* Makefile.am ($(srcdir)/ia64-asmtab.c): Remove line continuation.
[deliverable/binutils-gdb.git] / gold / output.cc
... / ...
CommitLineData
1// output.cc -- manage the output file for gold
2
3// Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
25#include <cstdlib>
26#include <cstring>
27#include <cerrno>
28#include <fcntl.h>
29#include <unistd.h>
30#include <sys/mman.h>
31#include <sys/stat.h>
32#include <algorithm>
33#include "libiberty.h" // for unlink_if_ordinary()
34
35#include "parameters.h"
36#include "object.h"
37#include "symtab.h"
38#include "reloc.h"
39#include "merge.h"
40#include "descriptors.h"
41#include "output.h"
42
43// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44#ifndef MAP_ANONYMOUS
45# define MAP_ANONYMOUS MAP_ANON
46#endif
47
48namespace gold
49{
50
51// Output_data variables.
52
53bool Output_data::allocated_sizes_are_fixed;
54
55// Output_data methods.
56
57Output_data::~Output_data()
58{
59}
60
61// Return the default alignment for the target size.
62
63uint64_t
64Output_data::default_alignment()
65{
66 return Output_data::default_alignment_for_size(
67 parameters->target().get_size());
68}
69
70// Return the default alignment for a size--32 or 64.
71
72uint64_t
73Output_data::default_alignment_for_size(int size)
74{
75 if (size == 32)
76 return 4;
77 else if (size == 64)
78 return 8;
79 else
80 gold_unreachable();
81}
82
83// Output_section_header methods. This currently assumes that the
84// segment and section lists are complete at construction time.
85
86Output_section_headers::Output_section_headers(
87 const Layout* layout,
88 const Layout::Segment_list* segment_list,
89 const Layout::Section_list* section_list,
90 const Layout::Section_list* unattached_section_list,
91 const Stringpool* secnamepool,
92 const Output_section* shstrtab_section)
93 : layout_(layout),
94 segment_list_(segment_list),
95 section_list_(section_list),
96 unattached_section_list_(unattached_section_list),
97 secnamepool_(secnamepool),
98 shstrtab_section_(shstrtab_section)
99{
100 // Count all the sections. Start with 1 for the null section.
101 off_t count = 1;
102 if (!parameters->options().relocatable())
103 {
104 for (Layout::Segment_list::const_iterator p = segment_list->begin();
105 p != segment_list->end();
106 ++p)
107 if ((*p)->type() == elfcpp::PT_LOAD)
108 count += (*p)->output_section_count();
109 }
110 else
111 {
112 for (Layout::Section_list::const_iterator p = section_list->begin();
113 p != section_list->end();
114 ++p)
115 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
116 ++count;
117 }
118 count += unattached_section_list->size();
119
120 const int size = parameters->target().get_size();
121 int shdr_size;
122 if (size == 32)
123 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
124 else if (size == 64)
125 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
126 else
127 gold_unreachable();
128
129 this->set_data_size(count * shdr_size);
130}
131
132// Write out the section headers.
133
134void
135Output_section_headers::do_write(Output_file* of)
136{
137 switch (parameters->size_and_endianness())
138 {
139#ifdef HAVE_TARGET_32_LITTLE
140 case Parameters::TARGET_32_LITTLE:
141 this->do_sized_write<32, false>(of);
142 break;
143#endif
144#ifdef HAVE_TARGET_32_BIG
145 case Parameters::TARGET_32_BIG:
146 this->do_sized_write<32, true>(of);
147 break;
148#endif
149#ifdef HAVE_TARGET_64_LITTLE
150 case Parameters::TARGET_64_LITTLE:
151 this->do_sized_write<64, false>(of);
152 break;
153#endif
154#ifdef HAVE_TARGET_64_BIG
155 case Parameters::TARGET_64_BIG:
156 this->do_sized_write<64, true>(of);
157 break;
158#endif
159 default:
160 gold_unreachable();
161 }
162}
163
164template<int size, bool big_endian>
165void
166Output_section_headers::do_sized_write(Output_file* of)
167{
168 off_t all_shdrs_size = this->data_size();
169 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
170
171 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
172 unsigned char* v = view;
173
174 {
175 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
176 oshdr.put_sh_name(0);
177 oshdr.put_sh_type(elfcpp::SHT_NULL);
178 oshdr.put_sh_flags(0);
179 oshdr.put_sh_addr(0);
180 oshdr.put_sh_offset(0);
181
182 size_t section_count = (this->data_size()
183 / elfcpp::Elf_sizes<size>::shdr_size);
184 if (section_count < elfcpp::SHN_LORESERVE)
185 oshdr.put_sh_size(0);
186 else
187 oshdr.put_sh_size(section_count);
188
189 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
190 if (shstrndx < elfcpp::SHN_LORESERVE)
191 oshdr.put_sh_link(0);
192 else
193 oshdr.put_sh_link(shstrndx);
194
195 oshdr.put_sh_info(0);
196 oshdr.put_sh_addralign(0);
197 oshdr.put_sh_entsize(0);
198 }
199
200 v += shdr_size;
201
202 unsigned int shndx = 1;
203 if (!parameters->options().relocatable())
204 {
205 for (Layout::Segment_list::const_iterator p =
206 this->segment_list_->begin();
207 p != this->segment_list_->end();
208 ++p)
209 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
210 this->secnamepool_,
211 v,
212 &shndx);
213 }
214 else
215 {
216 for (Layout::Section_list::const_iterator p =
217 this->section_list_->begin();
218 p != this->section_list_->end();
219 ++p)
220 {
221 // We do unallocated sections below, except that group
222 // sections have to come first.
223 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
224 && (*p)->type() != elfcpp::SHT_GROUP)
225 continue;
226 gold_assert(shndx == (*p)->out_shndx());
227 elfcpp::Shdr_write<size, big_endian> oshdr(v);
228 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
229 v += shdr_size;
230 ++shndx;
231 }
232 }
233
234 for (Layout::Section_list::const_iterator p =
235 this->unattached_section_list_->begin();
236 p != this->unattached_section_list_->end();
237 ++p)
238 {
239 // For a relocatable link, we did unallocated group sections
240 // above, since they have to come first.
241 if ((*p)->type() == elfcpp::SHT_GROUP
242 && parameters->options().relocatable())
243 continue;
244 gold_assert(shndx == (*p)->out_shndx());
245 elfcpp::Shdr_write<size, big_endian> oshdr(v);
246 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
247 v += shdr_size;
248 ++shndx;
249 }
250
251 of->write_output_view(this->offset(), all_shdrs_size, view);
252}
253
254// Output_segment_header methods.
255
256Output_segment_headers::Output_segment_headers(
257 const Layout::Segment_list& segment_list)
258 : segment_list_(segment_list)
259{
260 const int size = parameters->target().get_size();
261 int phdr_size;
262 if (size == 32)
263 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
264 else if (size == 64)
265 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
266 else
267 gold_unreachable();
268
269 this->set_data_size(segment_list.size() * phdr_size);
270}
271
272void
273Output_segment_headers::do_write(Output_file* of)
274{
275 switch (parameters->size_and_endianness())
276 {
277#ifdef HAVE_TARGET_32_LITTLE
278 case Parameters::TARGET_32_LITTLE:
279 this->do_sized_write<32, false>(of);
280 break;
281#endif
282#ifdef HAVE_TARGET_32_BIG
283 case Parameters::TARGET_32_BIG:
284 this->do_sized_write<32, true>(of);
285 break;
286#endif
287#ifdef HAVE_TARGET_64_LITTLE
288 case Parameters::TARGET_64_LITTLE:
289 this->do_sized_write<64, false>(of);
290 break;
291#endif
292#ifdef HAVE_TARGET_64_BIG
293 case Parameters::TARGET_64_BIG:
294 this->do_sized_write<64, true>(of);
295 break;
296#endif
297 default:
298 gold_unreachable();
299 }
300}
301
302template<int size, bool big_endian>
303void
304Output_segment_headers::do_sized_write(Output_file* of)
305{
306 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
307 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
308 gold_assert(all_phdrs_size == this->data_size());
309 unsigned char* view = of->get_output_view(this->offset(),
310 all_phdrs_size);
311 unsigned char* v = view;
312 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
313 p != this->segment_list_.end();
314 ++p)
315 {
316 elfcpp::Phdr_write<size, big_endian> ophdr(v);
317 (*p)->write_header(&ophdr);
318 v += phdr_size;
319 }
320
321 gold_assert(v - view == all_phdrs_size);
322
323 of->write_output_view(this->offset(), all_phdrs_size, view);
324}
325
326// Output_file_header methods.
327
328Output_file_header::Output_file_header(const Target* target,
329 const Symbol_table* symtab,
330 const Output_segment_headers* osh,
331 const char* entry)
332 : target_(target),
333 symtab_(symtab),
334 segment_header_(osh),
335 section_header_(NULL),
336 shstrtab_(NULL),
337 entry_(entry)
338{
339 const int size = parameters->target().get_size();
340 int ehdr_size;
341 if (size == 32)
342 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
343 else if (size == 64)
344 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
345 else
346 gold_unreachable();
347
348 this->set_data_size(ehdr_size);
349}
350
351// Set the section table information for a file header.
352
353void
354Output_file_header::set_section_info(const Output_section_headers* shdrs,
355 const Output_section* shstrtab)
356{
357 this->section_header_ = shdrs;
358 this->shstrtab_ = shstrtab;
359}
360
361// Write out the file header.
362
363void
364Output_file_header::do_write(Output_file* of)
365{
366 gold_assert(this->offset() == 0);
367
368 switch (parameters->size_and_endianness())
369 {
370#ifdef HAVE_TARGET_32_LITTLE
371 case Parameters::TARGET_32_LITTLE:
372 this->do_sized_write<32, false>(of);
373 break;
374#endif
375#ifdef HAVE_TARGET_32_BIG
376 case Parameters::TARGET_32_BIG:
377 this->do_sized_write<32, true>(of);
378 break;
379#endif
380#ifdef HAVE_TARGET_64_LITTLE
381 case Parameters::TARGET_64_LITTLE:
382 this->do_sized_write<64, false>(of);
383 break;
384#endif
385#ifdef HAVE_TARGET_64_BIG
386 case Parameters::TARGET_64_BIG:
387 this->do_sized_write<64, true>(of);
388 break;
389#endif
390 default:
391 gold_unreachable();
392 }
393}
394
395// Write out the file header with appropriate size and endianess.
396
397template<int size, bool big_endian>
398void
399Output_file_header::do_sized_write(Output_file* of)
400{
401 gold_assert(this->offset() == 0);
402
403 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
404 unsigned char* view = of->get_output_view(0, ehdr_size);
405 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
406
407 unsigned char e_ident[elfcpp::EI_NIDENT];
408 memset(e_ident, 0, elfcpp::EI_NIDENT);
409 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
410 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
411 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
412 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
413 if (size == 32)
414 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
415 else if (size == 64)
416 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
417 else
418 gold_unreachable();
419 e_ident[elfcpp::EI_DATA] = (big_endian
420 ? elfcpp::ELFDATA2MSB
421 : elfcpp::ELFDATA2LSB);
422 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
423 // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
424 oehdr.put_e_ident(e_ident);
425
426 elfcpp::ET e_type;
427 if (parameters->options().relocatable())
428 e_type = elfcpp::ET_REL;
429 else if (parameters->options().shared())
430 e_type = elfcpp::ET_DYN;
431 else
432 e_type = elfcpp::ET_EXEC;
433 oehdr.put_e_type(e_type);
434
435 oehdr.put_e_machine(this->target_->machine_code());
436 oehdr.put_e_version(elfcpp::EV_CURRENT);
437
438 oehdr.put_e_entry(this->entry<size>());
439
440 if (this->segment_header_ == NULL)
441 oehdr.put_e_phoff(0);
442 else
443 oehdr.put_e_phoff(this->segment_header_->offset());
444
445 oehdr.put_e_shoff(this->section_header_->offset());
446
447 // FIXME: The target needs to set the flags.
448 oehdr.put_e_flags(0);
449
450 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
451
452 if (this->segment_header_ == NULL)
453 {
454 oehdr.put_e_phentsize(0);
455 oehdr.put_e_phnum(0);
456 }
457 else
458 {
459 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
460 oehdr.put_e_phnum(this->segment_header_->data_size()
461 / elfcpp::Elf_sizes<size>::phdr_size);
462 }
463
464 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
465 size_t section_count = (this->section_header_->data_size()
466 / elfcpp::Elf_sizes<size>::shdr_size);
467
468 if (section_count < elfcpp::SHN_LORESERVE)
469 oehdr.put_e_shnum(this->section_header_->data_size()
470 / elfcpp::Elf_sizes<size>::shdr_size);
471 else
472 oehdr.put_e_shnum(0);
473
474 unsigned int shstrndx = this->shstrtab_->out_shndx();
475 if (shstrndx < elfcpp::SHN_LORESERVE)
476 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
477 else
478 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
479
480 of->write_output_view(0, ehdr_size, view);
481}
482
483// Return the value to use for the entry address. THIS->ENTRY_ is the
484// symbol specified on the command line, if any.
485
486template<int size>
487typename elfcpp::Elf_types<size>::Elf_Addr
488Output_file_header::entry()
489{
490 const bool should_issue_warning = (this->entry_ != NULL
491 && !parameters->options().relocatable()
492 && !parameters->options().shared());
493
494 // FIXME: Need to support target specific entry symbol.
495 const char* entry = this->entry_;
496 if (entry == NULL)
497 entry = "_start";
498
499 Symbol* sym = this->symtab_->lookup(entry);
500
501 typename Sized_symbol<size>::Value_type v;
502 if (sym != NULL)
503 {
504 Sized_symbol<size>* ssym;
505 ssym = this->symtab_->get_sized_symbol<size>(sym);
506 if (!ssym->is_defined() && should_issue_warning)
507 gold_warning("entry symbol '%s' exists but is not defined", entry);
508 v = ssym->value();
509 }
510 else
511 {
512 // We couldn't find the entry symbol. See if we can parse it as
513 // a number. This supports, e.g., -e 0x1000.
514 char* endptr;
515 v = strtoull(entry, &endptr, 0);
516 if (*endptr != '\0')
517 {
518 if (should_issue_warning)
519 gold_warning("cannot find entry symbol '%s'", entry);
520 v = 0;
521 }
522 }
523
524 return v;
525}
526
527// Output_data_const methods.
528
529void
530Output_data_const::do_write(Output_file* of)
531{
532 of->write(this->offset(), this->data_.data(), this->data_.size());
533}
534
535// Output_data_const_buffer methods.
536
537void
538Output_data_const_buffer::do_write(Output_file* of)
539{
540 of->write(this->offset(), this->p_, this->data_size());
541}
542
543// Output_section_data methods.
544
545// Record the output section, and set the entry size and such.
546
547void
548Output_section_data::set_output_section(Output_section* os)
549{
550 gold_assert(this->output_section_ == NULL);
551 this->output_section_ = os;
552 this->do_adjust_output_section(os);
553}
554
555// Return the section index of the output section.
556
557unsigned int
558Output_section_data::do_out_shndx() const
559{
560 gold_assert(this->output_section_ != NULL);
561 return this->output_section_->out_shndx();
562}
563
564// Set the alignment, which means we may need to update the alignment
565// of the output section.
566
567void
568Output_section_data::set_addralign(uint64_t addralign)
569{
570 this->addralign_ = addralign;
571 if (this->output_section_ != NULL
572 && this->output_section_->addralign() < addralign)
573 this->output_section_->set_addralign(addralign);
574}
575
576// Output_data_strtab methods.
577
578// Set the final data size.
579
580void
581Output_data_strtab::set_final_data_size()
582{
583 this->strtab_->set_string_offsets();
584 this->set_data_size(this->strtab_->get_strtab_size());
585}
586
587// Write out a string table.
588
589void
590Output_data_strtab::do_write(Output_file* of)
591{
592 this->strtab_->write(of, this->offset());
593}
594
595// Output_reloc methods.
596
597// A reloc against a global symbol.
598
599template<bool dynamic, int size, bool big_endian>
600Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
601 Symbol* gsym,
602 unsigned int type,
603 Output_data* od,
604 Address address,
605 bool is_relative)
606 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
607 is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
608{
609 // this->type_ is a bitfield; make sure TYPE fits.
610 gold_assert(this->type_ == type);
611 this->u1_.gsym = gsym;
612 this->u2_.od = od;
613 if (dynamic)
614 this->set_needs_dynsym_index();
615}
616
617template<bool dynamic, int size, bool big_endian>
618Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
619 Symbol* gsym,
620 unsigned int type,
621 Sized_relobj<size, big_endian>* relobj,
622 unsigned int shndx,
623 Address address,
624 bool is_relative)
625 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
626 is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
627{
628 gold_assert(shndx != INVALID_CODE);
629 // this->type_ is a bitfield; make sure TYPE fits.
630 gold_assert(this->type_ == type);
631 this->u1_.gsym = gsym;
632 this->u2_.relobj = relobj;
633 if (dynamic)
634 this->set_needs_dynsym_index();
635}
636
637// A reloc against a local symbol.
638
639template<bool dynamic, int size, bool big_endian>
640Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
641 Sized_relobj<size, big_endian>* relobj,
642 unsigned int local_sym_index,
643 unsigned int type,
644 Output_data* od,
645 Address address,
646 bool is_relative,
647 bool is_section_symbol)
648 : address_(address), local_sym_index_(local_sym_index), type_(type),
649 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
650 shndx_(INVALID_CODE)
651{
652 gold_assert(local_sym_index != GSYM_CODE
653 && local_sym_index != INVALID_CODE);
654 // this->type_ is a bitfield; make sure TYPE fits.
655 gold_assert(this->type_ == type);
656 this->u1_.relobj = relobj;
657 this->u2_.od = od;
658 if (dynamic)
659 this->set_needs_dynsym_index();
660}
661
662template<bool dynamic, int size, bool big_endian>
663Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
664 Sized_relobj<size, big_endian>* relobj,
665 unsigned int local_sym_index,
666 unsigned int type,
667 unsigned int shndx,
668 Address address,
669 bool is_relative,
670 bool is_section_symbol)
671 : address_(address), local_sym_index_(local_sym_index), type_(type),
672 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
673 shndx_(shndx)
674{
675 gold_assert(local_sym_index != GSYM_CODE
676 && local_sym_index != INVALID_CODE);
677 gold_assert(shndx != INVALID_CODE);
678 // this->type_ is a bitfield; make sure TYPE fits.
679 gold_assert(this->type_ == type);
680 this->u1_.relobj = relobj;
681 this->u2_.relobj = relobj;
682 if (dynamic)
683 this->set_needs_dynsym_index();
684}
685
686// A reloc against the STT_SECTION symbol of an output section.
687
688template<bool dynamic, int size, bool big_endian>
689Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
690 Output_section* os,
691 unsigned int type,
692 Output_data* od,
693 Address address)
694 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
695 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
696{
697 // this->type_ is a bitfield; make sure TYPE fits.
698 gold_assert(this->type_ == type);
699 this->u1_.os = os;
700 this->u2_.od = od;
701 if (dynamic)
702 this->set_needs_dynsym_index();
703 else
704 os->set_needs_symtab_index();
705}
706
707template<bool dynamic, int size, bool big_endian>
708Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
709 Output_section* os,
710 unsigned int type,
711 Sized_relobj<size, big_endian>* relobj,
712 unsigned int shndx,
713 Address address)
714 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
715 is_relative_(false), is_section_symbol_(true), shndx_(shndx)
716{
717 gold_assert(shndx != INVALID_CODE);
718 // this->type_ is a bitfield; make sure TYPE fits.
719 gold_assert(this->type_ == type);
720 this->u1_.os = os;
721 this->u2_.relobj = relobj;
722 if (dynamic)
723 this->set_needs_dynsym_index();
724 else
725 os->set_needs_symtab_index();
726}
727
728// Record that we need a dynamic symbol index for this relocation.
729
730template<bool dynamic, int size, bool big_endian>
731void
732Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
733set_needs_dynsym_index()
734{
735 if (this->is_relative_)
736 return;
737 switch (this->local_sym_index_)
738 {
739 case INVALID_CODE:
740 gold_unreachable();
741
742 case GSYM_CODE:
743 this->u1_.gsym->set_needs_dynsym_entry();
744 break;
745
746 case SECTION_CODE:
747 this->u1_.os->set_needs_dynsym_index();
748 break;
749
750 case 0:
751 break;
752
753 default:
754 {
755 const unsigned int lsi = this->local_sym_index_;
756 if (!this->is_section_symbol_)
757 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
758 else
759 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
760 }
761 break;
762 }
763}
764
765// Get the symbol index of a relocation.
766
767template<bool dynamic, int size, bool big_endian>
768unsigned int
769Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
770 const
771{
772 unsigned int index;
773 switch (this->local_sym_index_)
774 {
775 case INVALID_CODE:
776 gold_unreachable();
777
778 case GSYM_CODE:
779 if (this->u1_.gsym == NULL)
780 index = 0;
781 else if (dynamic)
782 index = this->u1_.gsym->dynsym_index();
783 else
784 index = this->u1_.gsym->symtab_index();
785 break;
786
787 case SECTION_CODE:
788 if (dynamic)
789 index = this->u1_.os->dynsym_index();
790 else
791 index = this->u1_.os->symtab_index();
792 break;
793
794 case 0:
795 // Relocations without symbols use a symbol index of 0.
796 index = 0;
797 break;
798
799 default:
800 {
801 const unsigned int lsi = this->local_sym_index_;
802 if (!this->is_section_symbol_)
803 {
804 if (dynamic)
805 index = this->u1_.relobj->dynsym_index(lsi);
806 else
807 index = this->u1_.relobj->symtab_index(lsi);
808 }
809 else
810 {
811 Output_section* os = this->u1_.relobj->output_section(lsi);
812 gold_assert(os != NULL);
813 if (dynamic)
814 index = os->dynsym_index();
815 else
816 index = os->symtab_index();
817 }
818 }
819 break;
820 }
821 gold_assert(index != -1U);
822 return index;
823}
824
825// For a local section symbol, get the address of the offset ADDEND
826// within the input section.
827
828template<bool dynamic, int size, bool big_endian>
829typename elfcpp::Elf_types<size>::Elf_Addr
830Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
831 local_section_offset(Addend addend) const
832{
833 gold_assert(this->local_sym_index_ != GSYM_CODE
834 && this->local_sym_index_ != SECTION_CODE
835 && this->local_sym_index_ != INVALID_CODE
836 && this->is_section_symbol_);
837 const unsigned int lsi = this->local_sym_index_;
838 Output_section* os = this->u1_.relobj->output_section(lsi);
839 gold_assert(os != NULL);
840 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
841 if (offset != -1U)
842 return offset + addend;
843 // This is a merge section.
844 offset = os->output_address(this->u1_.relobj, lsi, addend);
845 gold_assert(offset != -1U);
846 return offset;
847}
848
849// Get the output address of a relocation.
850
851template<bool dynamic, int size, bool big_endian>
852typename elfcpp::Elf_types<size>::Elf_Addr
853Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
854{
855 Address address = this->address_;
856 if (this->shndx_ != INVALID_CODE)
857 {
858 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
859 gold_assert(os != NULL);
860 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
861 if (off != -1U)
862 address += os->address() + off;
863 else
864 {
865 address = os->output_address(this->u2_.relobj, this->shndx_,
866 address);
867 gold_assert(address != -1U);
868 }
869 }
870 else if (this->u2_.od != NULL)
871 address += this->u2_.od->address();
872 return address;
873}
874
875// Write out the offset and info fields of a Rel or Rela relocation
876// entry.
877
878template<bool dynamic, int size, bool big_endian>
879template<typename Write_rel>
880void
881Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
882 Write_rel* wr) const
883{
884 wr->put_r_offset(this->get_address());
885 unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
886 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
887}
888
889// Write out a Rel relocation.
890
891template<bool dynamic, int size, bool big_endian>
892void
893Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
894 unsigned char* pov) const
895{
896 elfcpp::Rel_write<size, big_endian> orel(pov);
897 this->write_rel(&orel);
898}
899
900// Get the value of the symbol referred to by a Rel relocation.
901
902template<bool dynamic, int size, bool big_endian>
903typename elfcpp::Elf_types<size>::Elf_Addr
904Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
905 Addend addend) const
906{
907 if (this->local_sym_index_ == GSYM_CODE)
908 {
909 const Sized_symbol<size>* sym;
910 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
911 return sym->value() + addend;
912 }
913 gold_assert(this->local_sym_index_ != SECTION_CODE
914 && this->local_sym_index_ != INVALID_CODE
915 && !this->is_section_symbol_);
916 const unsigned int lsi = this->local_sym_index_;
917 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
918 return symval->value(this->u1_.relobj, addend);
919}
920
921// Reloc comparison. This function sorts the dynamic relocs for the
922// benefit of the dynamic linker. First we sort all relative relocs
923// to the front. Among relative relocs, we sort by output address.
924// Among non-relative relocs, we sort by symbol index, then by output
925// address.
926
927template<bool dynamic, int size, bool big_endian>
928int
929Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
930 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
931 const
932{
933 if (this->is_relative_)
934 {
935 if (!r2.is_relative_)
936 return -1;
937 // Otherwise sort by reloc address below.
938 }
939 else if (r2.is_relative_)
940 return 1;
941 else
942 {
943 unsigned int sym1 = this->get_symbol_index();
944 unsigned int sym2 = r2.get_symbol_index();
945 if (sym1 < sym2)
946 return -1;
947 else if (sym1 > sym2)
948 return 1;
949 // Otherwise sort by reloc address.
950 }
951
952 section_offset_type addr1 = this->get_address();
953 section_offset_type addr2 = r2.get_address();
954 if (addr1 < addr2)
955 return -1;
956 else if (addr1 > addr2)
957 return 1;
958
959 // Final tie breaker, in order to generate the same output on any
960 // host: reloc type.
961 unsigned int type1 = this->type_;
962 unsigned int type2 = r2.type_;
963 if (type1 < type2)
964 return -1;
965 else if (type1 > type2)
966 return 1;
967
968 // These relocs appear to be exactly the same.
969 return 0;
970}
971
972// Write out a Rela relocation.
973
974template<bool dynamic, int size, bool big_endian>
975void
976Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
977 unsigned char* pov) const
978{
979 elfcpp::Rela_write<size, big_endian> orel(pov);
980 this->rel_.write_rel(&orel);
981 Addend addend = this->addend_;
982 if (this->rel_.is_relative())
983 addend = this->rel_.symbol_value(addend);
984 else if (this->rel_.is_local_section_symbol())
985 addend = this->rel_.local_section_offset(addend);
986 orel.put_r_addend(addend);
987}
988
989// Output_data_reloc_base methods.
990
991// Adjust the output section.
992
993template<int sh_type, bool dynamic, int size, bool big_endian>
994void
995Output_data_reloc_base<sh_type, dynamic, size, big_endian>
996 ::do_adjust_output_section(Output_section* os)
997{
998 if (sh_type == elfcpp::SHT_REL)
999 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1000 else if (sh_type == elfcpp::SHT_RELA)
1001 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1002 else
1003 gold_unreachable();
1004 if (dynamic)
1005 os->set_should_link_to_dynsym();
1006 else
1007 os->set_should_link_to_symtab();
1008}
1009
1010// Write out relocation data.
1011
1012template<int sh_type, bool dynamic, int size, bool big_endian>
1013void
1014Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1015 Output_file* of)
1016{
1017 const off_t off = this->offset();
1018 const off_t oview_size = this->data_size();
1019 unsigned char* const oview = of->get_output_view(off, oview_size);
1020
1021 if (this->sort_relocs_)
1022 {
1023 gold_assert(dynamic);
1024 std::sort(this->relocs_.begin(), this->relocs_.end(),
1025 Sort_relocs_comparison());
1026 }
1027
1028 unsigned char* pov = oview;
1029 for (typename Relocs::const_iterator p = this->relocs_.begin();
1030 p != this->relocs_.end();
1031 ++p)
1032 {
1033 p->write(pov);
1034 pov += reloc_size;
1035 }
1036
1037 gold_assert(pov - oview == oview_size);
1038
1039 of->write_output_view(off, oview_size, oview);
1040
1041 // We no longer need the relocation entries.
1042 this->relocs_.clear();
1043}
1044
1045// Class Output_relocatable_relocs.
1046
1047template<int sh_type, int size, bool big_endian>
1048void
1049Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1050{
1051 this->set_data_size(this->rr_->output_reloc_count()
1052 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1053}
1054
1055// class Output_data_group.
1056
1057template<int size, bool big_endian>
1058Output_data_group<size, big_endian>::Output_data_group(
1059 Sized_relobj<size, big_endian>* relobj,
1060 section_size_type entry_count,
1061 elfcpp::Elf_Word flags,
1062 std::vector<unsigned int>* input_shndxes)
1063 : Output_section_data(entry_count * 4, 4),
1064 relobj_(relobj),
1065 flags_(flags)
1066{
1067 this->input_shndxes_.swap(*input_shndxes);
1068}
1069
1070// Write out the section group, which means translating the section
1071// indexes to apply to the output file.
1072
1073template<int size, bool big_endian>
1074void
1075Output_data_group<size, big_endian>::do_write(Output_file* of)
1076{
1077 const off_t off = this->offset();
1078 const section_size_type oview_size =
1079 convert_to_section_size_type(this->data_size());
1080 unsigned char* const oview = of->get_output_view(off, oview_size);
1081
1082 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1083 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1084 ++contents;
1085
1086 for (std::vector<unsigned int>::const_iterator p =
1087 this->input_shndxes_.begin();
1088 p != this->input_shndxes_.end();
1089 ++p, ++contents)
1090 {
1091 Output_section* os = this->relobj_->output_section(*p);
1092
1093 unsigned int output_shndx;
1094 if (os != NULL)
1095 output_shndx = os->out_shndx();
1096 else
1097 {
1098 this->relobj_->error(_("section group retained but "
1099 "group element discarded"));
1100 output_shndx = 0;
1101 }
1102
1103 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1104 }
1105
1106 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1107 gold_assert(wrote == oview_size);
1108
1109 of->write_output_view(off, oview_size, oview);
1110
1111 // We no longer need this information.
1112 this->input_shndxes_.clear();
1113}
1114
1115// Output_data_got::Got_entry methods.
1116
1117// Write out the entry.
1118
1119template<int size, bool big_endian>
1120void
1121Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1122{
1123 Valtype val = 0;
1124
1125 switch (this->local_sym_index_)
1126 {
1127 case GSYM_CODE:
1128 {
1129 // If the symbol is resolved locally, we need to write out the
1130 // link-time value, which will be relocated dynamically by a
1131 // RELATIVE relocation.
1132 Symbol* gsym = this->u_.gsym;
1133 Sized_symbol<size>* sgsym;
1134 // This cast is a bit ugly. We don't want to put a
1135 // virtual method in Symbol, because we want Symbol to be
1136 // as small as possible.
1137 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1138 val = sgsym->value();
1139 }
1140 break;
1141
1142 case CONSTANT_CODE:
1143 val = this->u_.constant;
1144 break;
1145
1146 default:
1147 {
1148 const unsigned int lsi = this->local_sym_index_;
1149 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1150 val = symval->value(this->u_.object, 0);
1151 }
1152 break;
1153 }
1154
1155 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1156}
1157
1158// Output_data_got methods.
1159
1160// Add an entry for a global symbol to the GOT. This returns true if
1161// this is a new GOT entry, false if the symbol already had a GOT
1162// entry.
1163
1164template<int size, bool big_endian>
1165bool
1166Output_data_got<size, big_endian>::add_global(
1167 Symbol* gsym,
1168 unsigned int got_type)
1169{
1170 if (gsym->has_got_offset(got_type))
1171 return false;
1172
1173 this->entries_.push_back(Got_entry(gsym));
1174 this->set_got_size();
1175 gsym->set_got_offset(got_type, this->last_got_offset());
1176 return true;
1177}
1178
1179// Add an entry for a global symbol to the GOT, and add a dynamic
1180// relocation of type R_TYPE for the GOT entry.
1181template<int size, bool big_endian>
1182void
1183Output_data_got<size, big_endian>::add_global_with_rel(
1184 Symbol* gsym,
1185 unsigned int got_type,
1186 Rel_dyn* rel_dyn,
1187 unsigned int r_type)
1188{
1189 if (gsym->has_got_offset(got_type))
1190 return;
1191
1192 this->entries_.push_back(Got_entry());
1193 this->set_got_size();
1194 unsigned int got_offset = this->last_got_offset();
1195 gsym->set_got_offset(got_type, got_offset);
1196 rel_dyn->add_global(gsym, r_type, this, got_offset);
1197}
1198
1199template<int size, bool big_endian>
1200void
1201Output_data_got<size, big_endian>::add_global_with_rela(
1202 Symbol* gsym,
1203 unsigned int got_type,
1204 Rela_dyn* rela_dyn,
1205 unsigned int r_type)
1206{
1207 if (gsym->has_got_offset(got_type))
1208 return;
1209
1210 this->entries_.push_back(Got_entry());
1211 this->set_got_size();
1212 unsigned int got_offset = this->last_got_offset();
1213 gsym->set_got_offset(got_type, got_offset);
1214 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1215}
1216
1217// Add a pair of entries for a global symbol to the GOT, and add
1218// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1219// If R_TYPE_2 == 0, add the second entry with no relocation.
1220template<int size, bool big_endian>
1221void
1222Output_data_got<size, big_endian>::add_global_pair_with_rel(
1223 Symbol* gsym,
1224 unsigned int got_type,
1225 Rel_dyn* rel_dyn,
1226 unsigned int r_type_1,
1227 unsigned int r_type_2)
1228{
1229 if (gsym->has_got_offset(got_type))
1230 return;
1231
1232 this->entries_.push_back(Got_entry());
1233 unsigned int got_offset = this->last_got_offset();
1234 gsym->set_got_offset(got_type, got_offset);
1235 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1236
1237 this->entries_.push_back(Got_entry());
1238 if (r_type_2 != 0)
1239 {
1240 got_offset = this->last_got_offset();
1241 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1242 }
1243
1244 this->set_got_size();
1245}
1246
1247template<int size, bool big_endian>
1248void
1249Output_data_got<size, big_endian>::add_global_pair_with_rela(
1250 Symbol* gsym,
1251 unsigned int got_type,
1252 Rela_dyn* rela_dyn,
1253 unsigned int r_type_1,
1254 unsigned int r_type_2)
1255{
1256 if (gsym->has_got_offset(got_type))
1257 return;
1258
1259 this->entries_.push_back(Got_entry());
1260 unsigned int got_offset = this->last_got_offset();
1261 gsym->set_got_offset(got_type, got_offset);
1262 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1263
1264 this->entries_.push_back(Got_entry());
1265 if (r_type_2 != 0)
1266 {
1267 got_offset = this->last_got_offset();
1268 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1269 }
1270
1271 this->set_got_size();
1272}
1273
1274// Add an entry for a local symbol to the GOT. This returns true if
1275// this is a new GOT entry, false if the symbol already has a GOT
1276// entry.
1277
1278template<int size, bool big_endian>
1279bool
1280Output_data_got<size, big_endian>::add_local(
1281 Sized_relobj<size, big_endian>* object,
1282 unsigned int symndx,
1283 unsigned int got_type)
1284{
1285 if (object->local_has_got_offset(symndx, got_type))
1286 return false;
1287
1288 this->entries_.push_back(Got_entry(object, symndx));
1289 this->set_got_size();
1290 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1291 return true;
1292}
1293
1294// Add an entry for a local symbol to the GOT, and add a dynamic
1295// relocation of type R_TYPE for the GOT entry.
1296template<int size, bool big_endian>
1297void
1298Output_data_got<size, big_endian>::add_local_with_rel(
1299 Sized_relobj<size, big_endian>* object,
1300 unsigned int symndx,
1301 unsigned int got_type,
1302 Rel_dyn* rel_dyn,
1303 unsigned int r_type)
1304{
1305 if (object->local_has_got_offset(symndx, got_type))
1306 return;
1307
1308 this->entries_.push_back(Got_entry());
1309 this->set_got_size();
1310 unsigned int got_offset = this->last_got_offset();
1311 object->set_local_got_offset(symndx, got_type, got_offset);
1312 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1313}
1314
1315template<int size, bool big_endian>
1316void
1317Output_data_got<size, big_endian>::add_local_with_rela(
1318 Sized_relobj<size, big_endian>* object,
1319 unsigned int symndx,
1320 unsigned int got_type,
1321 Rela_dyn* rela_dyn,
1322 unsigned int r_type)
1323{
1324 if (object->local_has_got_offset(symndx, got_type))
1325 return;
1326
1327 this->entries_.push_back(Got_entry());
1328 this->set_got_size();
1329 unsigned int got_offset = this->last_got_offset();
1330 object->set_local_got_offset(symndx, got_type, got_offset);
1331 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1332}
1333
1334// Add a pair of entries for a local symbol to the GOT, and add
1335// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1336// If R_TYPE_2 == 0, add the second entry with no relocation.
1337template<int size, bool big_endian>
1338void
1339Output_data_got<size, big_endian>::add_local_pair_with_rel(
1340 Sized_relobj<size, big_endian>* object,
1341 unsigned int symndx,
1342 unsigned int shndx,
1343 unsigned int got_type,
1344 Rel_dyn* rel_dyn,
1345 unsigned int r_type_1,
1346 unsigned int r_type_2)
1347{
1348 if (object->local_has_got_offset(symndx, got_type))
1349 return;
1350
1351 this->entries_.push_back(Got_entry());
1352 unsigned int got_offset = this->last_got_offset();
1353 object->set_local_got_offset(symndx, got_type, got_offset);
1354 Output_section* os = object->output_section(shndx);
1355 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1356
1357 this->entries_.push_back(Got_entry(object, symndx));
1358 if (r_type_2 != 0)
1359 {
1360 got_offset = this->last_got_offset();
1361 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1362 }
1363
1364 this->set_got_size();
1365}
1366
1367template<int size, bool big_endian>
1368void
1369Output_data_got<size, big_endian>::add_local_pair_with_rela(
1370 Sized_relobj<size, big_endian>* object,
1371 unsigned int symndx,
1372 unsigned int shndx,
1373 unsigned int got_type,
1374 Rela_dyn* rela_dyn,
1375 unsigned int r_type_1,
1376 unsigned int r_type_2)
1377{
1378 if (object->local_has_got_offset(symndx, got_type))
1379 return;
1380
1381 this->entries_.push_back(Got_entry());
1382 unsigned int got_offset = this->last_got_offset();
1383 object->set_local_got_offset(symndx, got_type, got_offset);
1384 Output_section* os = object->output_section(shndx);
1385 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1386
1387 this->entries_.push_back(Got_entry(object, symndx));
1388 if (r_type_2 != 0)
1389 {
1390 got_offset = this->last_got_offset();
1391 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1392 }
1393
1394 this->set_got_size();
1395}
1396
1397// Write out the GOT.
1398
1399template<int size, bool big_endian>
1400void
1401Output_data_got<size, big_endian>::do_write(Output_file* of)
1402{
1403 const int add = size / 8;
1404
1405 const off_t off = this->offset();
1406 const off_t oview_size = this->data_size();
1407 unsigned char* const oview = of->get_output_view(off, oview_size);
1408
1409 unsigned char* pov = oview;
1410 for (typename Got_entries::const_iterator p = this->entries_.begin();
1411 p != this->entries_.end();
1412 ++p)
1413 {
1414 p->write(pov);
1415 pov += add;
1416 }
1417
1418 gold_assert(pov - oview == oview_size);
1419
1420 of->write_output_view(off, oview_size, oview);
1421
1422 // We no longer need the GOT entries.
1423 this->entries_.clear();
1424}
1425
1426// Output_data_dynamic::Dynamic_entry methods.
1427
1428// Write out the entry.
1429
1430template<int size, bool big_endian>
1431void
1432Output_data_dynamic::Dynamic_entry::write(
1433 unsigned char* pov,
1434 const Stringpool* pool) const
1435{
1436 typename elfcpp::Elf_types<size>::Elf_WXword val;
1437 switch (this->offset_)
1438 {
1439 case DYNAMIC_NUMBER:
1440 val = this->u_.val;
1441 break;
1442
1443 case DYNAMIC_SECTION_SIZE:
1444 val = this->u_.od->data_size();
1445 break;
1446
1447 case DYNAMIC_SYMBOL:
1448 {
1449 const Sized_symbol<size>* s =
1450 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1451 val = s->value();
1452 }
1453 break;
1454
1455 case DYNAMIC_STRING:
1456 val = pool->get_offset(this->u_.str);
1457 break;
1458
1459 default:
1460 val = this->u_.od->address() + this->offset_;
1461 break;
1462 }
1463
1464 elfcpp::Dyn_write<size, big_endian> dw(pov);
1465 dw.put_d_tag(this->tag_);
1466 dw.put_d_val(val);
1467}
1468
1469// Output_data_dynamic methods.
1470
1471// Adjust the output section to set the entry size.
1472
1473void
1474Output_data_dynamic::do_adjust_output_section(Output_section* os)
1475{
1476 if (parameters->target().get_size() == 32)
1477 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1478 else if (parameters->target().get_size() == 64)
1479 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1480 else
1481 gold_unreachable();
1482}
1483
1484// Set the final data size.
1485
1486void
1487Output_data_dynamic::set_final_data_size()
1488{
1489 // Add the terminating entry.
1490 this->add_constant(elfcpp::DT_NULL, 0);
1491
1492 int dyn_size;
1493 if (parameters->target().get_size() == 32)
1494 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1495 else if (parameters->target().get_size() == 64)
1496 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1497 else
1498 gold_unreachable();
1499 this->set_data_size(this->entries_.size() * dyn_size);
1500}
1501
1502// Write out the dynamic entries.
1503
1504void
1505Output_data_dynamic::do_write(Output_file* of)
1506{
1507 switch (parameters->size_and_endianness())
1508 {
1509#ifdef HAVE_TARGET_32_LITTLE
1510 case Parameters::TARGET_32_LITTLE:
1511 this->sized_write<32, false>(of);
1512 break;
1513#endif
1514#ifdef HAVE_TARGET_32_BIG
1515 case Parameters::TARGET_32_BIG:
1516 this->sized_write<32, true>(of);
1517 break;
1518#endif
1519#ifdef HAVE_TARGET_64_LITTLE
1520 case Parameters::TARGET_64_LITTLE:
1521 this->sized_write<64, false>(of);
1522 break;
1523#endif
1524#ifdef HAVE_TARGET_64_BIG
1525 case Parameters::TARGET_64_BIG:
1526 this->sized_write<64, true>(of);
1527 break;
1528#endif
1529 default:
1530 gold_unreachable();
1531 }
1532}
1533
1534template<int size, bool big_endian>
1535void
1536Output_data_dynamic::sized_write(Output_file* of)
1537{
1538 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1539
1540 const off_t offset = this->offset();
1541 const off_t oview_size = this->data_size();
1542 unsigned char* const oview = of->get_output_view(offset, oview_size);
1543
1544 unsigned char* pov = oview;
1545 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1546 p != this->entries_.end();
1547 ++p)
1548 {
1549 p->write<size, big_endian>(pov, this->pool_);
1550 pov += dyn_size;
1551 }
1552
1553 gold_assert(pov - oview == oview_size);
1554
1555 of->write_output_view(offset, oview_size, oview);
1556
1557 // We no longer need the dynamic entries.
1558 this->entries_.clear();
1559}
1560
1561// Class Output_symtab_xindex.
1562
1563void
1564Output_symtab_xindex::do_write(Output_file* of)
1565{
1566 const off_t offset = this->offset();
1567 const off_t oview_size = this->data_size();
1568 unsigned char* const oview = of->get_output_view(offset, oview_size);
1569
1570 memset(oview, 0, oview_size);
1571
1572 if (parameters->target().is_big_endian())
1573 this->endian_do_write<true>(oview);
1574 else
1575 this->endian_do_write<false>(oview);
1576
1577 of->write_output_view(offset, oview_size, oview);
1578
1579 // We no longer need the data.
1580 this->entries_.clear();
1581}
1582
1583template<bool big_endian>
1584void
1585Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1586{
1587 for (Xindex_entries::const_iterator p = this->entries_.begin();
1588 p != this->entries_.end();
1589 ++p)
1590 elfcpp::Swap<32, big_endian>::writeval(oview + p->first * 4, p->second);
1591}
1592
1593// Output_section::Input_section methods.
1594
1595// Return the data size. For an input section we store the size here.
1596// For an Output_section_data, we have to ask it for the size.
1597
1598off_t
1599Output_section::Input_section::data_size() const
1600{
1601 if (this->is_input_section())
1602 return this->u1_.data_size;
1603 else
1604 return this->u2_.posd->data_size();
1605}
1606
1607// Set the address and file offset.
1608
1609void
1610Output_section::Input_section::set_address_and_file_offset(
1611 uint64_t address,
1612 off_t file_offset,
1613 off_t section_file_offset)
1614{
1615 if (this->is_input_section())
1616 this->u2_.object->set_section_offset(this->shndx_,
1617 file_offset - section_file_offset);
1618 else
1619 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1620}
1621
1622// Reset the address and file offset.
1623
1624void
1625Output_section::Input_section::reset_address_and_file_offset()
1626{
1627 if (!this->is_input_section())
1628 this->u2_.posd->reset_address_and_file_offset();
1629}
1630
1631// Finalize the data size.
1632
1633void
1634Output_section::Input_section::finalize_data_size()
1635{
1636 if (!this->is_input_section())
1637 this->u2_.posd->finalize_data_size();
1638}
1639
1640// Try to turn an input offset into an output offset. We want to
1641// return the output offset relative to the start of this
1642// Input_section in the output section.
1643
1644inline bool
1645Output_section::Input_section::output_offset(
1646 const Relobj* object,
1647 unsigned int shndx,
1648 section_offset_type offset,
1649 section_offset_type *poutput) const
1650{
1651 if (!this->is_input_section())
1652 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1653 else
1654 {
1655 if (this->shndx_ != shndx || this->u2_.object != object)
1656 return false;
1657 *poutput = offset;
1658 return true;
1659 }
1660}
1661
1662// Return whether this is the merge section for the input section
1663// SHNDX in OBJECT.
1664
1665inline bool
1666Output_section::Input_section::is_merge_section_for(const Relobj* object,
1667 unsigned int shndx) const
1668{
1669 if (this->is_input_section())
1670 return false;
1671 return this->u2_.posd->is_merge_section_for(object, shndx);
1672}
1673
1674// Write out the data. We don't have to do anything for an input
1675// section--they are handled via Object::relocate--but this is where
1676// we write out the data for an Output_section_data.
1677
1678void
1679Output_section::Input_section::write(Output_file* of)
1680{
1681 if (!this->is_input_section())
1682 this->u2_.posd->write(of);
1683}
1684
1685// Write the data to a buffer. As for write(), we don't have to do
1686// anything for an input section.
1687
1688void
1689Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1690{
1691 if (!this->is_input_section())
1692 this->u2_.posd->write_to_buffer(buffer);
1693}
1694
1695// Print to a map file.
1696
1697void
1698Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1699{
1700 switch (this->shndx_)
1701 {
1702 case OUTPUT_SECTION_CODE:
1703 case MERGE_DATA_SECTION_CODE:
1704 case MERGE_STRING_SECTION_CODE:
1705 this->u2_.posd->print_to_mapfile(mapfile);
1706 break;
1707
1708 default:
1709 mapfile->print_input_section(this->u2_.object, this->shndx_);
1710 break;
1711 }
1712}
1713
1714// Output_section methods.
1715
1716// Construct an Output_section. NAME will point into a Stringpool.
1717
1718Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1719 elfcpp::Elf_Xword flags)
1720 : name_(name),
1721 addralign_(0),
1722 entsize_(0),
1723 load_address_(0),
1724 link_section_(NULL),
1725 link_(0),
1726 info_section_(NULL),
1727 info_symndx_(NULL),
1728 info_(0),
1729 type_(type),
1730 flags_(flags),
1731 out_shndx_(-1U),
1732 symtab_index_(0),
1733 dynsym_index_(0),
1734 input_sections_(),
1735 first_input_offset_(0),
1736 fills_(),
1737 postprocessing_buffer_(NULL),
1738 needs_symtab_index_(false),
1739 needs_dynsym_index_(false),
1740 should_link_to_symtab_(false),
1741 should_link_to_dynsym_(false),
1742 after_input_sections_(false),
1743 requires_postprocessing_(false),
1744 found_in_sections_clause_(false),
1745 has_load_address_(false),
1746 info_uses_section_index_(false),
1747 may_sort_attached_input_sections_(false),
1748 must_sort_attached_input_sections_(false),
1749 attached_input_sections_are_sorted_(false),
1750 is_relro_(false),
1751 is_relro_local_(false),
1752 tls_offset_(0)
1753{
1754 // An unallocated section has no address. Forcing this means that
1755 // we don't need special treatment for symbols defined in debug
1756 // sections.
1757 if ((flags & elfcpp::SHF_ALLOC) == 0)
1758 this->set_address(0);
1759}
1760
1761Output_section::~Output_section()
1762{
1763}
1764
1765// Set the entry size.
1766
1767void
1768Output_section::set_entsize(uint64_t v)
1769{
1770 if (this->entsize_ == 0)
1771 this->entsize_ = v;
1772 else
1773 gold_assert(this->entsize_ == v);
1774}
1775
1776// Add the input section SHNDX, with header SHDR, named SECNAME, in
1777// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1778// relocation section which applies to this section, or 0 if none, or
1779// -1U if more than one. Return the offset of the input section
1780// within the output section. Return -1 if the input section will
1781// receive special handling. In the normal case we don't always keep
1782// track of input sections for an Output_section. Instead, each
1783// Object keeps track of the Output_section for each of its input
1784// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1785// track of input sections here; this is used when SECTIONS appears in
1786// a linker script.
1787
1788template<int size, bool big_endian>
1789off_t
1790Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1791 unsigned int shndx,
1792 const char* secname,
1793 const elfcpp::Shdr<size, big_endian>& shdr,
1794 unsigned int reloc_shndx,
1795 bool have_sections_script)
1796{
1797 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1798 if ((addralign & (addralign - 1)) != 0)
1799 {
1800 object->error(_("invalid alignment %lu for section \"%s\""),
1801 static_cast<unsigned long>(addralign), secname);
1802 addralign = 1;
1803 }
1804
1805 if (addralign > this->addralign_)
1806 this->addralign_ = addralign;
1807
1808 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1809 this->update_flags_for_input_section(sh_flags);
1810
1811 uint64_t entsize = shdr.get_sh_entsize();
1812
1813 // .debug_str is a mergeable string section, but is not always so
1814 // marked by compilers. Mark manually here so we can optimize.
1815 if (strcmp(secname, ".debug_str") == 0)
1816 {
1817 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1818 entsize = 1;
1819 }
1820
1821 // If this is a SHF_MERGE section, we pass all the input sections to
1822 // a Output_data_merge. We don't try to handle relocations for such
1823 // a section. We don't try to handle empty merge sections--they
1824 // mess up the mappings, and are useless anyhow.
1825 if ((sh_flags & elfcpp::SHF_MERGE) != 0
1826 && reloc_shndx == 0
1827 && shdr.get_sh_size() > 0)
1828 {
1829 if (this->add_merge_input_section(object, shndx, sh_flags,
1830 entsize, addralign))
1831 {
1832 // Tell the relocation routines that they need to call the
1833 // output_offset method to determine the final address.
1834 return -1;
1835 }
1836 }
1837
1838 off_t offset_in_section = this->current_data_size_for_child();
1839 off_t aligned_offset_in_section = align_address(offset_in_section,
1840 addralign);
1841
1842 if (aligned_offset_in_section > offset_in_section
1843 && !have_sections_script
1844 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1845 && object->target()->has_code_fill())
1846 {
1847 // We need to add some fill data. Using fill_list_ when
1848 // possible is an optimization, since we will often have fill
1849 // sections without input sections.
1850 off_t fill_len = aligned_offset_in_section - offset_in_section;
1851 if (this->input_sections_.empty())
1852 this->fills_.push_back(Fill(offset_in_section, fill_len));
1853 else
1854 {
1855 // FIXME: When relaxing, the size needs to adjust to
1856 // maintain a constant alignment.
1857 std::string fill_data(object->target()->code_fill(fill_len));
1858 Output_data_const* odc = new Output_data_const(fill_data, 1);
1859 this->input_sections_.push_back(Input_section(odc));
1860 }
1861 }
1862
1863 this->set_current_data_size_for_child(aligned_offset_in_section
1864 + shdr.get_sh_size());
1865
1866 // We need to keep track of this section if we are already keeping
1867 // track of sections, or if we are relaxing. Also, if this is a
1868 // section which requires sorting, or which may require sorting in
1869 // the future, we keep track of the sections. FIXME: Add test for
1870 // relaxing.
1871 if (have_sections_script
1872 || !this->input_sections_.empty()
1873 || this->may_sort_attached_input_sections()
1874 || this->must_sort_attached_input_sections()
1875 || parameters->options().user_set_Map())
1876 this->input_sections_.push_back(Input_section(object, shndx,
1877 shdr.get_sh_size(),
1878 addralign));
1879
1880 return aligned_offset_in_section;
1881}
1882
1883// Add arbitrary data to an output section.
1884
1885void
1886Output_section::add_output_section_data(Output_section_data* posd)
1887{
1888 Input_section inp(posd);
1889 this->add_output_section_data(&inp);
1890
1891 if (posd->is_data_size_valid())
1892 {
1893 off_t offset_in_section = this->current_data_size_for_child();
1894 off_t aligned_offset_in_section = align_address(offset_in_section,
1895 posd->addralign());
1896 this->set_current_data_size_for_child(aligned_offset_in_section
1897 + posd->data_size());
1898 }
1899}
1900
1901// Add arbitrary data to an output section by Input_section.
1902
1903void
1904Output_section::add_output_section_data(Input_section* inp)
1905{
1906 if (this->input_sections_.empty())
1907 this->first_input_offset_ = this->current_data_size_for_child();
1908
1909 this->input_sections_.push_back(*inp);
1910
1911 uint64_t addralign = inp->addralign();
1912 if (addralign > this->addralign_)
1913 this->addralign_ = addralign;
1914
1915 inp->set_output_section(this);
1916}
1917
1918// Add a merge section to an output section.
1919
1920void
1921Output_section::add_output_merge_section(Output_section_data* posd,
1922 bool is_string, uint64_t entsize)
1923{
1924 Input_section inp(posd, is_string, entsize);
1925 this->add_output_section_data(&inp);
1926}
1927
1928// Add an input section to a SHF_MERGE section.
1929
1930bool
1931Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1932 uint64_t flags, uint64_t entsize,
1933 uint64_t addralign)
1934{
1935 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1936
1937 // We only merge strings if the alignment is not more than the
1938 // character size. This could be handled, but it's unusual.
1939 if (is_string && addralign > entsize)
1940 return false;
1941
1942 Input_section_list::iterator p;
1943 for (p = this->input_sections_.begin();
1944 p != this->input_sections_.end();
1945 ++p)
1946 if (p->is_merge_section(is_string, entsize, addralign))
1947 {
1948 p->add_input_section(object, shndx);
1949 return true;
1950 }
1951
1952 // We handle the actual constant merging in Output_merge_data or
1953 // Output_merge_string_data.
1954 Output_section_data* posd;
1955 if (!is_string)
1956 posd = new Output_merge_data(entsize, addralign);
1957 else
1958 {
1959 switch (entsize)
1960 {
1961 case 1:
1962 posd = new Output_merge_string<char>(addralign);
1963 break;
1964 case 2:
1965 posd = new Output_merge_string<uint16_t>(addralign);
1966 break;
1967 case 4:
1968 posd = new Output_merge_string<uint32_t>(addralign);
1969 break;
1970 default:
1971 return false;
1972 }
1973 }
1974
1975 this->add_output_merge_section(posd, is_string, entsize);
1976 posd->add_input_section(object, shndx);
1977
1978 return true;
1979}
1980
1981// Given an address OFFSET relative to the start of input section
1982// SHNDX in OBJECT, return whether this address is being included in
1983// the final link. This should only be called if SHNDX in OBJECT has
1984// a special mapping.
1985
1986bool
1987Output_section::is_input_address_mapped(const Relobj* object,
1988 unsigned int shndx,
1989 off_t offset) const
1990{
1991 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1992 p != this->input_sections_.end();
1993 ++p)
1994 {
1995 section_offset_type output_offset;
1996 if (p->output_offset(object, shndx, offset, &output_offset))
1997 return output_offset != -1;
1998 }
1999
2000 // By default we assume that the address is mapped. This should
2001 // only be called after we have passed all sections to Layout. At
2002 // that point we should know what we are discarding.
2003 return true;
2004}
2005
2006// Given an address OFFSET relative to the start of input section
2007// SHNDX in object OBJECT, return the output offset relative to the
2008// start of the input section in the output section. This should only
2009// be called if SHNDX in OBJECT has a special mapping.
2010
2011section_offset_type
2012Output_section::output_offset(const Relobj* object, unsigned int shndx,
2013 section_offset_type offset) const
2014{
2015 // This can only be called meaningfully when layout is complete.
2016 gold_assert(Output_data::is_layout_complete());
2017
2018 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2019 p != this->input_sections_.end();
2020 ++p)
2021 {
2022 section_offset_type output_offset;
2023 if (p->output_offset(object, shndx, offset, &output_offset))
2024 return output_offset;
2025 }
2026 gold_unreachable();
2027}
2028
2029// Return the output virtual address of OFFSET relative to the start
2030// of input section SHNDX in object OBJECT.
2031
2032uint64_t
2033Output_section::output_address(const Relobj* object, unsigned int shndx,
2034 off_t offset) const
2035{
2036 uint64_t addr = this->address() + this->first_input_offset_;
2037 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2038 p != this->input_sections_.end();
2039 ++p)
2040 {
2041 addr = align_address(addr, p->addralign());
2042 section_offset_type output_offset;
2043 if (p->output_offset(object, shndx, offset, &output_offset))
2044 {
2045 if (output_offset == -1)
2046 return -1U;
2047 return addr + output_offset;
2048 }
2049 addr += p->data_size();
2050 }
2051
2052 // If we get here, it means that we don't know the mapping for this
2053 // input section. This might happen in principle if
2054 // add_input_section were called before add_output_section_data.
2055 // But it should never actually happen.
2056
2057 gold_unreachable();
2058}
2059
2060// Return the output address of the start of the merged section for
2061// input section SHNDX in object OBJECT.
2062
2063uint64_t
2064Output_section::starting_output_address(const Relobj* object,
2065 unsigned int shndx) const
2066{
2067 uint64_t addr = this->address() + this->first_input_offset_;
2068 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2069 p != this->input_sections_.end();
2070 ++p)
2071 {
2072 addr = align_address(addr, p->addralign());
2073
2074 // It would be nice if we could use the existing output_offset
2075 // method to get the output offset of input offset 0.
2076 // Unfortunately we don't know for sure that input offset 0 is
2077 // mapped at all.
2078 if (p->is_merge_section_for(object, shndx))
2079 return addr;
2080
2081 addr += p->data_size();
2082 }
2083 gold_unreachable();
2084}
2085
2086// Set the data size of an Output_section. This is where we handle
2087// setting the addresses of any Output_section_data objects.
2088
2089void
2090Output_section::set_final_data_size()
2091{
2092 if (this->input_sections_.empty())
2093 {
2094 this->set_data_size(this->current_data_size_for_child());
2095 return;
2096 }
2097
2098 if (this->must_sort_attached_input_sections())
2099 this->sort_attached_input_sections();
2100
2101 uint64_t address = this->address();
2102 off_t startoff = this->offset();
2103 off_t off = startoff + this->first_input_offset_;
2104 for (Input_section_list::iterator p = this->input_sections_.begin();
2105 p != this->input_sections_.end();
2106 ++p)
2107 {
2108 off = align_address(off, p->addralign());
2109 p->set_address_and_file_offset(address + (off - startoff), off,
2110 startoff);
2111 off += p->data_size();
2112 }
2113
2114 this->set_data_size(off - startoff);
2115}
2116
2117// Reset the address and file offset.
2118
2119void
2120Output_section::do_reset_address_and_file_offset()
2121{
2122 for (Input_section_list::iterator p = this->input_sections_.begin();
2123 p != this->input_sections_.end();
2124 ++p)
2125 p->reset_address_and_file_offset();
2126}
2127
2128// Set the TLS offset. Called only for SHT_TLS sections.
2129
2130void
2131Output_section::do_set_tls_offset(uint64_t tls_base)
2132{
2133 this->tls_offset_ = this->address() - tls_base;
2134}
2135
2136// In a few cases we need to sort the input sections attached to an
2137// output section. This is used to implement the type of constructor
2138// priority ordering implemented by the GNU linker, in which the
2139// priority becomes part of the section name and the sections are
2140// sorted by name. We only do this for an output section if we see an
2141// attached input section matching ".ctor.*", ".dtor.*",
2142// ".init_array.*" or ".fini_array.*".
2143
2144class Output_section::Input_section_sort_entry
2145{
2146 public:
2147 Input_section_sort_entry()
2148 : input_section_(), index_(-1U), section_has_name_(false),
2149 section_name_()
2150 { }
2151
2152 Input_section_sort_entry(const Input_section& input_section,
2153 unsigned int index)
2154 : input_section_(input_section), index_(index),
2155 section_has_name_(input_section.is_input_section())
2156 {
2157 if (this->section_has_name_)
2158 {
2159 // This is only called single-threaded from Layout::finalize,
2160 // so it is OK to lock. Unfortunately we have no way to pass
2161 // in a Task token.
2162 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2163 Object* obj = input_section.relobj();
2164 Task_lock_obj<Object> tl(dummy_task, obj);
2165
2166 // This is a slow operation, which should be cached in
2167 // Layout::layout if this becomes a speed problem.
2168 this->section_name_ = obj->section_name(input_section.shndx());
2169 }
2170 }
2171
2172 // Return the Input_section.
2173 const Input_section&
2174 input_section() const
2175 {
2176 gold_assert(this->index_ != -1U);
2177 return this->input_section_;
2178 }
2179
2180 // The index of this entry in the original list. This is used to
2181 // make the sort stable.
2182 unsigned int
2183 index() const
2184 {
2185 gold_assert(this->index_ != -1U);
2186 return this->index_;
2187 }
2188
2189 // Whether there is a section name.
2190 bool
2191 section_has_name() const
2192 { return this->section_has_name_; }
2193
2194 // The section name.
2195 const std::string&
2196 section_name() const
2197 {
2198 gold_assert(this->section_has_name_);
2199 return this->section_name_;
2200 }
2201
2202 // Return true if the section name has a priority. This is assumed
2203 // to be true if it has a dot after the initial dot.
2204 bool
2205 has_priority() const
2206 {
2207 gold_assert(this->section_has_name_);
2208 return this->section_name_.find('.', 1);
2209 }
2210
2211 // Return true if this an input file whose base name matches
2212 // FILE_NAME. The base name must have an extension of ".o", and
2213 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2214 // This is to match crtbegin.o as well as crtbeginS.o without
2215 // getting confused by other possibilities. Overall matching the
2216 // file name this way is a dreadful hack, but the GNU linker does it
2217 // in order to better support gcc, and we need to be compatible.
2218 bool
2219 match_file_name(const char* match_file_name) const
2220 {
2221 const std::string& file_name(this->input_section_.relobj()->name());
2222 const char* base_name = lbasename(file_name.c_str());
2223 size_t match_len = strlen(match_file_name);
2224 if (strncmp(base_name, match_file_name, match_len) != 0)
2225 return false;
2226 size_t base_len = strlen(base_name);
2227 if (base_len != match_len + 2 && base_len != match_len + 3)
2228 return false;
2229 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2230 }
2231
2232 private:
2233 // The Input_section we are sorting.
2234 Input_section input_section_;
2235 // The index of this Input_section in the original list.
2236 unsigned int index_;
2237 // Whether this Input_section has a section name--it won't if this
2238 // is some random Output_section_data.
2239 bool section_has_name_;
2240 // The section name if there is one.
2241 std::string section_name_;
2242};
2243
2244// Return true if S1 should come before S2 in the output section.
2245
2246bool
2247Output_section::Input_section_sort_compare::operator()(
2248 const Output_section::Input_section_sort_entry& s1,
2249 const Output_section::Input_section_sort_entry& s2) const
2250{
2251 // crtbegin.o must come first.
2252 bool s1_begin = s1.match_file_name("crtbegin");
2253 bool s2_begin = s2.match_file_name("crtbegin");
2254 if (s1_begin || s2_begin)
2255 {
2256 if (!s1_begin)
2257 return false;
2258 if (!s2_begin)
2259 return true;
2260 return s1.index() < s2.index();
2261 }
2262
2263 // crtend.o must come last.
2264 bool s1_end = s1.match_file_name("crtend");
2265 bool s2_end = s2.match_file_name("crtend");
2266 if (s1_end || s2_end)
2267 {
2268 if (!s1_end)
2269 return true;
2270 if (!s2_end)
2271 return false;
2272 return s1.index() < s2.index();
2273 }
2274
2275 // We sort all the sections with no names to the end.
2276 if (!s1.section_has_name() || !s2.section_has_name())
2277 {
2278 if (s1.section_has_name())
2279 return true;
2280 if (s2.section_has_name())
2281 return false;
2282 return s1.index() < s2.index();
2283 }
2284
2285 // A section with a priority follows a section without a priority.
2286 // The GNU linker does this for all but .init_array sections; until
2287 // further notice we'll assume that that is an mistake.
2288 bool s1_has_priority = s1.has_priority();
2289 bool s2_has_priority = s2.has_priority();
2290 if (s1_has_priority && !s2_has_priority)
2291 return false;
2292 if (!s1_has_priority && s2_has_priority)
2293 return true;
2294
2295 // Otherwise we sort by name.
2296 int compare = s1.section_name().compare(s2.section_name());
2297 if (compare != 0)
2298 return compare < 0;
2299
2300 // Otherwise we keep the input order.
2301 return s1.index() < s2.index();
2302}
2303
2304// Sort the input sections attached to an output section.
2305
2306void
2307Output_section::sort_attached_input_sections()
2308{
2309 if (this->attached_input_sections_are_sorted_)
2310 return;
2311
2312 // The only thing we know about an input section is the object and
2313 // the section index. We need the section name. Recomputing this
2314 // is slow but this is an unusual case. If this becomes a speed
2315 // problem we can cache the names as required in Layout::layout.
2316
2317 // We start by building a larger vector holding a copy of each
2318 // Input_section, plus its current index in the list and its name.
2319 std::vector<Input_section_sort_entry> sort_list;
2320
2321 unsigned int i = 0;
2322 for (Input_section_list::iterator p = this->input_sections_.begin();
2323 p != this->input_sections_.end();
2324 ++p, ++i)
2325 sort_list.push_back(Input_section_sort_entry(*p, i));
2326
2327 // Sort the input sections.
2328 std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2329
2330 // Copy the sorted input sections back to our list.
2331 this->input_sections_.clear();
2332 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2333 p != sort_list.end();
2334 ++p)
2335 this->input_sections_.push_back(p->input_section());
2336
2337 // Remember that we sorted the input sections, since we might get
2338 // called again.
2339 this->attached_input_sections_are_sorted_ = true;
2340}
2341
2342// Write the section header to *OSHDR.
2343
2344template<int size, bool big_endian>
2345void
2346Output_section::write_header(const Layout* layout,
2347 const Stringpool* secnamepool,
2348 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2349{
2350 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2351 oshdr->put_sh_type(this->type_);
2352
2353 elfcpp::Elf_Xword flags = this->flags_;
2354 if (this->info_section_ != NULL && this->info_uses_section_index_)
2355 flags |= elfcpp::SHF_INFO_LINK;
2356 oshdr->put_sh_flags(flags);
2357
2358 oshdr->put_sh_addr(this->address());
2359 oshdr->put_sh_offset(this->offset());
2360 oshdr->put_sh_size(this->data_size());
2361 if (this->link_section_ != NULL)
2362 oshdr->put_sh_link(this->link_section_->out_shndx());
2363 else if (this->should_link_to_symtab_)
2364 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2365 else if (this->should_link_to_dynsym_)
2366 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2367 else
2368 oshdr->put_sh_link(this->link_);
2369
2370 elfcpp::Elf_Word info;
2371 if (this->info_section_ != NULL)
2372 {
2373 if (this->info_uses_section_index_)
2374 info = this->info_section_->out_shndx();
2375 else
2376 info = this->info_section_->symtab_index();
2377 }
2378 else if (this->info_symndx_ != NULL)
2379 info = this->info_symndx_->symtab_index();
2380 else
2381 info = this->info_;
2382 oshdr->put_sh_info(info);
2383
2384 oshdr->put_sh_addralign(this->addralign_);
2385 oshdr->put_sh_entsize(this->entsize_);
2386}
2387
2388// Write out the data. For input sections the data is written out by
2389// Object::relocate, but we have to handle Output_section_data objects
2390// here.
2391
2392void
2393Output_section::do_write(Output_file* of)
2394{
2395 gold_assert(!this->requires_postprocessing());
2396
2397 off_t output_section_file_offset = this->offset();
2398 for (Fill_list::iterator p = this->fills_.begin();
2399 p != this->fills_.end();
2400 ++p)
2401 {
2402 std::string fill_data(parameters->target().code_fill(p->length()));
2403 of->write(output_section_file_offset + p->section_offset(),
2404 fill_data.data(), fill_data.size());
2405 }
2406
2407 for (Input_section_list::iterator p = this->input_sections_.begin();
2408 p != this->input_sections_.end();
2409 ++p)
2410 p->write(of);
2411}
2412
2413// If a section requires postprocessing, create the buffer to use.
2414
2415void
2416Output_section::create_postprocessing_buffer()
2417{
2418 gold_assert(this->requires_postprocessing());
2419
2420 if (this->postprocessing_buffer_ != NULL)
2421 return;
2422
2423 if (!this->input_sections_.empty())
2424 {
2425 off_t off = this->first_input_offset_;
2426 for (Input_section_list::iterator p = this->input_sections_.begin();
2427 p != this->input_sections_.end();
2428 ++p)
2429 {
2430 off = align_address(off, p->addralign());
2431 p->finalize_data_size();
2432 off += p->data_size();
2433 }
2434 this->set_current_data_size_for_child(off);
2435 }
2436
2437 off_t buffer_size = this->current_data_size_for_child();
2438 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2439}
2440
2441// Write all the data of an Output_section into the postprocessing
2442// buffer. This is used for sections which require postprocessing,
2443// such as compression. Input sections are handled by
2444// Object::Relocate.
2445
2446void
2447Output_section::write_to_postprocessing_buffer()
2448{
2449 gold_assert(this->requires_postprocessing());
2450
2451 unsigned char* buffer = this->postprocessing_buffer();
2452 for (Fill_list::iterator p = this->fills_.begin();
2453 p != this->fills_.end();
2454 ++p)
2455 {
2456 std::string fill_data(parameters->target().code_fill(p->length()));
2457 memcpy(buffer + p->section_offset(), fill_data.data(),
2458 fill_data.size());
2459 }
2460
2461 off_t off = this->first_input_offset_;
2462 for (Input_section_list::iterator p = this->input_sections_.begin();
2463 p != this->input_sections_.end();
2464 ++p)
2465 {
2466 off = align_address(off, p->addralign());
2467 p->write_to_buffer(buffer + off);
2468 off += p->data_size();
2469 }
2470}
2471
2472// Get the input sections for linker script processing. We leave
2473// behind the Output_section_data entries. Note that this may be
2474// slightly incorrect for merge sections. We will leave them behind,
2475// but it is possible that the script says that they should follow
2476// some other input sections, as in:
2477// .rodata { *(.rodata) *(.rodata.cst*) }
2478// For that matter, we don't handle this correctly:
2479// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2480// With luck this will never matter.
2481
2482uint64_t
2483Output_section::get_input_sections(
2484 uint64_t address,
2485 const std::string& fill,
2486 std::list<std::pair<Relobj*, unsigned int> >* input_sections)
2487{
2488 uint64_t orig_address = address;
2489
2490 address = align_address(address, this->addralign());
2491
2492 Input_section_list remaining;
2493 for (Input_section_list::iterator p = this->input_sections_.begin();
2494 p != this->input_sections_.end();
2495 ++p)
2496 {
2497 if (p->is_input_section())
2498 input_sections->push_back(std::make_pair(p->relobj(), p->shndx()));
2499 else
2500 {
2501 uint64_t aligned_address = align_address(address, p->addralign());
2502 if (aligned_address != address && !fill.empty())
2503 {
2504 section_size_type length =
2505 convert_to_section_size_type(aligned_address - address);
2506 std::string this_fill;
2507 this_fill.reserve(length);
2508 while (this_fill.length() + fill.length() <= length)
2509 this_fill += fill;
2510 if (this_fill.length() < length)
2511 this_fill.append(fill, 0, length - this_fill.length());
2512
2513 Output_section_data* posd = new Output_data_const(this_fill, 0);
2514 remaining.push_back(Input_section(posd));
2515 }
2516 address = aligned_address;
2517
2518 remaining.push_back(*p);
2519
2520 p->finalize_data_size();
2521 address += p->data_size();
2522 }
2523 }
2524
2525 this->input_sections_.swap(remaining);
2526 this->first_input_offset_ = 0;
2527
2528 uint64_t data_size = address - orig_address;
2529 this->set_current_data_size_for_child(data_size);
2530 return data_size;
2531}
2532
2533// Add an input section from a script.
2534
2535void
2536Output_section::add_input_section_for_script(Relobj* object,
2537 unsigned int shndx,
2538 off_t data_size,
2539 uint64_t addralign)
2540{
2541 if (addralign > this->addralign_)
2542 this->addralign_ = addralign;
2543
2544 off_t offset_in_section = this->current_data_size_for_child();
2545 off_t aligned_offset_in_section = align_address(offset_in_section,
2546 addralign);
2547
2548 this->set_current_data_size_for_child(aligned_offset_in_section
2549 + data_size);
2550
2551 this->input_sections_.push_back(Input_section(object, shndx,
2552 data_size, addralign));
2553}
2554
2555// Print to the map file.
2556
2557void
2558Output_section::do_print_to_mapfile(Mapfile* mapfile) const
2559{
2560 mapfile->print_output_section(this);
2561
2562 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2563 p != this->input_sections_.end();
2564 ++p)
2565 p->print_to_mapfile(mapfile);
2566}
2567
2568// Print stats for merge sections to stderr.
2569
2570void
2571Output_section::print_merge_stats()
2572{
2573 Input_section_list::iterator p;
2574 for (p = this->input_sections_.begin();
2575 p != this->input_sections_.end();
2576 ++p)
2577 p->print_merge_stats(this->name_);
2578}
2579
2580// Output segment methods.
2581
2582Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2583 : output_data_(),
2584 output_bss_(),
2585 vaddr_(0),
2586 paddr_(0),
2587 memsz_(0),
2588 max_align_(0),
2589 min_p_align_(0),
2590 offset_(0),
2591 filesz_(0),
2592 type_(type),
2593 flags_(flags),
2594 is_max_align_known_(false),
2595 are_addresses_set_(false)
2596{
2597}
2598
2599// Add an Output_section to an Output_segment.
2600
2601void
2602Output_segment::add_output_section(Output_section* os,
2603 elfcpp::Elf_Word seg_flags)
2604{
2605 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
2606 gold_assert(!this->is_max_align_known_);
2607
2608 // Update the segment flags.
2609 this->flags_ |= seg_flags;
2610
2611 Output_segment::Output_data_list* pdl;
2612 if (os->type() == elfcpp::SHT_NOBITS)
2613 pdl = &this->output_bss_;
2614 else
2615 pdl = &this->output_data_;
2616
2617 // So that PT_NOTE segments will work correctly, we need to ensure
2618 // that all SHT_NOTE sections are adjacent. This will normally
2619 // happen automatically, because all the SHT_NOTE input sections
2620 // will wind up in the same output section. However, it is possible
2621 // for multiple SHT_NOTE input sections to have different section
2622 // flags, and thus be in different output sections, but for the
2623 // different section flags to map into the same segment flags and
2624 // thus the same output segment.
2625
2626 // Note that while there may be many input sections in an output
2627 // section, there are normally only a few output sections in an
2628 // output segment. This loop is expected to be fast.
2629
2630 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
2631 {
2632 Output_segment::Output_data_list::iterator p = pdl->end();
2633 do
2634 {
2635 --p;
2636 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
2637 {
2638 ++p;
2639 pdl->insert(p, os);
2640 return;
2641 }
2642 }
2643 while (p != pdl->begin());
2644 }
2645
2646 // Similarly, so that PT_TLS segments will work, we need to group
2647 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
2648 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2649 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
2650 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
2651 // and the PT_TLS segment -- we do this grouping only for the
2652 // PT_LOAD segment.
2653 if (this->type_ != elfcpp::PT_TLS
2654 && (os->flags() & elfcpp::SHF_TLS) != 0
2655 && !this->output_data_.empty())
2656 {
2657 pdl = &this->output_data_;
2658 bool nobits = os->type() == elfcpp::SHT_NOBITS;
2659 bool sawtls = false;
2660 Output_segment::Output_data_list::iterator p = pdl->end();
2661 do
2662 {
2663 --p;
2664 bool insert;
2665 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2666 {
2667 sawtls = true;
2668 // Put a NOBITS section after the first TLS section.
2669 // Put a PROGBITS section after the first TLS/PROGBITS
2670 // section.
2671 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
2672 }
2673 else
2674 {
2675 // If we've gone past the TLS sections, but we've seen a
2676 // TLS section, then we need to insert this section now.
2677 insert = sawtls;
2678 }
2679
2680 if (insert)
2681 {
2682 ++p;
2683 pdl->insert(p, os);
2684 return;
2685 }
2686 }
2687 while (p != pdl->begin());
2688
2689 // There are no TLS sections yet; put this one at the requested
2690 // location in the section list.
2691 }
2692
2693 // For the PT_GNU_RELRO segment, we need to group relro sections,
2694 // and we need to put them before any non-relro sections. Also,
2695 // relro local sections go before relro non-local sections.
2696 if (parameters->options().relro() && os->is_relro())
2697 {
2698 gold_assert(pdl == &this->output_data_);
2699 Output_segment::Output_data_list::iterator p;
2700 for (p = pdl->begin(); p != pdl->end(); ++p)
2701 {
2702 if (!(*p)->is_section())
2703 break;
2704
2705 Output_section* pos = (*p)->output_section();
2706 if (!pos->is_relro()
2707 || (os->is_relro_local() && !pos->is_relro_local()))
2708 break;
2709 }
2710
2711 pdl->insert(p, os);
2712 return;
2713 }
2714
2715 pdl->push_back(os);
2716}
2717
2718// Remove an Output_section from this segment. It is an error if it
2719// is not present.
2720
2721void
2722Output_segment::remove_output_section(Output_section* os)
2723{
2724 // We only need this for SHT_PROGBITS.
2725 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
2726 for (Output_data_list::iterator p = this->output_data_.begin();
2727 p != this->output_data_.end();
2728 ++p)
2729 {
2730 if (*p == os)
2731 {
2732 this->output_data_.erase(p);
2733 return;
2734 }
2735 }
2736 gold_unreachable();
2737}
2738
2739// Add an Output_data (which is not an Output_section) to the start of
2740// a segment.
2741
2742void
2743Output_segment::add_initial_output_data(Output_data* od)
2744{
2745 gold_assert(!this->is_max_align_known_);
2746 this->output_data_.push_front(od);
2747}
2748
2749// Return whether the first data section is a relro section.
2750
2751bool
2752Output_segment::is_first_section_relro() const
2753{
2754 return (!this->output_data_.empty()
2755 && this->output_data_.front()->is_section()
2756 && this->output_data_.front()->output_section()->is_relro());
2757}
2758
2759// Return the maximum alignment of the Output_data in Output_segment.
2760
2761uint64_t
2762Output_segment::maximum_alignment()
2763{
2764 if (!this->is_max_align_known_)
2765 {
2766 uint64_t addralign;
2767
2768 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
2769 if (addralign > this->max_align_)
2770 this->max_align_ = addralign;
2771
2772 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
2773 if (addralign > this->max_align_)
2774 this->max_align_ = addralign;
2775
2776 // If -z relro is in effect, and the first section in this
2777 // segment is a relro section, then the segment must be aligned
2778 // to at least the common page size. This ensures that the
2779 // PT_GNU_RELRO segment will start at a page boundary.
2780 if (parameters->options().relro() && this->is_first_section_relro())
2781 {
2782 addralign = parameters->target().common_pagesize();
2783 if (addralign > this->max_align_)
2784 this->max_align_ = addralign;
2785 }
2786
2787 this->is_max_align_known_ = true;
2788 }
2789
2790 return this->max_align_;
2791}
2792
2793// Return the maximum alignment of a list of Output_data.
2794
2795uint64_t
2796Output_segment::maximum_alignment_list(const Output_data_list* pdl)
2797{
2798 uint64_t ret = 0;
2799 for (Output_data_list::const_iterator p = pdl->begin();
2800 p != pdl->end();
2801 ++p)
2802 {
2803 uint64_t addralign = (*p)->addralign();
2804 if (addralign > ret)
2805 ret = addralign;
2806 }
2807 return ret;
2808}
2809
2810// Return the number of dynamic relocs applied to this segment.
2811
2812unsigned int
2813Output_segment::dynamic_reloc_count() const
2814{
2815 return (this->dynamic_reloc_count_list(&this->output_data_)
2816 + this->dynamic_reloc_count_list(&this->output_bss_));
2817}
2818
2819// Return the number of dynamic relocs applied to an Output_data_list.
2820
2821unsigned int
2822Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
2823{
2824 unsigned int count = 0;
2825 for (Output_data_list::const_iterator p = pdl->begin();
2826 p != pdl->end();
2827 ++p)
2828 count += (*p)->dynamic_reloc_count();
2829 return count;
2830}
2831
2832// Set the section addresses for an Output_segment. If RESET is true,
2833// reset the addresses first. ADDR is the address and *POFF is the
2834// file offset. Set the section indexes starting with *PSHNDX.
2835// Return the address of the immediately following segment. Update
2836// *POFF and *PSHNDX.
2837
2838uint64_t
2839Output_segment::set_section_addresses(const Layout* layout, bool reset,
2840 uint64_t addr, off_t* poff,
2841 unsigned int* pshndx)
2842{
2843 gold_assert(this->type_ == elfcpp::PT_LOAD);
2844
2845 if (!reset && this->are_addresses_set_)
2846 {
2847 gold_assert(this->paddr_ == addr);
2848 addr = this->vaddr_;
2849 }
2850 else
2851 {
2852 this->vaddr_ = addr;
2853 this->paddr_ = addr;
2854 this->are_addresses_set_ = true;
2855 }
2856
2857 bool in_tls = false;
2858
2859 bool in_relro = (parameters->options().relro()
2860 && this->is_first_section_relro());
2861
2862 off_t orig_off = *poff;
2863 this->offset_ = orig_off;
2864
2865 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
2866 addr, poff, pshndx, &in_tls,
2867 &in_relro);
2868 this->filesz_ = *poff - orig_off;
2869
2870 off_t off = *poff;
2871
2872 uint64_t ret = this->set_section_list_addresses(layout, reset,
2873 &this->output_bss_,
2874 addr, poff, pshndx,
2875 &in_tls, &in_relro);
2876
2877 // If the last section was a TLS section, align upward to the
2878 // alignment of the TLS segment, so that the overall size of the TLS
2879 // segment is aligned.
2880 if (in_tls)
2881 {
2882 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
2883 *poff = align_address(*poff, segment_align);
2884 }
2885
2886 // If all the sections were relro sections, align upward to the
2887 // common page size.
2888 if (in_relro)
2889 {
2890 uint64_t page_align = parameters->target().common_pagesize();
2891 *poff = align_address(*poff, page_align);
2892 }
2893
2894 this->memsz_ = *poff - orig_off;
2895
2896 // Ignore the file offset adjustments made by the BSS Output_data
2897 // objects.
2898 *poff = off;
2899
2900 return ret;
2901}
2902
2903// Set the addresses and file offsets in a list of Output_data
2904// structures.
2905
2906uint64_t
2907Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
2908 Output_data_list* pdl,
2909 uint64_t addr, off_t* poff,
2910 unsigned int* pshndx,
2911 bool* in_tls, bool* in_relro)
2912{
2913 off_t startoff = *poff;
2914
2915 off_t off = startoff;
2916 for (Output_data_list::iterator p = pdl->begin();
2917 p != pdl->end();
2918 ++p)
2919 {
2920 if (reset)
2921 (*p)->reset_address_and_file_offset();
2922
2923 // When using a linker script the section will most likely
2924 // already have an address.
2925 if (!(*p)->is_address_valid())
2926 {
2927 uint64_t align = (*p)->addralign();
2928
2929 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2930 {
2931 // Give the first TLS section the alignment of the
2932 // entire TLS segment. Otherwise the TLS segment as a
2933 // whole may be misaligned.
2934 if (!*in_tls)
2935 {
2936 Output_segment* tls_segment = layout->tls_segment();
2937 gold_assert(tls_segment != NULL);
2938 uint64_t segment_align = tls_segment->maximum_alignment();
2939 gold_assert(segment_align >= align);
2940 align = segment_align;
2941
2942 *in_tls = true;
2943 }
2944 }
2945 else
2946 {
2947 // If this is the first section after the TLS segment,
2948 // align it to at least the alignment of the TLS
2949 // segment, so that the size of the overall TLS segment
2950 // is aligned.
2951 if (*in_tls)
2952 {
2953 uint64_t segment_align =
2954 layout->tls_segment()->maximum_alignment();
2955 if (segment_align > align)
2956 align = segment_align;
2957
2958 *in_tls = false;
2959 }
2960 }
2961
2962 // If this is a non-relro section after a relro section,
2963 // align it to a common page boundary so that the dynamic
2964 // linker has a page to mark as read-only.
2965 if (*in_relro
2966 && (!(*p)->is_section()
2967 || !(*p)->output_section()->is_relro()))
2968 {
2969 uint64_t page_align = parameters->target().common_pagesize();
2970 if (page_align > align)
2971 align = page_align;
2972 *in_relro = false;
2973 }
2974
2975 off = align_address(off, align);
2976 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
2977 }
2978 else
2979 {
2980 // The script may have inserted a skip forward, but it
2981 // better not have moved backward.
2982 gold_assert((*p)->address() >= addr + (off - startoff));
2983 off += (*p)->address() - (addr + (off - startoff));
2984 (*p)->set_file_offset(off);
2985 (*p)->finalize_data_size();
2986 }
2987
2988 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
2989 // section. Such a section does not affect the size of a
2990 // PT_LOAD segment.
2991 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
2992 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
2993 off += (*p)->data_size();
2994
2995 if ((*p)->is_section())
2996 {
2997 (*p)->set_out_shndx(*pshndx);
2998 ++*pshndx;
2999 }
3000 }
3001
3002 *poff = off;
3003 return addr + (off - startoff);
3004}
3005
3006// For a non-PT_LOAD segment, set the offset from the sections, if
3007// any.
3008
3009void
3010Output_segment::set_offset()
3011{
3012 gold_assert(this->type_ != elfcpp::PT_LOAD);
3013
3014 gold_assert(!this->are_addresses_set_);
3015
3016 if (this->output_data_.empty() && this->output_bss_.empty())
3017 {
3018 this->vaddr_ = 0;
3019 this->paddr_ = 0;
3020 this->are_addresses_set_ = true;
3021 this->memsz_ = 0;
3022 this->min_p_align_ = 0;
3023 this->offset_ = 0;
3024 this->filesz_ = 0;
3025 return;
3026 }
3027
3028 const Output_data* first;
3029 if (this->output_data_.empty())
3030 first = this->output_bss_.front();
3031 else
3032 first = this->output_data_.front();
3033 this->vaddr_ = first->address();
3034 this->paddr_ = (first->has_load_address()
3035 ? first->load_address()
3036 : this->vaddr_);
3037 this->are_addresses_set_ = true;
3038 this->offset_ = first->offset();
3039
3040 if (this->output_data_.empty())
3041 this->filesz_ = 0;
3042 else
3043 {
3044 const Output_data* last_data = this->output_data_.back();
3045 this->filesz_ = (last_data->address()
3046 + last_data->data_size()
3047 - this->vaddr_);
3048 }
3049
3050 const Output_data* last;
3051 if (this->output_bss_.empty())
3052 last = this->output_data_.back();
3053 else
3054 last = this->output_bss_.back();
3055 this->memsz_ = (last->address()
3056 + last->data_size()
3057 - this->vaddr_);
3058
3059 // If this is a TLS segment, align the memory size. The code in
3060 // set_section_list ensures that the section after the TLS segment
3061 // is aligned to give us room.
3062 if (this->type_ == elfcpp::PT_TLS)
3063 {
3064 uint64_t segment_align = this->maximum_alignment();
3065 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3066 this->memsz_ = align_address(this->memsz_, segment_align);
3067 }
3068
3069 // If this is a RELRO segment, align the memory size. The code in
3070 // set_section_list ensures that the section after the RELRO segment
3071 // is aligned to give us room.
3072 if (this->type_ == elfcpp::PT_GNU_RELRO)
3073 {
3074 uint64_t page_align = parameters->target().common_pagesize();
3075 gold_assert(this->vaddr_ == align_address(this->vaddr_, page_align));
3076 this->memsz_ = align_address(this->memsz_, page_align);
3077 }
3078}
3079
3080// Set the TLS offsets of the sections in the PT_TLS segment.
3081
3082void
3083Output_segment::set_tls_offsets()
3084{
3085 gold_assert(this->type_ == elfcpp::PT_TLS);
3086
3087 for (Output_data_list::iterator p = this->output_data_.begin();
3088 p != this->output_data_.end();
3089 ++p)
3090 (*p)->set_tls_offset(this->vaddr_);
3091
3092 for (Output_data_list::iterator p = this->output_bss_.begin();
3093 p != this->output_bss_.end();
3094 ++p)
3095 (*p)->set_tls_offset(this->vaddr_);
3096}
3097
3098// Return the address of the first section.
3099
3100uint64_t
3101Output_segment::first_section_load_address() const
3102{
3103 for (Output_data_list::const_iterator p = this->output_data_.begin();
3104 p != this->output_data_.end();
3105 ++p)
3106 if ((*p)->is_section())
3107 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3108
3109 for (Output_data_list::const_iterator p = this->output_bss_.begin();
3110 p != this->output_bss_.end();
3111 ++p)
3112 if ((*p)->is_section())
3113 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3114
3115 gold_unreachable();
3116}
3117
3118// Return the number of Output_sections in an Output_segment.
3119
3120unsigned int
3121Output_segment::output_section_count() const
3122{
3123 return (this->output_section_count_list(&this->output_data_)
3124 + this->output_section_count_list(&this->output_bss_));
3125}
3126
3127// Return the number of Output_sections in an Output_data_list.
3128
3129unsigned int
3130Output_segment::output_section_count_list(const Output_data_list* pdl) const
3131{
3132 unsigned int count = 0;
3133 for (Output_data_list::const_iterator p = pdl->begin();
3134 p != pdl->end();
3135 ++p)
3136 {
3137 if ((*p)->is_section())
3138 ++count;
3139 }
3140 return count;
3141}
3142
3143// Return the section attached to the list segment with the lowest
3144// load address. This is used when handling a PHDRS clause in a
3145// linker script.
3146
3147Output_section*
3148Output_segment::section_with_lowest_load_address() const
3149{
3150 Output_section* found = NULL;
3151 uint64_t found_lma = 0;
3152 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3153
3154 Output_section* found_data = found;
3155 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3156 if (found != found_data && found_data != NULL)
3157 {
3158 gold_error(_("nobits section %s may not precede progbits section %s "
3159 "in same segment"),
3160 found->name(), found_data->name());
3161 return NULL;
3162 }
3163
3164 return found;
3165}
3166
3167// Look through a list for a section with a lower load address.
3168
3169void
3170Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
3171 Output_section** found,
3172 uint64_t* found_lma) const
3173{
3174 for (Output_data_list::const_iterator p = pdl->begin();
3175 p != pdl->end();
3176 ++p)
3177 {
3178 if (!(*p)->is_section())
3179 continue;
3180 Output_section* os = static_cast<Output_section*>(*p);
3181 uint64_t lma = (os->has_load_address()
3182 ? os->load_address()
3183 : os->address());
3184 if (*found == NULL || lma < *found_lma)
3185 {
3186 *found = os;
3187 *found_lma = lma;
3188 }
3189 }
3190}
3191
3192// Write the segment data into *OPHDR.
3193
3194template<int size, bool big_endian>
3195void
3196Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
3197{
3198 ophdr->put_p_type(this->type_);
3199 ophdr->put_p_offset(this->offset_);
3200 ophdr->put_p_vaddr(this->vaddr_);
3201 ophdr->put_p_paddr(this->paddr_);
3202 ophdr->put_p_filesz(this->filesz_);
3203 ophdr->put_p_memsz(this->memsz_);
3204 ophdr->put_p_flags(this->flags_);
3205 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
3206}
3207
3208// Write the section headers into V.
3209
3210template<int size, bool big_endian>
3211unsigned char*
3212Output_segment::write_section_headers(const Layout* layout,
3213 const Stringpool* secnamepool,
3214 unsigned char* v,
3215 unsigned int *pshndx) const
3216{
3217 // Every section that is attached to a segment must be attached to a
3218 // PT_LOAD segment, so we only write out section headers for PT_LOAD
3219 // segments.
3220 if (this->type_ != elfcpp::PT_LOAD)
3221 return v;
3222
3223 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3224 &this->output_data_,
3225 v, pshndx);
3226 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3227 &this->output_bss_,
3228 v, pshndx);
3229 return v;
3230}
3231
3232template<int size, bool big_endian>
3233unsigned char*
3234Output_segment::write_section_headers_list(const Layout* layout,
3235 const Stringpool* secnamepool,
3236 const Output_data_list* pdl,
3237 unsigned char* v,
3238 unsigned int* pshndx) const
3239{
3240 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
3241 for (Output_data_list::const_iterator p = pdl->begin();
3242 p != pdl->end();
3243 ++p)
3244 {
3245 if ((*p)->is_section())
3246 {
3247 const Output_section* ps = static_cast<const Output_section*>(*p);
3248 gold_assert(*pshndx == ps->out_shndx());
3249 elfcpp::Shdr_write<size, big_endian> oshdr(v);
3250 ps->write_header(layout, secnamepool, &oshdr);
3251 v += shdr_size;
3252 ++*pshndx;
3253 }
3254 }
3255 return v;
3256}
3257
3258// Print the output sections to the map file.
3259
3260void
3261Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
3262{
3263 if (this->type() != elfcpp::PT_LOAD)
3264 return;
3265 this->print_section_list_to_mapfile(mapfile, &this->output_data_);
3266 this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
3267}
3268
3269// Print an output section list to the map file.
3270
3271void
3272Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
3273 const Output_data_list* pdl) const
3274{
3275 for (Output_data_list::const_iterator p = pdl->begin();
3276 p != pdl->end();
3277 ++p)
3278 (*p)->print_to_mapfile(mapfile);
3279}
3280
3281// Output_file methods.
3282
3283Output_file::Output_file(const char* name)
3284 : name_(name),
3285 o_(-1),
3286 file_size_(0),
3287 base_(NULL),
3288 map_is_anonymous_(false),
3289 is_temporary_(false)
3290{
3291}
3292
3293// Open the output file.
3294
3295void
3296Output_file::open(off_t file_size)
3297{
3298 this->file_size_ = file_size;
3299
3300 // Unlink the file first; otherwise the open() may fail if the file
3301 // is busy (e.g. it's an executable that's currently being executed).
3302 //
3303 // However, the linker may be part of a system where a zero-length
3304 // file is created for it to write to, with tight permissions (gcc
3305 // 2.95 did something like this). Unlinking the file would work
3306 // around those permission controls, so we only unlink if the file
3307 // has a non-zero size. We also unlink only regular files to avoid
3308 // trouble with directories/etc.
3309 //
3310 // If we fail, continue; this command is merely a best-effort attempt
3311 // to improve the odds for open().
3312
3313 // We let the name "-" mean "stdout"
3314 if (!this->is_temporary_)
3315 {
3316 if (strcmp(this->name_, "-") == 0)
3317 this->o_ = STDOUT_FILENO;
3318 else
3319 {
3320 struct stat s;
3321 if (::stat(this->name_, &s) == 0 && s.st_size != 0)
3322 unlink_if_ordinary(this->name_);
3323
3324 int mode = parameters->options().relocatable() ? 0666 : 0777;
3325 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
3326 mode);
3327 if (o < 0)
3328 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3329 this->o_ = o;
3330 }
3331 }
3332
3333 this->map();
3334}
3335
3336// Resize the output file.
3337
3338void
3339Output_file::resize(off_t file_size)
3340{
3341 // If the mmap is mapping an anonymous memory buffer, this is easy:
3342 // just mremap to the new size. If it's mapping to a file, we want
3343 // to unmap to flush to the file, then remap after growing the file.
3344 if (this->map_is_anonymous_)
3345 {
3346 void* base = ::mremap(this->base_, this->file_size_, file_size,
3347 MREMAP_MAYMOVE);
3348 if (base == MAP_FAILED)
3349 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
3350 this->base_ = static_cast<unsigned char*>(base);
3351 this->file_size_ = file_size;
3352 }
3353 else
3354 {
3355 this->unmap();
3356 this->file_size_ = file_size;
3357 this->map();
3358 }
3359}
3360
3361// Map the file into memory.
3362
3363void
3364Output_file::map()
3365{
3366 const int o = this->o_;
3367
3368 // If the output file is not a regular file, don't try to mmap it;
3369 // instead, we'll mmap a block of memory (an anonymous buffer), and
3370 // then later write the buffer to the file.
3371 void* base;
3372 struct stat statbuf;
3373 if (o == STDOUT_FILENO || o == STDERR_FILENO
3374 || ::fstat(o, &statbuf) != 0
3375 || !S_ISREG(statbuf.st_mode)
3376 || this->is_temporary_)
3377 {
3378 this->map_is_anonymous_ = true;
3379 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3380 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3381 }
3382 else
3383 {
3384 // Write out one byte to make the file the right size.
3385 if (::lseek(o, this->file_size_ - 1, SEEK_SET) < 0)
3386 gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
3387 char b = 0;
3388 if (::write(o, &b, 1) != 1)
3389 gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
3390
3391 // Map the file into memory.
3392 this->map_is_anonymous_ = false;
3393 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3394 MAP_SHARED, o, 0);
3395 }
3396 if (base == MAP_FAILED)
3397 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
3398 this->base_ = static_cast<unsigned char*>(base);
3399}
3400
3401// Unmap the file from memory.
3402
3403void
3404Output_file::unmap()
3405{
3406 if (::munmap(this->base_, this->file_size_) < 0)
3407 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
3408 this->base_ = NULL;
3409}
3410
3411// Close the output file.
3412
3413void
3414Output_file::close()
3415{
3416 // If the map isn't file-backed, we need to write it now.
3417 if (this->map_is_anonymous_ && !this->is_temporary_)
3418 {
3419 size_t bytes_to_write = this->file_size_;
3420 while (bytes_to_write > 0)
3421 {
3422 ssize_t bytes_written = ::write(this->o_, this->base_, bytes_to_write);
3423 if (bytes_written == 0)
3424 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
3425 else if (bytes_written < 0)
3426 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
3427 else
3428 bytes_to_write -= bytes_written;
3429 }
3430 }
3431 this->unmap();
3432
3433 // We don't close stdout or stderr
3434 if (this->o_ != STDOUT_FILENO
3435 && this->o_ != STDERR_FILENO
3436 && !this->is_temporary_)
3437 if (::close(this->o_) < 0)
3438 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
3439 this->o_ = -1;
3440}
3441
3442// Instantiate the templates we need. We could use the configure
3443// script to restrict this to only the ones for implemented targets.
3444
3445#ifdef HAVE_TARGET_32_LITTLE
3446template
3447off_t
3448Output_section::add_input_section<32, false>(
3449 Sized_relobj<32, false>* object,
3450 unsigned int shndx,
3451 const char* secname,
3452 const elfcpp::Shdr<32, false>& shdr,
3453 unsigned int reloc_shndx,
3454 bool have_sections_script);
3455#endif
3456
3457#ifdef HAVE_TARGET_32_BIG
3458template
3459off_t
3460Output_section::add_input_section<32, true>(
3461 Sized_relobj<32, true>* object,
3462 unsigned int shndx,
3463 const char* secname,
3464 const elfcpp::Shdr<32, true>& shdr,
3465 unsigned int reloc_shndx,
3466 bool have_sections_script);
3467#endif
3468
3469#ifdef HAVE_TARGET_64_LITTLE
3470template
3471off_t
3472Output_section::add_input_section<64, false>(
3473 Sized_relobj<64, false>* object,
3474 unsigned int shndx,
3475 const char* secname,
3476 const elfcpp::Shdr<64, false>& shdr,
3477 unsigned int reloc_shndx,
3478 bool have_sections_script);
3479#endif
3480
3481#ifdef HAVE_TARGET_64_BIG
3482template
3483off_t
3484Output_section::add_input_section<64, true>(
3485 Sized_relobj<64, true>* object,
3486 unsigned int shndx,
3487 const char* secname,
3488 const elfcpp::Shdr<64, true>& shdr,
3489 unsigned int reloc_shndx,
3490 bool have_sections_script);
3491#endif
3492
3493#ifdef HAVE_TARGET_32_LITTLE
3494template
3495class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
3496#endif
3497
3498#ifdef HAVE_TARGET_32_BIG
3499template
3500class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
3501#endif
3502
3503#ifdef HAVE_TARGET_64_LITTLE
3504template
3505class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
3506#endif
3507
3508#ifdef HAVE_TARGET_64_BIG
3509template
3510class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
3511#endif
3512
3513#ifdef HAVE_TARGET_32_LITTLE
3514template
3515class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
3516#endif
3517
3518#ifdef HAVE_TARGET_32_BIG
3519template
3520class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
3521#endif
3522
3523#ifdef HAVE_TARGET_64_LITTLE
3524template
3525class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
3526#endif
3527
3528#ifdef HAVE_TARGET_64_BIG
3529template
3530class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
3531#endif
3532
3533#ifdef HAVE_TARGET_32_LITTLE
3534template
3535class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
3536#endif
3537
3538#ifdef HAVE_TARGET_32_BIG
3539template
3540class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
3541#endif
3542
3543#ifdef HAVE_TARGET_64_LITTLE
3544template
3545class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
3546#endif
3547
3548#ifdef HAVE_TARGET_64_BIG
3549template
3550class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
3551#endif
3552
3553#ifdef HAVE_TARGET_32_LITTLE
3554template
3555class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
3556#endif
3557
3558#ifdef HAVE_TARGET_32_BIG
3559template
3560class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
3561#endif
3562
3563#ifdef HAVE_TARGET_64_LITTLE
3564template
3565class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
3566#endif
3567
3568#ifdef HAVE_TARGET_64_BIG
3569template
3570class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
3571#endif
3572
3573#ifdef HAVE_TARGET_32_LITTLE
3574template
3575class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
3576#endif
3577
3578#ifdef HAVE_TARGET_32_BIG
3579template
3580class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
3581#endif
3582
3583#ifdef HAVE_TARGET_64_LITTLE
3584template
3585class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
3586#endif
3587
3588#ifdef HAVE_TARGET_64_BIG
3589template
3590class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
3591#endif
3592
3593#ifdef HAVE_TARGET_32_LITTLE
3594template
3595class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
3596#endif
3597
3598#ifdef HAVE_TARGET_32_BIG
3599template
3600class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
3601#endif
3602
3603#ifdef HAVE_TARGET_64_LITTLE
3604template
3605class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
3606#endif
3607
3608#ifdef HAVE_TARGET_64_BIG
3609template
3610class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
3611#endif
3612
3613#ifdef HAVE_TARGET_32_LITTLE
3614template
3615class Output_data_group<32, false>;
3616#endif
3617
3618#ifdef HAVE_TARGET_32_BIG
3619template
3620class Output_data_group<32, true>;
3621#endif
3622
3623#ifdef HAVE_TARGET_64_LITTLE
3624template
3625class Output_data_group<64, false>;
3626#endif
3627
3628#ifdef HAVE_TARGET_64_BIG
3629template
3630class Output_data_group<64, true>;
3631#endif
3632
3633#ifdef HAVE_TARGET_32_LITTLE
3634template
3635class Output_data_got<32, false>;
3636#endif
3637
3638#ifdef HAVE_TARGET_32_BIG
3639template
3640class Output_data_got<32, true>;
3641#endif
3642
3643#ifdef HAVE_TARGET_64_LITTLE
3644template
3645class Output_data_got<64, false>;
3646#endif
3647
3648#ifdef HAVE_TARGET_64_BIG
3649template
3650class Output_data_got<64, true>;
3651#endif
3652
3653} // End namespace gold.
This page took 0.048861 seconds and 4 git commands to generate.