_run ()
2661{
2662 return false;
2663}
2664
2665int
2666target_can_run ()
2667{
2668 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2669 {
2670 if (t->can_run ())
2671 return 1;
2672 }
2673
2674 return 0;
2675}
2676
2677/* Target file operations. */
2678
2679static struct target_ops *
2680default_fileio_target (void)
2681{
2682 struct target_ops *t;
2683
2684 /* If we're already connected to something that can perform
2685 file I/O, use it. Otherwise, try using the native target. */
2686 t = find_target_at (process_stratum);
2687 if (t != NULL)
2688 return t;
2689 return find_default_run_target ("file I/O");
2690}
2691
2692/* File handle for target file operations. */
2693
2694struct fileio_fh_t
2695{
2696 /* The target on which this file is open. NULL if the target is
2697 meanwhile closed while the handle is open. */
2698 target_ops *target;
2699
2700 /* The file descriptor on the target. */
2701 int target_fd;
2702
2703 /* Check whether this fileio_fh_t represents a closed file. */
2704 bool is_closed ()
2705 {
2706 return target_fd < 0;
2707 }
2708};
2709
2710/* Vector of currently open file handles. The value returned by
2711 target_fileio_open and passed as the FD argument to other
2712 target_fileio_* functions is an index into this vector. This
2713 vector's entries are never freed; instead, files are marked as
2714 closed, and the handle becomes available for reuse. */
2715static std::vector<fileio_fh_t> fileio_fhandles;
2716
2717/* Index into fileio_fhandles of the lowest handle that might be
2718 closed. This permits handle reuse without searching the whole
2719 list each time a new file is opened. */
2720static int lowest_closed_fd;
2721
2722/* Invalidate the target associated with open handles that were open
2723 on target TARG, since we're about to close (and maybe destroy) the
2724 target. The handles remain open from the client's perspective, but
2725 trying to do anything with them other than closing them will fail
2726 with EIO. */
2727
2728static void
2729fileio_handles_invalidate_target (target_ops *targ)
2730{
2731 for (fileio_fh_t &fh : fileio_fhandles)
2732 if (fh.target == targ)
2733 fh.target = NULL;
2734}
2735
2736/* Acquire a target fileio file descriptor. */
2737
2738static int
2739acquire_fileio_fd (target_ops *target, int target_fd)
2740{
2741 /* Search for closed handles to reuse. */
2742 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2743 {
2744 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2745
2746 if (fh.is_closed ())
2747 break;
2748 }
2749
2750 /* Push a new handle if no closed handles were found. */
2751 if (lowest_closed_fd == fileio_fhandles.size ())
2752 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2753 else
2754 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2755
2756 /* Should no longer be marked closed. */
2757 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2758
2759 /* Return its index, and start the next lookup at
2760 the next index. */
2761 return lowest_closed_fd++;
2762}
2763
2764/* Release a target fileio file descriptor. */
2765
2766static void
2767release_fileio_fd (int fd, fileio_fh_t *fh)
2768{
2769 fh->target_fd = -1;
2770 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2771}
2772
2773/* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2774
2775static fileio_fh_t *
2776fileio_fd_to_fh (int fd)
2777{
2778 return &fileio_fhandles[fd];
2779}
2780
2781
2782/* Default implementations of file i/o methods. We don't want these
2783 to delegate automatically, because we need to know which target
2784 supported the method, in order to call it directly from within
2785 pread/pwrite, etc. */
2786
2787int
2788target_ops::fileio_open (struct inferior *inf, const char *filename,
2789 int flags, int mode, int warn_if_slow,
2790 int *target_errno)
2791{
2792 *target_errno = FILEIO_ENOSYS;
2793 return -1;
2794}
2795
2796int
2797target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2798 ULONGEST offset, int *target_errno)
2799{
2800 *target_errno = FILEIO_ENOSYS;
2801 return -1;
2802}
2803
2804int
2805target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2806 ULONGEST offset, int *target_errno)
2807{
2808 *target_errno = FILEIO_ENOSYS;
2809 return -1;
2810}
2811
2812int
2813target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2814{
2815 *target_errno = FILEIO_ENOSYS;
2816 return -1;
2817}
2818
2819int
2820target_ops::fileio_close (int fd, int *target_errno)
2821{
2822 *target_errno = FILEIO_ENOSYS;
2823 return -1;
2824}
2825
2826int
2827target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2828 int *target_errno)
2829{
2830 *target_errno = FILEIO_ENOSYS;
2831 return -1;
2832}
2833
2834gdb::optional<std::string>
2835target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2836 int *target_errno)
2837{
2838 *target_errno = FILEIO_ENOSYS;
2839 return {};
2840}
2841
2842/* Helper for target_fileio_open and
2843 target_fileio_open_warn_if_slow. */
2844
2845static int
2846target_fileio_open_1 (struct inferior *inf, const char *filename,
2847 int flags, int mode, int warn_if_slow,
2848 int *target_errno)
2849{
2850 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2851 {
2852 int fd = t->fileio_open (inf, filename, flags, mode,
2853 warn_if_slow, target_errno);
2854
2855 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2856 continue;
2857
2858 if (fd < 0)
2859 fd = -1;
2860 else
2861 fd = acquire_fileio_fd (t, fd);
2862
2863 if (targetdebug)
2864 fprintf_unfiltered (gdb_stdlog,
2865 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2866 " = %d (%d)\n",
2867 inf == NULL ? 0 : inf->num,
2868 filename, flags, mode,
2869 warn_if_slow, fd,
2870 fd != -1 ? 0 : *target_errno);
2871 return fd;
2872 }
2873
2874 *target_errno = FILEIO_ENOSYS;
2875 return -1;
2876}
2877
2878/* See target.h. */
2879
2880int
2881target_fileio_open (struct inferior *inf, const char *filename,
2882 int flags, int mode, int *target_errno)
2883{
2884 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2885 target_errno);
2886}
2887
2888/* See target.h. */
2889
2890int
2891target_fileio_open_warn_if_slow (struct inferior *inf,
2892 const char *filename,
2893 int flags, int mode, int *target_errno)
2894{
2895 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2896 target_errno);
2897}
2898
2899/* See target.h. */
2900
2901int
2902target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2903 ULONGEST offset, int *target_errno)
2904{
2905 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2906 int ret = -1;
2907
2908 if (fh->is_closed ())
2909 *target_errno = EBADF;
2910 else if (fh->target == NULL)
2911 *target_errno = EIO;
2912 else
2913 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2914 len, offset, target_errno);
2915
2916 if (targetdebug)
2917 fprintf_unfiltered (gdb_stdlog,
2918 "target_fileio_pwrite (%d,...,%d,%s) "
2919 "= %d (%d)\n",
2920 fd, len, pulongest (offset),
2921 ret, ret != -1 ? 0 : *target_errno);
2922 return ret;
2923}
2924
2925/* See target.h. */
2926
2927int
2928target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2929 ULONGEST offset, int *target_errno)
2930{
2931 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2932 int ret = -1;
2933
2934 if (fh->is_closed ())
2935 *target_errno = EBADF;
2936 else if (fh->target == NULL)
2937 *target_errno = EIO;
2938 else
2939 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2940 len, offset, target_errno);
2941
2942 if (targetdebug)
2943 fprintf_unfiltered (gdb_stdlog,
2944 "target_fileio_pread (%d,...,%d,%s) "
2945 "= %d (%d)\n",
2946 fd, len, pulongest (offset),
2947 ret, ret != -1 ? 0 : *target_errno);
2948 return ret;
2949}
2950
2951/* See target.h. */
2952
2953int
2954target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2955{
2956 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2957 int ret = -1;
2958
2959 if (fh->is_closed ())
2960 *target_errno = EBADF;
2961 else if (fh->target == NULL)
2962 *target_errno = EIO;
2963 else
2964 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2965
2966 if (targetdebug)
2967 fprintf_unfiltered (gdb_stdlog,
2968 "target_fileio_fstat (%d) = %d (%d)\n",
2969 fd, ret, ret != -1 ? 0 : *target_errno);
2970 return ret;
2971}
2972
2973/* See target.h. */
2974
2975int
2976target_fileio_close (int fd, int *target_errno)
2977{
2978 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2979 int ret = -1;
2980
2981 if (fh->is_closed ())
2982 *target_errno = EBADF;
2983 else
2984 {
2985 if (fh->target != NULL)
2986 ret = fh->target->fileio_close (fh->target_fd,
2987 target_errno);
2988 else
2989 ret = 0;
2990 release_fileio_fd (fd, fh);
2991 }
2992
2993 if (targetdebug)
2994 fprintf_unfiltered (gdb_stdlog,
2995 "target_fileio_close (%d) = %d (%d)\n",
2996 fd, ret, ret != -1 ? 0 : *target_errno);
2997 return ret;
2998}
2999
3000/* See target.h. */
3001
3002int
3003target_fileio_unlink (struct inferior *inf, const char *filename,
3004 int *target_errno)
3005{
3006 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
3007 {
3008 int ret = t->fileio_unlink (inf, filename, target_errno);
3009
3010 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
3011 continue;
3012
3013 if (targetdebug)
3014 fprintf_unfiltered (gdb_stdlog,
3015 "target_fileio_unlink (%d,%s)"
3016 " = %d (%d)\n",
3017 inf == NULL ? 0 : inf->num, filename,
3018 ret, ret != -1 ? 0 : *target_errno);
3019 return ret;
3020 }
3021
3022 *target_errno = FILEIO_ENOSYS;
3023 return -1;
3024}
3025
3026/* See target.h. */
3027
3028gdb::optional<std::string>
3029target_fileio_readlink (struct inferior *inf, const char *filename,
3030 int *target_errno)
3031{
3032 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
3033 {
3034 gdb::optional<std::string> ret
3035 = t->fileio_readlink (inf, filename, target_errno);
3036
3037 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
3038 continue;
3039
3040 if (targetdebug)
3041 fprintf_unfiltered (gdb_stdlog,
3042 "target_fileio_readlink (%d,%s)"
3043 " = %s (%d)\n",
3044 inf == NULL ? 0 : inf->num,
3045 filename, ret ? ret->c_str () : "(nil)",
3046 ret ? 0 : *target_errno);
3047 return ret;
3048 }
3049
3050 *target_errno = FILEIO_ENOSYS;
3051 return {};
3052}
3053
3054/* Like scoped_fd, but specific to target fileio. */
3055
3056class scoped_target_fd
3057{
3058public:
3059 explicit scoped_target_fd (int fd) noexcept
3060 : m_fd (fd)
3061 {
3062 }
3063
3064 ~scoped_target_fd ()
3065 {
3066 if (m_fd >= 0)
3067 {
3068 int target_errno;
3069
3070 target_fileio_close (m_fd, &target_errno);
3071 }
3072 }
3073
3074 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
3075
3076 int get () const noexcept
3077 {
3078 return m_fd;
3079 }
3080
3081private:
3082 int m_fd;
3083};
3084
3085/* Read target file FILENAME, in the filesystem as seen by INF. If
3086 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3087 remote targets, the remote stub). Store the result in *BUF_P and
3088 return the size of the transferred data. PADDING additional bytes
3089 are available in *BUF_P. This is a helper function for
3090 target_fileio_read_alloc; see the declaration of that function for
3091 more information. */
3092
3093static LONGEST
3094target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3095 gdb_byte **buf_p, int padding)
3096{
3097 size_t buf_alloc, buf_pos;
3098 gdb_byte *buf;
3099 LONGEST n;
3100 int target_errno;
3101
3102 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3103 0700, &target_errno));
3104 if (fd.get () == -1)
3105 return -1;
3106
3107 /* Start by reading up to 4K at a time. The target will throttle
3108 this number down if necessary. */
3109 buf_alloc = 4096;
3110 buf = (gdb_byte *) xmalloc (buf_alloc);
3111 buf_pos = 0;
3112 while (1)
3113 {
3114 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3115 buf_alloc - buf_pos - padding, buf_pos,
3116 &target_errno);
3117 if (n < 0)
3118 {
3119 /* An error occurred. */
3120 xfree (buf);
3121 return -1;
3122 }
3123 else if (n == 0)
3124 {
3125 /* Read all there was. */
3126 if (buf_pos == 0)
3127 xfree (buf);
3128 else
3129 *buf_p = buf;
3130 return buf_pos;
3131 }
3132
3133 buf_pos += n;
3134
3135 /* If the buffer is filling up, expand it. */
3136 if (buf_alloc < buf_pos * 2)
3137 {
3138 buf_alloc *= 2;
3139 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3140 }
3141
3142 QUIT;
3143 }
3144}
3145
3146/* See target.h. */
3147
3148LONGEST
3149target_fileio_read_alloc (struct inferior *inf, const char *filename,
3150 gdb_byte **buf_p)
3151{
3152 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3153}
3154
3155/* See target.h. */
3156
3157gdb::unique_xmalloc_ptr<char>
3158target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3159{
3160 gdb_byte *buffer;
3161 char *bufstr;
3162 LONGEST i, transferred;
3163
3164 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3165 bufstr = (char *) buffer;
3166
3167 if (transferred < 0)
3168 return gdb::unique_xmalloc_ptr<char> (nullptr);
3169
3170 if (transferred == 0)
3171 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3172
3173 bufstr[transferred] = 0;
3174
3175 /* Check for embedded NUL bytes; but allow trailing NULs. */
3176 for (i = strlen (bufstr); i < transferred; i++)
3177 if (bufstr[i] != 0)
3178 {
3179 warning (_("target file %s "
3180 "contained unexpected null characters"),
3181 filename);
3182 break;
3183 }
3184
3185 return gdb::unique_xmalloc_ptr<char> (bufstr);
3186}
3187
3188
3189static int
3190default_region_ok_for_hw_watchpoint (struct target_ops *self,
3191 CORE_ADDR addr, int len)
3192{
3193 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3194}
3195
3196static int
3197default_watchpoint_addr_within_range (struct target_ops *target,
3198 CORE_ADDR addr,
3199 CORE_ADDR start, int length)
3200{
3201 return addr >= start && addr < start + length;
3202}
3203
3204static struct gdbarch *
3205default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3206{
3207 inferior *inf = find_inferior_ptid (ptid);
3208 gdb_assert (inf != NULL);
3209 return inf->gdbarch;
3210}
3211
3212/* See target.h. */
3213
3214target_ops *
3215target_stack::find_beneath (const target_ops *t) const
3216{
3217 /* Look for a non-empty slot at stratum levels beneath T's. */
3218 for (int stratum = t->to_stratum - 1; stratum >= 0; --stratum)
3219 if (m_stack[stratum] != NULL)
3220 return m_stack[stratum];
3221
3222 return NULL;
3223}
3224
3225/* See target.h. */
3226
3227struct target_ops *
3228find_target_at (enum strata stratum)
3229{
3230 return g_target_stack.at (stratum);
3231}
3232
3233\f
3234
3235/* See target.h */
3236
3237void
3238target_announce_detach (int from_tty)
3239{
3240 pid_t pid;
3241 const char *exec_file;
3242
3243 if (!from_tty)
3244 return;
3245
3246 exec_file = get_exec_file (0);
3247 if (exec_file == NULL)
3248 exec_file = "";
3249
3250 pid = inferior_ptid.pid ();
3251 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3252 target_pid_to_str (ptid_t (pid)));
3253 gdb_flush (gdb_stdout);
3254}
3255
3256/* The inferior process has died. Long live the inferior! */
3257
3258void
3259generic_mourn_inferior (void)
3260{
3261 inferior *inf = current_inferior ();
3262
3263 inferior_ptid = null_ptid;
3264
3265 /* Mark breakpoints uninserted in case something tries to delete a
3266 breakpoint while we delete the inferior's threads (which would
3267 fail, since the inferior is long gone). */
3268 mark_breakpoints_out ();
3269
3270 if (inf->pid != 0)
3271 exit_inferior (inf);
3272
3273 /* Note this wipes step-resume breakpoints, so needs to be done
3274 after exit_inferior, which ends up referencing the step-resume
3275 breakpoints through clear_thread_inferior_resources. */
3276 breakpoint_init_inferior (inf_exited);
3277
3278 registers_changed ();
3279
3280 reopen_exec_file ();
3281 reinit_frame_cache ();
3282
3283 if (deprecated_detach_hook)
3284 deprecated_detach_hook ();
3285}
3286\f
3287/* Convert a normal process ID to a string. Returns the string in a
3288 static buffer. */
3289
3290const char *
3291normal_pid_to_str (ptid_t ptid)
3292{
3293 static char buf[32];
3294
3295 xsnprintf (buf, sizeof buf, "process %d", ptid.pid ());
3296 return buf;
3297}
3298
3299static const char *
3300default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3301{
3302 return normal_pid_to_str (ptid);
3303}
3304
3305/* Error-catcher for target_find_memory_regions. */
3306static int
3307dummy_find_memory_regions (struct target_ops *self,
3308 find_memory_region_ftype ignore1, void *ignore2)
3309{
3310 error (_("Command not implemented for this target."));
3311 return 0;
3312}
3313
3314/* Error-catcher for target_make_corefile_notes. */
3315static char *
3316dummy_make_corefile_notes (struct target_ops *self,
3317 bfd *ignore1, int *ignore2)
3318{
3319 error (_("Command not implemented for this target."));
3320 return NULL;
3321}
3322
3323#include "target-delegates.c"
3324
3325
3326static const target_info dummy_target_info = {
3327 "None",
3328 N_("None"),
3329 ""
3330};
3331
3332dummy_target::dummy_target ()
3333{
3334 to_stratum = dummy_stratum;
3335}
3336
3337debug_target::debug_target ()
3338{
3339 to_stratum = debug_stratum;
3340}
3341
3342const target_info &
3343dummy_target::info () const
3344{
3345 return dummy_target_info;
3346}
3347
3348const target_info &
3349debug_target::info () const
3350{
3351 return beneath ()->info ();
3352}
3353
3354\f
3355
3356void
3357target_close (struct target_ops *targ)
3358{
3359 gdb_assert (!target_is_pushed (targ));
3360
3361 fileio_handles_invalidate_target (targ);
3362
3363 targ->close ();
3364
3365 if (targetdebug)
3366 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3367}
3368
3369int
3370target_thread_alive (ptid_t ptid)
3371{
3372 return current_top_target ()->thread_alive (ptid);
3373}
3374
3375void
3376target_update_thread_list (void)
3377{
3378 current_top_target ()->update_thread_list ();
3379}
3380
3381void
3382target_stop (ptid_t ptid)
3383{
3384 if (!may_stop)
3385 {
3386 warning (_("May not interrupt or stop the target, ignoring attempt"));
3387 return;
3388 }
3389
3390 current_top_target ()->stop (ptid);
3391}
3392
3393void
3394target_interrupt ()
3395{
3396 if (!may_stop)
3397 {
3398 warning (_("May not interrupt or stop the target, ignoring attempt"));
3399 return;
3400 }
3401
3402 current_top_target ()->interrupt ();
3403}
3404
3405/* See target.h. */
3406
3407void
3408target_pass_ctrlc (void)
3409{
3410 current_top_target ()->pass_ctrlc ();
3411}
3412
3413/* See target.h. */
3414
3415void
3416default_target_pass_ctrlc (struct target_ops *ops)
3417{
3418 target_interrupt ();
3419}
3420
3421/* See target/target.h. */
3422
3423void
3424target_stop_and_wait (ptid_t ptid)
3425{
3426 struct target_waitstatus status;
3427 int was_non_stop = non_stop;
3428
3429 non_stop = 1;
3430 target_stop (ptid);
3431
3432 memset (&status, 0, sizeof (status));
3433 target_wait (ptid, &status, 0);
3434
3435 non_stop = was_non_stop;
3436}
3437
3438/* See target/target.h. */
3439
3440void
3441target_continue_no_signal (ptid_t ptid)
3442{
3443 target_resume (ptid, 0, GDB_SIGNAL_0);
3444}
3445
3446/* See target/target.h. */
3447
3448void
3449target_continue (ptid_t ptid, enum gdb_signal signal)
3450{
3451 target_resume (ptid, 0, signal);
3452}
3453
3454/* Concatenate ELEM to LIST, a comma-separated list. */
3455
3456static void
3457str_comma_list_concat_elem (std::string *list, const char *elem)
3458{
3459 if (!list->empty ())
3460 list->append (", ");
3461
3462 list->append (elem);
3463}
3464
3465/* Helper for target_options_to_string. If OPT is present in
3466 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3467 OPT is removed from TARGET_OPTIONS. */
3468
3469static void
3470do_option (int *target_options, std::string *ret,
3471 int opt, const char *opt_str)
3472{
3473 if ((*target_options & opt) != 0)
3474 {
3475 str_comma_list_concat_elem (ret, opt_str);
3476 *target_options &= ~opt;
3477 }
3478}
3479
3480/* See target.h. */
3481
3482std::string
3483target_options_to_string (int target_options)
3484{
3485 std::string ret;
3486
3487#define DO_TARG_OPTION(OPT) \
3488 do_option (&target_options, &ret, OPT, #OPT)
3489
3490 DO_TARG_OPTION (TARGET_WNOHANG);
3491
3492 if (target_options != 0)
3493 str_comma_list_concat_elem (&ret, "unknown???");
3494
3495 return ret;
3496}
3497
3498void
3499target_fetch_registers (struct regcache *regcache, int regno)
3500{
3501 current_top_target ()->fetch_registers (regcache, regno);
3502 if (targetdebug)
3503 regcache->debug_print_register ("target_fetch_registers", regno);
3504}
3505
3506void
3507target_store_registers (struct regcache *regcache, int regno)
3508{
3509 if (!may_write_registers)
3510 error (_("Writing to registers is not allowed (regno %d)"), regno);
3511
3512 current_top_target ()->store_registers (regcache, regno);
3513 if (targetdebug)
3514 {
3515 regcache->debug_print_register ("target_store_registers", regno);
3516 }
3517}
3518
3519int
3520target_core_of_thread (ptid_t ptid)
3521{
3522 return current_top_target ()->core_of_thread (ptid);
3523}
3524
3525int
3526simple_verify_memory (struct target_ops *ops,
3527 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3528{
3529 LONGEST total_xfered = 0;
3530
3531 while (total_xfered < size)
3532 {
3533 ULONGEST xfered_len;
3534 enum target_xfer_status status;
3535 gdb_byte buf[1024];
3536 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3537
3538 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3539 buf, NULL, lma + total_xfered, howmuch,
3540 &xfered_len);
3541 if (status == TARGET_XFER_OK
3542 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3543 {
3544 total_xfered += xfered_len;
3545 QUIT;
3546 }
3547 else
3548 return 0;
3549 }
3550 return 1;
3551}
3552
3553/* Default implementation of memory verification. */
3554
3555static int
3556default_verify_memory (struct target_ops *self,
3557 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3558{
3559 /* Start over from the top of the target stack. */
3560 return simple_verify_memory (current_top_target (),
3561 data, memaddr, size);
3562}
3563
3564int
3565target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3566{
3567 return current_top_target ()->verify_memory (data, memaddr, size);
3568}
3569
3570/* The documentation for this function is in its prototype declaration in
3571 target.h. */
3572
3573int
3574target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3575 enum target_hw_bp_type rw)
3576{
3577 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3578}
3579
3580/* The documentation for this function is in its prototype declaration in
3581 target.h. */
3582
3583int
3584target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3585 enum target_hw_bp_type rw)
3586{
3587 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3588}
3589
3590/* The documentation for this function is in its prototype declaration
3591 in target.h. */
3592
3593int
3594target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3595{
3596 return current_top_target ()->masked_watch_num_registers (addr, mask);
3597}
3598
3599/* The documentation for this function is in its prototype declaration
3600 in target.h. */
3601
3602int
3603target_ranged_break_num_registers (void)
3604{
3605 return current_top_target ()->ranged_break_num_registers ();
3606}
3607
3608/* See target.h. */
3609
3610struct btrace_target_info *
3611target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3612{
3613 return current_top_target ()->enable_btrace (ptid, conf);
3614}
3615
3616/* See target.h. */
3617
3618void
3619target_disable_btrace (struct btrace_target_info *btinfo)
3620{
3621 current_top_target ()->disable_btrace (btinfo);
3622}
3623
3624/* See target.h. */
3625
3626void
3627target_teardown_btrace (struct btrace_target_info *btinfo)
3628{
3629 current_top_target ()->teardown_btrace (btinfo);
3630}
3631
3632/* See target.h. */
3633
3634enum btrace_error
3635target_read_btrace (struct btrace_data *btrace,
3636 struct btrace_target_info *btinfo,
3637 enum btrace_read_type type)
3638{
3639 return current_top_target ()->read_btrace (btrace, btinfo, type);
3640}
3641
3642/* See target.h. */
3643
3644const struct btrace_config *
3645target_btrace_conf (const struct btrace_target_info *btinfo)
3646{
3647 return current_top_target ()->btrace_conf (btinfo);
3648}
3649
3650/* See target.h. */
3651
3652void
3653target_stop_recording (void)
3654{
3655 current_top_target ()->stop_recording ();
3656}
3657
3658/* See target.h. */
3659
3660void
3661target_save_record (const char *filename)
3662{
3663 current_top_target ()->save_record (filename);
3664}
3665
3666/* See target.h. */
3667
3668int
3669target_supports_delete_record ()
3670{
3671 return current_top_target ()->supports_delete_record ();
3672}
3673
3674/* See target.h. */
3675
3676void
3677target_delete_record (void)
3678{
3679 current_top_target ()->delete_record ();
3680}
3681
3682/* See target.h. */
3683
3684enum record_method
3685target_record_method (ptid_t ptid)
3686{
3687 return current_top_target ()->record_method (ptid);
3688}
3689
3690/* See target.h. */
3691
3692int
3693target_record_is_replaying (ptid_t ptid)
3694{
3695 return current_top_target ()->record_is_replaying (ptid);
3696}
3697
3698/* See target.h. */
3699
3700int
3701target_record_will_replay (ptid_t ptid, int dir)
3702{
3703 return current_top_target ()->record_will_replay (ptid, dir);
3704}
3705
3706/* See target.h. */
3707
3708void
3709target_record_stop_replaying (void)
3710{
3711 current_top_target ()->record_stop_replaying ();
3712}
3713
3714/* See target.h. */
3715
3716void
3717target_goto_record_begin (void)
3718{
3719 current_top_target ()->goto_record_begin ();
3720}
3721
3722/* See target.h. */
3723
3724void
3725target_goto_record_end (void)
3726{
3727 current_top_target ()->goto_record_end ();
3728}
3729
3730/* See target.h. */
3731
3732void
3733target_goto_record (ULONGEST insn)
3734{
3735 current_top_target ()->goto_record (insn);
3736}
3737
3738/* See target.h. */
3739
3740void
3741target_insn_history (int size, gdb_disassembly_flags flags)
3742{
3743 current_top_target ()->insn_history (size, flags);
3744}
3745
3746/* See target.h. */
3747
3748void
3749target_insn_history_from (ULONGEST from, int size,
3750 gdb_disassembly_flags flags)
3751{
3752 current_top_target ()->insn_history_from (from, size, flags);
3753}
3754
3755/* See target.h. */
3756
3757void
3758target_insn_history_range (ULONGEST begin, ULONGEST end,
3759 gdb_disassembly_flags flags)
3760{
3761 current_top_target ()->insn_history_range (begin, end, flags);
3762}
3763
3764/* See target.h. */
3765
3766void
3767target_call_history (int size, record_print_flags flags)
3768{
3769 current_top_target ()->call_history (size, flags);
3770}
3771
3772/* See target.h. */
3773
3774void
3775target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3776{
3777 current_top_target ()->call_history_from (begin, size, flags);
3778}
3779
3780/* See target.h. */
3781
3782void
3783target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3784{
3785 current_top_target ()->call_history_range (begin, end, flags);
3786}
3787
3788/* See target.h. */
3789
3790const struct frame_unwind *
3791target_get_unwinder (void)
3792{
3793 return current_top_target ()->get_unwinder ();
3794}
3795
3796/* See target.h. */
3797
3798const struct frame_unwind *
3799target_get_tailcall_unwinder (void)
3800{
3801 return current_top_target ()->get_tailcall_unwinder ();
3802}
3803
3804/* See target.h. */
3805
3806void
3807target_prepare_to_generate_core (void)
3808{
3809 current_top_target ()->prepare_to_generate_core ();
3810}
3811
3812/* See target.h. */
3813
3814void
3815target_done_generating_core (void)
3816{
3817 current_top_target ()->done_generating_core ();
3818}
3819
3820\f
3821
3822static char targ_desc[] =
3823"Names of targets and files being debugged.\nShows the entire \
3824stack of targets currently in use (including the exec-file,\n\
3825core-file, and process, if any), as well as the symbol file name.";
3826
3827static void
3828default_rcmd (struct target_ops *self, const char *command,
3829 struct ui_file *output)
3830{
3831 error (_("\"monitor\" command not supported by this target."));
3832}
3833
3834static void
3835do_monitor_command (const char *cmd, int from_tty)
3836{
3837 target_rcmd (cmd, gdb_stdtarg);
3838}
3839
3840/* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3841 ignored. */
3842
3843void
3844flash_erase_command (const char *cmd, int from_tty)
3845{
3846 /* Used to communicate termination of flash operations to the target. */
3847 bool found_flash_region = false;
3848 struct gdbarch *gdbarch = target_gdbarch ();
3849
3850 std::vector<mem_region> mem_regions = target_memory_map ();
3851
3852 /* Iterate over all memory regions. */
3853 for (const mem_region &m : mem_regions)
3854 {
3855 /* Is this a flash memory region? */
3856 if (m.attrib.mode == MEM_FLASH)
3857 {
3858 found_flash_region = true;
3859 target_flash_erase (m.lo, m.hi - m.lo);
3860
3861 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3862
3863 current_uiout->message (_("Erasing flash memory region at address "));
3864 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3865 current_uiout->message (", size = ");
3866 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3867 current_uiout->message ("\n");
3868 }
3869 }
3870
3871 /* Did we do any flash operations? If so, we need to finalize them. */
3872 if (found_flash_region)
3873 target_flash_done ();
3874 else
3875 current_uiout->message (_("No flash memory regions found.\n"));
3876}
3877
3878/* Print the name of each layers of our target stack. */
3879
3880static void
3881maintenance_print_target_stack (const char *cmd, int from_tty)
3882{
3883 printf_filtered (_("The current target stack is:\n"));
3884
3885 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3886 {
3887 if (t->to_stratum == debug_stratum)
3888 continue;
3889 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3890 }
3891}
3892
3893/* See target.h. */
3894
3895void
3896target_async (int enable)
3897{
3898 infrun_async (enable);
3899 current_top_target ()->async (enable);
3900}
3901
3902/* See target.h. */
3903
3904void
3905target_thread_events (int enable)
3906{
3907 current_top_target ()->thread_events (enable);
3908}
3909
3910/* Controls if targets can report that they can/are async. This is
3911 just for maintainers to use when debugging gdb. */
3912int target_async_permitted = 1;
3913
3914/* The set command writes to this variable. If the inferior is
3915 executing, target_async_permitted is *not* updated. */
3916static int target_async_permitted_1 = 1;
3917
3918static void
3919maint_set_target_async_command (const char *args, int from_tty,
3920 struct cmd_list_element *c)
3921{
3922 if (have_live_inferiors ())
3923 {
3924 target_async_permitted_1 = target_async_permitted;
3925 error (_("Cannot change this setting while the inferior is running."));
3926 }
3927
3928 target_async_permitted = target_async_permitted_1;
3929}
3930
3931static void
3932maint_show_target_async_command (struct ui_file *file, int from_tty,
3933 struct cmd_list_element *c,
3934 const char *value)
3935{
3936 fprintf_filtered (file,
3937 _("Controlling the inferior in "
3938 "asynchronous mode is %s.\n"), value);
3939}
3940
3941/* Return true if the target operates in non-stop mode even with "set
3942 non-stop off". */
3943
3944static int
3945target_always_non_stop_p (void)
3946{
3947 return current_top_target ()->always_non_stop_p ();
3948}
3949
3950/* See target.h. */
3951
3952int
3953target_is_non_stop_p (void)
3954{
3955 return (non_stop
3956 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3957 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3958 && target_always_non_stop_p ()));
3959}
3960
3961/* Controls if targets can report that they always run in non-stop
3962 mode. This is just for maintainers to use when debugging gdb. */
3963enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3964
3965/* The set command writes to this variable. If the inferior is
3966 executing, target_non_stop_enabled is *not* updated. */
3967static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3968
3969/* Implementation of "maint set target-non-stop". */
3970
3971static void
3972maint_set_target_non_stop_command (const char *args, int from_tty,
3973 struct cmd_list_element *c)
3974{
3975 if (have_live_inferiors ())
3976 {
3977 target_non_stop_enabled_1 = target_non_stop_enabled;
3978 error (_("Cannot change this setting while the inferior is running."));
3979 }
3980
3981 target_non_stop_enabled = target_non_stop_enabled_1;
3982}
3983
3984/* Implementation of "maint show target-non-stop". */
3985
3986static void
3987maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3988 struct cmd_list_element *c,
3989 const char *value)
3990{
3991 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3992 fprintf_filtered (file,
3993 _("Whether the target is always in non-stop mode "
3994 "is %s (currently %s).\n"), value,
3995 target_always_non_stop_p () ? "on" : "off");
3996 else
3997 fprintf_filtered (file,
3998 _("Whether the target is always in non-stop mode "
3999 "is %s.\n"), value);
4000}
4001
4002/* Temporary copies of permission settings. */
4003
4004static int may_write_registers_1 = 1;
4005static int may_write_memory_1 = 1;
4006static int may_insert_breakpoints_1 = 1;
4007static int may_insert_tracepoints_1 = 1;
4008static int may_insert_fast_tracepoints_1 = 1;
4009static int may_stop_1 = 1;
4010
4011/* Make the user-set values match the real values again. */
4012
4013void
4014update_target_permissions (void)
4015{
4016 may_write_registers_1 = may_write_registers;
4017 may_write_memory_1 = may_write_memory;
4018 may_insert_breakpoints_1 = may_insert_breakpoints;
4019 may_insert_tracepoints_1 = may_insert_tracepoints;
4020 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4021 may_stop_1 = may_stop;
4022}
4023
4024/* The one function handles (most of) the permission flags in the same
4025 way. */
4026
4027static void
4028set_target_permissions (const char *args, int from_tty,
4029 struct cmd_list_element *c)
4030{
4031 if (target_has_execution)
4032 {
4033 update_target_permissions ();
4034 error (_("Cannot change this setting while the inferior is running."));
4035 }
4036
4037 /* Make the real values match the user-changed values. */
4038 may_write_registers = may_write_registers_1;
4039 may_insert_breakpoints = may_insert_breakpoints_1;
4040 may_insert_tracepoints = may_insert_tracepoints_1;
4041 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4042 may_stop = may_stop_1;
4043 update_observer_mode ();
4044}
4045
4046/* Set memory write permission independently of observer mode. */
4047
4048static void
4049set_write_memory_permission (const char *args, int from_tty,
4050 struct cmd_list_element *c)
4051{
4052 /* Make the real values match the user-changed values. */
4053 may_write_memory = may_write_memory_1;
4054 update_observer_mode ();
4055}
4056
4057void
4058initialize_targets (void)
4059{
4060 the_dummy_target = new dummy_target ();
4061 push_target (the_dummy_target);
4062
4063 the_debug_target = new debug_target ();
4064
4065 add_info ("target", info_target_command, targ_desc);
4066 add_info ("files", info_target_command, targ_desc);
4067
4068 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4069Set target debugging."), _("\
4070Show target debugging."), _("\
4071When non-zero, target debugging is enabled. Higher numbers are more\n\
4072verbose."),
4073 set_targetdebug,
4074 show_targetdebug,
4075 &setdebuglist, &showdebuglist);
4076
4077 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4078 &trust_readonly, _("\
4079Set mode for reading from readonly sections."), _("\
4080Show mode for reading from readonly sections."), _("\
4081When this mode is on, memory reads from readonly sections (such as .text)\n\
4082will be read from the object file instead of from the target. This will\n\
4083result in significant performance improvement for remote targets."),
4084 NULL,
4085 show_trust_readonly,
4086 &setlist, &showlist);
4087
4088 add_com ("monitor", class_obscure, do_monitor_command,
4089 _("Send a command to the remote monitor (remote targets only)."));
4090
4091 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4092 _("Print the name of each layer of the internal target stack."),
4093 &maintenanceprintlist);
4094
4095 add_setshow_boolean_cmd ("target-async", no_class,
4096 &target_async_permitted_1, _("\
4097Set whether gdb controls the inferior in asynchronous mode."), _("\
4098Show whether gdb controls the inferior in asynchronous mode."), _("\
4099Tells gdb whether to control the inferior in asynchronous mode."),
4100 maint_set_target_async_command,
4101 maint_show_target_async_command,
4102 &maintenance_set_cmdlist,
4103 &maintenance_show_cmdlist);
4104
4105 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4106 &target_non_stop_enabled_1, _("\
4107Set whether gdb always controls the inferior in non-stop mode."), _("\
4108Show whether gdb always controls the inferior in non-stop mode."), _("\
4109Tells gdb whether to control the inferior in non-stop mode."),
4110 maint_set_target_non_stop_command,
4111 maint_show_target_non_stop_command,
4112 &maintenance_set_cmdlist,
4113 &maintenance_show_cmdlist);
4114
4115 add_setshow_boolean_cmd ("may-write-registers", class_support,
4116 &may_write_registers_1, _("\
4117Set permission to write into registers."), _("\
4118Show permission to write into registers."), _("\
4119When this permission is on, GDB may write into the target's registers.\n\
4120Otherwise, any sort of write attempt will result in an error."),
4121 set_target_permissions, NULL,
4122 &setlist, &showlist);
4123
4124 add_setshow_boolean_cmd ("may-write-memory", class_support,
4125 &may_write_memory_1, _("\
4126Set permission to write into target memory."), _("\
4127Show permission to write into target memory."), _("\
4128When this permission is on, GDB may write into the target's memory.\n\
4129Otherwise, any sort of write attempt will result in an error."),
4130 set_write_memory_permission, NULL,
4131 &setlist, &showlist);
4132
4133 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4134 &may_insert_breakpoints_1, _("\
4135Set permission to insert breakpoints in the target."), _("\
4136Show permission to insert breakpoints in the target."), _("\
4137When this permission is on, GDB may insert breakpoints in the program.\n\
4138Otherwise, any sort of insertion attempt will result in an error."),
4139 set_target_permissions, NULL,
4140 &setlist, &showlist);
4141
4142 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4143 &may_insert_tracepoints_1, _("\
4144Set permission to insert tracepoints in the target."), _("\
4145Show permission to insert tracepoints in the target."), _("\
4146When this permission is on, GDB may insert tracepoints in the program.\n\
4147Otherwise, any sort of insertion attempt will result in an error."),
4148 set_target_permissions, NULL,
4149 &setlist, &showlist);
4150
4151 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4152 &may_insert_fast_tracepoints_1, _("\
4153Set permission to insert fast tracepoints in the target."), _("\
4154Show permission to insert fast tracepoints in the target."), _("\
4155When this permission is on, GDB may insert fast tracepoints.\n\
4156Otherwise, any sort of insertion attempt will result in an error."),
4157 set_target_permissions, NULL,
4158 &setlist, &showlist);
4159
4160 add_setshow_boolean_cmd ("may-interrupt", class_support,
4161 &may_stop_1, _("\
4162Set permission to interrupt or signal the target."), _("\
4163Show permission to interrupt or signal the target."), _("\
4164When this permission is on, GDB may interrupt/stop the target's execution.\n\
4165Otherwise, any attempt to interrupt or stop will be ignored."),
4166 set_target_permissions, NULL,
4167 &setlist, &showlist);
4168
4169 add_com ("flash-erase", no_class, flash_erase_command,
4170 _("Erase all flash memory regions."));
4171
4172 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4173 &auto_connect_native_target, _("\
4174Set whether GDB may automatically connect to the native target."), _("\
4175Show whether GDB may automatically connect to the native target."), _("\
4176When on, and GDB is not connected to a target yet, GDB\n\
4177attempts \"run\" and other commands with the native target."),
4178 NULL, show_auto_connect_native_target,
4179 &setlist, &showlist);
4180}
This page took 0.062442 seconds and 4 git commands to generate.