Merge tag 'dt-for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / include / linux / ptrace.h
... / ...
CommitLineData
1#ifndef _LINUX_PTRACE_H
2#define _LINUX_PTRACE_H
3
4#include <linux/compiler.h> /* For unlikely. */
5#include <linux/sched.h> /* For struct task_struct. */
6#include <linux/err.h> /* for IS_ERR_VALUE */
7#include <linux/bug.h> /* For BUG_ON. */
8#include <uapi/linux/ptrace.h>
9
10/*
11 * Ptrace flags
12 *
13 * The owner ship rules for task->ptrace which holds the ptrace
14 * flags is simple. When a task is running it owns it's task->ptrace
15 * flags. When the a task is stopped the ptracer owns task->ptrace.
16 */
17
18#define PT_SEIZED 0x00010000 /* SEIZE used, enable new behavior */
19#define PT_PTRACED 0x00000001
20#define PT_DTRACE 0x00000002 /* delayed trace (used on m68k, i386) */
21#define PT_PTRACE_CAP 0x00000004 /* ptracer can follow suid-exec */
22
23#define PT_OPT_FLAG_SHIFT 3
24/* PT_TRACE_* event enable flags */
25#define PT_EVENT_FLAG(event) (1 << (PT_OPT_FLAG_SHIFT + (event)))
26#define PT_TRACESYSGOOD PT_EVENT_FLAG(0)
27#define PT_TRACE_FORK PT_EVENT_FLAG(PTRACE_EVENT_FORK)
28#define PT_TRACE_VFORK PT_EVENT_FLAG(PTRACE_EVENT_VFORK)
29#define PT_TRACE_CLONE PT_EVENT_FLAG(PTRACE_EVENT_CLONE)
30#define PT_TRACE_EXEC PT_EVENT_FLAG(PTRACE_EVENT_EXEC)
31#define PT_TRACE_VFORK_DONE PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE)
32#define PT_TRACE_EXIT PT_EVENT_FLAG(PTRACE_EVENT_EXIT)
33#define PT_TRACE_SECCOMP PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP)
34
35#define PT_EXITKILL (PTRACE_O_EXITKILL << PT_OPT_FLAG_SHIFT)
36
37/* single stepping state bits (used on ARM and PA-RISC) */
38#define PT_SINGLESTEP_BIT 31
39#define PT_SINGLESTEP (1<<PT_SINGLESTEP_BIT)
40#define PT_BLOCKSTEP_BIT 30
41#define PT_BLOCKSTEP (1<<PT_BLOCKSTEP_BIT)
42
43extern long arch_ptrace(struct task_struct *child, long request,
44 unsigned long addr, unsigned long data);
45extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
46extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
47extern void ptrace_disable(struct task_struct *);
48extern int ptrace_request(struct task_struct *child, long request,
49 unsigned long addr, unsigned long data);
50extern void ptrace_notify(int exit_code);
51extern void __ptrace_link(struct task_struct *child,
52 struct task_struct *new_parent);
53extern void __ptrace_unlink(struct task_struct *child);
54extern void exit_ptrace(struct task_struct *tracer);
55#define PTRACE_MODE_READ 0x01
56#define PTRACE_MODE_ATTACH 0x02
57#define PTRACE_MODE_NOAUDIT 0x04
58/* Returns true on success, false on denial. */
59extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
60
61static inline int ptrace_reparented(struct task_struct *child)
62{
63 return !same_thread_group(child->real_parent, child->parent);
64}
65
66static inline void ptrace_unlink(struct task_struct *child)
67{
68 if (unlikely(child->ptrace))
69 __ptrace_unlink(child);
70}
71
72int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
73 unsigned long data);
74int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
75 unsigned long data);
76
77/**
78 * ptrace_parent - return the task that is tracing the given task
79 * @task: task to consider
80 *
81 * Returns %NULL if no one is tracing @task, or the &struct task_struct
82 * pointer to its tracer.
83 *
84 * Must called under rcu_read_lock(). The pointer returned might be kept
85 * live only by RCU. During exec, this may be called with task_lock() held
86 * on @task, still held from when check_unsafe_exec() was called.
87 */
88static inline struct task_struct *ptrace_parent(struct task_struct *task)
89{
90 if (unlikely(task->ptrace))
91 return rcu_dereference(task->parent);
92 return NULL;
93}
94
95/**
96 * ptrace_event_enabled - test whether a ptrace event is enabled
97 * @task: ptracee of interest
98 * @event: %PTRACE_EVENT_* to test
99 *
100 * Test whether @event is enabled for ptracee @task.
101 *
102 * Returns %true if @event is enabled, %false otherwise.
103 */
104static inline bool ptrace_event_enabled(struct task_struct *task, int event)
105{
106 return task->ptrace & PT_EVENT_FLAG(event);
107}
108
109/**
110 * ptrace_event - possibly stop for a ptrace event notification
111 * @event: %PTRACE_EVENT_* value to report
112 * @message: value for %PTRACE_GETEVENTMSG to return
113 *
114 * Check whether @event is enabled and, if so, report @event and @message
115 * to the ptrace parent.
116 *
117 * Called without locks.
118 */
119static inline void ptrace_event(int event, unsigned long message)
120{
121 if (unlikely(ptrace_event_enabled(current, event))) {
122 current->ptrace_message = message;
123 ptrace_notify((event << 8) | SIGTRAP);
124 } else if (event == PTRACE_EVENT_EXEC) {
125 /* legacy EXEC report via SIGTRAP */
126 if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED)
127 send_sig(SIGTRAP, current, 0);
128 }
129}
130
131/**
132 * ptrace_init_task - initialize ptrace state for a new child
133 * @child: new child task
134 * @ptrace: true if child should be ptrace'd by parent's tracer
135 *
136 * This is called immediately after adding @child to its parent's children
137 * list. @ptrace is false in the normal case, and true to ptrace @child.
138 *
139 * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
140 */
141static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
142{
143 INIT_LIST_HEAD(&child->ptrace_entry);
144 INIT_LIST_HEAD(&child->ptraced);
145#ifdef CONFIG_HAVE_HW_BREAKPOINT
146 atomic_set(&child->ptrace_bp_refcnt, 1);
147#endif
148 child->jobctl = 0;
149 child->ptrace = 0;
150 child->parent = child->real_parent;
151
152 if (unlikely(ptrace) && current->ptrace) {
153 child->ptrace = current->ptrace;
154 __ptrace_link(child, current->parent);
155
156 if (child->ptrace & PT_SEIZED)
157 task_set_jobctl_pending(child, JOBCTL_TRAP_STOP);
158 else
159 sigaddset(&child->pending.signal, SIGSTOP);
160
161 set_tsk_thread_flag(child, TIF_SIGPENDING);
162 }
163}
164
165/**
166 * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
167 * @task: task in %EXIT_DEAD state
168 *
169 * Called with write_lock(&tasklist_lock) held.
170 */
171static inline void ptrace_release_task(struct task_struct *task)
172{
173 BUG_ON(!list_empty(&task->ptraced));
174 ptrace_unlink(task);
175 BUG_ON(!list_empty(&task->ptrace_entry));
176}
177
178#ifndef force_successful_syscall_return
179/*
180 * System call handlers that, upon successful completion, need to return a
181 * negative value should call force_successful_syscall_return() right before
182 * returning. On architectures where the syscall convention provides for a
183 * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
184 * others), this macro can be used to ensure that the error flag will not get
185 * set. On architectures which do not support a separate error flag, the macro
186 * is a no-op and the spurious error condition needs to be filtered out by some
187 * other means (e.g., in user-level, by passing an extra argument to the
188 * syscall handler, or something along those lines).
189 */
190#define force_successful_syscall_return() do { } while (0)
191#endif
192
193#ifndef is_syscall_success
194/*
195 * On most systems we can tell if a syscall is a success based on if the retval
196 * is an error value. On some systems like ia64 and powerpc they have different
197 * indicators of success/failure and must define their own.
198 */
199#define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs))))
200#endif
201
202/*
203 * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
204 *
205 * These do-nothing inlines are used when the arch does not
206 * implement single-step. The kerneldoc comments are here
207 * to document the interface for all arch definitions.
208 */
209
210#ifndef arch_has_single_step
211/**
212 * arch_has_single_step - does this CPU support user-mode single-step?
213 *
214 * If this is defined, then there must be function declarations or
215 * inlines for user_enable_single_step() and user_disable_single_step().
216 * arch_has_single_step() should evaluate to nonzero iff the machine
217 * supports instruction single-step for user mode.
218 * It can be a constant or it can test a CPU feature bit.
219 */
220#define arch_has_single_step() (0)
221
222/**
223 * user_enable_single_step - single-step in user-mode task
224 * @task: either current or a task stopped in %TASK_TRACED
225 *
226 * This can only be called when arch_has_single_step() has returned nonzero.
227 * Set @task so that when it returns to user mode, it will trap after the
228 * next single instruction executes. If arch_has_block_step() is defined,
229 * this must clear the effects of user_enable_block_step() too.
230 */
231static inline void user_enable_single_step(struct task_struct *task)
232{
233 BUG(); /* This can never be called. */
234}
235
236/**
237 * user_disable_single_step - cancel user-mode single-step
238 * @task: either current or a task stopped in %TASK_TRACED
239 *
240 * Clear @task of the effects of user_enable_single_step() and
241 * user_enable_block_step(). This can be called whether or not either
242 * of those was ever called on @task, and even if arch_has_single_step()
243 * returned zero.
244 */
245static inline void user_disable_single_step(struct task_struct *task)
246{
247}
248#else
249extern void user_enable_single_step(struct task_struct *);
250extern void user_disable_single_step(struct task_struct *);
251#endif /* arch_has_single_step */
252
253#ifndef arch_has_block_step
254/**
255 * arch_has_block_step - does this CPU support user-mode block-step?
256 *
257 * If this is defined, then there must be a function declaration or inline
258 * for user_enable_block_step(), and arch_has_single_step() must be defined
259 * too. arch_has_block_step() should evaluate to nonzero iff the machine
260 * supports step-until-branch for user mode. It can be a constant or it
261 * can test a CPU feature bit.
262 */
263#define arch_has_block_step() (0)
264
265/**
266 * user_enable_block_step - step until branch in user-mode task
267 * @task: either current or a task stopped in %TASK_TRACED
268 *
269 * This can only be called when arch_has_block_step() has returned nonzero,
270 * and will never be called when single-instruction stepping is being used.
271 * Set @task so that when it returns to user mode, it will trap after the
272 * next branch or trap taken.
273 */
274static inline void user_enable_block_step(struct task_struct *task)
275{
276 BUG(); /* This can never be called. */
277}
278#else
279extern void user_enable_block_step(struct task_struct *);
280#endif /* arch_has_block_step */
281
282#ifdef ARCH_HAS_USER_SINGLE_STEP_INFO
283extern void user_single_step_siginfo(struct task_struct *tsk,
284 struct pt_regs *regs, siginfo_t *info);
285#else
286static inline void user_single_step_siginfo(struct task_struct *tsk,
287 struct pt_regs *regs, siginfo_t *info)
288{
289 memset(info, 0, sizeof(*info));
290 info->si_signo = SIGTRAP;
291}
292#endif
293
294#ifndef arch_ptrace_stop_needed
295/**
296 * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
297 * @code: current->exit_code value ptrace will stop with
298 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
299 *
300 * This is called with the siglock held, to decide whether or not it's
301 * necessary to release the siglock and call arch_ptrace_stop() with the
302 * same @code and @info arguments. It can be defined to a constant if
303 * arch_ptrace_stop() is never required, or always is. On machines where
304 * this makes sense, it should be defined to a quick test to optimize out
305 * calling arch_ptrace_stop() when it would be superfluous. For example,
306 * if the thread has not been back to user mode since the last stop, the
307 * thread state might indicate that nothing needs to be done.
308 */
309#define arch_ptrace_stop_needed(code, info) (0)
310#endif
311
312#ifndef arch_ptrace_stop
313/**
314 * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
315 * @code: current->exit_code value ptrace will stop with
316 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
317 *
318 * This is called with no locks held when arch_ptrace_stop_needed() has
319 * just returned nonzero. It is allowed to block, e.g. for user memory
320 * access. The arch can have machine-specific work to be done before
321 * ptrace stops. On ia64, register backing store gets written back to user
322 * memory here. Since this can be costly (requires dropping the siglock),
323 * we only do it when the arch requires it for this particular stop, as
324 * indicated by arch_ptrace_stop_needed().
325 */
326#define arch_ptrace_stop(code, info) do { } while (0)
327#endif
328
329#ifndef current_pt_regs
330#define current_pt_regs() task_pt_regs(current)
331#endif
332
333#ifndef ptrace_signal_deliver
334#define ptrace_signal_deliver() ((void)0)
335#endif
336
337/*
338 * unlike current_pt_regs(), this one is equal to task_pt_regs(current)
339 * on *all* architectures; the only reason to have a per-arch definition
340 * is optimisation.
341 */
342#ifndef signal_pt_regs
343#define signal_pt_regs() task_pt_regs(current)
344#endif
345
346#ifndef current_user_stack_pointer
347#define current_user_stack_pointer() user_stack_pointer(current_pt_regs())
348#endif
349
350extern int task_current_syscall(struct task_struct *target, long *callno,
351 unsigned long args[6], unsigned int maxargs,
352 unsigned long *sp, unsigned long *pc);
353
354#ifdef CONFIG_HAVE_HW_BREAKPOINT
355extern int ptrace_get_breakpoints(struct task_struct *tsk);
356extern void ptrace_put_breakpoints(struct task_struct *tsk);
357#else
358static inline void ptrace_put_breakpoints(struct task_struct *tsk) { }
359#endif /* CONFIG_HAVE_HW_BREAKPOINT */
360
361#endif
This page took 0.03753 seconds and 5 git commands to generate.