mm/hotplug: correctly setup fallback zonelists when creating new pgdat
[deliverable/linux.git] / include / linux / mmzone.h
... / ...
CommitLineData
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
4#ifndef __ASSEMBLY__
5#ifndef __GENERATING_BOUNDS_H
6
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
10#include <linux/bitops.h>
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
15#include <linux/seqlock.h>
16#include <linux/nodemask.h>
17#include <linux/pageblock-flags.h>
18#include <generated/bounds.h>
19#include <linux/atomic.h>
20#include <asm/page.h>
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coalesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
38enum {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_RECLAIMABLE,
41 MIGRATE_MOVABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_RESERVE = MIGRATE_PCPTYPES,
44#ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59#endif
60 MIGRATE_ISOLATE, /* can't allocate from here */
61 MIGRATE_TYPES
62};
63
64#ifdef CONFIG_CMA
65# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
66# define cma_wmark_pages(zone) zone->min_cma_pages
67#else
68# define is_migrate_cma(migratetype) false
69# define cma_wmark_pages(zone) 0
70#endif
71
72#define for_each_migratetype_order(order, type) \
73 for (order = 0; order < MAX_ORDER; order++) \
74 for (type = 0; type < MIGRATE_TYPES; type++)
75
76extern int page_group_by_mobility_disabled;
77
78static inline int get_pageblock_migratetype(struct page *page)
79{
80 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
81}
82
83struct free_area {
84 struct list_head free_list[MIGRATE_TYPES];
85 unsigned long nr_free;
86};
87
88struct pglist_data;
89
90/*
91 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
92 * So add a wild amount of padding here to ensure that they fall into separate
93 * cachelines. There are very few zone structures in the machine, so space
94 * consumption is not a concern here.
95 */
96#if defined(CONFIG_SMP)
97struct zone_padding {
98 char x[0];
99} ____cacheline_internodealigned_in_smp;
100#define ZONE_PADDING(name) struct zone_padding name;
101#else
102#define ZONE_PADDING(name)
103#endif
104
105enum zone_stat_item {
106 /* First 128 byte cacheline (assuming 64 bit words) */
107 NR_FREE_PAGES,
108 NR_LRU_BASE,
109 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
110 NR_ACTIVE_ANON, /* " " " " " */
111 NR_INACTIVE_FILE, /* " " " " " */
112 NR_ACTIVE_FILE, /* " " " " " */
113 NR_UNEVICTABLE, /* " " " " " */
114 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
115 NR_ANON_PAGES, /* Mapped anonymous pages */
116 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
117 only modified from process context */
118 NR_FILE_PAGES,
119 NR_FILE_DIRTY,
120 NR_WRITEBACK,
121 NR_SLAB_RECLAIMABLE,
122 NR_SLAB_UNRECLAIMABLE,
123 NR_PAGETABLE, /* used for pagetables */
124 NR_KERNEL_STACK,
125 /* Second 128 byte cacheline */
126 NR_UNSTABLE_NFS, /* NFS unstable pages */
127 NR_BOUNCE,
128 NR_VMSCAN_WRITE,
129 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
130 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
131 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
132 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
133 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
134 NR_DIRTIED, /* page dirtyings since bootup */
135 NR_WRITTEN, /* page writings since bootup */
136#ifdef CONFIG_NUMA
137 NUMA_HIT, /* allocated in intended node */
138 NUMA_MISS, /* allocated in non intended node */
139 NUMA_FOREIGN, /* was intended here, hit elsewhere */
140 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
141 NUMA_LOCAL, /* allocation from local node */
142 NUMA_OTHER, /* allocation from other node */
143#endif
144 NR_ANON_TRANSPARENT_HUGEPAGES,
145 NR_VM_ZONE_STAT_ITEMS };
146
147/*
148 * We do arithmetic on the LRU lists in various places in the code,
149 * so it is important to keep the active lists LRU_ACTIVE higher in
150 * the array than the corresponding inactive lists, and to keep
151 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
152 *
153 * This has to be kept in sync with the statistics in zone_stat_item
154 * above and the descriptions in vmstat_text in mm/vmstat.c
155 */
156#define LRU_BASE 0
157#define LRU_ACTIVE 1
158#define LRU_FILE 2
159
160enum lru_list {
161 LRU_INACTIVE_ANON = LRU_BASE,
162 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
163 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
164 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
165 LRU_UNEVICTABLE,
166 NR_LRU_LISTS
167};
168
169#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
170
171#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
172
173static inline int is_file_lru(enum lru_list lru)
174{
175 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
176}
177
178static inline int is_active_lru(enum lru_list lru)
179{
180 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
181}
182
183static inline int is_unevictable_lru(enum lru_list lru)
184{
185 return (lru == LRU_UNEVICTABLE);
186}
187
188struct zone_reclaim_stat {
189 /*
190 * The pageout code in vmscan.c keeps track of how many of the
191 * mem/swap backed and file backed pages are referenced.
192 * The higher the rotated/scanned ratio, the more valuable
193 * that cache is.
194 *
195 * The anon LRU stats live in [0], file LRU stats in [1]
196 */
197 unsigned long recent_rotated[2];
198 unsigned long recent_scanned[2];
199};
200
201struct lruvec {
202 struct list_head lists[NR_LRU_LISTS];
203 struct zone_reclaim_stat reclaim_stat;
204#ifdef CONFIG_MEMCG
205 struct zone *zone;
206#endif
207};
208
209/* Mask used at gathering information at once (see memcontrol.c) */
210#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
211#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
212#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
213
214/* Isolate clean file */
215#define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
216/* Isolate unmapped file */
217#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
218/* Isolate for asynchronous migration */
219#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
220
221/* LRU Isolation modes. */
222typedef unsigned __bitwise__ isolate_mode_t;
223
224enum zone_watermarks {
225 WMARK_MIN,
226 WMARK_LOW,
227 WMARK_HIGH,
228 NR_WMARK
229};
230
231#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
232#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
233#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
234
235struct per_cpu_pages {
236 int count; /* number of pages in the list */
237 int high; /* high watermark, emptying needed */
238 int batch; /* chunk size for buddy add/remove */
239
240 /* Lists of pages, one per migrate type stored on the pcp-lists */
241 struct list_head lists[MIGRATE_PCPTYPES];
242};
243
244struct per_cpu_pageset {
245 struct per_cpu_pages pcp;
246#ifdef CONFIG_NUMA
247 s8 expire;
248#endif
249#ifdef CONFIG_SMP
250 s8 stat_threshold;
251 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
252#endif
253};
254
255#endif /* !__GENERATING_BOUNDS.H */
256
257enum zone_type {
258#ifdef CONFIG_ZONE_DMA
259 /*
260 * ZONE_DMA is used when there are devices that are not able
261 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
262 * carve out the portion of memory that is needed for these devices.
263 * The range is arch specific.
264 *
265 * Some examples
266 *
267 * Architecture Limit
268 * ---------------------------
269 * parisc, ia64, sparc <4G
270 * s390 <2G
271 * arm Various
272 * alpha Unlimited or 0-16MB.
273 *
274 * i386, x86_64 and multiple other arches
275 * <16M.
276 */
277 ZONE_DMA,
278#endif
279#ifdef CONFIG_ZONE_DMA32
280 /*
281 * x86_64 needs two ZONE_DMAs because it supports devices that are
282 * only able to do DMA to the lower 16M but also 32 bit devices that
283 * can only do DMA areas below 4G.
284 */
285 ZONE_DMA32,
286#endif
287 /*
288 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
289 * performed on pages in ZONE_NORMAL if the DMA devices support
290 * transfers to all addressable memory.
291 */
292 ZONE_NORMAL,
293#ifdef CONFIG_HIGHMEM
294 /*
295 * A memory area that is only addressable by the kernel through
296 * mapping portions into its own address space. This is for example
297 * used by i386 to allow the kernel to address the memory beyond
298 * 900MB. The kernel will set up special mappings (page
299 * table entries on i386) for each page that the kernel needs to
300 * access.
301 */
302 ZONE_HIGHMEM,
303#endif
304 ZONE_MOVABLE,
305 __MAX_NR_ZONES
306};
307
308#ifndef __GENERATING_BOUNDS_H
309
310/*
311 * When a memory allocation must conform to specific limitations (such
312 * as being suitable for DMA) the caller will pass in hints to the
313 * allocator in the gfp_mask, in the zone modifier bits. These bits
314 * are used to select a priority ordered list of memory zones which
315 * match the requested limits. See gfp_zone() in include/linux/gfp.h
316 */
317
318#if MAX_NR_ZONES < 2
319#define ZONES_SHIFT 0
320#elif MAX_NR_ZONES <= 2
321#define ZONES_SHIFT 1
322#elif MAX_NR_ZONES <= 4
323#define ZONES_SHIFT 2
324#else
325#error ZONES_SHIFT -- too many zones configured adjust calculation
326#endif
327
328struct zone {
329 /* Fields commonly accessed by the page allocator */
330
331 /* zone watermarks, access with *_wmark_pages(zone) macros */
332 unsigned long watermark[NR_WMARK];
333
334 /*
335 * When free pages are below this point, additional steps are taken
336 * when reading the number of free pages to avoid per-cpu counter
337 * drift allowing watermarks to be breached
338 */
339 unsigned long percpu_drift_mark;
340
341 /*
342 * We don't know if the memory that we're going to allocate will be freeable
343 * or/and it will be released eventually, so to avoid totally wasting several
344 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
345 * to run OOM on the lower zones despite there's tons of freeable ram
346 * on the higher zones). This array is recalculated at runtime if the
347 * sysctl_lowmem_reserve_ratio sysctl changes.
348 */
349 unsigned long lowmem_reserve[MAX_NR_ZONES];
350
351 /*
352 * This is a per-zone reserve of pages that should not be
353 * considered dirtyable memory.
354 */
355 unsigned long dirty_balance_reserve;
356
357#ifdef CONFIG_NUMA
358 int node;
359 /*
360 * zone reclaim becomes active if more unmapped pages exist.
361 */
362 unsigned long min_unmapped_pages;
363 unsigned long min_slab_pages;
364#endif
365 struct per_cpu_pageset __percpu *pageset;
366 /*
367 * free areas of different sizes
368 */
369 spinlock_t lock;
370 int all_unreclaimable; /* All pages pinned */
371#if defined CONFIG_COMPACTION || defined CONFIG_CMA
372 /* pfn where the last incremental compaction isolated free pages */
373 unsigned long compact_cached_free_pfn;
374#endif
375#ifdef CONFIG_MEMORY_HOTPLUG
376 /* see spanned/present_pages for more description */
377 seqlock_t span_seqlock;
378#endif
379#ifdef CONFIG_CMA
380 /*
381 * CMA needs to increase watermark levels during the allocation
382 * process to make sure that the system is not starved.
383 */
384 unsigned long min_cma_pages;
385#endif
386 struct free_area free_area[MAX_ORDER];
387
388#ifndef CONFIG_SPARSEMEM
389 /*
390 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
391 * In SPARSEMEM, this map is stored in struct mem_section
392 */
393 unsigned long *pageblock_flags;
394#endif /* CONFIG_SPARSEMEM */
395
396#ifdef CONFIG_COMPACTION
397 /*
398 * On compaction failure, 1<<compact_defer_shift compactions
399 * are skipped before trying again. The number attempted since
400 * last failure is tracked with compact_considered.
401 */
402 unsigned int compact_considered;
403 unsigned int compact_defer_shift;
404 int compact_order_failed;
405#endif
406
407 ZONE_PADDING(_pad1_)
408
409 /* Fields commonly accessed by the page reclaim scanner */
410 spinlock_t lru_lock;
411 struct lruvec lruvec;
412
413 unsigned long pages_scanned; /* since last reclaim */
414 unsigned long flags; /* zone flags, see below */
415
416 /* Zone statistics */
417 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
418
419 /*
420 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
421 * this zone's LRU. Maintained by the pageout code.
422 */
423 unsigned int inactive_ratio;
424
425
426 ZONE_PADDING(_pad2_)
427 /* Rarely used or read-mostly fields */
428
429 /*
430 * wait_table -- the array holding the hash table
431 * wait_table_hash_nr_entries -- the size of the hash table array
432 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
433 *
434 * The purpose of all these is to keep track of the people
435 * waiting for a page to become available and make them
436 * runnable again when possible. The trouble is that this
437 * consumes a lot of space, especially when so few things
438 * wait on pages at a given time. So instead of using
439 * per-page waitqueues, we use a waitqueue hash table.
440 *
441 * The bucket discipline is to sleep on the same queue when
442 * colliding and wake all in that wait queue when removing.
443 * When something wakes, it must check to be sure its page is
444 * truly available, a la thundering herd. The cost of a
445 * collision is great, but given the expected load of the
446 * table, they should be so rare as to be outweighed by the
447 * benefits from the saved space.
448 *
449 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
450 * primary users of these fields, and in mm/page_alloc.c
451 * free_area_init_core() performs the initialization of them.
452 */
453 wait_queue_head_t * wait_table;
454 unsigned long wait_table_hash_nr_entries;
455 unsigned long wait_table_bits;
456
457 /*
458 * Discontig memory support fields.
459 */
460 struct pglist_data *zone_pgdat;
461 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
462 unsigned long zone_start_pfn;
463
464 /*
465 * zone_start_pfn, spanned_pages and present_pages are all
466 * protected by span_seqlock. It is a seqlock because it has
467 * to be read outside of zone->lock, and it is done in the main
468 * allocator path. But, it is written quite infrequently.
469 *
470 * The lock is declared along with zone->lock because it is
471 * frequently read in proximity to zone->lock. It's good to
472 * give them a chance of being in the same cacheline.
473 */
474 unsigned long spanned_pages; /* total size, including holes */
475 unsigned long present_pages; /* amount of memory (excluding holes) */
476
477 /*
478 * rarely used fields:
479 */
480 const char *name;
481} ____cacheline_internodealigned_in_smp;
482
483typedef enum {
484 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
485 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
486 ZONE_CONGESTED, /* zone has many dirty pages backed by
487 * a congested BDI
488 */
489} zone_flags_t;
490
491static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
492{
493 set_bit(flag, &zone->flags);
494}
495
496static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
497{
498 return test_and_set_bit(flag, &zone->flags);
499}
500
501static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
502{
503 clear_bit(flag, &zone->flags);
504}
505
506static inline int zone_is_reclaim_congested(const struct zone *zone)
507{
508 return test_bit(ZONE_CONGESTED, &zone->flags);
509}
510
511static inline int zone_is_reclaim_locked(const struct zone *zone)
512{
513 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
514}
515
516static inline int zone_is_oom_locked(const struct zone *zone)
517{
518 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
519}
520
521/*
522 * The "priority" of VM scanning is how much of the queues we will scan in one
523 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
524 * queues ("queue_length >> 12") during an aging round.
525 */
526#define DEF_PRIORITY 12
527
528/* Maximum number of zones on a zonelist */
529#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
530
531#ifdef CONFIG_NUMA
532
533/*
534 * The NUMA zonelists are doubled because we need zonelists that restrict the
535 * allocations to a single node for GFP_THISNODE.
536 *
537 * [0] : Zonelist with fallback
538 * [1] : No fallback (GFP_THISNODE)
539 */
540#define MAX_ZONELISTS 2
541
542
543/*
544 * We cache key information from each zonelist for smaller cache
545 * footprint when scanning for free pages in get_page_from_freelist().
546 *
547 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
548 * up short of free memory since the last time (last_fullzone_zap)
549 * we zero'd fullzones.
550 * 2) The array z_to_n[] maps each zone in the zonelist to its node
551 * id, so that we can efficiently evaluate whether that node is
552 * set in the current tasks mems_allowed.
553 *
554 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
555 * indexed by a zones offset in the zonelist zones[] array.
556 *
557 * The get_page_from_freelist() routine does two scans. During the
558 * first scan, we skip zones whose corresponding bit in 'fullzones'
559 * is set or whose corresponding node in current->mems_allowed (which
560 * comes from cpusets) is not set. During the second scan, we bypass
561 * this zonelist_cache, to ensure we look methodically at each zone.
562 *
563 * Once per second, we zero out (zap) fullzones, forcing us to
564 * reconsider nodes that might have regained more free memory.
565 * The field last_full_zap is the time we last zapped fullzones.
566 *
567 * This mechanism reduces the amount of time we waste repeatedly
568 * reexaming zones for free memory when they just came up low on
569 * memory momentarilly ago.
570 *
571 * The zonelist_cache struct members logically belong in struct
572 * zonelist. However, the mempolicy zonelists constructed for
573 * MPOL_BIND are intentionally variable length (and usually much
574 * shorter). A general purpose mechanism for handling structs with
575 * multiple variable length members is more mechanism than we want
576 * here. We resort to some special case hackery instead.
577 *
578 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
579 * part because they are shorter), so we put the fixed length stuff
580 * at the front of the zonelist struct, ending in a variable length
581 * zones[], as is needed by MPOL_BIND.
582 *
583 * Then we put the optional zonelist cache on the end of the zonelist
584 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
585 * the fixed length portion at the front of the struct. This pointer
586 * both enables us to find the zonelist cache, and in the case of
587 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
588 * to know that the zonelist cache is not there.
589 *
590 * The end result is that struct zonelists come in two flavors:
591 * 1) The full, fixed length version, shown below, and
592 * 2) The custom zonelists for MPOL_BIND.
593 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
594 *
595 * Even though there may be multiple CPU cores on a node modifying
596 * fullzones or last_full_zap in the same zonelist_cache at the same
597 * time, we don't lock it. This is just hint data - if it is wrong now
598 * and then, the allocator will still function, perhaps a bit slower.
599 */
600
601
602struct zonelist_cache {
603 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
604 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
605 unsigned long last_full_zap; /* when last zap'd (jiffies) */
606};
607#else
608#define MAX_ZONELISTS 1
609struct zonelist_cache;
610#endif
611
612/*
613 * This struct contains information about a zone in a zonelist. It is stored
614 * here to avoid dereferences into large structures and lookups of tables
615 */
616struct zoneref {
617 struct zone *zone; /* Pointer to actual zone */
618 int zone_idx; /* zone_idx(zoneref->zone) */
619};
620
621/*
622 * One allocation request operates on a zonelist. A zonelist
623 * is a list of zones, the first one is the 'goal' of the
624 * allocation, the other zones are fallback zones, in decreasing
625 * priority.
626 *
627 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
628 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
629 * *
630 * To speed the reading of the zonelist, the zonerefs contain the zone index
631 * of the entry being read. Helper functions to access information given
632 * a struct zoneref are
633 *
634 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
635 * zonelist_zone_idx() - Return the index of the zone for an entry
636 * zonelist_node_idx() - Return the index of the node for an entry
637 */
638struct zonelist {
639 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
640 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
641#ifdef CONFIG_NUMA
642 struct zonelist_cache zlcache; // optional ...
643#endif
644};
645
646#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
647struct node_active_region {
648 unsigned long start_pfn;
649 unsigned long end_pfn;
650 int nid;
651};
652#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
653
654#ifndef CONFIG_DISCONTIGMEM
655/* The array of struct pages - for discontigmem use pgdat->lmem_map */
656extern struct page *mem_map;
657#endif
658
659/*
660 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
661 * (mostly NUMA machines?) to denote a higher-level memory zone than the
662 * zone denotes.
663 *
664 * On NUMA machines, each NUMA node would have a pg_data_t to describe
665 * it's memory layout.
666 *
667 * Memory statistics and page replacement data structures are maintained on a
668 * per-zone basis.
669 */
670struct bootmem_data;
671typedef struct pglist_data {
672 struct zone node_zones[MAX_NR_ZONES];
673 struct zonelist node_zonelists[MAX_ZONELISTS];
674 int nr_zones;
675#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
676 struct page *node_mem_map;
677#ifdef CONFIG_MEMCG
678 struct page_cgroup *node_page_cgroup;
679#endif
680#endif
681#ifndef CONFIG_NO_BOOTMEM
682 struct bootmem_data *bdata;
683#endif
684#ifdef CONFIG_MEMORY_HOTPLUG
685 /*
686 * Must be held any time you expect node_start_pfn, node_present_pages
687 * or node_spanned_pages stay constant. Holding this will also
688 * guarantee that any pfn_valid() stays that way.
689 *
690 * Nests above zone->lock and zone->size_seqlock.
691 */
692 spinlock_t node_size_lock;
693#endif
694 unsigned long node_start_pfn;
695 unsigned long node_present_pages; /* total number of physical pages */
696 unsigned long node_spanned_pages; /* total size of physical page
697 range, including holes */
698 int node_id;
699 wait_queue_head_t kswapd_wait;
700 struct task_struct *kswapd; /* Protected by lock_memory_hotplug() */
701 int kswapd_max_order;
702 enum zone_type classzone_idx;
703} pg_data_t;
704
705#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
706#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
707#ifdef CONFIG_FLAT_NODE_MEM_MAP
708#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
709#else
710#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
711#endif
712#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
713
714#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
715
716#define node_end_pfn(nid) ({\
717 pg_data_t *__pgdat = NODE_DATA(nid);\
718 __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
719})
720
721#include <linux/memory_hotplug.h>
722
723extern struct mutex zonelists_mutex;
724void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
725void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
726bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
727 int classzone_idx, int alloc_flags);
728bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
729 int classzone_idx, int alloc_flags);
730enum memmap_context {
731 MEMMAP_EARLY,
732 MEMMAP_HOTPLUG,
733};
734extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
735 unsigned long size,
736 enum memmap_context context);
737
738extern void lruvec_init(struct lruvec *lruvec, struct zone *zone);
739
740static inline struct zone *lruvec_zone(struct lruvec *lruvec)
741{
742#ifdef CONFIG_MEMCG
743 return lruvec->zone;
744#else
745 return container_of(lruvec, struct zone, lruvec);
746#endif
747}
748
749#ifdef CONFIG_HAVE_MEMORY_PRESENT
750void memory_present(int nid, unsigned long start, unsigned long end);
751#else
752static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
753#endif
754
755#ifdef CONFIG_HAVE_MEMORYLESS_NODES
756int local_memory_node(int node_id);
757#else
758static inline int local_memory_node(int node_id) { return node_id; };
759#endif
760
761#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
762unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
763#endif
764
765/*
766 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
767 */
768#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
769
770static inline int populated_zone(struct zone *zone)
771{
772 return (!!zone->present_pages);
773}
774
775extern int movable_zone;
776
777static inline int zone_movable_is_highmem(void)
778{
779#if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
780 return movable_zone == ZONE_HIGHMEM;
781#else
782 return 0;
783#endif
784}
785
786static inline int is_highmem_idx(enum zone_type idx)
787{
788#ifdef CONFIG_HIGHMEM
789 return (idx == ZONE_HIGHMEM ||
790 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
791#else
792 return 0;
793#endif
794}
795
796static inline int is_normal_idx(enum zone_type idx)
797{
798 return (idx == ZONE_NORMAL);
799}
800
801/**
802 * is_highmem - helper function to quickly check if a struct zone is a
803 * highmem zone or not. This is an attempt to keep references
804 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
805 * @zone - pointer to struct zone variable
806 */
807static inline int is_highmem(struct zone *zone)
808{
809#ifdef CONFIG_HIGHMEM
810 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
811 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
812 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
813 zone_movable_is_highmem());
814#else
815 return 0;
816#endif
817}
818
819static inline int is_normal(struct zone *zone)
820{
821 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
822}
823
824static inline int is_dma32(struct zone *zone)
825{
826#ifdef CONFIG_ZONE_DMA32
827 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
828#else
829 return 0;
830#endif
831}
832
833static inline int is_dma(struct zone *zone)
834{
835#ifdef CONFIG_ZONE_DMA
836 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
837#else
838 return 0;
839#endif
840}
841
842/* These two functions are used to setup the per zone pages min values */
843struct ctl_table;
844int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
845 void __user *, size_t *, loff_t *);
846extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
847int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
848 void __user *, size_t *, loff_t *);
849int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
850 void __user *, size_t *, loff_t *);
851int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
852 void __user *, size_t *, loff_t *);
853int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
854 void __user *, size_t *, loff_t *);
855
856extern int numa_zonelist_order_handler(struct ctl_table *, int,
857 void __user *, size_t *, loff_t *);
858extern char numa_zonelist_order[];
859#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
860
861#ifndef CONFIG_NEED_MULTIPLE_NODES
862
863extern struct pglist_data contig_page_data;
864#define NODE_DATA(nid) (&contig_page_data)
865#define NODE_MEM_MAP(nid) mem_map
866
867#else /* CONFIG_NEED_MULTIPLE_NODES */
868
869#include <asm/mmzone.h>
870
871#endif /* !CONFIG_NEED_MULTIPLE_NODES */
872
873extern struct pglist_data *first_online_pgdat(void);
874extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
875extern struct zone *next_zone(struct zone *zone);
876
877/**
878 * for_each_online_pgdat - helper macro to iterate over all online nodes
879 * @pgdat - pointer to a pg_data_t variable
880 */
881#define for_each_online_pgdat(pgdat) \
882 for (pgdat = first_online_pgdat(); \
883 pgdat; \
884 pgdat = next_online_pgdat(pgdat))
885/**
886 * for_each_zone - helper macro to iterate over all memory zones
887 * @zone - pointer to struct zone variable
888 *
889 * The user only needs to declare the zone variable, for_each_zone
890 * fills it in.
891 */
892#define for_each_zone(zone) \
893 for (zone = (first_online_pgdat())->node_zones; \
894 zone; \
895 zone = next_zone(zone))
896
897#define for_each_populated_zone(zone) \
898 for (zone = (first_online_pgdat())->node_zones; \
899 zone; \
900 zone = next_zone(zone)) \
901 if (!populated_zone(zone)) \
902 ; /* do nothing */ \
903 else
904
905static inline struct zone *zonelist_zone(struct zoneref *zoneref)
906{
907 return zoneref->zone;
908}
909
910static inline int zonelist_zone_idx(struct zoneref *zoneref)
911{
912 return zoneref->zone_idx;
913}
914
915static inline int zonelist_node_idx(struct zoneref *zoneref)
916{
917#ifdef CONFIG_NUMA
918 /* zone_to_nid not available in this context */
919 return zoneref->zone->node;
920#else
921 return 0;
922#endif /* CONFIG_NUMA */
923}
924
925/**
926 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
927 * @z - The cursor used as a starting point for the search
928 * @highest_zoneidx - The zone index of the highest zone to return
929 * @nodes - An optional nodemask to filter the zonelist with
930 * @zone - The first suitable zone found is returned via this parameter
931 *
932 * This function returns the next zone at or below a given zone index that is
933 * within the allowed nodemask using a cursor as the starting point for the
934 * search. The zoneref returned is a cursor that represents the current zone
935 * being examined. It should be advanced by one before calling
936 * next_zones_zonelist again.
937 */
938struct zoneref *next_zones_zonelist(struct zoneref *z,
939 enum zone_type highest_zoneidx,
940 nodemask_t *nodes,
941 struct zone **zone);
942
943/**
944 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
945 * @zonelist - The zonelist to search for a suitable zone
946 * @highest_zoneidx - The zone index of the highest zone to return
947 * @nodes - An optional nodemask to filter the zonelist with
948 * @zone - The first suitable zone found is returned via this parameter
949 *
950 * This function returns the first zone at or below a given zone index that is
951 * within the allowed nodemask. The zoneref returned is a cursor that can be
952 * used to iterate the zonelist with next_zones_zonelist by advancing it by
953 * one before calling.
954 */
955static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
956 enum zone_type highest_zoneidx,
957 nodemask_t *nodes,
958 struct zone **zone)
959{
960 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
961 zone);
962}
963
964/**
965 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
966 * @zone - The current zone in the iterator
967 * @z - The current pointer within zonelist->zones being iterated
968 * @zlist - The zonelist being iterated
969 * @highidx - The zone index of the highest zone to return
970 * @nodemask - Nodemask allowed by the allocator
971 *
972 * This iterator iterates though all zones at or below a given zone index and
973 * within a given nodemask
974 */
975#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
976 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
977 zone; \
978 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
979
980/**
981 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
982 * @zone - The current zone in the iterator
983 * @z - The current pointer within zonelist->zones being iterated
984 * @zlist - The zonelist being iterated
985 * @highidx - The zone index of the highest zone to return
986 *
987 * This iterator iterates though all zones at or below a given zone index.
988 */
989#define for_each_zone_zonelist(zone, z, zlist, highidx) \
990 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
991
992#ifdef CONFIG_SPARSEMEM
993#include <asm/sparsemem.h>
994#endif
995
996#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
997 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
998static inline unsigned long early_pfn_to_nid(unsigned long pfn)
999{
1000 return 0;
1001}
1002#endif
1003
1004#ifdef CONFIG_FLATMEM
1005#define pfn_to_nid(pfn) (0)
1006#endif
1007
1008#ifdef CONFIG_SPARSEMEM
1009
1010/*
1011 * SECTION_SHIFT #bits space required to store a section #
1012 *
1013 * PA_SECTION_SHIFT physical address to/from section number
1014 * PFN_SECTION_SHIFT pfn to/from section number
1015 */
1016#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
1017
1018#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1019#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1020
1021#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1022
1023#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1024#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1025
1026#define SECTION_BLOCKFLAGS_BITS \
1027 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1028
1029#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1030#error Allocator MAX_ORDER exceeds SECTION_SIZE
1031#endif
1032
1033#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1034#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1035
1036#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1037#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1038
1039struct page;
1040struct page_cgroup;
1041struct mem_section {
1042 /*
1043 * This is, logically, a pointer to an array of struct
1044 * pages. However, it is stored with some other magic.
1045 * (see sparse.c::sparse_init_one_section())
1046 *
1047 * Additionally during early boot we encode node id of
1048 * the location of the section here to guide allocation.
1049 * (see sparse.c::memory_present())
1050 *
1051 * Making it a UL at least makes someone do a cast
1052 * before using it wrong.
1053 */
1054 unsigned long section_mem_map;
1055
1056 /* See declaration of similar field in struct zone */
1057 unsigned long *pageblock_flags;
1058#ifdef CONFIG_MEMCG
1059 /*
1060 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1061 * section. (see memcontrol.h/page_cgroup.h about this.)
1062 */
1063 struct page_cgroup *page_cgroup;
1064 unsigned long pad;
1065#endif
1066};
1067
1068#ifdef CONFIG_SPARSEMEM_EXTREME
1069#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1070#else
1071#define SECTIONS_PER_ROOT 1
1072#endif
1073
1074#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1075#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1076#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1077
1078#ifdef CONFIG_SPARSEMEM_EXTREME
1079extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1080#else
1081extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1082#endif
1083
1084static inline struct mem_section *__nr_to_section(unsigned long nr)
1085{
1086 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1087 return NULL;
1088 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1089}
1090extern int __section_nr(struct mem_section* ms);
1091extern unsigned long usemap_size(void);
1092
1093/*
1094 * We use the lower bits of the mem_map pointer to store
1095 * a little bit of information. There should be at least
1096 * 3 bits here due to 32-bit alignment.
1097 */
1098#define SECTION_MARKED_PRESENT (1UL<<0)
1099#define SECTION_HAS_MEM_MAP (1UL<<1)
1100#define SECTION_MAP_LAST_BIT (1UL<<2)
1101#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1102#define SECTION_NID_SHIFT 2
1103
1104static inline struct page *__section_mem_map_addr(struct mem_section *section)
1105{
1106 unsigned long map = section->section_mem_map;
1107 map &= SECTION_MAP_MASK;
1108 return (struct page *)map;
1109}
1110
1111static inline int present_section(struct mem_section *section)
1112{
1113 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1114}
1115
1116static inline int present_section_nr(unsigned long nr)
1117{
1118 return present_section(__nr_to_section(nr));
1119}
1120
1121static inline int valid_section(struct mem_section *section)
1122{
1123 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1124}
1125
1126static inline int valid_section_nr(unsigned long nr)
1127{
1128 return valid_section(__nr_to_section(nr));
1129}
1130
1131static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1132{
1133 return __nr_to_section(pfn_to_section_nr(pfn));
1134}
1135
1136#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1137static inline int pfn_valid(unsigned long pfn)
1138{
1139 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1140 return 0;
1141 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1142}
1143#endif
1144
1145static inline int pfn_present(unsigned long pfn)
1146{
1147 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1148 return 0;
1149 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1150}
1151
1152/*
1153 * These are _only_ used during initialisation, therefore they
1154 * can use __initdata ... They could have names to indicate
1155 * this restriction.
1156 */
1157#ifdef CONFIG_NUMA
1158#define pfn_to_nid(pfn) \
1159({ \
1160 unsigned long __pfn_to_nid_pfn = (pfn); \
1161 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1162})
1163#else
1164#define pfn_to_nid(pfn) (0)
1165#endif
1166
1167#define early_pfn_valid(pfn) pfn_valid(pfn)
1168void sparse_init(void);
1169#else
1170#define sparse_init() do {} while (0)
1171#define sparse_index_init(_sec, _nid) do {} while (0)
1172#endif /* CONFIG_SPARSEMEM */
1173
1174#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1175bool early_pfn_in_nid(unsigned long pfn, int nid);
1176#else
1177#define early_pfn_in_nid(pfn, nid) (1)
1178#endif
1179
1180#ifndef early_pfn_valid
1181#define early_pfn_valid(pfn) (1)
1182#endif
1183
1184void memory_present(int nid, unsigned long start, unsigned long end);
1185unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1186
1187/*
1188 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1189 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1190 * pfn_valid_within() should be used in this case; we optimise this away
1191 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1192 */
1193#ifdef CONFIG_HOLES_IN_ZONE
1194#define pfn_valid_within(pfn) pfn_valid(pfn)
1195#else
1196#define pfn_valid_within(pfn) (1)
1197#endif
1198
1199#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1200/*
1201 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1202 * associated with it or not. In FLATMEM, it is expected that holes always
1203 * have valid memmap as long as there is valid PFNs either side of the hole.
1204 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1205 * entire section.
1206 *
1207 * However, an ARM, and maybe other embedded architectures in the future
1208 * free memmap backing holes to save memory on the assumption the memmap is
1209 * never used. The page_zone linkages are then broken even though pfn_valid()
1210 * returns true. A walker of the full memmap must then do this additional
1211 * check to ensure the memmap they are looking at is sane by making sure
1212 * the zone and PFN linkages are still valid. This is expensive, but walkers
1213 * of the full memmap are extremely rare.
1214 */
1215int memmap_valid_within(unsigned long pfn,
1216 struct page *page, struct zone *zone);
1217#else
1218static inline int memmap_valid_within(unsigned long pfn,
1219 struct page *page, struct zone *zone)
1220{
1221 return 1;
1222}
1223#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1224
1225#endif /* !__GENERATING_BOUNDS.H */
1226#endif /* !__ASSEMBLY__ */
1227#endif /* _LINUX_MMZONE_H */
This page took 0.029531 seconds and 5 git commands to generate.