perf: Factor __output_copy to be usable with specific copy function
[deliverable/linux.git] / include / linux / perf_event.h
... / ...
CommitLineData
1/*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14#ifndef _LINUX_PERF_EVENT_H
15#define _LINUX_PERF_EVENT_H
16
17#include <linux/types.h>
18#include <linux/ioctl.h>
19#include <asm/byteorder.h>
20
21/*
22 * User-space ABI bits:
23 */
24
25/*
26 * attr.type
27 */
28enum perf_type_id {
29 PERF_TYPE_HARDWARE = 0,
30 PERF_TYPE_SOFTWARE = 1,
31 PERF_TYPE_TRACEPOINT = 2,
32 PERF_TYPE_HW_CACHE = 3,
33 PERF_TYPE_RAW = 4,
34 PERF_TYPE_BREAKPOINT = 5,
35
36 PERF_TYPE_MAX, /* non-ABI */
37};
38
39/*
40 * Generalized performance event event_id types, used by the
41 * attr.event_id parameter of the sys_perf_event_open()
42 * syscall:
43 */
44enum perf_hw_id {
45 /*
46 * Common hardware events, generalized by the kernel:
47 */
48 PERF_COUNT_HW_CPU_CYCLES = 0,
49 PERF_COUNT_HW_INSTRUCTIONS = 1,
50 PERF_COUNT_HW_CACHE_REFERENCES = 2,
51 PERF_COUNT_HW_CACHE_MISSES = 3,
52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
53 PERF_COUNT_HW_BRANCH_MISSES = 5,
54 PERF_COUNT_HW_BUS_CYCLES = 6,
55 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
56 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
57 PERF_COUNT_HW_REF_CPU_CYCLES = 9,
58
59 PERF_COUNT_HW_MAX, /* non-ABI */
60};
61
62/*
63 * Generalized hardware cache events:
64 *
65 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
66 * { read, write, prefetch } x
67 * { accesses, misses }
68 */
69enum perf_hw_cache_id {
70 PERF_COUNT_HW_CACHE_L1D = 0,
71 PERF_COUNT_HW_CACHE_L1I = 1,
72 PERF_COUNT_HW_CACHE_LL = 2,
73 PERF_COUNT_HW_CACHE_DTLB = 3,
74 PERF_COUNT_HW_CACHE_ITLB = 4,
75 PERF_COUNT_HW_CACHE_BPU = 5,
76 PERF_COUNT_HW_CACHE_NODE = 6,
77
78 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
79};
80
81enum perf_hw_cache_op_id {
82 PERF_COUNT_HW_CACHE_OP_READ = 0,
83 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
84 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
85
86 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
87};
88
89enum perf_hw_cache_op_result_id {
90 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
91 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
92
93 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
94};
95
96/*
97 * Special "software" events provided by the kernel, even if the hardware
98 * does not support performance events. These events measure various
99 * physical and sw events of the kernel (and allow the profiling of them as
100 * well):
101 */
102enum perf_sw_ids {
103 PERF_COUNT_SW_CPU_CLOCK = 0,
104 PERF_COUNT_SW_TASK_CLOCK = 1,
105 PERF_COUNT_SW_PAGE_FAULTS = 2,
106 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
107 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
108 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
109 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
110 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
111 PERF_COUNT_SW_EMULATION_FAULTS = 8,
112
113 PERF_COUNT_SW_MAX, /* non-ABI */
114};
115
116/*
117 * Bits that can be set in attr.sample_type to request information
118 * in the overflow packets.
119 */
120enum perf_event_sample_format {
121 PERF_SAMPLE_IP = 1U << 0,
122 PERF_SAMPLE_TID = 1U << 1,
123 PERF_SAMPLE_TIME = 1U << 2,
124 PERF_SAMPLE_ADDR = 1U << 3,
125 PERF_SAMPLE_READ = 1U << 4,
126 PERF_SAMPLE_CALLCHAIN = 1U << 5,
127 PERF_SAMPLE_ID = 1U << 6,
128 PERF_SAMPLE_CPU = 1U << 7,
129 PERF_SAMPLE_PERIOD = 1U << 8,
130 PERF_SAMPLE_STREAM_ID = 1U << 9,
131 PERF_SAMPLE_RAW = 1U << 10,
132 PERF_SAMPLE_BRANCH_STACK = 1U << 11,
133 PERF_SAMPLE_REGS_USER = 1U << 12,
134
135 PERF_SAMPLE_MAX = 1U << 13, /* non-ABI */
136};
137
138/*
139 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
140 *
141 * If the user does not pass priv level information via branch_sample_type,
142 * the kernel uses the event's priv level. Branch and event priv levels do
143 * not have to match. Branch priv level is checked for permissions.
144 *
145 * The branch types can be combined, however BRANCH_ANY covers all types
146 * of branches and therefore it supersedes all the other types.
147 */
148enum perf_branch_sample_type {
149 PERF_SAMPLE_BRANCH_USER = 1U << 0, /* user branches */
150 PERF_SAMPLE_BRANCH_KERNEL = 1U << 1, /* kernel branches */
151 PERF_SAMPLE_BRANCH_HV = 1U << 2, /* hypervisor branches */
152
153 PERF_SAMPLE_BRANCH_ANY = 1U << 3, /* any branch types */
154 PERF_SAMPLE_BRANCH_ANY_CALL = 1U << 4, /* any call branch */
155 PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << 5, /* any return branch */
156 PERF_SAMPLE_BRANCH_IND_CALL = 1U << 6, /* indirect calls */
157
158 PERF_SAMPLE_BRANCH_MAX = 1U << 7, /* non-ABI */
159};
160
161#define PERF_SAMPLE_BRANCH_PLM_ALL \
162 (PERF_SAMPLE_BRANCH_USER|\
163 PERF_SAMPLE_BRANCH_KERNEL|\
164 PERF_SAMPLE_BRANCH_HV)
165
166/*
167 * Values to determine ABI of the registers dump.
168 */
169enum perf_sample_regs_abi {
170 PERF_SAMPLE_REGS_ABI_NONE = 0,
171 PERF_SAMPLE_REGS_ABI_32 = 1,
172 PERF_SAMPLE_REGS_ABI_64 = 2,
173};
174
175/*
176 * The format of the data returned by read() on a perf event fd,
177 * as specified by attr.read_format:
178 *
179 * struct read_format {
180 * { u64 value;
181 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
182 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
183 * { u64 id; } && PERF_FORMAT_ID
184 * } && !PERF_FORMAT_GROUP
185 *
186 * { u64 nr;
187 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
188 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
189 * { u64 value;
190 * { u64 id; } && PERF_FORMAT_ID
191 * } cntr[nr];
192 * } && PERF_FORMAT_GROUP
193 * };
194 */
195enum perf_event_read_format {
196 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
197 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
198 PERF_FORMAT_ID = 1U << 2,
199 PERF_FORMAT_GROUP = 1U << 3,
200
201 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
202};
203
204#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
205#define PERF_ATTR_SIZE_VER1 72 /* add: config2 */
206#define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */
207#define PERF_ATTR_SIZE_VER3 88 /* add: sample_regs_user */
208
209/*
210 * Hardware event_id to monitor via a performance monitoring event:
211 */
212struct perf_event_attr {
213
214 /*
215 * Major type: hardware/software/tracepoint/etc.
216 */
217 __u32 type;
218
219 /*
220 * Size of the attr structure, for fwd/bwd compat.
221 */
222 __u32 size;
223
224 /*
225 * Type specific configuration information.
226 */
227 __u64 config;
228
229 union {
230 __u64 sample_period;
231 __u64 sample_freq;
232 };
233
234 __u64 sample_type;
235 __u64 read_format;
236
237 __u64 disabled : 1, /* off by default */
238 inherit : 1, /* children inherit it */
239 pinned : 1, /* must always be on PMU */
240 exclusive : 1, /* only group on PMU */
241 exclude_user : 1, /* don't count user */
242 exclude_kernel : 1, /* ditto kernel */
243 exclude_hv : 1, /* ditto hypervisor */
244 exclude_idle : 1, /* don't count when idle */
245 mmap : 1, /* include mmap data */
246 comm : 1, /* include comm data */
247 freq : 1, /* use freq, not period */
248 inherit_stat : 1, /* per task counts */
249 enable_on_exec : 1, /* next exec enables */
250 task : 1, /* trace fork/exit */
251 watermark : 1, /* wakeup_watermark */
252 /*
253 * precise_ip:
254 *
255 * 0 - SAMPLE_IP can have arbitrary skid
256 * 1 - SAMPLE_IP must have constant skid
257 * 2 - SAMPLE_IP requested to have 0 skid
258 * 3 - SAMPLE_IP must have 0 skid
259 *
260 * See also PERF_RECORD_MISC_EXACT_IP
261 */
262 precise_ip : 2, /* skid constraint */
263 mmap_data : 1, /* non-exec mmap data */
264 sample_id_all : 1, /* sample_type all events */
265
266 exclude_host : 1, /* don't count in host */
267 exclude_guest : 1, /* don't count in guest */
268
269 __reserved_1 : 43;
270
271 union {
272 __u32 wakeup_events; /* wakeup every n events */
273 __u32 wakeup_watermark; /* bytes before wakeup */
274 };
275
276 __u32 bp_type;
277 union {
278 __u64 bp_addr;
279 __u64 config1; /* extension of config */
280 };
281 union {
282 __u64 bp_len;
283 __u64 config2; /* extension of config1 */
284 };
285 __u64 branch_sample_type; /* enum perf_branch_sample_type */
286
287 /*
288 * Defines set of user regs to dump on samples.
289 * See asm/perf_regs.h for details.
290 */
291 __u64 sample_regs_user;
292};
293
294/*
295 * Ioctls that can be done on a perf event fd:
296 */
297#define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
298#define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
299#define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
300#define PERF_EVENT_IOC_RESET _IO ('$', 3)
301#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
302#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
303#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
304
305enum perf_event_ioc_flags {
306 PERF_IOC_FLAG_GROUP = 1U << 0,
307};
308
309/*
310 * Structure of the page that can be mapped via mmap
311 */
312struct perf_event_mmap_page {
313 __u32 version; /* version number of this structure */
314 __u32 compat_version; /* lowest version this is compat with */
315
316 /*
317 * Bits needed to read the hw events in user-space.
318 *
319 * u32 seq, time_mult, time_shift, idx, width;
320 * u64 count, enabled, running;
321 * u64 cyc, time_offset;
322 * s64 pmc = 0;
323 *
324 * do {
325 * seq = pc->lock;
326 * barrier()
327 *
328 * enabled = pc->time_enabled;
329 * running = pc->time_running;
330 *
331 * if (pc->cap_usr_time && enabled != running) {
332 * cyc = rdtsc();
333 * time_offset = pc->time_offset;
334 * time_mult = pc->time_mult;
335 * time_shift = pc->time_shift;
336 * }
337 *
338 * idx = pc->index;
339 * count = pc->offset;
340 * if (pc->cap_usr_rdpmc && idx) {
341 * width = pc->pmc_width;
342 * pmc = rdpmc(idx - 1);
343 * }
344 *
345 * barrier();
346 * } while (pc->lock != seq);
347 *
348 * NOTE: for obvious reason this only works on self-monitoring
349 * processes.
350 */
351 __u32 lock; /* seqlock for synchronization */
352 __u32 index; /* hardware event identifier */
353 __s64 offset; /* add to hardware event value */
354 __u64 time_enabled; /* time event active */
355 __u64 time_running; /* time event on cpu */
356 union {
357 __u64 capabilities;
358 __u64 cap_usr_time : 1,
359 cap_usr_rdpmc : 1,
360 cap_____res : 62;
361 };
362
363 /*
364 * If cap_usr_rdpmc this field provides the bit-width of the value
365 * read using the rdpmc() or equivalent instruction. This can be used
366 * to sign extend the result like:
367 *
368 * pmc <<= 64 - width;
369 * pmc >>= 64 - width; // signed shift right
370 * count += pmc;
371 */
372 __u16 pmc_width;
373
374 /*
375 * If cap_usr_time the below fields can be used to compute the time
376 * delta since time_enabled (in ns) using rdtsc or similar.
377 *
378 * u64 quot, rem;
379 * u64 delta;
380 *
381 * quot = (cyc >> time_shift);
382 * rem = cyc & ((1 << time_shift) - 1);
383 * delta = time_offset + quot * time_mult +
384 * ((rem * time_mult) >> time_shift);
385 *
386 * Where time_offset,time_mult,time_shift and cyc are read in the
387 * seqcount loop described above. This delta can then be added to
388 * enabled and possible running (if idx), improving the scaling:
389 *
390 * enabled += delta;
391 * if (idx)
392 * running += delta;
393 *
394 * quot = count / running;
395 * rem = count % running;
396 * count = quot * enabled + (rem * enabled) / running;
397 */
398 __u16 time_shift;
399 __u32 time_mult;
400 __u64 time_offset;
401
402 /*
403 * Hole for extension of the self monitor capabilities
404 */
405
406 __u64 __reserved[120]; /* align to 1k */
407
408 /*
409 * Control data for the mmap() data buffer.
410 *
411 * User-space reading the @data_head value should issue an rmb(), on
412 * SMP capable platforms, after reading this value -- see
413 * perf_event_wakeup().
414 *
415 * When the mapping is PROT_WRITE the @data_tail value should be
416 * written by userspace to reflect the last read data. In this case
417 * the kernel will not over-write unread data.
418 */
419 __u64 data_head; /* head in the data section */
420 __u64 data_tail; /* user-space written tail */
421};
422
423#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
424#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
425#define PERF_RECORD_MISC_KERNEL (1 << 0)
426#define PERF_RECORD_MISC_USER (2 << 0)
427#define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
428#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
429#define PERF_RECORD_MISC_GUEST_USER (5 << 0)
430
431/*
432 * Indicates that the content of PERF_SAMPLE_IP points to
433 * the actual instruction that triggered the event. See also
434 * perf_event_attr::precise_ip.
435 */
436#define PERF_RECORD_MISC_EXACT_IP (1 << 14)
437/*
438 * Reserve the last bit to indicate some extended misc field
439 */
440#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
441
442struct perf_event_header {
443 __u32 type;
444 __u16 misc;
445 __u16 size;
446};
447
448enum perf_event_type {
449
450 /*
451 * If perf_event_attr.sample_id_all is set then all event types will
452 * have the sample_type selected fields related to where/when
453 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID)
454 * described in PERF_RECORD_SAMPLE below, it will be stashed just after
455 * the perf_event_header and the fields already present for the existing
456 * fields, i.e. at the end of the payload. That way a newer perf.data
457 * file will be supported by older perf tools, with these new optional
458 * fields being ignored.
459 *
460 * The MMAP events record the PROT_EXEC mappings so that we can
461 * correlate userspace IPs to code. They have the following structure:
462 *
463 * struct {
464 * struct perf_event_header header;
465 *
466 * u32 pid, tid;
467 * u64 addr;
468 * u64 len;
469 * u64 pgoff;
470 * char filename[];
471 * };
472 */
473 PERF_RECORD_MMAP = 1,
474
475 /*
476 * struct {
477 * struct perf_event_header header;
478 * u64 id;
479 * u64 lost;
480 * };
481 */
482 PERF_RECORD_LOST = 2,
483
484 /*
485 * struct {
486 * struct perf_event_header header;
487 *
488 * u32 pid, tid;
489 * char comm[];
490 * };
491 */
492 PERF_RECORD_COMM = 3,
493
494 /*
495 * struct {
496 * struct perf_event_header header;
497 * u32 pid, ppid;
498 * u32 tid, ptid;
499 * u64 time;
500 * };
501 */
502 PERF_RECORD_EXIT = 4,
503
504 /*
505 * struct {
506 * struct perf_event_header header;
507 * u64 time;
508 * u64 id;
509 * u64 stream_id;
510 * };
511 */
512 PERF_RECORD_THROTTLE = 5,
513 PERF_RECORD_UNTHROTTLE = 6,
514
515 /*
516 * struct {
517 * struct perf_event_header header;
518 * u32 pid, ppid;
519 * u32 tid, ptid;
520 * u64 time;
521 * };
522 */
523 PERF_RECORD_FORK = 7,
524
525 /*
526 * struct {
527 * struct perf_event_header header;
528 * u32 pid, tid;
529 *
530 * struct read_format values;
531 * };
532 */
533 PERF_RECORD_READ = 8,
534
535 /*
536 * struct {
537 * struct perf_event_header header;
538 *
539 * { u64 ip; } && PERF_SAMPLE_IP
540 * { u32 pid, tid; } && PERF_SAMPLE_TID
541 * { u64 time; } && PERF_SAMPLE_TIME
542 * { u64 addr; } && PERF_SAMPLE_ADDR
543 * { u64 id; } && PERF_SAMPLE_ID
544 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
545 * { u32 cpu, res; } && PERF_SAMPLE_CPU
546 * { u64 period; } && PERF_SAMPLE_PERIOD
547 *
548 * { struct read_format values; } && PERF_SAMPLE_READ
549 *
550 * { u64 nr,
551 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
552 *
553 * #
554 * # The RAW record below is opaque data wrt the ABI
555 * #
556 * # That is, the ABI doesn't make any promises wrt to
557 * # the stability of its content, it may vary depending
558 * # on event, hardware, kernel version and phase of
559 * # the moon.
560 * #
561 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
562 * #
563 *
564 * { u32 size;
565 * char data[size];}&& PERF_SAMPLE_RAW
566 *
567 * { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
568 *
569 * { u64 abi; # enum perf_sample_regs_abi
570 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
571 * };
572 */
573 PERF_RECORD_SAMPLE = 9,
574
575 PERF_RECORD_MAX, /* non-ABI */
576};
577
578#define PERF_MAX_STACK_DEPTH 127
579
580enum perf_callchain_context {
581 PERF_CONTEXT_HV = (__u64)-32,
582 PERF_CONTEXT_KERNEL = (__u64)-128,
583 PERF_CONTEXT_USER = (__u64)-512,
584
585 PERF_CONTEXT_GUEST = (__u64)-2048,
586 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
587 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
588
589 PERF_CONTEXT_MAX = (__u64)-4095,
590};
591
592#define PERF_FLAG_FD_NO_GROUP (1U << 0)
593#define PERF_FLAG_FD_OUTPUT (1U << 1)
594#define PERF_FLAG_PID_CGROUP (1U << 2) /* pid=cgroup id, per-cpu mode only */
595
596#ifdef __KERNEL__
597/*
598 * Kernel-internal data types and definitions:
599 */
600
601#ifdef CONFIG_PERF_EVENTS
602# include <linux/cgroup.h>
603# include <asm/perf_event.h>
604# include <asm/local64.h>
605#endif
606
607struct perf_guest_info_callbacks {
608 int (*is_in_guest)(void);
609 int (*is_user_mode)(void);
610 unsigned long (*get_guest_ip)(void);
611};
612
613#ifdef CONFIG_HAVE_HW_BREAKPOINT
614#include <asm/hw_breakpoint.h>
615#endif
616
617#include <linux/list.h>
618#include <linux/mutex.h>
619#include <linux/rculist.h>
620#include <linux/rcupdate.h>
621#include <linux/spinlock.h>
622#include <linux/hrtimer.h>
623#include <linux/fs.h>
624#include <linux/pid_namespace.h>
625#include <linux/workqueue.h>
626#include <linux/ftrace.h>
627#include <linux/cpu.h>
628#include <linux/irq_work.h>
629#include <linux/static_key.h>
630#include <linux/atomic.h>
631#include <linux/sysfs.h>
632#include <linux/perf_regs.h>
633#include <asm/local.h>
634
635struct perf_callchain_entry {
636 __u64 nr;
637 __u64 ip[PERF_MAX_STACK_DEPTH];
638};
639
640struct perf_raw_record {
641 u32 size;
642 void *data;
643};
644
645/*
646 * single taken branch record layout:
647 *
648 * from: source instruction (may not always be a branch insn)
649 * to: branch target
650 * mispred: branch target was mispredicted
651 * predicted: branch target was predicted
652 *
653 * support for mispred, predicted is optional. In case it
654 * is not supported mispred = predicted = 0.
655 */
656struct perf_branch_entry {
657 __u64 from;
658 __u64 to;
659 __u64 mispred:1, /* target mispredicted */
660 predicted:1,/* target predicted */
661 reserved:62;
662};
663
664/*
665 * branch stack layout:
666 * nr: number of taken branches stored in entries[]
667 *
668 * Note that nr can vary from sample to sample
669 * branches (to, from) are stored from most recent
670 * to least recent, i.e., entries[0] contains the most
671 * recent branch.
672 */
673struct perf_branch_stack {
674 __u64 nr;
675 struct perf_branch_entry entries[0];
676};
677
678struct perf_regs_user {
679 __u64 abi;
680 struct pt_regs *regs;
681};
682
683struct task_struct;
684
685/*
686 * extra PMU register associated with an event
687 */
688struct hw_perf_event_extra {
689 u64 config; /* register value */
690 unsigned int reg; /* register address or index */
691 int alloc; /* extra register already allocated */
692 int idx; /* index in shared_regs->regs[] */
693};
694
695/**
696 * struct hw_perf_event - performance event hardware details:
697 */
698struct hw_perf_event {
699#ifdef CONFIG_PERF_EVENTS
700 union {
701 struct { /* hardware */
702 u64 config;
703 u64 last_tag;
704 unsigned long config_base;
705 unsigned long event_base;
706 int event_base_rdpmc;
707 int idx;
708 int last_cpu;
709
710 struct hw_perf_event_extra extra_reg;
711 struct hw_perf_event_extra branch_reg;
712 };
713 struct { /* software */
714 struct hrtimer hrtimer;
715 };
716#ifdef CONFIG_HAVE_HW_BREAKPOINT
717 struct { /* breakpoint */
718 struct arch_hw_breakpoint info;
719 struct list_head bp_list;
720 /*
721 * Crufty hack to avoid the chicken and egg
722 * problem hw_breakpoint has with context
723 * creation and event initalization.
724 */
725 struct task_struct *bp_target;
726 };
727#endif
728 };
729 int state;
730 local64_t prev_count;
731 u64 sample_period;
732 u64 last_period;
733 local64_t period_left;
734 u64 interrupts_seq;
735 u64 interrupts;
736
737 u64 freq_time_stamp;
738 u64 freq_count_stamp;
739#endif
740};
741
742/*
743 * hw_perf_event::state flags
744 */
745#define PERF_HES_STOPPED 0x01 /* the counter is stopped */
746#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
747#define PERF_HES_ARCH 0x04
748
749struct perf_event;
750
751/*
752 * Common implementation detail of pmu::{start,commit,cancel}_txn
753 */
754#define PERF_EVENT_TXN 0x1
755
756/**
757 * struct pmu - generic performance monitoring unit
758 */
759struct pmu {
760 struct list_head entry;
761
762 struct device *dev;
763 const struct attribute_group **attr_groups;
764 char *name;
765 int type;
766
767 int * __percpu pmu_disable_count;
768 struct perf_cpu_context * __percpu pmu_cpu_context;
769 int task_ctx_nr;
770
771 /*
772 * Fully disable/enable this PMU, can be used to protect from the PMI
773 * as well as for lazy/batch writing of the MSRs.
774 */
775 void (*pmu_enable) (struct pmu *pmu); /* optional */
776 void (*pmu_disable) (struct pmu *pmu); /* optional */
777
778 /*
779 * Try and initialize the event for this PMU.
780 * Should return -ENOENT when the @event doesn't match this PMU.
781 */
782 int (*event_init) (struct perf_event *event);
783
784#define PERF_EF_START 0x01 /* start the counter when adding */
785#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
786#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
787
788 /*
789 * Adds/Removes a counter to/from the PMU, can be done inside
790 * a transaction, see the ->*_txn() methods.
791 */
792 int (*add) (struct perf_event *event, int flags);
793 void (*del) (struct perf_event *event, int flags);
794
795 /*
796 * Starts/Stops a counter present on the PMU. The PMI handler
797 * should stop the counter when perf_event_overflow() returns
798 * !0. ->start() will be used to continue.
799 */
800 void (*start) (struct perf_event *event, int flags);
801 void (*stop) (struct perf_event *event, int flags);
802
803 /*
804 * Updates the counter value of the event.
805 */
806 void (*read) (struct perf_event *event);
807
808 /*
809 * Group events scheduling is treated as a transaction, add
810 * group events as a whole and perform one schedulability test.
811 * If the test fails, roll back the whole group
812 *
813 * Start the transaction, after this ->add() doesn't need to
814 * do schedulability tests.
815 */
816 void (*start_txn) (struct pmu *pmu); /* optional */
817 /*
818 * If ->start_txn() disabled the ->add() schedulability test
819 * then ->commit_txn() is required to perform one. On success
820 * the transaction is closed. On error the transaction is kept
821 * open until ->cancel_txn() is called.
822 */
823 int (*commit_txn) (struct pmu *pmu); /* optional */
824 /*
825 * Will cancel the transaction, assumes ->del() is called
826 * for each successful ->add() during the transaction.
827 */
828 void (*cancel_txn) (struct pmu *pmu); /* optional */
829
830 /*
831 * Will return the value for perf_event_mmap_page::index for this event,
832 * if no implementation is provided it will default to: event->hw.idx + 1.
833 */
834 int (*event_idx) (struct perf_event *event); /*optional */
835
836 /*
837 * flush branch stack on context-switches (needed in cpu-wide mode)
838 */
839 void (*flush_branch_stack) (void);
840};
841
842/**
843 * enum perf_event_active_state - the states of a event
844 */
845enum perf_event_active_state {
846 PERF_EVENT_STATE_ERROR = -2,
847 PERF_EVENT_STATE_OFF = -1,
848 PERF_EVENT_STATE_INACTIVE = 0,
849 PERF_EVENT_STATE_ACTIVE = 1,
850};
851
852struct file;
853struct perf_sample_data;
854
855typedef void (*perf_overflow_handler_t)(struct perf_event *,
856 struct perf_sample_data *,
857 struct pt_regs *regs);
858
859enum perf_group_flag {
860 PERF_GROUP_SOFTWARE = 0x1,
861};
862
863#define SWEVENT_HLIST_BITS 8
864#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
865
866struct swevent_hlist {
867 struct hlist_head heads[SWEVENT_HLIST_SIZE];
868 struct rcu_head rcu_head;
869};
870
871#define PERF_ATTACH_CONTEXT 0x01
872#define PERF_ATTACH_GROUP 0x02
873#define PERF_ATTACH_TASK 0x04
874
875#ifdef CONFIG_CGROUP_PERF
876/*
877 * perf_cgroup_info keeps track of time_enabled for a cgroup.
878 * This is a per-cpu dynamically allocated data structure.
879 */
880struct perf_cgroup_info {
881 u64 time;
882 u64 timestamp;
883};
884
885struct perf_cgroup {
886 struct cgroup_subsys_state css;
887 struct perf_cgroup_info *info; /* timing info, one per cpu */
888};
889#endif
890
891struct ring_buffer;
892
893/**
894 * struct perf_event - performance event kernel representation:
895 */
896struct perf_event {
897#ifdef CONFIG_PERF_EVENTS
898 struct list_head group_entry;
899 struct list_head event_entry;
900 struct list_head sibling_list;
901 struct hlist_node hlist_entry;
902 int nr_siblings;
903 int group_flags;
904 struct perf_event *group_leader;
905 struct pmu *pmu;
906
907 enum perf_event_active_state state;
908 unsigned int attach_state;
909 local64_t count;
910 atomic64_t child_count;
911
912 /*
913 * These are the total time in nanoseconds that the event
914 * has been enabled (i.e. eligible to run, and the task has
915 * been scheduled in, if this is a per-task event)
916 * and running (scheduled onto the CPU), respectively.
917 *
918 * They are computed from tstamp_enabled, tstamp_running and
919 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
920 */
921 u64 total_time_enabled;
922 u64 total_time_running;
923
924 /*
925 * These are timestamps used for computing total_time_enabled
926 * and total_time_running when the event is in INACTIVE or
927 * ACTIVE state, measured in nanoseconds from an arbitrary point
928 * in time.
929 * tstamp_enabled: the notional time when the event was enabled
930 * tstamp_running: the notional time when the event was scheduled on
931 * tstamp_stopped: in INACTIVE state, the notional time when the
932 * event was scheduled off.
933 */
934 u64 tstamp_enabled;
935 u64 tstamp_running;
936 u64 tstamp_stopped;
937
938 /*
939 * timestamp shadows the actual context timing but it can
940 * be safely used in NMI interrupt context. It reflects the
941 * context time as it was when the event was last scheduled in.
942 *
943 * ctx_time already accounts for ctx->timestamp. Therefore to
944 * compute ctx_time for a sample, simply add perf_clock().
945 */
946 u64 shadow_ctx_time;
947
948 struct perf_event_attr attr;
949 u16 header_size;
950 u16 id_header_size;
951 u16 read_size;
952 struct hw_perf_event hw;
953
954 struct perf_event_context *ctx;
955 struct file *filp;
956
957 /*
958 * These accumulate total time (in nanoseconds) that children
959 * events have been enabled and running, respectively.
960 */
961 atomic64_t child_total_time_enabled;
962 atomic64_t child_total_time_running;
963
964 /*
965 * Protect attach/detach and child_list:
966 */
967 struct mutex child_mutex;
968 struct list_head child_list;
969 struct perf_event *parent;
970
971 int oncpu;
972 int cpu;
973
974 struct list_head owner_entry;
975 struct task_struct *owner;
976
977 /* mmap bits */
978 struct mutex mmap_mutex;
979 atomic_t mmap_count;
980 int mmap_locked;
981 struct user_struct *mmap_user;
982 struct ring_buffer *rb;
983 struct list_head rb_entry;
984
985 /* poll related */
986 wait_queue_head_t waitq;
987 struct fasync_struct *fasync;
988
989 /* delayed work for NMIs and such */
990 int pending_wakeup;
991 int pending_kill;
992 int pending_disable;
993 struct irq_work pending;
994
995 atomic_t event_limit;
996
997 void (*destroy)(struct perf_event *);
998 struct rcu_head rcu_head;
999
1000 struct pid_namespace *ns;
1001 u64 id;
1002
1003 perf_overflow_handler_t overflow_handler;
1004 void *overflow_handler_context;
1005
1006#ifdef CONFIG_EVENT_TRACING
1007 struct ftrace_event_call *tp_event;
1008 struct event_filter *filter;
1009#ifdef CONFIG_FUNCTION_TRACER
1010 struct ftrace_ops ftrace_ops;
1011#endif
1012#endif
1013
1014#ifdef CONFIG_CGROUP_PERF
1015 struct perf_cgroup *cgrp; /* cgroup event is attach to */
1016 int cgrp_defer_enabled;
1017#endif
1018
1019#endif /* CONFIG_PERF_EVENTS */
1020};
1021
1022enum perf_event_context_type {
1023 task_context,
1024 cpu_context,
1025};
1026
1027/**
1028 * struct perf_event_context - event context structure
1029 *
1030 * Used as a container for task events and CPU events as well:
1031 */
1032struct perf_event_context {
1033 struct pmu *pmu;
1034 enum perf_event_context_type type;
1035 /*
1036 * Protect the states of the events in the list,
1037 * nr_active, and the list:
1038 */
1039 raw_spinlock_t lock;
1040 /*
1041 * Protect the list of events. Locking either mutex or lock
1042 * is sufficient to ensure the list doesn't change; to change
1043 * the list you need to lock both the mutex and the spinlock.
1044 */
1045 struct mutex mutex;
1046
1047 struct list_head pinned_groups;
1048 struct list_head flexible_groups;
1049 struct list_head event_list;
1050 int nr_events;
1051 int nr_active;
1052 int is_active;
1053 int nr_stat;
1054 int nr_freq;
1055 int rotate_disable;
1056 atomic_t refcount;
1057 struct task_struct *task;
1058
1059 /*
1060 * Context clock, runs when context enabled.
1061 */
1062 u64 time;
1063 u64 timestamp;
1064
1065 /*
1066 * These fields let us detect when two contexts have both
1067 * been cloned (inherited) from a common ancestor.
1068 */
1069 struct perf_event_context *parent_ctx;
1070 u64 parent_gen;
1071 u64 generation;
1072 int pin_count;
1073 int nr_cgroups; /* cgroup evts */
1074 int nr_branch_stack; /* branch_stack evt */
1075 struct rcu_head rcu_head;
1076};
1077
1078/*
1079 * Number of contexts where an event can trigger:
1080 * task, softirq, hardirq, nmi.
1081 */
1082#define PERF_NR_CONTEXTS 4
1083
1084/**
1085 * struct perf_event_cpu_context - per cpu event context structure
1086 */
1087struct perf_cpu_context {
1088 struct perf_event_context ctx;
1089 struct perf_event_context *task_ctx;
1090 int active_oncpu;
1091 int exclusive;
1092 struct list_head rotation_list;
1093 int jiffies_interval;
1094 struct pmu *active_pmu;
1095 struct perf_cgroup *cgrp;
1096};
1097
1098struct perf_output_handle {
1099 struct perf_event *event;
1100 struct ring_buffer *rb;
1101 unsigned long wakeup;
1102 unsigned long size;
1103 void *addr;
1104 int page;
1105};
1106
1107#ifdef CONFIG_PERF_EVENTS
1108
1109extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
1110extern void perf_pmu_unregister(struct pmu *pmu);
1111
1112extern int perf_num_counters(void);
1113extern const char *perf_pmu_name(void);
1114extern void __perf_event_task_sched_in(struct task_struct *prev,
1115 struct task_struct *task);
1116extern void __perf_event_task_sched_out(struct task_struct *prev,
1117 struct task_struct *next);
1118extern int perf_event_init_task(struct task_struct *child);
1119extern void perf_event_exit_task(struct task_struct *child);
1120extern void perf_event_free_task(struct task_struct *task);
1121extern void perf_event_delayed_put(struct task_struct *task);
1122extern void perf_event_print_debug(void);
1123extern void perf_pmu_disable(struct pmu *pmu);
1124extern void perf_pmu_enable(struct pmu *pmu);
1125extern int perf_event_task_disable(void);
1126extern int perf_event_task_enable(void);
1127extern int perf_event_refresh(struct perf_event *event, int refresh);
1128extern void perf_event_update_userpage(struct perf_event *event);
1129extern int perf_event_release_kernel(struct perf_event *event);
1130extern struct perf_event *
1131perf_event_create_kernel_counter(struct perf_event_attr *attr,
1132 int cpu,
1133 struct task_struct *task,
1134 perf_overflow_handler_t callback,
1135 void *context);
1136extern void perf_pmu_migrate_context(struct pmu *pmu,
1137 int src_cpu, int dst_cpu);
1138extern u64 perf_event_read_value(struct perf_event *event,
1139 u64 *enabled, u64 *running);
1140
1141
1142struct perf_sample_data {
1143 u64 type;
1144
1145 u64 ip;
1146 struct {
1147 u32 pid;
1148 u32 tid;
1149 } tid_entry;
1150 u64 time;
1151 u64 addr;
1152 u64 id;
1153 u64 stream_id;
1154 struct {
1155 u32 cpu;
1156 u32 reserved;
1157 } cpu_entry;
1158 u64 period;
1159 struct perf_callchain_entry *callchain;
1160 struct perf_raw_record *raw;
1161 struct perf_branch_stack *br_stack;
1162 struct perf_regs_user regs_user;
1163};
1164
1165static inline void perf_sample_data_init(struct perf_sample_data *data,
1166 u64 addr, u64 period)
1167{
1168 /* remaining struct members initialized in perf_prepare_sample() */
1169 data->addr = addr;
1170 data->raw = NULL;
1171 data->br_stack = NULL;
1172 data->period = period;
1173 data->regs_user.abi = PERF_SAMPLE_REGS_ABI_NONE;
1174 data->regs_user.regs = NULL;
1175}
1176
1177extern void perf_output_sample(struct perf_output_handle *handle,
1178 struct perf_event_header *header,
1179 struct perf_sample_data *data,
1180 struct perf_event *event);
1181extern void perf_prepare_sample(struct perf_event_header *header,
1182 struct perf_sample_data *data,
1183 struct perf_event *event,
1184 struct pt_regs *regs);
1185
1186extern int perf_event_overflow(struct perf_event *event,
1187 struct perf_sample_data *data,
1188 struct pt_regs *regs);
1189
1190static inline bool is_sampling_event(struct perf_event *event)
1191{
1192 return event->attr.sample_period != 0;
1193}
1194
1195/*
1196 * Return 1 for a software event, 0 for a hardware event
1197 */
1198static inline int is_software_event(struct perf_event *event)
1199{
1200 return event->pmu->task_ctx_nr == perf_sw_context;
1201}
1202
1203extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1204
1205extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1206
1207#ifndef perf_arch_fetch_caller_regs
1208static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1209#endif
1210
1211/*
1212 * Take a snapshot of the regs. Skip ip and frame pointer to
1213 * the nth caller. We only need a few of the regs:
1214 * - ip for PERF_SAMPLE_IP
1215 * - cs for user_mode() tests
1216 * - bp for callchains
1217 * - eflags, for future purposes, just in case
1218 */
1219static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1220{
1221 memset(regs, 0, sizeof(*regs));
1222
1223 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1224}
1225
1226static __always_inline void
1227perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1228{
1229 struct pt_regs hot_regs;
1230
1231 if (static_key_false(&perf_swevent_enabled[event_id])) {
1232 if (!regs) {
1233 perf_fetch_caller_regs(&hot_regs);
1234 regs = &hot_regs;
1235 }
1236 __perf_sw_event(event_id, nr, regs, addr);
1237 }
1238}
1239
1240extern struct static_key_deferred perf_sched_events;
1241
1242static inline void perf_event_task_sched_in(struct task_struct *prev,
1243 struct task_struct *task)
1244{
1245 if (static_key_false(&perf_sched_events.key))
1246 __perf_event_task_sched_in(prev, task);
1247}
1248
1249static inline void perf_event_task_sched_out(struct task_struct *prev,
1250 struct task_struct *next)
1251{
1252 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
1253
1254 if (static_key_false(&perf_sched_events.key))
1255 __perf_event_task_sched_out(prev, next);
1256}
1257
1258extern void perf_event_mmap(struct vm_area_struct *vma);
1259extern struct perf_guest_info_callbacks *perf_guest_cbs;
1260extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1261extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1262
1263extern void perf_event_comm(struct task_struct *tsk);
1264extern void perf_event_fork(struct task_struct *tsk);
1265
1266/* Callchains */
1267DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1268
1269extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
1270extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
1271
1272static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
1273{
1274 if (entry->nr < PERF_MAX_STACK_DEPTH)
1275 entry->ip[entry->nr++] = ip;
1276}
1277
1278extern int sysctl_perf_event_paranoid;
1279extern int sysctl_perf_event_mlock;
1280extern int sysctl_perf_event_sample_rate;
1281
1282extern int perf_proc_update_handler(struct ctl_table *table, int write,
1283 void __user *buffer, size_t *lenp,
1284 loff_t *ppos);
1285
1286static inline bool perf_paranoid_tracepoint_raw(void)
1287{
1288 return sysctl_perf_event_paranoid > -1;
1289}
1290
1291static inline bool perf_paranoid_cpu(void)
1292{
1293 return sysctl_perf_event_paranoid > 0;
1294}
1295
1296static inline bool perf_paranoid_kernel(void)
1297{
1298 return sysctl_perf_event_paranoid > 1;
1299}
1300
1301extern void perf_event_init(void);
1302extern void perf_tp_event(u64 addr, u64 count, void *record,
1303 int entry_size, struct pt_regs *regs,
1304 struct hlist_head *head, int rctx,
1305 struct task_struct *task);
1306extern void perf_bp_event(struct perf_event *event, void *data);
1307
1308#ifndef perf_misc_flags
1309# define perf_misc_flags(regs) \
1310 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1311# define perf_instruction_pointer(regs) instruction_pointer(regs)
1312#endif
1313
1314static inline bool has_branch_stack(struct perf_event *event)
1315{
1316 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1317}
1318
1319extern int perf_output_begin(struct perf_output_handle *handle,
1320 struct perf_event *event, unsigned int size);
1321extern void perf_output_end(struct perf_output_handle *handle);
1322extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1323 const void *buf, unsigned int len);
1324extern int perf_swevent_get_recursion_context(void);
1325extern void perf_swevent_put_recursion_context(int rctx);
1326extern void perf_event_enable(struct perf_event *event);
1327extern void perf_event_disable(struct perf_event *event);
1328extern void perf_event_task_tick(void);
1329#else
1330static inline void
1331perf_event_task_sched_in(struct task_struct *prev,
1332 struct task_struct *task) { }
1333static inline void
1334perf_event_task_sched_out(struct task_struct *prev,
1335 struct task_struct *next) { }
1336static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1337static inline void perf_event_exit_task(struct task_struct *child) { }
1338static inline void perf_event_free_task(struct task_struct *task) { }
1339static inline void perf_event_delayed_put(struct task_struct *task) { }
1340static inline void perf_event_print_debug(void) { }
1341static inline int perf_event_task_disable(void) { return -EINVAL; }
1342static inline int perf_event_task_enable(void) { return -EINVAL; }
1343static inline int perf_event_refresh(struct perf_event *event, int refresh)
1344{
1345 return -EINVAL;
1346}
1347
1348static inline void
1349perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1350static inline void
1351perf_bp_event(struct perf_event *event, void *data) { }
1352
1353static inline int perf_register_guest_info_callbacks
1354(struct perf_guest_info_callbacks *callbacks) { return 0; }
1355static inline int perf_unregister_guest_info_callbacks
1356(struct perf_guest_info_callbacks *callbacks) { return 0; }
1357
1358static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1359static inline void perf_event_comm(struct task_struct *tsk) { }
1360static inline void perf_event_fork(struct task_struct *tsk) { }
1361static inline void perf_event_init(void) { }
1362static inline int perf_swevent_get_recursion_context(void) { return -1; }
1363static inline void perf_swevent_put_recursion_context(int rctx) { }
1364static inline void perf_event_enable(struct perf_event *event) { }
1365static inline void perf_event_disable(struct perf_event *event) { }
1366static inline void perf_event_task_tick(void) { }
1367#endif
1368
1369#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1370
1371/*
1372 * This has to have a higher priority than migration_notifier in sched.c.
1373 */
1374#define perf_cpu_notifier(fn) \
1375do { \
1376 static struct notifier_block fn##_nb __cpuinitdata = \
1377 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1378 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
1379 (void *)(unsigned long)smp_processor_id()); \
1380 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
1381 (void *)(unsigned long)smp_processor_id()); \
1382 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
1383 (void *)(unsigned long)smp_processor_id()); \
1384 register_cpu_notifier(&fn##_nb); \
1385} while (0)
1386
1387
1388#define PMU_FORMAT_ATTR(_name, _format) \
1389static ssize_t \
1390_name##_show(struct device *dev, \
1391 struct device_attribute *attr, \
1392 char *page) \
1393{ \
1394 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1395 return sprintf(page, _format "\n"); \
1396} \
1397 \
1398static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1399
1400#endif /* __KERNEL__ */
1401#endif /* _LINUX_PERF_EVENT_H */
This page took 0.033748 seconds and 5 git commands to generate.