perf: Remove the nmi parameter from the swevent and overflow interface
[deliverable/linux.git] / include / linux / perf_event.h
... / ...
CommitLineData
1/*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14#ifndef _LINUX_PERF_EVENT_H
15#define _LINUX_PERF_EVENT_H
16
17#include <linux/types.h>
18#include <linux/ioctl.h>
19#include <asm/byteorder.h>
20
21/*
22 * User-space ABI bits:
23 */
24
25/*
26 * attr.type
27 */
28enum perf_type_id {
29 PERF_TYPE_HARDWARE = 0,
30 PERF_TYPE_SOFTWARE = 1,
31 PERF_TYPE_TRACEPOINT = 2,
32 PERF_TYPE_HW_CACHE = 3,
33 PERF_TYPE_RAW = 4,
34 PERF_TYPE_BREAKPOINT = 5,
35
36 PERF_TYPE_MAX, /* non-ABI */
37};
38
39/*
40 * Generalized performance event event_id types, used by the
41 * attr.event_id parameter of the sys_perf_event_open()
42 * syscall:
43 */
44enum perf_hw_id {
45 /*
46 * Common hardware events, generalized by the kernel:
47 */
48 PERF_COUNT_HW_CPU_CYCLES = 0,
49 PERF_COUNT_HW_INSTRUCTIONS = 1,
50 PERF_COUNT_HW_CACHE_REFERENCES = 2,
51 PERF_COUNT_HW_CACHE_MISSES = 3,
52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
53 PERF_COUNT_HW_BRANCH_MISSES = 5,
54 PERF_COUNT_HW_BUS_CYCLES = 6,
55 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
56 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
57
58 PERF_COUNT_HW_MAX, /* non-ABI */
59};
60
61/*
62 * Generalized hardware cache events:
63 *
64 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
65 * { read, write, prefetch } x
66 * { accesses, misses }
67 */
68enum perf_hw_cache_id {
69 PERF_COUNT_HW_CACHE_L1D = 0,
70 PERF_COUNT_HW_CACHE_L1I = 1,
71 PERF_COUNT_HW_CACHE_LL = 2,
72 PERF_COUNT_HW_CACHE_DTLB = 3,
73 PERF_COUNT_HW_CACHE_ITLB = 4,
74 PERF_COUNT_HW_CACHE_BPU = 5,
75
76 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
77};
78
79enum perf_hw_cache_op_id {
80 PERF_COUNT_HW_CACHE_OP_READ = 0,
81 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
82 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
83
84 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
85};
86
87enum perf_hw_cache_op_result_id {
88 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
89 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
90
91 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
92};
93
94/*
95 * Special "software" events provided by the kernel, even if the hardware
96 * does not support performance events. These events measure various
97 * physical and sw events of the kernel (and allow the profiling of them as
98 * well):
99 */
100enum perf_sw_ids {
101 PERF_COUNT_SW_CPU_CLOCK = 0,
102 PERF_COUNT_SW_TASK_CLOCK = 1,
103 PERF_COUNT_SW_PAGE_FAULTS = 2,
104 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
105 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
106 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
107 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
108 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
109 PERF_COUNT_SW_EMULATION_FAULTS = 8,
110
111 PERF_COUNT_SW_MAX, /* non-ABI */
112};
113
114/*
115 * Bits that can be set in attr.sample_type to request information
116 * in the overflow packets.
117 */
118enum perf_event_sample_format {
119 PERF_SAMPLE_IP = 1U << 0,
120 PERF_SAMPLE_TID = 1U << 1,
121 PERF_SAMPLE_TIME = 1U << 2,
122 PERF_SAMPLE_ADDR = 1U << 3,
123 PERF_SAMPLE_READ = 1U << 4,
124 PERF_SAMPLE_CALLCHAIN = 1U << 5,
125 PERF_SAMPLE_ID = 1U << 6,
126 PERF_SAMPLE_CPU = 1U << 7,
127 PERF_SAMPLE_PERIOD = 1U << 8,
128 PERF_SAMPLE_STREAM_ID = 1U << 9,
129 PERF_SAMPLE_RAW = 1U << 10,
130
131 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */
132};
133
134/*
135 * The format of the data returned by read() on a perf event fd,
136 * as specified by attr.read_format:
137 *
138 * struct read_format {
139 * { u64 value;
140 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
141 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
142 * { u64 id; } && PERF_FORMAT_ID
143 * } && !PERF_FORMAT_GROUP
144 *
145 * { u64 nr;
146 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
147 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
148 * { u64 value;
149 * { u64 id; } && PERF_FORMAT_ID
150 * } cntr[nr];
151 * } && PERF_FORMAT_GROUP
152 * };
153 */
154enum perf_event_read_format {
155 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
156 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
157 PERF_FORMAT_ID = 1U << 2,
158 PERF_FORMAT_GROUP = 1U << 3,
159
160 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
161};
162
163#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
164
165/*
166 * Hardware event_id to monitor via a performance monitoring event:
167 */
168struct perf_event_attr {
169
170 /*
171 * Major type: hardware/software/tracepoint/etc.
172 */
173 __u32 type;
174
175 /*
176 * Size of the attr structure, for fwd/bwd compat.
177 */
178 __u32 size;
179
180 /*
181 * Type specific configuration information.
182 */
183 __u64 config;
184
185 union {
186 __u64 sample_period;
187 __u64 sample_freq;
188 };
189
190 __u64 sample_type;
191 __u64 read_format;
192
193 __u64 disabled : 1, /* off by default */
194 inherit : 1, /* children inherit it */
195 pinned : 1, /* must always be on PMU */
196 exclusive : 1, /* only group on PMU */
197 exclude_user : 1, /* don't count user */
198 exclude_kernel : 1, /* ditto kernel */
199 exclude_hv : 1, /* ditto hypervisor */
200 exclude_idle : 1, /* don't count when idle */
201 mmap : 1, /* include mmap data */
202 comm : 1, /* include comm data */
203 freq : 1, /* use freq, not period */
204 inherit_stat : 1, /* per task counts */
205 enable_on_exec : 1, /* next exec enables */
206 task : 1, /* trace fork/exit */
207 watermark : 1, /* wakeup_watermark */
208 /*
209 * precise_ip:
210 *
211 * 0 - SAMPLE_IP can have arbitrary skid
212 * 1 - SAMPLE_IP must have constant skid
213 * 2 - SAMPLE_IP requested to have 0 skid
214 * 3 - SAMPLE_IP must have 0 skid
215 *
216 * See also PERF_RECORD_MISC_EXACT_IP
217 */
218 precise_ip : 2, /* skid constraint */
219 mmap_data : 1, /* non-exec mmap data */
220 sample_id_all : 1, /* sample_type all events */
221
222 __reserved_1 : 45;
223
224 union {
225 __u32 wakeup_events; /* wakeup every n events */
226 __u32 wakeup_watermark; /* bytes before wakeup */
227 };
228
229 __u32 bp_type;
230 union {
231 __u64 bp_addr;
232 __u64 config1; /* extension of config */
233 };
234 union {
235 __u64 bp_len;
236 __u64 config2; /* extension of config1 */
237 };
238};
239
240/*
241 * Ioctls that can be done on a perf event fd:
242 */
243#define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
244#define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
245#define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
246#define PERF_EVENT_IOC_RESET _IO ('$', 3)
247#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
248#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
249#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
250
251enum perf_event_ioc_flags {
252 PERF_IOC_FLAG_GROUP = 1U << 0,
253};
254
255/*
256 * Structure of the page that can be mapped via mmap
257 */
258struct perf_event_mmap_page {
259 __u32 version; /* version number of this structure */
260 __u32 compat_version; /* lowest version this is compat with */
261
262 /*
263 * Bits needed to read the hw events in user-space.
264 *
265 * u32 seq;
266 * s64 count;
267 *
268 * do {
269 * seq = pc->lock;
270 *
271 * barrier()
272 * if (pc->index) {
273 * count = pmc_read(pc->index - 1);
274 * count += pc->offset;
275 * } else
276 * goto regular_read;
277 *
278 * barrier();
279 * } while (pc->lock != seq);
280 *
281 * NOTE: for obvious reason this only works on self-monitoring
282 * processes.
283 */
284 __u32 lock; /* seqlock for synchronization */
285 __u32 index; /* hardware event identifier */
286 __s64 offset; /* add to hardware event value */
287 __u64 time_enabled; /* time event active */
288 __u64 time_running; /* time event on cpu */
289
290 /*
291 * Hole for extension of the self monitor capabilities
292 */
293
294 __u64 __reserved[123]; /* align to 1k */
295
296 /*
297 * Control data for the mmap() data buffer.
298 *
299 * User-space reading the @data_head value should issue an rmb(), on
300 * SMP capable platforms, after reading this value -- see
301 * perf_event_wakeup().
302 *
303 * When the mapping is PROT_WRITE the @data_tail value should be
304 * written by userspace to reflect the last read data. In this case
305 * the kernel will not over-write unread data.
306 */
307 __u64 data_head; /* head in the data section */
308 __u64 data_tail; /* user-space written tail */
309};
310
311#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
312#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
313#define PERF_RECORD_MISC_KERNEL (1 << 0)
314#define PERF_RECORD_MISC_USER (2 << 0)
315#define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
316#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
317#define PERF_RECORD_MISC_GUEST_USER (5 << 0)
318
319/*
320 * Indicates that the content of PERF_SAMPLE_IP points to
321 * the actual instruction that triggered the event. See also
322 * perf_event_attr::precise_ip.
323 */
324#define PERF_RECORD_MISC_EXACT_IP (1 << 14)
325/*
326 * Reserve the last bit to indicate some extended misc field
327 */
328#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
329
330struct perf_event_header {
331 __u32 type;
332 __u16 misc;
333 __u16 size;
334};
335
336enum perf_event_type {
337
338 /*
339 * If perf_event_attr.sample_id_all is set then all event types will
340 * have the sample_type selected fields related to where/when
341 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID)
342 * described in PERF_RECORD_SAMPLE below, it will be stashed just after
343 * the perf_event_header and the fields already present for the existing
344 * fields, i.e. at the end of the payload. That way a newer perf.data
345 * file will be supported by older perf tools, with these new optional
346 * fields being ignored.
347 *
348 * The MMAP events record the PROT_EXEC mappings so that we can
349 * correlate userspace IPs to code. They have the following structure:
350 *
351 * struct {
352 * struct perf_event_header header;
353 *
354 * u32 pid, tid;
355 * u64 addr;
356 * u64 len;
357 * u64 pgoff;
358 * char filename[];
359 * };
360 */
361 PERF_RECORD_MMAP = 1,
362
363 /*
364 * struct {
365 * struct perf_event_header header;
366 * u64 id;
367 * u64 lost;
368 * };
369 */
370 PERF_RECORD_LOST = 2,
371
372 /*
373 * struct {
374 * struct perf_event_header header;
375 *
376 * u32 pid, tid;
377 * char comm[];
378 * };
379 */
380 PERF_RECORD_COMM = 3,
381
382 /*
383 * struct {
384 * struct perf_event_header header;
385 * u32 pid, ppid;
386 * u32 tid, ptid;
387 * u64 time;
388 * };
389 */
390 PERF_RECORD_EXIT = 4,
391
392 /*
393 * struct {
394 * struct perf_event_header header;
395 * u64 time;
396 * u64 id;
397 * u64 stream_id;
398 * };
399 */
400 PERF_RECORD_THROTTLE = 5,
401 PERF_RECORD_UNTHROTTLE = 6,
402
403 /*
404 * struct {
405 * struct perf_event_header header;
406 * u32 pid, ppid;
407 * u32 tid, ptid;
408 * u64 time;
409 * };
410 */
411 PERF_RECORD_FORK = 7,
412
413 /*
414 * struct {
415 * struct perf_event_header header;
416 * u32 pid, tid;
417 *
418 * struct read_format values;
419 * };
420 */
421 PERF_RECORD_READ = 8,
422
423 /*
424 * struct {
425 * struct perf_event_header header;
426 *
427 * { u64 ip; } && PERF_SAMPLE_IP
428 * { u32 pid, tid; } && PERF_SAMPLE_TID
429 * { u64 time; } && PERF_SAMPLE_TIME
430 * { u64 addr; } && PERF_SAMPLE_ADDR
431 * { u64 id; } && PERF_SAMPLE_ID
432 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
433 * { u32 cpu, res; } && PERF_SAMPLE_CPU
434 * { u64 period; } && PERF_SAMPLE_PERIOD
435 *
436 * { struct read_format values; } && PERF_SAMPLE_READ
437 *
438 * { u64 nr,
439 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
440 *
441 * #
442 * # The RAW record below is opaque data wrt the ABI
443 * #
444 * # That is, the ABI doesn't make any promises wrt to
445 * # the stability of its content, it may vary depending
446 * # on event, hardware, kernel version and phase of
447 * # the moon.
448 * #
449 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
450 * #
451 *
452 * { u32 size;
453 * char data[size];}&& PERF_SAMPLE_RAW
454 * };
455 */
456 PERF_RECORD_SAMPLE = 9,
457
458 PERF_RECORD_MAX, /* non-ABI */
459};
460
461enum perf_callchain_context {
462 PERF_CONTEXT_HV = (__u64)-32,
463 PERF_CONTEXT_KERNEL = (__u64)-128,
464 PERF_CONTEXT_USER = (__u64)-512,
465
466 PERF_CONTEXT_GUEST = (__u64)-2048,
467 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
468 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
469
470 PERF_CONTEXT_MAX = (__u64)-4095,
471};
472
473#define PERF_FLAG_FD_NO_GROUP (1U << 0)
474#define PERF_FLAG_FD_OUTPUT (1U << 1)
475#define PERF_FLAG_PID_CGROUP (1U << 2) /* pid=cgroup id, per-cpu mode only */
476
477#ifdef __KERNEL__
478/*
479 * Kernel-internal data types and definitions:
480 */
481
482#ifdef CONFIG_PERF_EVENTS
483# include <linux/cgroup.h>
484# include <asm/perf_event.h>
485# include <asm/local64.h>
486#endif
487
488struct perf_guest_info_callbacks {
489 int (*is_in_guest)(void);
490 int (*is_user_mode)(void);
491 unsigned long (*get_guest_ip)(void);
492};
493
494#ifdef CONFIG_HAVE_HW_BREAKPOINT
495#include <asm/hw_breakpoint.h>
496#endif
497
498#include <linux/list.h>
499#include <linux/mutex.h>
500#include <linux/rculist.h>
501#include <linux/rcupdate.h>
502#include <linux/spinlock.h>
503#include <linux/hrtimer.h>
504#include <linux/fs.h>
505#include <linux/pid_namespace.h>
506#include <linux/workqueue.h>
507#include <linux/ftrace.h>
508#include <linux/cpu.h>
509#include <linux/irq_work.h>
510#include <linux/jump_label.h>
511#include <asm/atomic.h>
512#include <asm/local.h>
513
514#define PERF_MAX_STACK_DEPTH 255
515
516struct perf_callchain_entry {
517 __u64 nr;
518 __u64 ip[PERF_MAX_STACK_DEPTH];
519};
520
521struct perf_raw_record {
522 u32 size;
523 void *data;
524};
525
526struct perf_branch_entry {
527 __u64 from;
528 __u64 to;
529 __u64 flags;
530};
531
532struct perf_branch_stack {
533 __u64 nr;
534 struct perf_branch_entry entries[0];
535};
536
537struct task_struct;
538
539/**
540 * struct hw_perf_event - performance event hardware details:
541 */
542struct hw_perf_event {
543#ifdef CONFIG_PERF_EVENTS
544 union {
545 struct { /* hardware */
546 u64 config;
547 u64 last_tag;
548 unsigned long config_base;
549 unsigned long event_base;
550 int idx;
551 int last_cpu;
552 unsigned int extra_reg;
553 u64 extra_config;
554 int extra_alloc;
555 };
556 struct { /* software */
557 struct hrtimer hrtimer;
558 };
559#ifdef CONFIG_HAVE_HW_BREAKPOINT
560 struct { /* breakpoint */
561 struct arch_hw_breakpoint info;
562 struct list_head bp_list;
563 /*
564 * Crufty hack to avoid the chicken and egg
565 * problem hw_breakpoint has with context
566 * creation and event initalization.
567 */
568 struct task_struct *bp_target;
569 };
570#endif
571 };
572 int state;
573 local64_t prev_count;
574 u64 sample_period;
575 u64 last_period;
576 local64_t period_left;
577 u64 interrupts;
578
579 u64 freq_time_stamp;
580 u64 freq_count_stamp;
581#endif
582};
583
584/*
585 * hw_perf_event::state flags
586 */
587#define PERF_HES_STOPPED 0x01 /* the counter is stopped */
588#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
589#define PERF_HES_ARCH 0x04
590
591struct perf_event;
592
593/*
594 * Common implementation detail of pmu::{start,commit,cancel}_txn
595 */
596#define PERF_EVENT_TXN 0x1
597
598/**
599 * struct pmu - generic performance monitoring unit
600 */
601struct pmu {
602 struct list_head entry;
603
604 struct device *dev;
605 char *name;
606 int type;
607
608 int * __percpu pmu_disable_count;
609 struct perf_cpu_context * __percpu pmu_cpu_context;
610 int task_ctx_nr;
611
612 /*
613 * Fully disable/enable this PMU, can be used to protect from the PMI
614 * as well as for lazy/batch writing of the MSRs.
615 */
616 void (*pmu_enable) (struct pmu *pmu); /* optional */
617 void (*pmu_disable) (struct pmu *pmu); /* optional */
618
619 /*
620 * Try and initialize the event for this PMU.
621 * Should return -ENOENT when the @event doesn't match this PMU.
622 */
623 int (*event_init) (struct perf_event *event);
624
625#define PERF_EF_START 0x01 /* start the counter when adding */
626#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
627#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
628
629 /*
630 * Adds/Removes a counter to/from the PMU, can be done inside
631 * a transaction, see the ->*_txn() methods.
632 */
633 int (*add) (struct perf_event *event, int flags);
634 void (*del) (struct perf_event *event, int flags);
635
636 /*
637 * Starts/Stops a counter present on the PMU. The PMI handler
638 * should stop the counter when perf_event_overflow() returns
639 * !0. ->start() will be used to continue.
640 */
641 void (*start) (struct perf_event *event, int flags);
642 void (*stop) (struct perf_event *event, int flags);
643
644 /*
645 * Updates the counter value of the event.
646 */
647 void (*read) (struct perf_event *event);
648
649 /*
650 * Group events scheduling is treated as a transaction, add
651 * group events as a whole and perform one schedulability test.
652 * If the test fails, roll back the whole group
653 *
654 * Start the transaction, after this ->add() doesn't need to
655 * do schedulability tests.
656 */
657 void (*start_txn) (struct pmu *pmu); /* optional */
658 /*
659 * If ->start_txn() disabled the ->add() schedulability test
660 * then ->commit_txn() is required to perform one. On success
661 * the transaction is closed. On error the transaction is kept
662 * open until ->cancel_txn() is called.
663 */
664 int (*commit_txn) (struct pmu *pmu); /* optional */
665 /*
666 * Will cancel the transaction, assumes ->del() is called
667 * for each successful ->add() during the transaction.
668 */
669 void (*cancel_txn) (struct pmu *pmu); /* optional */
670};
671
672/**
673 * enum perf_event_active_state - the states of a event
674 */
675enum perf_event_active_state {
676 PERF_EVENT_STATE_ERROR = -2,
677 PERF_EVENT_STATE_OFF = -1,
678 PERF_EVENT_STATE_INACTIVE = 0,
679 PERF_EVENT_STATE_ACTIVE = 1,
680};
681
682struct file;
683struct perf_sample_data;
684
685typedef void (*perf_overflow_handler_t)(struct perf_event *,
686 struct perf_sample_data *,
687 struct pt_regs *regs);
688
689enum perf_group_flag {
690 PERF_GROUP_SOFTWARE = 0x1,
691};
692
693#define SWEVENT_HLIST_BITS 8
694#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
695
696struct swevent_hlist {
697 struct hlist_head heads[SWEVENT_HLIST_SIZE];
698 struct rcu_head rcu_head;
699};
700
701#define PERF_ATTACH_CONTEXT 0x01
702#define PERF_ATTACH_GROUP 0x02
703#define PERF_ATTACH_TASK 0x04
704
705#ifdef CONFIG_CGROUP_PERF
706/*
707 * perf_cgroup_info keeps track of time_enabled for a cgroup.
708 * This is a per-cpu dynamically allocated data structure.
709 */
710struct perf_cgroup_info {
711 u64 time;
712 u64 timestamp;
713};
714
715struct perf_cgroup {
716 struct cgroup_subsys_state css;
717 struct perf_cgroup_info *info; /* timing info, one per cpu */
718};
719#endif
720
721struct ring_buffer;
722
723/**
724 * struct perf_event - performance event kernel representation:
725 */
726struct perf_event {
727#ifdef CONFIG_PERF_EVENTS
728 struct list_head group_entry;
729 struct list_head event_entry;
730 struct list_head sibling_list;
731 struct hlist_node hlist_entry;
732 int nr_siblings;
733 int group_flags;
734 struct perf_event *group_leader;
735 struct pmu *pmu;
736
737 enum perf_event_active_state state;
738 unsigned int attach_state;
739 local64_t count;
740 atomic64_t child_count;
741
742 /*
743 * These are the total time in nanoseconds that the event
744 * has been enabled (i.e. eligible to run, and the task has
745 * been scheduled in, if this is a per-task event)
746 * and running (scheduled onto the CPU), respectively.
747 *
748 * They are computed from tstamp_enabled, tstamp_running and
749 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
750 */
751 u64 total_time_enabled;
752 u64 total_time_running;
753
754 /*
755 * These are timestamps used for computing total_time_enabled
756 * and total_time_running when the event is in INACTIVE or
757 * ACTIVE state, measured in nanoseconds from an arbitrary point
758 * in time.
759 * tstamp_enabled: the notional time when the event was enabled
760 * tstamp_running: the notional time when the event was scheduled on
761 * tstamp_stopped: in INACTIVE state, the notional time when the
762 * event was scheduled off.
763 */
764 u64 tstamp_enabled;
765 u64 tstamp_running;
766 u64 tstamp_stopped;
767
768 /*
769 * timestamp shadows the actual context timing but it can
770 * be safely used in NMI interrupt context. It reflects the
771 * context time as it was when the event was last scheduled in.
772 *
773 * ctx_time already accounts for ctx->timestamp. Therefore to
774 * compute ctx_time for a sample, simply add perf_clock().
775 */
776 u64 shadow_ctx_time;
777
778 struct perf_event_attr attr;
779 u16 header_size;
780 u16 id_header_size;
781 u16 read_size;
782 struct hw_perf_event hw;
783
784 struct perf_event_context *ctx;
785 struct file *filp;
786
787 /*
788 * These accumulate total time (in nanoseconds) that children
789 * events have been enabled and running, respectively.
790 */
791 atomic64_t child_total_time_enabled;
792 atomic64_t child_total_time_running;
793
794 /*
795 * Protect attach/detach and child_list:
796 */
797 struct mutex child_mutex;
798 struct list_head child_list;
799 struct perf_event *parent;
800
801 int oncpu;
802 int cpu;
803
804 struct list_head owner_entry;
805 struct task_struct *owner;
806
807 /* mmap bits */
808 struct mutex mmap_mutex;
809 atomic_t mmap_count;
810 int mmap_locked;
811 struct user_struct *mmap_user;
812 struct ring_buffer *rb;
813
814 /* poll related */
815 wait_queue_head_t waitq;
816 struct fasync_struct *fasync;
817
818 /* delayed work for NMIs and such */
819 int pending_wakeup;
820 int pending_kill;
821 int pending_disable;
822 struct irq_work pending;
823
824 atomic_t event_limit;
825
826 void (*destroy)(struct perf_event *);
827 struct rcu_head rcu_head;
828
829 struct pid_namespace *ns;
830 u64 id;
831
832 perf_overflow_handler_t overflow_handler;
833
834#ifdef CONFIG_EVENT_TRACING
835 struct ftrace_event_call *tp_event;
836 struct event_filter *filter;
837#endif
838
839#ifdef CONFIG_CGROUP_PERF
840 struct perf_cgroup *cgrp; /* cgroup event is attach to */
841 int cgrp_defer_enabled;
842#endif
843
844#endif /* CONFIG_PERF_EVENTS */
845};
846
847enum perf_event_context_type {
848 task_context,
849 cpu_context,
850};
851
852/**
853 * struct perf_event_context - event context structure
854 *
855 * Used as a container for task events and CPU events as well:
856 */
857struct perf_event_context {
858 struct pmu *pmu;
859 enum perf_event_context_type type;
860 /*
861 * Protect the states of the events in the list,
862 * nr_active, and the list:
863 */
864 raw_spinlock_t lock;
865 /*
866 * Protect the list of events. Locking either mutex or lock
867 * is sufficient to ensure the list doesn't change; to change
868 * the list you need to lock both the mutex and the spinlock.
869 */
870 struct mutex mutex;
871
872 struct list_head pinned_groups;
873 struct list_head flexible_groups;
874 struct list_head event_list;
875 int nr_events;
876 int nr_active;
877 int is_active;
878 int nr_stat;
879 int rotate_disable;
880 atomic_t refcount;
881 struct task_struct *task;
882
883 /*
884 * Context clock, runs when context enabled.
885 */
886 u64 time;
887 u64 timestamp;
888
889 /*
890 * These fields let us detect when two contexts have both
891 * been cloned (inherited) from a common ancestor.
892 */
893 struct perf_event_context *parent_ctx;
894 u64 parent_gen;
895 u64 generation;
896 int pin_count;
897 int nr_cgroups; /* cgroup events present */
898 struct rcu_head rcu_head;
899};
900
901/*
902 * Number of contexts where an event can trigger:
903 * task, softirq, hardirq, nmi.
904 */
905#define PERF_NR_CONTEXTS 4
906
907/**
908 * struct perf_event_cpu_context - per cpu event context structure
909 */
910struct perf_cpu_context {
911 struct perf_event_context ctx;
912 struct perf_event_context *task_ctx;
913 int active_oncpu;
914 int exclusive;
915 struct list_head rotation_list;
916 int jiffies_interval;
917 struct pmu *active_pmu;
918 struct perf_cgroup *cgrp;
919};
920
921struct perf_output_handle {
922 struct perf_event *event;
923 struct ring_buffer *rb;
924 unsigned long wakeup;
925 unsigned long size;
926 void *addr;
927 int page;
928 int sample;
929};
930
931#ifdef CONFIG_PERF_EVENTS
932
933extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
934extern void perf_pmu_unregister(struct pmu *pmu);
935
936extern int perf_num_counters(void);
937extern const char *perf_pmu_name(void);
938extern void __perf_event_task_sched_in(struct task_struct *task);
939extern void __perf_event_task_sched_out(struct task_struct *task, struct task_struct *next);
940extern int perf_event_init_task(struct task_struct *child);
941extern void perf_event_exit_task(struct task_struct *child);
942extern void perf_event_free_task(struct task_struct *task);
943extern void perf_event_delayed_put(struct task_struct *task);
944extern void perf_event_print_debug(void);
945extern void perf_pmu_disable(struct pmu *pmu);
946extern void perf_pmu_enable(struct pmu *pmu);
947extern int perf_event_task_disable(void);
948extern int perf_event_task_enable(void);
949extern void perf_event_update_userpage(struct perf_event *event);
950extern int perf_event_release_kernel(struct perf_event *event);
951extern struct perf_event *
952perf_event_create_kernel_counter(struct perf_event_attr *attr,
953 int cpu,
954 struct task_struct *task,
955 perf_overflow_handler_t callback);
956extern u64 perf_event_read_value(struct perf_event *event,
957 u64 *enabled, u64 *running);
958
959struct perf_sample_data {
960 u64 type;
961
962 u64 ip;
963 struct {
964 u32 pid;
965 u32 tid;
966 } tid_entry;
967 u64 time;
968 u64 addr;
969 u64 id;
970 u64 stream_id;
971 struct {
972 u32 cpu;
973 u32 reserved;
974 } cpu_entry;
975 u64 period;
976 struct perf_callchain_entry *callchain;
977 struct perf_raw_record *raw;
978};
979
980static inline void perf_sample_data_init(struct perf_sample_data *data, u64 addr)
981{
982 data->addr = addr;
983 data->raw = NULL;
984}
985
986extern void perf_output_sample(struct perf_output_handle *handle,
987 struct perf_event_header *header,
988 struct perf_sample_data *data,
989 struct perf_event *event);
990extern void perf_prepare_sample(struct perf_event_header *header,
991 struct perf_sample_data *data,
992 struct perf_event *event,
993 struct pt_regs *regs);
994
995extern int perf_event_overflow(struct perf_event *event,
996 struct perf_sample_data *data,
997 struct pt_regs *regs);
998
999static inline bool is_sampling_event(struct perf_event *event)
1000{
1001 return event->attr.sample_period != 0;
1002}
1003
1004/*
1005 * Return 1 for a software event, 0 for a hardware event
1006 */
1007static inline int is_software_event(struct perf_event *event)
1008{
1009 return event->pmu->task_ctx_nr == perf_sw_context;
1010}
1011
1012extern struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1013
1014extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1015
1016#ifndef perf_arch_fetch_caller_regs
1017static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1018#endif
1019
1020/*
1021 * Take a snapshot of the regs. Skip ip and frame pointer to
1022 * the nth caller. We only need a few of the regs:
1023 * - ip for PERF_SAMPLE_IP
1024 * - cs for user_mode() tests
1025 * - bp for callchains
1026 * - eflags, for future purposes, just in case
1027 */
1028static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1029{
1030 memset(regs, 0, sizeof(*regs));
1031
1032 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1033}
1034
1035static __always_inline void
1036perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1037{
1038 struct pt_regs hot_regs;
1039
1040 if (static_branch(&perf_swevent_enabled[event_id])) {
1041 if (!regs) {
1042 perf_fetch_caller_regs(&hot_regs);
1043 regs = &hot_regs;
1044 }
1045 __perf_sw_event(event_id, nr, regs, addr);
1046 }
1047}
1048
1049extern struct jump_label_key perf_sched_events;
1050
1051static inline void perf_event_task_sched_in(struct task_struct *task)
1052{
1053 if (static_branch(&perf_sched_events))
1054 __perf_event_task_sched_in(task);
1055}
1056
1057static inline void perf_event_task_sched_out(struct task_struct *task, struct task_struct *next)
1058{
1059 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
1060
1061 __perf_event_task_sched_out(task, next);
1062}
1063
1064extern void perf_event_mmap(struct vm_area_struct *vma);
1065extern struct perf_guest_info_callbacks *perf_guest_cbs;
1066extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1067extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1068
1069extern void perf_event_comm(struct task_struct *tsk);
1070extern void perf_event_fork(struct task_struct *tsk);
1071
1072/* Callchains */
1073DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1074
1075extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
1076extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
1077
1078static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
1079{
1080 if (entry->nr < PERF_MAX_STACK_DEPTH)
1081 entry->ip[entry->nr++] = ip;
1082}
1083
1084extern int sysctl_perf_event_paranoid;
1085extern int sysctl_perf_event_mlock;
1086extern int sysctl_perf_event_sample_rate;
1087
1088extern int perf_proc_update_handler(struct ctl_table *table, int write,
1089 void __user *buffer, size_t *lenp,
1090 loff_t *ppos);
1091
1092static inline bool perf_paranoid_tracepoint_raw(void)
1093{
1094 return sysctl_perf_event_paranoid > -1;
1095}
1096
1097static inline bool perf_paranoid_cpu(void)
1098{
1099 return sysctl_perf_event_paranoid > 0;
1100}
1101
1102static inline bool perf_paranoid_kernel(void)
1103{
1104 return sysctl_perf_event_paranoid > 1;
1105}
1106
1107extern void perf_event_init(void);
1108extern void perf_tp_event(u64 addr, u64 count, void *record,
1109 int entry_size, struct pt_regs *regs,
1110 struct hlist_head *head, int rctx);
1111extern void perf_bp_event(struct perf_event *event, void *data);
1112
1113#ifndef perf_misc_flags
1114# define perf_misc_flags(regs) \
1115 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1116# define perf_instruction_pointer(regs) instruction_pointer(regs)
1117#endif
1118
1119extern int perf_output_begin(struct perf_output_handle *handle,
1120 struct perf_event *event, unsigned int size,
1121 int sample);
1122extern void perf_output_end(struct perf_output_handle *handle);
1123extern void perf_output_copy(struct perf_output_handle *handle,
1124 const void *buf, unsigned int len);
1125extern int perf_swevent_get_recursion_context(void);
1126extern void perf_swevent_put_recursion_context(int rctx);
1127extern void perf_event_enable(struct perf_event *event);
1128extern void perf_event_disable(struct perf_event *event);
1129extern void perf_event_task_tick(void);
1130#else
1131static inline void
1132perf_event_task_sched_in(struct task_struct *task) { }
1133static inline void
1134perf_event_task_sched_out(struct task_struct *task,
1135 struct task_struct *next) { }
1136static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1137static inline void perf_event_exit_task(struct task_struct *child) { }
1138static inline void perf_event_free_task(struct task_struct *task) { }
1139static inline void perf_event_delayed_put(struct task_struct *task) { }
1140static inline void perf_event_print_debug(void) { }
1141static inline int perf_event_task_disable(void) { return -EINVAL; }
1142static inline int perf_event_task_enable(void) { return -EINVAL; }
1143
1144static inline void
1145perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1146static inline void
1147perf_bp_event(struct perf_event *event, void *data) { }
1148
1149static inline int perf_register_guest_info_callbacks
1150(struct perf_guest_info_callbacks *callbacks) { return 0; }
1151static inline int perf_unregister_guest_info_callbacks
1152(struct perf_guest_info_callbacks *callbacks) { return 0; }
1153
1154static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1155static inline void perf_event_comm(struct task_struct *tsk) { }
1156static inline void perf_event_fork(struct task_struct *tsk) { }
1157static inline void perf_event_init(void) { }
1158static inline int perf_swevent_get_recursion_context(void) { return -1; }
1159static inline void perf_swevent_put_recursion_context(int rctx) { }
1160static inline void perf_event_enable(struct perf_event *event) { }
1161static inline void perf_event_disable(struct perf_event *event) { }
1162static inline void perf_event_task_tick(void) { }
1163#endif
1164
1165#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1166
1167/*
1168 * This has to have a higher priority than migration_notifier in sched.c.
1169 */
1170#define perf_cpu_notifier(fn) \
1171do { \
1172 static struct notifier_block fn##_nb __cpuinitdata = \
1173 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1174 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
1175 (void *)(unsigned long)smp_processor_id()); \
1176 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
1177 (void *)(unsigned long)smp_processor_id()); \
1178 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
1179 (void *)(unsigned long)smp_processor_id()); \
1180 register_cpu_notifier(&fn##_nb); \
1181} while (0)
1182
1183#endif /* __KERNEL__ */
1184#endif /* _LINUX_PERF_EVENT_H */
This page took 0.052828 seconds and 5 git commands to generate.