clean up some target delegation cases
[deliverable/binutils-gdb.git] / gdb / target.c
... / ...
CommitLineData
1/* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#include "defs.h"
23#include <errno.h>
24#include <string.h>
25#include "target.h"
26#include "target-dcache.h"
27#include "gdbcmd.h"
28#include "symtab.h"
29#include "inferior.h"
30#include "infrun.h"
31#include "bfd.h"
32#include "symfile.h"
33#include "objfiles.h"
34#include "dcache.h"
35#include <signal.h>
36#include "regcache.h"
37#include "gdb_assert.h"
38#include "gdbcore.h"
39#include "exceptions.h"
40#include "target-descriptions.h"
41#include "gdbthread.h"
42#include "solib.h"
43#include "exec.h"
44#include "inline-frame.h"
45#include "tracepoint.h"
46#include "gdb/fileio.h"
47#include "agent.h"
48#include "auxv.h"
49
50static void target_info (char *, int);
51
52static void generic_tls_error (void) ATTRIBUTE_NORETURN;
53
54static void default_terminal_info (struct target_ops *, const char *, int);
55
56static int default_watchpoint_addr_within_range (struct target_ops *,
57 CORE_ADDR, CORE_ADDR, int);
58
59static int default_region_ok_for_hw_watchpoint (struct target_ops *,
60 CORE_ADDR, int);
61
62static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
63
64static ptid_t default_get_ada_task_ptid (struct target_ops *self,
65 long lwp, long tid);
66
67static int default_follow_fork (struct target_ops *self, int follow_child,
68 int detach_fork);
69
70static void default_mourn_inferior (struct target_ops *self);
71
72static int default_search_memory (struct target_ops *ops,
73 CORE_ADDR start_addr,
74 ULONGEST search_space_len,
75 const gdb_byte *pattern,
76 ULONGEST pattern_len,
77 CORE_ADDR *found_addrp);
78
79static int default_verify_memory (struct target_ops *self,
80 const gdb_byte *data,
81 CORE_ADDR memaddr, ULONGEST size);
82
83static struct address_space *default_thread_address_space
84 (struct target_ops *self, ptid_t ptid);
85
86static void tcomplain (void) ATTRIBUTE_NORETURN;
87
88static int return_zero (struct target_ops *);
89
90static int return_zero_has_execution (struct target_ops *, ptid_t);
91
92static void target_command (char *, int);
93
94static struct target_ops *find_default_run_target (char *);
95
96static struct gdbarch *default_thread_architecture (struct target_ops *ops,
97 ptid_t ptid);
98
99static int dummy_find_memory_regions (struct target_ops *self,
100 find_memory_region_ftype ignore1,
101 void *ignore2);
102
103static char *dummy_make_corefile_notes (struct target_ops *self,
104 bfd *ignore1, int *ignore2);
105
106static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
107
108static enum exec_direction_kind default_execution_direction
109 (struct target_ops *self);
110
111static CORE_ADDR default_target_decr_pc_after_break (struct target_ops *ops,
112 struct gdbarch *gdbarch);
113
114#include "target-delegates.c"
115
116static void init_dummy_target (void);
117
118static struct target_ops debug_target;
119
120static void debug_to_open (char *, int);
121
122static void debug_to_prepare_to_store (struct target_ops *self,
123 struct regcache *);
124
125static void debug_to_files_info (struct target_ops *);
126
127static int debug_to_insert_breakpoint (struct target_ops *, struct gdbarch *,
128 struct bp_target_info *);
129
130static int debug_to_remove_breakpoint (struct target_ops *, struct gdbarch *,
131 struct bp_target_info *);
132
133static int debug_to_can_use_hw_breakpoint (struct target_ops *self,
134 int, int, int);
135
136static int debug_to_insert_hw_breakpoint (struct target_ops *self,
137 struct gdbarch *,
138 struct bp_target_info *);
139
140static int debug_to_remove_hw_breakpoint (struct target_ops *self,
141 struct gdbarch *,
142 struct bp_target_info *);
143
144static int debug_to_insert_watchpoint (struct target_ops *self,
145 CORE_ADDR, int, int,
146 struct expression *);
147
148static int debug_to_remove_watchpoint (struct target_ops *self,
149 CORE_ADDR, int, int,
150 struct expression *);
151
152static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
153
154static int debug_to_watchpoint_addr_within_range (struct target_ops *,
155 CORE_ADDR, CORE_ADDR, int);
156
157static int debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
158 CORE_ADDR, int);
159
160static int debug_to_can_accel_watchpoint_condition (struct target_ops *self,
161 CORE_ADDR, int, int,
162 struct expression *);
163
164static void debug_to_terminal_init (struct target_ops *self);
165
166static void debug_to_terminal_inferior (struct target_ops *self);
167
168static void debug_to_terminal_ours_for_output (struct target_ops *self);
169
170static void debug_to_terminal_save_ours (struct target_ops *self);
171
172static void debug_to_terminal_ours (struct target_ops *self);
173
174static void debug_to_load (struct target_ops *self, const char *, int);
175
176static int debug_to_can_run (struct target_ops *self);
177
178static void debug_to_stop (struct target_ops *self, ptid_t);
179
180/* Pointer to array of target architecture structures; the size of the
181 array; the current index into the array; the allocated size of the
182 array. */
183struct target_ops **target_structs;
184unsigned target_struct_size;
185unsigned target_struct_allocsize;
186#define DEFAULT_ALLOCSIZE 10
187
188/* The initial current target, so that there is always a semi-valid
189 current target. */
190
191static struct target_ops dummy_target;
192
193/* Top of target stack. */
194
195static struct target_ops *target_stack;
196
197/* The target structure we are currently using to talk to a process
198 or file or whatever "inferior" we have. */
199
200struct target_ops current_target;
201
202/* Command list for target. */
203
204static struct cmd_list_element *targetlist = NULL;
205
206/* Nonzero if we should trust readonly sections from the
207 executable when reading memory. */
208
209static int trust_readonly = 0;
210
211/* Nonzero if we should show true memory content including
212 memory breakpoint inserted by gdb. */
213
214static int show_memory_breakpoints = 0;
215
216/* These globals control whether GDB attempts to perform these
217 operations; they are useful for targets that need to prevent
218 inadvertant disruption, such as in non-stop mode. */
219
220int may_write_registers = 1;
221
222int may_write_memory = 1;
223
224int may_insert_breakpoints = 1;
225
226int may_insert_tracepoints = 1;
227
228int may_insert_fast_tracepoints = 1;
229
230int may_stop = 1;
231
232/* Non-zero if we want to see trace of target level stuff. */
233
234static unsigned int targetdebug = 0;
235static void
236show_targetdebug (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238{
239 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
240}
241
242static void setup_target_debug (void);
243
244/* The user just typed 'target' without the name of a target. */
245
246static void
247target_command (char *arg, int from_tty)
248{
249 fputs_filtered ("Argument required (target name). Try `help target'\n",
250 gdb_stdout);
251}
252
253/* Default target_has_* methods for process_stratum targets. */
254
255int
256default_child_has_all_memory (struct target_ops *ops)
257{
258 /* If no inferior selected, then we can't read memory here. */
259 if (ptid_equal (inferior_ptid, null_ptid))
260 return 0;
261
262 return 1;
263}
264
265int
266default_child_has_memory (struct target_ops *ops)
267{
268 /* If no inferior selected, then we can't read memory here. */
269 if (ptid_equal (inferior_ptid, null_ptid))
270 return 0;
271
272 return 1;
273}
274
275int
276default_child_has_stack (struct target_ops *ops)
277{
278 /* If no inferior selected, there's no stack. */
279 if (ptid_equal (inferior_ptid, null_ptid))
280 return 0;
281
282 return 1;
283}
284
285int
286default_child_has_registers (struct target_ops *ops)
287{
288 /* Can't read registers from no inferior. */
289 if (ptid_equal (inferior_ptid, null_ptid))
290 return 0;
291
292 return 1;
293}
294
295int
296default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
297{
298 /* If there's no thread selected, then we can't make it run through
299 hoops. */
300 if (ptid_equal (the_ptid, null_ptid))
301 return 0;
302
303 return 1;
304}
305
306
307int
308target_has_all_memory_1 (void)
309{
310 struct target_ops *t;
311
312 for (t = current_target.beneath; t != NULL; t = t->beneath)
313 if (t->to_has_all_memory (t))
314 return 1;
315
316 return 0;
317}
318
319int
320target_has_memory_1 (void)
321{
322 struct target_ops *t;
323
324 for (t = current_target.beneath; t != NULL; t = t->beneath)
325 if (t->to_has_memory (t))
326 return 1;
327
328 return 0;
329}
330
331int
332target_has_stack_1 (void)
333{
334 struct target_ops *t;
335
336 for (t = current_target.beneath; t != NULL; t = t->beneath)
337 if (t->to_has_stack (t))
338 return 1;
339
340 return 0;
341}
342
343int
344target_has_registers_1 (void)
345{
346 struct target_ops *t;
347
348 for (t = current_target.beneath; t != NULL; t = t->beneath)
349 if (t->to_has_registers (t))
350 return 1;
351
352 return 0;
353}
354
355int
356target_has_execution_1 (ptid_t the_ptid)
357{
358 struct target_ops *t;
359
360 for (t = current_target.beneath; t != NULL; t = t->beneath)
361 if (t->to_has_execution (t, the_ptid))
362 return 1;
363
364 return 0;
365}
366
367int
368target_has_execution_current (void)
369{
370 return target_has_execution_1 (inferior_ptid);
371}
372
373/* Complete initialization of T. This ensures that various fields in
374 T are set, if needed by the target implementation. */
375
376void
377complete_target_initialization (struct target_ops *t)
378{
379 /* Provide default values for all "must have" methods. */
380
381 if (t->to_has_all_memory == NULL)
382 t->to_has_all_memory = return_zero;
383
384 if (t->to_has_memory == NULL)
385 t->to_has_memory = return_zero;
386
387 if (t->to_has_stack == NULL)
388 t->to_has_stack = return_zero;
389
390 if (t->to_has_registers == NULL)
391 t->to_has_registers = return_zero;
392
393 if (t->to_has_execution == NULL)
394 t->to_has_execution = return_zero_has_execution;
395
396 /* These methods can be called on an unpushed target and so require
397 a default implementation if the target might plausibly be the
398 default run target. */
399 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
400 && t->to_supports_non_stop != NULL));
401
402 install_delegators (t);
403}
404
405/* Add possible target architecture T to the list and add a new
406 command 'target T->to_shortname'. Set COMPLETER as the command's
407 completer if not NULL. */
408
409void
410add_target_with_completer (struct target_ops *t,
411 completer_ftype *completer)
412{
413 struct cmd_list_element *c;
414
415 complete_target_initialization (t);
416
417 if (!target_structs)
418 {
419 target_struct_allocsize = DEFAULT_ALLOCSIZE;
420 target_structs = (struct target_ops **) xmalloc
421 (target_struct_allocsize * sizeof (*target_structs));
422 }
423 if (target_struct_size >= target_struct_allocsize)
424 {
425 target_struct_allocsize *= 2;
426 target_structs = (struct target_ops **)
427 xrealloc ((char *) target_structs,
428 target_struct_allocsize * sizeof (*target_structs));
429 }
430 target_structs[target_struct_size++] = t;
431
432 if (targetlist == NULL)
433 add_prefix_cmd ("target", class_run, target_command, _("\
434Connect to a target machine or process.\n\
435The first argument is the type or protocol of the target machine.\n\
436Remaining arguments are interpreted by the target protocol. For more\n\
437information on the arguments for a particular protocol, type\n\
438`help target ' followed by the protocol name."),
439 &targetlist, "target ", 0, &cmdlist);
440 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
441 &targetlist);
442 if (completer != NULL)
443 set_cmd_completer (c, completer);
444}
445
446/* Add a possible target architecture to the list. */
447
448void
449add_target (struct target_ops *t)
450{
451 add_target_with_completer (t, NULL);
452}
453
454/* See target.h. */
455
456void
457add_deprecated_target_alias (struct target_ops *t, char *alias)
458{
459 struct cmd_list_element *c;
460 char *alt;
461
462 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
463 see PR cli/15104. */
464 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
465 alt = xstrprintf ("target %s", t->to_shortname);
466 deprecate_cmd (c, alt);
467}
468
469/* Stub functions */
470
471void
472target_kill (void)
473{
474 if (targetdebug)
475 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
476
477 current_target.to_kill (&current_target);
478}
479
480void
481target_load (const char *arg, int from_tty)
482{
483 target_dcache_invalidate ();
484 (*current_target.to_load) (&current_target, arg, from_tty);
485}
486
487void
488target_terminal_inferior (void)
489{
490 /* A background resume (``run&'') should leave GDB in control of the
491 terminal. Use target_can_async_p, not target_is_async_p, since at
492 this point the target is not async yet. However, if sync_execution
493 is not set, we know it will become async prior to resume. */
494 if (target_can_async_p () && !sync_execution)
495 return;
496
497 /* If GDB is resuming the inferior in the foreground, install
498 inferior's terminal modes. */
499 (*current_target.to_terminal_inferior) (&current_target);
500}
501
502static void
503tcomplain (void)
504{
505 error (_("You can't do that when your target is `%s'"),
506 current_target.to_shortname);
507}
508
509void
510noprocess (void)
511{
512 error (_("You can't do that without a process to debug."));
513}
514
515static void
516default_terminal_info (struct target_ops *self, const char *args, int from_tty)
517{
518 printf_unfiltered (_("No saved terminal information.\n"));
519}
520
521/* A default implementation for the to_get_ada_task_ptid target method.
522
523 This function builds the PTID by using both LWP and TID as part of
524 the PTID lwp and tid elements. The pid used is the pid of the
525 inferior_ptid. */
526
527static ptid_t
528default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
529{
530 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
531}
532
533static enum exec_direction_kind
534default_execution_direction (struct target_ops *self)
535{
536 if (!target_can_execute_reverse)
537 return EXEC_FORWARD;
538 else if (!target_can_async_p ())
539 return EXEC_FORWARD;
540 else
541 gdb_assert_not_reached ("\
542to_execution_direction must be implemented for reverse async");
543}
544
545/* Go through the target stack from top to bottom, copying over zero
546 entries in current_target, then filling in still empty entries. In
547 effect, we are doing class inheritance through the pushed target
548 vectors.
549
550 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
551 is currently implemented, is that it discards any knowledge of
552 which target an inherited method originally belonged to.
553 Consequently, new new target methods should instead explicitly and
554 locally search the target stack for the target that can handle the
555 request. */
556
557static void
558update_current_target (void)
559{
560 struct target_ops *t;
561
562 /* First, reset current's contents. */
563 memset (&current_target, 0, sizeof (current_target));
564
565 /* Install the delegators. */
566 install_delegators (&current_target);
567
568 current_target.to_stratum = target_stack->to_stratum;
569
570#define INHERIT(FIELD, TARGET) \
571 if (!current_target.FIELD) \
572 current_target.FIELD = (TARGET)->FIELD
573
574 /* Do not add any new INHERITs here. Instead, use the delegation
575 mechanism provided by make-target-delegates. */
576 for (t = target_stack; t; t = t->beneath)
577 {
578 INHERIT (to_shortname, t);
579 INHERIT (to_longname, t);
580 INHERIT (to_attach_no_wait, t);
581 INHERIT (to_have_steppable_watchpoint, t);
582 INHERIT (to_have_continuable_watchpoint, t);
583 INHERIT (to_has_thread_control, t);
584 }
585#undef INHERIT
586
587 /* Finally, position the target-stack beneath the squashed
588 "current_target". That way code looking for a non-inherited
589 target method can quickly and simply find it. */
590 current_target.beneath = target_stack;
591
592 if (targetdebug)
593 setup_target_debug ();
594}
595
596/* Push a new target type into the stack of the existing target accessors,
597 possibly superseding some of the existing accessors.
598
599 Rather than allow an empty stack, we always have the dummy target at
600 the bottom stratum, so we can call the function vectors without
601 checking them. */
602
603void
604push_target (struct target_ops *t)
605{
606 struct target_ops **cur;
607
608 /* Check magic number. If wrong, it probably means someone changed
609 the struct definition, but not all the places that initialize one. */
610 if (t->to_magic != OPS_MAGIC)
611 {
612 fprintf_unfiltered (gdb_stderr,
613 "Magic number of %s target struct wrong\n",
614 t->to_shortname);
615 internal_error (__FILE__, __LINE__,
616 _("failed internal consistency check"));
617 }
618
619 /* Find the proper stratum to install this target in. */
620 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
621 {
622 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
623 break;
624 }
625
626 /* If there's already targets at this stratum, remove them. */
627 /* FIXME: cagney/2003-10-15: I think this should be popping all
628 targets to CUR, and not just those at this stratum level. */
629 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
630 {
631 /* There's already something at this stratum level. Close it,
632 and un-hook it from the stack. */
633 struct target_ops *tmp = (*cur);
634
635 (*cur) = (*cur)->beneath;
636 tmp->beneath = NULL;
637 target_close (tmp);
638 }
639
640 /* We have removed all targets in our stratum, now add the new one. */
641 t->beneath = (*cur);
642 (*cur) = t;
643
644 update_current_target ();
645}
646
647/* Remove a target_ops vector from the stack, wherever it may be.
648 Return how many times it was removed (0 or 1). */
649
650int
651unpush_target (struct target_ops *t)
652{
653 struct target_ops **cur;
654 struct target_ops *tmp;
655
656 if (t->to_stratum == dummy_stratum)
657 internal_error (__FILE__, __LINE__,
658 _("Attempt to unpush the dummy target"));
659
660 /* Look for the specified target. Note that we assume that a target
661 can only occur once in the target stack. */
662
663 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
664 {
665 if ((*cur) == t)
666 break;
667 }
668
669 /* If we don't find target_ops, quit. Only open targets should be
670 closed. */
671 if ((*cur) == NULL)
672 return 0;
673
674 /* Unchain the target. */
675 tmp = (*cur);
676 (*cur) = (*cur)->beneath;
677 tmp->beneath = NULL;
678
679 update_current_target ();
680
681 /* Finally close the target. Note we do this after unchaining, so
682 any target method calls from within the target_close
683 implementation don't end up in T anymore. */
684 target_close (t);
685
686 return 1;
687}
688
689void
690pop_all_targets_above (enum strata above_stratum)
691{
692 while ((int) (current_target.to_stratum) > (int) above_stratum)
693 {
694 if (!unpush_target (target_stack))
695 {
696 fprintf_unfiltered (gdb_stderr,
697 "pop_all_targets couldn't find target %s\n",
698 target_stack->to_shortname);
699 internal_error (__FILE__, __LINE__,
700 _("failed internal consistency check"));
701 break;
702 }
703 }
704}
705
706void
707pop_all_targets (void)
708{
709 pop_all_targets_above (dummy_stratum);
710}
711
712/* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
713
714int
715target_is_pushed (struct target_ops *t)
716{
717 struct target_ops **cur;
718
719 /* Check magic number. If wrong, it probably means someone changed
720 the struct definition, but not all the places that initialize one. */
721 if (t->to_magic != OPS_MAGIC)
722 {
723 fprintf_unfiltered (gdb_stderr,
724 "Magic number of %s target struct wrong\n",
725 t->to_shortname);
726 internal_error (__FILE__, __LINE__,
727 _("failed internal consistency check"));
728 }
729
730 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
731 if (*cur == t)
732 return 1;
733
734 return 0;
735}
736
737/* Default implementation of to_get_thread_local_address. */
738
739static void
740generic_tls_error (void)
741{
742 throw_error (TLS_GENERIC_ERROR,
743 _("Cannot find thread-local variables on this target"));
744}
745
746/* Using the objfile specified in OBJFILE, find the address for the
747 current thread's thread-local storage with offset OFFSET. */
748CORE_ADDR
749target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
750{
751 volatile CORE_ADDR addr = 0;
752 struct target_ops *target = &current_target;
753
754 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
755 {
756 ptid_t ptid = inferior_ptid;
757 volatile struct gdb_exception ex;
758
759 TRY_CATCH (ex, RETURN_MASK_ALL)
760 {
761 CORE_ADDR lm_addr;
762
763 /* Fetch the load module address for this objfile. */
764 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
765 objfile);
766
767 addr = target->to_get_thread_local_address (target, ptid,
768 lm_addr, offset);
769 }
770 /* If an error occurred, print TLS related messages here. Otherwise,
771 throw the error to some higher catcher. */
772 if (ex.reason < 0)
773 {
774 int objfile_is_library = (objfile->flags & OBJF_SHARED);
775
776 switch (ex.error)
777 {
778 case TLS_NO_LIBRARY_SUPPORT_ERROR:
779 error (_("Cannot find thread-local variables "
780 "in this thread library."));
781 break;
782 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
783 if (objfile_is_library)
784 error (_("Cannot find shared library `%s' in dynamic"
785 " linker's load module list"), objfile_name (objfile));
786 else
787 error (_("Cannot find executable file `%s' in dynamic"
788 " linker's load module list"), objfile_name (objfile));
789 break;
790 case TLS_NOT_ALLOCATED_YET_ERROR:
791 if (objfile_is_library)
792 error (_("The inferior has not yet allocated storage for"
793 " thread-local variables in\n"
794 "the shared library `%s'\n"
795 "for %s"),
796 objfile_name (objfile), target_pid_to_str (ptid));
797 else
798 error (_("The inferior has not yet allocated storage for"
799 " thread-local variables in\n"
800 "the executable `%s'\n"
801 "for %s"),
802 objfile_name (objfile), target_pid_to_str (ptid));
803 break;
804 case TLS_GENERIC_ERROR:
805 if (objfile_is_library)
806 error (_("Cannot find thread-local storage for %s, "
807 "shared library %s:\n%s"),
808 target_pid_to_str (ptid),
809 objfile_name (objfile), ex.message);
810 else
811 error (_("Cannot find thread-local storage for %s, "
812 "executable file %s:\n%s"),
813 target_pid_to_str (ptid),
814 objfile_name (objfile), ex.message);
815 break;
816 default:
817 throw_exception (ex);
818 break;
819 }
820 }
821 }
822 /* It wouldn't be wrong here to try a gdbarch method, too; finding
823 TLS is an ABI-specific thing. But we don't do that yet. */
824 else
825 error (_("Cannot find thread-local variables on this target"));
826
827 return addr;
828}
829
830const char *
831target_xfer_status_to_string (enum target_xfer_status status)
832{
833#define CASE(X) case X: return #X
834 switch (status)
835 {
836 CASE(TARGET_XFER_E_IO);
837 CASE(TARGET_XFER_UNAVAILABLE);
838 default:
839 return "<unknown>";
840 }
841#undef CASE
842};
843
844
845#undef MIN
846#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
847
848/* target_read_string -- read a null terminated string, up to LEN bytes,
849 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
850 Set *STRING to a pointer to malloc'd memory containing the data; the caller
851 is responsible for freeing it. Return the number of bytes successfully
852 read. */
853
854int
855target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
856{
857 int tlen, offset, i;
858 gdb_byte buf[4];
859 int errcode = 0;
860 char *buffer;
861 int buffer_allocated;
862 char *bufptr;
863 unsigned int nbytes_read = 0;
864
865 gdb_assert (string);
866
867 /* Small for testing. */
868 buffer_allocated = 4;
869 buffer = xmalloc (buffer_allocated);
870 bufptr = buffer;
871
872 while (len > 0)
873 {
874 tlen = MIN (len, 4 - (memaddr & 3));
875 offset = memaddr & 3;
876
877 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
878 if (errcode != 0)
879 {
880 /* The transfer request might have crossed the boundary to an
881 unallocated region of memory. Retry the transfer, requesting
882 a single byte. */
883 tlen = 1;
884 offset = 0;
885 errcode = target_read_memory (memaddr, buf, 1);
886 if (errcode != 0)
887 goto done;
888 }
889
890 if (bufptr - buffer + tlen > buffer_allocated)
891 {
892 unsigned int bytes;
893
894 bytes = bufptr - buffer;
895 buffer_allocated *= 2;
896 buffer = xrealloc (buffer, buffer_allocated);
897 bufptr = buffer + bytes;
898 }
899
900 for (i = 0; i < tlen; i++)
901 {
902 *bufptr++ = buf[i + offset];
903 if (buf[i + offset] == '\000')
904 {
905 nbytes_read += i + 1;
906 goto done;
907 }
908 }
909
910 memaddr += tlen;
911 len -= tlen;
912 nbytes_read += tlen;
913 }
914done:
915 *string = buffer;
916 if (errnop != NULL)
917 *errnop = errcode;
918 return nbytes_read;
919}
920
921struct target_section_table *
922target_get_section_table (struct target_ops *target)
923{
924 if (targetdebug)
925 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
926
927 return (*target->to_get_section_table) (target);
928}
929
930/* Find a section containing ADDR. */
931
932struct target_section *
933target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
934{
935 struct target_section_table *table = target_get_section_table (target);
936 struct target_section *secp;
937
938 if (table == NULL)
939 return NULL;
940
941 for (secp = table->sections; secp < table->sections_end; secp++)
942 {
943 if (addr >= secp->addr && addr < secp->endaddr)
944 return secp;
945 }
946 return NULL;
947}
948
949/* Read memory from more than one valid target. A core file, for
950 instance, could have some of memory but delegate other bits to
951 the target below it. So, we must manually try all targets. */
952
953static enum target_xfer_status
954raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
955 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
956 ULONGEST *xfered_len)
957{
958 enum target_xfer_status res;
959
960 do
961 {
962 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
963 readbuf, writebuf, memaddr, len,
964 xfered_len);
965 if (res == TARGET_XFER_OK)
966 break;
967
968 /* Stop if the target reports that the memory is not available. */
969 if (res == TARGET_XFER_UNAVAILABLE)
970 break;
971
972 /* We want to continue past core files to executables, but not
973 past a running target's memory. */
974 if (ops->to_has_all_memory (ops))
975 break;
976
977 ops = ops->beneath;
978 }
979 while (ops != NULL);
980
981 /* The cache works at the raw memory level. Make sure the cache
982 gets updated with raw contents no matter what kind of memory
983 object was originally being written. Note we do write-through
984 first, so that if it fails, we don't write to the cache contents
985 that never made it to the target. */
986 if (writebuf != NULL
987 && !ptid_equal (inferior_ptid, null_ptid)
988 && target_dcache_init_p ()
989 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
990 {
991 DCACHE *dcache = target_dcache_get ();
992
993 /* Note that writing to an area of memory which wasn't present
994 in the cache doesn't cause it to be loaded in. */
995 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
996 }
997
998 return res;
999}
1000
1001/* Perform a partial memory transfer.
1002 For docs see target.h, to_xfer_partial. */
1003
1004static enum target_xfer_status
1005memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1006 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1007 ULONGEST len, ULONGEST *xfered_len)
1008{
1009 enum target_xfer_status res;
1010 int reg_len;
1011 struct mem_region *region;
1012 struct inferior *inf;
1013
1014 /* For accesses to unmapped overlay sections, read directly from
1015 files. Must do this first, as MEMADDR may need adjustment. */
1016 if (readbuf != NULL && overlay_debugging)
1017 {
1018 struct obj_section *section = find_pc_overlay (memaddr);
1019
1020 if (pc_in_unmapped_range (memaddr, section))
1021 {
1022 struct target_section_table *table
1023 = target_get_section_table (ops);
1024 const char *section_name = section->the_bfd_section->name;
1025
1026 memaddr = overlay_mapped_address (memaddr, section);
1027 return section_table_xfer_memory_partial (readbuf, writebuf,
1028 memaddr, len, xfered_len,
1029 table->sections,
1030 table->sections_end,
1031 section_name);
1032 }
1033 }
1034
1035 /* Try the executable files, if "trust-readonly-sections" is set. */
1036 if (readbuf != NULL && trust_readonly)
1037 {
1038 struct target_section *secp;
1039 struct target_section_table *table;
1040
1041 secp = target_section_by_addr (ops, memaddr);
1042 if (secp != NULL
1043 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1044 secp->the_bfd_section)
1045 & SEC_READONLY))
1046 {
1047 table = target_get_section_table (ops);
1048 return section_table_xfer_memory_partial (readbuf, writebuf,
1049 memaddr, len, xfered_len,
1050 table->sections,
1051 table->sections_end,
1052 NULL);
1053 }
1054 }
1055
1056 /* Try GDB's internal data cache. */
1057 region = lookup_mem_region (memaddr);
1058 /* region->hi == 0 means there's no upper bound. */
1059 if (memaddr + len < region->hi || region->hi == 0)
1060 reg_len = len;
1061 else
1062 reg_len = region->hi - memaddr;
1063
1064 switch (region->attrib.mode)
1065 {
1066 case MEM_RO:
1067 if (writebuf != NULL)
1068 return TARGET_XFER_E_IO;
1069 break;
1070
1071 case MEM_WO:
1072 if (readbuf != NULL)
1073 return TARGET_XFER_E_IO;
1074 break;
1075
1076 case MEM_FLASH:
1077 /* We only support writing to flash during "load" for now. */
1078 if (writebuf != NULL)
1079 error (_("Writing to flash memory forbidden in this context"));
1080 break;
1081
1082 case MEM_NONE:
1083 return TARGET_XFER_E_IO;
1084 }
1085
1086 if (!ptid_equal (inferior_ptid, null_ptid))
1087 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1088 else
1089 inf = NULL;
1090
1091 if (inf != NULL
1092 && readbuf != NULL
1093 /* The dcache reads whole cache lines; that doesn't play well
1094 with reading from a trace buffer, because reading outside of
1095 the collected memory range fails. */
1096 && get_traceframe_number () == -1
1097 && (region->attrib.cache
1098 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1099 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1100 {
1101 DCACHE *dcache = target_dcache_get_or_init ();
1102
1103 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1104 reg_len, xfered_len);
1105 }
1106
1107 /* If none of those methods found the memory we wanted, fall back
1108 to a target partial transfer. Normally a single call to
1109 to_xfer_partial is enough; if it doesn't recognize an object
1110 it will call the to_xfer_partial of the next target down.
1111 But for memory this won't do. Memory is the only target
1112 object which can be read from more than one valid target.
1113 A core file, for instance, could have some of memory but
1114 delegate other bits to the target below it. So, we must
1115 manually try all targets. */
1116
1117 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1118 xfered_len);
1119
1120 /* If we still haven't got anything, return the last error. We
1121 give up. */
1122 return res;
1123}
1124
1125/* Perform a partial memory transfer. For docs see target.h,
1126 to_xfer_partial. */
1127
1128static enum target_xfer_status
1129memory_xfer_partial (struct target_ops *ops, enum target_object object,
1130 gdb_byte *readbuf, const gdb_byte *writebuf,
1131 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1132{
1133 enum target_xfer_status res;
1134
1135 /* Zero length requests are ok and require no work. */
1136 if (len == 0)
1137 return TARGET_XFER_EOF;
1138
1139 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1140 breakpoint insns, thus hiding out from higher layers whether
1141 there are software breakpoints inserted in the code stream. */
1142 if (readbuf != NULL)
1143 {
1144 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1145 xfered_len);
1146
1147 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1148 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1149 }
1150 else
1151 {
1152 void *buf;
1153 struct cleanup *old_chain;
1154
1155 /* A large write request is likely to be partially satisfied
1156 by memory_xfer_partial_1. We will continually malloc
1157 and free a copy of the entire write request for breakpoint
1158 shadow handling even though we only end up writing a small
1159 subset of it. Cap writes to 4KB to mitigate this. */
1160 len = min (4096, len);
1161
1162 buf = xmalloc (len);
1163 old_chain = make_cleanup (xfree, buf);
1164 memcpy (buf, writebuf, len);
1165
1166 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1167 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1168 xfered_len);
1169
1170 do_cleanups (old_chain);
1171 }
1172
1173 return res;
1174}
1175
1176static void
1177restore_show_memory_breakpoints (void *arg)
1178{
1179 show_memory_breakpoints = (uintptr_t) arg;
1180}
1181
1182struct cleanup *
1183make_show_memory_breakpoints_cleanup (int show)
1184{
1185 int current = show_memory_breakpoints;
1186
1187 show_memory_breakpoints = show;
1188 return make_cleanup (restore_show_memory_breakpoints,
1189 (void *) (uintptr_t) current);
1190}
1191
1192/* For docs see target.h, to_xfer_partial. */
1193
1194enum target_xfer_status
1195target_xfer_partial (struct target_ops *ops,
1196 enum target_object object, const char *annex,
1197 gdb_byte *readbuf, const gdb_byte *writebuf,
1198 ULONGEST offset, ULONGEST len,
1199 ULONGEST *xfered_len)
1200{
1201 enum target_xfer_status retval;
1202
1203 gdb_assert (ops->to_xfer_partial != NULL);
1204
1205 /* Transfer is done when LEN is zero. */
1206 if (len == 0)
1207 return TARGET_XFER_EOF;
1208
1209 if (writebuf && !may_write_memory)
1210 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1211 core_addr_to_string_nz (offset), plongest (len));
1212
1213 *xfered_len = 0;
1214
1215 /* If this is a memory transfer, let the memory-specific code
1216 have a look at it instead. Memory transfers are more
1217 complicated. */
1218 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1219 || object == TARGET_OBJECT_CODE_MEMORY)
1220 retval = memory_xfer_partial (ops, object, readbuf,
1221 writebuf, offset, len, xfered_len);
1222 else if (object == TARGET_OBJECT_RAW_MEMORY)
1223 {
1224 /* Request the normal memory object from other layers. */
1225 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1226 xfered_len);
1227 }
1228 else
1229 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1230 writebuf, offset, len, xfered_len);
1231
1232 if (targetdebug)
1233 {
1234 const unsigned char *myaddr = NULL;
1235
1236 fprintf_unfiltered (gdb_stdlog,
1237 "%s:target_xfer_partial "
1238 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1239 ops->to_shortname,
1240 (int) object,
1241 (annex ? annex : "(null)"),
1242 host_address_to_string (readbuf),
1243 host_address_to_string (writebuf),
1244 core_addr_to_string_nz (offset),
1245 pulongest (len), retval,
1246 pulongest (*xfered_len));
1247
1248 if (readbuf)
1249 myaddr = readbuf;
1250 if (writebuf)
1251 myaddr = writebuf;
1252 if (retval == TARGET_XFER_OK && myaddr != NULL)
1253 {
1254 int i;
1255
1256 fputs_unfiltered (", bytes =", gdb_stdlog);
1257 for (i = 0; i < *xfered_len; i++)
1258 {
1259 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1260 {
1261 if (targetdebug < 2 && i > 0)
1262 {
1263 fprintf_unfiltered (gdb_stdlog, " ...");
1264 break;
1265 }
1266 fprintf_unfiltered (gdb_stdlog, "\n");
1267 }
1268
1269 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1270 }
1271 }
1272
1273 fputc_unfiltered ('\n', gdb_stdlog);
1274 }
1275
1276 /* Check implementations of to_xfer_partial update *XFERED_LEN
1277 properly. Do assertion after printing debug messages, so that we
1278 can find more clues on assertion failure from debugging messages. */
1279 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1280 gdb_assert (*xfered_len > 0);
1281
1282 return retval;
1283}
1284
1285/* Read LEN bytes of target memory at address MEMADDR, placing the
1286 results in GDB's memory at MYADDR. Returns either 0 for success or
1287 TARGET_XFER_E_IO if any error occurs.
1288
1289 If an error occurs, no guarantee is made about the contents of the data at
1290 MYADDR. In particular, the caller should not depend upon partial reads
1291 filling the buffer with good data. There is no way for the caller to know
1292 how much good data might have been transfered anyway. Callers that can
1293 deal with partial reads should call target_read (which will retry until
1294 it makes no progress, and then return how much was transferred). */
1295
1296int
1297target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1298{
1299 /* Dispatch to the topmost target, not the flattened current_target.
1300 Memory accesses check target->to_has_(all_)memory, and the
1301 flattened target doesn't inherit those. */
1302 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1303 myaddr, memaddr, len) == len)
1304 return 0;
1305 else
1306 return TARGET_XFER_E_IO;
1307}
1308
1309/* Like target_read_memory, but specify explicitly that this is a read
1310 from the target's raw memory. That is, this read bypasses the
1311 dcache, breakpoint shadowing, etc. */
1312
1313int
1314target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1315{
1316 /* See comment in target_read_memory about why the request starts at
1317 current_target.beneath. */
1318 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1319 myaddr, memaddr, len) == len)
1320 return 0;
1321 else
1322 return TARGET_XFER_E_IO;
1323}
1324
1325/* Like target_read_memory, but specify explicitly that this is a read from
1326 the target's stack. This may trigger different cache behavior. */
1327
1328int
1329target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1330{
1331 /* See comment in target_read_memory about why the request starts at
1332 current_target.beneath. */
1333 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1334 myaddr, memaddr, len) == len)
1335 return 0;
1336 else
1337 return TARGET_XFER_E_IO;
1338}
1339
1340/* Like target_read_memory, but specify explicitly that this is a read from
1341 the target's code. This may trigger different cache behavior. */
1342
1343int
1344target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1345{
1346 /* See comment in target_read_memory about why the request starts at
1347 current_target.beneath. */
1348 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1349 myaddr, memaddr, len) == len)
1350 return 0;
1351 else
1352 return TARGET_XFER_E_IO;
1353}
1354
1355/* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1356 Returns either 0 for success or TARGET_XFER_E_IO if any
1357 error occurs. If an error occurs, no guarantee is made about how
1358 much data got written. Callers that can deal with partial writes
1359 should call target_write. */
1360
1361int
1362target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1363{
1364 /* See comment in target_read_memory about why the request starts at
1365 current_target.beneath. */
1366 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1367 myaddr, memaddr, len) == len)
1368 return 0;
1369 else
1370 return TARGET_XFER_E_IO;
1371}
1372
1373/* Write LEN bytes from MYADDR to target raw memory at address
1374 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1375 if any error occurs. If an error occurs, no guarantee is made
1376 about how much data got written. Callers that can deal with
1377 partial writes should call target_write. */
1378
1379int
1380target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1381{
1382 /* See comment in target_read_memory about why the request starts at
1383 current_target.beneath. */
1384 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1385 myaddr, memaddr, len) == len)
1386 return 0;
1387 else
1388 return TARGET_XFER_E_IO;
1389}
1390
1391/* Fetch the target's memory map. */
1392
1393VEC(mem_region_s) *
1394target_memory_map (void)
1395{
1396 VEC(mem_region_s) *result;
1397 struct mem_region *last_one, *this_one;
1398 int ix;
1399 struct target_ops *t;
1400
1401 if (targetdebug)
1402 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1403
1404 result = current_target.to_memory_map (&current_target);
1405 if (result == NULL)
1406 return NULL;
1407
1408 qsort (VEC_address (mem_region_s, result),
1409 VEC_length (mem_region_s, result),
1410 sizeof (struct mem_region), mem_region_cmp);
1411
1412 /* Check that regions do not overlap. Simultaneously assign
1413 a numbering for the "mem" commands to use to refer to
1414 each region. */
1415 last_one = NULL;
1416 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1417 {
1418 this_one->number = ix;
1419
1420 if (last_one && last_one->hi > this_one->lo)
1421 {
1422 warning (_("Overlapping regions in memory map: ignoring"));
1423 VEC_free (mem_region_s, result);
1424 return NULL;
1425 }
1426 last_one = this_one;
1427 }
1428
1429 return result;
1430}
1431
1432void
1433target_flash_erase (ULONGEST address, LONGEST length)
1434{
1435 if (targetdebug)
1436 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1437 hex_string (address), phex (length, 0));
1438 current_target.to_flash_erase (&current_target, address, length);
1439}
1440
1441void
1442target_flash_done (void)
1443{
1444 if (targetdebug)
1445 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1446 current_target.to_flash_done (&current_target);
1447}
1448
1449static void
1450show_trust_readonly (struct ui_file *file, int from_tty,
1451 struct cmd_list_element *c, const char *value)
1452{
1453 fprintf_filtered (file,
1454 _("Mode for reading from readonly sections is %s.\n"),
1455 value);
1456}
1457
1458/* Target vector read/write partial wrapper functions. */
1459
1460static enum target_xfer_status
1461target_read_partial (struct target_ops *ops,
1462 enum target_object object,
1463 const char *annex, gdb_byte *buf,
1464 ULONGEST offset, ULONGEST len,
1465 ULONGEST *xfered_len)
1466{
1467 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1468 xfered_len);
1469}
1470
1471static enum target_xfer_status
1472target_write_partial (struct target_ops *ops,
1473 enum target_object object,
1474 const char *annex, const gdb_byte *buf,
1475 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1476{
1477 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1478 xfered_len);
1479}
1480
1481/* Wrappers to perform the full transfer. */
1482
1483/* For docs on target_read see target.h. */
1484
1485LONGEST
1486target_read (struct target_ops *ops,
1487 enum target_object object,
1488 const char *annex, gdb_byte *buf,
1489 ULONGEST offset, LONGEST len)
1490{
1491 LONGEST xfered = 0;
1492
1493 while (xfered < len)
1494 {
1495 ULONGEST xfered_len;
1496 enum target_xfer_status status;
1497
1498 status = target_read_partial (ops, object, annex,
1499 (gdb_byte *) buf + xfered,
1500 offset + xfered, len - xfered,
1501 &xfered_len);
1502
1503 /* Call an observer, notifying them of the xfer progress? */
1504 if (status == TARGET_XFER_EOF)
1505 return xfered;
1506 else if (status == TARGET_XFER_OK)
1507 {
1508 xfered += xfered_len;
1509 QUIT;
1510 }
1511 else
1512 return -1;
1513
1514 }
1515 return len;
1516}
1517
1518/* Assuming that the entire [begin, end) range of memory cannot be
1519 read, try to read whatever subrange is possible to read.
1520
1521 The function returns, in RESULT, either zero or one memory block.
1522 If there's a readable subrange at the beginning, it is completely
1523 read and returned. Any further readable subrange will not be read.
1524 Otherwise, if there's a readable subrange at the end, it will be
1525 completely read and returned. Any readable subranges before it
1526 (obviously, not starting at the beginning), will be ignored. In
1527 other cases -- either no readable subrange, or readable subrange(s)
1528 that is neither at the beginning, or end, nothing is returned.
1529
1530 The purpose of this function is to handle a read across a boundary
1531 of accessible memory in a case when memory map is not available.
1532 The above restrictions are fine for this case, but will give
1533 incorrect results if the memory is 'patchy'. However, supporting
1534 'patchy' memory would require trying to read every single byte,
1535 and it seems unacceptable solution. Explicit memory map is
1536 recommended for this case -- and target_read_memory_robust will
1537 take care of reading multiple ranges then. */
1538
1539static void
1540read_whatever_is_readable (struct target_ops *ops,
1541 ULONGEST begin, ULONGEST end,
1542 VEC(memory_read_result_s) **result)
1543{
1544 gdb_byte *buf = xmalloc (end - begin);
1545 ULONGEST current_begin = begin;
1546 ULONGEST current_end = end;
1547 int forward;
1548 memory_read_result_s r;
1549 ULONGEST xfered_len;
1550
1551 /* If we previously failed to read 1 byte, nothing can be done here. */
1552 if (end - begin <= 1)
1553 {
1554 xfree (buf);
1555 return;
1556 }
1557
1558 /* Check that either first or the last byte is readable, and give up
1559 if not. This heuristic is meant to permit reading accessible memory
1560 at the boundary of accessible region. */
1561 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1562 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1563 {
1564 forward = 1;
1565 ++current_begin;
1566 }
1567 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1568 buf + (end-begin) - 1, end - 1, 1,
1569 &xfered_len) == TARGET_XFER_OK)
1570 {
1571 forward = 0;
1572 --current_end;
1573 }
1574 else
1575 {
1576 xfree (buf);
1577 return;
1578 }
1579
1580 /* Loop invariant is that the [current_begin, current_end) was previously
1581 found to be not readable as a whole.
1582
1583 Note loop condition -- if the range has 1 byte, we can't divide the range
1584 so there's no point trying further. */
1585 while (current_end - current_begin > 1)
1586 {
1587 ULONGEST first_half_begin, first_half_end;
1588 ULONGEST second_half_begin, second_half_end;
1589 LONGEST xfer;
1590 ULONGEST middle = current_begin + (current_end - current_begin)/2;
1591
1592 if (forward)
1593 {
1594 first_half_begin = current_begin;
1595 first_half_end = middle;
1596 second_half_begin = middle;
1597 second_half_end = current_end;
1598 }
1599 else
1600 {
1601 first_half_begin = middle;
1602 first_half_end = current_end;
1603 second_half_begin = current_begin;
1604 second_half_end = middle;
1605 }
1606
1607 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1608 buf + (first_half_begin - begin),
1609 first_half_begin,
1610 first_half_end - first_half_begin);
1611
1612 if (xfer == first_half_end - first_half_begin)
1613 {
1614 /* This half reads up fine. So, the error must be in the
1615 other half. */
1616 current_begin = second_half_begin;
1617 current_end = second_half_end;
1618 }
1619 else
1620 {
1621 /* This half is not readable. Because we've tried one byte, we
1622 know some part of this half if actually redable. Go to the next
1623 iteration to divide again and try to read.
1624
1625 We don't handle the other half, because this function only tries
1626 to read a single readable subrange. */
1627 current_begin = first_half_begin;
1628 current_end = first_half_end;
1629 }
1630 }
1631
1632 if (forward)
1633 {
1634 /* The [begin, current_begin) range has been read. */
1635 r.begin = begin;
1636 r.end = current_begin;
1637 r.data = buf;
1638 }
1639 else
1640 {
1641 /* The [current_end, end) range has been read. */
1642 LONGEST rlen = end - current_end;
1643
1644 r.data = xmalloc (rlen);
1645 memcpy (r.data, buf + current_end - begin, rlen);
1646 r.begin = current_end;
1647 r.end = end;
1648 xfree (buf);
1649 }
1650 VEC_safe_push(memory_read_result_s, (*result), &r);
1651}
1652
1653void
1654free_memory_read_result_vector (void *x)
1655{
1656 VEC(memory_read_result_s) *v = x;
1657 memory_read_result_s *current;
1658 int ix;
1659
1660 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1661 {
1662 xfree (current->data);
1663 }
1664 VEC_free (memory_read_result_s, v);
1665}
1666
1667VEC(memory_read_result_s) *
1668read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1669{
1670 VEC(memory_read_result_s) *result = 0;
1671
1672 LONGEST xfered = 0;
1673 while (xfered < len)
1674 {
1675 struct mem_region *region = lookup_mem_region (offset + xfered);
1676 LONGEST rlen;
1677
1678 /* If there is no explicit region, a fake one should be created. */
1679 gdb_assert (region);
1680
1681 if (region->hi == 0)
1682 rlen = len - xfered;
1683 else
1684 rlen = region->hi - offset;
1685
1686 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1687 {
1688 /* Cannot read this region. Note that we can end up here only
1689 if the region is explicitly marked inaccessible, or
1690 'inaccessible-by-default' is in effect. */
1691 xfered += rlen;
1692 }
1693 else
1694 {
1695 LONGEST to_read = min (len - xfered, rlen);
1696 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1697
1698 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1699 (gdb_byte *) buffer,
1700 offset + xfered, to_read);
1701 /* Call an observer, notifying them of the xfer progress? */
1702 if (xfer <= 0)
1703 {
1704 /* Got an error reading full chunk. See if maybe we can read
1705 some subrange. */
1706 xfree (buffer);
1707 read_whatever_is_readable (ops, offset + xfered,
1708 offset + xfered + to_read, &result);
1709 xfered += to_read;
1710 }
1711 else
1712 {
1713 struct memory_read_result r;
1714 r.data = buffer;
1715 r.begin = offset + xfered;
1716 r.end = r.begin + xfer;
1717 VEC_safe_push (memory_read_result_s, result, &r);
1718 xfered += xfer;
1719 }
1720 QUIT;
1721 }
1722 }
1723 return result;
1724}
1725
1726
1727/* An alternative to target_write with progress callbacks. */
1728
1729LONGEST
1730target_write_with_progress (struct target_ops *ops,
1731 enum target_object object,
1732 const char *annex, const gdb_byte *buf,
1733 ULONGEST offset, LONGEST len,
1734 void (*progress) (ULONGEST, void *), void *baton)
1735{
1736 LONGEST xfered = 0;
1737
1738 /* Give the progress callback a chance to set up. */
1739 if (progress)
1740 (*progress) (0, baton);
1741
1742 while (xfered < len)
1743 {
1744 ULONGEST xfered_len;
1745 enum target_xfer_status status;
1746
1747 status = target_write_partial (ops, object, annex,
1748 (gdb_byte *) buf + xfered,
1749 offset + xfered, len - xfered,
1750 &xfered_len);
1751
1752 if (status != TARGET_XFER_OK)
1753 return status == TARGET_XFER_EOF ? xfered : -1;
1754
1755 if (progress)
1756 (*progress) (xfered_len, baton);
1757
1758 xfered += xfered_len;
1759 QUIT;
1760 }
1761 return len;
1762}
1763
1764/* For docs on target_write see target.h. */
1765
1766LONGEST
1767target_write (struct target_ops *ops,
1768 enum target_object object,
1769 const char *annex, const gdb_byte *buf,
1770 ULONGEST offset, LONGEST len)
1771{
1772 return target_write_with_progress (ops, object, annex, buf, offset, len,
1773 NULL, NULL);
1774}
1775
1776/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1777 the size of the transferred data. PADDING additional bytes are
1778 available in *BUF_P. This is a helper function for
1779 target_read_alloc; see the declaration of that function for more
1780 information. */
1781
1782static LONGEST
1783target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1784 const char *annex, gdb_byte **buf_p, int padding)
1785{
1786 size_t buf_alloc, buf_pos;
1787 gdb_byte *buf;
1788
1789 /* This function does not have a length parameter; it reads the
1790 entire OBJECT). Also, it doesn't support objects fetched partly
1791 from one target and partly from another (in a different stratum,
1792 e.g. a core file and an executable). Both reasons make it
1793 unsuitable for reading memory. */
1794 gdb_assert (object != TARGET_OBJECT_MEMORY);
1795
1796 /* Start by reading up to 4K at a time. The target will throttle
1797 this number down if necessary. */
1798 buf_alloc = 4096;
1799 buf = xmalloc (buf_alloc);
1800 buf_pos = 0;
1801 while (1)
1802 {
1803 ULONGEST xfered_len;
1804 enum target_xfer_status status;
1805
1806 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1807 buf_pos, buf_alloc - buf_pos - padding,
1808 &xfered_len);
1809
1810 if (status == TARGET_XFER_EOF)
1811 {
1812 /* Read all there was. */
1813 if (buf_pos == 0)
1814 xfree (buf);
1815 else
1816 *buf_p = buf;
1817 return buf_pos;
1818 }
1819 else if (status != TARGET_XFER_OK)
1820 {
1821 /* An error occurred. */
1822 xfree (buf);
1823 return TARGET_XFER_E_IO;
1824 }
1825
1826 buf_pos += xfered_len;
1827
1828 /* If the buffer is filling up, expand it. */
1829 if (buf_alloc < buf_pos * 2)
1830 {
1831 buf_alloc *= 2;
1832 buf = xrealloc (buf, buf_alloc);
1833 }
1834
1835 QUIT;
1836 }
1837}
1838
1839/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1840 the size of the transferred data. See the declaration in "target.h"
1841 function for more information about the return value. */
1842
1843LONGEST
1844target_read_alloc (struct target_ops *ops, enum target_object object,
1845 const char *annex, gdb_byte **buf_p)
1846{
1847 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1848}
1849
1850/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1851 returned as a string, allocated using xmalloc. If an error occurs
1852 or the transfer is unsupported, NULL is returned. Empty objects
1853 are returned as allocated but empty strings. A warning is issued
1854 if the result contains any embedded NUL bytes. */
1855
1856char *
1857target_read_stralloc (struct target_ops *ops, enum target_object object,
1858 const char *annex)
1859{
1860 gdb_byte *buffer;
1861 char *bufstr;
1862 LONGEST i, transferred;
1863
1864 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1865 bufstr = (char *) buffer;
1866
1867 if (transferred < 0)
1868 return NULL;
1869
1870 if (transferred == 0)
1871 return xstrdup ("");
1872
1873 bufstr[transferred] = 0;
1874
1875 /* Check for embedded NUL bytes; but allow trailing NULs. */
1876 for (i = strlen (bufstr); i < transferred; i++)
1877 if (bufstr[i] != 0)
1878 {
1879 warning (_("target object %d, annex %s, "
1880 "contained unexpected null characters"),
1881 (int) object, annex ? annex : "(none)");
1882 break;
1883 }
1884
1885 return bufstr;
1886}
1887
1888/* Memory transfer methods. */
1889
1890void
1891get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1892 LONGEST len)
1893{
1894 /* This method is used to read from an alternate, non-current
1895 target. This read must bypass the overlay support (as symbols
1896 don't match this target), and GDB's internal cache (wrong cache
1897 for this target). */
1898 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1899 != len)
1900 memory_error (TARGET_XFER_E_IO, addr);
1901}
1902
1903ULONGEST
1904get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1905 int len, enum bfd_endian byte_order)
1906{
1907 gdb_byte buf[sizeof (ULONGEST)];
1908
1909 gdb_assert (len <= sizeof (buf));
1910 get_target_memory (ops, addr, buf, len);
1911 return extract_unsigned_integer (buf, len, byte_order);
1912}
1913
1914/* See target.h. */
1915
1916int
1917target_insert_breakpoint (struct gdbarch *gdbarch,
1918 struct bp_target_info *bp_tgt)
1919{
1920 if (!may_insert_breakpoints)
1921 {
1922 warning (_("May not insert breakpoints"));
1923 return 1;
1924 }
1925
1926 return current_target.to_insert_breakpoint (&current_target,
1927 gdbarch, bp_tgt);
1928}
1929
1930/* See target.h. */
1931
1932int
1933target_remove_breakpoint (struct gdbarch *gdbarch,
1934 struct bp_target_info *bp_tgt)
1935{
1936 /* This is kind of a weird case to handle, but the permission might
1937 have been changed after breakpoints were inserted - in which case
1938 we should just take the user literally and assume that any
1939 breakpoints should be left in place. */
1940 if (!may_insert_breakpoints)
1941 {
1942 warning (_("May not remove breakpoints"));
1943 return 1;
1944 }
1945
1946 return current_target.to_remove_breakpoint (&current_target,
1947 gdbarch, bp_tgt);
1948}
1949
1950static void
1951target_info (char *args, int from_tty)
1952{
1953 struct target_ops *t;
1954 int has_all_mem = 0;
1955
1956 if (symfile_objfile != NULL)
1957 printf_unfiltered (_("Symbols from \"%s\".\n"),
1958 objfile_name (symfile_objfile));
1959
1960 for (t = target_stack; t != NULL; t = t->beneath)
1961 {
1962 if (!(*t->to_has_memory) (t))
1963 continue;
1964
1965 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1966 continue;
1967 if (has_all_mem)
1968 printf_unfiltered (_("\tWhile running this, "
1969 "GDB does not access memory from...\n"));
1970 printf_unfiltered ("%s:\n", t->to_longname);
1971 (t->to_files_info) (t);
1972 has_all_mem = (*t->to_has_all_memory) (t);
1973 }
1974}
1975
1976/* This function is called before any new inferior is created, e.g.
1977 by running a program, attaching, or connecting to a target.
1978 It cleans up any state from previous invocations which might
1979 change between runs. This is a subset of what target_preopen
1980 resets (things which might change between targets). */
1981
1982void
1983target_pre_inferior (int from_tty)
1984{
1985 /* Clear out solib state. Otherwise the solib state of the previous
1986 inferior might have survived and is entirely wrong for the new
1987 target. This has been observed on GNU/Linux using glibc 2.3. How
1988 to reproduce:
1989
1990 bash$ ./foo&
1991 [1] 4711
1992 bash$ ./foo&
1993 [1] 4712
1994 bash$ gdb ./foo
1995 [...]
1996 (gdb) attach 4711
1997 (gdb) detach
1998 (gdb) attach 4712
1999 Cannot access memory at address 0xdeadbeef
2000 */
2001
2002 /* In some OSs, the shared library list is the same/global/shared
2003 across inferiors. If code is shared between processes, so are
2004 memory regions and features. */
2005 if (!gdbarch_has_global_solist (target_gdbarch ()))
2006 {
2007 no_shared_libraries (NULL, from_tty);
2008
2009 invalidate_target_mem_regions ();
2010
2011 target_clear_description ();
2012 }
2013
2014 agent_capability_invalidate ();
2015}
2016
2017/* Callback for iterate_over_inferiors. Gets rid of the given
2018 inferior. */
2019
2020static int
2021dispose_inferior (struct inferior *inf, void *args)
2022{
2023 struct thread_info *thread;
2024
2025 thread = any_thread_of_process (inf->pid);
2026 if (thread)
2027 {
2028 switch_to_thread (thread->ptid);
2029
2030 /* Core inferiors actually should be detached, not killed. */
2031 if (target_has_execution)
2032 target_kill ();
2033 else
2034 target_detach (NULL, 0);
2035 }
2036
2037 return 0;
2038}
2039
2040/* This is to be called by the open routine before it does
2041 anything. */
2042
2043void
2044target_preopen (int from_tty)
2045{
2046 dont_repeat ();
2047
2048 if (have_inferiors ())
2049 {
2050 if (!from_tty
2051 || !have_live_inferiors ()
2052 || query (_("A program is being debugged already. Kill it? ")))
2053 iterate_over_inferiors (dispose_inferior, NULL);
2054 else
2055 error (_("Program not killed."));
2056 }
2057
2058 /* Calling target_kill may remove the target from the stack. But if
2059 it doesn't (which seems like a win for UDI), remove it now. */
2060 /* Leave the exec target, though. The user may be switching from a
2061 live process to a core of the same program. */
2062 pop_all_targets_above (file_stratum);
2063
2064 target_pre_inferior (from_tty);
2065}
2066
2067/* Detach a target after doing deferred register stores. */
2068
2069void
2070target_detach (const char *args, int from_tty)
2071{
2072 struct target_ops* t;
2073
2074 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2075 /* Don't remove global breakpoints here. They're removed on
2076 disconnection from the target. */
2077 ;
2078 else
2079 /* If we're in breakpoints-always-inserted mode, have to remove
2080 them before detaching. */
2081 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2082
2083 prepare_for_detach ();
2084
2085 current_target.to_detach (&current_target, args, from_tty);
2086 if (targetdebug)
2087 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2088 args, from_tty);
2089}
2090
2091void
2092target_disconnect (const char *args, int from_tty)
2093{
2094 /* If we're in breakpoints-always-inserted mode or if breakpoints
2095 are global across processes, we have to remove them before
2096 disconnecting. */
2097 remove_breakpoints ();
2098
2099 if (targetdebug)
2100 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2101 args, from_tty);
2102 current_target.to_disconnect (&current_target, args, from_tty);
2103}
2104
2105ptid_t
2106target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2107{
2108 struct target_ops *t;
2109 ptid_t retval = (current_target.to_wait) (&current_target, ptid,
2110 status, options);
2111
2112 if (targetdebug)
2113 {
2114 char *status_string;
2115 char *options_string;
2116
2117 status_string = target_waitstatus_to_string (status);
2118 options_string = target_options_to_string (options);
2119 fprintf_unfiltered (gdb_stdlog,
2120 "target_wait (%d, status, options={%s})"
2121 " = %d, %s\n",
2122 ptid_get_pid (ptid), options_string,
2123 ptid_get_pid (retval), status_string);
2124 xfree (status_string);
2125 xfree (options_string);
2126 }
2127
2128 return retval;
2129}
2130
2131char *
2132target_pid_to_str (ptid_t ptid)
2133{
2134 return (*current_target.to_pid_to_str) (&current_target, ptid);
2135}
2136
2137char *
2138target_thread_name (struct thread_info *info)
2139{
2140 return current_target.to_thread_name (&current_target, info);
2141}
2142
2143void
2144target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2145{
2146 struct target_ops *t;
2147
2148 target_dcache_invalidate ();
2149
2150 current_target.to_resume (&current_target, ptid, step, signal);
2151 if (targetdebug)
2152 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2153 ptid_get_pid (ptid),
2154 step ? "step" : "continue",
2155 gdb_signal_to_name (signal));
2156
2157 registers_changed_ptid (ptid);
2158 /* We only set the internal executing state here. The user/frontend
2159 running state is set at a higher level. */
2160 set_executing (ptid, 1);
2161 clear_inline_frame_state (ptid);
2162}
2163
2164void
2165target_pass_signals (int numsigs, unsigned char *pass_signals)
2166{
2167 if (targetdebug)
2168 {
2169 int i;
2170
2171 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2172 numsigs);
2173
2174 for (i = 0; i < numsigs; i++)
2175 if (pass_signals[i])
2176 fprintf_unfiltered (gdb_stdlog, " %s",
2177 gdb_signal_to_name (i));
2178
2179 fprintf_unfiltered (gdb_stdlog, " })\n");
2180 }
2181
2182 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2183}
2184
2185void
2186target_program_signals (int numsigs, unsigned char *program_signals)
2187{
2188 if (targetdebug)
2189 {
2190 int i;
2191
2192 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2193 numsigs);
2194
2195 for (i = 0; i < numsigs; i++)
2196 if (program_signals[i])
2197 fprintf_unfiltered (gdb_stdlog, " %s",
2198 gdb_signal_to_name (i));
2199
2200 fprintf_unfiltered (gdb_stdlog, " })\n");
2201 }
2202
2203 (*current_target.to_program_signals) (&current_target,
2204 numsigs, program_signals);
2205}
2206
2207static int
2208default_follow_fork (struct target_ops *self, int follow_child,
2209 int detach_fork)
2210{
2211 /* Some target returned a fork event, but did not know how to follow it. */
2212 internal_error (__FILE__, __LINE__,
2213 _("could not find a target to follow fork"));
2214}
2215
2216/* Look through the list of possible targets for a target that can
2217 follow forks. */
2218
2219int
2220target_follow_fork (int follow_child, int detach_fork)
2221{
2222 int retval = current_target.to_follow_fork (&current_target,
2223 follow_child, detach_fork);
2224
2225 if (targetdebug)
2226 fprintf_unfiltered (gdb_stdlog,
2227 "target_follow_fork (%d, %d) = %d\n",
2228 follow_child, detach_fork, retval);
2229 return retval;
2230}
2231
2232static void
2233default_mourn_inferior (struct target_ops *self)
2234{
2235 internal_error (__FILE__, __LINE__,
2236 _("could not find a target to follow mourn inferior"));
2237}
2238
2239void
2240target_mourn_inferior (void)
2241{
2242 current_target.to_mourn_inferior (&current_target);
2243 if (targetdebug)
2244 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2245
2246 /* We no longer need to keep handles on any of the object files.
2247 Make sure to release them to avoid unnecessarily locking any
2248 of them while we're not actually debugging. */
2249 bfd_cache_close_all ();
2250}
2251
2252/* Look for a target which can describe architectural features, starting
2253 from TARGET. If we find one, return its description. */
2254
2255const struct target_desc *
2256target_read_description (struct target_ops *target)
2257{
2258 return target->to_read_description (target);
2259}
2260
2261/* This implements a basic search of memory, reading target memory and
2262 performing the search here (as opposed to performing the search in on the
2263 target side with, for example, gdbserver). */
2264
2265int
2266simple_search_memory (struct target_ops *ops,
2267 CORE_ADDR start_addr, ULONGEST search_space_len,
2268 const gdb_byte *pattern, ULONGEST pattern_len,
2269 CORE_ADDR *found_addrp)
2270{
2271 /* NOTE: also defined in find.c testcase. */
2272#define SEARCH_CHUNK_SIZE 16000
2273 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2274 /* Buffer to hold memory contents for searching. */
2275 gdb_byte *search_buf;
2276 unsigned search_buf_size;
2277 struct cleanup *old_cleanups;
2278
2279 search_buf_size = chunk_size + pattern_len - 1;
2280
2281 /* No point in trying to allocate a buffer larger than the search space. */
2282 if (search_space_len < search_buf_size)
2283 search_buf_size = search_space_len;
2284
2285 search_buf = malloc (search_buf_size);
2286 if (search_buf == NULL)
2287 error (_("Unable to allocate memory to perform the search."));
2288 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2289
2290 /* Prime the search buffer. */
2291
2292 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2293 search_buf, start_addr, search_buf_size) != search_buf_size)
2294 {
2295 warning (_("Unable to access %s bytes of target "
2296 "memory at %s, halting search."),
2297 pulongest (search_buf_size), hex_string (start_addr));
2298 do_cleanups (old_cleanups);
2299 return -1;
2300 }
2301
2302 /* Perform the search.
2303
2304 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2305 When we've scanned N bytes we copy the trailing bytes to the start and
2306 read in another N bytes. */
2307
2308 while (search_space_len >= pattern_len)
2309 {
2310 gdb_byte *found_ptr;
2311 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2312
2313 found_ptr = memmem (search_buf, nr_search_bytes,
2314 pattern, pattern_len);
2315
2316 if (found_ptr != NULL)
2317 {
2318 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2319
2320 *found_addrp = found_addr;
2321 do_cleanups (old_cleanups);
2322 return 1;
2323 }
2324
2325 /* Not found in this chunk, skip to next chunk. */
2326
2327 /* Don't let search_space_len wrap here, it's unsigned. */
2328 if (search_space_len >= chunk_size)
2329 search_space_len -= chunk_size;
2330 else
2331 search_space_len = 0;
2332
2333 if (search_space_len >= pattern_len)
2334 {
2335 unsigned keep_len = search_buf_size - chunk_size;
2336 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2337 int nr_to_read;
2338
2339 /* Copy the trailing part of the previous iteration to the front
2340 of the buffer for the next iteration. */
2341 gdb_assert (keep_len == pattern_len - 1);
2342 memcpy (search_buf, search_buf + chunk_size, keep_len);
2343
2344 nr_to_read = min (search_space_len - keep_len, chunk_size);
2345
2346 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2347 search_buf + keep_len, read_addr,
2348 nr_to_read) != nr_to_read)
2349 {
2350 warning (_("Unable to access %s bytes of target "
2351 "memory at %s, halting search."),
2352 plongest (nr_to_read),
2353 hex_string (read_addr));
2354 do_cleanups (old_cleanups);
2355 return -1;
2356 }
2357
2358 start_addr += chunk_size;
2359 }
2360 }
2361
2362 /* Not found. */
2363
2364 do_cleanups (old_cleanups);
2365 return 0;
2366}
2367
2368/* Default implementation of memory-searching. */
2369
2370static int
2371default_search_memory (struct target_ops *self,
2372 CORE_ADDR start_addr, ULONGEST search_space_len,
2373 const gdb_byte *pattern, ULONGEST pattern_len,
2374 CORE_ADDR *found_addrp)
2375{
2376 /* Start over from the top of the target stack. */
2377 return simple_search_memory (current_target.beneath,
2378 start_addr, search_space_len,
2379 pattern, pattern_len, found_addrp);
2380}
2381
2382/* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2383 sequence of bytes in PATTERN with length PATTERN_LEN.
2384
2385 The result is 1 if found, 0 if not found, and -1 if there was an error
2386 requiring halting of the search (e.g. memory read error).
2387 If the pattern is found the address is recorded in FOUND_ADDRP. */
2388
2389int
2390target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2391 const gdb_byte *pattern, ULONGEST pattern_len,
2392 CORE_ADDR *found_addrp)
2393{
2394 int found;
2395
2396 if (targetdebug)
2397 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2398 hex_string (start_addr));
2399
2400 found = current_target.to_search_memory (&current_target, start_addr,
2401 search_space_len,
2402 pattern, pattern_len, found_addrp);
2403
2404 if (targetdebug)
2405 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2406
2407 return found;
2408}
2409
2410/* Look through the currently pushed targets. If none of them will
2411 be able to restart the currently running process, issue an error
2412 message. */
2413
2414void
2415target_require_runnable (void)
2416{
2417 struct target_ops *t;
2418
2419 for (t = target_stack; t != NULL; t = t->beneath)
2420 {
2421 /* If this target knows how to create a new program, then
2422 assume we will still be able to after killing the current
2423 one. Either killing and mourning will not pop T, or else
2424 find_default_run_target will find it again. */
2425 if (t->to_create_inferior != NULL)
2426 return;
2427
2428 /* Do not worry about targets at certain strata that can not
2429 create inferiors. Assume they will be pushed again if
2430 necessary, and continue to the process_stratum. */
2431 if (t->to_stratum == thread_stratum
2432 || t->to_stratum == record_stratum
2433 || t->to_stratum == arch_stratum)
2434 continue;
2435
2436 error (_("The \"%s\" target does not support \"run\". "
2437 "Try \"help target\" or \"continue\"."),
2438 t->to_shortname);
2439 }
2440
2441 /* This function is only called if the target is running. In that
2442 case there should have been a process_stratum target and it
2443 should either know how to create inferiors, or not... */
2444 internal_error (__FILE__, __LINE__, _("No targets found"));
2445}
2446
2447/* Whether GDB is allowed to fall back to the default run target for
2448 "run", "attach", etc. when no target is connected yet. */
2449static int auto_connect_native_target = 1;
2450
2451static void
2452show_auto_connect_native_target (struct ui_file *file, int from_tty,
2453 struct cmd_list_element *c, const char *value)
2454{
2455 fprintf_filtered (file,
2456 _("Whether GDB may automatically connect to the "
2457 "native target is %s.\n"),
2458 value);
2459}
2460
2461/* Look through the list of possible targets for a target that can
2462 execute a run or attach command without any other data. This is
2463 used to locate the default process stratum.
2464
2465 If DO_MESG is not NULL, the result is always valid (error() is
2466 called for errors); else, return NULL on error. */
2467
2468static struct target_ops *
2469find_default_run_target (char *do_mesg)
2470{
2471 struct target_ops *runable = NULL;
2472
2473 if (auto_connect_native_target)
2474 {
2475 struct target_ops **t;
2476 int count = 0;
2477
2478 for (t = target_structs; t < target_structs + target_struct_size;
2479 ++t)
2480 {
2481 if ((*t)->to_can_run != delegate_can_run && target_can_run (*t))
2482 {
2483 runable = *t;
2484 ++count;
2485 }
2486 }
2487
2488 if (count != 1)
2489 runable = NULL;
2490 }
2491
2492 if (runable == NULL)
2493 {
2494 if (do_mesg)
2495 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2496 else
2497 return NULL;
2498 }
2499
2500 return runable;
2501}
2502
2503/* See target.h. */
2504
2505struct target_ops *
2506find_attach_target (void)
2507{
2508 struct target_ops *t;
2509
2510 /* If a target on the current stack can attach, use it. */
2511 for (t = current_target.beneath; t != NULL; t = t->beneath)
2512 {
2513 if (t->to_attach != NULL)
2514 break;
2515 }
2516
2517 /* Otherwise, use the default run target for attaching. */
2518 if (t == NULL)
2519 t = find_default_run_target ("attach");
2520
2521 return t;
2522}
2523
2524/* See target.h. */
2525
2526struct target_ops *
2527find_run_target (void)
2528{
2529 struct target_ops *t;
2530
2531 /* If a target on the current stack can attach, use it. */
2532 for (t = current_target.beneath; t != NULL; t = t->beneath)
2533 {
2534 if (t->to_create_inferior != NULL)
2535 break;
2536 }
2537
2538 /* Otherwise, use the default run target. */
2539 if (t == NULL)
2540 t = find_default_run_target ("run");
2541
2542 return t;
2543}
2544
2545/* Implement the "info proc" command. */
2546
2547int
2548target_info_proc (const char *args, enum info_proc_what what)
2549{
2550 struct target_ops *t;
2551
2552 /* If we're already connected to something that can get us OS
2553 related data, use it. Otherwise, try using the native
2554 target. */
2555 if (current_target.to_stratum >= process_stratum)
2556 t = current_target.beneath;
2557 else
2558 t = find_default_run_target (NULL);
2559
2560 for (; t != NULL; t = t->beneath)
2561 {
2562 if (t->to_info_proc != NULL)
2563 {
2564 t->to_info_proc (t, args, what);
2565
2566 if (targetdebug)
2567 fprintf_unfiltered (gdb_stdlog,
2568 "target_info_proc (\"%s\", %d)\n", args, what);
2569
2570 return 1;
2571 }
2572 }
2573
2574 return 0;
2575}
2576
2577static int
2578find_default_supports_disable_randomization (struct target_ops *self)
2579{
2580 struct target_ops *t;
2581
2582 t = find_default_run_target (NULL);
2583 if (t && t->to_supports_disable_randomization)
2584 return (t->to_supports_disable_randomization) (t);
2585 return 0;
2586}
2587
2588int
2589target_supports_disable_randomization (void)
2590{
2591 struct target_ops *t;
2592
2593 for (t = &current_target; t != NULL; t = t->beneath)
2594 if (t->to_supports_disable_randomization)
2595 return t->to_supports_disable_randomization (t);
2596
2597 return 0;
2598}
2599
2600char *
2601target_get_osdata (const char *type)
2602{
2603 struct target_ops *t;
2604
2605 /* If we're already connected to something that can get us OS
2606 related data, use it. Otherwise, try using the native
2607 target. */
2608 if (current_target.to_stratum >= process_stratum)
2609 t = current_target.beneath;
2610 else
2611 t = find_default_run_target ("get OS data");
2612
2613 if (!t)
2614 return NULL;
2615
2616 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2617}
2618
2619static struct address_space *
2620default_thread_address_space (struct target_ops *self, ptid_t ptid)
2621{
2622 struct inferior *inf;
2623
2624 /* Fall-back to the "main" address space of the inferior. */
2625 inf = find_inferior_pid (ptid_get_pid (ptid));
2626
2627 if (inf == NULL || inf->aspace == NULL)
2628 internal_error (__FILE__, __LINE__,
2629 _("Can't determine the current "
2630 "address space of thread %s\n"),
2631 target_pid_to_str (ptid));
2632
2633 return inf->aspace;
2634}
2635
2636/* Determine the current address space of thread PTID. */
2637
2638struct address_space *
2639target_thread_address_space (ptid_t ptid)
2640{
2641 struct address_space *aspace;
2642
2643 aspace = current_target.to_thread_address_space (&current_target, ptid);
2644 gdb_assert (aspace != NULL);
2645
2646 if (targetdebug)
2647 fprintf_unfiltered (gdb_stdlog,
2648 "target_thread_address_space (%s) = %d\n",
2649 target_pid_to_str (ptid),
2650 address_space_num (aspace));
2651
2652 return aspace;
2653}
2654
2655
2656/* Target file operations. */
2657
2658static struct target_ops *
2659default_fileio_target (void)
2660{
2661 /* If we're already connected to something that can perform
2662 file I/O, use it. Otherwise, try using the native target. */
2663 if (current_target.to_stratum >= process_stratum)
2664 return current_target.beneath;
2665 else
2666 return find_default_run_target ("file I/O");
2667}
2668
2669/* Open FILENAME on the target, using FLAGS and MODE. Return a
2670 target file descriptor, or -1 if an error occurs (and set
2671 *TARGET_ERRNO). */
2672int
2673target_fileio_open (const char *filename, int flags, int mode,
2674 int *target_errno)
2675{
2676 struct target_ops *t;
2677
2678 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2679 {
2680 if (t->to_fileio_open != NULL)
2681 {
2682 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
2683
2684 if (targetdebug)
2685 fprintf_unfiltered (gdb_stdlog,
2686 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
2687 filename, flags, mode,
2688 fd, fd != -1 ? 0 : *target_errno);
2689 return fd;
2690 }
2691 }
2692
2693 *target_errno = FILEIO_ENOSYS;
2694 return -1;
2695}
2696
2697/* Write up to LEN bytes from WRITE_BUF to FD on the target.
2698 Return the number of bytes written, or -1 if an error occurs
2699 (and set *TARGET_ERRNO). */
2700int
2701target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2702 ULONGEST offset, int *target_errno)
2703{
2704 struct target_ops *t;
2705
2706 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2707 {
2708 if (t->to_fileio_pwrite != NULL)
2709 {
2710 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
2711 target_errno);
2712
2713 if (targetdebug)
2714 fprintf_unfiltered (gdb_stdlog,
2715 "target_fileio_pwrite (%d,...,%d,%s) "
2716 "= %d (%d)\n",
2717 fd, len, pulongest (offset),
2718 ret, ret != -1 ? 0 : *target_errno);
2719 return ret;
2720 }
2721 }
2722
2723 *target_errno = FILEIO_ENOSYS;
2724 return -1;
2725}
2726
2727/* Read up to LEN bytes FD on the target into READ_BUF.
2728 Return the number of bytes read, or -1 if an error occurs
2729 (and set *TARGET_ERRNO). */
2730int
2731target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2732 ULONGEST offset, int *target_errno)
2733{
2734 struct target_ops *t;
2735
2736 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2737 {
2738 if (t->to_fileio_pread != NULL)
2739 {
2740 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
2741 target_errno);
2742
2743 if (targetdebug)
2744 fprintf_unfiltered (gdb_stdlog,
2745 "target_fileio_pread (%d,...,%d,%s) "
2746 "= %d (%d)\n",
2747 fd, len, pulongest (offset),
2748 ret, ret != -1 ? 0 : *target_errno);
2749 return ret;
2750 }
2751 }
2752
2753 *target_errno = FILEIO_ENOSYS;
2754 return -1;
2755}
2756
2757/* Close FD on the target. Return 0, or -1 if an error occurs
2758 (and set *TARGET_ERRNO). */
2759int
2760target_fileio_close (int fd, int *target_errno)
2761{
2762 struct target_ops *t;
2763
2764 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2765 {
2766 if (t->to_fileio_close != NULL)
2767 {
2768 int ret = t->to_fileio_close (t, fd, target_errno);
2769
2770 if (targetdebug)
2771 fprintf_unfiltered (gdb_stdlog,
2772 "target_fileio_close (%d) = %d (%d)\n",
2773 fd, ret, ret != -1 ? 0 : *target_errno);
2774 return ret;
2775 }
2776 }
2777
2778 *target_errno = FILEIO_ENOSYS;
2779 return -1;
2780}
2781
2782/* Unlink FILENAME on the target. Return 0, or -1 if an error
2783 occurs (and set *TARGET_ERRNO). */
2784int
2785target_fileio_unlink (const char *filename, int *target_errno)
2786{
2787 struct target_ops *t;
2788
2789 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2790 {
2791 if (t->to_fileio_unlink != NULL)
2792 {
2793 int ret = t->to_fileio_unlink (t, filename, target_errno);
2794
2795 if (targetdebug)
2796 fprintf_unfiltered (gdb_stdlog,
2797 "target_fileio_unlink (%s) = %d (%d)\n",
2798 filename, ret, ret != -1 ? 0 : *target_errno);
2799 return ret;
2800 }
2801 }
2802
2803 *target_errno = FILEIO_ENOSYS;
2804 return -1;
2805}
2806
2807/* Read value of symbolic link FILENAME on the target. Return a
2808 null-terminated string allocated via xmalloc, or NULL if an error
2809 occurs (and set *TARGET_ERRNO). */
2810char *
2811target_fileio_readlink (const char *filename, int *target_errno)
2812{
2813 struct target_ops *t;
2814
2815 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2816 {
2817 if (t->to_fileio_readlink != NULL)
2818 {
2819 char *ret = t->to_fileio_readlink (t, filename, target_errno);
2820
2821 if (targetdebug)
2822 fprintf_unfiltered (gdb_stdlog,
2823 "target_fileio_readlink (%s) = %s (%d)\n",
2824 filename, ret? ret : "(nil)",
2825 ret? 0 : *target_errno);
2826 return ret;
2827 }
2828 }
2829
2830 *target_errno = FILEIO_ENOSYS;
2831 return NULL;
2832}
2833
2834static void
2835target_fileio_close_cleanup (void *opaque)
2836{
2837 int fd = *(int *) opaque;
2838 int target_errno;
2839
2840 target_fileio_close (fd, &target_errno);
2841}
2842
2843/* Read target file FILENAME. Store the result in *BUF_P and
2844 return the size of the transferred data. PADDING additional bytes are
2845 available in *BUF_P. This is a helper function for
2846 target_fileio_read_alloc; see the declaration of that function for more
2847 information. */
2848
2849static LONGEST
2850target_fileio_read_alloc_1 (const char *filename,
2851 gdb_byte **buf_p, int padding)
2852{
2853 struct cleanup *close_cleanup;
2854 size_t buf_alloc, buf_pos;
2855 gdb_byte *buf;
2856 LONGEST n;
2857 int fd;
2858 int target_errno;
2859
2860 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
2861 if (fd == -1)
2862 return -1;
2863
2864 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2865
2866 /* Start by reading up to 4K at a time. The target will throttle
2867 this number down if necessary. */
2868 buf_alloc = 4096;
2869 buf = xmalloc (buf_alloc);
2870 buf_pos = 0;
2871 while (1)
2872 {
2873 n = target_fileio_pread (fd, &buf[buf_pos],
2874 buf_alloc - buf_pos - padding, buf_pos,
2875 &target_errno);
2876 if (n < 0)
2877 {
2878 /* An error occurred. */
2879 do_cleanups (close_cleanup);
2880 xfree (buf);
2881 return -1;
2882 }
2883 else if (n == 0)
2884 {
2885 /* Read all there was. */
2886 do_cleanups (close_cleanup);
2887 if (buf_pos == 0)
2888 xfree (buf);
2889 else
2890 *buf_p = buf;
2891 return buf_pos;
2892 }
2893
2894 buf_pos += n;
2895
2896 /* If the buffer is filling up, expand it. */
2897 if (buf_alloc < buf_pos * 2)
2898 {
2899 buf_alloc *= 2;
2900 buf = xrealloc (buf, buf_alloc);
2901 }
2902
2903 QUIT;
2904 }
2905}
2906
2907/* Read target file FILENAME. Store the result in *BUF_P and return
2908 the size of the transferred data. See the declaration in "target.h"
2909 function for more information about the return value. */
2910
2911LONGEST
2912target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
2913{
2914 return target_fileio_read_alloc_1 (filename, buf_p, 0);
2915}
2916
2917/* Read target file FILENAME. The result is NUL-terminated and
2918 returned as a string, allocated using xmalloc. If an error occurs
2919 or the transfer is unsupported, NULL is returned. Empty objects
2920 are returned as allocated but empty strings. A warning is issued
2921 if the result contains any embedded NUL bytes. */
2922
2923char *
2924target_fileio_read_stralloc (const char *filename)
2925{
2926 gdb_byte *buffer;
2927 char *bufstr;
2928 LONGEST i, transferred;
2929
2930 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
2931 bufstr = (char *) buffer;
2932
2933 if (transferred < 0)
2934 return NULL;
2935
2936 if (transferred == 0)
2937 return xstrdup ("");
2938
2939 bufstr[transferred] = 0;
2940
2941 /* Check for embedded NUL bytes; but allow trailing NULs. */
2942 for (i = strlen (bufstr); i < transferred; i++)
2943 if (bufstr[i] != 0)
2944 {
2945 warning (_("target file %s "
2946 "contained unexpected null characters"),
2947 filename);
2948 break;
2949 }
2950
2951 return bufstr;
2952}
2953
2954
2955static int
2956default_region_ok_for_hw_watchpoint (struct target_ops *self,
2957 CORE_ADDR addr, int len)
2958{
2959 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
2960}
2961
2962static int
2963default_watchpoint_addr_within_range (struct target_ops *target,
2964 CORE_ADDR addr,
2965 CORE_ADDR start, int length)
2966{
2967 return addr >= start && addr < start + length;
2968}
2969
2970static struct gdbarch *
2971default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2972{
2973 return target_gdbarch ();
2974}
2975
2976static int
2977return_zero (struct target_ops *ignore)
2978{
2979 return 0;
2980}
2981
2982static int
2983return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
2984{
2985 return 0;
2986}
2987
2988/*
2989 * Find the next target down the stack from the specified target.
2990 */
2991
2992struct target_ops *
2993find_target_beneath (struct target_ops *t)
2994{
2995 return t->beneath;
2996}
2997
2998/* See target.h. */
2999
3000struct target_ops *
3001find_target_at (enum strata stratum)
3002{
3003 struct target_ops *t;
3004
3005 for (t = current_target.beneath; t != NULL; t = t->beneath)
3006 if (t->to_stratum == stratum)
3007 return t;
3008
3009 return NULL;
3010}
3011
3012\f
3013/* The inferior process has died. Long live the inferior! */
3014
3015void
3016generic_mourn_inferior (void)
3017{
3018 ptid_t ptid;
3019
3020 ptid = inferior_ptid;
3021 inferior_ptid = null_ptid;
3022
3023 /* Mark breakpoints uninserted in case something tries to delete a
3024 breakpoint while we delete the inferior's threads (which would
3025 fail, since the inferior is long gone). */
3026 mark_breakpoints_out ();
3027
3028 if (!ptid_equal (ptid, null_ptid))
3029 {
3030 int pid = ptid_get_pid (ptid);
3031 exit_inferior (pid);
3032 }
3033
3034 /* Note this wipes step-resume breakpoints, so needs to be done
3035 after exit_inferior, which ends up referencing the step-resume
3036 breakpoints through clear_thread_inferior_resources. */
3037 breakpoint_init_inferior (inf_exited);
3038
3039 registers_changed ();
3040
3041 reopen_exec_file ();
3042 reinit_frame_cache ();
3043
3044 if (deprecated_detach_hook)
3045 deprecated_detach_hook ();
3046}
3047\f
3048/* Convert a normal process ID to a string. Returns the string in a
3049 static buffer. */
3050
3051char *
3052normal_pid_to_str (ptid_t ptid)
3053{
3054 static char buf[32];
3055
3056 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3057 return buf;
3058}
3059
3060static char *
3061default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3062{
3063 return normal_pid_to_str (ptid);
3064}
3065
3066/* Error-catcher for target_find_memory_regions. */
3067static int
3068dummy_find_memory_regions (struct target_ops *self,
3069 find_memory_region_ftype ignore1, void *ignore2)
3070{
3071 error (_("Command not implemented for this target."));
3072 return 0;
3073}
3074
3075/* Error-catcher for target_make_corefile_notes. */
3076static char *
3077dummy_make_corefile_notes (struct target_ops *self,
3078 bfd *ignore1, int *ignore2)
3079{
3080 error (_("Command not implemented for this target."));
3081 return NULL;
3082}
3083
3084/* Set up the handful of non-empty slots needed by the dummy target
3085 vector. */
3086
3087static void
3088init_dummy_target (void)
3089{
3090 dummy_target.to_shortname = "None";
3091 dummy_target.to_longname = "None";
3092 dummy_target.to_doc = "";
3093 dummy_target.to_supports_disable_randomization
3094 = find_default_supports_disable_randomization;
3095 dummy_target.to_stratum = dummy_stratum;
3096 dummy_target.to_has_all_memory = return_zero;
3097 dummy_target.to_has_memory = return_zero;
3098 dummy_target.to_has_stack = return_zero;
3099 dummy_target.to_has_registers = return_zero;
3100 dummy_target.to_has_execution = return_zero_has_execution;
3101 dummy_target.to_magic = OPS_MAGIC;
3102
3103 install_dummy_methods (&dummy_target);
3104}
3105\f
3106static void
3107debug_to_open (char *args, int from_tty)
3108{
3109 debug_target.to_open (args, from_tty);
3110
3111 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3112}
3113
3114void
3115target_close (struct target_ops *targ)
3116{
3117 gdb_assert (!target_is_pushed (targ));
3118
3119 if (targ->to_xclose != NULL)
3120 targ->to_xclose (targ);
3121 else if (targ->to_close != NULL)
3122 targ->to_close (targ);
3123
3124 if (targetdebug)
3125 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3126}
3127
3128int
3129target_thread_alive (ptid_t ptid)
3130{
3131 int retval;
3132
3133 retval = current_target.to_thread_alive (&current_target, ptid);
3134 if (targetdebug)
3135 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3136 ptid_get_pid (ptid), retval);
3137
3138 return retval;
3139}
3140
3141void
3142target_find_new_threads (void)
3143{
3144 current_target.to_find_new_threads (&current_target);
3145 if (targetdebug)
3146 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3147}
3148
3149void
3150target_stop (ptid_t ptid)
3151{
3152 if (!may_stop)
3153 {
3154 warning (_("May not interrupt or stop the target, ignoring attempt"));
3155 return;
3156 }
3157
3158 (*current_target.to_stop) (&current_target, ptid);
3159}
3160
3161static void
3162debug_to_post_attach (struct target_ops *self, int pid)
3163{
3164 debug_target.to_post_attach (&debug_target, pid);
3165
3166 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3167}
3168
3169/* Concatenate ELEM to LIST, a comma separate list, and return the
3170 result. The LIST incoming argument is released. */
3171
3172static char *
3173str_comma_list_concat_elem (char *list, const char *elem)
3174{
3175 if (list == NULL)
3176 return xstrdup (elem);
3177 else
3178 return reconcat (list, list, ", ", elem, (char *) NULL);
3179}
3180
3181/* Helper for target_options_to_string. If OPT is present in
3182 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3183 Returns the new resulting string. OPT is removed from
3184 TARGET_OPTIONS. */
3185
3186static char *
3187do_option (int *target_options, char *ret,
3188 int opt, char *opt_str)
3189{
3190 if ((*target_options & opt) != 0)
3191 {
3192 ret = str_comma_list_concat_elem (ret, opt_str);
3193 *target_options &= ~opt;
3194 }
3195
3196 return ret;
3197}
3198
3199char *
3200target_options_to_string (int target_options)
3201{
3202 char *ret = NULL;
3203
3204#define DO_TARG_OPTION(OPT) \
3205 ret = do_option (&target_options, ret, OPT, #OPT)
3206
3207 DO_TARG_OPTION (TARGET_WNOHANG);
3208
3209 if (target_options != 0)
3210 ret = str_comma_list_concat_elem (ret, "unknown???");
3211
3212 if (ret == NULL)
3213 ret = xstrdup ("");
3214 return ret;
3215}
3216
3217static void
3218debug_print_register (const char * func,
3219 struct regcache *regcache, int regno)
3220{
3221 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3222
3223 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3224 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3225 && gdbarch_register_name (gdbarch, regno) != NULL
3226 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3227 fprintf_unfiltered (gdb_stdlog, "(%s)",
3228 gdbarch_register_name (gdbarch, regno));
3229 else
3230 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3231 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3232 {
3233 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3234 int i, size = register_size (gdbarch, regno);
3235 gdb_byte buf[MAX_REGISTER_SIZE];
3236
3237 regcache_raw_collect (regcache, regno, buf);
3238 fprintf_unfiltered (gdb_stdlog, " = ");
3239 for (i = 0; i < size; i++)
3240 {
3241 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3242 }
3243 if (size <= sizeof (LONGEST))
3244 {
3245 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3246
3247 fprintf_unfiltered (gdb_stdlog, " %s %s",
3248 core_addr_to_string_nz (val), plongest (val));
3249 }
3250 }
3251 fprintf_unfiltered (gdb_stdlog, "\n");
3252}
3253
3254void
3255target_fetch_registers (struct regcache *regcache, int regno)
3256{
3257 current_target.to_fetch_registers (&current_target, regcache, regno);
3258 if (targetdebug)
3259 debug_print_register ("target_fetch_registers", regcache, regno);
3260}
3261
3262void
3263target_store_registers (struct regcache *regcache, int regno)
3264{
3265 struct target_ops *t;
3266
3267 if (!may_write_registers)
3268 error (_("Writing to registers is not allowed (regno %d)"), regno);
3269
3270 current_target.to_store_registers (&current_target, regcache, regno);
3271 if (targetdebug)
3272 {
3273 debug_print_register ("target_store_registers", regcache, regno);
3274 }
3275}
3276
3277int
3278target_core_of_thread (ptid_t ptid)
3279{
3280 int retval = current_target.to_core_of_thread (&current_target, ptid);
3281
3282 if (targetdebug)
3283 fprintf_unfiltered (gdb_stdlog,
3284 "target_core_of_thread (%d) = %d\n",
3285 ptid_get_pid (ptid), retval);
3286 return retval;
3287}
3288
3289int
3290simple_verify_memory (struct target_ops *ops,
3291 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3292{
3293 LONGEST total_xfered = 0;
3294
3295 while (total_xfered < size)
3296 {
3297 ULONGEST xfered_len;
3298 enum target_xfer_status status;
3299 gdb_byte buf[1024];
3300 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3301
3302 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3303 buf, NULL, lma + total_xfered, howmuch,
3304 &xfered_len);
3305 if (status == TARGET_XFER_OK
3306 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3307 {
3308 total_xfered += xfered_len;
3309 QUIT;
3310 }
3311 else
3312 return 0;
3313 }
3314 return 1;
3315}
3316
3317/* Default implementation of memory verification. */
3318
3319static int
3320default_verify_memory (struct target_ops *self,
3321 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3322{
3323 /* Start over from the top of the target stack. */
3324 return simple_verify_memory (current_target.beneath,
3325 data, memaddr, size);
3326}
3327
3328int
3329target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3330{
3331 int retval = current_target.to_verify_memory (&current_target,
3332 data, memaddr, size);
3333
3334 if (targetdebug)
3335 fprintf_unfiltered (gdb_stdlog,
3336 "target_verify_memory (%s, %s) = %d\n",
3337 paddress (target_gdbarch (), memaddr),
3338 pulongest (size),
3339 retval);
3340 return retval;
3341}
3342
3343/* The documentation for this function is in its prototype declaration in
3344 target.h. */
3345
3346int
3347target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3348{
3349 int ret;
3350
3351 ret = current_target.to_insert_mask_watchpoint (&current_target,
3352 addr, mask, rw);
3353
3354 if (targetdebug)
3355 fprintf_unfiltered (gdb_stdlog, "\
3356target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
3357 core_addr_to_string (addr),
3358 core_addr_to_string (mask), rw, ret);
3359
3360 return ret;
3361}
3362
3363/* The documentation for this function is in its prototype declaration in
3364 target.h. */
3365
3366int
3367target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3368{
3369 int ret;
3370
3371 ret = current_target.to_remove_mask_watchpoint (&current_target,
3372 addr, mask, rw);
3373
3374 if (targetdebug)
3375 fprintf_unfiltered (gdb_stdlog, "\
3376target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
3377 core_addr_to_string (addr),
3378 core_addr_to_string (mask), rw, ret);
3379
3380 return ret;
3381}
3382
3383/* The documentation for this function is in its prototype declaration
3384 in target.h. */
3385
3386int
3387target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3388{
3389 return current_target.to_masked_watch_num_registers (&current_target,
3390 addr, mask);
3391}
3392
3393/* The documentation for this function is in its prototype declaration
3394 in target.h. */
3395
3396int
3397target_ranged_break_num_registers (void)
3398{
3399 return current_target.to_ranged_break_num_registers (&current_target);
3400}
3401
3402/* See target.h. */
3403
3404struct btrace_target_info *
3405target_enable_btrace (ptid_t ptid)
3406{
3407 return current_target.to_enable_btrace (&current_target, ptid);
3408}
3409
3410/* See target.h. */
3411
3412void
3413target_disable_btrace (struct btrace_target_info *btinfo)
3414{
3415 current_target.to_disable_btrace (&current_target, btinfo);
3416}
3417
3418/* See target.h. */
3419
3420void
3421target_teardown_btrace (struct btrace_target_info *btinfo)
3422{
3423 current_target.to_teardown_btrace (&current_target, btinfo);
3424}
3425
3426/* See target.h. */
3427
3428enum btrace_error
3429target_read_btrace (VEC (btrace_block_s) **btrace,
3430 struct btrace_target_info *btinfo,
3431 enum btrace_read_type type)
3432{
3433 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3434}
3435
3436/* See target.h. */
3437
3438void
3439target_stop_recording (void)
3440{
3441 current_target.to_stop_recording (&current_target);
3442}
3443
3444/* See target.h. */
3445
3446void
3447target_save_record (const char *filename)
3448{
3449 current_target.to_save_record (&current_target, filename);
3450}
3451
3452/* See target.h. */
3453
3454int
3455target_supports_delete_record (void)
3456{
3457 struct target_ops *t;
3458
3459 for (t = current_target.beneath; t != NULL; t = t->beneath)
3460 if (t->to_delete_record != NULL)
3461 return 1;
3462
3463 return 0;
3464}
3465
3466/* See target.h. */
3467
3468void
3469target_delete_record (void)
3470{
3471 current_target.to_delete_record (&current_target);
3472}
3473
3474/* See target.h. */
3475
3476int
3477target_record_is_replaying (void)
3478{
3479 return current_target.to_record_is_replaying (&current_target);
3480}
3481
3482/* See target.h. */
3483
3484void
3485target_goto_record_begin (void)
3486{
3487 current_target.to_goto_record_begin (&current_target);
3488}
3489
3490/* See target.h. */
3491
3492void
3493target_goto_record_end (void)
3494{
3495 current_target.to_goto_record_end (&current_target);
3496}
3497
3498/* See target.h. */
3499
3500void
3501target_goto_record (ULONGEST insn)
3502{
3503 current_target.to_goto_record (&current_target, insn);
3504}
3505
3506/* See target.h. */
3507
3508void
3509target_insn_history (int size, int flags)
3510{
3511 current_target.to_insn_history (&current_target, size, flags);
3512}
3513
3514/* See target.h. */
3515
3516void
3517target_insn_history_from (ULONGEST from, int size, int flags)
3518{
3519 current_target.to_insn_history_from (&current_target, from, size, flags);
3520}
3521
3522/* See target.h. */
3523
3524void
3525target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3526{
3527 current_target.to_insn_history_range (&current_target, begin, end, flags);
3528}
3529
3530/* See target.h. */
3531
3532void
3533target_call_history (int size, int flags)
3534{
3535 current_target.to_call_history (&current_target, size, flags);
3536}
3537
3538/* See target.h. */
3539
3540void
3541target_call_history_from (ULONGEST begin, int size, int flags)
3542{
3543 current_target.to_call_history_from (&current_target, begin, size, flags);
3544}
3545
3546/* See target.h. */
3547
3548void
3549target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3550{
3551 current_target.to_call_history_range (&current_target, begin, end, flags);
3552}
3553
3554static void
3555debug_to_prepare_to_store (struct target_ops *self, struct regcache *regcache)
3556{
3557 debug_target.to_prepare_to_store (&debug_target, regcache);
3558
3559 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
3560}
3561
3562/* See target.h. */
3563
3564const struct frame_unwind *
3565target_get_unwinder (void)
3566{
3567 return current_target.to_get_unwinder (&current_target);
3568}
3569
3570/* See target.h. */
3571
3572const struct frame_unwind *
3573target_get_tailcall_unwinder (void)
3574{
3575 return current_target.to_get_tailcall_unwinder (&current_target);
3576}
3577
3578/* Default implementation of to_decr_pc_after_break. */
3579
3580static CORE_ADDR
3581default_target_decr_pc_after_break (struct target_ops *ops,
3582 struct gdbarch *gdbarch)
3583{
3584 return gdbarch_decr_pc_after_break (gdbarch);
3585}
3586
3587/* See target.h. */
3588
3589CORE_ADDR
3590target_decr_pc_after_break (struct gdbarch *gdbarch)
3591{
3592 return current_target.to_decr_pc_after_break (&current_target, gdbarch);
3593}
3594
3595/* See target.h. */
3596
3597void
3598target_prepare_to_generate_core (void)
3599{
3600 current_target.to_prepare_to_generate_core (&current_target);
3601}
3602
3603/* See target.h. */
3604
3605void
3606target_done_generating_core (void)
3607{
3608 current_target.to_done_generating_core (&current_target);
3609}
3610
3611static void
3612debug_to_files_info (struct target_ops *target)
3613{
3614 debug_target.to_files_info (target);
3615
3616 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
3617}
3618
3619static int
3620debug_to_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
3621 struct bp_target_info *bp_tgt)
3622{
3623 int retval;
3624
3625 retval = debug_target.to_insert_breakpoint (&debug_target, gdbarch, bp_tgt);
3626
3627 fprintf_unfiltered (gdb_stdlog,
3628 "target_insert_breakpoint (%s, xxx) = %ld\n",
3629 core_addr_to_string (bp_tgt->placed_address),
3630 (unsigned long) retval);
3631 return retval;
3632}
3633
3634static int
3635debug_to_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
3636 struct bp_target_info *bp_tgt)
3637{
3638 int retval;
3639
3640 retval = debug_target.to_remove_breakpoint (&debug_target, gdbarch, bp_tgt);
3641
3642 fprintf_unfiltered (gdb_stdlog,
3643 "target_remove_breakpoint (%s, xxx) = %ld\n",
3644 core_addr_to_string (bp_tgt->placed_address),
3645 (unsigned long) retval);
3646 return retval;
3647}
3648
3649static int
3650debug_to_can_use_hw_breakpoint (struct target_ops *self,
3651 int type, int cnt, int from_tty)
3652{
3653 int retval;
3654
3655 retval = debug_target.to_can_use_hw_breakpoint (&debug_target,
3656 type, cnt, from_tty);
3657
3658 fprintf_unfiltered (gdb_stdlog,
3659 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
3660 (unsigned long) type,
3661 (unsigned long) cnt,
3662 (unsigned long) from_tty,
3663 (unsigned long) retval);
3664 return retval;
3665}
3666
3667static int
3668debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
3669 CORE_ADDR addr, int len)
3670{
3671 CORE_ADDR retval;
3672
3673 retval = debug_target.to_region_ok_for_hw_watchpoint (&debug_target,
3674 addr, len);
3675
3676 fprintf_unfiltered (gdb_stdlog,
3677 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
3678 core_addr_to_string (addr), (unsigned long) len,
3679 core_addr_to_string (retval));
3680 return retval;
3681}
3682
3683static int
3684debug_to_can_accel_watchpoint_condition (struct target_ops *self,
3685 CORE_ADDR addr, int len, int rw,
3686 struct expression *cond)
3687{
3688 int retval;
3689
3690 retval = debug_target.to_can_accel_watchpoint_condition (&debug_target,
3691 addr, len,
3692 rw, cond);
3693
3694 fprintf_unfiltered (gdb_stdlog,
3695 "target_can_accel_watchpoint_condition "
3696 "(%s, %d, %d, %s) = %ld\n",
3697 core_addr_to_string (addr), len, rw,
3698 host_address_to_string (cond), (unsigned long) retval);
3699 return retval;
3700}
3701
3702static int
3703debug_to_stopped_by_watchpoint (struct target_ops *ops)
3704{
3705 int retval;
3706
3707 retval = debug_target.to_stopped_by_watchpoint (&debug_target);
3708
3709 fprintf_unfiltered (gdb_stdlog,
3710 "target_stopped_by_watchpoint () = %ld\n",
3711 (unsigned long) retval);
3712 return retval;
3713}
3714
3715static int
3716debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
3717{
3718 int retval;
3719
3720 retval = debug_target.to_stopped_data_address (target, addr);
3721
3722 fprintf_unfiltered (gdb_stdlog,
3723 "target_stopped_data_address ([%s]) = %ld\n",
3724 core_addr_to_string (*addr),
3725 (unsigned long)retval);
3726 return retval;
3727}
3728
3729static int
3730debug_to_watchpoint_addr_within_range (struct target_ops *target,
3731 CORE_ADDR addr,
3732 CORE_ADDR start, int length)
3733{
3734 int retval;
3735
3736 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
3737 start, length);
3738
3739 fprintf_filtered (gdb_stdlog,
3740 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
3741 core_addr_to_string (addr), core_addr_to_string (start),
3742 length, retval);
3743 return retval;
3744}
3745
3746static int
3747debug_to_insert_hw_breakpoint (struct target_ops *self,
3748 struct gdbarch *gdbarch,
3749 struct bp_target_info *bp_tgt)
3750{
3751 int retval;
3752
3753 retval = debug_target.to_insert_hw_breakpoint (&debug_target,
3754 gdbarch, bp_tgt);
3755
3756 fprintf_unfiltered (gdb_stdlog,
3757 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
3758 core_addr_to_string (bp_tgt->placed_address),
3759 (unsigned long) retval);
3760 return retval;
3761}
3762
3763static int
3764debug_to_remove_hw_breakpoint (struct target_ops *self,
3765 struct gdbarch *gdbarch,
3766 struct bp_target_info *bp_tgt)
3767{
3768 int retval;
3769
3770 retval = debug_target.to_remove_hw_breakpoint (&debug_target,
3771 gdbarch, bp_tgt);
3772
3773 fprintf_unfiltered (gdb_stdlog,
3774 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
3775 core_addr_to_string (bp_tgt->placed_address),
3776 (unsigned long) retval);
3777 return retval;
3778}
3779
3780static int
3781debug_to_insert_watchpoint (struct target_ops *self,
3782 CORE_ADDR addr, int len, int type,
3783 struct expression *cond)
3784{
3785 int retval;
3786
3787 retval = debug_target.to_insert_watchpoint (&debug_target,
3788 addr, len, type, cond);
3789
3790 fprintf_unfiltered (gdb_stdlog,
3791 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
3792 core_addr_to_string (addr), len, type,
3793 host_address_to_string (cond), (unsigned long) retval);
3794 return retval;
3795}
3796
3797static int
3798debug_to_remove_watchpoint (struct target_ops *self,
3799 CORE_ADDR addr, int len, int type,
3800 struct expression *cond)
3801{
3802 int retval;
3803
3804 retval = debug_target.to_remove_watchpoint (&debug_target,
3805 addr, len, type, cond);
3806
3807 fprintf_unfiltered (gdb_stdlog,
3808 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
3809 core_addr_to_string (addr), len, type,
3810 host_address_to_string (cond), (unsigned long) retval);
3811 return retval;
3812}
3813
3814static void
3815debug_to_terminal_init (struct target_ops *self)
3816{
3817 debug_target.to_terminal_init (&debug_target);
3818
3819 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
3820}
3821
3822static void
3823debug_to_terminal_inferior (struct target_ops *self)
3824{
3825 debug_target.to_terminal_inferior (&debug_target);
3826
3827 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
3828}
3829
3830static void
3831debug_to_terminal_ours_for_output (struct target_ops *self)
3832{
3833 debug_target.to_terminal_ours_for_output (&debug_target);
3834
3835 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
3836}
3837
3838static void
3839debug_to_terminal_ours (struct target_ops *self)
3840{
3841 debug_target.to_terminal_ours (&debug_target);
3842
3843 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
3844}
3845
3846static void
3847debug_to_terminal_save_ours (struct target_ops *self)
3848{
3849 debug_target.to_terminal_save_ours (&debug_target);
3850
3851 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
3852}
3853
3854static void
3855debug_to_terminal_info (struct target_ops *self,
3856 const char *arg, int from_tty)
3857{
3858 debug_target.to_terminal_info (&debug_target, arg, from_tty);
3859
3860 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
3861 from_tty);
3862}
3863
3864static void
3865debug_to_load (struct target_ops *self, const char *args, int from_tty)
3866{
3867 debug_target.to_load (&debug_target, args, from_tty);
3868
3869 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
3870}
3871
3872static void
3873debug_to_post_startup_inferior (struct target_ops *self, ptid_t ptid)
3874{
3875 debug_target.to_post_startup_inferior (&debug_target, ptid);
3876
3877 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3878 ptid_get_pid (ptid));
3879}
3880
3881static int
3882debug_to_insert_fork_catchpoint (struct target_ops *self, int pid)
3883{
3884 int retval;
3885
3886 retval = debug_target.to_insert_fork_catchpoint (&debug_target, pid);
3887
3888 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
3889 pid, retval);
3890
3891 return retval;
3892}
3893
3894static int
3895debug_to_remove_fork_catchpoint (struct target_ops *self, int pid)
3896{
3897 int retval;
3898
3899 retval = debug_target.to_remove_fork_catchpoint (&debug_target, pid);
3900
3901 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3902 pid, retval);
3903
3904 return retval;
3905}
3906
3907static int
3908debug_to_insert_vfork_catchpoint (struct target_ops *self, int pid)
3909{
3910 int retval;
3911
3912 retval = debug_target.to_insert_vfork_catchpoint (&debug_target, pid);
3913
3914 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
3915 pid, retval);
3916
3917 return retval;
3918}
3919
3920static int
3921debug_to_remove_vfork_catchpoint (struct target_ops *self, int pid)
3922{
3923 int retval;
3924
3925 retval = debug_target.to_remove_vfork_catchpoint (&debug_target, pid);
3926
3927 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
3928 pid, retval);
3929
3930 return retval;
3931}
3932
3933static int
3934debug_to_insert_exec_catchpoint (struct target_ops *self, int pid)
3935{
3936 int retval;
3937
3938 retval = debug_target.to_insert_exec_catchpoint (&debug_target, pid);
3939
3940 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
3941 pid, retval);
3942
3943 return retval;
3944}
3945
3946static int
3947debug_to_remove_exec_catchpoint (struct target_ops *self, int pid)
3948{
3949 int retval;
3950
3951 retval = debug_target.to_remove_exec_catchpoint (&debug_target, pid);
3952
3953 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
3954 pid, retval);
3955
3956 return retval;
3957}
3958
3959static int
3960debug_to_has_exited (struct target_ops *self,
3961 int pid, int wait_status, int *exit_status)
3962{
3963 int has_exited;
3964
3965 has_exited = debug_target.to_has_exited (&debug_target,
3966 pid, wait_status, exit_status);
3967
3968 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3969 pid, wait_status, *exit_status, has_exited);
3970
3971 return has_exited;
3972}
3973
3974static int
3975debug_to_can_run (struct target_ops *self)
3976{
3977 int retval;
3978
3979 retval = debug_target.to_can_run (&debug_target);
3980
3981 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3982
3983 return retval;
3984}
3985
3986static struct gdbarch *
3987debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
3988{
3989 struct gdbarch *retval;
3990
3991 retval = debug_target.to_thread_architecture (ops, ptid);
3992
3993 fprintf_unfiltered (gdb_stdlog,
3994 "target_thread_architecture (%s) = %s [%s]\n",
3995 target_pid_to_str (ptid),
3996 host_address_to_string (retval),
3997 gdbarch_bfd_arch_info (retval)->printable_name);
3998 return retval;
3999}
4000
4001static void
4002debug_to_stop (struct target_ops *self, ptid_t ptid)
4003{
4004 debug_target.to_stop (&debug_target, ptid);
4005
4006 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4007 target_pid_to_str (ptid));
4008}
4009
4010static void
4011debug_to_rcmd (struct target_ops *self, const char *command,
4012 struct ui_file *outbuf)
4013{
4014 debug_target.to_rcmd (&debug_target, command, outbuf);
4015 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4016}
4017
4018static char *
4019debug_to_pid_to_exec_file (struct target_ops *self, int pid)
4020{
4021 char *exec_file;
4022
4023 exec_file = debug_target.to_pid_to_exec_file (&debug_target, pid);
4024
4025 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4026 pid, exec_file);
4027
4028 return exec_file;
4029}
4030
4031static void
4032setup_target_debug (void)
4033{
4034 memcpy (&debug_target, &current_target, sizeof debug_target);
4035
4036 current_target.to_open = debug_to_open;
4037 current_target.to_post_attach = debug_to_post_attach;
4038 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4039 current_target.to_files_info = debug_to_files_info;
4040 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4041 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4042 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4043 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4044 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4045 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4046 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4047 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4048 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4049 current_target.to_watchpoint_addr_within_range
4050 = debug_to_watchpoint_addr_within_range;
4051 current_target.to_region_ok_for_hw_watchpoint
4052 = debug_to_region_ok_for_hw_watchpoint;
4053 current_target.to_can_accel_watchpoint_condition
4054 = debug_to_can_accel_watchpoint_condition;
4055 current_target.to_terminal_init = debug_to_terminal_init;
4056 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4057 current_target.to_terminal_ours_for_output
4058 = debug_to_terminal_ours_for_output;
4059 current_target.to_terminal_ours = debug_to_terminal_ours;
4060 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4061 current_target.to_terminal_info = debug_to_terminal_info;
4062 current_target.to_load = debug_to_load;
4063 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4064 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4065 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4066 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4067 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4068 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4069 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4070 current_target.to_has_exited = debug_to_has_exited;
4071 current_target.to_can_run = debug_to_can_run;
4072 current_target.to_stop = debug_to_stop;
4073 current_target.to_rcmd = debug_to_rcmd;
4074 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4075 current_target.to_thread_architecture = debug_to_thread_architecture;
4076}
4077\f
4078
4079static char targ_desc[] =
4080"Names of targets and files being debugged.\nShows the entire \
4081stack of targets currently in use (including the exec-file,\n\
4082core-file, and process, if any), as well as the symbol file name.";
4083
4084static void
4085default_rcmd (struct target_ops *self, const char *command,
4086 struct ui_file *output)
4087{
4088 error (_("\"monitor\" command not supported by this target."));
4089}
4090
4091static void
4092do_monitor_command (char *cmd,
4093 int from_tty)
4094{
4095 target_rcmd (cmd, gdb_stdtarg);
4096}
4097
4098/* Print the name of each layers of our target stack. */
4099
4100static void
4101maintenance_print_target_stack (char *cmd, int from_tty)
4102{
4103 struct target_ops *t;
4104
4105 printf_filtered (_("The current target stack is:\n"));
4106
4107 for (t = target_stack; t != NULL; t = t->beneath)
4108 {
4109 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4110 }
4111}
4112
4113/* Controls if targets can report that they can/are async. This is
4114 just for maintainers to use when debugging gdb. */
4115int target_async_permitted = 1;
4116
4117/* The set command writes to this variable. If the inferior is
4118 executing, target_async_permitted is *not* updated. */
4119static int target_async_permitted_1 = 1;
4120
4121static void
4122maint_set_target_async_command (char *args, int from_tty,
4123 struct cmd_list_element *c)
4124{
4125 if (have_live_inferiors ())
4126 {
4127 target_async_permitted_1 = target_async_permitted;
4128 error (_("Cannot change this setting while the inferior is running."));
4129 }
4130
4131 target_async_permitted = target_async_permitted_1;
4132}
4133
4134static void
4135maint_show_target_async_command (struct ui_file *file, int from_tty,
4136 struct cmd_list_element *c,
4137 const char *value)
4138{
4139 fprintf_filtered (file,
4140 _("Controlling the inferior in "
4141 "asynchronous mode is %s.\n"), value);
4142}
4143
4144/* Temporary copies of permission settings. */
4145
4146static int may_write_registers_1 = 1;
4147static int may_write_memory_1 = 1;
4148static int may_insert_breakpoints_1 = 1;
4149static int may_insert_tracepoints_1 = 1;
4150static int may_insert_fast_tracepoints_1 = 1;
4151static int may_stop_1 = 1;
4152
4153/* Make the user-set values match the real values again. */
4154
4155void
4156update_target_permissions (void)
4157{
4158 may_write_registers_1 = may_write_registers;
4159 may_write_memory_1 = may_write_memory;
4160 may_insert_breakpoints_1 = may_insert_breakpoints;
4161 may_insert_tracepoints_1 = may_insert_tracepoints;
4162 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4163 may_stop_1 = may_stop;
4164}
4165
4166/* The one function handles (most of) the permission flags in the same
4167 way. */
4168
4169static void
4170set_target_permissions (char *args, int from_tty,
4171 struct cmd_list_element *c)
4172{
4173 if (target_has_execution)
4174 {
4175 update_target_permissions ();
4176 error (_("Cannot change this setting while the inferior is running."));
4177 }
4178
4179 /* Make the real values match the user-changed values. */
4180 may_write_registers = may_write_registers_1;
4181 may_insert_breakpoints = may_insert_breakpoints_1;
4182 may_insert_tracepoints = may_insert_tracepoints_1;
4183 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4184 may_stop = may_stop_1;
4185 update_observer_mode ();
4186}
4187
4188/* Set memory write permission independently of observer mode. */
4189
4190static void
4191set_write_memory_permission (char *args, int from_tty,
4192 struct cmd_list_element *c)
4193{
4194 /* Make the real values match the user-changed values. */
4195 may_write_memory = may_write_memory_1;
4196 update_observer_mode ();
4197}
4198
4199
4200void
4201initialize_targets (void)
4202{
4203 init_dummy_target ();
4204 push_target (&dummy_target);
4205
4206 add_info ("target", target_info, targ_desc);
4207 add_info ("files", target_info, targ_desc);
4208
4209 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4210Set target debugging."), _("\
4211Show target debugging."), _("\
4212When non-zero, target debugging is enabled. Higher numbers are more\n\
4213verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
4214command."),
4215 NULL,
4216 show_targetdebug,
4217 &setdebuglist, &showdebuglist);
4218
4219 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4220 &trust_readonly, _("\
4221Set mode for reading from readonly sections."), _("\
4222Show mode for reading from readonly sections."), _("\
4223When this mode is on, memory reads from readonly sections (such as .text)\n\
4224will be read from the object file instead of from the target. This will\n\
4225result in significant performance improvement for remote targets."),
4226 NULL,
4227 show_trust_readonly,
4228 &setlist, &showlist);
4229
4230 add_com ("monitor", class_obscure, do_monitor_command,
4231 _("Send a command to the remote monitor (remote targets only)."));
4232
4233 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4234 _("Print the name of each layer of the internal target stack."),
4235 &maintenanceprintlist);
4236
4237 add_setshow_boolean_cmd ("target-async", no_class,
4238 &target_async_permitted_1, _("\
4239Set whether gdb controls the inferior in asynchronous mode."), _("\
4240Show whether gdb controls the inferior in asynchronous mode."), _("\
4241Tells gdb whether to control the inferior in asynchronous mode."),
4242 maint_set_target_async_command,
4243 maint_show_target_async_command,
4244 &maintenance_set_cmdlist,
4245 &maintenance_show_cmdlist);
4246
4247 add_setshow_boolean_cmd ("may-write-registers", class_support,
4248 &may_write_registers_1, _("\
4249Set permission to write into registers."), _("\
4250Show permission to write into registers."), _("\
4251When this permission is on, GDB may write into the target's registers.\n\
4252Otherwise, any sort of write attempt will result in an error."),
4253 set_target_permissions, NULL,
4254 &setlist, &showlist);
4255
4256 add_setshow_boolean_cmd ("may-write-memory", class_support,
4257 &may_write_memory_1, _("\
4258Set permission to write into target memory."), _("\
4259Show permission to write into target memory."), _("\
4260When this permission is on, GDB may write into the target's memory.\n\
4261Otherwise, any sort of write attempt will result in an error."),
4262 set_write_memory_permission, NULL,
4263 &setlist, &showlist);
4264
4265 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4266 &may_insert_breakpoints_1, _("\
4267Set permission to insert breakpoints in the target."), _("\
4268Show permission to insert breakpoints in the target."), _("\
4269When this permission is on, GDB may insert breakpoints in the program.\n\
4270Otherwise, any sort of insertion attempt will result in an error."),
4271 set_target_permissions, NULL,
4272 &setlist, &showlist);
4273
4274 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4275 &may_insert_tracepoints_1, _("\
4276Set permission to insert tracepoints in the target."), _("\
4277Show permission to insert tracepoints in the target."), _("\
4278When this permission is on, GDB may insert tracepoints in the program.\n\
4279Otherwise, any sort of insertion attempt will result in an error."),
4280 set_target_permissions, NULL,
4281 &setlist, &showlist);
4282
4283 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4284 &may_insert_fast_tracepoints_1, _("\
4285Set permission to insert fast tracepoints in the target."), _("\
4286Show permission to insert fast tracepoints in the target."), _("\
4287When this permission is on, GDB may insert fast tracepoints.\n\
4288Otherwise, any sort of insertion attempt will result in an error."),
4289 set_target_permissions, NULL,
4290 &setlist, &showlist);
4291
4292 add_setshow_boolean_cmd ("may-interrupt", class_support,
4293 &may_stop_1, _("\
4294Set permission to interrupt or signal the target."), _("\
4295Show permission to interrupt or signal the target."), _("\
4296When this permission is on, GDB may interrupt/stop the target's execution.\n\
4297Otherwise, any attempt to interrupt or stop will be ignored."),
4298 set_target_permissions, NULL,
4299 &setlist, &showlist);
4300
4301 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4302 &auto_connect_native_target, _("\
4303Set whether GDB may automatically connect to the native target."), _("\
4304Show whether GDB may automatically connect to the native target."), _("\
4305When on, and GDB is not connected to a target yet, GDB\n\
4306attempts \"run\" and other commands with the native target."),
4307 NULL, show_auto_connect_native_target,
4308 &setlist, &showlist);
4309}
This page took 0.03785 seconds and 4 git commands to generate.