*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / varobj.c
... / ...
CommitLineData
1/* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street, Fifth Floor,
19 Boston, MA 02110-1301, USA. */
20
21#include "defs.h"
22#include "exceptions.h"
23#include "value.h"
24#include "expression.h"
25#include "frame.h"
26#include "language.h"
27#include "wrapper.h"
28#include "gdbcmd.h"
29#include "block.h"
30
31#include "gdb_assert.h"
32#include "gdb_string.h"
33
34#include "varobj.h"
35#include "vec.h"
36
37/* Non-zero if we want to see trace of varobj level stuff. */
38
39int varobjdebug = 0;
40static void
41show_varobjdebug (struct ui_file *file, int from_tty,
42 struct cmd_list_element *c, const char *value)
43{
44 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
45}
46
47/* String representations of gdb's format codes */
48char *varobj_format_string[] =
49 { "natural", "binary", "decimal", "hexadecimal", "octal" };
50
51/* String representations of gdb's known languages */
52char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
53
54/* Data structures */
55
56/* Every root variable has one of these structures saved in its
57 varobj. Members which must be free'd are noted. */
58struct varobj_root
59{
60
61 /* Alloc'd expression for this parent. */
62 struct expression *exp;
63
64 /* Block for which this expression is valid */
65 struct block *valid_block;
66
67 /* The frame for this expression */
68 struct frame_id frame;
69
70 /* If 1, "update" always recomputes the frame & valid block
71 using the currently selected frame. */
72 int use_selected_frame;
73
74 /* Flag that indicates validity: set to 0 when this varobj_root refers
75 to symbols that do not exist anymore. */
76 int is_valid;
77
78 /* Language info for this variable and its children */
79 struct language_specific *lang;
80
81 /* The varobj for this root node. */
82 struct varobj *rootvar;
83
84 /* Next root variable */
85 struct varobj_root *next;
86};
87
88typedef struct varobj *varobj_p;
89
90DEF_VEC_P (varobj_p);
91
92/* Every variable in the system has a structure of this type defined
93 for it. This structure holds all information necessary to manipulate
94 a particular object variable. Members which must be freed are noted. */
95struct varobj
96{
97
98 /* Alloc'd name of the variable for this object.. If this variable is a
99 child, then this name will be the child's source name.
100 (bar, not foo.bar) */
101 /* NOTE: This is the "expression" */
102 char *name;
103
104 /* The alloc'd name for this variable's object. This is here for
105 convenience when constructing this object's children. */
106 char *obj_name;
107
108 /* Index of this variable in its parent or -1 */
109 int index;
110
111 /* The type of this variable. This may NEVER be NULL. */
112 struct type *type;
113
114 /* The value of this expression or subexpression. A NULL value
115 indicates there was an error getting this value.
116 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
117 the value is either NULL, or not lazy. */
118 struct value *value;
119
120 /* The number of (immediate) children this variable has */
121 int num_children;
122
123 /* If this object is a child, this points to its immediate parent. */
124 struct varobj *parent;
125
126 /* Children of this object. */
127 VEC (varobj_p) *children;
128
129 /* Description of the root variable. Points to root variable for children. */
130 struct varobj_root *root;
131
132 /* The format of the output for this object */
133 enum varobj_display_formats format;
134
135 /* Was this variable updated via a varobj_set_value operation */
136 int updated;
137
138 /* Last print value. */
139 char *print_value;
140
141 /* Is this variable frozen. Frozen variables are never implicitly
142 updated by -var-update *
143 or -var-update <direct-or-indirect-parent>. */
144 int frozen;
145
146 /* Is the value of this variable intentionally not fetched? It is
147 not fetched if either the variable is frozen, or any parents is
148 frozen. */
149 int not_fetched;
150};
151
152struct cpstack
153{
154 char *name;
155 struct cpstack *next;
156};
157
158/* A list of varobjs */
159
160struct vlist
161{
162 struct varobj *var;
163 struct vlist *next;
164};
165
166/* Private function prototypes */
167
168/* Helper functions for the above subcommands. */
169
170static int delete_variable (struct cpstack **, struct varobj *, int);
171
172static void delete_variable_1 (struct cpstack **, int *,
173 struct varobj *, int, int);
174
175static int install_variable (struct varobj *);
176
177static void uninstall_variable (struct varobj *);
178
179static struct varobj *create_child (struct varobj *, int, char *);
180
181/* Utility routines */
182
183static struct varobj *new_variable (void);
184
185static struct varobj *new_root_variable (void);
186
187static void free_variable (struct varobj *var);
188
189static struct cleanup *make_cleanup_free_variable (struct varobj *var);
190
191static struct type *get_type (struct varobj *var);
192
193static struct type *get_value_type (struct varobj *var);
194
195static struct type *get_target_type (struct type *);
196
197static enum varobj_display_formats variable_default_display (struct varobj *);
198
199static void cppush (struct cpstack **pstack, char *name);
200
201static char *cppop (struct cpstack **pstack);
202
203static int install_new_value (struct varobj *var, struct value *value,
204 int initial);
205
206/* Language-specific routines. */
207
208static enum varobj_languages variable_language (struct varobj *var);
209
210static int number_of_children (struct varobj *);
211
212static char *name_of_variable (struct varobj *);
213
214static char *name_of_child (struct varobj *, int);
215
216static struct value *value_of_root (struct varobj **var_handle, int *);
217
218static struct value *value_of_child (struct varobj *parent, int index);
219
220static int variable_editable (struct varobj *var);
221
222static char *my_value_of_variable (struct varobj *var);
223
224static char *value_get_print_value (struct value *value,
225 enum varobj_display_formats format);
226
227static int varobj_value_is_changeable_p (struct varobj *var);
228
229static int is_root_p (struct varobj *var);
230
231/* C implementation */
232
233static int c_number_of_children (struct varobj *var);
234
235static char *c_name_of_variable (struct varobj *parent);
236
237static char *c_name_of_child (struct varobj *parent, int index);
238
239static struct value *c_value_of_root (struct varobj **var_handle);
240
241static struct value *c_value_of_child (struct varobj *parent, int index);
242
243static struct type *c_type_of_child (struct varobj *parent, int index);
244
245static int c_variable_editable (struct varobj *var);
246
247static char *c_value_of_variable (struct varobj *var);
248
249/* C++ implementation */
250
251static int cplus_number_of_children (struct varobj *var);
252
253static void cplus_class_num_children (struct type *type, int children[3]);
254
255static char *cplus_name_of_variable (struct varobj *parent);
256
257static char *cplus_name_of_child (struct varobj *parent, int index);
258
259static struct value *cplus_value_of_root (struct varobj **var_handle);
260
261static struct value *cplus_value_of_child (struct varobj *parent, int index);
262
263static struct type *cplus_type_of_child (struct varobj *parent, int index);
264
265static int cplus_variable_editable (struct varobj *var);
266
267static char *cplus_value_of_variable (struct varobj *var);
268
269/* Java implementation */
270
271static int java_number_of_children (struct varobj *var);
272
273static char *java_name_of_variable (struct varobj *parent);
274
275static char *java_name_of_child (struct varobj *parent, int index);
276
277static struct value *java_value_of_root (struct varobj **var_handle);
278
279static struct value *java_value_of_child (struct varobj *parent, int index);
280
281static struct type *java_type_of_child (struct varobj *parent, int index);
282
283static int java_variable_editable (struct varobj *var);
284
285static char *java_value_of_variable (struct varobj *var);
286
287/* The language specific vector */
288
289struct language_specific
290{
291
292 /* The language of this variable */
293 enum varobj_languages language;
294
295 /* The number of children of PARENT. */
296 int (*number_of_children) (struct varobj * parent);
297
298 /* The name (expression) of a root varobj. */
299 char *(*name_of_variable) (struct varobj * parent);
300
301 /* The name of the INDEX'th child of PARENT. */
302 char *(*name_of_child) (struct varobj * parent, int index);
303
304 /* The ``struct value *'' of the root variable ROOT. */
305 struct value *(*value_of_root) (struct varobj ** root_handle);
306
307 /* The ``struct value *'' of the INDEX'th child of PARENT. */
308 struct value *(*value_of_child) (struct varobj * parent, int index);
309
310 /* The type of the INDEX'th child of PARENT. */
311 struct type *(*type_of_child) (struct varobj * parent, int index);
312
313 /* Is VAR editable? */
314 int (*variable_editable) (struct varobj * var);
315
316 /* The current value of VAR. */
317 char *(*value_of_variable) (struct varobj * var);
318};
319
320/* Array of known source language routines. */
321static struct language_specific languages[vlang_end] = {
322 /* Unknown (try treating as C */
323 {
324 vlang_unknown,
325 c_number_of_children,
326 c_name_of_variable,
327 c_name_of_child,
328 c_value_of_root,
329 c_value_of_child,
330 c_type_of_child,
331 c_variable_editable,
332 c_value_of_variable}
333 ,
334 /* C */
335 {
336 vlang_c,
337 c_number_of_children,
338 c_name_of_variable,
339 c_name_of_child,
340 c_value_of_root,
341 c_value_of_child,
342 c_type_of_child,
343 c_variable_editable,
344 c_value_of_variable}
345 ,
346 /* C++ */
347 {
348 vlang_cplus,
349 cplus_number_of_children,
350 cplus_name_of_variable,
351 cplus_name_of_child,
352 cplus_value_of_root,
353 cplus_value_of_child,
354 cplus_type_of_child,
355 cplus_variable_editable,
356 cplus_value_of_variable}
357 ,
358 /* Java */
359 {
360 vlang_java,
361 java_number_of_children,
362 java_name_of_variable,
363 java_name_of_child,
364 java_value_of_root,
365 java_value_of_child,
366 java_type_of_child,
367 java_variable_editable,
368 java_value_of_variable}
369};
370
371/* A little convenience enum for dealing with C++/Java */
372enum vsections
373{
374 v_public = 0, v_private, v_protected
375};
376
377/* Private data */
378
379/* Mappings of varobj_display_formats enums to gdb's format codes */
380static int format_code[] = { 0, 't', 'd', 'x', 'o' };
381
382/* Header of the list of root variable objects */
383static struct varobj_root *rootlist;
384static int rootcount = 0; /* number of root varobjs in the list */
385
386/* Prime number indicating the number of buckets in the hash table */
387/* A prime large enough to avoid too many colisions */
388#define VAROBJ_TABLE_SIZE 227
389
390/* Pointer to the varobj hash table (built at run time) */
391static struct vlist **varobj_table;
392
393/* Is the variable X one of our "fake" children? */
394#define CPLUS_FAKE_CHILD(x) \
395((x) != NULL && (x)->type == NULL && (x)->value == NULL)
396\f
397
398/* API Implementation */
399static int
400is_root_p (struct varobj *var)
401{
402 return (var->root->rootvar == var);
403}
404
405/* Creates a varobj (not its children) */
406
407/* Return the full FRAME which corresponds to the given CORE_ADDR
408 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
409
410static struct frame_info *
411find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
412{
413 struct frame_info *frame = NULL;
414
415 if (frame_addr == (CORE_ADDR) 0)
416 return NULL;
417
418 while (1)
419 {
420 frame = get_prev_frame (frame);
421 if (frame == NULL)
422 return NULL;
423 if (get_frame_base_address (frame) == frame_addr)
424 return frame;
425 }
426}
427
428struct varobj *
429varobj_create (char *objname,
430 char *expression, CORE_ADDR frame, enum varobj_type type)
431{
432 struct varobj *var;
433 struct frame_info *fi;
434 struct frame_info *old_fi = NULL;
435 struct block *block;
436 struct cleanup *old_chain;
437
438 /* Fill out a varobj structure for the (root) variable being constructed. */
439 var = new_root_variable ();
440 old_chain = make_cleanup_free_variable (var);
441
442 if (expression != NULL)
443 {
444 char *p;
445 enum varobj_languages lang;
446 struct value *value = NULL;
447
448 /* Parse and evaluate the expression, filling in as much
449 of the variable's data as possible */
450
451 /* Allow creator to specify context of variable */
452 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
453 fi = deprecated_safe_get_selected_frame ();
454 else
455 /* FIXME: cagney/2002-11-23: This code should be doing a
456 lookup using the frame ID and not just the frame's
457 ``address''. This, of course, means an interface change.
458 However, with out that interface change ISAs, such as the
459 ia64 with its two stacks, won't work. Similar goes for the
460 case where there is a frameless function. */
461 fi = find_frame_addr_in_frame_chain (frame);
462
463 /* frame = -2 means always use selected frame */
464 if (type == USE_SELECTED_FRAME)
465 var->root->use_selected_frame = 1;
466
467 block = NULL;
468 if (fi != NULL)
469 block = get_frame_block (fi, 0);
470
471 p = expression;
472 innermost_block = NULL;
473 /* Wrap the call to parse expression, so we can
474 return a sensible error. */
475 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
476 {
477 return NULL;
478 }
479
480 /* Don't allow variables to be created for types. */
481 if (var->root->exp->elts[0].opcode == OP_TYPE)
482 {
483 do_cleanups (old_chain);
484 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
485 " as an expression.\n");
486 return NULL;
487 }
488
489 var->format = variable_default_display (var);
490 var->root->valid_block = innermost_block;
491 var->name = savestring (expression, strlen (expression));
492
493 /* When the frame is different from the current frame,
494 we must select the appropriate frame before parsing
495 the expression, otherwise the value will not be current.
496 Since select_frame is so benign, just call it for all cases. */
497 if (fi != NULL)
498 {
499 var->root->frame = get_frame_id (fi);
500 old_fi = get_selected_frame (NULL);
501 select_frame (fi);
502 }
503
504 /* We definitively need to catch errors here.
505 If evaluate_expression succeeds we got the value we wanted.
506 But if it fails, we still go on with a call to evaluate_type() */
507 if (!gdb_evaluate_expression (var->root->exp, &value))
508 {
509 /* Error getting the value. Try to at least get the
510 right type. */
511 struct value *type_only_value = evaluate_type (var->root->exp);
512 var->type = value_type (type_only_value);
513 }
514 else
515 var->type = value_type (value);
516
517 install_new_value (var, value, 1 /* Initial assignment */);
518
519 /* Set language info */
520 lang = variable_language (var);
521 var->root->lang = &languages[lang];
522
523 /* Set ourselves as our root */
524 var->root->rootvar = var;
525
526 /* Reset the selected frame */
527 if (fi != NULL)
528 select_frame (old_fi);
529 }
530
531 /* If the variable object name is null, that means this
532 is a temporary variable, so don't install it. */
533
534 if ((var != NULL) && (objname != NULL))
535 {
536 var->obj_name = savestring (objname, strlen (objname));
537
538 /* If a varobj name is duplicated, the install will fail so
539 we must clenup */
540 if (!install_variable (var))
541 {
542 do_cleanups (old_chain);
543 return NULL;
544 }
545 }
546
547 discard_cleanups (old_chain);
548 return var;
549}
550
551/* Generates an unique name that can be used for a varobj */
552
553char *
554varobj_gen_name (void)
555{
556 static int id = 0;
557 char *obj_name;
558
559 /* generate a name for this object */
560 id++;
561 obj_name = xstrprintf ("var%d", id);
562
563 return obj_name;
564}
565
566/* Given an "objname", returns the pointer to the corresponding varobj
567 or NULL if not found */
568
569struct varobj *
570varobj_get_handle (char *objname)
571{
572 struct vlist *cv;
573 const char *chp;
574 unsigned int index = 0;
575 unsigned int i = 1;
576
577 for (chp = objname; *chp; chp++)
578 {
579 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
580 }
581
582 cv = *(varobj_table + index);
583 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
584 cv = cv->next;
585
586 if (cv == NULL)
587 error (_("Variable object not found"));
588
589 return cv->var;
590}
591
592/* Given the handle, return the name of the object */
593
594char *
595varobj_get_objname (struct varobj *var)
596{
597 return var->obj_name;
598}
599
600/* Given the handle, return the expression represented by the object */
601
602char *
603varobj_get_expression (struct varobj *var)
604{
605 return name_of_variable (var);
606}
607
608/* Deletes a varobj and all its children if only_children == 0,
609 otherwise deletes only the children; returns a malloc'ed list of all the
610 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
611
612int
613varobj_delete (struct varobj *var, char ***dellist, int only_children)
614{
615 int delcount;
616 int mycount;
617 struct cpstack *result = NULL;
618 char **cp;
619
620 /* Initialize a stack for temporary results */
621 cppush (&result, NULL);
622
623 if (only_children)
624 /* Delete only the variable children */
625 delcount = delete_variable (&result, var, 1 /* only the children */ );
626 else
627 /* Delete the variable and all its children */
628 delcount = delete_variable (&result, var, 0 /* parent+children */ );
629
630 /* We may have been asked to return a list of what has been deleted */
631 if (dellist != NULL)
632 {
633 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
634
635 cp = *dellist;
636 mycount = delcount;
637 *cp = cppop (&result);
638 while ((*cp != NULL) && (mycount > 0))
639 {
640 mycount--;
641 cp++;
642 *cp = cppop (&result);
643 }
644
645 if (mycount || (*cp != NULL))
646 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
647 mycount);
648 }
649
650 return delcount;
651}
652
653/* Set/Get variable object display format */
654
655enum varobj_display_formats
656varobj_set_display_format (struct varobj *var,
657 enum varobj_display_formats format)
658{
659 switch (format)
660 {
661 case FORMAT_NATURAL:
662 case FORMAT_BINARY:
663 case FORMAT_DECIMAL:
664 case FORMAT_HEXADECIMAL:
665 case FORMAT_OCTAL:
666 var->format = format;
667 break;
668
669 default:
670 var->format = variable_default_display (var);
671 }
672
673 return var->format;
674}
675
676enum varobj_display_formats
677varobj_get_display_format (struct varobj *var)
678{
679 return var->format;
680}
681
682void
683varobj_set_frozen (struct varobj *var, int frozen)
684{
685 /* When a variable is unfrozen, we don't fetch its value.
686 The 'not_fetched' flag remains set, so next -var-update
687 won't complain.
688
689 We don't fetch the value, because for structures the client
690 should do -var-update anyway. It would be bad to have different
691 client-size logic for structure and other types. */
692 var->frozen = frozen;
693}
694
695int
696varobj_get_frozen (struct varobj *var)
697{
698 return var->frozen;
699}
700
701
702int
703varobj_get_num_children (struct varobj *var)
704{
705 if (var->num_children == -1)
706 var->num_children = number_of_children (var);
707
708 return var->num_children;
709}
710
711/* Creates a list of the immediate children of a variable object;
712 the return code is the number of such children or -1 on error */
713
714int
715varobj_list_children (struct varobj *var, struct varobj ***childlist)
716{
717 struct varobj *child;
718 char *name;
719 int i;
720
721 /* sanity check: have we been passed a pointer? */
722 if (childlist == NULL)
723 return -1;
724
725 *childlist = NULL;
726
727 if (var->num_children == -1)
728 var->num_children = number_of_children (var);
729
730 /* If that failed, give up. */
731 if (var->num_children == -1)
732 return -1;
733
734 /* If we're called when the list of children is not yet initialized,
735 allocate enough elements in it. */
736 while (VEC_length (varobj_p, var->children) < var->num_children)
737 VEC_safe_push (varobj_p, var->children, NULL);
738
739 /* List of children */
740 *childlist = xmalloc ((var->num_children + 1) * sizeof (struct varobj *));
741
742 for (i = 0; i < var->num_children; i++)
743 {
744 varobj_p existing;
745
746 /* Mark as the end in case we bail out */
747 *((*childlist) + i) = NULL;
748
749 existing = VEC_index (varobj_p, var->children, i);
750
751 if (existing == NULL)
752 {
753 /* Either it's the first call to varobj_list_children for
754 this variable object, and the child was never created,
755 or it was explicitly deleted by the client. */
756 name = name_of_child (var, i);
757 existing = create_child (var, i, name);
758 VEC_replace (varobj_p, var->children, i, existing);
759 }
760
761 *((*childlist) + i) = existing;
762 }
763
764 /* End of list is marked by a NULL pointer */
765 *((*childlist) + i) = NULL;
766
767 return var->num_children;
768}
769
770/* Obtain the type of an object Variable as a string similar to the one gdb
771 prints on the console */
772
773char *
774varobj_get_type (struct varobj *var)
775{
776 struct value *val;
777 struct cleanup *old_chain;
778 struct ui_file *stb;
779 char *thetype;
780 long length;
781
782 /* For the "fake" variables, do not return a type. (It's type is
783 NULL, too.)
784 Do not return a type for invalid variables as well. */
785 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
786 return NULL;
787
788 stb = mem_fileopen ();
789 old_chain = make_cleanup_ui_file_delete (stb);
790
791 /* To print the type, we simply create a zero ``struct value *'' and
792 cast it to our type. We then typeprint this variable. */
793 val = value_zero (var->type, not_lval);
794 type_print (value_type (val), "", stb, -1);
795
796 thetype = ui_file_xstrdup (stb, &length);
797 do_cleanups (old_chain);
798 return thetype;
799}
800
801/* Obtain the type of an object variable. */
802
803struct type *
804varobj_get_gdb_type (struct varobj *var)
805{
806 return var->type;
807}
808
809enum varobj_languages
810varobj_get_language (struct varobj *var)
811{
812 return variable_language (var);
813}
814
815int
816varobj_get_attributes (struct varobj *var)
817{
818 int attributes = 0;
819
820 if (var->root->is_valid && variable_editable (var))
821 /* FIXME: define masks for attributes */
822 attributes |= 0x00000001; /* Editable */
823
824 return attributes;
825}
826
827char *
828varobj_get_value (struct varobj *var)
829{
830 return my_value_of_variable (var);
831}
832
833/* Set the value of an object variable (if it is editable) to the
834 value of the given expression */
835/* Note: Invokes functions that can call error() */
836
837int
838varobj_set_value (struct varobj *var, char *expression)
839{
840 struct value *val;
841 int offset = 0;
842 int error = 0;
843
844 /* The argument "expression" contains the variable's new value.
845 We need to first construct a legal expression for this -- ugh! */
846 /* Does this cover all the bases? */
847 struct expression *exp;
848 struct value *value;
849 int saved_input_radix = input_radix;
850
851 if (var->value != NULL && variable_editable (var))
852 {
853 char *s = expression;
854 int i;
855
856 input_radix = 10; /* ALWAYS reset to decimal temporarily */
857 exp = parse_exp_1 (&s, 0, 0);
858 if (!gdb_evaluate_expression (exp, &value))
859 {
860 /* We cannot proceed without a valid expression. */
861 xfree (exp);
862 return 0;
863 }
864
865 /* All types that are editable must also be changeable. */
866 gdb_assert (varobj_value_is_changeable_p (var));
867
868 /* The value of a changeable variable object must not be lazy. */
869 gdb_assert (!value_lazy (var->value));
870
871 /* Need to coerce the input. We want to check if the
872 value of the variable object will be different
873 after assignment, and the first thing value_assign
874 does is coerce the input.
875 For example, if we are assigning an array to a pointer variable we
876 should compare the pointer with the the array's address, not with the
877 array's content. */
878 value = coerce_array (value);
879
880 /* The new value may be lazy. gdb_value_assign, or
881 rather value_contents, will take care of this.
882 If fetching of the new value will fail, gdb_value_assign
883 with catch the exception. */
884 if (!gdb_value_assign (var->value, value, &val))
885 return 0;
886
887 /* If the value has changed, record it, so that next -var-update can
888 report this change. If a variable had a value of '1', we've set it
889 to '333' and then set again to '1', when -var-update will report this
890 variable as changed -- because the first assignment has set the
891 'updated' flag. There's no need to optimize that, because return value
892 of -var-update should be considered an approximation. */
893 var->updated = install_new_value (var, val, 0 /* Compare values. */);
894 input_radix = saved_input_radix;
895 return 1;
896 }
897
898 return 0;
899}
900
901/* Returns a malloc'ed list with all root variable objects */
902int
903varobj_list (struct varobj ***varlist)
904{
905 struct varobj **cv;
906 struct varobj_root *croot;
907 int mycount = rootcount;
908
909 /* Alloc (rootcount + 1) entries for the result */
910 *varlist = xmalloc ((rootcount + 1) * sizeof (struct varobj *));
911
912 cv = *varlist;
913 croot = rootlist;
914 while ((croot != NULL) && (mycount > 0))
915 {
916 *cv = croot->rootvar;
917 mycount--;
918 cv++;
919 croot = croot->next;
920 }
921 /* Mark the end of the list */
922 *cv = NULL;
923
924 if (mycount || (croot != NULL))
925 warning
926 ("varobj_list: assertion failed - wrong tally of root vars (%d:%d)",
927 rootcount, mycount);
928
929 return rootcount;
930}
931
932/* Assign a new value to a variable object. If INITIAL is non-zero,
933 this is the first assignement after the variable object was just
934 created, or changed type. In that case, just assign the value
935 and return 0.
936 Otherwise, assign the value and if type_changeable returns non-zero,
937 find if the new value is different from the current value.
938 Return 1 if so, and 0 if the values are equal.
939
940 The VALUE parameter should not be released -- the function will
941 take care of releasing it when needed. */
942static int
943install_new_value (struct varobj *var, struct value *value, int initial)
944{
945 int changeable;
946 int need_to_fetch;
947 int changed = 0;
948 int intentionally_not_fetched = 0;
949
950 /* We need to know the varobj's type to decide if the value should
951 be fetched or not. C++ fake children (public/protected/private) don't have
952 a type. */
953 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
954 changeable = varobj_value_is_changeable_p (var);
955 need_to_fetch = changeable;
956
957 /* We are not interested in the address of references, and given
958 that in C++ a reference is not rebindable, it cannot
959 meaningfully change. So, get hold of the real value. */
960 if (value)
961 {
962 value = coerce_ref (value);
963 release_value (value);
964 }
965
966 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
967 /* For unions, we need to fetch the value implicitly because
968 of implementation of union member fetch. When gdb
969 creates a value for a field and the value of the enclosing
970 structure is not lazy, it immediately copies the necessary
971 bytes from the enclosing values. If the enclosing value is
972 lazy, the call to value_fetch_lazy on the field will read
973 the data from memory. For unions, that means we'll read the
974 same memory more than once, which is not desirable. So
975 fetch now. */
976 need_to_fetch = 1;
977
978 /* The new value might be lazy. If the type is changeable,
979 that is we'll be comparing values of this type, fetch the
980 value now. Otherwise, on the next update the old value
981 will be lazy, which means we've lost that old value. */
982 if (need_to_fetch && value && value_lazy (value))
983 {
984 struct varobj *parent = var->parent;
985 int frozen = var->frozen;
986 for (; !frozen && parent; parent = parent->parent)
987 frozen |= parent->frozen;
988
989 if (frozen && initial)
990 {
991 /* For variables that are frozen, or are children of frozen
992 variables, we don't do fetch on initial assignment.
993 For non-initial assignemnt we do the fetch, since it means we're
994 explicitly asked to compare the new value with the old one. */
995 intentionally_not_fetched = 1;
996 }
997 else if (!gdb_value_fetch_lazy (value))
998 {
999 /* Set the value to NULL, so that for the next -var-update,
1000 we don't try to compare the new value with this value,
1001 that we couldn't even read. */
1002 value = NULL;
1003 }
1004 }
1005
1006 /* If the type is changeable, compare the old and the new values.
1007 If this is the initial assignment, we don't have any old value
1008 to compare with. */
1009 if (initial && changeable)
1010 var->print_value = value_get_print_value (value, var->format);
1011 else if (changeable)
1012 {
1013 /* If the value of the varobj was changed by -var-set-value, then the
1014 value in the varobj and in the target is the same. However, that value
1015 is different from the value that the varobj had after the previous
1016 -var-update. So need to the varobj as changed. */
1017 if (var->updated)
1018 {
1019 xfree (var->print_value);
1020 var->print_value = value_get_print_value (value, var->format);
1021 changed = 1;
1022 }
1023 else
1024 {
1025 /* Try to compare the values. That requires that both
1026 values are non-lazy. */
1027 if (var->not_fetched && value_lazy (var->value))
1028 {
1029 /* This is a frozen varobj and the value was never read.
1030 Presumably, UI shows some "never read" indicator.
1031 Now that we've fetched the real value, we need to report
1032 this varobj as changed so that UI can show the real
1033 value. */
1034 changed = 1;
1035 }
1036 else if (var->value == NULL && value == NULL)
1037 /* Equal. */
1038 ;
1039 else if (var->value == NULL || value == NULL)
1040 {
1041 xfree (var->print_value);
1042 var->print_value = value_get_print_value (value, var->format);
1043 changed = 1;
1044 }
1045 else
1046 {
1047 char *print_value;
1048 gdb_assert (!value_lazy (var->value));
1049 gdb_assert (!value_lazy (value));
1050 print_value = value_get_print_value (value, var->format);
1051
1052 gdb_assert (var->print_value != NULL && print_value != NULL);
1053 if (strcmp (var->print_value, print_value) != 0)
1054 {
1055 xfree (var->print_value);
1056 var->print_value = print_value;
1057 changed = 1;
1058 }
1059 else
1060 xfree (print_value);
1061 }
1062 }
1063 }
1064
1065 /* We must always keep the new value, since children depend on it. */
1066 if (var->value != NULL && var->value != value)
1067 value_free (var->value);
1068 var->value = value;
1069 if (value && value_lazy (value) && intentionally_not_fetched)
1070 var->not_fetched = 1;
1071 else
1072 var->not_fetched = 0;
1073 var->updated = 0;
1074
1075 gdb_assert (!var->value || value_type (var->value));
1076
1077 return changed;
1078}
1079
1080/* Update the values for a variable and its children. This is a
1081 two-pronged attack. First, re-parse the value for the root's
1082 expression to see if it's changed. Then go all the way
1083 through its children, reconstructing them and noting if they've
1084 changed.
1085 Return value:
1086 < 0 for error values, see varobj.h.
1087 Otherwise it is the number of children + parent changed.
1088
1089 The EXPLICIT parameter specifies if this call is result
1090 of MI request to update this specific variable, or
1091 result of implicit -var-update *. For implicit request, we don't
1092 update frozen variables.
1093
1094 NOTE: This function may delete the caller's varobj. If it
1095 returns TYPE_CHANGED, then it has done this and VARP will be modified
1096 to point to the new varobj. */
1097
1098int
1099varobj_update (struct varobj **varp, struct varobj ***changelist,
1100 int explicit)
1101{
1102 int changed = 0;
1103 int type_changed = 0;
1104 int i;
1105 int vleft;
1106 struct varobj *v;
1107 struct varobj **cv;
1108 struct varobj **templist = NULL;
1109 struct value *new;
1110 VEC (varobj_p) *stack = NULL;
1111 VEC (varobj_p) *result = NULL;
1112 struct frame_id old_fid;
1113 struct frame_info *fi;
1114
1115 /* sanity check: have we been passed a pointer? */
1116 gdb_assert (changelist);
1117
1118 /* Frozen means frozen -- we don't check for any change in
1119 this varobj, including its going out of scope, or
1120 changing type. One use case for frozen varobjs is
1121 retaining previously evaluated expressions, and we don't
1122 want them to be reevaluated at all. */
1123 if (!explicit && (*varp)->frozen)
1124 return 0;
1125
1126 if (!(*varp)->root->is_valid)
1127 return INVALID;
1128
1129 if ((*varp)->root->rootvar == *varp)
1130 {
1131 /* Save the selected stack frame, since we will need to change it
1132 in order to evaluate expressions. */
1133 old_fid = get_frame_id (deprecated_safe_get_selected_frame ());
1134
1135 /* Update the root variable. value_of_root can return NULL
1136 if the variable is no longer around, i.e. we stepped out of
1137 the frame in which a local existed. We are letting the
1138 value_of_root variable dispose of the varobj if the type
1139 has changed. */
1140 type_changed = 1;
1141 new = value_of_root (varp, &type_changed);
1142
1143 /* Restore selected frame. */
1144 fi = frame_find_by_id (old_fid);
1145 if (fi)
1146 select_frame (fi);
1147
1148 /* If this is a "use_selected_frame" varobj, and its type has changed,
1149 them note that it's changed. */
1150 if (type_changed)
1151 VEC_safe_push (varobj_p, result, *varp);
1152
1153 if (install_new_value ((*varp), new, type_changed))
1154 {
1155 /* If type_changed is 1, install_new_value will never return
1156 non-zero, so we'll never report the same variable twice. */
1157 gdb_assert (!type_changed);
1158 VEC_safe_push (varobj_p, result, *varp);
1159 }
1160
1161 if (new == NULL)
1162 {
1163 /* This means the varobj itself is out of scope.
1164 Report it. */
1165 VEC_free (varobj_p, result);
1166 return NOT_IN_SCOPE;
1167 }
1168 }
1169
1170 VEC_safe_push (varobj_p, stack, *varp);
1171
1172 /* Walk through the children, reconstructing them all. */
1173 while (!VEC_empty (varobj_p, stack))
1174 {
1175 v = VEC_pop (varobj_p, stack);
1176
1177 /* Push any children. Use reverse order so that the first
1178 child is popped from the work stack first, and so
1179 will be added to result first. This does not
1180 affect correctness, just "nicer". */
1181 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1182 {
1183 varobj_p c = VEC_index (varobj_p, v->children, i);
1184 /* Child may be NULL if explicitly deleted by -var-delete. */
1185 if (c != NULL && !c->frozen)
1186 VEC_safe_push (varobj_p, stack, c);
1187 }
1188
1189 /* Update this variable, unless it's a root, which is already
1190 updated. */
1191 if (v->root->rootvar != v)
1192 {
1193 new = value_of_child (v->parent, v->index);
1194 if (install_new_value (v, new, 0 /* type not changed */))
1195 {
1196 /* Note that it's changed */
1197 VEC_safe_push (varobj_p, result, v);
1198 v->updated = 0;
1199 }
1200 }
1201 }
1202
1203 /* Alloc (changed + 1) list entries. */
1204 changed = VEC_length (varobj_p, result);
1205 *changelist = xmalloc ((changed + 1) * sizeof (struct varobj *));
1206 cv = *changelist;
1207
1208 for (i = 0; i < changed; ++i)
1209 {
1210 *cv = VEC_index (varobj_p, result, i);
1211 gdb_assert (*cv != NULL);
1212 ++cv;
1213 }
1214 *cv = 0;
1215
1216 VEC_free (varobj_p, stack);
1217 VEC_free (varobj_p, result);
1218
1219 if (type_changed)
1220 return TYPE_CHANGED;
1221 else
1222 return changed;
1223}
1224\f
1225
1226/* Helper functions */
1227
1228/*
1229 * Variable object construction/destruction
1230 */
1231
1232static int
1233delete_variable (struct cpstack **resultp, struct varobj *var,
1234 int only_children_p)
1235{
1236 int delcount = 0;
1237
1238 delete_variable_1 (resultp, &delcount, var,
1239 only_children_p, 1 /* remove_from_parent_p */ );
1240
1241 return delcount;
1242}
1243
1244/* Delete the variable object VAR and its children */
1245/* IMPORTANT NOTE: If we delete a variable which is a child
1246 and the parent is not removed we dump core. It must be always
1247 initially called with remove_from_parent_p set */
1248static void
1249delete_variable_1 (struct cpstack **resultp, int *delcountp,
1250 struct varobj *var, int only_children_p,
1251 int remove_from_parent_p)
1252{
1253 int i;
1254
1255 /* Delete any children of this variable, too. */
1256 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1257 {
1258 varobj_p child = VEC_index (varobj_p, var->children, i);
1259 if (!remove_from_parent_p)
1260 child->parent = NULL;
1261 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1262 }
1263 VEC_free (varobj_p, var->children);
1264
1265 /* if we were called to delete only the children we are done here */
1266 if (only_children_p)
1267 return;
1268
1269 /* Otherwise, add it to the list of deleted ones and proceed to do so */
1270 /* If the name is null, this is a temporary variable, that has not
1271 yet been installed, don't report it, it belongs to the caller... */
1272 if (var->obj_name != NULL)
1273 {
1274 cppush (resultp, xstrdup (var->obj_name));
1275 *delcountp = *delcountp + 1;
1276 }
1277
1278 /* If this variable has a parent, remove it from its parent's list */
1279 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1280 (as indicated by remove_from_parent_p) we don't bother doing an
1281 expensive list search to find the element to remove when we are
1282 discarding the list afterwards */
1283 if ((remove_from_parent_p) && (var->parent != NULL))
1284 {
1285 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1286 }
1287
1288 if (var->obj_name != NULL)
1289 uninstall_variable (var);
1290
1291 /* Free memory associated with this variable */
1292 free_variable (var);
1293}
1294
1295/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1296static int
1297install_variable (struct varobj *var)
1298{
1299 struct vlist *cv;
1300 struct vlist *newvl;
1301 const char *chp;
1302 unsigned int index = 0;
1303 unsigned int i = 1;
1304
1305 for (chp = var->obj_name; *chp; chp++)
1306 {
1307 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1308 }
1309
1310 cv = *(varobj_table + index);
1311 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1312 cv = cv->next;
1313
1314 if (cv != NULL)
1315 error (_("Duplicate variable object name"));
1316
1317 /* Add varobj to hash table */
1318 newvl = xmalloc (sizeof (struct vlist));
1319 newvl->next = *(varobj_table + index);
1320 newvl->var = var;
1321 *(varobj_table + index) = newvl;
1322
1323 /* If root, add varobj to root list */
1324 if (is_root_p (var))
1325 {
1326 /* Add to list of root variables */
1327 if (rootlist == NULL)
1328 var->root->next = NULL;
1329 else
1330 var->root->next = rootlist;
1331 rootlist = var->root;
1332 rootcount++;
1333 }
1334
1335 return 1; /* OK */
1336}
1337
1338/* Unistall the object VAR. */
1339static void
1340uninstall_variable (struct varobj *var)
1341{
1342 struct vlist *cv;
1343 struct vlist *prev;
1344 struct varobj_root *cr;
1345 struct varobj_root *prer;
1346 const char *chp;
1347 unsigned int index = 0;
1348 unsigned int i = 1;
1349
1350 /* Remove varobj from hash table */
1351 for (chp = var->obj_name; *chp; chp++)
1352 {
1353 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1354 }
1355
1356 cv = *(varobj_table + index);
1357 prev = NULL;
1358 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1359 {
1360 prev = cv;
1361 cv = cv->next;
1362 }
1363
1364 if (varobjdebug)
1365 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1366
1367 if (cv == NULL)
1368 {
1369 warning
1370 ("Assertion failed: Could not find variable object \"%s\" to delete",
1371 var->obj_name);
1372 return;
1373 }
1374
1375 if (prev == NULL)
1376 *(varobj_table + index) = cv->next;
1377 else
1378 prev->next = cv->next;
1379
1380 xfree (cv);
1381
1382 /* If root, remove varobj from root list */
1383 if (is_root_p (var))
1384 {
1385 /* Remove from list of root variables */
1386 if (rootlist == var->root)
1387 rootlist = var->root->next;
1388 else
1389 {
1390 prer = NULL;
1391 cr = rootlist;
1392 while ((cr != NULL) && (cr->rootvar != var))
1393 {
1394 prer = cr;
1395 cr = cr->next;
1396 }
1397 if (cr == NULL)
1398 {
1399 warning
1400 ("Assertion failed: Could not find varobj \"%s\" in root list",
1401 var->obj_name);
1402 return;
1403 }
1404 if (prer == NULL)
1405 rootlist = NULL;
1406 else
1407 prer->next = cr->next;
1408 }
1409 rootcount--;
1410 }
1411
1412}
1413
1414/* Create and install a child of the parent of the given name */
1415static struct varobj *
1416create_child (struct varobj *parent, int index, char *name)
1417{
1418 struct varobj *child;
1419 char *childs_name;
1420 struct value *value;
1421
1422 child = new_variable ();
1423
1424 /* name is allocated by name_of_child */
1425 child->name = name;
1426 child->index = index;
1427 value = value_of_child (parent, index);
1428 child->parent = parent;
1429 child->root = parent->root;
1430 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
1431 child->obj_name = childs_name;
1432 install_variable (child);
1433
1434 /* Compute the type of the child. Must do this before
1435 calling install_new_value. */
1436 if (value != NULL)
1437 /* If the child had no evaluation errors, var->value
1438 will be non-NULL and contain a valid type. */
1439 child->type = value_type (value);
1440 else
1441 /* Otherwise, we must compute the type. */
1442 child->type = (*child->root->lang->type_of_child) (child->parent,
1443 child->index);
1444 install_new_value (child, value, 1);
1445
1446 return child;
1447}
1448\f
1449
1450/*
1451 * Miscellaneous utility functions.
1452 */
1453
1454/* Allocate memory and initialize a new variable */
1455static struct varobj *
1456new_variable (void)
1457{
1458 struct varobj *var;
1459
1460 var = (struct varobj *) xmalloc (sizeof (struct varobj));
1461 var->name = NULL;
1462 var->obj_name = NULL;
1463 var->index = -1;
1464 var->type = NULL;
1465 var->value = NULL;
1466 var->num_children = -1;
1467 var->parent = NULL;
1468 var->children = NULL;
1469 var->format = 0;
1470 var->root = NULL;
1471 var->updated = 0;
1472 var->print_value = NULL;
1473 var->frozen = 0;
1474 var->not_fetched = 0;
1475
1476 return var;
1477}
1478
1479/* Allocate memory and initialize a new root variable */
1480static struct varobj *
1481new_root_variable (void)
1482{
1483 struct varobj *var = new_variable ();
1484 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
1485 var->root->lang = NULL;
1486 var->root->exp = NULL;
1487 var->root->valid_block = NULL;
1488 var->root->frame = null_frame_id;
1489 var->root->use_selected_frame = 0;
1490 var->root->rootvar = NULL;
1491 var->root->is_valid = 1;
1492
1493 return var;
1494}
1495
1496/* Free any allocated memory associated with VAR. */
1497static void
1498free_variable (struct varobj *var)
1499{
1500 /* Free the expression if this is a root variable. */
1501 if (is_root_p (var))
1502 {
1503 free_current_contents (&var->root->exp);
1504 xfree (var->root);
1505 }
1506
1507 xfree (var->name);
1508 xfree (var->obj_name);
1509 xfree (var->print_value);
1510 xfree (var);
1511}
1512
1513static void
1514do_free_variable_cleanup (void *var)
1515{
1516 free_variable (var);
1517}
1518
1519static struct cleanup *
1520make_cleanup_free_variable (struct varobj *var)
1521{
1522 return make_cleanup (do_free_variable_cleanup, var);
1523}
1524
1525/* This returns the type of the variable. It also skips past typedefs
1526 to return the real type of the variable.
1527
1528 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
1529 except within get_target_type and get_type. */
1530static struct type *
1531get_type (struct varobj *var)
1532{
1533 struct type *type;
1534 type = var->type;
1535
1536 if (type != NULL)
1537 type = check_typedef (type);
1538
1539 return type;
1540}
1541
1542/* Return the type of the value that's stored in VAR,
1543 or that would have being stored there if the
1544 value were accessible.
1545
1546 This differs from VAR->type in that VAR->type is always
1547 the true type of the expession in the source language.
1548 The return value of this function is the type we're
1549 actually storing in varobj, and using for displaying
1550 the values and for comparing previous and new values.
1551
1552 For example, top-level references are always stripped. */
1553static struct type *
1554get_value_type (struct varobj *var)
1555{
1556 struct type *type;
1557
1558 if (var->value)
1559 type = value_type (var->value);
1560 else
1561 type = var->type;
1562
1563 type = check_typedef (type);
1564
1565 if (TYPE_CODE (type) == TYPE_CODE_REF)
1566 type = get_target_type (type);
1567
1568 type = check_typedef (type);
1569
1570 return type;
1571}
1572
1573/* This returns the target type (or NULL) of TYPE, also skipping
1574 past typedefs, just like get_type ().
1575
1576 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
1577 except within get_target_type and get_type. */
1578static struct type *
1579get_target_type (struct type *type)
1580{
1581 if (type != NULL)
1582 {
1583 type = TYPE_TARGET_TYPE (type);
1584 if (type != NULL)
1585 type = check_typedef (type);
1586 }
1587
1588 return type;
1589}
1590
1591/* What is the default display for this variable? We assume that
1592 everything is "natural". Any exceptions? */
1593static enum varobj_display_formats
1594variable_default_display (struct varobj *var)
1595{
1596 return FORMAT_NATURAL;
1597}
1598
1599/* FIXME: The following should be generic for any pointer */
1600static void
1601cppush (struct cpstack **pstack, char *name)
1602{
1603 struct cpstack *s;
1604
1605 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
1606 s->name = name;
1607 s->next = *pstack;
1608 *pstack = s;
1609}
1610
1611/* FIXME: The following should be generic for any pointer */
1612static char *
1613cppop (struct cpstack **pstack)
1614{
1615 struct cpstack *s;
1616 char *v;
1617
1618 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
1619 return NULL;
1620
1621 s = *pstack;
1622 v = s->name;
1623 *pstack = (*pstack)->next;
1624 xfree (s);
1625
1626 return v;
1627}
1628\f
1629/*
1630 * Language-dependencies
1631 */
1632
1633/* Common entry points */
1634
1635/* Get the language of variable VAR. */
1636static enum varobj_languages
1637variable_language (struct varobj *var)
1638{
1639 enum varobj_languages lang;
1640
1641 switch (var->root->exp->language_defn->la_language)
1642 {
1643 default:
1644 case language_c:
1645 lang = vlang_c;
1646 break;
1647 case language_cplus:
1648 lang = vlang_cplus;
1649 break;
1650 case language_java:
1651 lang = vlang_java;
1652 break;
1653 }
1654
1655 return lang;
1656}
1657
1658/* Return the number of children for a given variable.
1659 The result of this function is defined by the language
1660 implementation. The number of children returned by this function
1661 is the number of children that the user will see in the variable
1662 display. */
1663static int
1664number_of_children (struct varobj *var)
1665{
1666 return (*var->root->lang->number_of_children) (var);;
1667}
1668
1669/* What is the expression for the root varobj VAR? Returns a malloc'd string. */
1670static char *
1671name_of_variable (struct varobj *var)
1672{
1673 return (*var->root->lang->name_of_variable) (var);
1674}
1675
1676/* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
1677static char *
1678name_of_child (struct varobj *var, int index)
1679{
1680 return (*var->root->lang->name_of_child) (var, index);
1681}
1682
1683/* What is the ``struct value *'' of the root variable VAR?
1684 TYPE_CHANGED controls what to do if the type of a
1685 use_selected_frame = 1 variable changes. On input,
1686 TYPE_CHANGED = 1 means discard the old varobj, and replace
1687 it with this one. TYPE_CHANGED = 0 means leave it around.
1688 NB: In both cases, var_handle will point to the new varobj,
1689 so if you use TYPE_CHANGED = 0, you will have to stash the
1690 old varobj pointer away somewhere before calling this.
1691 On return, TYPE_CHANGED will be 1 if the type has changed, and
1692 0 otherwise. */
1693static struct value *
1694value_of_root (struct varobj **var_handle, int *type_changed)
1695{
1696 struct varobj *var;
1697
1698 if (var_handle == NULL)
1699 return NULL;
1700
1701 var = *var_handle;
1702
1703 /* This should really be an exception, since this should
1704 only get called with a root variable. */
1705
1706 if (!is_root_p (var))
1707 return NULL;
1708
1709 if (var->root->use_selected_frame)
1710 {
1711 struct varobj *tmp_var;
1712 char *old_type, *new_type;
1713
1714 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
1715 USE_SELECTED_FRAME);
1716 if (tmp_var == NULL)
1717 {
1718 return NULL;
1719 }
1720 old_type = varobj_get_type (var);
1721 new_type = varobj_get_type (tmp_var);
1722 if (strcmp (old_type, new_type) == 0)
1723 {
1724 varobj_delete (tmp_var, NULL, 0);
1725 *type_changed = 0;
1726 }
1727 else
1728 {
1729 if (*type_changed)
1730 {
1731 tmp_var->obj_name =
1732 savestring (var->obj_name, strlen (var->obj_name));
1733 varobj_delete (var, NULL, 0);
1734 }
1735 else
1736 {
1737 tmp_var->obj_name = varobj_gen_name ();
1738 }
1739 install_variable (tmp_var);
1740 *var_handle = tmp_var;
1741 var = *var_handle;
1742 *type_changed = 1;
1743 }
1744 xfree (old_type);
1745 xfree (new_type);
1746 }
1747 else
1748 {
1749 *type_changed = 0;
1750 }
1751
1752 return (*var->root->lang->value_of_root) (var_handle);
1753}
1754
1755/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
1756static struct value *
1757value_of_child (struct varobj *parent, int index)
1758{
1759 struct value *value;
1760
1761 value = (*parent->root->lang->value_of_child) (parent, index);
1762
1763 return value;
1764}
1765
1766/* Is this variable editable? Use the variable's type to make
1767 this determination. */
1768static int
1769variable_editable (struct varobj *var)
1770{
1771 return (*var->root->lang->variable_editable) (var);
1772}
1773
1774/* GDB already has a command called "value_of_variable". Sigh. */
1775static char *
1776my_value_of_variable (struct varobj *var)
1777{
1778 if (var->root->is_valid)
1779 return (*var->root->lang->value_of_variable) (var);
1780 else
1781 return NULL;
1782}
1783
1784static char *
1785value_get_print_value (struct value *value, enum varobj_display_formats format)
1786{
1787 long dummy;
1788 struct ui_file *stb;
1789 struct cleanup *old_chain;
1790 char *thevalue;
1791
1792 if (value == NULL)
1793 return NULL;
1794
1795 stb = mem_fileopen ();
1796 old_chain = make_cleanup_ui_file_delete (stb);
1797
1798 common_val_print (value, stb, format_code[(int) format], 1, 0, 0);
1799 thevalue = ui_file_xstrdup (stb, &dummy);
1800
1801 do_cleanups (old_chain);
1802 return thevalue;
1803}
1804
1805/* Return non-zero if changes in value of VAR
1806 must be detected and reported by -var-update.
1807 Return zero is -var-update should never report
1808 changes of such values. This makes sense for structures
1809 (since the changes in children values will be reported separately),
1810 or for artifical objects (like 'public' pseudo-field in C++).
1811
1812 Return value of 0 means that gdb need not call value_fetch_lazy
1813 for the value of this variable object. */
1814static int
1815varobj_value_is_changeable_p (struct varobj *var)
1816{
1817 int r;
1818 struct type *type;
1819
1820 if (CPLUS_FAKE_CHILD (var))
1821 return 0;
1822
1823 type = get_value_type (var);
1824
1825 switch (TYPE_CODE (type))
1826 {
1827 case TYPE_CODE_STRUCT:
1828 case TYPE_CODE_UNION:
1829 case TYPE_CODE_ARRAY:
1830 r = 0;
1831 break;
1832
1833 default:
1834 r = 1;
1835 }
1836
1837 return r;
1838}
1839
1840/* Given the value and the type of a variable object,
1841 adjust the value and type to those necessary
1842 for getting children of the variable object.
1843 This includes dereferencing top-level references
1844 to all types and dereferencing pointers to
1845 structures.
1846
1847 Both TYPE and *TYPE should be non-null. VALUE
1848 can be null if we want to only translate type.
1849 *VALUE can be null as well -- if the parent
1850 value is not known. */
1851static void
1852adjust_value_for_child_access (struct value **value,
1853 struct type **type)
1854{
1855 gdb_assert (type && *type);
1856
1857 *type = check_typedef (*type);
1858
1859 /* The type of value stored in varobj, that is passed
1860 to us, is already supposed to be
1861 reference-stripped. */
1862
1863 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
1864
1865 /* Pointers to structures are treated just like
1866 structures when accessing children. Don't
1867 dererences pointers to other types. */
1868 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
1869 {
1870 struct type *target_type = get_target_type (*type);
1871 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
1872 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
1873 {
1874 if (value && *value)
1875 gdb_value_ind (*value, value);
1876 *type = target_type;
1877 }
1878 }
1879
1880 /* The 'get_target_type' function calls check_typedef on
1881 result, so we can immediately check type code. No
1882 need to call check_typedef here. */
1883}
1884
1885/* C */
1886static int
1887c_number_of_children (struct varobj *var)
1888{
1889 struct type *type = get_value_type (var);
1890 int children = 0;
1891 struct type *target;
1892
1893 adjust_value_for_child_access (NULL, &type);
1894 target = get_target_type (type);
1895
1896 switch (TYPE_CODE (type))
1897 {
1898 case TYPE_CODE_ARRAY:
1899 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
1900 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) != BOUND_CANNOT_BE_DETERMINED)
1901 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
1902 else
1903 /* If we don't know how many elements there are, don't display
1904 any. */
1905 children = 0;
1906 break;
1907
1908 case TYPE_CODE_STRUCT:
1909 case TYPE_CODE_UNION:
1910 children = TYPE_NFIELDS (type);
1911 break;
1912
1913 case TYPE_CODE_PTR:
1914 /* The type here is a pointer to non-struct. Typically, pointers
1915 have one child, except for function ptrs, which have no children,
1916 and except for void*, as we don't know what to show.
1917
1918 We can show char* so we allow it to be dereferenced. If you decide
1919 to test for it, please mind that a little magic is necessary to
1920 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
1921 TYPE_NAME == "char" */
1922 if (TYPE_CODE (target) == TYPE_CODE_FUNC
1923 || TYPE_CODE (target) == TYPE_CODE_VOID)
1924 children = 0;
1925 else
1926 children = 1;
1927 break;
1928
1929 default:
1930 /* Other types have no children */
1931 break;
1932 }
1933
1934 return children;
1935}
1936
1937static char *
1938c_name_of_variable (struct varobj *parent)
1939{
1940 return savestring (parent->name, strlen (parent->name));
1941}
1942
1943/* Return the value of element TYPE_INDEX of a structure
1944 value VALUE. VALUE's type should be a structure,
1945 or union, or a typedef to struct/union.
1946
1947 Returns NULL if getting the value fails. Never throws. */
1948static struct value *
1949value_struct_element_index (struct value *value, int type_index)
1950{
1951 struct value *result = NULL;
1952 volatile struct gdb_exception e;
1953
1954 struct type *type = value_type (value);
1955 type = check_typedef (type);
1956
1957 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1958 || TYPE_CODE (type) == TYPE_CODE_UNION);
1959
1960 TRY_CATCH (e, RETURN_MASK_ERROR)
1961 {
1962 if (TYPE_FIELD_STATIC (type, type_index))
1963 result = value_static_field (type, type_index);
1964 else
1965 result = value_primitive_field (value, 0, type_index, type);
1966 }
1967 if (e.reason < 0)
1968 {
1969 return NULL;
1970 }
1971 else
1972 {
1973 return result;
1974 }
1975}
1976
1977/* Obtain the information about child INDEX of the variable
1978 object PARENT.
1979 If CNAME is not null, sets *CNAME to the name of the child relative
1980 to the parent.
1981 If CVALUE is not null, sets *CVALUE to the value of the child.
1982 If CTYPE is not null, sets *CTYPE to the type of the child.
1983
1984 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
1985 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
1986 to NULL. */
1987static void
1988c_describe_child (struct varobj *parent, int index,
1989 char **cname, struct value **cvalue, struct type **ctype)
1990{
1991 struct value *value = parent->value;
1992 struct type *type = get_value_type (parent);
1993
1994 if (cname)
1995 *cname = NULL;
1996 if (cvalue)
1997 *cvalue = NULL;
1998 if (ctype)
1999 *ctype = NULL;
2000
2001 adjust_value_for_child_access (&value, &type);
2002
2003 switch (TYPE_CODE (type))
2004 {
2005 case TYPE_CODE_ARRAY:
2006 if (cname)
2007 *cname = xstrprintf ("%d", index
2008 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
2009
2010 if (cvalue && value)
2011 {
2012 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2013 struct value *indval =
2014 value_from_longest (builtin_type_int, (LONGEST) real_index);
2015 gdb_value_subscript (value, indval, cvalue);
2016 }
2017
2018 if (ctype)
2019 *ctype = get_target_type (type);
2020
2021 break;
2022
2023 case TYPE_CODE_STRUCT:
2024 case TYPE_CODE_UNION:
2025 if (cname)
2026 {
2027 char *string = TYPE_FIELD_NAME (type, index);
2028 *cname = savestring (string, strlen (string));
2029 }
2030
2031 if (cvalue && value)
2032 {
2033 /* For C, varobj index is the same as type index. */
2034 *cvalue = value_struct_element_index (value, index);
2035 }
2036
2037 if (ctype)
2038 *ctype = TYPE_FIELD_TYPE (type, index);
2039
2040 break;
2041
2042 case TYPE_CODE_PTR:
2043 if (cname)
2044 *cname = xstrprintf ("*%s", parent->name);
2045
2046 if (cvalue && value)
2047 gdb_value_ind (value, cvalue);
2048
2049 /* Don't use get_target_type because it calls
2050 check_typedef and here, we want to show the true
2051 declared type of the variable. */
2052 if (ctype)
2053 *ctype = TYPE_TARGET_TYPE (type);
2054
2055 break;
2056
2057 default:
2058 /* This should not happen */
2059 if (cname)
2060 *cname = xstrdup ("???");
2061 /* Don't set value and type, we don't know then. */
2062 }
2063}
2064
2065static char *
2066c_name_of_child (struct varobj *parent, int index)
2067{
2068 char *name;
2069 c_describe_child (parent, index, &name, NULL, NULL);
2070 return name;
2071}
2072
2073static struct value *
2074c_value_of_root (struct varobj **var_handle)
2075{
2076 struct value *new_val = NULL;
2077 struct varobj *var = *var_handle;
2078 struct frame_info *fi;
2079 int within_scope;
2080
2081 /* Only root variables can be updated... */
2082 if (!is_root_p (var))
2083 /* Not a root var */
2084 return NULL;
2085
2086
2087 /* Determine whether the variable is still around. */
2088 if (var->root->valid_block == NULL || var->root->use_selected_frame)
2089 within_scope = 1;
2090 else
2091 {
2092 fi = frame_find_by_id (var->root->frame);
2093 within_scope = fi != NULL;
2094 /* FIXME: select_frame could fail */
2095 if (fi)
2096 {
2097 CORE_ADDR pc = get_frame_pc (fi);
2098 if (pc < BLOCK_START (var->root->valid_block) ||
2099 pc >= BLOCK_END (var->root->valid_block))
2100 within_scope = 0;
2101 else
2102 select_frame (fi);
2103 }
2104 }
2105
2106 if (within_scope)
2107 {
2108 /* We need to catch errors here, because if evaluate
2109 expression fails we want to just return NULL. */
2110 gdb_evaluate_expression (var->root->exp, &new_val);
2111 return new_val;
2112 }
2113
2114 return NULL;
2115}
2116
2117static struct value *
2118c_value_of_child (struct varobj *parent, int index)
2119{
2120 struct value *value = NULL;
2121 c_describe_child (parent, index, NULL, &value, NULL);
2122
2123 return value;
2124}
2125
2126static struct type *
2127c_type_of_child (struct varobj *parent, int index)
2128{
2129 struct type *type = NULL;
2130 c_describe_child (parent, index, NULL, NULL, &type);
2131 return type;
2132}
2133
2134static int
2135c_variable_editable (struct varobj *var)
2136{
2137 switch (TYPE_CODE (get_value_type (var)))
2138 {
2139 case TYPE_CODE_STRUCT:
2140 case TYPE_CODE_UNION:
2141 case TYPE_CODE_ARRAY:
2142 case TYPE_CODE_FUNC:
2143 case TYPE_CODE_METHOD:
2144 return 0;
2145 break;
2146
2147 default:
2148 return 1;
2149 break;
2150 }
2151}
2152
2153static char *
2154c_value_of_variable (struct varobj *var)
2155{
2156 /* BOGUS: if val_print sees a struct/class, or a reference to one,
2157 it will print out its children instead of "{...}". So we need to
2158 catch that case explicitly. */
2159 struct type *type = get_type (var);
2160
2161 /* Strip top-level references. */
2162 while (TYPE_CODE (type) == TYPE_CODE_REF)
2163 type = check_typedef (TYPE_TARGET_TYPE (type));
2164
2165 switch (TYPE_CODE (type))
2166 {
2167 case TYPE_CODE_STRUCT:
2168 case TYPE_CODE_UNION:
2169 return xstrdup ("{...}");
2170 /* break; */
2171
2172 case TYPE_CODE_ARRAY:
2173 {
2174 char *number;
2175 number = xstrprintf ("[%d]", var->num_children);
2176 return (number);
2177 }
2178 /* break; */
2179
2180 default:
2181 {
2182 if (var->value == NULL)
2183 {
2184 /* This can happen if we attempt to get the value of a struct
2185 member when the parent is an invalid pointer. This is an
2186 error condition, so we should tell the caller. */
2187 return NULL;
2188 }
2189 else
2190 {
2191 if (var->not_fetched && value_lazy (var->value))
2192 /* Frozen variable and no value yet. We don't
2193 implicitly fetch the value. MI response will
2194 use empty string for the value, which is OK. */
2195 return NULL;
2196
2197 gdb_assert (varobj_value_is_changeable_p (var));
2198 gdb_assert (!value_lazy (var->value));
2199 return value_get_print_value (var->value, var->format);
2200 }
2201 }
2202 }
2203}
2204\f
2205
2206/* C++ */
2207
2208static int
2209cplus_number_of_children (struct varobj *var)
2210{
2211 struct type *type;
2212 int children, dont_know;
2213
2214 dont_know = 1;
2215 children = 0;
2216
2217 if (!CPLUS_FAKE_CHILD (var))
2218 {
2219 type = get_value_type (var);
2220 adjust_value_for_child_access (NULL, &type);
2221
2222 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
2223 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
2224 {
2225 int kids[3];
2226
2227 cplus_class_num_children (type, kids);
2228 if (kids[v_public] != 0)
2229 children++;
2230 if (kids[v_private] != 0)
2231 children++;
2232 if (kids[v_protected] != 0)
2233 children++;
2234
2235 /* Add any baseclasses */
2236 children += TYPE_N_BASECLASSES (type);
2237 dont_know = 0;
2238
2239 /* FIXME: save children in var */
2240 }
2241 }
2242 else
2243 {
2244 int kids[3];
2245
2246 type = get_value_type (var->parent);
2247 adjust_value_for_child_access (NULL, &type);
2248
2249 cplus_class_num_children (type, kids);
2250 if (strcmp (var->name, "public") == 0)
2251 children = kids[v_public];
2252 else if (strcmp (var->name, "private") == 0)
2253 children = kids[v_private];
2254 else
2255 children = kids[v_protected];
2256 dont_know = 0;
2257 }
2258
2259 if (dont_know)
2260 children = c_number_of_children (var);
2261
2262 return children;
2263}
2264
2265/* Compute # of public, private, and protected variables in this class.
2266 That means we need to descend into all baseclasses and find out
2267 how many are there, too. */
2268static void
2269cplus_class_num_children (struct type *type, int children[3])
2270{
2271 int i;
2272
2273 children[v_public] = 0;
2274 children[v_private] = 0;
2275 children[v_protected] = 0;
2276
2277 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
2278 {
2279 /* If we have a virtual table pointer, omit it. */
2280 if (TYPE_VPTR_BASETYPE (type) == type && TYPE_VPTR_FIELDNO (type) == i)
2281 continue;
2282
2283 if (TYPE_FIELD_PROTECTED (type, i))
2284 children[v_protected]++;
2285 else if (TYPE_FIELD_PRIVATE (type, i))
2286 children[v_private]++;
2287 else
2288 children[v_public]++;
2289 }
2290}
2291
2292static char *
2293cplus_name_of_variable (struct varobj *parent)
2294{
2295 return c_name_of_variable (parent);
2296}
2297
2298enum accessibility { private_field, protected_field, public_field };
2299
2300/* Check if field INDEX of TYPE has the specified accessibility.
2301 Return 0 if so and 1 otherwise. */
2302static int
2303match_accessibility (struct type *type, int index, enum accessibility acc)
2304{
2305 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
2306 return 1;
2307 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
2308 return 1;
2309 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
2310 && !TYPE_FIELD_PROTECTED (type, index))
2311 return 1;
2312 else
2313 return 0;
2314}
2315
2316static void
2317cplus_describe_child (struct varobj *parent, int index,
2318 char **cname, struct value **cvalue, struct type **ctype)
2319{
2320 char *name = NULL;
2321 struct value *value;
2322 struct type *type;
2323
2324 if (cname)
2325 *cname = NULL;
2326 if (cvalue)
2327 *cvalue = NULL;
2328 if (ctype)
2329 *ctype = NULL;
2330
2331
2332 if (CPLUS_FAKE_CHILD (parent))
2333 {
2334 value = parent->parent->value;
2335 type = get_value_type (parent->parent);
2336 }
2337 else
2338 {
2339 value = parent->value;
2340 type = get_value_type (parent);
2341 }
2342
2343 adjust_value_for_child_access (&value, &type);
2344
2345 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2346 || TYPE_CODE (type) == TYPE_CODE_STRUCT)
2347 {
2348 if (CPLUS_FAKE_CHILD (parent))
2349 {
2350 /* The fields of the class type are ordered as they
2351 appear in the class. We are given an index for a
2352 particular access control type ("public","protected",
2353 or "private"). We must skip over fields that don't
2354 have the access control we are looking for to properly
2355 find the indexed field. */
2356 int type_index = TYPE_N_BASECLASSES (type);
2357 enum accessibility acc = public_field;
2358 if (strcmp (parent->name, "private") == 0)
2359 acc = private_field;
2360 else if (strcmp (parent->name, "protected") == 0)
2361 acc = protected_field;
2362
2363 while (index >= 0)
2364 {
2365 if (TYPE_VPTR_BASETYPE (type) == type
2366 && type_index == TYPE_VPTR_FIELDNO (type))
2367 ; /* ignore vptr */
2368 else if (match_accessibility (type, type_index, acc))
2369 --index;
2370 ++type_index;
2371 }
2372 --type_index;
2373
2374 if (cname)
2375 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
2376
2377 if (cvalue && value)
2378 *cvalue = value_struct_element_index (value, type_index);
2379
2380 if (ctype)
2381 *ctype = TYPE_FIELD_TYPE (type, type_index);
2382 }
2383 else if (index < TYPE_N_BASECLASSES (type))
2384 {
2385 /* This is a baseclass. */
2386 if (cname)
2387 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2388
2389 if (cvalue && value)
2390 {
2391 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
2392 }
2393
2394 if (ctype)
2395 {
2396 *ctype = TYPE_FIELD_TYPE (type, index);
2397 }
2398 }
2399 else
2400 {
2401 char *access = NULL;
2402 int children[3];
2403 cplus_class_num_children (type, children);
2404
2405 /* Everything beyond the baseclasses can
2406 only be "public", "private", or "protected"
2407
2408 The special "fake" children are always output by varobj in
2409 this order. So if INDEX == 2, it MUST be "protected". */
2410 index -= TYPE_N_BASECLASSES (type);
2411 switch (index)
2412 {
2413 case 0:
2414 if (children[v_public] > 0)
2415 access = "public";
2416 else if (children[v_private] > 0)
2417 access = "private";
2418 else
2419 access = "protected";
2420 break;
2421 case 1:
2422 if (children[v_public] > 0)
2423 {
2424 if (children[v_private] > 0)
2425 access = "private";
2426 else
2427 access = "protected";
2428 }
2429 else if (children[v_private] > 0)
2430 access = "protected";
2431 break;
2432 case 2:
2433 /* Must be protected */
2434 access = "protected";
2435 break;
2436 default:
2437 /* error! */
2438 break;
2439 }
2440
2441 gdb_assert (access);
2442 if (cname)
2443 *cname = xstrdup (access);
2444
2445 /* Value and type are null here. */
2446 }
2447 }
2448 else
2449 {
2450 c_describe_child (parent, index, cname, cvalue, ctype);
2451 }
2452}
2453
2454static char *
2455cplus_name_of_child (struct varobj *parent, int index)
2456{
2457 char *name = NULL;
2458 cplus_describe_child (parent, index, &name, NULL, NULL);
2459 return name;
2460}
2461
2462static struct value *
2463cplus_value_of_root (struct varobj **var_handle)
2464{
2465 return c_value_of_root (var_handle);
2466}
2467
2468static struct value *
2469cplus_value_of_child (struct varobj *parent, int index)
2470{
2471 struct value *value = NULL;
2472 cplus_describe_child (parent, index, NULL, &value, NULL);
2473 return value;
2474}
2475
2476static struct type *
2477cplus_type_of_child (struct varobj *parent, int index)
2478{
2479 struct type *type = NULL;
2480 cplus_describe_child (parent, index, NULL, NULL, &type);
2481 return type;
2482}
2483
2484static int
2485cplus_variable_editable (struct varobj *var)
2486{
2487 if (CPLUS_FAKE_CHILD (var))
2488 return 0;
2489
2490 return c_variable_editable (var);
2491}
2492
2493static char *
2494cplus_value_of_variable (struct varobj *var)
2495{
2496
2497 /* If we have one of our special types, don't print out
2498 any value. */
2499 if (CPLUS_FAKE_CHILD (var))
2500 return xstrdup ("");
2501
2502 return c_value_of_variable (var);
2503}
2504\f
2505/* Java */
2506
2507static int
2508java_number_of_children (struct varobj *var)
2509{
2510 return cplus_number_of_children (var);
2511}
2512
2513static char *
2514java_name_of_variable (struct varobj *parent)
2515{
2516 char *p, *name;
2517
2518 name = cplus_name_of_variable (parent);
2519 /* If the name has "-" in it, it is because we
2520 needed to escape periods in the name... */
2521 p = name;
2522
2523 while (*p != '\000')
2524 {
2525 if (*p == '-')
2526 *p = '.';
2527 p++;
2528 }
2529
2530 return name;
2531}
2532
2533static char *
2534java_name_of_child (struct varobj *parent, int index)
2535{
2536 char *name, *p;
2537
2538 name = cplus_name_of_child (parent, index);
2539 /* Escape any periods in the name... */
2540 p = name;
2541
2542 while (*p != '\000')
2543 {
2544 if (*p == '.')
2545 *p = '-';
2546 p++;
2547 }
2548
2549 return name;
2550}
2551
2552static struct value *
2553java_value_of_root (struct varobj **var_handle)
2554{
2555 return cplus_value_of_root (var_handle);
2556}
2557
2558static struct value *
2559java_value_of_child (struct varobj *parent, int index)
2560{
2561 return cplus_value_of_child (parent, index);
2562}
2563
2564static struct type *
2565java_type_of_child (struct varobj *parent, int index)
2566{
2567 return cplus_type_of_child (parent, index);
2568}
2569
2570static int
2571java_variable_editable (struct varobj *var)
2572{
2573 return cplus_variable_editable (var);
2574}
2575
2576static char *
2577java_value_of_variable (struct varobj *var)
2578{
2579 return cplus_value_of_variable (var);
2580}
2581\f
2582extern void _initialize_varobj (void);
2583void
2584_initialize_varobj (void)
2585{
2586 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2587
2588 varobj_table = xmalloc (sizeof_table);
2589 memset (varobj_table, 0, sizeof_table);
2590
2591 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
2592 &varobjdebug, _("\
2593Set varobj debugging."), _("\
2594Show varobj debugging."), _("\
2595When non-zero, varobj debugging is enabled."),
2596 NULL,
2597 show_varobjdebug,
2598 &setlist, &showlist);
2599}
2600
2601/* Invalidate the varobjs that are tied to locals and re-create the ones that
2602 are defined on globals.
2603 Invalidated varobjs will be always printed in_scope="invalid". */
2604void
2605varobj_invalidate (void)
2606{
2607 struct varobj **all_rootvarobj;
2608 struct varobj **varp;
2609
2610 if (varobj_list (&all_rootvarobj) > 0)
2611 {
2612 varp = all_rootvarobj;
2613 while (*varp != NULL)
2614 {
2615 /* global var must be re-evaluated. */
2616 if ((*varp)->root->valid_block == NULL)
2617 {
2618 struct varobj *tmp_var;
2619
2620 /* Try to create a varobj with same expression. If we succeed replace
2621 the old varobj, otherwise invalidate it. */
2622 tmp_var = varobj_create (NULL, (*varp)->name, (CORE_ADDR) 0, USE_CURRENT_FRAME);
2623 if (tmp_var != NULL)
2624 {
2625 tmp_var->obj_name = xstrdup ((*varp)->obj_name);
2626 varobj_delete (*varp, NULL, 0);
2627 install_variable (tmp_var);
2628 }
2629 else
2630 (*varp)->root->is_valid = 0;
2631 }
2632 else /* locals must be invalidated. */
2633 (*varp)->root->is_valid = 0;
2634
2635 varp++;
2636 }
2637 xfree (all_rootvarobj);
2638 }
2639 return;
2640}
This page took 0.029236 seconds and 4 git commands to generate.