perf: Optimize the hotpath by converting the perf output buffer to local_t
[deliverable/linux.git] / include / linux / perf_event.h
... / ...
CommitLineData
1/*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14#ifndef _LINUX_PERF_EVENT_H
15#define _LINUX_PERF_EVENT_H
16
17#include <linux/types.h>
18#include <linux/ioctl.h>
19#include <asm/byteorder.h>
20
21/*
22 * User-space ABI bits:
23 */
24
25/*
26 * attr.type
27 */
28enum perf_type_id {
29 PERF_TYPE_HARDWARE = 0,
30 PERF_TYPE_SOFTWARE = 1,
31 PERF_TYPE_TRACEPOINT = 2,
32 PERF_TYPE_HW_CACHE = 3,
33 PERF_TYPE_RAW = 4,
34 PERF_TYPE_BREAKPOINT = 5,
35
36 PERF_TYPE_MAX, /* non-ABI */
37};
38
39/*
40 * Generalized performance event event_id types, used by the
41 * attr.event_id parameter of the sys_perf_event_open()
42 * syscall:
43 */
44enum perf_hw_id {
45 /*
46 * Common hardware events, generalized by the kernel:
47 */
48 PERF_COUNT_HW_CPU_CYCLES = 0,
49 PERF_COUNT_HW_INSTRUCTIONS = 1,
50 PERF_COUNT_HW_CACHE_REFERENCES = 2,
51 PERF_COUNT_HW_CACHE_MISSES = 3,
52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
53 PERF_COUNT_HW_BRANCH_MISSES = 5,
54 PERF_COUNT_HW_BUS_CYCLES = 6,
55
56 PERF_COUNT_HW_MAX, /* non-ABI */
57};
58
59/*
60 * Generalized hardware cache events:
61 *
62 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
63 * { read, write, prefetch } x
64 * { accesses, misses }
65 */
66enum perf_hw_cache_id {
67 PERF_COUNT_HW_CACHE_L1D = 0,
68 PERF_COUNT_HW_CACHE_L1I = 1,
69 PERF_COUNT_HW_CACHE_LL = 2,
70 PERF_COUNT_HW_CACHE_DTLB = 3,
71 PERF_COUNT_HW_CACHE_ITLB = 4,
72 PERF_COUNT_HW_CACHE_BPU = 5,
73
74 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
75};
76
77enum perf_hw_cache_op_id {
78 PERF_COUNT_HW_CACHE_OP_READ = 0,
79 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
80 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
81
82 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
83};
84
85enum perf_hw_cache_op_result_id {
86 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
87 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
88
89 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
90};
91
92/*
93 * Special "software" events provided by the kernel, even if the hardware
94 * does not support performance events. These events measure various
95 * physical and sw events of the kernel (and allow the profiling of them as
96 * well):
97 */
98enum perf_sw_ids {
99 PERF_COUNT_SW_CPU_CLOCK = 0,
100 PERF_COUNT_SW_TASK_CLOCK = 1,
101 PERF_COUNT_SW_PAGE_FAULTS = 2,
102 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
103 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
104 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
105 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
106 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
107 PERF_COUNT_SW_EMULATION_FAULTS = 8,
108
109 PERF_COUNT_SW_MAX, /* non-ABI */
110};
111
112/*
113 * Bits that can be set in attr.sample_type to request information
114 * in the overflow packets.
115 */
116enum perf_event_sample_format {
117 PERF_SAMPLE_IP = 1U << 0,
118 PERF_SAMPLE_TID = 1U << 1,
119 PERF_SAMPLE_TIME = 1U << 2,
120 PERF_SAMPLE_ADDR = 1U << 3,
121 PERF_SAMPLE_READ = 1U << 4,
122 PERF_SAMPLE_CALLCHAIN = 1U << 5,
123 PERF_SAMPLE_ID = 1U << 6,
124 PERF_SAMPLE_CPU = 1U << 7,
125 PERF_SAMPLE_PERIOD = 1U << 8,
126 PERF_SAMPLE_STREAM_ID = 1U << 9,
127 PERF_SAMPLE_RAW = 1U << 10,
128
129 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */
130};
131
132/*
133 * The format of the data returned by read() on a perf event fd,
134 * as specified by attr.read_format:
135 *
136 * struct read_format {
137 * { u64 value;
138 * { u64 time_enabled; } && PERF_FORMAT_ENABLED
139 * { u64 time_running; } && PERF_FORMAT_RUNNING
140 * { u64 id; } && PERF_FORMAT_ID
141 * } && !PERF_FORMAT_GROUP
142 *
143 * { u64 nr;
144 * { u64 time_enabled; } && PERF_FORMAT_ENABLED
145 * { u64 time_running; } && PERF_FORMAT_RUNNING
146 * { u64 value;
147 * { u64 id; } && PERF_FORMAT_ID
148 * } cntr[nr];
149 * } && PERF_FORMAT_GROUP
150 * };
151 */
152enum perf_event_read_format {
153 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
154 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
155 PERF_FORMAT_ID = 1U << 2,
156 PERF_FORMAT_GROUP = 1U << 3,
157
158 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
159};
160
161#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
162
163/*
164 * Hardware event_id to monitor via a performance monitoring event:
165 */
166struct perf_event_attr {
167
168 /*
169 * Major type: hardware/software/tracepoint/etc.
170 */
171 __u32 type;
172
173 /*
174 * Size of the attr structure, for fwd/bwd compat.
175 */
176 __u32 size;
177
178 /*
179 * Type specific configuration information.
180 */
181 __u64 config;
182
183 union {
184 __u64 sample_period;
185 __u64 sample_freq;
186 };
187
188 __u64 sample_type;
189 __u64 read_format;
190
191 __u64 disabled : 1, /* off by default */
192 inherit : 1, /* children inherit it */
193 pinned : 1, /* must always be on PMU */
194 exclusive : 1, /* only group on PMU */
195 exclude_user : 1, /* don't count user */
196 exclude_kernel : 1, /* ditto kernel */
197 exclude_hv : 1, /* ditto hypervisor */
198 exclude_idle : 1, /* don't count when idle */
199 mmap : 1, /* include mmap data */
200 comm : 1, /* include comm data */
201 freq : 1, /* use freq, not period */
202 inherit_stat : 1, /* per task counts */
203 enable_on_exec : 1, /* next exec enables */
204 task : 1, /* trace fork/exit */
205 watermark : 1, /* wakeup_watermark */
206 /*
207 * precise_ip:
208 *
209 * 0 - SAMPLE_IP can have arbitrary skid
210 * 1 - SAMPLE_IP must have constant skid
211 * 2 - SAMPLE_IP requested to have 0 skid
212 * 3 - SAMPLE_IP must have 0 skid
213 *
214 * See also PERF_RECORD_MISC_EXACT_IP
215 */
216 precise_ip : 2, /* skid constraint */
217
218 __reserved_1 : 47;
219
220 union {
221 __u32 wakeup_events; /* wakeup every n events */
222 __u32 wakeup_watermark; /* bytes before wakeup */
223 };
224
225 __u32 bp_type;
226 __u64 bp_addr;
227 __u64 bp_len;
228};
229
230/*
231 * Ioctls that can be done on a perf event fd:
232 */
233#define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
234#define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
235#define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
236#define PERF_EVENT_IOC_RESET _IO ('$', 3)
237#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
238#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
239#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
240
241enum perf_event_ioc_flags {
242 PERF_IOC_FLAG_GROUP = 1U << 0,
243};
244
245/*
246 * Structure of the page that can be mapped via mmap
247 */
248struct perf_event_mmap_page {
249 __u32 version; /* version number of this structure */
250 __u32 compat_version; /* lowest version this is compat with */
251
252 /*
253 * Bits needed to read the hw events in user-space.
254 *
255 * u32 seq;
256 * s64 count;
257 *
258 * do {
259 * seq = pc->lock;
260 *
261 * barrier()
262 * if (pc->index) {
263 * count = pmc_read(pc->index - 1);
264 * count += pc->offset;
265 * } else
266 * goto regular_read;
267 *
268 * barrier();
269 * } while (pc->lock != seq);
270 *
271 * NOTE: for obvious reason this only works on self-monitoring
272 * processes.
273 */
274 __u32 lock; /* seqlock for synchronization */
275 __u32 index; /* hardware event identifier */
276 __s64 offset; /* add to hardware event value */
277 __u64 time_enabled; /* time event active */
278 __u64 time_running; /* time event on cpu */
279
280 /*
281 * Hole for extension of the self monitor capabilities
282 */
283
284 __u64 __reserved[123]; /* align to 1k */
285
286 /*
287 * Control data for the mmap() data buffer.
288 *
289 * User-space reading the @data_head value should issue an rmb(), on
290 * SMP capable platforms, after reading this value -- see
291 * perf_event_wakeup().
292 *
293 * When the mapping is PROT_WRITE the @data_tail value should be
294 * written by userspace to reflect the last read data. In this case
295 * the kernel will not over-write unread data.
296 */
297 __u64 data_head; /* head in the data section */
298 __u64 data_tail; /* user-space written tail */
299};
300
301#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
302#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
303#define PERF_RECORD_MISC_KERNEL (1 << 0)
304#define PERF_RECORD_MISC_USER (2 << 0)
305#define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
306#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
307#define PERF_RECORD_MISC_GUEST_USER (5 << 0)
308
309/*
310 * Indicates that the content of PERF_SAMPLE_IP points to
311 * the actual instruction that triggered the event. See also
312 * perf_event_attr::precise_ip.
313 */
314#define PERF_RECORD_MISC_EXACT_IP (1 << 14)
315/*
316 * Reserve the last bit to indicate some extended misc field
317 */
318#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
319
320struct perf_event_header {
321 __u32 type;
322 __u16 misc;
323 __u16 size;
324};
325
326enum perf_event_type {
327
328 /*
329 * The MMAP events record the PROT_EXEC mappings so that we can
330 * correlate userspace IPs to code. They have the following structure:
331 *
332 * struct {
333 * struct perf_event_header header;
334 *
335 * u32 pid, tid;
336 * u64 addr;
337 * u64 len;
338 * u64 pgoff;
339 * char filename[];
340 * };
341 */
342 PERF_RECORD_MMAP = 1,
343
344 /*
345 * struct {
346 * struct perf_event_header header;
347 * u64 id;
348 * u64 lost;
349 * };
350 */
351 PERF_RECORD_LOST = 2,
352
353 /*
354 * struct {
355 * struct perf_event_header header;
356 *
357 * u32 pid, tid;
358 * char comm[];
359 * };
360 */
361 PERF_RECORD_COMM = 3,
362
363 /*
364 * struct {
365 * struct perf_event_header header;
366 * u32 pid, ppid;
367 * u32 tid, ptid;
368 * u64 time;
369 * };
370 */
371 PERF_RECORD_EXIT = 4,
372
373 /*
374 * struct {
375 * struct perf_event_header header;
376 * u64 time;
377 * u64 id;
378 * u64 stream_id;
379 * };
380 */
381 PERF_RECORD_THROTTLE = 5,
382 PERF_RECORD_UNTHROTTLE = 6,
383
384 /*
385 * struct {
386 * struct perf_event_header header;
387 * u32 pid, ppid;
388 * u32 tid, ptid;
389 * u64 time;
390 * };
391 */
392 PERF_RECORD_FORK = 7,
393
394 /*
395 * struct {
396 * struct perf_event_header header;
397 * u32 pid, tid;
398 *
399 * struct read_format values;
400 * };
401 */
402 PERF_RECORD_READ = 8,
403
404 /*
405 * struct {
406 * struct perf_event_header header;
407 *
408 * { u64 ip; } && PERF_SAMPLE_IP
409 * { u32 pid, tid; } && PERF_SAMPLE_TID
410 * { u64 time; } && PERF_SAMPLE_TIME
411 * { u64 addr; } && PERF_SAMPLE_ADDR
412 * { u64 id; } && PERF_SAMPLE_ID
413 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
414 * { u32 cpu, res; } && PERF_SAMPLE_CPU
415 * { u64 period; } && PERF_SAMPLE_PERIOD
416 *
417 * { struct read_format values; } && PERF_SAMPLE_READ
418 *
419 * { u64 nr,
420 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
421 *
422 * #
423 * # The RAW record below is opaque data wrt the ABI
424 * #
425 * # That is, the ABI doesn't make any promises wrt to
426 * # the stability of its content, it may vary depending
427 * # on event, hardware, kernel version and phase of
428 * # the moon.
429 * #
430 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
431 * #
432 *
433 * { u32 size;
434 * char data[size];}&& PERF_SAMPLE_RAW
435 * };
436 */
437 PERF_RECORD_SAMPLE = 9,
438
439 PERF_RECORD_MAX, /* non-ABI */
440};
441
442enum perf_callchain_context {
443 PERF_CONTEXT_HV = (__u64)-32,
444 PERF_CONTEXT_KERNEL = (__u64)-128,
445 PERF_CONTEXT_USER = (__u64)-512,
446
447 PERF_CONTEXT_GUEST = (__u64)-2048,
448 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
449 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
450
451 PERF_CONTEXT_MAX = (__u64)-4095,
452};
453
454#define PERF_FLAG_FD_NO_GROUP (1U << 0)
455#define PERF_FLAG_FD_OUTPUT (1U << 1)
456
457#ifdef __KERNEL__
458/*
459 * Kernel-internal data types and definitions:
460 */
461
462#ifdef CONFIG_PERF_EVENTS
463# include <asm/perf_event.h>
464#endif
465
466struct perf_guest_info_callbacks {
467 int (*is_in_guest) (void);
468 int (*is_user_mode) (void);
469 unsigned long (*get_guest_ip) (void);
470};
471
472#ifdef CONFIG_HAVE_HW_BREAKPOINT
473#include <asm/hw_breakpoint.h>
474#endif
475
476#include <linux/list.h>
477#include <linux/mutex.h>
478#include <linux/rculist.h>
479#include <linux/rcupdate.h>
480#include <linux/spinlock.h>
481#include <linux/hrtimer.h>
482#include <linux/fs.h>
483#include <linux/pid_namespace.h>
484#include <linux/workqueue.h>
485#include <linux/ftrace.h>
486#include <linux/cpu.h>
487#include <asm/atomic.h>
488#include <asm/local.h>
489
490#define PERF_MAX_STACK_DEPTH 255
491
492struct perf_callchain_entry {
493 __u64 nr;
494 __u64 ip[PERF_MAX_STACK_DEPTH];
495};
496
497struct perf_raw_record {
498 u32 size;
499 void *data;
500};
501
502struct perf_branch_entry {
503 __u64 from;
504 __u64 to;
505 __u64 flags;
506};
507
508struct perf_branch_stack {
509 __u64 nr;
510 struct perf_branch_entry entries[0];
511};
512
513struct task_struct;
514
515/**
516 * struct hw_perf_event - performance event hardware details:
517 */
518struct hw_perf_event {
519#ifdef CONFIG_PERF_EVENTS
520 union {
521 struct { /* hardware */
522 u64 config;
523 u64 last_tag;
524 unsigned long config_base;
525 unsigned long event_base;
526 int idx;
527 int last_cpu;
528 };
529 struct { /* software */
530 s64 remaining;
531 struct hrtimer hrtimer;
532 };
533#ifdef CONFIG_HAVE_HW_BREAKPOINT
534 /* breakpoint */
535 struct arch_hw_breakpoint info;
536#endif
537 };
538 atomic64_t prev_count;
539 u64 sample_period;
540 u64 last_period;
541 atomic64_t period_left;
542 u64 interrupts;
543
544 u64 freq_time_stamp;
545 u64 freq_count_stamp;
546#endif
547};
548
549struct perf_event;
550
551#define PERF_EVENT_TXN_STARTED 1
552
553/**
554 * struct pmu - generic performance monitoring unit
555 */
556struct pmu {
557 int (*enable) (struct perf_event *event);
558 void (*disable) (struct perf_event *event);
559 int (*start) (struct perf_event *event);
560 void (*stop) (struct perf_event *event);
561 void (*read) (struct perf_event *event);
562 void (*unthrottle) (struct perf_event *event);
563
564 /*
565 * group events scheduling is treated as a transaction,
566 * add group events as a whole and perform one schedulability test.
567 * If test fails, roll back the whole group
568 */
569
570 void (*start_txn) (const struct pmu *pmu);
571 void (*cancel_txn) (const struct pmu *pmu);
572 int (*commit_txn) (const struct pmu *pmu);
573};
574
575/**
576 * enum perf_event_active_state - the states of a event
577 */
578enum perf_event_active_state {
579 PERF_EVENT_STATE_ERROR = -2,
580 PERF_EVENT_STATE_OFF = -1,
581 PERF_EVENT_STATE_INACTIVE = 0,
582 PERF_EVENT_STATE_ACTIVE = 1,
583};
584
585struct file;
586
587struct perf_mmap_data {
588 struct rcu_head rcu_head;
589#ifdef CONFIG_PERF_USE_VMALLOC
590 struct work_struct work;
591#endif
592 int data_order; /* allocation order */
593 int nr_pages; /* nr of data pages */
594 int writable; /* are we writable */
595 int nr_locked; /* nr pages mlocked */
596
597 atomic_t poll; /* POLL_ for wakeups */
598
599 local_t head; /* write position */
600 local_t nest; /* nested writers */
601 local_t events; /* event limit */
602 local_t wakeup; /* needs a wakeup */
603 local_t lost; /* nr records lost */
604
605 long watermark; /* wakeup watermark */
606
607 struct perf_event_mmap_page *user_page;
608 void *data_pages[0];
609};
610
611struct perf_pending_entry {
612 struct perf_pending_entry *next;
613 void (*func)(struct perf_pending_entry *);
614};
615
616struct perf_sample_data;
617
618typedef void (*perf_overflow_handler_t)(struct perf_event *, int,
619 struct perf_sample_data *,
620 struct pt_regs *regs);
621
622enum perf_group_flag {
623 PERF_GROUP_SOFTWARE = 0x1,
624};
625
626#define SWEVENT_HLIST_BITS 8
627#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
628
629struct swevent_hlist {
630 struct hlist_head heads[SWEVENT_HLIST_SIZE];
631 struct rcu_head rcu_head;
632};
633
634/**
635 * struct perf_event - performance event kernel representation:
636 */
637struct perf_event {
638#ifdef CONFIG_PERF_EVENTS
639 struct list_head group_entry;
640 struct list_head event_entry;
641 struct list_head sibling_list;
642 struct hlist_node hlist_entry;
643 int nr_siblings;
644 int group_flags;
645 struct perf_event *group_leader;
646 struct perf_event *output;
647 const struct pmu *pmu;
648
649 enum perf_event_active_state state;
650 atomic64_t count;
651
652 /*
653 * These are the total time in nanoseconds that the event
654 * has been enabled (i.e. eligible to run, and the task has
655 * been scheduled in, if this is a per-task event)
656 * and running (scheduled onto the CPU), respectively.
657 *
658 * They are computed from tstamp_enabled, tstamp_running and
659 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
660 */
661 u64 total_time_enabled;
662 u64 total_time_running;
663
664 /*
665 * These are timestamps used for computing total_time_enabled
666 * and total_time_running when the event is in INACTIVE or
667 * ACTIVE state, measured in nanoseconds from an arbitrary point
668 * in time.
669 * tstamp_enabled: the notional time when the event was enabled
670 * tstamp_running: the notional time when the event was scheduled on
671 * tstamp_stopped: in INACTIVE state, the notional time when the
672 * event was scheduled off.
673 */
674 u64 tstamp_enabled;
675 u64 tstamp_running;
676 u64 tstamp_stopped;
677
678 struct perf_event_attr attr;
679 struct hw_perf_event hw;
680
681 struct perf_event_context *ctx;
682 struct file *filp;
683
684 /*
685 * These accumulate total time (in nanoseconds) that children
686 * events have been enabled and running, respectively.
687 */
688 atomic64_t child_total_time_enabled;
689 atomic64_t child_total_time_running;
690
691 /*
692 * Protect attach/detach and child_list:
693 */
694 struct mutex child_mutex;
695 struct list_head child_list;
696 struct perf_event *parent;
697
698 int oncpu;
699 int cpu;
700
701 struct list_head owner_entry;
702 struct task_struct *owner;
703
704 /* mmap bits */
705 struct mutex mmap_mutex;
706 atomic_t mmap_count;
707 struct perf_mmap_data *data;
708
709 /* poll related */
710 wait_queue_head_t waitq;
711 struct fasync_struct *fasync;
712
713 /* delayed work for NMIs and such */
714 int pending_wakeup;
715 int pending_kill;
716 int pending_disable;
717 struct perf_pending_entry pending;
718
719 atomic_t event_limit;
720
721 void (*destroy)(struct perf_event *);
722 struct rcu_head rcu_head;
723
724 struct pid_namespace *ns;
725 u64 id;
726
727 perf_overflow_handler_t overflow_handler;
728
729#ifdef CONFIG_EVENT_TRACING
730 struct event_filter *filter;
731#endif
732
733#endif /* CONFIG_PERF_EVENTS */
734};
735
736/**
737 * struct perf_event_context - event context structure
738 *
739 * Used as a container for task events and CPU events as well:
740 */
741struct perf_event_context {
742 /*
743 * Protect the states of the events in the list,
744 * nr_active, and the list:
745 */
746 raw_spinlock_t lock;
747 /*
748 * Protect the list of events. Locking either mutex or lock
749 * is sufficient to ensure the list doesn't change; to change
750 * the list you need to lock both the mutex and the spinlock.
751 */
752 struct mutex mutex;
753
754 struct list_head pinned_groups;
755 struct list_head flexible_groups;
756 struct list_head event_list;
757 int nr_events;
758 int nr_active;
759 int is_active;
760 int nr_stat;
761 atomic_t refcount;
762 struct task_struct *task;
763
764 /*
765 * Context clock, runs when context enabled.
766 */
767 u64 time;
768 u64 timestamp;
769
770 /*
771 * These fields let us detect when two contexts have both
772 * been cloned (inherited) from a common ancestor.
773 */
774 struct perf_event_context *parent_ctx;
775 u64 parent_gen;
776 u64 generation;
777 int pin_count;
778 struct rcu_head rcu_head;
779};
780
781/**
782 * struct perf_event_cpu_context - per cpu event context structure
783 */
784struct perf_cpu_context {
785 struct perf_event_context ctx;
786 struct perf_event_context *task_ctx;
787 int active_oncpu;
788 int max_pertask;
789 int exclusive;
790 struct swevent_hlist *swevent_hlist;
791 struct mutex hlist_mutex;
792 int hlist_refcount;
793
794 /*
795 * Recursion avoidance:
796 *
797 * task, softirq, irq, nmi context
798 */
799 int recursion[4];
800};
801
802struct perf_output_handle {
803 struct perf_event *event;
804 struct perf_mmap_data *data;
805 unsigned long head;
806 unsigned long offset;
807 int nmi;
808 int sample;
809};
810
811#ifdef CONFIG_PERF_EVENTS
812
813/*
814 * Set by architecture code:
815 */
816extern int perf_max_events;
817
818extern const struct pmu *hw_perf_event_init(struct perf_event *event);
819
820extern void perf_event_task_sched_in(struct task_struct *task);
821extern void perf_event_task_sched_out(struct task_struct *task, struct task_struct *next);
822extern void perf_event_task_tick(struct task_struct *task);
823extern int perf_event_init_task(struct task_struct *child);
824extern void perf_event_exit_task(struct task_struct *child);
825extern void perf_event_free_task(struct task_struct *task);
826extern void set_perf_event_pending(void);
827extern void perf_event_do_pending(void);
828extern void perf_event_print_debug(void);
829extern void __perf_disable(void);
830extern bool __perf_enable(void);
831extern void perf_disable(void);
832extern void perf_enable(void);
833extern int perf_event_task_disable(void);
834extern int perf_event_task_enable(void);
835extern void perf_event_update_userpage(struct perf_event *event);
836extern int perf_event_release_kernel(struct perf_event *event);
837extern struct perf_event *
838perf_event_create_kernel_counter(struct perf_event_attr *attr,
839 int cpu,
840 pid_t pid,
841 perf_overflow_handler_t callback);
842extern u64 perf_event_read_value(struct perf_event *event,
843 u64 *enabled, u64 *running);
844
845struct perf_sample_data {
846 u64 type;
847
848 u64 ip;
849 struct {
850 u32 pid;
851 u32 tid;
852 } tid_entry;
853 u64 time;
854 u64 addr;
855 u64 id;
856 u64 stream_id;
857 struct {
858 u32 cpu;
859 u32 reserved;
860 } cpu_entry;
861 u64 period;
862 struct perf_callchain_entry *callchain;
863 struct perf_raw_record *raw;
864};
865
866static inline
867void perf_sample_data_init(struct perf_sample_data *data, u64 addr)
868{
869 data->addr = addr;
870 data->raw = NULL;
871}
872
873extern void perf_output_sample(struct perf_output_handle *handle,
874 struct perf_event_header *header,
875 struct perf_sample_data *data,
876 struct perf_event *event);
877extern void perf_prepare_sample(struct perf_event_header *header,
878 struct perf_sample_data *data,
879 struct perf_event *event,
880 struct pt_regs *regs);
881
882extern int perf_event_overflow(struct perf_event *event, int nmi,
883 struct perf_sample_data *data,
884 struct pt_regs *regs);
885
886/*
887 * Return 1 for a software event, 0 for a hardware event
888 */
889static inline int is_software_event(struct perf_event *event)
890{
891 switch (event->attr.type) {
892 case PERF_TYPE_SOFTWARE:
893 case PERF_TYPE_TRACEPOINT:
894 /* for now the breakpoint stuff also works as software event */
895 case PERF_TYPE_BREAKPOINT:
896 return 1;
897 }
898 return 0;
899}
900
901extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
902
903extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64);
904
905extern void
906perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip);
907
908/*
909 * Take a snapshot of the regs. Skip ip and frame pointer to
910 * the nth caller. We only need a few of the regs:
911 * - ip for PERF_SAMPLE_IP
912 * - cs for user_mode() tests
913 * - bp for callchains
914 * - eflags, for future purposes, just in case
915 */
916static inline void perf_fetch_caller_regs(struct pt_regs *regs, int skip)
917{
918 unsigned long ip;
919
920 memset(regs, 0, sizeof(*regs));
921
922 switch (skip) {
923 case 1 :
924 ip = CALLER_ADDR0;
925 break;
926 case 2 :
927 ip = CALLER_ADDR1;
928 break;
929 case 3 :
930 ip = CALLER_ADDR2;
931 break;
932 case 4:
933 ip = CALLER_ADDR3;
934 break;
935 /* No need to support further for now */
936 default:
937 ip = 0;
938 }
939
940 return perf_arch_fetch_caller_regs(regs, ip, skip);
941}
942
943static inline void
944perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
945{
946 if (atomic_read(&perf_swevent_enabled[event_id])) {
947 struct pt_regs hot_regs;
948
949 if (!regs) {
950 perf_fetch_caller_regs(&hot_regs, 1);
951 regs = &hot_regs;
952 }
953 __perf_sw_event(event_id, nr, nmi, regs, addr);
954 }
955}
956
957extern void __perf_event_mmap(struct vm_area_struct *vma);
958
959static inline void perf_event_mmap(struct vm_area_struct *vma)
960{
961 if (vma->vm_flags & VM_EXEC)
962 __perf_event_mmap(vma);
963}
964
965extern struct perf_guest_info_callbacks *perf_guest_cbs;
966extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
967extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
968
969extern void perf_event_comm(struct task_struct *tsk);
970extern void perf_event_fork(struct task_struct *tsk);
971
972extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs);
973
974extern int sysctl_perf_event_paranoid;
975extern int sysctl_perf_event_mlock;
976extern int sysctl_perf_event_sample_rate;
977
978static inline bool perf_paranoid_tracepoint_raw(void)
979{
980 return sysctl_perf_event_paranoid > -1;
981}
982
983static inline bool perf_paranoid_cpu(void)
984{
985 return sysctl_perf_event_paranoid > 0;
986}
987
988static inline bool perf_paranoid_kernel(void)
989{
990 return sysctl_perf_event_paranoid > 1;
991}
992
993extern void perf_event_init(void);
994extern void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
995 int entry_size, struct pt_regs *regs, void *event);
996extern void perf_bp_event(struct perf_event *event, void *data);
997
998#ifndef perf_misc_flags
999#define perf_misc_flags(regs) (user_mode(regs) ? PERF_RECORD_MISC_USER : \
1000 PERF_RECORD_MISC_KERNEL)
1001#define perf_instruction_pointer(regs) instruction_pointer(regs)
1002#endif
1003
1004extern int perf_output_begin(struct perf_output_handle *handle,
1005 struct perf_event *event, unsigned int size,
1006 int nmi, int sample);
1007extern void perf_output_end(struct perf_output_handle *handle);
1008extern void perf_output_copy(struct perf_output_handle *handle,
1009 const void *buf, unsigned int len);
1010extern int perf_swevent_get_recursion_context(void);
1011extern void perf_swevent_put_recursion_context(int rctx);
1012extern void perf_event_enable(struct perf_event *event);
1013extern void perf_event_disable(struct perf_event *event);
1014#else
1015static inline void
1016perf_event_task_sched_in(struct task_struct *task) { }
1017static inline void
1018perf_event_task_sched_out(struct task_struct *task,
1019 struct task_struct *next) { }
1020static inline void
1021perf_event_task_tick(struct task_struct *task) { }
1022static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1023static inline void perf_event_exit_task(struct task_struct *child) { }
1024static inline void perf_event_free_task(struct task_struct *task) { }
1025static inline void perf_event_do_pending(void) { }
1026static inline void perf_event_print_debug(void) { }
1027static inline void perf_disable(void) { }
1028static inline void perf_enable(void) { }
1029static inline int perf_event_task_disable(void) { return -EINVAL; }
1030static inline int perf_event_task_enable(void) { return -EINVAL; }
1031
1032static inline void
1033perf_sw_event(u32 event_id, u64 nr, int nmi,
1034 struct pt_regs *regs, u64 addr) { }
1035static inline void
1036perf_bp_event(struct perf_event *event, void *data) { }
1037
1038static inline int perf_register_guest_info_callbacks
1039(struct perf_guest_info_callbacks *callbacks) { return 0; }
1040static inline int perf_unregister_guest_info_callbacks
1041(struct perf_guest_info_callbacks *callbacks) { return 0; }
1042
1043static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1044static inline void perf_event_comm(struct task_struct *tsk) { }
1045static inline void perf_event_fork(struct task_struct *tsk) { }
1046static inline void perf_event_init(void) { }
1047static inline int perf_swevent_get_recursion_context(void) { return -1; }
1048static inline void perf_swevent_put_recursion_context(int rctx) { }
1049static inline void perf_event_enable(struct perf_event *event) { }
1050static inline void perf_event_disable(struct perf_event *event) { }
1051#endif
1052
1053#define perf_output_put(handle, x) \
1054 perf_output_copy((handle), &(x), sizeof(x))
1055
1056/*
1057 * This has to have a higher priority than migration_notifier in sched.c.
1058 */
1059#define perf_cpu_notifier(fn) \
1060do { \
1061 static struct notifier_block fn##_nb __cpuinitdata = \
1062 { .notifier_call = fn, .priority = 20 }; \
1063 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
1064 (void *)(unsigned long)smp_processor_id()); \
1065 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
1066 (void *)(unsigned long)smp_processor_id()); \
1067 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
1068 (void *)(unsigned long)smp_processor_id()); \
1069 register_cpu_notifier(&fn##_nb); \
1070} while (0)
1071
1072#endif /* __KERNEL__ */
1073#endif /* _LINUX_PERF_EVENT_H */
This page took 0.037851 seconds and 5 git commands to generate.