Merge commit 'v2.6.34-rc1' into perf/urgent
[deliverable/linux.git] / include / linux / perf_event.h
... / ...
CommitLineData
1/*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14#ifndef _LINUX_PERF_EVENT_H
15#define _LINUX_PERF_EVENT_H
16
17#include <linux/types.h>
18#include <linux/ioctl.h>
19#include <asm/byteorder.h>
20
21/*
22 * User-space ABI bits:
23 */
24
25/*
26 * attr.type
27 */
28enum perf_type_id {
29 PERF_TYPE_HARDWARE = 0,
30 PERF_TYPE_SOFTWARE = 1,
31 PERF_TYPE_TRACEPOINT = 2,
32 PERF_TYPE_HW_CACHE = 3,
33 PERF_TYPE_RAW = 4,
34 PERF_TYPE_BREAKPOINT = 5,
35
36 PERF_TYPE_MAX, /* non-ABI */
37};
38
39/*
40 * Generalized performance event event_id types, used by the
41 * attr.event_id parameter of the sys_perf_event_open()
42 * syscall:
43 */
44enum perf_hw_id {
45 /*
46 * Common hardware events, generalized by the kernel:
47 */
48 PERF_COUNT_HW_CPU_CYCLES = 0,
49 PERF_COUNT_HW_INSTRUCTIONS = 1,
50 PERF_COUNT_HW_CACHE_REFERENCES = 2,
51 PERF_COUNT_HW_CACHE_MISSES = 3,
52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
53 PERF_COUNT_HW_BRANCH_MISSES = 5,
54 PERF_COUNT_HW_BUS_CYCLES = 6,
55
56 PERF_COUNT_HW_MAX, /* non-ABI */
57};
58
59/*
60 * Generalized hardware cache events:
61 *
62 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
63 * { read, write, prefetch } x
64 * { accesses, misses }
65 */
66enum perf_hw_cache_id {
67 PERF_COUNT_HW_CACHE_L1D = 0,
68 PERF_COUNT_HW_CACHE_L1I = 1,
69 PERF_COUNT_HW_CACHE_LL = 2,
70 PERF_COUNT_HW_CACHE_DTLB = 3,
71 PERF_COUNT_HW_CACHE_ITLB = 4,
72 PERF_COUNT_HW_CACHE_BPU = 5,
73
74 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
75};
76
77enum perf_hw_cache_op_id {
78 PERF_COUNT_HW_CACHE_OP_READ = 0,
79 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
80 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
81
82 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
83};
84
85enum perf_hw_cache_op_result_id {
86 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
87 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
88
89 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
90};
91
92/*
93 * Special "software" events provided by the kernel, even if the hardware
94 * does not support performance events. These events measure various
95 * physical and sw events of the kernel (and allow the profiling of them as
96 * well):
97 */
98enum perf_sw_ids {
99 PERF_COUNT_SW_CPU_CLOCK = 0,
100 PERF_COUNT_SW_TASK_CLOCK = 1,
101 PERF_COUNT_SW_PAGE_FAULTS = 2,
102 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
103 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
104 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
105 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
106 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
107 PERF_COUNT_SW_EMULATION_FAULTS = 8,
108
109 PERF_COUNT_SW_MAX, /* non-ABI */
110};
111
112/*
113 * Bits that can be set in attr.sample_type to request information
114 * in the overflow packets.
115 */
116enum perf_event_sample_format {
117 PERF_SAMPLE_IP = 1U << 0,
118 PERF_SAMPLE_TID = 1U << 1,
119 PERF_SAMPLE_TIME = 1U << 2,
120 PERF_SAMPLE_ADDR = 1U << 3,
121 PERF_SAMPLE_READ = 1U << 4,
122 PERF_SAMPLE_CALLCHAIN = 1U << 5,
123 PERF_SAMPLE_ID = 1U << 6,
124 PERF_SAMPLE_CPU = 1U << 7,
125 PERF_SAMPLE_PERIOD = 1U << 8,
126 PERF_SAMPLE_STREAM_ID = 1U << 9,
127 PERF_SAMPLE_RAW = 1U << 10,
128
129 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */
130};
131
132/*
133 * The format of the data returned by read() on a perf event fd,
134 * as specified by attr.read_format:
135 *
136 * struct read_format {
137 * { u64 value;
138 * { u64 time_enabled; } && PERF_FORMAT_ENABLED
139 * { u64 time_running; } && PERF_FORMAT_RUNNING
140 * { u64 id; } && PERF_FORMAT_ID
141 * } && !PERF_FORMAT_GROUP
142 *
143 * { u64 nr;
144 * { u64 time_enabled; } && PERF_FORMAT_ENABLED
145 * { u64 time_running; } && PERF_FORMAT_RUNNING
146 * { u64 value;
147 * { u64 id; } && PERF_FORMAT_ID
148 * } cntr[nr];
149 * } && PERF_FORMAT_GROUP
150 * };
151 */
152enum perf_event_read_format {
153 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
154 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
155 PERF_FORMAT_ID = 1U << 2,
156 PERF_FORMAT_GROUP = 1U << 3,
157
158 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
159};
160
161#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
162
163/*
164 * Hardware event_id to monitor via a performance monitoring event:
165 */
166struct perf_event_attr {
167
168 /*
169 * Major type: hardware/software/tracepoint/etc.
170 */
171 __u32 type;
172
173 /*
174 * Size of the attr structure, for fwd/bwd compat.
175 */
176 __u32 size;
177
178 /*
179 * Type specific configuration information.
180 */
181 __u64 config;
182
183 union {
184 __u64 sample_period;
185 __u64 sample_freq;
186 };
187
188 __u64 sample_type;
189 __u64 read_format;
190
191 __u64 disabled : 1, /* off by default */
192 inherit : 1, /* children inherit it */
193 pinned : 1, /* must always be on PMU */
194 exclusive : 1, /* only group on PMU */
195 exclude_user : 1, /* don't count user */
196 exclude_kernel : 1, /* ditto kernel */
197 exclude_hv : 1, /* ditto hypervisor */
198 exclude_idle : 1, /* don't count when idle */
199 mmap : 1, /* include mmap data */
200 comm : 1, /* include comm data */
201 freq : 1, /* use freq, not period */
202 inherit_stat : 1, /* per task counts */
203 enable_on_exec : 1, /* next exec enables */
204 task : 1, /* trace fork/exit */
205 watermark : 1, /* wakeup_watermark */
206
207 __reserved_1 : 49;
208
209 union {
210 __u32 wakeup_events; /* wakeup every n events */
211 __u32 wakeup_watermark; /* bytes before wakeup */
212 };
213
214 __u32 bp_type;
215 __u64 bp_addr;
216 __u64 bp_len;
217};
218
219/*
220 * Ioctls that can be done on a perf event fd:
221 */
222#define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
223#define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
224#define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
225#define PERF_EVENT_IOC_RESET _IO ('$', 3)
226#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
227#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
228#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
229
230enum perf_event_ioc_flags {
231 PERF_IOC_FLAG_GROUP = 1U << 0,
232};
233
234/*
235 * Structure of the page that can be mapped via mmap
236 */
237struct perf_event_mmap_page {
238 __u32 version; /* version number of this structure */
239 __u32 compat_version; /* lowest version this is compat with */
240
241 /*
242 * Bits needed to read the hw events in user-space.
243 *
244 * u32 seq;
245 * s64 count;
246 *
247 * do {
248 * seq = pc->lock;
249 *
250 * barrier()
251 * if (pc->index) {
252 * count = pmc_read(pc->index - 1);
253 * count += pc->offset;
254 * } else
255 * goto regular_read;
256 *
257 * barrier();
258 * } while (pc->lock != seq);
259 *
260 * NOTE: for obvious reason this only works on self-monitoring
261 * processes.
262 */
263 __u32 lock; /* seqlock for synchronization */
264 __u32 index; /* hardware event identifier */
265 __s64 offset; /* add to hardware event value */
266 __u64 time_enabled; /* time event active */
267 __u64 time_running; /* time event on cpu */
268
269 /*
270 * Hole for extension of the self monitor capabilities
271 */
272
273 __u64 __reserved[123]; /* align to 1k */
274
275 /*
276 * Control data for the mmap() data buffer.
277 *
278 * User-space reading the @data_head value should issue an rmb(), on
279 * SMP capable platforms, after reading this value -- see
280 * perf_event_wakeup().
281 *
282 * When the mapping is PROT_WRITE the @data_tail value should be
283 * written by userspace to reflect the last read data. In this case
284 * the kernel will not over-write unread data.
285 */
286 __u64 data_head; /* head in the data section */
287 __u64 data_tail; /* user-space written tail */
288};
289
290#define PERF_RECORD_MISC_CPUMODE_MASK (3 << 0)
291#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
292#define PERF_RECORD_MISC_KERNEL (1 << 0)
293#define PERF_RECORD_MISC_USER (2 << 0)
294#define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
295
296struct perf_event_header {
297 __u32 type;
298 __u16 misc;
299 __u16 size;
300};
301
302enum perf_event_type {
303
304 /*
305 * The MMAP events record the PROT_EXEC mappings so that we can
306 * correlate userspace IPs to code. They have the following structure:
307 *
308 * struct {
309 * struct perf_event_header header;
310 *
311 * u32 pid, tid;
312 * u64 addr;
313 * u64 len;
314 * u64 pgoff;
315 * char filename[];
316 * };
317 */
318 PERF_RECORD_MMAP = 1,
319
320 /*
321 * struct {
322 * struct perf_event_header header;
323 * u64 id;
324 * u64 lost;
325 * };
326 */
327 PERF_RECORD_LOST = 2,
328
329 /*
330 * struct {
331 * struct perf_event_header header;
332 *
333 * u32 pid, tid;
334 * char comm[];
335 * };
336 */
337 PERF_RECORD_COMM = 3,
338
339 /*
340 * struct {
341 * struct perf_event_header header;
342 * u32 pid, ppid;
343 * u32 tid, ptid;
344 * u64 time;
345 * };
346 */
347 PERF_RECORD_EXIT = 4,
348
349 /*
350 * struct {
351 * struct perf_event_header header;
352 * u64 time;
353 * u64 id;
354 * u64 stream_id;
355 * };
356 */
357 PERF_RECORD_THROTTLE = 5,
358 PERF_RECORD_UNTHROTTLE = 6,
359
360 /*
361 * struct {
362 * struct perf_event_header header;
363 * u32 pid, ppid;
364 * u32 tid, ptid;
365 * u64 time;
366 * };
367 */
368 PERF_RECORD_FORK = 7,
369
370 /*
371 * struct {
372 * struct perf_event_header header;
373 * u32 pid, tid;
374 *
375 * struct read_format values;
376 * };
377 */
378 PERF_RECORD_READ = 8,
379
380 /*
381 * struct {
382 * struct perf_event_header header;
383 *
384 * { u64 ip; } && PERF_SAMPLE_IP
385 * { u32 pid, tid; } && PERF_SAMPLE_TID
386 * { u64 time; } && PERF_SAMPLE_TIME
387 * { u64 addr; } && PERF_SAMPLE_ADDR
388 * { u64 id; } && PERF_SAMPLE_ID
389 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
390 * { u32 cpu, res; } && PERF_SAMPLE_CPU
391 * { u64 period; } && PERF_SAMPLE_PERIOD
392 *
393 * { struct read_format values; } && PERF_SAMPLE_READ
394 *
395 * { u64 nr,
396 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
397 *
398 * #
399 * # The RAW record below is opaque data wrt the ABI
400 * #
401 * # That is, the ABI doesn't make any promises wrt to
402 * # the stability of its content, it may vary depending
403 * # on event, hardware, kernel version and phase of
404 * # the moon.
405 * #
406 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
407 * #
408 *
409 * { u32 size;
410 * char data[size];}&& PERF_SAMPLE_RAW
411 * };
412 */
413 PERF_RECORD_SAMPLE = 9,
414
415 PERF_RECORD_MAX, /* non-ABI */
416};
417
418enum perf_callchain_context {
419 PERF_CONTEXT_HV = (__u64)-32,
420 PERF_CONTEXT_KERNEL = (__u64)-128,
421 PERF_CONTEXT_USER = (__u64)-512,
422
423 PERF_CONTEXT_GUEST = (__u64)-2048,
424 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
425 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
426
427 PERF_CONTEXT_MAX = (__u64)-4095,
428};
429
430#define PERF_FLAG_FD_NO_GROUP (1U << 0)
431#define PERF_FLAG_FD_OUTPUT (1U << 1)
432
433#ifdef __KERNEL__
434/*
435 * Kernel-internal data types and definitions:
436 */
437
438#ifdef CONFIG_PERF_EVENTS
439# include <asm/perf_event.h>
440#endif
441
442#ifdef CONFIG_HAVE_HW_BREAKPOINT
443#include <asm/hw_breakpoint.h>
444#endif
445
446#include <linux/list.h>
447#include <linux/mutex.h>
448#include <linux/rculist.h>
449#include <linux/rcupdate.h>
450#include <linux/spinlock.h>
451#include <linux/hrtimer.h>
452#include <linux/fs.h>
453#include <linux/pid_namespace.h>
454#include <linux/workqueue.h>
455#include <asm/atomic.h>
456
457#define PERF_MAX_STACK_DEPTH 255
458
459struct perf_callchain_entry {
460 __u64 nr;
461 __u64 ip[PERF_MAX_STACK_DEPTH];
462};
463
464struct perf_raw_record {
465 u32 size;
466 void *data;
467};
468
469struct task_struct;
470
471/**
472 * struct hw_perf_event - performance event hardware details:
473 */
474struct hw_perf_event {
475#ifdef CONFIG_PERF_EVENTS
476 union {
477 struct { /* hardware */
478 u64 config;
479 u64 last_tag;
480 unsigned long config_base;
481 unsigned long event_base;
482 int idx;
483 int last_cpu;
484 };
485 struct { /* software */
486 s64 remaining;
487 struct hrtimer hrtimer;
488 };
489#ifdef CONFIG_HAVE_HW_BREAKPOINT
490 /* breakpoint */
491 struct arch_hw_breakpoint info;
492#endif
493 };
494 atomic64_t prev_count;
495 u64 sample_period;
496 u64 last_period;
497 atomic64_t period_left;
498 u64 interrupts;
499
500 u64 freq_time_stamp;
501 u64 freq_count_stamp;
502#endif
503};
504
505struct perf_event;
506
507/**
508 * struct pmu - generic performance monitoring unit
509 */
510struct pmu {
511 int (*enable) (struct perf_event *event);
512 void (*disable) (struct perf_event *event);
513 int (*start) (struct perf_event *event);
514 void (*stop) (struct perf_event *event);
515 void (*read) (struct perf_event *event);
516 void (*unthrottle) (struct perf_event *event);
517};
518
519/**
520 * enum perf_event_active_state - the states of a event
521 */
522enum perf_event_active_state {
523 PERF_EVENT_STATE_ERROR = -2,
524 PERF_EVENT_STATE_OFF = -1,
525 PERF_EVENT_STATE_INACTIVE = 0,
526 PERF_EVENT_STATE_ACTIVE = 1,
527};
528
529struct file;
530
531struct perf_mmap_data {
532 struct rcu_head rcu_head;
533#ifdef CONFIG_PERF_USE_VMALLOC
534 struct work_struct work;
535#endif
536 int data_order;
537 int nr_pages; /* nr of data pages */
538 int writable; /* are we writable */
539 int nr_locked; /* nr pages mlocked */
540
541 atomic_t poll; /* POLL_ for wakeups */
542 atomic_t events; /* event_id limit */
543
544 atomic_long_t head; /* write position */
545 atomic_long_t done_head; /* completed head */
546
547 atomic_t lock; /* concurrent writes */
548 atomic_t wakeup; /* needs a wakeup */
549 atomic_t lost; /* nr records lost */
550
551 long watermark; /* wakeup watermark */
552
553 struct perf_event_mmap_page *user_page;
554 void *data_pages[0];
555};
556
557struct perf_pending_entry {
558 struct perf_pending_entry *next;
559 void (*func)(struct perf_pending_entry *);
560};
561
562struct perf_sample_data;
563
564typedef void (*perf_overflow_handler_t)(struct perf_event *, int,
565 struct perf_sample_data *,
566 struct pt_regs *regs);
567
568enum perf_group_flag {
569 PERF_GROUP_SOFTWARE = 0x1,
570};
571
572/**
573 * struct perf_event - performance event kernel representation:
574 */
575struct perf_event {
576#ifdef CONFIG_PERF_EVENTS
577 struct list_head group_entry;
578 struct list_head event_entry;
579 struct list_head sibling_list;
580 int nr_siblings;
581 int group_flags;
582 struct perf_event *group_leader;
583 struct perf_event *output;
584 const struct pmu *pmu;
585
586 enum perf_event_active_state state;
587 atomic64_t count;
588
589 /*
590 * These are the total time in nanoseconds that the event
591 * has been enabled (i.e. eligible to run, and the task has
592 * been scheduled in, if this is a per-task event)
593 * and running (scheduled onto the CPU), respectively.
594 *
595 * They are computed from tstamp_enabled, tstamp_running and
596 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
597 */
598 u64 total_time_enabled;
599 u64 total_time_running;
600
601 /*
602 * These are timestamps used for computing total_time_enabled
603 * and total_time_running when the event is in INACTIVE or
604 * ACTIVE state, measured in nanoseconds from an arbitrary point
605 * in time.
606 * tstamp_enabled: the notional time when the event was enabled
607 * tstamp_running: the notional time when the event was scheduled on
608 * tstamp_stopped: in INACTIVE state, the notional time when the
609 * event was scheduled off.
610 */
611 u64 tstamp_enabled;
612 u64 tstamp_running;
613 u64 tstamp_stopped;
614
615 struct perf_event_attr attr;
616 struct hw_perf_event hw;
617
618 struct perf_event_context *ctx;
619 struct file *filp;
620
621 /*
622 * These accumulate total time (in nanoseconds) that children
623 * events have been enabled and running, respectively.
624 */
625 atomic64_t child_total_time_enabled;
626 atomic64_t child_total_time_running;
627
628 /*
629 * Protect attach/detach and child_list:
630 */
631 struct mutex child_mutex;
632 struct list_head child_list;
633 struct perf_event *parent;
634
635 int oncpu;
636 int cpu;
637
638 struct list_head owner_entry;
639 struct task_struct *owner;
640
641 /* mmap bits */
642 struct mutex mmap_mutex;
643 atomic_t mmap_count;
644 struct perf_mmap_data *data;
645
646 /* poll related */
647 wait_queue_head_t waitq;
648 struct fasync_struct *fasync;
649
650 /* delayed work for NMIs and such */
651 int pending_wakeup;
652 int pending_kill;
653 int pending_disable;
654 struct perf_pending_entry pending;
655
656 atomic_t event_limit;
657
658 void (*destroy)(struct perf_event *);
659 struct rcu_head rcu_head;
660
661 struct pid_namespace *ns;
662 u64 id;
663
664 perf_overflow_handler_t overflow_handler;
665
666#ifdef CONFIG_EVENT_TRACING
667 struct event_filter *filter;
668#endif
669
670#endif /* CONFIG_PERF_EVENTS */
671};
672
673/**
674 * struct perf_event_context - event context structure
675 *
676 * Used as a container for task events and CPU events as well:
677 */
678struct perf_event_context {
679 /*
680 * Protect the states of the events in the list,
681 * nr_active, and the list:
682 */
683 raw_spinlock_t lock;
684 /*
685 * Protect the list of events. Locking either mutex or lock
686 * is sufficient to ensure the list doesn't change; to change
687 * the list you need to lock both the mutex and the spinlock.
688 */
689 struct mutex mutex;
690
691 struct list_head pinned_groups;
692 struct list_head flexible_groups;
693 struct list_head event_list;
694 int nr_events;
695 int nr_active;
696 int is_active;
697 int nr_stat;
698 atomic_t refcount;
699 struct task_struct *task;
700
701 /*
702 * Context clock, runs when context enabled.
703 */
704 u64 time;
705 u64 timestamp;
706
707 /*
708 * These fields let us detect when two contexts have both
709 * been cloned (inherited) from a common ancestor.
710 */
711 struct perf_event_context *parent_ctx;
712 u64 parent_gen;
713 u64 generation;
714 int pin_count;
715 struct rcu_head rcu_head;
716};
717
718/**
719 * struct perf_event_cpu_context - per cpu event context structure
720 */
721struct perf_cpu_context {
722 struct perf_event_context ctx;
723 struct perf_event_context *task_ctx;
724 int active_oncpu;
725 int max_pertask;
726 int exclusive;
727
728 /*
729 * Recursion avoidance:
730 *
731 * task, softirq, irq, nmi context
732 */
733 int recursion[4];
734};
735
736struct perf_output_handle {
737 struct perf_event *event;
738 struct perf_mmap_data *data;
739 unsigned long head;
740 unsigned long offset;
741 int nmi;
742 int sample;
743 int locked;
744};
745
746#ifdef CONFIG_PERF_EVENTS
747
748/*
749 * Set by architecture code:
750 */
751extern int perf_max_events;
752
753extern const struct pmu *hw_perf_event_init(struct perf_event *event);
754
755extern void perf_event_task_sched_in(struct task_struct *task);
756extern void perf_event_task_sched_out(struct task_struct *task, struct task_struct *next);
757extern void perf_event_task_tick(struct task_struct *task);
758extern int perf_event_init_task(struct task_struct *child);
759extern void perf_event_exit_task(struct task_struct *child);
760extern void perf_event_free_task(struct task_struct *task);
761extern void set_perf_event_pending(void);
762extern void perf_event_do_pending(void);
763extern void perf_event_print_debug(void);
764extern void __perf_disable(void);
765extern bool __perf_enable(void);
766extern void perf_disable(void);
767extern void perf_enable(void);
768extern int perf_event_task_disable(void);
769extern int perf_event_task_enable(void);
770extern int hw_perf_group_sched_in(struct perf_event *group_leader,
771 struct perf_cpu_context *cpuctx,
772 struct perf_event_context *ctx);
773extern void perf_event_update_userpage(struct perf_event *event);
774extern int perf_event_release_kernel(struct perf_event *event);
775extern struct perf_event *
776perf_event_create_kernel_counter(struct perf_event_attr *attr,
777 int cpu,
778 pid_t pid,
779 perf_overflow_handler_t callback);
780extern u64 perf_event_read_value(struct perf_event *event,
781 u64 *enabled, u64 *running);
782
783struct perf_sample_data {
784 u64 type;
785
786 u64 ip;
787 struct {
788 u32 pid;
789 u32 tid;
790 } tid_entry;
791 u64 time;
792 u64 addr;
793 u64 id;
794 u64 stream_id;
795 struct {
796 u32 cpu;
797 u32 reserved;
798 } cpu_entry;
799 u64 period;
800 struct perf_callchain_entry *callchain;
801 struct perf_raw_record *raw;
802};
803
804extern void perf_output_sample(struct perf_output_handle *handle,
805 struct perf_event_header *header,
806 struct perf_sample_data *data,
807 struct perf_event *event);
808extern void perf_prepare_sample(struct perf_event_header *header,
809 struct perf_sample_data *data,
810 struct perf_event *event,
811 struct pt_regs *regs);
812
813extern int perf_event_overflow(struct perf_event *event, int nmi,
814 struct perf_sample_data *data,
815 struct pt_regs *regs);
816
817/*
818 * Return 1 for a software event, 0 for a hardware event
819 */
820static inline int is_software_event(struct perf_event *event)
821{
822 switch (event->attr.type) {
823 case PERF_TYPE_SOFTWARE:
824 case PERF_TYPE_TRACEPOINT:
825 /* for now the breakpoint stuff also works as software event */
826 case PERF_TYPE_BREAKPOINT:
827 return 1;
828 }
829 return 0;
830}
831
832extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
833
834extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64);
835
836static inline void
837perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
838{
839 if (atomic_read(&perf_swevent_enabled[event_id]))
840 __perf_sw_event(event_id, nr, nmi, regs, addr);
841}
842
843extern void __perf_event_mmap(struct vm_area_struct *vma);
844
845static inline void perf_event_mmap(struct vm_area_struct *vma)
846{
847 if (vma->vm_flags & VM_EXEC)
848 __perf_event_mmap(vma);
849}
850
851extern void perf_event_comm(struct task_struct *tsk);
852extern void perf_event_fork(struct task_struct *tsk);
853
854extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs);
855
856extern int sysctl_perf_event_paranoid;
857extern int sysctl_perf_event_mlock;
858extern int sysctl_perf_event_sample_rate;
859
860static inline bool perf_paranoid_tracepoint_raw(void)
861{
862 return sysctl_perf_event_paranoid > -1;
863}
864
865static inline bool perf_paranoid_cpu(void)
866{
867 return sysctl_perf_event_paranoid > 0;
868}
869
870static inline bool perf_paranoid_kernel(void)
871{
872 return sysctl_perf_event_paranoid > 1;
873}
874
875extern void perf_event_init(void);
876extern void perf_tp_event(int event_id, u64 addr, u64 count, void *record, int entry_size);
877extern void perf_bp_event(struct perf_event *event, void *data);
878
879#ifndef perf_misc_flags
880#define perf_misc_flags(regs) (user_mode(regs) ? PERF_RECORD_MISC_USER : \
881 PERF_RECORD_MISC_KERNEL)
882#define perf_instruction_pointer(regs) instruction_pointer(regs)
883#endif
884
885extern int perf_output_begin(struct perf_output_handle *handle,
886 struct perf_event *event, unsigned int size,
887 int nmi, int sample);
888extern void perf_output_end(struct perf_output_handle *handle);
889extern void perf_output_copy(struct perf_output_handle *handle,
890 const void *buf, unsigned int len);
891extern int perf_swevent_get_recursion_context(void);
892extern void perf_swevent_put_recursion_context(int rctx);
893extern void perf_event_enable(struct perf_event *event);
894extern void perf_event_disable(struct perf_event *event);
895#else
896static inline void
897perf_event_task_sched_in(struct task_struct *task) { }
898static inline void
899perf_event_task_sched_out(struct task_struct *task,
900 struct task_struct *next) { }
901static inline void
902perf_event_task_tick(struct task_struct *task) { }
903static inline int perf_event_init_task(struct task_struct *child) { return 0; }
904static inline void perf_event_exit_task(struct task_struct *child) { }
905static inline void perf_event_free_task(struct task_struct *task) { }
906static inline void perf_event_do_pending(void) { }
907static inline void perf_event_print_debug(void) { }
908static inline void perf_disable(void) { }
909static inline void perf_enable(void) { }
910static inline int perf_event_task_disable(void) { return -EINVAL; }
911static inline int perf_event_task_enable(void) { return -EINVAL; }
912
913static inline void
914perf_sw_event(u32 event_id, u64 nr, int nmi,
915 struct pt_regs *regs, u64 addr) { }
916static inline void
917perf_bp_event(struct perf_event *event, void *data) { }
918
919static inline void perf_event_mmap(struct vm_area_struct *vma) { }
920static inline void perf_event_comm(struct task_struct *tsk) { }
921static inline void perf_event_fork(struct task_struct *tsk) { }
922static inline void perf_event_init(void) { }
923static inline int perf_swevent_get_recursion_context(void) { return -1; }
924static inline void perf_swevent_put_recursion_context(int rctx) { }
925static inline void perf_event_enable(struct perf_event *event) { }
926static inline void perf_event_disable(struct perf_event *event) { }
927#endif
928
929#define perf_output_put(handle, x) \
930 perf_output_copy((handle), &(x), sizeof(x))
931
932#endif /* __KERNEL__ */
933#endif /* _LINUX_PERF_EVENT_H */
This page took 0.026404 seconds and 5 git commands to generate.