Fix for PR gdb/209, PR gdb/156:
[deliverable/binutils-gdb.git] / gdb / values.c
... / ...
CommitLineData
1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23#include "defs.h"
24#include "gdb_string.h"
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "value.h"
28#include "gdbcore.h"
29#include "command.h"
30#include "gdbcmd.h"
31#include "target.h"
32#include "language.h"
33#include "scm-lang.h"
34#include "demangle.h"
35#include "doublest.h"
36
37/* Prototypes for exported functions. */
38
39void _initialize_values (void);
40
41/* Prototypes for local functions. */
42
43static value_ptr value_headof (value_ptr, struct type *, struct type *);
44
45static void show_values (char *, int);
46
47static void show_convenience (char *, int);
48
49
50/* The value-history records all the values printed
51 by print commands during this session. Each chunk
52 records 60 consecutive values. The first chunk on
53 the chain records the most recent values.
54 The total number of values is in value_history_count. */
55
56#define VALUE_HISTORY_CHUNK 60
57
58struct value_history_chunk
59 {
60 struct value_history_chunk *next;
61 value_ptr values[VALUE_HISTORY_CHUNK];
62 };
63
64/* Chain of chunks now in use. */
65
66static struct value_history_chunk *value_history_chain;
67
68static int value_history_count; /* Abs number of last entry stored */
69\f
70/* List of all value objects currently allocated
71 (except for those released by calls to release_value)
72 This is so they can be freed after each command. */
73
74static value_ptr all_values;
75
76/* Allocate a value that has the correct length for type TYPE. */
77
78value_ptr
79allocate_value (struct type *type)
80{
81 register value_ptr val;
82 struct type *atype = check_typedef (type);
83
84 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
85 VALUE_NEXT (val) = all_values;
86 all_values = val;
87 VALUE_TYPE (val) = type;
88 VALUE_ENCLOSING_TYPE (val) = type;
89 VALUE_LVAL (val) = not_lval;
90 VALUE_ADDRESS (val) = 0;
91 VALUE_FRAME (val) = 0;
92 VALUE_OFFSET (val) = 0;
93 VALUE_BITPOS (val) = 0;
94 VALUE_BITSIZE (val) = 0;
95 VALUE_REGNO (val) = -1;
96 VALUE_LAZY (val) = 0;
97 VALUE_OPTIMIZED_OUT (val) = 0;
98 VALUE_BFD_SECTION (val) = NULL;
99 VALUE_EMBEDDED_OFFSET (val) = 0;
100 VALUE_POINTED_TO_OFFSET (val) = 0;
101 val->modifiable = 1;
102 return val;
103}
104
105/* Allocate a value that has the correct length
106 for COUNT repetitions type TYPE. */
107
108value_ptr
109allocate_repeat_value (struct type *type, int count)
110{
111 int low_bound = current_language->string_lower_bound; /* ??? */
112 /* FIXME-type-allocation: need a way to free this type when we are
113 done with it. */
114 struct type *range_type
115 = create_range_type ((struct type *) NULL, builtin_type_int,
116 low_bound, count + low_bound - 1);
117 /* FIXME-type-allocation: need a way to free this type when we are
118 done with it. */
119 return allocate_value (create_array_type ((struct type *) NULL,
120 type, range_type));
121}
122
123/* Return a mark in the value chain. All values allocated after the
124 mark is obtained (except for those released) are subject to being freed
125 if a subsequent value_free_to_mark is passed the mark. */
126value_ptr
127value_mark (void)
128{
129 return all_values;
130}
131
132/* Free all values allocated since MARK was obtained by value_mark
133 (except for those released). */
134void
135value_free_to_mark (value_ptr mark)
136{
137 value_ptr val, next;
138
139 for (val = all_values; val && val != mark; val = next)
140 {
141 next = VALUE_NEXT (val);
142 value_free (val);
143 }
144 all_values = val;
145}
146
147/* Free all the values that have been allocated (except for those released).
148 Called after each command, successful or not. */
149
150void
151free_all_values (void)
152{
153 register value_ptr val, next;
154
155 for (val = all_values; val; val = next)
156 {
157 next = VALUE_NEXT (val);
158 value_free (val);
159 }
160
161 all_values = 0;
162}
163
164/* Remove VAL from the chain all_values
165 so it will not be freed automatically. */
166
167void
168release_value (register value_ptr val)
169{
170 register value_ptr v;
171
172 if (all_values == val)
173 {
174 all_values = val->next;
175 return;
176 }
177
178 for (v = all_values; v; v = v->next)
179 {
180 if (v->next == val)
181 {
182 v->next = val->next;
183 break;
184 }
185 }
186}
187
188/* Release all values up to mark */
189value_ptr
190value_release_to_mark (value_ptr mark)
191{
192 value_ptr val, next;
193
194 for (val = next = all_values; next; next = VALUE_NEXT (next))
195 if (VALUE_NEXT (next) == mark)
196 {
197 all_values = VALUE_NEXT (next);
198 VALUE_NEXT (next) = 0;
199 return val;
200 }
201 all_values = 0;
202 return val;
203}
204
205/* Return a copy of the value ARG.
206 It contains the same contents, for same memory address,
207 but it's a different block of storage. */
208
209value_ptr
210value_copy (value_ptr arg)
211{
212 register struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
213 register value_ptr val = allocate_value (encl_type);
214 VALUE_TYPE (val) = VALUE_TYPE (arg);
215 VALUE_LVAL (val) = VALUE_LVAL (arg);
216 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
217 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
218 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
219 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
220 VALUE_FRAME (val) = VALUE_FRAME (arg);
221 VALUE_REGNO (val) = VALUE_REGNO (arg);
222 VALUE_LAZY (val) = VALUE_LAZY (arg);
223 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
224 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
225 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
226 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
227 val->modifiable = arg->modifiable;
228 if (!VALUE_LAZY (val))
229 {
230 memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
231 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
232
233 }
234 return val;
235}
236\f
237/* Access to the value history. */
238
239/* Record a new value in the value history.
240 Returns the absolute history index of the entry.
241 Result of -1 indicates the value was not saved; otherwise it is the
242 value history index of this new item. */
243
244int
245record_latest_value (value_ptr val)
246{
247 int i;
248
249 /* We don't want this value to have anything to do with the inferior anymore.
250 In particular, "set $1 = 50" should not affect the variable from which
251 the value was taken, and fast watchpoints should be able to assume that
252 a value on the value history never changes. */
253 if (VALUE_LAZY (val))
254 value_fetch_lazy (val);
255 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
256 from. This is a bit dubious, because then *&$1 does not just return $1
257 but the current contents of that location. c'est la vie... */
258 val->modifiable = 0;
259 release_value (val);
260
261 /* Here we treat value_history_count as origin-zero
262 and applying to the value being stored now. */
263
264 i = value_history_count % VALUE_HISTORY_CHUNK;
265 if (i == 0)
266 {
267 register struct value_history_chunk *new
268 = (struct value_history_chunk *)
269 xmalloc (sizeof (struct value_history_chunk));
270 memset (new->values, 0, sizeof new->values);
271 new->next = value_history_chain;
272 value_history_chain = new;
273 }
274
275 value_history_chain->values[i] = val;
276
277 /* Now we regard value_history_count as origin-one
278 and applying to the value just stored. */
279
280 return ++value_history_count;
281}
282
283/* Return a copy of the value in the history with sequence number NUM. */
284
285value_ptr
286access_value_history (int num)
287{
288 register struct value_history_chunk *chunk;
289 register int i;
290 register int absnum = num;
291
292 if (absnum <= 0)
293 absnum += value_history_count;
294
295 if (absnum <= 0)
296 {
297 if (num == 0)
298 error ("The history is empty.");
299 else if (num == 1)
300 error ("There is only one value in the history.");
301 else
302 error ("History does not go back to $$%d.", -num);
303 }
304 if (absnum > value_history_count)
305 error ("History has not yet reached $%d.", absnum);
306
307 absnum--;
308
309 /* Now absnum is always absolute and origin zero. */
310
311 chunk = value_history_chain;
312 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
313 i > 0; i--)
314 chunk = chunk->next;
315
316 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
317}
318
319/* Clear the value history entirely.
320 Must be done when new symbol tables are loaded,
321 because the type pointers become invalid. */
322
323void
324clear_value_history (void)
325{
326 register struct value_history_chunk *next;
327 register int i;
328 register value_ptr val;
329
330 while (value_history_chain)
331 {
332 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
333 if ((val = value_history_chain->values[i]) != NULL)
334 xfree (val);
335 next = value_history_chain->next;
336 xfree (value_history_chain);
337 value_history_chain = next;
338 }
339 value_history_count = 0;
340}
341
342static void
343show_values (char *num_exp, int from_tty)
344{
345 register int i;
346 register value_ptr val;
347 static int num = 1;
348
349 if (num_exp)
350 {
351 /* "info history +" should print from the stored position.
352 "info history <exp>" should print around value number <exp>. */
353 if (num_exp[0] != '+' || num_exp[1] != '\0')
354 num = parse_and_eval_long (num_exp) - 5;
355 }
356 else
357 {
358 /* "info history" means print the last 10 values. */
359 num = value_history_count - 9;
360 }
361
362 if (num <= 0)
363 num = 1;
364
365 for (i = num; i < num + 10 && i <= value_history_count; i++)
366 {
367 val = access_value_history (i);
368 printf_filtered ("$%d = ", i);
369 value_print (val, gdb_stdout, 0, Val_pretty_default);
370 printf_filtered ("\n");
371 }
372
373 /* The next "info history +" should start after what we just printed. */
374 num += 10;
375
376 /* Hitting just return after this command should do the same thing as
377 "info history +". If num_exp is null, this is unnecessary, since
378 "info history +" is not useful after "info history". */
379 if (from_tty && num_exp)
380 {
381 num_exp[0] = '+';
382 num_exp[1] = '\0';
383 }
384}
385\f
386/* Internal variables. These are variables within the debugger
387 that hold values assigned by debugger commands.
388 The user refers to them with a '$' prefix
389 that does not appear in the variable names stored internally. */
390
391static struct internalvar *internalvars;
392
393/* Look up an internal variable with name NAME. NAME should not
394 normally include a dollar sign.
395
396 If the specified internal variable does not exist,
397 one is created, with a void value. */
398
399struct internalvar *
400lookup_internalvar (char *name)
401{
402 register struct internalvar *var;
403
404 for (var = internalvars; var; var = var->next)
405 if (STREQ (var->name, name))
406 return var;
407
408 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
409 var->name = concat (name, NULL);
410 var->value = allocate_value (builtin_type_void);
411 release_value (var->value);
412 var->next = internalvars;
413 internalvars = var;
414 return var;
415}
416
417value_ptr
418value_of_internalvar (struct internalvar *var)
419{
420 register value_ptr val;
421
422#ifdef IS_TRAPPED_INTERNALVAR
423 if (IS_TRAPPED_INTERNALVAR (var->name))
424 return VALUE_OF_TRAPPED_INTERNALVAR (var);
425#endif
426
427 val = value_copy (var->value);
428 if (VALUE_LAZY (val))
429 value_fetch_lazy (val);
430 VALUE_LVAL (val) = lval_internalvar;
431 VALUE_INTERNALVAR (val) = var;
432 return val;
433}
434
435void
436set_internalvar_component (struct internalvar *var, int offset, int bitpos,
437 int bitsize, value_ptr newval)
438{
439 register char *addr = VALUE_CONTENTS (var->value) + offset;
440
441#ifdef IS_TRAPPED_INTERNALVAR
442 if (IS_TRAPPED_INTERNALVAR (var->name))
443 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
444#endif
445
446 if (bitsize)
447 modify_field (addr, value_as_long (newval),
448 bitpos, bitsize);
449 else
450 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
451}
452
453void
454set_internalvar (struct internalvar *var, value_ptr val)
455{
456 value_ptr newval;
457
458#ifdef IS_TRAPPED_INTERNALVAR
459 if (IS_TRAPPED_INTERNALVAR (var->name))
460 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
461#endif
462
463 newval = value_copy (val);
464 newval->modifiable = 1;
465
466 /* Force the value to be fetched from the target now, to avoid problems
467 later when this internalvar is referenced and the target is gone or
468 has changed. */
469 if (VALUE_LAZY (newval))
470 value_fetch_lazy (newval);
471
472 /* Begin code which must not call error(). If var->value points to
473 something free'd, an error() obviously leaves a dangling pointer.
474 But we also get a danling pointer if var->value points to
475 something in the value chain (i.e., before release_value is
476 called), because after the error free_all_values will get called before
477 long. */
478 xfree (var->value);
479 var->value = newval;
480 release_value (newval);
481 /* End code which must not call error(). */
482}
483
484char *
485internalvar_name (struct internalvar *var)
486{
487 return var->name;
488}
489
490/* Free all internalvars. Done when new symtabs are loaded,
491 because that makes the values invalid. */
492
493void
494clear_internalvars (void)
495{
496 register struct internalvar *var;
497
498 while (internalvars)
499 {
500 var = internalvars;
501 internalvars = var->next;
502 xfree (var->name);
503 xfree (var->value);
504 xfree (var);
505 }
506}
507
508static void
509show_convenience (char *ignore, int from_tty)
510{
511 register struct internalvar *var;
512 int varseen = 0;
513
514 for (var = internalvars; var; var = var->next)
515 {
516#ifdef IS_TRAPPED_INTERNALVAR
517 if (IS_TRAPPED_INTERNALVAR (var->name))
518 continue;
519#endif
520 if (!varseen)
521 {
522 varseen = 1;
523 }
524 printf_filtered ("$%s = ", var->name);
525 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
526 printf_filtered ("\n");
527 }
528 if (!varseen)
529 printf_unfiltered ("No debugger convenience variables now defined.\n\
530Convenience variables have names starting with \"$\";\n\
531use \"set\" as in \"set $foo = 5\" to define them.\n");
532}
533\f
534/* Extract a value as a C number (either long or double).
535 Knows how to convert fixed values to double, or
536 floating values to long.
537 Does not deallocate the value. */
538
539LONGEST
540value_as_long (register value_ptr val)
541{
542 /* This coerces arrays and functions, which is necessary (e.g.
543 in disassemble_command). It also dereferences references, which
544 I suspect is the most logical thing to do. */
545 COERCE_ARRAY (val);
546 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
547}
548
549DOUBLEST
550value_as_double (register value_ptr val)
551{
552 DOUBLEST foo;
553 int inv;
554
555 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
556 if (inv)
557 error ("Invalid floating value found in program.");
558 return foo;
559}
560/* Extract a value as a C pointer. Does not deallocate the value.
561 Note that val's type may not actually be a pointer; value_as_long
562 handles all the cases. */
563CORE_ADDR
564value_as_address (value_ptr val)
565{
566 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
567 whether we want this to be true eventually. */
568#if 0
569 /* ADDR_BITS_REMOVE is wrong if we are being called for a
570 non-address (e.g. argument to "signal", "info break", etc.), or
571 for pointers to char, in which the low bits *are* significant. */
572 return ADDR_BITS_REMOVE (value_as_long (val));
573#else
574
575 /* There are several targets (IA-64, PowerPC, and others) which
576 don't represent pointers to functions as simply the address of
577 the function's entry point. For example, on the IA-64, a
578 function pointer points to a two-word descriptor, generated by
579 the linker, which contains the function's entry point, and the
580 value the IA-64 "global pointer" register should have --- to
581 support position-independent code. The linker generates
582 descriptors only for those functions whose addresses are taken.
583
584 On such targets, it's difficult for GDB to convert an arbitrary
585 function address into a function pointer; it has to either find
586 an existing descriptor for that function, or call malloc and
587 build its own. On some targets, it is impossible for GDB to
588 build a descriptor at all: the descriptor must contain a jump
589 instruction; data memory cannot be executed; and code memory
590 cannot be modified.
591
592 Upon entry to this function, if VAL is a value of type `function'
593 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
594 VALUE_ADDRESS (val) is the address of the function. This is what
595 you'll get if you evaluate an expression like `main'. The call
596 to COERCE_ARRAY below actually does all the usual unary
597 conversions, which includes converting values of type `function'
598 to `pointer to function'. This is the challenging conversion
599 discussed above. Then, `unpack_long' will convert that pointer
600 back into an address.
601
602 So, suppose the user types `disassemble foo' on an architecture
603 with a strange function pointer representation, on which GDB
604 cannot build its own descriptors, and suppose further that `foo'
605 has no linker-built descriptor. The address->pointer conversion
606 will signal an error and prevent the command from running, even
607 though the next step would have been to convert the pointer
608 directly back into the same address.
609
610 The following shortcut avoids this whole mess. If VAL is a
611 function, just return its address directly. */
612 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC
613 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_METHOD)
614 return VALUE_ADDRESS (val);
615
616 COERCE_ARRAY (val);
617
618 /* Some architectures (e.g. Harvard), map instruction and data
619 addresses onto a single large unified address space. For
620 instance: An architecture may consider a large integer in the
621 range 0x10000000 .. 0x1000ffff to already represent a data
622 addresses (hence not need a pointer to address conversion) while
623 a small integer would still need to be converted integer to
624 pointer to address. Just assume such architectures handle all
625 integer conversions in a single function. */
626
627 /* JimB writes:
628
629 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
630 must admonish GDB hackers to make sure its behavior matches the
631 compiler's, whenever possible.
632
633 In general, I think GDB should evaluate expressions the same way
634 the compiler does. When the user copies an expression out of
635 their source code and hands it to a `print' command, they should
636 get the same value the compiler would have computed. Any
637 deviation from this rule can cause major confusion and annoyance,
638 and needs to be justified carefully. In other words, GDB doesn't
639 really have the freedom to do these conversions in clever and
640 useful ways.
641
642 AndrewC pointed out that users aren't complaining about how GDB
643 casts integers to pointers; they are complaining that they can't
644 take an address from a disassembly listing and give it to `x/i'.
645 This is certainly important.
646
647 Adding an architecture method like INTEGER_TO_ADDRESS certainly
648 makes it possible for GDB to "get it right" in all circumstances
649 --- the target has complete control over how things get done, so
650 people can Do The Right Thing for their target without breaking
651 anyone else. The standard doesn't specify how integers get
652 converted to pointers; usually, the ABI doesn't either, but
653 ABI-specific code is a more reasonable place to handle it. */
654
655 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_PTR
656 && TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_REF
657 && INTEGER_TO_ADDRESS_P ())
658 return INTEGER_TO_ADDRESS (VALUE_TYPE (val), VALUE_CONTENTS (val));
659
660 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
661#endif
662}
663\f
664/* Unpack raw data (copied from debugee, target byte order) at VALADDR
665 as a long, or as a double, assuming the raw data is described
666 by type TYPE. Knows how to convert different sizes of values
667 and can convert between fixed and floating point. We don't assume
668 any alignment for the raw data. Return value is in host byte order.
669
670 If you want functions and arrays to be coerced to pointers, and
671 references to be dereferenced, call value_as_long() instead.
672
673 C++: It is assumed that the front-end has taken care of
674 all matters concerning pointers to members. A pointer
675 to member which reaches here is considered to be equivalent
676 to an INT (or some size). After all, it is only an offset. */
677
678LONGEST
679unpack_long (struct type *type, char *valaddr)
680{
681 register enum type_code code = TYPE_CODE (type);
682 register int len = TYPE_LENGTH (type);
683 register int nosign = TYPE_UNSIGNED (type);
684
685 if (current_language->la_language == language_scm
686 && is_scmvalue_type (type))
687 return scm_unpack (type, valaddr, TYPE_CODE_INT);
688
689 switch (code)
690 {
691 case TYPE_CODE_TYPEDEF:
692 return unpack_long (check_typedef (type), valaddr);
693 case TYPE_CODE_ENUM:
694 case TYPE_CODE_BOOL:
695 case TYPE_CODE_INT:
696 case TYPE_CODE_CHAR:
697 case TYPE_CODE_RANGE:
698 if (nosign)
699 return extract_unsigned_integer (valaddr, len);
700 else
701 return extract_signed_integer (valaddr, len);
702
703 case TYPE_CODE_FLT:
704 return extract_typed_floating (valaddr, type);
705
706 case TYPE_CODE_PTR:
707 case TYPE_CODE_REF:
708 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
709 whether we want this to be true eventually. */
710 return extract_typed_address (valaddr, type);
711
712 case TYPE_CODE_MEMBER:
713 error ("not implemented: member types in unpack_long");
714
715 default:
716 error ("Value can't be converted to integer.");
717 }
718 return 0; /* Placate lint. */
719}
720
721/* Return a double value from the specified type and address.
722 INVP points to an int which is set to 0 for valid value,
723 1 for invalid value (bad float format). In either case,
724 the returned double is OK to use. Argument is in target
725 format, result is in host format. */
726
727DOUBLEST
728unpack_double (struct type *type, char *valaddr, int *invp)
729{
730 enum type_code code;
731 int len;
732 int nosign;
733
734 *invp = 0; /* Assume valid. */
735 CHECK_TYPEDEF (type);
736 code = TYPE_CODE (type);
737 len = TYPE_LENGTH (type);
738 nosign = TYPE_UNSIGNED (type);
739 if (code == TYPE_CODE_FLT)
740 {
741#ifdef INVALID_FLOAT
742 if (INVALID_FLOAT (valaddr, len))
743 {
744 *invp = 1;
745 return 1.234567891011121314;
746 }
747#endif
748 return extract_typed_floating (valaddr, type);
749 }
750 else if (nosign)
751 {
752 /* Unsigned -- be sure we compensate for signed LONGEST. */
753 return (ULONGEST) unpack_long (type, valaddr);
754 }
755 else
756 {
757 /* Signed -- we are OK with unpack_long. */
758 return unpack_long (type, valaddr);
759 }
760}
761
762/* Unpack raw data (copied from debugee, target byte order) at VALADDR
763 as a CORE_ADDR, assuming the raw data is described by type TYPE.
764 We don't assume any alignment for the raw data. Return value is in
765 host byte order.
766
767 If you want functions and arrays to be coerced to pointers, and
768 references to be dereferenced, call value_as_address() instead.
769
770 C++: It is assumed that the front-end has taken care of
771 all matters concerning pointers to members. A pointer
772 to member which reaches here is considered to be equivalent
773 to an INT (or some size). After all, it is only an offset. */
774
775CORE_ADDR
776unpack_pointer (struct type *type, char *valaddr)
777{
778 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
779 whether we want this to be true eventually. */
780 return unpack_long (type, valaddr);
781}
782
783\f
784/* Get the value of the FIELDN'th field (which must be static) of TYPE. */
785
786value_ptr
787value_static_field (struct type *type, int fieldno)
788{
789 CORE_ADDR addr;
790 asection *sect;
791 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
792 {
793 addr = TYPE_FIELD_STATIC_PHYSADDR (type, fieldno);
794 sect = NULL;
795 }
796 else
797 {
798 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
799 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
800 if (sym == NULL)
801 {
802 /* With some compilers, e.g. HP aCC, static data members are reported
803 as non-debuggable symbols */
804 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
805 if (!msym)
806 return NULL;
807 else
808 {
809 addr = SYMBOL_VALUE_ADDRESS (msym);
810 sect = SYMBOL_BFD_SECTION (msym);
811 }
812 }
813 else
814 {
815 /* Anything static that isn't a constant, has an address */
816 if (SYMBOL_CLASS (sym) != LOC_CONST)
817 {
818 addr = SYMBOL_VALUE_ADDRESS (sym);
819 sect = SYMBOL_BFD_SECTION (sym);
820 }
821 /* However, static const's do not, the value is already known. */
822 else
823 {
824 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), SYMBOL_VALUE (sym));
825 }
826 }
827 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), addr);
828 }
829 return value_at (TYPE_FIELD_TYPE (type, fieldno), addr, sect);
830}
831
832/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
833 You have to be careful here, since the size of the data area for the value
834 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
835 than the old enclosing type, you have to allocate more space for the data.
836 The return value is a pointer to the new version of this value structure. */
837
838value_ptr
839value_change_enclosing_type (value_ptr val, struct type *new_encl_type)
840{
841 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)))
842 {
843 VALUE_ENCLOSING_TYPE (val) = new_encl_type;
844 return val;
845 }
846 else
847 {
848 value_ptr new_val;
849 register value_ptr prev;
850
851 new_val = (value_ptr) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
852
853 /* We have to make sure this ends up in the same place in the value
854 chain as the original copy, so it's clean-up behavior is the same.
855 If the value has been released, this is a waste of time, but there
856 is no way to tell that in advance, so... */
857
858 if (val != all_values)
859 {
860 for (prev = all_values; prev != NULL; prev = prev->next)
861 {
862 if (prev->next == val)
863 {
864 prev->next = new_val;
865 break;
866 }
867 }
868 }
869
870 return new_val;
871 }
872}
873
874/* Given a value ARG1 (offset by OFFSET bytes)
875 of a struct or union type ARG_TYPE,
876 extract and return the value of one of its (non-static) fields.
877 FIELDNO says which field. */
878
879value_ptr
880value_primitive_field (register value_ptr arg1, int offset,
881 register int fieldno, register struct type *arg_type)
882{
883 register value_ptr v;
884 register struct type *type;
885
886 CHECK_TYPEDEF (arg_type);
887 type = TYPE_FIELD_TYPE (arg_type, fieldno);
888
889 /* Handle packed fields */
890
891 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
892 {
893 v = value_from_longest (type,
894 unpack_field_as_long (arg_type,
895 VALUE_CONTENTS (arg1)
896 + offset,
897 fieldno));
898 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
899 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
900 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
901 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
902 }
903 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
904 {
905 /* This field is actually a base subobject, so preserve the
906 entire object's contents for later references to virtual
907 bases, etc. */
908 v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
909 VALUE_TYPE (v) = type;
910 if (VALUE_LAZY (arg1))
911 VALUE_LAZY (v) = 1;
912 else
913 memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
914 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
915 VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
916 VALUE_EMBEDDED_OFFSET (v)
917 = offset +
918 VALUE_EMBEDDED_OFFSET (arg1) +
919 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
920 }
921 else
922 {
923 /* Plain old data member */
924 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
925 v = allocate_value (type);
926 if (VALUE_LAZY (arg1))
927 VALUE_LAZY (v) = 1;
928 else
929 memcpy (VALUE_CONTENTS_RAW (v),
930 VALUE_CONTENTS_RAW (arg1) + offset,
931 TYPE_LENGTH (type));
932 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset;
933 }
934 VALUE_LVAL (v) = VALUE_LVAL (arg1);
935 if (VALUE_LVAL (arg1) == lval_internalvar)
936 VALUE_LVAL (v) = lval_internalvar_component;
937 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
938 VALUE_REGNO (v) = VALUE_REGNO (arg1);
939/* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
940 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
941 return v;
942}
943
944/* Given a value ARG1 of a struct or union type,
945 extract and return the value of one of its (non-static) fields.
946 FIELDNO says which field. */
947
948value_ptr
949value_field (register value_ptr arg1, register int fieldno)
950{
951 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
952}
953
954/* Return a non-virtual function as a value.
955 F is the list of member functions which contains the desired method.
956 J is an index into F which provides the desired method. */
957
958value_ptr
959value_fn_field (value_ptr *arg1p, struct fn_field *f, int j, struct type *type,
960 int offset)
961{
962 register value_ptr v;
963 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
964 struct symbol *sym;
965
966 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
967 0, VAR_NAMESPACE, 0, NULL);
968 if (!sym)
969 return NULL;
970/*
971 error ("Internal error: could not find physical method named %s",
972 TYPE_FN_FIELD_PHYSNAME (f, j));
973 */
974
975 v = allocate_value (ftype);
976 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
977 VALUE_TYPE (v) = ftype;
978
979 if (arg1p)
980 {
981 if (type != VALUE_TYPE (*arg1p))
982 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
983 value_addr (*arg1p)));
984
985 /* Move the `this' pointer according to the offset.
986 VALUE_OFFSET (*arg1p) += offset;
987 */
988 }
989
990 return v;
991}
992
993/* ARG is a pointer to an object we know to be at least
994 a DTYPE. BTYPE is the most derived basetype that has
995 already been searched (and need not be searched again).
996 After looking at the vtables between BTYPE and DTYPE,
997 return the most derived type we find. The caller must
998 be satisfied when the return value == DTYPE.
999
1000 FIXME-tiemann: should work with dossier entries as well.
1001 NOTICE - djb: I see no good reason at all to keep this function now that
1002 we have RTTI support. It's used in literally one place, and it's
1003 hard to keep this function up to date when it's purpose is served
1004 by value_rtti_type efficiently.
1005 Consider it gone for 5.1. */
1006
1007static value_ptr
1008value_headof (value_ptr in_arg, struct type *btype, struct type *dtype)
1009{
1010 /* First collect the vtables we must look at for this object. */
1011 value_ptr arg, vtbl;
1012 struct symbol *sym;
1013 char *demangled_name;
1014 struct minimal_symbol *msymbol;
1015
1016 btype = TYPE_VPTR_BASETYPE (dtype);
1017 CHECK_TYPEDEF (btype);
1018 arg = in_arg;
1019 if (btype != dtype)
1020 arg = value_cast (lookup_pointer_type (btype), arg);
1021 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_REF)
1022 {
1023 /*
1024 * Copy the value, but change the type from (T&) to (T*).
1025 * We keep the same location information, which is efficient,
1026 * and allows &(&X) to get the location containing the reference.
1027 */
1028 arg = value_copy (arg);
1029 VALUE_TYPE (arg) = lookup_pointer_type (TYPE_TARGET_TYPE (VALUE_TYPE (arg)));
1030 }
1031 if (VALUE_ADDRESS(value_field (value_ind(arg), TYPE_VPTR_FIELDNO (btype)))==0)
1032 return arg;
1033
1034 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
1035 /* Turn vtable into typeinfo function */
1036 VALUE_OFFSET(vtbl)+=4;
1037
1038 msymbol = lookup_minimal_symbol_by_pc ( value_as_address(value_ind(vtbl)) );
1039 if (msymbol == NULL
1040 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL)
1041 {
1042 /* If we expected to find a vtable, but did not, let the user
1043 know that we aren't happy, but don't throw an error.
1044 FIXME: there has to be a better way to do this. */
1045 struct type *error_type = (struct type *) xmalloc (sizeof (struct type));
1046 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
1047 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
1048 VALUE_TYPE (in_arg) = error_type;
1049 return in_arg;
1050 }
1051 demangled_name = cplus_demangle(demangled_name,DMGL_ANSI);
1052 *(strchr (demangled_name, ' ')) = '\0';
1053
1054 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
1055 if (sym == NULL)
1056 error ("could not find type declaration for `%s'", demangled_name);
1057
1058 arg = in_arg;
1059 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1060 return arg;
1061}
1062
1063/* ARG is a pointer object of type TYPE. If TYPE has virtual
1064 function tables, probe ARG's tables (including the vtables
1065 of its baseclasses) to figure out the most derived type that ARG
1066 could actually be a pointer to. */
1067
1068value_ptr
1069value_from_vtable_info (value_ptr arg, struct type *type)
1070{
1071 /* Take care of preliminaries. */
1072 if (TYPE_VPTR_FIELDNO (type) < 0)
1073 fill_in_vptr_fieldno (type);
1074 if (TYPE_VPTR_FIELDNO (type) < 0)
1075 return 0;
1076
1077 return value_headof (arg, 0, type);
1078}
1079
1080/* Return true if the INDEXth field of TYPE is a virtual baseclass
1081 pointer which is for the base class whose type is BASECLASS. */
1082
1083static int
1084vb_match (struct type *type, int index, struct type *basetype)
1085{
1086 struct type *fieldtype;
1087 char *name = TYPE_FIELD_NAME (type, index);
1088 char *field_class_name = NULL;
1089
1090 if (*name != '_')
1091 return 0;
1092 /* gcc 2.4 uses _vb$. */
1093 if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3]))
1094 field_class_name = name + 4;
1095 /* gcc 2.5 will use __vb_. */
1096 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1097 field_class_name = name + 5;
1098
1099 if (field_class_name == NULL)
1100 /* This field is not a virtual base class pointer. */
1101 return 0;
1102
1103 /* It's a virtual baseclass pointer, now we just need to find out whether
1104 it is for this baseclass. */
1105 fieldtype = TYPE_FIELD_TYPE (type, index);
1106 if (fieldtype == NULL
1107 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1108 /* "Can't happen". */
1109 return 0;
1110
1111 /* What we check for is that either the types are equal (needed for
1112 nameless types) or have the same name. This is ugly, and a more
1113 elegant solution should be devised (which would probably just push
1114 the ugliness into symbol reading unless we change the stabs format). */
1115 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1116 return 1;
1117
1118 if (TYPE_NAME (basetype) != NULL
1119 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1120 && STREQ (TYPE_NAME (basetype),
1121 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1122 return 1;
1123 return 0;
1124}
1125
1126/* Compute the offset of the baseclass which is
1127 the INDEXth baseclass of class TYPE,
1128 for value at VALADDR (in host) at ADDRESS (in target).
1129 The result is the offset of the baseclass value relative
1130 to (the address of)(ARG) + OFFSET.
1131
1132 -1 is returned on error. */
1133
1134int
1135baseclass_offset (struct type *type, int index, char *valaddr,
1136 CORE_ADDR address)
1137{
1138 struct type *basetype = TYPE_BASECLASS (type, index);
1139
1140 if (BASETYPE_VIA_VIRTUAL (type, index))
1141 {
1142 /* Must hunt for the pointer to this virtual baseclass. */
1143 register int i, len = TYPE_NFIELDS (type);
1144 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1145
1146 /* First look for the virtual baseclass pointer
1147 in the fields. */
1148 for (i = n_baseclasses; i < len; i++)
1149 {
1150 if (vb_match (type, i, basetype))
1151 {
1152 CORE_ADDR addr
1153 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1154 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1155
1156 return addr - (LONGEST) address;
1157 }
1158 }
1159 /* Not in the fields, so try looking through the baseclasses. */
1160 for (i = index + 1; i < n_baseclasses; i++)
1161 {
1162 int boffset =
1163 baseclass_offset (type, i, valaddr, address);
1164 if (boffset)
1165 return boffset;
1166 }
1167 /* Not found. */
1168 return -1;
1169 }
1170
1171 /* Baseclass is easily computed. */
1172 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1173}
1174\f
1175/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1176 VALADDR.
1177
1178 Extracting bits depends on endianness of the machine. Compute the
1179 number of least significant bits to discard. For big endian machines,
1180 we compute the total number of bits in the anonymous object, subtract
1181 off the bit count from the MSB of the object to the MSB of the
1182 bitfield, then the size of the bitfield, which leaves the LSB discard
1183 count. For little endian machines, the discard count is simply the
1184 number of bits from the LSB of the anonymous object to the LSB of the
1185 bitfield.
1186
1187 If the field is signed, we also do sign extension. */
1188
1189LONGEST
1190unpack_field_as_long (struct type *type, char *valaddr, int fieldno)
1191{
1192 ULONGEST val;
1193 ULONGEST valmask;
1194 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1195 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1196 int lsbcount;
1197 struct type *field_type;
1198
1199 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1200 field_type = TYPE_FIELD_TYPE (type, fieldno);
1201 CHECK_TYPEDEF (field_type);
1202
1203 /* Extract bits. See comment above. */
1204
1205 if (BITS_BIG_ENDIAN)
1206 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1207 else
1208 lsbcount = (bitpos % 8);
1209 val >>= lsbcount;
1210
1211 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1212 If the field is signed, and is negative, then sign extend. */
1213
1214 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1215 {
1216 valmask = (((ULONGEST) 1) << bitsize) - 1;
1217 val &= valmask;
1218 if (!TYPE_UNSIGNED (field_type))
1219 {
1220 if (val & (valmask ^ (valmask >> 1)))
1221 {
1222 val |= ~valmask;
1223 }
1224 }
1225 }
1226 return (val);
1227}
1228
1229/* Modify the value of a bitfield. ADDR points to a block of memory in
1230 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1231 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1232 indicate which bits (in target bit order) comprise the bitfield. */
1233
1234void
1235modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1236{
1237 LONGEST oword;
1238
1239 /* If a negative fieldval fits in the field in question, chop
1240 off the sign extension bits. */
1241 if (bitsize < (8 * (int) sizeof (fieldval))
1242 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1243 fieldval = fieldval & ((1 << bitsize) - 1);
1244
1245 /* Warn if value is too big to fit in the field in question. */
1246 if (bitsize < (8 * (int) sizeof (fieldval))
1247 && 0 != (fieldval & ~((1 << bitsize) - 1)))
1248 {
1249 /* FIXME: would like to include fieldval in the message, but
1250 we don't have a sprintf_longest. */
1251 warning ("Value does not fit in %d bits.", bitsize);
1252
1253 /* Truncate it, otherwise adjoining fields may be corrupted. */
1254 fieldval = fieldval & ((1 << bitsize) - 1);
1255 }
1256
1257 oword = extract_signed_integer (addr, sizeof oword);
1258
1259 /* Shifting for bit field depends on endianness of the target machine. */
1260 if (BITS_BIG_ENDIAN)
1261 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1262
1263 /* Mask out old value, while avoiding shifts >= size of oword */
1264 if (bitsize < 8 * (int) sizeof (oword))
1265 oword &= ~(((((ULONGEST) 1) << bitsize) - 1) << bitpos);
1266 else
1267 oword &= ~((~(ULONGEST) 0) << bitpos);
1268 oword |= fieldval << bitpos;
1269
1270 store_signed_integer (addr, sizeof oword, oword);
1271}
1272\f
1273/* Convert C numbers into newly allocated values */
1274
1275value_ptr
1276value_from_longest (struct type *type, register LONGEST num)
1277{
1278 register value_ptr val = allocate_value (type);
1279 register enum type_code code;
1280 register int len;
1281retry:
1282 code = TYPE_CODE (type);
1283 len = TYPE_LENGTH (type);
1284
1285 switch (code)
1286 {
1287 case TYPE_CODE_TYPEDEF:
1288 type = check_typedef (type);
1289 goto retry;
1290 case TYPE_CODE_INT:
1291 case TYPE_CODE_CHAR:
1292 case TYPE_CODE_ENUM:
1293 case TYPE_CODE_BOOL:
1294 case TYPE_CODE_RANGE:
1295 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1296 break;
1297
1298 case TYPE_CODE_REF:
1299 case TYPE_CODE_PTR:
1300 store_typed_address (VALUE_CONTENTS_RAW (val), type, (CORE_ADDR) num);
1301 break;
1302
1303 default:
1304 error ("Unexpected type (%d) encountered for integer constant.", code);
1305 }
1306 return val;
1307}
1308
1309
1310/* Create a value representing a pointer of type TYPE to the address
1311 ADDR. */
1312value_ptr
1313value_from_pointer (struct type *type, CORE_ADDR addr)
1314{
1315 value_ptr val = allocate_value (type);
1316 store_typed_address (VALUE_CONTENTS_RAW (val), type, addr);
1317 return val;
1318}
1319
1320
1321/* Create a value for a string constant to be stored locally
1322 (not in the inferior's memory space, but in GDB memory).
1323 This is analogous to value_from_longest, which also does not
1324 use inferior memory. String shall NOT contain embedded nulls. */
1325
1326value_ptr
1327value_from_string (char *ptr)
1328{
1329 value_ptr val;
1330 int len = strlen (ptr);
1331 int lowbound = current_language->string_lower_bound;
1332 struct type *rangetype =
1333 create_range_type ((struct type *) NULL,
1334 builtin_type_int,
1335 lowbound, len + lowbound - 1);
1336 struct type *stringtype =
1337 create_array_type ((struct type *) NULL,
1338 *current_language->string_char_type,
1339 rangetype);
1340
1341 val = allocate_value (stringtype);
1342 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1343 return val;
1344}
1345
1346value_ptr
1347value_from_double (struct type *type, DOUBLEST num)
1348{
1349 register value_ptr val = allocate_value (type);
1350 struct type *base_type = check_typedef (type);
1351 register enum type_code code = TYPE_CODE (base_type);
1352 register int len = TYPE_LENGTH (base_type);
1353
1354 if (code == TYPE_CODE_FLT)
1355 {
1356 store_typed_floating (VALUE_CONTENTS_RAW (val), base_type, num);
1357 }
1358 else
1359 error ("Unexpected type encountered for floating constant.");
1360
1361 return val;
1362}
1363\f
1364/* Deal with the value that is "about to be returned". */
1365
1366/* Return the value that a function returning now
1367 would be returning to its caller, assuming its type is VALTYPE.
1368 RETBUF is where we look for what ought to be the contents
1369 of the registers (in raw form). This is because it is often
1370 desirable to restore old values to those registers
1371 after saving the contents of interest, and then call
1372 this function using the saved values.
1373 struct_return is non-zero when the function in question is
1374 using the structure return conventions on the machine in question;
1375 0 when it is using the value returning conventions (this often
1376 means returning pointer to where structure is vs. returning value). */
1377
1378/* ARGSUSED */
1379value_ptr
1380value_being_returned (struct type *valtype, char *retbuf, int struct_return)
1381{
1382 register value_ptr val;
1383 CORE_ADDR addr;
1384
1385 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1386 if (EXTRACT_STRUCT_VALUE_ADDRESS_P ())
1387 if (struct_return)
1388 {
1389 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1390 if (!addr)
1391 error ("Function return value unknown");
1392 return value_at (valtype, addr, NULL);
1393 }
1394
1395 val = allocate_value (valtype);
1396 CHECK_TYPEDEF (valtype);
1397 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1398
1399 return val;
1400}
1401
1402/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1403 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1404 and TYPE is the type (which is known to be struct, union or array).
1405
1406 On most machines, the struct convention is used unless we are
1407 using gcc and the type is of a special size. */
1408/* As of about 31 Mar 93, GCC was changed to be compatible with the
1409 native compiler. GCC 2.3.3 was the last release that did it the
1410 old way. Since gcc2_compiled was not changed, we have no
1411 way to correctly win in all cases, so we just do the right thing
1412 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1413 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1414 would cause more chaos than dealing with some struct returns being
1415 handled wrong. */
1416
1417int
1418generic_use_struct_convention (int gcc_p, struct type *value_type)
1419{
1420 return !((gcc_p == 1)
1421 && (TYPE_LENGTH (value_type) == 1
1422 || TYPE_LENGTH (value_type) == 2
1423 || TYPE_LENGTH (value_type) == 4
1424 || TYPE_LENGTH (value_type) == 8));
1425}
1426
1427/* Return true if the function specified is using the structure returning
1428 convention on this machine to return arguments, or 0 if it is using
1429 the value returning convention. FUNCTION is the value representing
1430 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1431 is the type returned by the function. GCC_P is nonzero if compiled
1432 with GCC. */
1433
1434/* ARGSUSED */
1435int
1436using_struct_return (value_ptr function, CORE_ADDR funcaddr,
1437 struct type *value_type, int gcc_p)
1438{
1439 register enum type_code code = TYPE_CODE (value_type);
1440
1441 if (code == TYPE_CODE_ERROR)
1442 error ("Function return type unknown.");
1443
1444 if (code == TYPE_CODE_STRUCT
1445 || code == TYPE_CODE_UNION
1446 || code == TYPE_CODE_ARRAY
1447 || RETURN_VALUE_ON_STACK (value_type))
1448 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1449
1450 return 0;
1451}
1452
1453/* Store VAL so it will be returned if a function returns now.
1454 Does not verify that VAL's type matches what the current
1455 function wants to return. */
1456
1457void
1458set_return_value (value_ptr val)
1459{
1460 struct type *type = check_typedef (VALUE_TYPE (val));
1461 register enum type_code code = TYPE_CODE (type);
1462
1463 if (code == TYPE_CODE_ERROR)
1464 error ("Function return type unknown.");
1465
1466 if (code == TYPE_CODE_STRUCT
1467 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1468 error ("GDB does not support specifying a struct or union return value.");
1469
1470 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
1471}
1472\f
1473void
1474_initialize_values (void)
1475{
1476 add_cmd ("convenience", no_class, show_convenience,
1477 "Debugger convenience (\"$foo\") variables.\n\
1478These variables are created when you assign them values;\n\
1479thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1480A few convenience variables are given values automatically:\n\
1481\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1482\"$__\" holds the contents of the last address examined with \"x\".",
1483 &showlist);
1484
1485 add_cmd ("values", no_class, show_values,
1486 "Elements of value history around item number IDX (or last ten).",
1487 &showlist);
1488}
This page took 0.027079 seconds and 4 git commands to generate.