ftrace: Add FTRACE_ENTRY_REG macro to allow event registration
[deliverable/linux.git] / include / linux / perf_event.h
... / ...
CommitLineData
1/*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14#ifndef _LINUX_PERF_EVENT_H
15#define _LINUX_PERF_EVENT_H
16
17#include <linux/types.h>
18#include <linux/ioctl.h>
19#include <asm/byteorder.h>
20
21/*
22 * User-space ABI bits:
23 */
24
25/*
26 * attr.type
27 */
28enum perf_type_id {
29 PERF_TYPE_HARDWARE = 0,
30 PERF_TYPE_SOFTWARE = 1,
31 PERF_TYPE_TRACEPOINT = 2,
32 PERF_TYPE_HW_CACHE = 3,
33 PERF_TYPE_RAW = 4,
34 PERF_TYPE_BREAKPOINT = 5,
35
36 PERF_TYPE_MAX, /* non-ABI */
37};
38
39/*
40 * Generalized performance event event_id types, used by the
41 * attr.event_id parameter of the sys_perf_event_open()
42 * syscall:
43 */
44enum perf_hw_id {
45 /*
46 * Common hardware events, generalized by the kernel:
47 */
48 PERF_COUNT_HW_CPU_CYCLES = 0,
49 PERF_COUNT_HW_INSTRUCTIONS = 1,
50 PERF_COUNT_HW_CACHE_REFERENCES = 2,
51 PERF_COUNT_HW_CACHE_MISSES = 3,
52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
53 PERF_COUNT_HW_BRANCH_MISSES = 5,
54 PERF_COUNT_HW_BUS_CYCLES = 6,
55 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
56 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
57 PERF_COUNT_HW_REF_CPU_CYCLES = 9,
58
59 PERF_COUNT_HW_MAX, /* non-ABI */
60};
61
62/*
63 * Generalized hardware cache events:
64 *
65 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
66 * { read, write, prefetch } x
67 * { accesses, misses }
68 */
69enum perf_hw_cache_id {
70 PERF_COUNT_HW_CACHE_L1D = 0,
71 PERF_COUNT_HW_CACHE_L1I = 1,
72 PERF_COUNT_HW_CACHE_LL = 2,
73 PERF_COUNT_HW_CACHE_DTLB = 3,
74 PERF_COUNT_HW_CACHE_ITLB = 4,
75 PERF_COUNT_HW_CACHE_BPU = 5,
76 PERF_COUNT_HW_CACHE_NODE = 6,
77
78 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
79};
80
81enum perf_hw_cache_op_id {
82 PERF_COUNT_HW_CACHE_OP_READ = 0,
83 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
84 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
85
86 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
87};
88
89enum perf_hw_cache_op_result_id {
90 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
91 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
92
93 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
94};
95
96/*
97 * Special "software" events provided by the kernel, even if the hardware
98 * does not support performance events. These events measure various
99 * physical and sw events of the kernel (and allow the profiling of them as
100 * well):
101 */
102enum perf_sw_ids {
103 PERF_COUNT_SW_CPU_CLOCK = 0,
104 PERF_COUNT_SW_TASK_CLOCK = 1,
105 PERF_COUNT_SW_PAGE_FAULTS = 2,
106 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
107 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
108 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
109 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
110 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
111 PERF_COUNT_SW_EMULATION_FAULTS = 8,
112
113 PERF_COUNT_SW_MAX, /* non-ABI */
114};
115
116/*
117 * Bits that can be set in attr.sample_type to request information
118 * in the overflow packets.
119 */
120enum perf_event_sample_format {
121 PERF_SAMPLE_IP = 1U << 0,
122 PERF_SAMPLE_TID = 1U << 1,
123 PERF_SAMPLE_TIME = 1U << 2,
124 PERF_SAMPLE_ADDR = 1U << 3,
125 PERF_SAMPLE_READ = 1U << 4,
126 PERF_SAMPLE_CALLCHAIN = 1U << 5,
127 PERF_SAMPLE_ID = 1U << 6,
128 PERF_SAMPLE_CPU = 1U << 7,
129 PERF_SAMPLE_PERIOD = 1U << 8,
130 PERF_SAMPLE_STREAM_ID = 1U << 9,
131 PERF_SAMPLE_RAW = 1U << 10,
132
133 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */
134};
135
136/*
137 * The format of the data returned by read() on a perf event fd,
138 * as specified by attr.read_format:
139 *
140 * struct read_format {
141 * { u64 value;
142 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
143 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
144 * { u64 id; } && PERF_FORMAT_ID
145 * } && !PERF_FORMAT_GROUP
146 *
147 * { u64 nr;
148 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
149 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
150 * { u64 value;
151 * { u64 id; } && PERF_FORMAT_ID
152 * } cntr[nr];
153 * } && PERF_FORMAT_GROUP
154 * };
155 */
156enum perf_event_read_format {
157 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
158 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
159 PERF_FORMAT_ID = 1U << 2,
160 PERF_FORMAT_GROUP = 1U << 3,
161
162 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
163};
164
165#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
166
167/*
168 * Hardware event_id to monitor via a performance monitoring event:
169 */
170struct perf_event_attr {
171
172 /*
173 * Major type: hardware/software/tracepoint/etc.
174 */
175 __u32 type;
176
177 /*
178 * Size of the attr structure, for fwd/bwd compat.
179 */
180 __u32 size;
181
182 /*
183 * Type specific configuration information.
184 */
185 __u64 config;
186
187 union {
188 __u64 sample_period;
189 __u64 sample_freq;
190 };
191
192 __u64 sample_type;
193 __u64 read_format;
194
195 __u64 disabled : 1, /* off by default */
196 inherit : 1, /* children inherit it */
197 pinned : 1, /* must always be on PMU */
198 exclusive : 1, /* only group on PMU */
199 exclude_user : 1, /* don't count user */
200 exclude_kernel : 1, /* ditto kernel */
201 exclude_hv : 1, /* ditto hypervisor */
202 exclude_idle : 1, /* don't count when idle */
203 mmap : 1, /* include mmap data */
204 comm : 1, /* include comm data */
205 freq : 1, /* use freq, not period */
206 inherit_stat : 1, /* per task counts */
207 enable_on_exec : 1, /* next exec enables */
208 task : 1, /* trace fork/exit */
209 watermark : 1, /* wakeup_watermark */
210 /*
211 * precise_ip:
212 *
213 * 0 - SAMPLE_IP can have arbitrary skid
214 * 1 - SAMPLE_IP must have constant skid
215 * 2 - SAMPLE_IP requested to have 0 skid
216 * 3 - SAMPLE_IP must have 0 skid
217 *
218 * See also PERF_RECORD_MISC_EXACT_IP
219 */
220 precise_ip : 2, /* skid constraint */
221 mmap_data : 1, /* non-exec mmap data */
222 sample_id_all : 1, /* sample_type all events */
223
224 exclude_host : 1, /* don't count in host */
225 exclude_guest : 1, /* don't count in guest */
226
227 __reserved_1 : 43;
228
229 union {
230 __u32 wakeup_events; /* wakeup every n events */
231 __u32 wakeup_watermark; /* bytes before wakeup */
232 };
233
234 __u32 bp_type;
235 union {
236 __u64 bp_addr;
237 __u64 config1; /* extension of config */
238 };
239 union {
240 __u64 bp_len;
241 __u64 config2; /* extension of config1 */
242 };
243};
244
245/*
246 * Ioctls that can be done on a perf event fd:
247 */
248#define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
249#define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
250#define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
251#define PERF_EVENT_IOC_RESET _IO ('$', 3)
252#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
253#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
254#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
255
256enum perf_event_ioc_flags {
257 PERF_IOC_FLAG_GROUP = 1U << 0,
258};
259
260/*
261 * Structure of the page that can be mapped via mmap
262 */
263struct perf_event_mmap_page {
264 __u32 version; /* version number of this structure */
265 __u32 compat_version; /* lowest version this is compat with */
266
267 /*
268 * Bits needed to read the hw events in user-space.
269 *
270 * u32 seq;
271 * s64 count;
272 *
273 * do {
274 * seq = pc->lock;
275 *
276 * barrier()
277 * if (pc->index) {
278 * count = pmc_read(pc->index - 1);
279 * count += pc->offset;
280 * } else
281 * goto regular_read;
282 *
283 * barrier();
284 * } while (pc->lock != seq);
285 *
286 * NOTE: for obvious reason this only works on self-monitoring
287 * processes.
288 */
289 __u32 lock; /* seqlock for synchronization */
290 __u32 index; /* hardware event identifier */
291 __s64 offset; /* add to hardware event value */
292 __u64 time_enabled; /* time event active */
293 __u64 time_running; /* time event on cpu */
294 __u32 time_mult, time_shift;
295 __u64 time_offset;
296
297 /*
298 * Hole for extension of the self monitor capabilities
299 */
300
301 __u64 __reserved[121]; /* align to 1k */
302
303 /*
304 * Control data for the mmap() data buffer.
305 *
306 * User-space reading the @data_head value should issue an rmb(), on
307 * SMP capable platforms, after reading this value -- see
308 * perf_event_wakeup().
309 *
310 * When the mapping is PROT_WRITE the @data_tail value should be
311 * written by userspace to reflect the last read data. In this case
312 * the kernel will not over-write unread data.
313 */
314 __u64 data_head; /* head in the data section */
315 __u64 data_tail; /* user-space written tail */
316};
317
318#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
319#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
320#define PERF_RECORD_MISC_KERNEL (1 << 0)
321#define PERF_RECORD_MISC_USER (2 << 0)
322#define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
323#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
324#define PERF_RECORD_MISC_GUEST_USER (5 << 0)
325
326/*
327 * Indicates that the content of PERF_SAMPLE_IP points to
328 * the actual instruction that triggered the event. See also
329 * perf_event_attr::precise_ip.
330 */
331#define PERF_RECORD_MISC_EXACT_IP (1 << 14)
332/*
333 * Reserve the last bit to indicate some extended misc field
334 */
335#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
336
337struct perf_event_header {
338 __u32 type;
339 __u16 misc;
340 __u16 size;
341};
342
343enum perf_event_type {
344
345 /*
346 * If perf_event_attr.sample_id_all is set then all event types will
347 * have the sample_type selected fields related to where/when
348 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID)
349 * described in PERF_RECORD_SAMPLE below, it will be stashed just after
350 * the perf_event_header and the fields already present for the existing
351 * fields, i.e. at the end of the payload. That way a newer perf.data
352 * file will be supported by older perf tools, with these new optional
353 * fields being ignored.
354 *
355 * The MMAP events record the PROT_EXEC mappings so that we can
356 * correlate userspace IPs to code. They have the following structure:
357 *
358 * struct {
359 * struct perf_event_header header;
360 *
361 * u32 pid, tid;
362 * u64 addr;
363 * u64 len;
364 * u64 pgoff;
365 * char filename[];
366 * };
367 */
368 PERF_RECORD_MMAP = 1,
369
370 /*
371 * struct {
372 * struct perf_event_header header;
373 * u64 id;
374 * u64 lost;
375 * };
376 */
377 PERF_RECORD_LOST = 2,
378
379 /*
380 * struct {
381 * struct perf_event_header header;
382 *
383 * u32 pid, tid;
384 * char comm[];
385 * };
386 */
387 PERF_RECORD_COMM = 3,
388
389 /*
390 * struct {
391 * struct perf_event_header header;
392 * u32 pid, ppid;
393 * u32 tid, ptid;
394 * u64 time;
395 * };
396 */
397 PERF_RECORD_EXIT = 4,
398
399 /*
400 * struct {
401 * struct perf_event_header header;
402 * u64 time;
403 * u64 id;
404 * u64 stream_id;
405 * };
406 */
407 PERF_RECORD_THROTTLE = 5,
408 PERF_RECORD_UNTHROTTLE = 6,
409
410 /*
411 * struct {
412 * struct perf_event_header header;
413 * u32 pid, ppid;
414 * u32 tid, ptid;
415 * u64 time;
416 * };
417 */
418 PERF_RECORD_FORK = 7,
419
420 /*
421 * struct {
422 * struct perf_event_header header;
423 * u32 pid, tid;
424 *
425 * struct read_format values;
426 * };
427 */
428 PERF_RECORD_READ = 8,
429
430 /*
431 * struct {
432 * struct perf_event_header header;
433 *
434 * { u64 ip; } && PERF_SAMPLE_IP
435 * { u32 pid, tid; } && PERF_SAMPLE_TID
436 * { u64 time; } && PERF_SAMPLE_TIME
437 * { u64 addr; } && PERF_SAMPLE_ADDR
438 * { u64 id; } && PERF_SAMPLE_ID
439 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
440 * { u32 cpu, res; } && PERF_SAMPLE_CPU
441 * { u64 period; } && PERF_SAMPLE_PERIOD
442 *
443 * { struct read_format values; } && PERF_SAMPLE_READ
444 *
445 * { u64 nr,
446 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
447 *
448 * #
449 * # The RAW record below is opaque data wrt the ABI
450 * #
451 * # That is, the ABI doesn't make any promises wrt to
452 * # the stability of its content, it may vary depending
453 * # on event, hardware, kernel version and phase of
454 * # the moon.
455 * #
456 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
457 * #
458 *
459 * { u32 size;
460 * char data[size];}&& PERF_SAMPLE_RAW
461 * };
462 */
463 PERF_RECORD_SAMPLE = 9,
464
465 PERF_RECORD_MAX, /* non-ABI */
466};
467
468enum perf_callchain_context {
469 PERF_CONTEXT_HV = (__u64)-32,
470 PERF_CONTEXT_KERNEL = (__u64)-128,
471 PERF_CONTEXT_USER = (__u64)-512,
472
473 PERF_CONTEXT_GUEST = (__u64)-2048,
474 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
475 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
476
477 PERF_CONTEXT_MAX = (__u64)-4095,
478};
479
480#define PERF_FLAG_FD_NO_GROUP (1U << 0)
481#define PERF_FLAG_FD_OUTPUT (1U << 1)
482#define PERF_FLAG_PID_CGROUP (1U << 2) /* pid=cgroup id, per-cpu mode only */
483
484#ifdef __KERNEL__
485/*
486 * Kernel-internal data types and definitions:
487 */
488
489#ifdef CONFIG_PERF_EVENTS
490# include <linux/cgroup.h>
491# include <asm/perf_event.h>
492# include <asm/local64.h>
493#endif
494
495struct perf_guest_info_callbacks {
496 int (*is_in_guest)(void);
497 int (*is_user_mode)(void);
498 unsigned long (*get_guest_ip)(void);
499};
500
501#ifdef CONFIG_HAVE_HW_BREAKPOINT
502#include <asm/hw_breakpoint.h>
503#endif
504
505#include <linux/list.h>
506#include <linux/mutex.h>
507#include <linux/rculist.h>
508#include <linux/rcupdate.h>
509#include <linux/spinlock.h>
510#include <linux/hrtimer.h>
511#include <linux/fs.h>
512#include <linux/pid_namespace.h>
513#include <linux/workqueue.h>
514#include <linux/ftrace.h>
515#include <linux/cpu.h>
516#include <linux/irq_work.h>
517#include <linux/jump_label.h>
518#include <linux/atomic.h>
519#include <asm/local.h>
520
521#define PERF_MAX_STACK_DEPTH 255
522
523struct perf_callchain_entry {
524 __u64 nr;
525 __u64 ip[PERF_MAX_STACK_DEPTH];
526};
527
528struct perf_raw_record {
529 u32 size;
530 void *data;
531};
532
533struct perf_branch_entry {
534 __u64 from;
535 __u64 to;
536 __u64 flags;
537};
538
539struct perf_branch_stack {
540 __u64 nr;
541 struct perf_branch_entry entries[0];
542};
543
544struct task_struct;
545
546/*
547 * extra PMU register associated with an event
548 */
549struct hw_perf_event_extra {
550 u64 config; /* register value */
551 unsigned int reg; /* register address or index */
552 int alloc; /* extra register already allocated */
553 int idx; /* index in shared_regs->regs[] */
554};
555
556/**
557 * struct hw_perf_event - performance event hardware details:
558 */
559struct hw_perf_event {
560#ifdef CONFIG_PERF_EVENTS
561 union {
562 struct { /* hardware */
563 u64 config;
564 u64 last_tag;
565 unsigned long config_base;
566 unsigned long event_base;
567 int idx;
568 int last_cpu;
569 struct hw_perf_event_extra extra_reg;
570 };
571 struct { /* software */
572 struct hrtimer hrtimer;
573 };
574#ifdef CONFIG_HAVE_HW_BREAKPOINT
575 struct { /* breakpoint */
576 struct arch_hw_breakpoint info;
577 struct list_head bp_list;
578 /*
579 * Crufty hack to avoid the chicken and egg
580 * problem hw_breakpoint has with context
581 * creation and event initalization.
582 */
583 struct task_struct *bp_target;
584 };
585#endif
586 };
587 int state;
588 local64_t prev_count;
589 u64 sample_period;
590 u64 last_period;
591 local64_t period_left;
592 u64 interrupts_seq;
593 u64 interrupts;
594
595 u64 freq_time_stamp;
596 u64 freq_count_stamp;
597#endif
598};
599
600/*
601 * hw_perf_event::state flags
602 */
603#define PERF_HES_STOPPED 0x01 /* the counter is stopped */
604#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
605#define PERF_HES_ARCH 0x04
606
607struct perf_event;
608
609/*
610 * Common implementation detail of pmu::{start,commit,cancel}_txn
611 */
612#define PERF_EVENT_TXN 0x1
613
614/**
615 * struct pmu - generic performance monitoring unit
616 */
617struct pmu {
618 struct list_head entry;
619
620 struct device *dev;
621 const struct attribute_group **attr_groups;
622 char *name;
623 int type;
624
625 int * __percpu pmu_disable_count;
626 struct perf_cpu_context * __percpu pmu_cpu_context;
627 int task_ctx_nr;
628
629 /*
630 * Fully disable/enable this PMU, can be used to protect from the PMI
631 * as well as for lazy/batch writing of the MSRs.
632 */
633 void (*pmu_enable) (struct pmu *pmu); /* optional */
634 void (*pmu_disable) (struct pmu *pmu); /* optional */
635
636 /*
637 * Try and initialize the event for this PMU.
638 * Should return -ENOENT when the @event doesn't match this PMU.
639 */
640 int (*event_init) (struct perf_event *event);
641
642#define PERF_EF_START 0x01 /* start the counter when adding */
643#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
644#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
645
646 /*
647 * Adds/Removes a counter to/from the PMU, can be done inside
648 * a transaction, see the ->*_txn() methods.
649 */
650 int (*add) (struct perf_event *event, int flags);
651 void (*del) (struct perf_event *event, int flags);
652
653 /*
654 * Starts/Stops a counter present on the PMU. The PMI handler
655 * should stop the counter when perf_event_overflow() returns
656 * !0. ->start() will be used to continue.
657 */
658 void (*start) (struct perf_event *event, int flags);
659 void (*stop) (struct perf_event *event, int flags);
660
661 /*
662 * Updates the counter value of the event.
663 */
664 void (*read) (struct perf_event *event);
665
666 /*
667 * Group events scheduling is treated as a transaction, add
668 * group events as a whole and perform one schedulability test.
669 * If the test fails, roll back the whole group
670 *
671 * Start the transaction, after this ->add() doesn't need to
672 * do schedulability tests.
673 */
674 void (*start_txn) (struct pmu *pmu); /* optional */
675 /*
676 * If ->start_txn() disabled the ->add() schedulability test
677 * then ->commit_txn() is required to perform one. On success
678 * the transaction is closed. On error the transaction is kept
679 * open until ->cancel_txn() is called.
680 */
681 int (*commit_txn) (struct pmu *pmu); /* optional */
682 /*
683 * Will cancel the transaction, assumes ->del() is called
684 * for each successful ->add() during the transaction.
685 */
686 void (*cancel_txn) (struct pmu *pmu); /* optional */
687
688 /*
689 * Will return the value for perf_event_mmap_page::index for this event,
690 * if no implementation is provided it will default to: event->hw.idx + 1.
691 */
692 int (*event_idx) (struct perf_event *event); /*optional */
693};
694
695/**
696 * enum perf_event_active_state - the states of a event
697 */
698enum perf_event_active_state {
699 PERF_EVENT_STATE_ERROR = -2,
700 PERF_EVENT_STATE_OFF = -1,
701 PERF_EVENT_STATE_INACTIVE = 0,
702 PERF_EVENT_STATE_ACTIVE = 1,
703};
704
705struct file;
706struct perf_sample_data;
707
708typedef void (*perf_overflow_handler_t)(struct perf_event *,
709 struct perf_sample_data *,
710 struct pt_regs *regs);
711
712enum perf_group_flag {
713 PERF_GROUP_SOFTWARE = 0x1,
714};
715
716#define SWEVENT_HLIST_BITS 8
717#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
718
719struct swevent_hlist {
720 struct hlist_head heads[SWEVENT_HLIST_SIZE];
721 struct rcu_head rcu_head;
722};
723
724#define PERF_ATTACH_CONTEXT 0x01
725#define PERF_ATTACH_GROUP 0x02
726#define PERF_ATTACH_TASK 0x04
727
728#ifdef CONFIG_CGROUP_PERF
729/*
730 * perf_cgroup_info keeps track of time_enabled for a cgroup.
731 * This is a per-cpu dynamically allocated data structure.
732 */
733struct perf_cgroup_info {
734 u64 time;
735 u64 timestamp;
736};
737
738struct perf_cgroup {
739 struct cgroup_subsys_state css;
740 struct perf_cgroup_info *info; /* timing info, one per cpu */
741};
742#endif
743
744struct ring_buffer;
745
746/**
747 * struct perf_event - performance event kernel representation:
748 */
749struct perf_event {
750#ifdef CONFIG_PERF_EVENTS
751 struct list_head group_entry;
752 struct list_head event_entry;
753 struct list_head sibling_list;
754 struct hlist_node hlist_entry;
755 int nr_siblings;
756 int group_flags;
757 struct perf_event *group_leader;
758 struct pmu *pmu;
759
760 enum perf_event_active_state state;
761 unsigned int attach_state;
762 local64_t count;
763 atomic64_t child_count;
764
765 /*
766 * These are the total time in nanoseconds that the event
767 * has been enabled (i.e. eligible to run, and the task has
768 * been scheduled in, if this is a per-task event)
769 * and running (scheduled onto the CPU), respectively.
770 *
771 * They are computed from tstamp_enabled, tstamp_running and
772 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
773 */
774 u64 total_time_enabled;
775 u64 total_time_running;
776
777 /*
778 * These are timestamps used for computing total_time_enabled
779 * and total_time_running when the event is in INACTIVE or
780 * ACTIVE state, measured in nanoseconds from an arbitrary point
781 * in time.
782 * tstamp_enabled: the notional time when the event was enabled
783 * tstamp_running: the notional time when the event was scheduled on
784 * tstamp_stopped: in INACTIVE state, the notional time when the
785 * event was scheduled off.
786 */
787 u64 tstamp_enabled;
788 u64 tstamp_running;
789 u64 tstamp_stopped;
790
791 /*
792 * timestamp shadows the actual context timing but it can
793 * be safely used in NMI interrupt context. It reflects the
794 * context time as it was when the event was last scheduled in.
795 *
796 * ctx_time already accounts for ctx->timestamp. Therefore to
797 * compute ctx_time for a sample, simply add perf_clock().
798 */
799 u64 shadow_ctx_time;
800
801 struct perf_event_attr attr;
802 u16 header_size;
803 u16 id_header_size;
804 u16 read_size;
805 struct hw_perf_event hw;
806
807 struct perf_event_context *ctx;
808 struct file *filp;
809
810 /*
811 * These accumulate total time (in nanoseconds) that children
812 * events have been enabled and running, respectively.
813 */
814 atomic64_t child_total_time_enabled;
815 atomic64_t child_total_time_running;
816
817 /*
818 * Protect attach/detach and child_list:
819 */
820 struct mutex child_mutex;
821 struct list_head child_list;
822 struct perf_event *parent;
823
824 int oncpu;
825 int cpu;
826
827 struct list_head owner_entry;
828 struct task_struct *owner;
829
830 /* mmap bits */
831 struct mutex mmap_mutex;
832 atomic_t mmap_count;
833 int mmap_locked;
834 struct user_struct *mmap_user;
835 struct ring_buffer *rb;
836 struct list_head rb_entry;
837
838 /* poll related */
839 wait_queue_head_t waitq;
840 struct fasync_struct *fasync;
841
842 /* delayed work for NMIs and such */
843 int pending_wakeup;
844 int pending_kill;
845 int pending_disable;
846 struct irq_work pending;
847
848 atomic_t event_limit;
849
850 void (*destroy)(struct perf_event *);
851 struct rcu_head rcu_head;
852
853 struct pid_namespace *ns;
854 u64 id;
855
856 perf_overflow_handler_t overflow_handler;
857 void *overflow_handler_context;
858
859#ifdef CONFIG_EVENT_TRACING
860 struct ftrace_event_call *tp_event;
861 struct event_filter *filter;
862#endif
863
864#ifdef CONFIG_CGROUP_PERF
865 struct perf_cgroup *cgrp; /* cgroup event is attach to */
866 int cgrp_defer_enabled;
867#endif
868
869#endif /* CONFIG_PERF_EVENTS */
870};
871
872enum perf_event_context_type {
873 task_context,
874 cpu_context,
875};
876
877/**
878 * struct perf_event_context - event context structure
879 *
880 * Used as a container for task events and CPU events as well:
881 */
882struct perf_event_context {
883 struct pmu *pmu;
884 enum perf_event_context_type type;
885 /*
886 * Protect the states of the events in the list,
887 * nr_active, and the list:
888 */
889 raw_spinlock_t lock;
890 /*
891 * Protect the list of events. Locking either mutex or lock
892 * is sufficient to ensure the list doesn't change; to change
893 * the list you need to lock both the mutex and the spinlock.
894 */
895 struct mutex mutex;
896
897 struct list_head pinned_groups;
898 struct list_head flexible_groups;
899 struct list_head event_list;
900 int nr_events;
901 int nr_active;
902 int is_active;
903 int nr_stat;
904 int nr_freq;
905 int rotate_disable;
906 atomic_t refcount;
907 struct task_struct *task;
908
909 /*
910 * Context clock, runs when context enabled.
911 */
912 u64 time;
913 u64 timestamp;
914
915 /*
916 * These fields let us detect when two contexts have both
917 * been cloned (inherited) from a common ancestor.
918 */
919 struct perf_event_context *parent_ctx;
920 u64 parent_gen;
921 u64 generation;
922 int pin_count;
923 int nr_cgroups; /* cgroup events present */
924 struct rcu_head rcu_head;
925};
926
927/*
928 * Number of contexts where an event can trigger:
929 * task, softirq, hardirq, nmi.
930 */
931#define PERF_NR_CONTEXTS 4
932
933/**
934 * struct perf_event_cpu_context - per cpu event context structure
935 */
936struct perf_cpu_context {
937 struct perf_event_context ctx;
938 struct perf_event_context *task_ctx;
939 int active_oncpu;
940 int exclusive;
941 struct list_head rotation_list;
942 int jiffies_interval;
943 struct pmu *active_pmu;
944 struct perf_cgroup *cgrp;
945};
946
947struct perf_output_handle {
948 struct perf_event *event;
949 struct ring_buffer *rb;
950 unsigned long wakeup;
951 unsigned long size;
952 void *addr;
953 int page;
954};
955
956#ifdef CONFIG_PERF_EVENTS
957
958extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
959extern void perf_pmu_unregister(struct pmu *pmu);
960
961extern int perf_num_counters(void);
962extern const char *perf_pmu_name(void);
963extern void __perf_event_task_sched_in(struct task_struct *prev,
964 struct task_struct *task);
965extern void __perf_event_task_sched_out(struct task_struct *prev,
966 struct task_struct *next);
967extern int perf_event_init_task(struct task_struct *child);
968extern void perf_event_exit_task(struct task_struct *child);
969extern void perf_event_free_task(struct task_struct *task);
970extern void perf_event_delayed_put(struct task_struct *task);
971extern void perf_event_print_debug(void);
972extern void perf_pmu_disable(struct pmu *pmu);
973extern void perf_pmu_enable(struct pmu *pmu);
974extern int perf_event_task_disable(void);
975extern int perf_event_task_enable(void);
976extern int perf_event_refresh(struct perf_event *event, int refresh);
977extern void perf_event_update_userpage(struct perf_event *event);
978extern int perf_event_release_kernel(struct perf_event *event);
979extern struct perf_event *
980perf_event_create_kernel_counter(struct perf_event_attr *attr,
981 int cpu,
982 struct task_struct *task,
983 perf_overflow_handler_t callback,
984 void *context);
985extern u64 perf_event_read_value(struct perf_event *event,
986 u64 *enabled, u64 *running);
987
988struct perf_sample_data {
989 u64 type;
990
991 u64 ip;
992 struct {
993 u32 pid;
994 u32 tid;
995 } tid_entry;
996 u64 time;
997 u64 addr;
998 u64 id;
999 u64 stream_id;
1000 struct {
1001 u32 cpu;
1002 u32 reserved;
1003 } cpu_entry;
1004 u64 period;
1005 struct perf_callchain_entry *callchain;
1006 struct perf_raw_record *raw;
1007};
1008
1009static inline void perf_sample_data_init(struct perf_sample_data *data, u64 addr)
1010{
1011 data->addr = addr;
1012 data->raw = NULL;
1013}
1014
1015extern void perf_output_sample(struct perf_output_handle *handle,
1016 struct perf_event_header *header,
1017 struct perf_sample_data *data,
1018 struct perf_event *event);
1019extern void perf_prepare_sample(struct perf_event_header *header,
1020 struct perf_sample_data *data,
1021 struct perf_event *event,
1022 struct pt_regs *regs);
1023
1024extern int perf_event_overflow(struct perf_event *event,
1025 struct perf_sample_data *data,
1026 struct pt_regs *regs);
1027
1028static inline bool is_sampling_event(struct perf_event *event)
1029{
1030 return event->attr.sample_period != 0;
1031}
1032
1033/*
1034 * Return 1 for a software event, 0 for a hardware event
1035 */
1036static inline int is_software_event(struct perf_event *event)
1037{
1038 return event->pmu->task_ctx_nr == perf_sw_context;
1039}
1040
1041extern struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1042
1043extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1044
1045#ifndef perf_arch_fetch_caller_regs
1046static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1047#endif
1048
1049/*
1050 * Take a snapshot of the regs. Skip ip and frame pointer to
1051 * the nth caller. We only need a few of the regs:
1052 * - ip for PERF_SAMPLE_IP
1053 * - cs for user_mode() tests
1054 * - bp for callchains
1055 * - eflags, for future purposes, just in case
1056 */
1057static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1058{
1059 memset(regs, 0, sizeof(*regs));
1060
1061 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1062}
1063
1064static __always_inline void
1065perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1066{
1067 struct pt_regs hot_regs;
1068
1069 if (static_branch(&perf_swevent_enabled[event_id])) {
1070 if (!regs) {
1071 perf_fetch_caller_regs(&hot_regs);
1072 regs = &hot_regs;
1073 }
1074 __perf_sw_event(event_id, nr, regs, addr);
1075 }
1076}
1077
1078extern struct jump_label_key_deferred perf_sched_events;
1079
1080static inline void perf_event_task_sched_in(struct task_struct *prev,
1081 struct task_struct *task)
1082{
1083 if (static_branch(&perf_sched_events.key))
1084 __perf_event_task_sched_in(prev, task);
1085}
1086
1087static inline void perf_event_task_sched_out(struct task_struct *prev,
1088 struct task_struct *next)
1089{
1090 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
1091
1092 if (static_branch(&perf_sched_events.key))
1093 __perf_event_task_sched_out(prev, next);
1094}
1095
1096extern void perf_event_mmap(struct vm_area_struct *vma);
1097extern struct perf_guest_info_callbacks *perf_guest_cbs;
1098extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1099extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1100
1101extern void perf_event_comm(struct task_struct *tsk);
1102extern void perf_event_fork(struct task_struct *tsk);
1103
1104/* Callchains */
1105DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1106
1107extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
1108extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
1109
1110static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
1111{
1112 if (entry->nr < PERF_MAX_STACK_DEPTH)
1113 entry->ip[entry->nr++] = ip;
1114}
1115
1116extern int sysctl_perf_event_paranoid;
1117extern int sysctl_perf_event_mlock;
1118extern int sysctl_perf_event_sample_rate;
1119
1120extern int perf_proc_update_handler(struct ctl_table *table, int write,
1121 void __user *buffer, size_t *lenp,
1122 loff_t *ppos);
1123
1124static inline bool perf_paranoid_tracepoint_raw(void)
1125{
1126 return sysctl_perf_event_paranoid > -1;
1127}
1128
1129static inline bool perf_paranoid_cpu(void)
1130{
1131 return sysctl_perf_event_paranoid > 0;
1132}
1133
1134static inline bool perf_paranoid_kernel(void)
1135{
1136 return sysctl_perf_event_paranoid > 1;
1137}
1138
1139extern void perf_event_init(void);
1140extern void perf_tp_event(u64 addr, u64 count, void *record,
1141 int entry_size, struct pt_regs *regs,
1142 struct hlist_head *head, int rctx);
1143extern void perf_bp_event(struct perf_event *event, void *data);
1144
1145#ifndef perf_misc_flags
1146# define perf_misc_flags(regs) \
1147 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1148# define perf_instruction_pointer(regs) instruction_pointer(regs)
1149#endif
1150
1151extern int perf_output_begin(struct perf_output_handle *handle,
1152 struct perf_event *event, unsigned int size);
1153extern void perf_output_end(struct perf_output_handle *handle);
1154extern void perf_output_copy(struct perf_output_handle *handle,
1155 const void *buf, unsigned int len);
1156extern int perf_swevent_get_recursion_context(void);
1157extern void perf_swevent_put_recursion_context(int rctx);
1158extern void perf_event_enable(struct perf_event *event);
1159extern void perf_event_disable(struct perf_event *event);
1160extern void perf_event_task_tick(void);
1161#else
1162static inline void
1163perf_event_task_sched_in(struct task_struct *prev,
1164 struct task_struct *task) { }
1165static inline void
1166perf_event_task_sched_out(struct task_struct *prev,
1167 struct task_struct *next) { }
1168static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1169static inline void perf_event_exit_task(struct task_struct *child) { }
1170static inline void perf_event_free_task(struct task_struct *task) { }
1171static inline void perf_event_delayed_put(struct task_struct *task) { }
1172static inline void perf_event_print_debug(void) { }
1173static inline int perf_event_task_disable(void) { return -EINVAL; }
1174static inline int perf_event_task_enable(void) { return -EINVAL; }
1175static inline int perf_event_refresh(struct perf_event *event, int refresh)
1176{
1177 return -EINVAL;
1178}
1179
1180static inline void
1181perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1182static inline void
1183perf_bp_event(struct perf_event *event, void *data) { }
1184
1185static inline int perf_register_guest_info_callbacks
1186(struct perf_guest_info_callbacks *callbacks) { return 0; }
1187static inline int perf_unregister_guest_info_callbacks
1188(struct perf_guest_info_callbacks *callbacks) { return 0; }
1189
1190static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1191static inline void perf_event_comm(struct task_struct *tsk) { }
1192static inline void perf_event_fork(struct task_struct *tsk) { }
1193static inline void perf_event_init(void) { }
1194static inline int perf_swevent_get_recursion_context(void) { return -1; }
1195static inline void perf_swevent_put_recursion_context(int rctx) { }
1196static inline void perf_event_enable(struct perf_event *event) { }
1197static inline void perf_event_disable(struct perf_event *event) { }
1198static inline void perf_event_task_tick(void) { }
1199#endif
1200
1201#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1202
1203/*
1204 * This has to have a higher priority than migration_notifier in sched.c.
1205 */
1206#define perf_cpu_notifier(fn) \
1207do { \
1208 static struct notifier_block fn##_nb __cpuinitdata = \
1209 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1210 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
1211 (void *)(unsigned long)smp_processor_id()); \
1212 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
1213 (void *)(unsigned long)smp_processor_id()); \
1214 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
1215 (void *)(unsigned long)smp_processor_id()); \
1216 register_cpu_notifier(&fn##_nb); \
1217} while (0)
1218
1219#endif /* __KERNEL__ */
1220#endif /* _LINUX_PERF_EVENT_H */
This page took 0.053234 seconds and 5 git commands to generate.