Merge remote-tracking branch 'asoc/topic/rcar' into asoc-next
[deliverable/linux.git] / include / linux / pagemap.h
... / ...
CommitLineData
1#ifndef _LINUX_PAGEMAP_H
2#define _LINUX_PAGEMAP_H
3
4/*
5 * Copyright 1995 Linus Torvalds
6 */
7#include <linux/mm.h>
8#include <linux/fs.h>
9#include <linux/list.h>
10#include <linux/highmem.h>
11#include <linux/compiler.h>
12#include <asm/uaccess.h>
13#include <linux/gfp.h>
14#include <linux/bitops.h>
15#include <linux/hardirq.h> /* for in_interrupt() */
16#include <linux/hugetlb_inline.h>
17
18/*
19 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
20 * allocation mode flags.
21 */
22enum mapping_flags {
23 AS_EIO = __GFP_BITS_SHIFT + 0, /* IO error on async write */
24 AS_ENOSPC = __GFP_BITS_SHIFT + 1, /* ENOSPC on async write */
25 AS_MM_ALL_LOCKS = __GFP_BITS_SHIFT + 2, /* under mm_take_all_locks() */
26 AS_UNEVICTABLE = __GFP_BITS_SHIFT + 3, /* e.g., ramdisk, SHM_LOCK */
27 AS_EXITING = __GFP_BITS_SHIFT + 4, /* final truncate in progress */
28};
29
30static inline void mapping_set_error(struct address_space *mapping, int error)
31{
32 if (unlikely(error)) {
33 if (error == -ENOSPC)
34 set_bit(AS_ENOSPC, &mapping->flags);
35 else
36 set_bit(AS_EIO, &mapping->flags);
37 }
38}
39
40static inline void mapping_set_unevictable(struct address_space *mapping)
41{
42 set_bit(AS_UNEVICTABLE, &mapping->flags);
43}
44
45static inline void mapping_clear_unevictable(struct address_space *mapping)
46{
47 clear_bit(AS_UNEVICTABLE, &mapping->flags);
48}
49
50static inline int mapping_unevictable(struct address_space *mapping)
51{
52 if (mapping)
53 return test_bit(AS_UNEVICTABLE, &mapping->flags);
54 return !!mapping;
55}
56
57static inline void mapping_set_exiting(struct address_space *mapping)
58{
59 set_bit(AS_EXITING, &mapping->flags);
60}
61
62static inline int mapping_exiting(struct address_space *mapping)
63{
64 return test_bit(AS_EXITING, &mapping->flags);
65}
66
67static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
68{
69 return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
70}
71
72/* Restricts the given gfp_mask to what the mapping allows. */
73static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
74 gfp_t gfp_mask)
75{
76 return mapping_gfp_mask(mapping) & gfp_mask;
77}
78
79/*
80 * This is non-atomic. Only to be used before the mapping is activated.
81 * Probably needs a barrier...
82 */
83static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
84{
85 m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
86 (__force unsigned long)mask;
87}
88
89void release_pages(struct page **pages, int nr, bool cold);
90
91/*
92 * speculatively take a reference to a page.
93 * If the page is free (_count == 0), then _count is untouched, and 0
94 * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
95 *
96 * This function must be called inside the same rcu_read_lock() section as has
97 * been used to lookup the page in the pagecache radix-tree (or page table):
98 * this allows allocators to use a synchronize_rcu() to stabilize _count.
99 *
100 * Unless an RCU grace period has passed, the count of all pages coming out
101 * of the allocator must be considered unstable. page_count may return higher
102 * than expected, and put_page must be able to do the right thing when the
103 * page has been finished with, no matter what it is subsequently allocated
104 * for (because put_page is what is used here to drop an invalid speculative
105 * reference).
106 *
107 * This is the interesting part of the lockless pagecache (and lockless
108 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
109 * has the following pattern:
110 * 1. find page in radix tree
111 * 2. conditionally increment refcount
112 * 3. check the page is still in pagecache (if no, goto 1)
113 *
114 * Remove-side that cares about stability of _count (eg. reclaim) has the
115 * following (with tree_lock held for write):
116 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
117 * B. remove page from pagecache
118 * C. free the page
119 *
120 * There are 2 critical interleavings that matter:
121 * - 2 runs before A: in this case, A sees elevated refcount and bails out
122 * - A runs before 2: in this case, 2 sees zero refcount and retries;
123 * subsequently, B will complete and 1 will find no page, causing the
124 * lookup to return NULL.
125 *
126 * It is possible that between 1 and 2, the page is removed then the exact same
127 * page is inserted into the same position in pagecache. That's OK: the
128 * old find_get_page using tree_lock could equally have run before or after
129 * such a re-insertion, depending on order that locks are granted.
130 *
131 * Lookups racing against pagecache insertion isn't a big problem: either 1
132 * will find the page or it will not. Likewise, the old find_get_page could run
133 * either before the insertion or afterwards, depending on timing.
134 */
135static inline int page_cache_get_speculative(struct page *page)
136{
137 VM_BUG_ON(in_interrupt());
138
139#ifdef CONFIG_TINY_RCU
140# ifdef CONFIG_PREEMPT_COUNT
141 VM_BUG_ON(!in_atomic());
142# endif
143 /*
144 * Preempt must be disabled here - we rely on rcu_read_lock doing
145 * this for us.
146 *
147 * Pagecache won't be truncated from interrupt context, so if we have
148 * found a page in the radix tree here, we have pinned its refcount by
149 * disabling preempt, and hence no need for the "speculative get" that
150 * SMP requires.
151 */
152 VM_BUG_ON_PAGE(page_count(page) == 0, page);
153 page_ref_inc(page);
154
155#else
156 if (unlikely(!get_page_unless_zero(page))) {
157 /*
158 * Either the page has been freed, or will be freed.
159 * In either case, retry here and the caller should
160 * do the right thing (see comments above).
161 */
162 return 0;
163 }
164#endif
165 VM_BUG_ON_PAGE(PageTail(page), page);
166
167 return 1;
168}
169
170/*
171 * Same as above, but add instead of inc (could just be merged)
172 */
173static inline int page_cache_add_speculative(struct page *page, int count)
174{
175 VM_BUG_ON(in_interrupt());
176
177#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
178# ifdef CONFIG_PREEMPT_COUNT
179 VM_BUG_ON(!in_atomic());
180# endif
181 VM_BUG_ON_PAGE(page_count(page) == 0, page);
182 page_ref_add(page, count);
183
184#else
185 if (unlikely(!page_ref_add_unless(page, count, 0)))
186 return 0;
187#endif
188 VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page);
189
190 return 1;
191}
192
193#ifdef CONFIG_NUMA
194extern struct page *__page_cache_alloc(gfp_t gfp);
195#else
196static inline struct page *__page_cache_alloc(gfp_t gfp)
197{
198 return alloc_pages(gfp, 0);
199}
200#endif
201
202static inline struct page *page_cache_alloc(struct address_space *x)
203{
204 return __page_cache_alloc(mapping_gfp_mask(x));
205}
206
207static inline struct page *page_cache_alloc_cold(struct address_space *x)
208{
209 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
210}
211
212static inline struct page *page_cache_alloc_readahead(struct address_space *x)
213{
214 return __page_cache_alloc(mapping_gfp_mask(x) |
215 __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN);
216}
217
218typedef int filler_t(void *, struct page *);
219
220pgoff_t page_cache_next_hole(struct address_space *mapping,
221 pgoff_t index, unsigned long max_scan);
222pgoff_t page_cache_prev_hole(struct address_space *mapping,
223 pgoff_t index, unsigned long max_scan);
224
225#define FGP_ACCESSED 0x00000001
226#define FGP_LOCK 0x00000002
227#define FGP_CREAT 0x00000004
228#define FGP_WRITE 0x00000008
229#define FGP_NOFS 0x00000010
230#define FGP_NOWAIT 0x00000020
231
232struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
233 int fgp_flags, gfp_t cache_gfp_mask);
234
235/**
236 * find_get_page - find and get a page reference
237 * @mapping: the address_space to search
238 * @offset: the page index
239 *
240 * Looks up the page cache slot at @mapping & @offset. If there is a
241 * page cache page, it is returned with an increased refcount.
242 *
243 * Otherwise, %NULL is returned.
244 */
245static inline struct page *find_get_page(struct address_space *mapping,
246 pgoff_t offset)
247{
248 return pagecache_get_page(mapping, offset, 0, 0);
249}
250
251static inline struct page *find_get_page_flags(struct address_space *mapping,
252 pgoff_t offset, int fgp_flags)
253{
254 return pagecache_get_page(mapping, offset, fgp_flags, 0);
255}
256
257/**
258 * find_lock_page - locate, pin and lock a pagecache page
259 * pagecache_get_page - find and get a page reference
260 * @mapping: the address_space to search
261 * @offset: the page index
262 *
263 * Looks up the page cache slot at @mapping & @offset. If there is a
264 * page cache page, it is returned locked and with an increased
265 * refcount.
266 *
267 * Otherwise, %NULL is returned.
268 *
269 * find_lock_page() may sleep.
270 */
271static inline struct page *find_lock_page(struct address_space *mapping,
272 pgoff_t offset)
273{
274 return pagecache_get_page(mapping, offset, FGP_LOCK, 0);
275}
276
277/**
278 * find_or_create_page - locate or add a pagecache page
279 * @mapping: the page's address_space
280 * @index: the page's index into the mapping
281 * @gfp_mask: page allocation mode
282 *
283 * Looks up the page cache slot at @mapping & @offset. If there is a
284 * page cache page, it is returned locked and with an increased
285 * refcount.
286 *
287 * If the page is not present, a new page is allocated using @gfp_mask
288 * and added to the page cache and the VM's LRU list. The page is
289 * returned locked and with an increased refcount.
290 *
291 * On memory exhaustion, %NULL is returned.
292 *
293 * find_or_create_page() may sleep, even if @gfp_flags specifies an
294 * atomic allocation!
295 */
296static inline struct page *find_or_create_page(struct address_space *mapping,
297 pgoff_t offset, gfp_t gfp_mask)
298{
299 return pagecache_get_page(mapping, offset,
300 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
301 gfp_mask);
302}
303
304/**
305 * grab_cache_page_nowait - returns locked page at given index in given cache
306 * @mapping: target address_space
307 * @index: the page index
308 *
309 * Same as grab_cache_page(), but do not wait if the page is unavailable.
310 * This is intended for speculative data generators, where the data can
311 * be regenerated if the page couldn't be grabbed. This routine should
312 * be safe to call while holding the lock for another page.
313 *
314 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
315 * and deadlock against the caller's locked page.
316 */
317static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
318 pgoff_t index)
319{
320 return pagecache_get_page(mapping, index,
321 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
322 mapping_gfp_mask(mapping));
323}
324
325struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
326struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
327unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
328 unsigned int nr_entries, struct page **entries,
329 pgoff_t *indices);
330unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
331 unsigned int nr_pages, struct page **pages);
332unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
333 unsigned int nr_pages, struct page **pages);
334unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
335 int tag, unsigned int nr_pages, struct page **pages);
336unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
337 int tag, unsigned int nr_entries,
338 struct page **entries, pgoff_t *indices);
339
340struct page *grab_cache_page_write_begin(struct address_space *mapping,
341 pgoff_t index, unsigned flags);
342
343/*
344 * Returns locked page at given index in given cache, creating it if needed.
345 */
346static inline struct page *grab_cache_page(struct address_space *mapping,
347 pgoff_t index)
348{
349 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
350}
351
352extern struct page * read_cache_page(struct address_space *mapping,
353 pgoff_t index, filler_t *filler, void *data);
354extern struct page * read_cache_page_gfp(struct address_space *mapping,
355 pgoff_t index, gfp_t gfp_mask);
356extern int read_cache_pages(struct address_space *mapping,
357 struct list_head *pages, filler_t *filler, void *data);
358
359static inline struct page *read_mapping_page(struct address_space *mapping,
360 pgoff_t index, void *data)
361{
362 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
363 return read_cache_page(mapping, index, filler, data);
364}
365
366/*
367 * Get the offset in PAGE_SIZE.
368 * (TODO: hugepage should have ->index in PAGE_SIZE)
369 */
370static inline pgoff_t page_to_pgoff(struct page *page)
371{
372 pgoff_t pgoff;
373
374 if (unlikely(PageHeadHuge(page)))
375 return page->index << compound_order(page);
376
377 if (likely(!PageTransTail(page)))
378 return page->index;
379
380 /*
381 * We don't initialize ->index for tail pages: calculate based on
382 * head page
383 */
384 pgoff = compound_head(page)->index;
385 pgoff += page - compound_head(page);
386 return pgoff;
387}
388
389/*
390 * Return byte-offset into filesystem object for page.
391 */
392static inline loff_t page_offset(struct page *page)
393{
394 return ((loff_t)page->index) << PAGE_SHIFT;
395}
396
397static inline loff_t page_file_offset(struct page *page)
398{
399 return ((loff_t)page_file_index(page)) << PAGE_SHIFT;
400}
401
402extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
403 unsigned long address);
404
405static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
406 unsigned long address)
407{
408 pgoff_t pgoff;
409 if (unlikely(is_vm_hugetlb_page(vma)))
410 return linear_hugepage_index(vma, address);
411 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
412 pgoff += vma->vm_pgoff;
413 return pgoff;
414}
415
416extern void __lock_page(struct page *page);
417extern int __lock_page_killable(struct page *page);
418extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
419 unsigned int flags);
420extern void unlock_page(struct page *page);
421
422static inline int trylock_page(struct page *page)
423{
424 page = compound_head(page);
425 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
426}
427
428/*
429 * lock_page may only be called if we have the page's inode pinned.
430 */
431static inline void lock_page(struct page *page)
432{
433 might_sleep();
434 if (!trylock_page(page))
435 __lock_page(page);
436}
437
438/*
439 * lock_page_killable is like lock_page but can be interrupted by fatal
440 * signals. It returns 0 if it locked the page and -EINTR if it was
441 * killed while waiting.
442 */
443static inline int lock_page_killable(struct page *page)
444{
445 might_sleep();
446 if (!trylock_page(page))
447 return __lock_page_killable(page);
448 return 0;
449}
450
451/*
452 * lock_page_or_retry - Lock the page, unless this would block and the
453 * caller indicated that it can handle a retry.
454 *
455 * Return value and mmap_sem implications depend on flags; see
456 * __lock_page_or_retry().
457 */
458static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
459 unsigned int flags)
460{
461 might_sleep();
462 return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
463}
464
465/*
466 * This is exported only for wait_on_page_locked/wait_on_page_writeback,
467 * and for filesystems which need to wait on PG_private.
468 */
469extern void wait_on_page_bit(struct page *page, int bit_nr);
470
471extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
472extern int wait_on_page_bit_killable_timeout(struct page *page,
473 int bit_nr, unsigned long timeout);
474
475static inline int wait_on_page_locked_killable(struct page *page)
476{
477 if (!PageLocked(page))
478 return 0;
479 return wait_on_page_bit_killable(compound_head(page), PG_locked);
480}
481
482extern wait_queue_head_t *page_waitqueue(struct page *page);
483static inline void wake_up_page(struct page *page, int bit)
484{
485 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
486}
487
488/*
489 * Wait for a page to be unlocked.
490 *
491 * This must be called with the caller "holding" the page,
492 * ie with increased "page->count" so that the page won't
493 * go away during the wait..
494 */
495static inline void wait_on_page_locked(struct page *page)
496{
497 if (PageLocked(page))
498 wait_on_page_bit(compound_head(page), PG_locked);
499}
500
501/*
502 * Wait for a page to complete writeback
503 */
504static inline void wait_on_page_writeback(struct page *page)
505{
506 if (PageWriteback(page))
507 wait_on_page_bit(page, PG_writeback);
508}
509
510extern void end_page_writeback(struct page *page);
511void wait_for_stable_page(struct page *page);
512
513void page_endio(struct page *page, int rw, int err);
514
515/*
516 * Add an arbitrary waiter to a page's wait queue
517 */
518extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
519
520/*
521 * Fault a userspace page into pagetables. Return non-zero on a fault.
522 *
523 * This assumes that two userspace pages are always sufficient.
524 */
525static inline int fault_in_pages_writeable(char __user *uaddr, int size)
526{
527 int ret;
528
529 if (unlikely(size == 0))
530 return 0;
531
532 /*
533 * Writing zeroes into userspace here is OK, because we know that if
534 * the zero gets there, we'll be overwriting it.
535 */
536 ret = __put_user(0, uaddr);
537 if (ret == 0) {
538 char __user *end = uaddr + size - 1;
539
540 /*
541 * If the page was already mapped, this will get a cache miss
542 * for sure, so try to avoid doing it.
543 */
544 if (((unsigned long)uaddr & PAGE_MASK) !=
545 ((unsigned long)end & PAGE_MASK))
546 ret = __put_user(0, end);
547 }
548 return ret;
549}
550
551static inline int fault_in_pages_readable(const char __user *uaddr, int size)
552{
553 volatile char c;
554 int ret;
555
556 if (unlikely(size == 0))
557 return 0;
558
559 ret = __get_user(c, uaddr);
560 if (ret == 0) {
561 const char __user *end = uaddr + size - 1;
562
563 if (((unsigned long)uaddr & PAGE_MASK) !=
564 ((unsigned long)end & PAGE_MASK)) {
565 ret = __get_user(c, end);
566 (void)c;
567 }
568 }
569 return ret;
570}
571
572/*
573 * Multipage variants of the above prefault helpers, useful if more than
574 * PAGE_SIZE of data needs to be prefaulted. These are separate from the above
575 * functions (which only handle up to PAGE_SIZE) to avoid clobbering the
576 * filemap.c hotpaths.
577 */
578static inline int fault_in_multipages_writeable(char __user *uaddr, int size)
579{
580 int ret = 0;
581 char __user *end = uaddr + size - 1;
582
583 if (unlikely(size == 0))
584 return ret;
585
586 /*
587 * Writing zeroes into userspace here is OK, because we know that if
588 * the zero gets there, we'll be overwriting it.
589 */
590 while (uaddr <= end) {
591 ret = __put_user(0, uaddr);
592 if (ret != 0)
593 return ret;
594 uaddr += PAGE_SIZE;
595 }
596
597 /* Check whether the range spilled into the next page. */
598 if (((unsigned long)uaddr & PAGE_MASK) ==
599 ((unsigned long)end & PAGE_MASK))
600 ret = __put_user(0, end);
601
602 return ret;
603}
604
605static inline int fault_in_multipages_readable(const char __user *uaddr,
606 int size)
607{
608 volatile char c;
609 int ret = 0;
610 const char __user *end = uaddr + size - 1;
611
612 if (unlikely(size == 0))
613 return ret;
614
615 while (uaddr <= end) {
616 ret = __get_user(c, uaddr);
617 if (ret != 0)
618 return ret;
619 uaddr += PAGE_SIZE;
620 }
621
622 /* Check whether the range spilled into the next page. */
623 if (((unsigned long)uaddr & PAGE_MASK) ==
624 ((unsigned long)end & PAGE_MASK)) {
625 ret = __get_user(c, end);
626 (void)c;
627 }
628
629 return ret;
630}
631
632int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
633 pgoff_t index, gfp_t gfp_mask);
634int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
635 pgoff_t index, gfp_t gfp_mask);
636extern void delete_from_page_cache(struct page *page);
637extern void __delete_from_page_cache(struct page *page, void *shadow);
638int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
639
640/*
641 * Like add_to_page_cache_locked, but used to add newly allocated pages:
642 * the page is new, so we can just run __SetPageLocked() against it.
643 */
644static inline int add_to_page_cache(struct page *page,
645 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
646{
647 int error;
648
649 __SetPageLocked(page);
650 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
651 if (unlikely(error))
652 __ClearPageLocked(page);
653 return error;
654}
655
656static inline unsigned long dir_pages(struct inode *inode)
657{
658 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
659 PAGE_SHIFT;
660}
661
662#endif /* _LINUX_PAGEMAP_H */
This page took 0.026656 seconds and 5 git commands to generate.