mm/gup: Introduce get_user_pages_remote()
[deliverable/linux.git] / include / linux / mm.h
... / ...
CommitLineData
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
8#include <linux/mmdebug.h>
9#include <linux/gfp.h>
10#include <linux/bug.h>
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
14#include <linux/atomic.h>
15#include <linux/debug_locks.h>
16#include <linux/mm_types.h>
17#include <linux/range.h>
18#include <linux/pfn.h>
19#include <linux/percpu-refcount.h>
20#include <linux/bit_spinlock.h>
21#include <linux/shrinker.h>
22#include <linux/resource.h>
23#include <linux/page_ext.h>
24#include <linux/err.h>
25
26struct mempolicy;
27struct anon_vma;
28struct anon_vma_chain;
29struct file_ra_state;
30struct user_struct;
31struct writeback_control;
32struct bdi_writeback;
33
34#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
35extern unsigned long max_mapnr;
36
37static inline void set_max_mapnr(unsigned long limit)
38{
39 max_mapnr = limit;
40}
41#else
42static inline void set_max_mapnr(unsigned long limit) { }
43#endif
44
45extern unsigned long totalram_pages;
46extern void * high_memory;
47extern int page_cluster;
48
49#ifdef CONFIG_SYSCTL
50extern int sysctl_legacy_va_layout;
51#else
52#define sysctl_legacy_va_layout 0
53#endif
54
55#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
56extern const int mmap_rnd_bits_min;
57extern const int mmap_rnd_bits_max;
58extern int mmap_rnd_bits __read_mostly;
59#endif
60#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
61extern const int mmap_rnd_compat_bits_min;
62extern const int mmap_rnd_compat_bits_max;
63extern int mmap_rnd_compat_bits __read_mostly;
64#endif
65
66#include <asm/page.h>
67#include <asm/pgtable.h>
68#include <asm/processor.h>
69
70#ifndef __pa_symbol
71#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
72#endif
73
74/*
75 * To prevent common memory management code establishing
76 * a zero page mapping on a read fault.
77 * This macro should be defined within <asm/pgtable.h>.
78 * s390 does this to prevent multiplexing of hardware bits
79 * related to the physical page in case of virtualization.
80 */
81#ifndef mm_forbids_zeropage
82#define mm_forbids_zeropage(X) (0)
83#endif
84
85extern unsigned long sysctl_user_reserve_kbytes;
86extern unsigned long sysctl_admin_reserve_kbytes;
87
88extern int sysctl_overcommit_memory;
89extern int sysctl_overcommit_ratio;
90extern unsigned long sysctl_overcommit_kbytes;
91
92extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
93 size_t *, loff_t *);
94extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
95 size_t *, loff_t *);
96
97#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
98
99/* to align the pointer to the (next) page boundary */
100#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
101
102/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
103#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
104
105/*
106 * Linux kernel virtual memory manager primitives.
107 * The idea being to have a "virtual" mm in the same way
108 * we have a virtual fs - giving a cleaner interface to the
109 * mm details, and allowing different kinds of memory mappings
110 * (from shared memory to executable loading to arbitrary
111 * mmap() functions).
112 */
113
114extern struct kmem_cache *vm_area_cachep;
115
116#ifndef CONFIG_MMU
117extern struct rb_root nommu_region_tree;
118extern struct rw_semaphore nommu_region_sem;
119
120extern unsigned int kobjsize(const void *objp);
121#endif
122
123/*
124 * vm_flags in vm_area_struct, see mm_types.h.
125 */
126#define VM_NONE 0x00000000
127
128#define VM_READ 0x00000001 /* currently active flags */
129#define VM_WRITE 0x00000002
130#define VM_EXEC 0x00000004
131#define VM_SHARED 0x00000008
132
133/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
134#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
135#define VM_MAYWRITE 0x00000020
136#define VM_MAYEXEC 0x00000040
137#define VM_MAYSHARE 0x00000080
138
139#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
140#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
141#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
142#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
143#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
144
145#define VM_LOCKED 0x00002000
146#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
147
148 /* Used by sys_madvise() */
149#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
150#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
151
152#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
153#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
154#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
155#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
156#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
157#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
158#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
159#define VM_ARCH_2 0x02000000
160#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
161
162#ifdef CONFIG_MEM_SOFT_DIRTY
163# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
164#else
165# define VM_SOFTDIRTY 0
166#endif
167
168#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
169#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
170#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
171#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
172
173#if defined(CONFIG_X86)
174# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
175#elif defined(CONFIG_PPC)
176# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
177#elif defined(CONFIG_PARISC)
178# define VM_GROWSUP VM_ARCH_1
179#elif defined(CONFIG_METAG)
180# define VM_GROWSUP VM_ARCH_1
181#elif defined(CONFIG_IA64)
182# define VM_GROWSUP VM_ARCH_1
183#elif !defined(CONFIG_MMU)
184# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
185#endif
186
187#if defined(CONFIG_X86)
188/* MPX specific bounds table or bounds directory */
189# define VM_MPX VM_ARCH_2
190#endif
191
192#ifndef VM_GROWSUP
193# define VM_GROWSUP VM_NONE
194#endif
195
196/* Bits set in the VMA until the stack is in its final location */
197#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
198
199#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
200#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
201#endif
202
203#ifdef CONFIG_STACK_GROWSUP
204#define VM_STACK VM_GROWSUP
205#else
206#define VM_STACK VM_GROWSDOWN
207#endif
208
209#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
210
211/*
212 * Special vmas that are non-mergable, non-mlock()able.
213 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
214 */
215#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
216
217/* This mask defines which mm->def_flags a process can inherit its parent */
218#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
219
220/* This mask is used to clear all the VMA flags used by mlock */
221#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
222
223/*
224 * mapping from the currently active vm_flags protection bits (the
225 * low four bits) to a page protection mask..
226 */
227extern pgprot_t protection_map[16];
228
229#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
230#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
231#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
232#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
233#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
234#define FAULT_FLAG_TRIED 0x20 /* Second try */
235#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
236
237/*
238 * vm_fault is filled by the the pagefault handler and passed to the vma's
239 * ->fault function. The vma's ->fault is responsible for returning a bitmask
240 * of VM_FAULT_xxx flags that give details about how the fault was handled.
241 *
242 * MM layer fills up gfp_mask for page allocations but fault handler might
243 * alter it if its implementation requires a different allocation context.
244 *
245 * pgoff should be used in favour of virtual_address, if possible.
246 */
247struct vm_fault {
248 unsigned int flags; /* FAULT_FLAG_xxx flags */
249 gfp_t gfp_mask; /* gfp mask to be used for allocations */
250 pgoff_t pgoff; /* Logical page offset based on vma */
251 void __user *virtual_address; /* Faulting virtual address */
252
253 struct page *cow_page; /* Handler may choose to COW */
254 struct page *page; /* ->fault handlers should return a
255 * page here, unless VM_FAULT_NOPAGE
256 * is set (which is also implied by
257 * VM_FAULT_ERROR).
258 */
259 /* for ->map_pages() only */
260 pgoff_t max_pgoff; /* map pages for offset from pgoff till
261 * max_pgoff inclusive */
262 pte_t *pte; /* pte entry associated with ->pgoff */
263};
264
265/*
266 * These are the virtual MM functions - opening of an area, closing and
267 * unmapping it (needed to keep files on disk up-to-date etc), pointer
268 * to the functions called when a no-page or a wp-page exception occurs.
269 */
270struct vm_operations_struct {
271 void (*open)(struct vm_area_struct * area);
272 void (*close)(struct vm_area_struct * area);
273 int (*mremap)(struct vm_area_struct * area);
274 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
275 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
276 pmd_t *, unsigned int flags);
277 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
278
279 /* notification that a previously read-only page is about to become
280 * writable, if an error is returned it will cause a SIGBUS */
281 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
282
283 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
284 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
285
286 /* called by access_process_vm when get_user_pages() fails, typically
287 * for use by special VMAs that can switch between memory and hardware
288 */
289 int (*access)(struct vm_area_struct *vma, unsigned long addr,
290 void *buf, int len, int write);
291
292 /* Called by the /proc/PID/maps code to ask the vma whether it
293 * has a special name. Returning non-NULL will also cause this
294 * vma to be dumped unconditionally. */
295 const char *(*name)(struct vm_area_struct *vma);
296
297#ifdef CONFIG_NUMA
298 /*
299 * set_policy() op must add a reference to any non-NULL @new mempolicy
300 * to hold the policy upon return. Caller should pass NULL @new to
301 * remove a policy and fall back to surrounding context--i.e. do not
302 * install a MPOL_DEFAULT policy, nor the task or system default
303 * mempolicy.
304 */
305 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
306
307 /*
308 * get_policy() op must add reference [mpol_get()] to any policy at
309 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
310 * in mm/mempolicy.c will do this automatically.
311 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
312 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
313 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
314 * must return NULL--i.e., do not "fallback" to task or system default
315 * policy.
316 */
317 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
318 unsigned long addr);
319#endif
320 /*
321 * Called by vm_normal_page() for special PTEs to find the
322 * page for @addr. This is useful if the default behavior
323 * (using pte_page()) would not find the correct page.
324 */
325 struct page *(*find_special_page)(struct vm_area_struct *vma,
326 unsigned long addr);
327};
328
329struct mmu_gather;
330struct inode;
331
332#define page_private(page) ((page)->private)
333#define set_page_private(page, v) ((page)->private = (v))
334
335#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
336static inline int pmd_devmap(pmd_t pmd)
337{
338 return 0;
339}
340#endif
341
342/*
343 * FIXME: take this include out, include page-flags.h in
344 * files which need it (119 of them)
345 */
346#include <linux/page-flags.h>
347#include <linux/huge_mm.h>
348
349/*
350 * Methods to modify the page usage count.
351 *
352 * What counts for a page usage:
353 * - cache mapping (page->mapping)
354 * - private data (page->private)
355 * - page mapped in a task's page tables, each mapping
356 * is counted separately
357 *
358 * Also, many kernel routines increase the page count before a critical
359 * routine so they can be sure the page doesn't go away from under them.
360 */
361
362/*
363 * Drop a ref, return true if the refcount fell to zero (the page has no users)
364 */
365static inline int put_page_testzero(struct page *page)
366{
367 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
368 return atomic_dec_and_test(&page->_count);
369}
370
371/*
372 * Try to grab a ref unless the page has a refcount of zero, return false if
373 * that is the case.
374 * This can be called when MMU is off so it must not access
375 * any of the virtual mappings.
376 */
377static inline int get_page_unless_zero(struct page *page)
378{
379 return atomic_inc_not_zero(&page->_count);
380}
381
382extern int page_is_ram(unsigned long pfn);
383
384enum {
385 REGION_INTERSECTS,
386 REGION_DISJOINT,
387 REGION_MIXED,
388};
389
390int region_intersects(resource_size_t offset, size_t size, const char *type);
391
392/* Support for virtually mapped pages */
393struct page *vmalloc_to_page(const void *addr);
394unsigned long vmalloc_to_pfn(const void *addr);
395
396/*
397 * Determine if an address is within the vmalloc range
398 *
399 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
400 * is no special casing required.
401 */
402static inline int is_vmalloc_addr(const void *x)
403{
404#ifdef CONFIG_MMU
405 unsigned long addr = (unsigned long)x;
406
407 return addr >= VMALLOC_START && addr < VMALLOC_END;
408#else
409 return 0;
410#endif
411}
412#ifdef CONFIG_MMU
413extern int is_vmalloc_or_module_addr(const void *x);
414#else
415static inline int is_vmalloc_or_module_addr(const void *x)
416{
417 return 0;
418}
419#endif
420
421extern void kvfree(const void *addr);
422
423static inline atomic_t *compound_mapcount_ptr(struct page *page)
424{
425 return &page[1].compound_mapcount;
426}
427
428static inline int compound_mapcount(struct page *page)
429{
430 if (!PageCompound(page))
431 return 0;
432 page = compound_head(page);
433 return atomic_read(compound_mapcount_ptr(page)) + 1;
434}
435
436/*
437 * The atomic page->_mapcount, starts from -1: so that transitions
438 * both from it and to it can be tracked, using atomic_inc_and_test
439 * and atomic_add_negative(-1).
440 */
441static inline void page_mapcount_reset(struct page *page)
442{
443 atomic_set(&(page)->_mapcount, -1);
444}
445
446int __page_mapcount(struct page *page);
447
448static inline int page_mapcount(struct page *page)
449{
450 VM_BUG_ON_PAGE(PageSlab(page), page);
451
452 if (unlikely(PageCompound(page)))
453 return __page_mapcount(page);
454 return atomic_read(&page->_mapcount) + 1;
455}
456
457#ifdef CONFIG_TRANSPARENT_HUGEPAGE
458int total_mapcount(struct page *page);
459#else
460static inline int total_mapcount(struct page *page)
461{
462 return page_mapcount(page);
463}
464#endif
465
466static inline int page_count(struct page *page)
467{
468 return atomic_read(&compound_head(page)->_count);
469}
470
471static inline struct page *virt_to_head_page(const void *x)
472{
473 struct page *page = virt_to_page(x);
474
475 return compound_head(page);
476}
477
478/*
479 * Setup the page count before being freed into the page allocator for
480 * the first time (boot or memory hotplug)
481 */
482static inline void init_page_count(struct page *page)
483{
484 atomic_set(&page->_count, 1);
485}
486
487void __put_page(struct page *page);
488
489void put_pages_list(struct list_head *pages);
490
491void split_page(struct page *page, unsigned int order);
492int split_free_page(struct page *page);
493
494/*
495 * Compound pages have a destructor function. Provide a
496 * prototype for that function and accessor functions.
497 * These are _only_ valid on the head of a compound page.
498 */
499typedef void compound_page_dtor(struct page *);
500
501/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
502enum compound_dtor_id {
503 NULL_COMPOUND_DTOR,
504 COMPOUND_PAGE_DTOR,
505#ifdef CONFIG_HUGETLB_PAGE
506 HUGETLB_PAGE_DTOR,
507#endif
508#ifdef CONFIG_TRANSPARENT_HUGEPAGE
509 TRANSHUGE_PAGE_DTOR,
510#endif
511 NR_COMPOUND_DTORS,
512};
513extern compound_page_dtor * const compound_page_dtors[];
514
515static inline void set_compound_page_dtor(struct page *page,
516 enum compound_dtor_id compound_dtor)
517{
518 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
519 page[1].compound_dtor = compound_dtor;
520}
521
522static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
523{
524 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
525 return compound_page_dtors[page[1].compound_dtor];
526}
527
528static inline unsigned int compound_order(struct page *page)
529{
530 if (!PageHead(page))
531 return 0;
532 return page[1].compound_order;
533}
534
535static inline void set_compound_order(struct page *page, unsigned int order)
536{
537 page[1].compound_order = order;
538}
539
540void free_compound_page(struct page *page);
541
542#ifdef CONFIG_MMU
543/*
544 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
545 * servicing faults for write access. In the normal case, do always want
546 * pte_mkwrite. But get_user_pages can cause write faults for mappings
547 * that do not have writing enabled, when used by access_process_vm.
548 */
549static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
550{
551 if (likely(vma->vm_flags & VM_WRITE))
552 pte = pte_mkwrite(pte);
553 return pte;
554}
555
556void do_set_pte(struct vm_area_struct *vma, unsigned long address,
557 struct page *page, pte_t *pte, bool write, bool anon);
558#endif
559
560/*
561 * Multiple processes may "see" the same page. E.g. for untouched
562 * mappings of /dev/null, all processes see the same page full of
563 * zeroes, and text pages of executables and shared libraries have
564 * only one copy in memory, at most, normally.
565 *
566 * For the non-reserved pages, page_count(page) denotes a reference count.
567 * page_count() == 0 means the page is free. page->lru is then used for
568 * freelist management in the buddy allocator.
569 * page_count() > 0 means the page has been allocated.
570 *
571 * Pages are allocated by the slab allocator in order to provide memory
572 * to kmalloc and kmem_cache_alloc. In this case, the management of the
573 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
574 * unless a particular usage is carefully commented. (the responsibility of
575 * freeing the kmalloc memory is the caller's, of course).
576 *
577 * A page may be used by anyone else who does a __get_free_page().
578 * In this case, page_count still tracks the references, and should only
579 * be used through the normal accessor functions. The top bits of page->flags
580 * and page->virtual store page management information, but all other fields
581 * are unused and could be used privately, carefully. The management of this
582 * page is the responsibility of the one who allocated it, and those who have
583 * subsequently been given references to it.
584 *
585 * The other pages (we may call them "pagecache pages") are completely
586 * managed by the Linux memory manager: I/O, buffers, swapping etc.
587 * The following discussion applies only to them.
588 *
589 * A pagecache page contains an opaque `private' member, which belongs to the
590 * page's address_space. Usually, this is the address of a circular list of
591 * the page's disk buffers. PG_private must be set to tell the VM to call
592 * into the filesystem to release these pages.
593 *
594 * A page may belong to an inode's memory mapping. In this case, page->mapping
595 * is the pointer to the inode, and page->index is the file offset of the page,
596 * in units of PAGE_CACHE_SIZE.
597 *
598 * If pagecache pages are not associated with an inode, they are said to be
599 * anonymous pages. These may become associated with the swapcache, and in that
600 * case PG_swapcache is set, and page->private is an offset into the swapcache.
601 *
602 * In either case (swapcache or inode backed), the pagecache itself holds one
603 * reference to the page. Setting PG_private should also increment the
604 * refcount. The each user mapping also has a reference to the page.
605 *
606 * The pagecache pages are stored in a per-mapping radix tree, which is
607 * rooted at mapping->page_tree, and indexed by offset.
608 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
609 * lists, we instead now tag pages as dirty/writeback in the radix tree.
610 *
611 * All pagecache pages may be subject to I/O:
612 * - inode pages may need to be read from disk,
613 * - inode pages which have been modified and are MAP_SHARED may need
614 * to be written back to the inode on disk,
615 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
616 * modified may need to be swapped out to swap space and (later) to be read
617 * back into memory.
618 */
619
620/*
621 * The zone field is never updated after free_area_init_core()
622 * sets it, so none of the operations on it need to be atomic.
623 */
624
625/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
626#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
627#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
628#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
629#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
630
631/*
632 * Define the bit shifts to access each section. For non-existent
633 * sections we define the shift as 0; that plus a 0 mask ensures
634 * the compiler will optimise away reference to them.
635 */
636#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
637#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
638#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
639#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
640
641/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
642#ifdef NODE_NOT_IN_PAGE_FLAGS
643#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
644#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
645 SECTIONS_PGOFF : ZONES_PGOFF)
646#else
647#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
648#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
649 NODES_PGOFF : ZONES_PGOFF)
650#endif
651
652#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
653
654#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
655#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
656#endif
657
658#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
659#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
660#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
661#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
662#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
663
664static inline enum zone_type page_zonenum(const struct page *page)
665{
666 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
667}
668
669#ifdef CONFIG_ZONE_DEVICE
670void get_zone_device_page(struct page *page);
671void put_zone_device_page(struct page *page);
672static inline bool is_zone_device_page(const struct page *page)
673{
674 return page_zonenum(page) == ZONE_DEVICE;
675}
676#else
677static inline void get_zone_device_page(struct page *page)
678{
679}
680static inline void put_zone_device_page(struct page *page)
681{
682}
683static inline bool is_zone_device_page(const struct page *page)
684{
685 return false;
686}
687#endif
688
689static inline void get_page(struct page *page)
690{
691 page = compound_head(page);
692 /*
693 * Getting a normal page or the head of a compound page
694 * requires to already have an elevated page->_count.
695 */
696 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
697 atomic_inc(&page->_count);
698
699 if (unlikely(is_zone_device_page(page)))
700 get_zone_device_page(page);
701}
702
703static inline void put_page(struct page *page)
704{
705 page = compound_head(page);
706
707 if (put_page_testzero(page))
708 __put_page(page);
709
710 if (unlikely(is_zone_device_page(page)))
711 put_zone_device_page(page);
712}
713
714#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
715#define SECTION_IN_PAGE_FLAGS
716#endif
717
718/*
719 * The identification function is mainly used by the buddy allocator for
720 * determining if two pages could be buddies. We are not really identifying
721 * the zone since we could be using the section number id if we do not have
722 * node id available in page flags.
723 * We only guarantee that it will return the same value for two combinable
724 * pages in a zone.
725 */
726static inline int page_zone_id(struct page *page)
727{
728 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
729}
730
731static inline int zone_to_nid(struct zone *zone)
732{
733#ifdef CONFIG_NUMA
734 return zone->node;
735#else
736 return 0;
737#endif
738}
739
740#ifdef NODE_NOT_IN_PAGE_FLAGS
741extern int page_to_nid(const struct page *page);
742#else
743static inline int page_to_nid(const struct page *page)
744{
745 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
746}
747#endif
748
749#ifdef CONFIG_NUMA_BALANCING
750static inline int cpu_pid_to_cpupid(int cpu, int pid)
751{
752 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
753}
754
755static inline int cpupid_to_pid(int cpupid)
756{
757 return cpupid & LAST__PID_MASK;
758}
759
760static inline int cpupid_to_cpu(int cpupid)
761{
762 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
763}
764
765static inline int cpupid_to_nid(int cpupid)
766{
767 return cpu_to_node(cpupid_to_cpu(cpupid));
768}
769
770static inline bool cpupid_pid_unset(int cpupid)
771{
772 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
773}
774
775static inline bool cpupid_cpu_unset(int cpupid)
776{
777 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
778}
779
780static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
781{
782 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
783}
784
785#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
786#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
787static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
788{
789 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
790}
791
792static inline int page_cpupid_last(struct page *page)
793{
794 return page->_last_cpupid;
795}
796static inline void page_cpupid_reset_last(struct page *page)
797{
798 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
799}
800#else
801static inline int page_cpupid_last(struct page *page)
802{
803 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
804}
805
806extern int page_cpupid_xchg_last(struct page *page, int cpupid);
807
808static inline void page_cpupid_reset_last(struct page *page)
809{
810 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
811
812 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
813 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
814}
815#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
816#else /* !CONFIG_NUMA_BALANCING */
817static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
818{
819 return page_to_nid(page); /* XXX */
820}
821
822static inline int page_cpupid_last(struct page *page)
823{
824 return page_to_nid(page); /* XXX */
825}
826
827static inline int cpupid_to_nid(int cpupid)
828{
829 return -1;
830}
831
832static inline int cpupid_to_pid(int cpupid)
833{
834 return -1;
835}
836
837static inline int cpupid_to_cpu(int cpupid)
838{
839 return -1;
840}
841
842static inline int cpu_pid_to_cpupid(int nid, int pid)
843{
844 return -1;
845}
846
847static inline bool cpupid_pid_unset(int cpupid)
848{
849 return 1;
850}
851
852static inline void page_cpupid_reset_last(struct page *page)
853{
854}
855
856static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
857{
858 return false;
859}
860#endif /* CONFIG_NUMA_BALANCING */
861
862static inline struct zone *page_zone(const struct page *page)
863{
864 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
865}
866
867#ifdef SECTION_IN_PAGE_FLAGS
868static inline void set_page_section(struct page *page, unsigned long section)
869{
870 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
871 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
872}
873
874static inline unsigned long page_to_section(const struct page *page)
875{
876 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
877}
878#endif
879
880static inline void set_page_zone(struct page *page, enum zone_type zone)
881{
882 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
883 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
884}
885
886static inline void set_page_node(struct page *page, unsigned long node)
887{
888 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
889 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
890}
891
892static inline void set_page_links(struct page *page, enum zone_type zone,
893 unsigned long node, unsigned long pfn)
894{
895 set_page_zone(page, zone);
896 set_page_node(page, node);
897#ifdef SECTION_IN_PAGE_FLAGS
898 set_page_section(page, pfn_to_section_nr(pfn));
899#endif
900}
901
902#ifdef CONFIG_MEMCG
903static inline struct mem_cgroup *page_memcg(struct page *page)
904{
905 return page->mem_cgroup;
906}
907
908static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
909{
910 page->mem_cgroup = memcg;
911}
912#else
913static inline struct mem_cgroup *page_memcg(struct page *page)
914{
915 return NULL;
916}
917
918static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
919{
920}
921#endif
922
923/*
924 * Some inline functions in vmstat.h depend on page_zone()
925 */
926#include <linux/vmstat.h>
927
928static __always_inline void *lowmem_page_address(const struct page *page)
929{
930 return __va(PFN_PHYS(page_to_pfn(page)));
931}
932
933#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
934#define HASHED_PAGE_VIRTUAL
935#endif
936
937#if defined(WANT_PAGE_VIRTUAL)
938static inline void *page_address(const struct page *page)
939{
940 return page->virtual;
941}
942static inline void set_page_address(struct page *page, void *address)
943{
944 page->virtual = address;
945}
946#define page_address_init() do { } while(0)
947#endif
948
949#if defined(HASHED_PAGE_VIRTUAL)
950void *page_address(const struct page *page);
951void set_page_address(struct page *page, void *virtual);
952void page_address_init(void);
953#endif
954
955#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
956#define page_address(page) lowmem_page_address(page)
957#define set_page_address(page, address) do { } while(0)
958#define page_address_init() do { } while(0)
959#endif
960
961extern void *page_rmapping(struct page *page);
962extern struct anon_vma *page_anon_vma(struct page *page);
963extern struct address_space *page_mapping(struct page *page);
964
965extern struct address_space *__page_file_mapping(struct page *);
966
967static inline
968struct address_space *page_file_mapping(struct page *page)
969{
970 if (unlikely(PageSwapCache(page)))
971 return __page_file_mapping(page);
972
973 return page->mapping;
974}
975
976/*
977 * Return the pagecache index of the passed page. Regular pagecache pages
978 * use ->index whereas swapcache pages use ->private
979 */
980static inline pgoff_t page_index(struct page *page)
981{
982 if (unlikely(PageSwapCache(page)))
983 return page_private(page);
984 return page->index;
985}
986
987extern pgoff_t __page_file_index(struct page *page);
988
989/*
990 * Return the file index of the page. Regular pagecache pages use ->index
991 * whereas swapcache pages use swp_offset(->private)
992 */
993static inline pgoff_t page_file_index(struct page *page)
994{
995 if (unlikely(PageSwapCache(page)))
996 return __page_file_index(page);
997
998 return page->index;
999}
1000
1001/*
1002 * Return true if this page is mapped into pagetables.
1003 * For compound page it returns true if any subpage of compound page is mapped.
1004 */
1005static inline bool page_mapped(struct page *page)
1006{
1007 int i;
1008 if (likely(!PageCompound(page)))
1009 return atomic_read(&page->_mapcount) >= 0;
1010 page = compound_head(page);
1011 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
1012 return true;
1013 for (i = 0; i < hpage_nr_pages(page); i++) {
1014 if (atomic_read(&page[i]._mapcount) >= 0)
1015 return true;
1016 }
1017 return false;
1018}
1019
1020/*
1021 * Return true only if the page has been allocated with
1022 * ALLOC_NO_WATERMARKS and the low watermark was not
1023 * met implying that the system is under some pressure.
1024 */
1025static inline bool page_is_pfmemalloc(struct page *page)
1026{
1027 /*
1028 * Page index cannot be this large so this must be
1029 * a pfmemalloc page.
1030 */
1031 return page->index == -1UL;
1032}
1033
1034/*
1035 * Only to be called by the page allocator on a freshly allocated
1036 * page.
1037 */
1038static inline void set_page_pfmemalloc(struct page *page)
1039{
1040 page->index = -1UL;
1041}
1042
1043static inline void clear_page_pfmemalloc(struct page *page)
1044{
1045 page->index = 0;
1046}
1047
1048/*
1049 * Different kinds of faults, as returned by handle_mm_fault().
1050 * Used to decide whether a process gets delivered SIGBUS or
1051 * just gets major/minor fault counters bumped up.
1052 */
1053
1054#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1055
1056#define VM_FAULT_OOM 0x0001
1057#define VM_FAULT_SIGBUS 0x0002
1058#define VM_FAULT_MAJOR 0x0004
1059#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1060#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1061#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1062#define VM_FAULT_SIGSEGV 0x0040
1063
1064#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1065#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1066#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1067#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1068
1069#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1070
1071#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1072 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1073 VM_FAULT_FALLBACK)
1074
1075/* Encode hstate index for a hwpoisoned large page */
1076#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1077#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1078
1079/*
1080 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1081 */
1082extern void pagefault_out_of_memory(void);
1083
1084#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1085
1086/*
1087 * Flags passed to show_mem() and show_free_areas() to suppress output in
1088 * various contexts.
1089 */
1090#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1091
1092extern void show_free_areas(unsigned int flags);
1093extern bool skip_free_areas_node(unsigned int flags, int nid);
1094
1095int shmem_zero_setup(struct vm_area_struct *);
1096#ifdef CONFIG_SHMEM
1097bool shmem_mapping(struct address_space *mapping);
1098#else
1099static inline bool shmem_mapping(struct address_space *mapping)
1100{
1101 return false;
1102}
1103#endif
1104
1105extern bool can_do_mlock(void);
1106extern int user_shm_lock(size_t, struct user_struct *);
1107extern void user_shm_unlock(size_t, struct user_struct *);
1108
1109/*
1110 * Parameter block passed down to zap_pte_range in exceptional cases.
1111 */
1112struct zap_details {
1113 struct address_space *check_mapping; /* Check page->mapping if set */
1114 pgoff_t first_index; /* Lowest page->index to unmap */
1115 pgoff_t last_index; /* Highest page->index to unmap */
1116};
1117
1118struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1119 pte_t pte);
1120
1121int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1122 unsigned long size);
1123void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1124 unsigned long size, struct zap_details *);
1125void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1126 unsigned long start, unsigned long end);
1127
1128/**
1129 * mm_walk - callbacks for walk_page_range
1130 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1131 * this handler is required to be able to handle
1132 * pmd_trans_huge() pmds. They may simply choose to
1133 * split_huge_page() instead of handling it explicitly.
1134 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1135 * @pte_hole: if set, called for each hole at all levels
1136 * @hugetlb_entry: if set, called for each hugetlb entry
1137 * @test_walk: caller specific callback function to determine whether
1138 * we walk over the current vma or not. A positive returned
1139 * value means "do page table walk over the current vma,"
1140 * and a negative one means "abort current page table walk
1141 * right now." 0 means "skip the current vma."
1142 * @mm: mm_struct representing the target process of page table walk
1143 * @vma: vma currently walked (NULL if walking outside vmas)
1144 * @private: private data for callbacks' usage
1145 *
1146 * (see the comment on walk_page_range() for more details)
1147 */
1148struct mm_walk {
1149 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1150 unsigned long next, struct mm_walk *walk);
1151 int (*pte_entry)(pte_t *pte, unsigned long addr,
1152 unsigned long next, struct mm_walk *walk);
1153 int (*pte_hole)(unsigned long addr, unsigned long next,
1154 struct mm_walk *walk);
1155 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1156 unsigned long addr, unsigned long next,
1157 struct mm_walk *walk);
1158 int (*test_walk)(unsigned long addr, unsigned long next,
1159 struct mm_walk *walk);
1160 struct mm_struct *mm;
1161 struct vm_area_struct *vma;
1162 void *private;
1163};
1164
1165int walk_page_range(unsigned long addr, unsigned long end,
1166 struct mm_walk *walk);
1167int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1168void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1169 unsigned long end, unsigned long floor, unsigned long ceiling);
1170int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1171 struct vm_area_struct *vma);
1172void unmap_mapping_range(struct address_space *mapping,
1173 loff_t const holebegin, loff_t const holelen, int even_cows);
1174int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1175 unsigned long *pfn);
1176int follow_phys(struct vm_area_struct *vma, unsigned long address,
1177 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1178int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1179 void *buf, int len, int write);
1180
1181static inline void unmap_shared_mapping_range(struct address_space *mapping,
1182 loff_t const holebegin, loff_t const holelen)
1183{
1184 unmap_mapping_range(mapping, holebegin, holelen, 0);
1185}
1186
1187extern void truncate_pagecache(struct inode *inode, loff_t new);
1188extern void truncate_setsize(struct inode *inode, loff_t newsize);
1189void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1190void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1191int truncate_inode_page(struct address_space *mapping, struct page *page);
1192int generic_error_remove_page(struct address_space *mapping, struct page *page);
1193int invalidate_inode_page(struct page *page);
1194
1195#ifdef CONFIG_MMU
1196extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1197 unsigned long address, unsigned int flags);
1198extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1199 unsigned long address, unsigned int fault_flags,
1200 bool *unlocked);
1201#else
1202static inline int handle_mm_fault(struct mm_struct *mm,
1203 struct vm_area_struct *vma, unsigned long address,
1204 unsigned int flags)
1205{
1206 /* should never happen if there's no MMU */
1207 BUG();
1208 return VM_FAULT_SIGBUS;
1209}
1210static inline int fixup_user_fault(struct task_struct *tsk,
1211 struct mm_struct *mm, unsigned long address,
1212 unsigned int fault_flags, bool *unlocked)
1213{
1214 /* should never happen if there's no MMU */
1215 BUG();
1216 return -EFAULT;
1217}
1218#endif
1219
1220extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1221extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1222 void *buf, int len, int write);
1223
1224long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1225 unsigned long start, unsigned long nr_pages,
1226 unsigned int foll_flags, struct page **pages,
1227 struct vm_area_struct **vmas, int *nonblocking);
1228long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1229 unsigned long start, unsigned long nr_pages,
1230 int write, int force, struct page **pages,
1231 struct vm_area_struct **vmas);
1232long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1233 unsigned long start, unsigned long nr_pages,
1234 int write, int force, struct page **pages,
1235 struct vm_area_struct **vmas);
1236long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1237 unsigned long start, unsigned long nr_pages,
1238 int write, int force, struct page **pages,
1239 int *locked);
1240long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1241 unsigned long start, unsigned long nr_pages,
1242 int write, int force, struct page **pages,
1243 unsigned int gup_flags);
1244long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1245 unsigned long start, unsigned long nr_pages,
1246 int write, int force, struct page **pages);
1247int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1248 struct page **pages);
1249
1250/* Container for pinned pfns / pages */
1251struct frame_vector {
1252 unsigned int nr_allocated; /* Number of frames we have space for */
1253 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1254 bool got_ref; /* Did we pin pages by getting page ref? */
1255 bool is_pfns; /* Does array contain pages or pfns? */
1256 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1257 * pfns_vector_pages() or pfns_vector_pfns()
1258 * for access */
1259};
1260
1261struct frame_vector *frame_vector_create(unsigned int nr_frames);
1262void frame_vector_destroy(struct frame_vector *vec);
1263int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1264 bool write, bool force, struct frame_vector *vec);
1265void put_vaddr_frames(struct frame_vector *vec);
1266int frame_vector_to_pages(struct frame_vector *vec);
1267void frame_vector_to_pfns(struct frame_vector *vec);
1268
1269static inline unsigned int frame_vector_count(struct frame_vector *vec)
1270{
1271 return vec->nr_frames;
1272}
1273
1274static inline struct page **frame_vector_pages(struct frame_vector *vec)
1275{
1276 if (vec->is_pfns) {
1277 int err = frame_vector_to_pages(vec);
1278
1279 if (err)
1280 return ERR_PTR(err);
1281 }
1282 return (struct page **)(vec->ptrs);
1283}
1284
1285static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1286{
1287 if (!vec->is_pfns)
1288 frame_vector_to_pfns(vec);
1289 return (unsigned long *)(vec->ptrs);
1290}
1291
1292struct kvec;
1293int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1294 struct page **pages);
1295int get_kernel_page(unsigned long start, int write, struct page **pages);
1296struct page *get_dump_page(unsigned long addr);
1297
1298extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1299extern void do_invalidatepage(struct page *page, unsigned int offset,
1300 unsigned int length);
1301
1302int __set_page_dirty_nobuffers(struct page *page);
1303int __set_page_dirty_no_writeback(struct page *page);
1304int redirty_page_for_writepage(struct writeback_control *wbc,
1305 struct page *page);
1306void account_page_dirtied(struct page *page, struct address_space *mapping,
1307 struct mem_cgroup *memcg);
1308void account_page_cleaned(struct page *page, struct address_space *mapping,
1309 struct mem_cgroup *memcg, struct bdi_writeback *wb);
1310int set_page_dirty(struct page *page);
1311int set_page_dirty_lock(struct page *page);
1312void cancel_dirty_page(struct page *page);
1313int clear_page_dirty_for_io(struct page *page);
1314
1315int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1316
1317/* Is the vma a continuation of the stack vma above it? */
1318static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1319{
1320 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1321}
1322
1323static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1324{
1325 return !vma->vm_ops;
1326}
1327
1328static inline int stack_guard_page_start(struct vm_area_struct *vma,
1329 unsigned long addr)
1330{
1331 return (vma->vm_flags & VM_GROWSDOWN) &&
1332 (vma->vm_start == addr) &&
1333 !vma_growsdown(vma->vm_prev, addr);
1334}
1335
1336/* Is the vma a continuation of the stack vma below it? */
1337static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1338{
1339 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1340}
1341
1342static inline int stack_guard_page_end(struct vm_area_struct *vma,
1343 unsigned long addr)
1344{
1345 return (vma->vm_flags & VM_GROWSUP) &&
1346 (vma->vm_end == addr) &&
1347 !vma_growsup(vma->vm_next, addr);
1348}
1349
1350int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
1351
1352extern unsigned long move_page_tables(struct vm_area_struct *vma,
1353 unsigned long old_addr, struct vm_area_struct *new_vma,
1354 unsigned long new_addr, unsigned long len,
1355 bool need_rmap_locks);
1356extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1357 unsigned long end, pgprot_t newprot,
1358 int dirty_accountable, int prot_numa);
1359extern int mprotect_fixup(struct vm_area_struct *vma,
1360 struct vm_area_struct **pprev, unsigned long start,
1361 unsigned long end, unsigned long newflags);
1362
1363/*
1364 * doesn't attempt to fault and will return short.
1365 */
1366int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1367 struct page **pages);
1368/*
1369 * per-process(per-mm_struct) statistics.
1370 */
1371static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1372{
1373 long val = atomic_long_read(&mm->rss_stat.count[member]);
1374
1375#ifdef SPLIT_RSS_COUNTING
1376 /*
1377 * counter is updated in asynchronous manner and may go to minus.
1378 * But it's never be expected number for users.
1379 */
1380 if (val < 0)
1381 val = 0;
1382#endif
1383 return (unsigned long)val;
1384}
1385
1386static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1387{
1388 atomic_long_add(value, &mm->rss_stat.count[member]);
1389}
1390
1391static inline void inc_mm_counter(struct mm_struct *mm, int member)
1392{
1393 atomic_long_inc(&mm->rss_stat.count[member]);
1394}
1395
1396static inline void dec_mm_counter(struct mm_struct *mm, int member)
1397{
1398 atomic_long_dec(&mm->rss_stat.count[member]);
1399}
1400
1401/* Optimized variant when page is already known not to be PageAnon */
1402static inline int mm_counter_file(struct page *page)
1403{
1404 if (PageSwapBacked(page))
1405 return MM_SHMEMPAGES;
1406 return MM_FILEPAGES;
1407}
1408
1409static inline int mm_counter(struct page *page)
1410{
1411 if (PageAnon(page))
1412 return MM_ANONPAGES;
1413 return mm_counter_file(page);
1414}
1415
1416static inline unsigned long get_mm_rss(struct mm_struct *mm)
1417{
1418 return get_mm_counter(mm, MM_FILEPAGES) +
1419 get_mm_counter(mm, MM_ANONPAGES) +
1420 get_mm_counter(mm, MM_SHMEMPAGES);
1421}
1422
1423static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1424{
1425 return max(mm->hiwater_rss, get_mm_rss(mm));
1426}
1427
1428static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1429{
1430 return max(mm->hiwater_vm, mm->total_vm);
1431}
1432
1433static inline void update_hiwater_rss(struct mm_struct *mm)
1434{
1435 unsigned long _rss = get_mm_rss(mm);
1436
1437 if ((mm)->hiwater_rss < _rss)
1438 (mm)->hiwater_rss = _rss;
1439}
1440
1441static inline void update_hiwater_vm(struct mm_struct *mm)
1442{
1443 if (mm->hiwater_vm < mm->total_vm)
1444 mm->hiwater_vm = mm->total_vm;
1445}
1446
1447static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1448{
1449 mm->hiwater_rss = get_mm_rss(mm);
1450}
1451
1452static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1453 struct mm_struct *mm)
1454{
1455 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1456
1457 if (*maxrss < hiwater_rss)
1458 *maxrss = hiwater_rss;
1459}
1460
1461#if defined(SPLIT_RSS_COUNTING)
1462void sync_mm_rss(struct mm_struct *mm);
1463#else
1464static inline void sync_mm_rss(struct mm_struct *mm)
1465{
1466}
1467#endif
1468
1469#ifndef __HAVE_ARCH_PTE_DEVMAP
1470static inline int pte_devmap(pte_t pte)
1471{
1472 return 0;
1473}
1474#endif
1475
1476int vma_wants_writenotify(struct vm_area_struct *vma);
1477
1478extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1479 spinlock_t **ptl);
1480static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1481 spinlock_t **ptl)
1482{
1483 pte_t *ptep;
1484 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1485 return ptep;
1486}
1487
1488#ifdef __PAGETABLE_PUD_FOLDED
1489static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1490 unsigned long address)
1491{
1492 return 0;
1493}
1494#else
1495int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1496#endif
1497
1498#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1499static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1500 unsigned long address)
1501{
1502 return 0;
1503}
1504
1505static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1506
1507static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1508{
1509 return 0;
1510}
1511
1512static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1513static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1514
1515#else
1516int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1517
1518static inline void mm_nr_pmds_init(struct mm_struct *mm)
1519{
1520 atomic_long_set(&mm->nr_pmds, 0);
1521}
1522
1523static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1524{
1525 return atomic_long_read(&mm->nr_pmds);
1526}
1527
1528static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1529{
1530 atomic_long_inc(&mm->nr_pmds);
1531}
1532
1533static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1534{
1535 atomic_long_dec(&mm->nr_pmds);
1536}
1537#endif
1538
1539int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1540 pmd_t *pmd, unsigned long address);
1541int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1542
1543/*
1544 * The following ifdef needed to get the 4level-fixup.h header to work.
1545 * Remove it when 4level-fixup.h has been removed.
1546 */
1547#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1548static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1549{
1550 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1551 NULL: pud_offset(pgd, address);
1552}
1553
1554static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1555{
1556 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1557 NULL: pmd_offset(pud, address);
1558}
1559#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1560
1561#if USE_SPLIT_PTE_PTLOCKS
1562#if ALLOC_SPLIT_PTLOCKS
1563void __init ptlock_cache_init(void);
1564extern bool ptlock_alloc(struct page *page);
1565extern void ptlock_free(struct page *page);
1566
1567static inline spinlock_t *ptlock_ptr(struct page *page)
1568{
1569 return page->ptl;
1570}
1571#else /* ALLOC_SPLIT_PTLOCKS */
1572static inline void ptlock_cache_init(void)
1573{
1574}
1575
1576static inline bool ptlock_alloc(struct page *page)
1577{
1578 return true;
1579}
1580
1581static inline void ptlock_free(struct page *page)
1582{
1583}
1584
1585static inline spinlock_t *ptlock_ptr(struct page *page)
1586{
1587 return &page->ptl;
1588}
1589#endif /* ALLOC_SPLIT_PTLOCKS */
1590
1591static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1592{
1593 return ptlock_ptr(pmd_page(*pmd));
1594}
1595
1596static inline bool ptlock_init(struct page *page)
1597{
1598 /*
1599 * prep_new_page() initialize page->private (and therefore page->ptl)
1600 * with 0. Make sure nobody took it in use in between.
1601 *
1602 * It can happen if arch try to use slab for page table allocation:
1603 * slab code uses page->slab_cache, which share storage with page->ptl.
1604 */
1605 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1606 if (!ptlock_alloc(page))
1607 return false;
1608 spin_lock_init(ptlock_ptr(page));
1609 return true;
1610}
1611
1612/* Reset page->mapping so free_pages_check won't complain. */
1613static inline void pte_lock_deinit(struct page *page)
1614{
1615 page->mapping = NULL;
1616 ptlock_free(page);
1617}
1618
1619#else /* !USE_SPLIT_PTE_PTLOCKS */
1620/*
1621 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1622 */
1623static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1624{
1625 return &mm->page_table_lock;
1626}
1627static inline void ptlock_cache_init(void) {}
1628static inline bool ptlock_init(struct page *page) { return true; }
1629static inline void pte_lock_deinit(struct page *page) {}
1630#endif /* USE_SPLIT_PTE_PTLOCKS */
1631
1632static inline void pgtable_init(void)
1633{
1634 ptlock_cache_init();
1635 pgtable_cache_init();
1636}
1637
1638static inline bool pgtable_page_ctor(struct page *page)
1639{
1640 if (!ptlock_init(page))
1641 return false;
1642 inc_zone_page_state(page, NR_PAGETABLE);
1643 return true;
1644}
1645
1646static inline void pgtable_page_dtor(struct page *page)
1647{
1648 pte_lock_deinit(page);
1649 dec_zone_page_state(page, NR_PAGETABLE);
1650}
1651
1652#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1653({ \
1654 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1655 pte_t *__pte = pte_offset_map(pmd, address); \
1656 *(ptlp) = __ptl; \
1657 spin_lock(__ptl); \
1658 __pte; \
1659})
1660
1661#define pte_unmap_unlock(pte, ptl) do { \
1662 spin_unlock(ptl); \
1663 pte_unmap(pte); \
1664} while (0)
1665
1666#define pte_alloc_map(mm, vma, pmd, address) \
1667 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1668 pmd, address))? \
1669 NULL: pte_offset_map(pmd, address))
1670
1671#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1672 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1673 pmd, address))? \
1674 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1675
1676#define pte_alloc_kernel(pmd, address) \
1677 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1678 NULL: pte_offset_kernel(pmd, address))
1679
1680#if USE_SPLIT_PMD_PTLOCKS
1681
1682static struct page *pmd_to_page(pmd_t *pmd)
1683{
1684 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1685 return virt_to_page((void *)((unsigned long) pmd & mask));
1686}
1687
1688static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1689{
1690 return ptlock_ptr(pmd_to_page(pmd));
1691}
1692
1693static inline bool pgtable_pmd_page_ctor(struct page *page)
1694{
1695#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1696 page->pmd_huge_pte = NULL;
1697#endif
1698 return ptlock_init(page);
1699}
1700
1701static inline void pgtable_pmd_page_dtor(struct page *page)
1702{
1703#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1704 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1705#endif
1706 ptlock_free(page);
1707}
1708
1709#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1710
1711#else
1712
1713static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1714{
1715 return &mm->page_table_lock;
1716}
1717
1718static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1719static inline void pgtable_pmd_page_dtor(struct page *page) {}
1720
1721#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1722
1723#endif
1724
1725static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1726{
1727 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1728 spin_lock(ptl);
1729 return ptl;
1730}
1731
1732extern void free_area_init(unsigned long * zones_size);
1733extern void free_area_init_node(int nid, unsigned long * zones_size,
1734 unsigned long zone_start_pfn, unsigned long *zholes_size);
1735extern void free_initmem(void);
1736
1737/*
1738 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1739 * into the buddy system. The freed pages will be poisoned with pattern
1740 * "poison" if it's within range [0, UCHAR_MAX].
1741 * Return pages freed into the buddy system.
1742 */
1743extern unsigned long free_reserved_area(void *start, void *end,
1744 int poison, char *s);
1745
1746#ifdef CONFIG_HIGHMEM
1747/*
1748 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1749 * and totalram_pages.
1750 */
1751extern void free_highmem_page(struct page *page);
1752#endif
1753
1754extern void adjust_managed_page_count(struct page *page, long count);
1755extern void mem_init_print_info(const char *str);
1756
1757extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1758
1759/* Free the reserved page into the buddy system, so it gets managed. */
1760static inline void __free_reserved_page(struct page *page)
1761{
1762 ClearPageReserved(page);
1763 init_page_count(page);
1764 __free_page(page);
1765}
1766
1767static inline void free_reserved_page(struct page *page)
1768{
1769 __free_reserved_page(page);
1770 adjust_managed_page_count(page, 1);
1771}
1772
1773static inline void mark_page_reserved(struct page *page)
1774{
1775 SetPageReserved(page);
1776 adjust_managed_page_count(page, -1);
1777}
1778
1779/*
1780 * Default method to free all the __init memory into the buddy system.
1781 * The freed pages will be poisoned with pattern "poison" if it's within
1782 * range [0, UCHAR_MAX].
1783 * Return pages freed into the buddy system.
1784 */
1785static inline unsigned long free_initmem_default(int poison)
1786{
1787 extern char __init_begin[], __init_end[];
1788
1789 return free_reserved_area(&__init_begin, &__init_end,
1790 poison, "unused kernel");
1791}
1792
1793static inline unsigned long get_num_physpages(void)
1794{
1795 int nid;
1796 unsigned long phys_pages = 0;
1797
1798 for_each_online_node(nid)
1799 phys_pages += node_present_pages(nid);
1800
1801 return phys_pages;
1802}
1803
1804#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1805/*
1806 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1807 * zones, allocate the backing mem_map and account for memory holes in a more
1808 * architecture independent manner. This is a substitute for creating the
1809 * zone_sizes[] and zholes_size[] arrays and passing them to
1810 * free_area_init_node()
1811 *
1812 * An architecture is expected to register range of page frames backed by
1813 * physical memory with memblock_add[_node]() before calling
1814 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1815 * usage, an architecture is expected to do something like
1816 *
1817 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1818 * max_highmem_pfn};
1819 * for_each_valid_physical_page_range()
1820 * memblock_add_node(base, size, nid)
1821 * free_area_init_nodes(max_zone_pfns);
1822 *
1823 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1824 * registered physical page range. Similarly
1825 * sparse_memory_present_with_active_regions() calls memory_present() for
1826 * each range when SPARSEMEM is enabled.
1827 *
1828 * See mm/page_alloc.c for more information on each function exposed by
1829 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1830 */
1831extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1832unsigned long node_map_pfn_alignment(void);
1833unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1834 unsigned long end_pfn);
1835extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1836 unsigned long end_pfn);
1837extern void get_pfn_range_for_nid(unsigned int nid,
1838 unsigned long *start_pfn, unsigned long *end_pfn);
1839extern unsigned long find_min_pfn_with_active_regions(void);
1840extern void free_bootmem_with_active_regions(int nid,
1841 unsigned long max_low_pfn);
1842extern void sparse_memory_present_with_active_regions(int nid);
1843
1844#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1845
1846#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1847 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1848static inline int __early_pfn_to_nid(unsigned long pfn,
1849 struct mminit_pfnnid_cache *state)
1850{
1851 return 0;
1852}
1853#else
1854/* please see mm/page_alloc.c */
1855extern int __meminit early_pfn_to_nid(unsigned long pfn);
1856/* there is a per-arch backend function. */
1857extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1858 struct mminit_pfnnid_cache *state);
1859#endif
1860
1861extern void set_dma_reserve(unsigned long new_dma_reserve);
1862extern void memmap_init_zone(unsigned long, int, unsigned long,
1863 unsigned long, enum memmap_context);
1864extern void setup_per_zone_wmarks(void);
1865extern int __meminit init_per_zone_wmark_min(void);
1866extern void mem_init(void);
1867extern void __init mmap_init(void);
1868extern void show_mem(unsigned int flags);
1869extern void si_meminfo(struct sysinfo * val);
1870extern void si_meminfo_node(struct sysinfo *val, int nid);
1871
1872extern __printf(3, 4)
1873void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1874 const char *fmt, ...);
1875
1876extern void setup_per_cpu_pageset(void);
1877
1878extern void zone_pcp_update(struct zone *zone);
1879extern void zone_pcp_reset(struct zone *zone);
1880
1881/* page_alloc.c */
1882extern int min_free_kbytes;
1883
1884/* nommu.c */
1885extern atomic_long_t mmap_pages_allocated;
1886extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1887
1888/* interval_tree.c */
1889void vma_interval_tree_insert(struct vm_area_struct *node,
1890 struct rb_root *root);
1891void vma_interval_tree_insert_after(struct vm_area_struct *node,
1892 struct vm_area_struct *prev,
1893 struct rb_root *root);
1894void vma_interval_tree_remove(struct vm_area_struct *node,
1895 struct rb_root *root);
1896struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1897 unsigned long start, unsigned long last);
1898struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1899 unsigned long start, unsigned long last);
1900
1901#define vma_interval_tree_foreach(vma, root, start, last) \
1902 for (vma = vma_interval_tree_iter_first(root, start, last); \
1903 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1904
1905void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1906 struct rb_root *root);
1907void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1908 struct rb_root *root);
1909struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1910 struct rb_root *root, unsigned long start, unsigned long last);
1911struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1912 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1913#ifdef CONFIG_DEBUG_VM_RB
1914void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1915#endif
1916
1917#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1918 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1919 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1920
1921/* mmap.c */
1922extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1923extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1924 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1925extern struct vm_area_struct *vma_merge(struct mm_struct *,
1926 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1927 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1928 struct mempolicy *, struct vm_userfaultfd_ctx);
1929extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1930extern int split_vma(struct mm_struct *,
1931 struct vm_area_struct *, unsigned long addr, int new_below);
1932extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1933extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1934 struct rb_node **, struct rb_node *);
1935extern void unlink_file_vma(struct vm_area_struct *);
1936extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1937 unsigned long addr, unsigned long len, pgoff_t pgoff,
1938 bool *need_rmap_locks);
1939extern void exit_mmap(struct mm_struct *);
1940
1941static inline int check_data_rlimit(unsigned long rlim,
1942 unsigned long new,
1943 unsigned long start,
1944 unsigned long end_data,
1945 unsigned long start_data)
1946{
1947 if (rlim < RLIM_INFINITY) {
1948 if (((new - start) + (end_data - start_data)) > rlim)
1949 return -ENOSPC;
1950 }
1951
1952 return 0;
1953}
1954
1955extern int mm_take_all_locks(struct mm_struct *mm);
1956extern void mm_drop_all_locks(struct mm_struct *mm);
1957
1958extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1959extern struct file *get_mm_exe_file(struct mm_struct *mm);
1960
1961extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
1962extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
1963
1964extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1965 unsigned long addr, unsigned long len,
1966 unsigned long flags,
1967 const struct vm_special_mapping *spec);
1968/* This is an obsolete alternative to _install_special_mapping. */
1969extern int install_special_mapping(struct mm_struct *mm,
1970 unsigned long addr, unsigned long len,
1971 unsigned long flags, struct page **pages);
1972
1973extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1974
1975extern unsigned long mmap_region(struct file *file, unsigned long addr,
1976 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1977extern unsigned long do_mmap(struct file *file, unsigned long addr,
1978 unsigned long len, unsigned long prot, unsigned long flags,
1979 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1980extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1981
1982static inline unsigned long
1983do_mmap_pgoff(struct file *file, unsigned long addr,
1984 unsigned long len, unsigned long prot, unsigned long flags,
1985 unsigned long pgoff, unsigned long *populate)
1986{
1987 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
1988}
1989
1990#ifdef CONFIG_MMU
1991extern int __mm_populate(unsigned long addr, unsigned long len,
1992 int ignore_errors);
1993static inline void mm_populate(unsigned long addr, unsigned long len)
1994{
1995 /* Ignore errors */
1996 (void) __mm_populate(addr, len, 1);
1997}
1998#else
1999static inline void mm_populate(unsigned long addr, unsigned long len) {}
2000#endif
2001
2002/* These take the mm semaphore themselves */
2003extern unsigned long vm_brk(unsigned long, unsigned long);
2004extern int vm_munmap(unsigned long, size_t);
2005extern unsigned long vm_mmap(struct file *, unsigned long,
2006 unsigned long, unsigned long,
2007 unsigned long, unsigned long);
2008
2009struct vm_unmapped_area_info {
2010#define VM_UNMAPPED_AREA_TOPDOWN 1
2011 unsigned long flags;
2012 unsigned long length;
2013 unsigned long low_limit;
2014 unsigned long high_limit;
2015 unsigned long align_mask;
2016 unsigned long align_offset;
2017};
2018
2019extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2020extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2021
2022/*
2023 * Search for an unmapped address range.
2024 *
2025 * We are looking for a range that:
2026 * - does not intersect with any VMA;
2027 * - is contained within the [low_limit, high_limit) interval;
2028 * - is at least the desired size.
2029 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2030 */
2031static inline unsigned long
2032vm_unmapped_area(struct vm_unmapped_area_info *info)
2033{
2034 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2035 return unmapped_area_topdown(info);
2036 else
2037 return unmapped_area(info);
2038}
2039
2040/* truncate.c */
2041extern void truncate_inode_pages(struct address_space *, loff_t);
2042extern void truncate_inode_pages_range(struct address_space *,
2043 loff_t lstart, loff_t lend);
2044extern void truncate_inode_pages_final(struct address_space *);
2045
2046/* generic vm_area_ops exported for stackable file systems */
2047extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2048extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
2049extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2050
2051/* mm/page-writeback.c */
2052int write_one_page(struct page *page, int wait);
2053void task_dirty_inc(struct task_struct *tsk);
2054
2055/* readahead.c */
2056#define VM_MAX_READAHEAD 128 /* kbytes */
2057#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2058
2059int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2060 pgoff_t offset, unsigned long nr_to_read);
2061
2062void page_cache_sync_readahead(struct address_space *mapping,
2063 struct file_ra_state *ra,
2064 struct file *filp,
2065 pgoff_t offset,
2066 unsigned long size);
2067
2068void page_cache_async_readahead(struct address_space *mapping,
2069 struct file_ra_state *ra,
2070 struct file *filp,
2071 struct page *pg,
2072 pgoff_t offset,
2073 unsigned long size);
2074
2075/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2076extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2077
2078/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2079extern int expand_downwards(struct vm_area_struct *vma,
2080 unsigned long address);
2081#if VM_GROWSUP
2082extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2083#else
2084 #define expand_upwards(vma, address) (0)
2085#endif
2086
2087/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2088extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2089extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2090 struct vm_area_struct **pprev);
2091
2092/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2093 NULL if none. Assume start_addr < end_addr. */
2094static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2095{
2096 struct vm_area_struct * vma = find_vma(mm,start_addr);
2097
2098 if (vma && end_addr <= vma->vm_start)
2099 vma = NULL;
2100 return vma;
2101}
2102
2103static inline unsigned long vma_pages(struct vm_area_struct *vma)
2104{
2105 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2106}
2107
2108/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2109static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2110 unsigned long vm_start, unsigned long vm_end)
2111{
2112 struct vm_area_struct *vma = find_vma(mm, vm_start);
2113
2114 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2115 vma = NULL;
2116
2117 return vma;
2118}
2119
2120#ifdef CONFIG_MMU
2121pgprot_t vm_get_page_prot(unsigned long vm_flags);
2122void vma_set_page_prot(struct vm_area_struct *vma);
2123#else
2124static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2125{
2126 return __pgprot(0);
2127}
2128static inline void vma_set_page_prot(struct vm_area_struct *vma)
2129{
2130 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2131}
2132#endif
2133
2134#ifdef CONFIG_NUMA_BALANCING
2135unsigned long change_prot_numa(struct vm_area_struct *vma,
2136 unsigned long start, unsigned long end);
2137#endif
2138
2139struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2140int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2141 unsigned long pfn, unsigned long size, pgprot_t);
2142int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2143int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2144 unsigned long pfn);
2145int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2146 unsigned long pfn, pgprot_t pgprot);
2147int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2148 pfn_t pfn);
2149int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2150
2151
2152struct page *follow_page_mask(struct vm_area_struct *vma,
2153 unsigned long address, unsigned int foll_flags,
2154 unsigned int *page_mask);
2155
2156static inline struct page *follow_page(struct vm_area_struct *vma,
2157 unsigned long address, unsigned int foll_flags)
2158{
2159 unsigned int unused_page_mask;
2160 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2161}
2162
2163#define FOLL_WRITE 0x01 /* check pte is writable */
2164#define FOLL_TOUCH 0x02 /* mark page accessed */
2165#define FOLL_GET 0x04 /* do get_page on page */
2166#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2167#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2168#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2169 * and return without waiting upon it */
2170#define FOLL_POPULATE 0x40 /* fault in page */
2171#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2172#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2173#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2174#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2175#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2176#define FOLL_MLOCK 0x1000 /* lock present pages */
2177#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2178
2179typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2180 void *data);
2181extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2182 unsigned long size, pte_fn_t fn, void *data);
2183
2184
2185#ifdef CONFIG_DEBUG_PAGEALLOC
2186extern bool _debug_pagealloc_enabled;
2187extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2188
2189static inline bool debug_pagealloc_enabled(void)
2190{
2191 return _debug_pagealloc_enabled;
2192}
2193
2194static inline void
2195kernel_map_pages(struct page *page, int numpages, int enable)
2196{
2197 if (!debug_pagealloc_enabled())
2198 return;
2199
2200 __kernel_map_pages(page, numpages, enable);
2201}
2202#ifdef CONFIG_HIBERNATION
2203extern bool kernel_page_present(struct page *page);
2204#endif /* CONFIG_HIBERNATION */
2205#else
2206static inline void
2207kernel_map_pages(struct page *page, int numpages, int enable) {}
2208#ifdef CONFIG_HIBERNATION
2209static inline bool kernel_page_present(struct page *page) { return true; }
2210#endif /* CONFIG_HIBERNATION */
2211#endif
2212
2213#ifdef __HAVE_ARCH_GATE_AREA
2214extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2215extern int in_gate_area_no_mm(unsigned long addr);
2216extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2217#else
2218static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2219{
2220 return NULL;
2221}
2222static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2223static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2224{
2225 return 0;
2226}
2227#endif /* __HAVE_ARCH_GATE_AREA */
2228
2229#ifdef CONFIG_SYSCTL
2230extern int sysctl_drop_caches;
2231int drop_caches_sysctl_handler(struct ctl_table *, int,
2232 void __user *, size_t *, loff_t *);
2233#endif
2234
2235void drop_slab(void);
2236void drop_slab_node(int nid);
2237
2238#ifndef CONFIG_MMU
2239#define randomize_va_space 0
2240#else
2241extern int randomize_va_space;
2242#endif
2243
2244const char * arch_vma_name(struct vm_area_struct *vma);
2245void print_vma_addr(char *prefix, unsigned long rip);
2246
2247void sparse_mem_maps_populate_node(struct page **map_map,
2248 unsigned long pnum_begin,
2249 unsigned long pnum_end,
2250 unsigned long map_count,
2251 int nodeid);
2252
2253struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2254pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2255pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2256pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2257pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2258void *vmemmap_alloc_block(unsigned long size, int node);
2259struct vmem_altmap;
2260void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2261 struct vmem_altmap *altmap);
2262static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2263{
2264 return __vmemmap_alloc_block_buf(size, node, NULL);
2265}
2266
2267void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2268int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2269 int node);
2270int vmemmap_populate(unsigned long start, unsigned long end, int node);
2271void vmemmap_populate_print_last(void);
2272#ifdef CONFIG_MEMORY_HOTPLUG
2273void vmemmap_free(unsigned long start, unsigned long end);
2274#endif
2275void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2276 unsigned long size);
2277
2278enum mf_flags {
2279 MF_COUNT_INCREASED = 1 << 0,
2280 MF_ACTION_REQUIRED = 1 << 1,
2281 MF_MUST_KILL = 1 << 2,
2282 MF_SOFT_OFFLINE = 1 << 3,
2283};
2284extern int memory_failure(unsigned long pfn, int trapno, int flags);
2285extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2286extern int unpoison_memory(unsigned long pfn);
2287extern int get_hwpoison_page(struct page *page);
2288#define put_hwpoison_page(page) put_page(page)
2289extern int sysctl_memory_failure_early_kill;
2290extern int sysctl_memory_failure_recovery;
2291extern void shake_page(struct page *p, int access);
2292extern atomic_long_t num_poisoned_pages;
2293extern int soft_offline_page(struct page *page, int flags);
2294
2295
2296/*
2297 * Error handlers for various types of pages.
2298 */
2299enum mf_result {
2300 MF_IGNORED, /* Error: cannot be handled */
2301 MF_FAILED, /* Error: handling failed */
2302 MF_DELAYED, /* Will be handled later */
2303 MF_RECOVERED, /* Successfully recovered */
2304};
2305
2306enum mf_action_page_type {
2307 MF_MSG_KERNEL,
2308 MF_MSG_KERNEL_HIGH_ORDER,
2309 MF_MSG_SLAB,
2310 MF_MSG_DIFFERENT_COMPOUND,
2311 MF_MSG_POISONED_HUGE,
2312 MF_MSG_HUGE,
2313 MF_MSG_FREE_HUGE,
2314 MF_MSG_UNMAP_FAILED,
2315 MF_MSG_DIRTY_SWAPCACHE,
2316 MF_MSG_CLEAN_SWAPCACHE,
2317 MF_MSG_DIRTY_MLOCKED_LRU,
2318 MF_MSG_CLEAN_MLOCKED_LRU,
2319 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2320 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2321 MF_MSG_DIRTY_LRU,
2322 MF_MSG_CLEAN_LRU,
2323 MF_MSG_TRUNCATED_LRU,
2324 MF_MSG_BUDDY,
2325 MF_MSG_BUDDY_2ND,
2326 MF_MSG_UNKNOWN,
2327};
2328
2329#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2330extern void clear_huge_page(struct page *page,
2331 unsigned long addr,
2332 unsigned int pages_per_huge_page);
2333extern void copy_user_huge_page(struct page *dst, struct page *src,
2334 unsigned long addr, struct vm_area_struct *vma,
2335 unsigned int pages_per_huge_page);
2336#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2337
2338extern struct page_ext_operations debug_guardpage_ops;
2339extern struct page_ext_operations page_poisoning_ops;
2340
2341#ifdef CONFIG_DEBUG_PAGEALLOC
2342extern unsigned int _debug_guardpage_minorder;
2343extern bool _debug_guardpage_enabled;
2344
2345static inline unsigned int debug_guardpage_minorder(void)
2346{
2347 return _debug_guardpage_minorder;
2348}
2349
2350static inline bool debug_guardpage_enabled(void)
2351{
2352 return _debug_guardpage_enabled;
2353}
2354
2355static inline bool page_is_guard(struct page *page)
2356{
2357 struct page_ext *page_ext;
2358
2359 if (!debug_guardpage_enabled())
2360 return false;
2361
2362 page_ext = lookup_page_ext(page);
2363 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2364}
2365#else
2366static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2367static inline bool debug_guardpage_enabled(void) { return false; }
2368static inline bool page_is_guard(struct page *page) { return false; }
2369#endif /* CONFIG_DEBUG_PAGEALLOC */
2370
2371#if MAX_NUMNODES > 1
2372void __init setup_nr_node_ids(void);
2373#else
2374static inline void setup_nr_node_ids(void) {}
2375#endif
2376
2377#endif /* __KERNEL__ */
2378#endif /* _LINUX_MM_H */
This page took 0.064148 seconds and 5 git commands to generate.