nohz: Rename CONFIG_NO_HZ to CONFIG_NO_HZ_COMMON
[deliverable/linux.git] / include / linux / sched.h
... / ...
CommitLineData
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
4#include <uapi/linux/sched.h>
5
6
7struct sched_param {
8 int sched_priority;
9};
10
11#include <asm/param.h> /* for HZ */
12
13#include <linux/capability.h>
14#include <linux/threads.h>
15#include <linux/kernel.h>
16#include <linux/types.h>
17#include <linux/timex.h>
18#include <linux/jiffies.h>
19#include <linux/rbtree.h>
20#include <linux/thread_info.h>
21#include <linux/cpumask.h>
22#include <linux/errno.h>
23#include <linux/nodemask.h>
24#include <linux/mm_types.h>
25
26#include <asm/page.h>
27#include <asm/ptrace.h>
28#include <asm/cputime.h>
29
30#include <linux/smp.h>
31#include <linux/sem.h>
32#include <linux/signal.h>
33#include <linux/compiler.h>
34#include <linux/completion.h>
35#include <linux/pid.h>
36#include <linux/percpu.h>
37#include <linux/topology.h>
38#include <linux/proportions.h>
39#include <linux/seccomp.h>
40#include <linux/rcupdate.h>
41#include <linux/rculist.h>
42#include <linux/rtmutex.h>
43
44#include <linux/time.h>
45#include <linux/param.h>
46#include <linux/resource.h>
47#include <linux/timer.h>
48#include <linux/hrtimer.h>
49#include <linux/task_io_accounting.h>
50#include <linux/latencytop.h>
51#include <linux/cred.h>
52#include <linux/llist.h>
53#include <linux/uidgid.h>
54#include <linux/gfp.h>
55
56#include <asm/processor.h>
57
58struct exec_domain;
59struct futex_pi_state;
60struct robust_list_head;
61struct bio_list;
62struct fs_struct;
63struct perf_event_context;
64struct blk_plug;
65
66/*
67 * List of flags we want to share for kernel threads,
68 * if only because they are not used by them anyway.
69 */
70#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
71
72/*
73 * These are the constant used to fake the fixed-point load-average
74 * counting. Some notes:
75 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
76 * a load-average precision of 10 bits integer + 11 bits fractional
77 * - if you want to count load-averages more often, you need more
78 * precision, or rounding will get you. With 2-second counting freq,
79 * the EXP_n values would be 1981, 2034 and 2043 if still using only
80 * 11 bit fractions.
81 */
82extern unsigned long avenrun[]; /* Load averages */
83extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
84
85#define FSHIFT 11 /* nr of bits of precision */
86#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
87#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
88#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
89#define EXP_5 2014 /* 1/exp(5sec/5min) */
90#define EXP_15 2037 /* 1/exp(5sec/15min) */
91
92#define CALC_LOAD(load,exp,n) \
93 load *= exp; \
94 load += n*(FIXED_1-exp); \
95 load >>= FSHIFT;
96
97extern unsigned long total_forks;
98extern int nr_threads;
99DECLARE_PER_CPU(unsigned long, process_counts);
100extern int nr_processes(void);
101extern unsigned long nr_running(void);
102extern unsigned long nr_iowait(void);
103extern unsigned long nr_iowait_cpu(int cpu);
104extern unsigned long this_cpu_load(void);
105
106
107extern void calc_global_load(unsigned long ticks);
108extern void update_cpu_load_nohz(void);
109
110/* Notifier for when a task gets migrated to a new CPU */
111struct task_migration_notifier {
112 struct task_struct *task;
113 int from_cpu;
114 int to_cpu;
115};
116extern void register_task_migration_notifier(struct notifier_block *n);
117
118extern unsigned long get_parent_ip(unsigned long addr);
119
120extern void dump_cpu_task(int cpu);
121
122struct seq_file;
123struct cfs_rq;
124struct task_group;
125#ifdef CONFIG_SCHED_DEBUG
126extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
127extern void proc_sched_set_task(struct task_struct *p);
128extern void
129print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
130#endif
131
132/*
133 * Task state bitmask. NOTE! These bits are also
134 * encoded in fs/proc/array.c: get_task_state().
135 *
136 * We have two separate sets of flags: task->state
137 * is about runnability, while task->exit_state are
138 * about the task exiting. Confusing, but this way
139 * modifying one set can't modify the other one by
140 * mistake.
141 */
142#define TASK_RUNNING 0
143#define TASK_INTERRUPTIBLE 1
144#define TASK_UNINTERRUPTIBLE 2
145#define __TASK_STOPPED 4
146#define __TASK_TRACED 8
147/* in tsk->exit_state */
148#define EXIT_ZOMBIE 16
149#define EXIT_DEAD 32
150/* in tsk->state again */
151#define TASK_DEAD 64
152#define TASK_WAKEKILL 128
153#define TASK_WAKING 256
154#define TASK_STATE_MAX 512
155
156#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
157
158extern char ___assert_task_state[1 - 2*!!(
159 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
160
161/* Convenience macros for the sake of set_task_state */
162#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
163#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
164#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
165
166/* Convenience macros for the sake of wake_up */
167#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
168#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
169
170/* get_task_state() */
171#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
172 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
173 __TASK_TRACED)
174
175#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
176#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
177#define task_is_dead(task) ((task)->exit_state != 0)
178#define task_is_stopped_or_traced(task) \
179 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
180#define task_contributes_to_load(task) \
181 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
182 (task->flags & PF_FROZEN) == 0)
183
184#define __set_task_state(tsk, state_value) \
185 do { (tsk)->state = (state_value); } while (0)
186#define set_task_state(tsk, state_value) \
187 set_mb((tsk)->state, (state_value))
188
189/*
190 * set_current_state() includes a barrier so that the write of current->state
191 * is correctly serialised wrt the caller's subsequent test of whether to
192 * actually sleep:
193 *
194 * set_current_state(TASK_UNINTERRUPTIBLE);
195 * if (do_i_need_to_sleep())
196 * schedule();
197 *
198 * If the caller does not need such serialisation then use __set_current_state()
199 */
200#define __set_current_state(state_value) \
201 do { current->state = (state_value); } while (0)
202#define set_current_state(state_value) \
203 set_mb(current->state, (state_value))
204
205/* Task command name length */
206#define TASK_COMM_LEN 16
207
208#include <linux/spinlock.h>
209
210/*
211 * This serializes "schedule()" and also protects
212 * the run-queue from deletions/modifications (but
213 * _adding_ to the beginning of the run-queue has
214 * a separate lock).
215 */
216extern rwlock_t tasklist_lock;
217extern spinlock_t mmlist_lock;
218
219struct task_struct;
220
221#ifdef CONFIG_PROVE_RCU
222extern int lockdep_tasklist_lock_is_held(void);
223#endif /* #ifdef CONFIG_PROVE_RCU */
224
225extern void sched_init(void);
226extern void sched_init_smp(void);
227extern asmlinkage void schedule_tail(struct task_struct *prev);
228extern void init_idle(struct task_struct *idle, int cpu);
229extern void init_idle_bootup_task(struct task_struct *idle);
230
231extern int runqueue_is_locked(int cpu);
232
233#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
234extern void nohz_balance_enter_idle(int cpu);
235extern void set_cpu_sd_state_idle(void);
236extern int get_nohz_timer_target(void);
237#else
238static inline void nohz_balance_enter_idle(int cpu) { }
239static inline void set_cpu_sd_state_idle(void) { }
240#endif
241
242/*
243 * Only dump TASK_* tasks. (0 for all tasks)
244 */
245extern void show_state_filter(unsigned long state_filter);
246
247static inline void show_state(void)
248{
249 show_state_filter(0);
250}
251
252extern void show_regs(struct pt_regs *);
253
254/*
255 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
256 * task), SP is the stack pointer of the first frame that should be shown in the back
257 * trace (or NULL if the entire call-chain of the task should be shown).
258 */
259extern void show_stack(struct task_struct *task, unsigned long *sp);
260
261void io_schedule(void);
262long io_schedule_timeout(long timeout);
263
264extern void cpu_init (void);
265extern void trap_init(void);
266extern void update_process_times(int user);
267extern void scheduler_tick(void);
268
269extern void sched_show_task(struct task_struct *p);
270
271#ifdef CONFIG_LOCKUP_DETECTOR
272extern void touch_softlockup_watchdog(void);
273extern void touch_softlockup_watchdog_sync(void);
274extern void touch_all_softlockup_watchdogs(void);
275extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
276 void __user *buffer,
277 size_t *lenp, loff_t *ppos);
278extern unsigned int softlockup_panic;
279void lockup_detector_init(void);
280#else
281static inline void touch_softlockup_watchdog(void)
282{
283}
284static inline void touch_softlockup_watchdog_sync(void)
285{
286}
287static inline void touch_all_softlockup_watchdogs(void)
288{
289}
290static inline void lockup_detector_init(void)
291{
292}
293#endif
294
295/* Attach to any functions which should be ignored in wchan output. */
296#define __sched __attribute__((__section__(".sched.text")))
297
298/* Linker adds these: start and end of __sched functions */
299extern char __sched_text_start[], __sched_text_end[];
300
301/* Is this address in the __sched functions? */
302extern int in_sched_functions(unsigned long addr);
303
304#define MAX_SCHEDULE_TIMEOUT LONG_MAX
305extern signed long schedule_timeout(signed long timeout);
306extern signed long schedule_timeout_interruptible(signed long timeout);
307extern signed long schedule_timeout_killable(signed long timeout);
308extern signed long schedule_timeout_uninterruptible(signed long timeout);
309asmlinkage void schedule(void);
310extern void schedule_preempt_disabled(void);
311extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
312
313struct nsproxy;
314struct user_namespace;
315
316#include <linux/aio.h>
317
318#ifdef CONFIG_MMU
319extern void arch_pick_mmap_layout(struct mm_struct *mm);
320extern unsigned long
321arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
322 unsigned long, unsigned long);
323extern unsigned long
324arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
325 unsigned long len, unsigned long pgoff,
326 unsigned long flags);
327extern void arch_unmap_area(struct mm_struct *, unsigned long);
328extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
329#else
330static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
331#endif
332
333
334extern void set_dumpable(struct mm_struct *mm, int value);
335extern int get_dumpable(struct mm_struct *mm);
336
337/* mm flags */
338/* dumpable bits */
339#define MMF_DUMPABLE 0 /* core dump is permitted */
340#define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
341
342#define MMF_DUMPABLE_BITS 2
343#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
344
345/* coredump filter bits */
346#define MMF_DUMP_ANON_PRIVATE 2
347#define MMF_DUMP_ANON_SHARED 3
348#define MMF_DUMP_MAPPED_PRIVATE 4
349#define MMF_DUMP_MAPPED_SHARED 5
350#define MMF_DUMP_ELF_HEADERS 6
351#define MMF_DUMP_HUGETLB_PRIVATE 7
352#define MMF_DUMP_HUGETLB_SHARED 8
353
354#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
355#define MMF_DUMP_FILTER_BITS 7
356#define MMF_DUMP_FILTER_MASK \
357 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
358#define MMF_DUMP_FILTER_DEFAULT \
359 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
360 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
361
362#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
363# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
364#else
365# define MMF_DUMP_MASK_DEFAULT_ELF 0
366#endif
367 /* leave room for more dump flags */
368#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
369#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
370#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
371
372#define MMF_HAS_UPROBES 19 /* has uprobes */
373#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
374
375#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
376
377struct sighand_struct {
378 atomic_t count;
379 struct k_sigaction action[_NSIG];
380 spinlock_t siglock;
381 wait_queue_head_t signalfd_wqh;
382};
383
384struct pacct_struct {
385 int ac_flag;
386 long ac_exitcode;
387 unsigned long ac_mem;
388 cputime_t ac_utime, ac_stime;
389 unsigned long ac_minflt, ac_majflt;
390};
391
392struct cpu_itimer {
393 cputime_t expires;
394 cputime_t incr;
395 u32 error;
396 u32 incr_error;
397};
398
399/**
400 * struct cputime - snaphsot of system and user cputime
401 * @utime: time spent in user mode
402 * @stime: time spent in system mode
403 *
404 * Gathers a generic snapshot of user and system time.
405 */
406struct cputime {
407 cputime_t utime;
408 cputime_t stime;
409};
410
411/**
412 * struct task_cputime - collected CPU time counts
413 * @utime: time spent in user mode, in &cputime_t units
414 * @stime: time spent in kernel mode, in &cputime_t units
415 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
416 *
417 * This is an extension of struct cputime that includes the total runtime
418 * spent by the task from the scheduler point of view.
419 *
420 * As a result, this structure groups together three kinds of CPU time
421 * that are tracked for threads and thread groups. Most things considering
422 * CPU time want to group these counts together and treat all three
423 * of them in parallel.
424 */
425struct task_cputime {
426 cputime_t utime;
427 cputime_t stime;
428 unsigned long long sum_exec_runtime;
429};
430/* Alternate field names when used to cache expirations. */
431#define prof_exp stime
432#define virt_exp utime
433#define sched_exp sum_exec_runtime
434
435#define INIT_CPUTIME \
436 (struct task_cputime) { \
437 .utime = 0, \
438 .stime = 0, \
439 .sum_exec_runtime = 0, \
440 }
441
442/*
443 * Disable preemption until the scheduler is running.
444 * Reset by start_kernel()->sched_init()->init_idle().
445 *
446 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
447 * before the scheduler is active -- see should_resched().
448 */
449#define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
450
451/**
452 * struct thread_group_cputimer - thread group interval timer counts
453 * @cputime: thread group interval timers.
454 * @running: non-zero when there are timers running and
455 * @cputime receives updates.
456 * @lock: lock for fields in this struct.
457 *
458 * This structure contains the version of task_cputime, above, that is
459 * used for thread group CPU timer calculations.
460 */
461struct thread_group_cputimer {
462 struct task_cputime cputime;
463 int running;
464 raw_spinlock_t lock;
465};
466
467#include <linux/rwsem.h>
468struct autogroup;
469
470/*
471 * NOTE! "signal_struct" does not have its own
472 * locking, because a shared signal_struct always
473 * implies a shared sighand_struct, so locking
474 * sighand_struct is always a proper superset of
475 * the locking of signal_struct.
476 */
477struct signal_struct {
478 atomic_t sigcnt;
479 atomic_t live;
480 int nr_threads;
481
482 wait_queue_head_t wait_chldexit; /* for wait4() */
483
484 /* current thread group signal load-balancing target: */
485 struct task_struct *curr_target;
486
487 /* shared signal handling: */
488 struct sigpending shared_pending;
489
490 /* thread group exit support */
491 int group_exit_code;
492 /* overloaded:
493 * - notify group_exit_task when ->count is equal to notify_count
494 * - everyone except group_exit_task is stopped during signal delivery
495 * of fatal signals, group_exit_task processes the signal.
496 */
497 int notify_count;
498 struct task_struct *group_exit_task;
499
500 /* thread group stop support, overloads group_exit_code too */
501 int group_stop_count;
502 unsigned int flags; /* see SIGNAL_* flags below */
503
504 /*
505 * PR_SET_CHILD_SUBREAPER marks a process, like a service
506 * manager, to re-parent orphan (double-forking) child processes
507 * to this process instead of 'init'. The service manager is
508 * able to receive SIGCHLD signals and is able to investigate
509 * the process until it calls wait(). All children of this
510 * process will inherit a flag if they should look for a
511 * child_subreaper process at exit.
512 */
513 unsigned int is_child_subreaper:1;
514 unsigned int has_child_subreaper:1;
515
516 /* POSIX.1b Interval Timers */
517 struct list_head posix_timers;
518
519 /* ITIMER_REAL timer for the process */
520 struct hrtimer real_timer;
521 struct pid *leader_pid;
522 ktime_t it_real_incr;
523
524 /*
525 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
526 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
527 * values are defined to 0 and 1 respectively
528 */
529 struct cpu_itimer it[2];
530
531 /*
532 * Thread group totals for process CPU timers.
533 * See thread_group_cputimer(), et al, for details.
534 */
535 struct thread_group_cputimer cputimer;
536
537 /* Earliest-expiration cache. */
538 struct task_cputime cputime_expires;
539
540 struct list_head cpu_timers[3];
541
542 struct pid *tty_old_pgrp;
543
544 /* boolean value for session group leader */
545 int leader;
546
547 struct tty_struct *tty; /* NULL if no tty */
548
549#ifdef CONFIG_SCHED_AUTOGROUP
550 struct autogroup *autogroup;
551#endif
552 /*
553 * Cumulative resource counters for dead threads in the group,
554 * and for reaped dead child processes forked by this group.
555 * Live threads maintain their own counters and add to these
556 * in __exit_signal, except for the group leader.
557 */
558 cputime_t utime, stime, cutime, cstime;
559 cputime_t gtime;
560 cputime_t cgtime;
561#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
562 struct cputime prev_cputime;
563#endif
564 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
565 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
566 unsigned long inblock, oublock, cinblock, coublock;
567 unsigned long maxrss, cmaxrss;
568 struct task_io_accounting ioac;
569
570 /*
571 * Cumulative ns of schedule CPU time fo dead threads in the
572 * group, not including a zombie group leader, (This only differs
573 * from jiffies_to_ns(utime + stime) if sched_clock uses something
574 * other than jiffies.)
575 */
576 unsigned long long sum_sched_runtime;
577
578 /*
579 * We don't bother to synchronize most readers of this at all,
580 * because there is no reader checking a limit that actually needs
581 * to get both rlim_cur and rlim_max atomically, and either one
582 * alone is a single word that can safely be read normally.
583 * getrlimit/setrlimit use task_lock(current->group_leader) to
584 * protect this instead of the siglock, because they really
585 * have no need to disable irqs.
586 */
587 struct rlimit rlim[RLIM_NLIMITS];
588
589#ifdef CONFIG_BSD_PROCESS_ACCT
590 struct pacct_struct pacct; /* per-process accounting information */
591#endif
592#ifdef CONFIG_TASKSTATS
593 struct taskstats *stats;
594#endif
595#ifdef CONFIG_AUDIT
596 unsigned audit_tty;
597 struct tty_audit_buf *tty_audit_buf;
598#endif
599#ifdef CONFIG_CGROUPS
600 /*
601 * group_rwsem prevents new tasks from entering the threadgroup and
602 * member tasks from exiting,a more specifically, setting of
603 * PF_EXITING. fork and exit paths are protected with this rwsem
604 * using threadgroup_change_begin/end(). Users which require
605 * threadgroup to remain stable should use threadgroup_[un]lock()
606 * which also takes care of exec path. Currently, cgroup is the
607 * only user.
608 */
609 struct rw_semaphore group_rwsem;
610#endif
611
612 oom_flags_t oom_flags;
613 short oom_score_adj; /* OOM kill score adjustment */
614 short oom_score_adj_min; /* OOM kill score adjustment min value.
615 * Only settable by CAP_SYS_RESOURCE. */
616
617 struct mutex cred_guard_mutex; /* guard against foreign influences on
618 * credential calculations
619 * (notably. ptrace) */
620};
621
622/*
623 * Bits in flags field of signal_struct.
624 */
625#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
626#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
627#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
628/*
629 * Pending notifications to parent.
630 */
631#define SIGNAL_CLD_STOPPED 0x00000010
632#define SIGNAL_CLD_CONTINUED 0x00000020
633#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
634
635#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
636
637/* If true, all threads except ->group_exit_task have pending SIGKILL */
638static inline int signal_group_exit(const struct signal_struct *sig)
639{
640 return (sig->flags & SIGNAL_GROUP_EXIT) ||
641 (sig->group_exit_task != NULL);
642}
643
644/*
645 * Some day this will be a full-fledged user tracking system..
646 */
647struct user_struct {
648 atomic_t __count; /* reference count */
649 atomic_t processes; /* How many processes does this user have? */
650 atomic_t files; /* How many open files does this user have? */
651 atomic_t sigpending; /* How many pending signals does this user have? */
652#ifdef CONFIG_INOTIFY_USER
653 atomic_t inotify_watches; /* How many inotify watches does this user have? */
654 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
655#endif
656#ifdef CONFIG_FANOTIFY
657 atomic_t fanotify_listeners;
658#endif
659#ifdef CONFIG_EPOLL
660 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
661#endif
662#ifdef CONFIG_POSIX_MQUEUE
663 /* protected by mq_lock */
664 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
665#endif
666 unsigned long locked_shm; /* How many pages of mlocked shm ? */
667
668#ifdef CONFIG_KEYS
669 struct key *uid_keyring; /* UID specific keyring */
670 struct key *session_keyring; /* UID's default session keyring */
671#endif
672
673 /* Hash table maintenance information */
674 struct hlist_node uidhash_node;
675 kuid_t uid;
676
677#ifdef CONFIG_PERF_EVENTS
678 atomic_long_t locked_vm;
679#endif
680};
681
682extern int uids_sysfs_init(void);
683
684extern struct user_struct *find_user(kuid_t);
685
686extern struct user_struct root_user;
687#define INIT_USER (&root_user)
688
689
690struct backing_dev_info;
691struct reclaim_state;
692
693#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
694struct sched_info {
695 /* cumulative counters */
696 unsigned long pcount; /* # of times run on this cpu */
697 unsigned long long run_delay; /* time spent waiting on a runqueue */
698
699 /* timestamps */
700 unsigned long long last_arrival,/* when we last ran on a cpu */
701 last_queued; /* when we were last queued to run */
702};
703#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
704
705#ifdef CONFIG_TASK_DELAY_ACCT
706struct task_delay_info {
707 spinlock_t lock;
708 unsigned int flags; /* Private per-task flags */
709
710 /* For each stat XXX, add following, aligned appropriately
711 *
712 * struct timespec XXX_start, XXX_end;
713 * u64 XXX_delay;
714 * u32 XXX_count;
715 *
716 * Atomicity of updates to XXX_delay, XXX_count protected by
717 * single lock above (split into XXX_lock if contention is an issue).
718 */
719
720 /*
721 * XXX_count is incremented on every XXX operation, the delay
722 * associated with the operation is added to XXX_delay.
723 * XXX_delay contains the accumulated delay time in nanoseconds.
724 */
725 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
726 u64 blkio_delay; /* wait for sync block io completion */
727 u64 swapin_delay; /* wait for swapin block io completion */
728 u32 blkio_count; /* total count of the number of sync block */
729 /* io operations performed */
730 u32 swapin_count; /* total count of the number of swapin block */
731 /* io operations performed */
732
733 struct timespec freepages_start, freepages_end;
734 u64 freepages_delay; /* wait for memory reclaim */
735 u32 freepages_count; /* total count of memory reclaim */
736};
737#endif /* CONFIG_TASK_DELAY_ACCT */
738
739static inline int sched_info_on(void)
740{
741#ifdef CONFIG_SCHEDSTATS
742 return 1;
743#elif defined(CONFIG_TASK_DELAY_ACCT)
744 extern int delayacct_on;
745 return delayacct_on;
746#else
747 return 0;
748#endif
749}
750
751enum cpu_idle_type {
752 CPU_IDLE,
753 CPU_NOT_IDLE,
754 CPU_NEWLY_IDLE,
755 CPU_MAX_IDLE_TYPES
756};
757
758/*
759 * Increase resolution of cpu_power calculations
760 */
761#define SCHED_POWER_SHIFT 10
762#define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
763
764/*
765 * sched-domains (multiprocessor balancing) declarations:
766 */
767#ifdef CONFIG_SMP
768#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
769#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
770#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
771#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
772#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
773#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
774#define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
775#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
776#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
777#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
778#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
779#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
780
781extern int __weak arch_sd_sibiling_asym_packing(void);
782
783struct sched_domain_attr {
784 int relax_domain_level;
785};
786
787#define SD_ATTR_INIT (struct sched_domain_attr) { \
788 .relax_domain_level = -1, \
789}
790
791extern int sched_domain_level_max;
792
793struct sched_group;
794
795struct sched_domain {
796 /* These fields must be setup */
797 struct sched_domain *parent; /* top domain must be null terminated */
798 struct sched_domain *child; /* bottom domain must be null terminated */
799 struct sched_group *groups; /* the balancing groups of the domain */
800 unsigned long min_interval; /* Minimum balance interval ms */
801 unsigned long max_interval; /* Maximum balance interval ms */
802 unsigned int busy_factor; /* less balancing by factor if busy */
803 unsigned int imbalance_pct; /* No balance until over watermark */
804 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
805 unsigned int busy_idx;
806 unsigned int idle_idx;
807 unsigned int newidle_idx;
808 unsigned int wake_idx;
809 unsigned int forkexec_idx;
810 unsigned int smt_gain;
811 int flags; /* See SD_* */
812 int level;
813
814 /* Runtime fields. */
815 unsigned long last_balance; /* init to jiffies. units in jiffies */
816 unsigned int balance_interval; /* initialise to 1. units in ms. */
817 unsigned int nr_balance_failed; /* initialise to 0 */
818
819 u64 last_update;
820
821#ifdef CONFIG_SCHEDSTATS
822 /* load_balance() stats */
823 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
824 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
825 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
826 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
827 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
828 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
829 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
830 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
831
832 /* Active load balancing */
833 unsigned int alb_count;
834 unsigned int alb_failed;
835 unsigned int alb_pushed;
836
837 /* SD_BALANCE_EXEC stats */
838 unsigned int sbe_count;
839 unsigned int sbe_balanced;
840 unsigned int sbe_pushed;
841
842 /* SD_BALANCE_FORK stats */
843 unsigned int sbf_count;
844 unsigned int sbf_balanced;
845 unsigned int sbf_pushed;
846
847 /* try_to_wake_up() stats */
848 unsigned int ttwu_wake_remote;
849 unsigned int ttwu_move_affine;
850 unsigned int ttwu_move_balance;
851#endif
852#ifdef CONFIG_SCHED_DEBUG
853 char *name;
854#endif
855 union {
856 void *private; /* used during construction */
857 struct rcu_head rcu; /* used during destruction */
858 };
859
860 unsigned int span_weight;
861 /*
862 * Span of all CPUs in this domain.
863 *
864 * NOTE: this field is variable length. (Allocated dynamically
865 * by attaching extra space to the end of the structure,
866 * depending on how many CPUs the kernel has booted up with)
867 */
868 unsigned long span[0];
869};
870
871static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
872{
873 return to_cpumask(sd->span);
874}
875
876extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
877 struct sched_domain_attr *dattr_new);
878
879/* Allocate an array of sched domains, for partition_sched_domains(). */
880cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
881void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
882
883bool cpus_share_cache(int this_cpu, int that_cpu);
884
885#else /* CONFIG_SMP */
886
887struct sched_domain_attr;
888
889static inline void
890partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
891 struct sched_domain_attr *dattr_new)
892{
893}
894
895static inline bool cpus_share_cache(int this_cpu, int that_cpu)
896{
897 return true;
898}
899
900#endif /* !CONFIG_SMP */
901
902
903struct io_context; /* See blkdev.h */
904
905
906#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
907extern void prefetch_stack(struct task_struct *t);
908#else
909static inline void prefetch_stack(struct task_struct *t) { }
910#endif
911
912struct audit_context; /* See audit.c */
913struct mempolicy;
914struct pipe_inode_info;
915struct uts_namespace;
916
917struct load_weight {
918 unsigned long weight, inv_weight;
919};
920
921struct sched_avg {
922 /*
923 * These sums represent an infinite geometric series and so are bound
924 * above by 1024/(1-y). Thus we only need a u32 to store them for for all
925 * choices of y < 1-2^(-32)*1024.
926 */
927 u32 runnable_avg_sum, runnable_avg_period;
928 u64 last_runnable_update;
929 s64 decay_count;
930 unsigned long load_avg_contrib;
931};
932
933#ifdef CONFIG_SCHEDSTATS
934struct sched_statistics {
935 u64 wait_start;
936 u64 wait_max;
937 u64 wait_count;
938 u64 wait_sum;
939 u64 iowait_count;
940 u64 iowait_sum;
941
942 u64 sleep_start;
943 u64 sleep_max;
944 s64 sum_sleep_runtime;
945
946 u64 block_start;
947 u64 block_max;
948 u64 exec_max;
949 u64 slice_max;
950
951 u64 nr_migrations_cold;
952 u64 nr_failed_migrations_affine;
953 u64 nr_failed_migrations_running;
954 u64 nr_failed_migrations_hot;
955 u64 nr_forced_migrations;
956
957 u64 nr_wakeups;
958 u64 nr_wakeups_sync;
959 u64 nr_wakeups_migrate;
960 u64 nr_wakeups_local;
961 u64 nr_wakeups_remote;
962 u64 nr_wakeups_affine;
963 u64 nr_wakeups_affine_attempts;
964 u64 nr_wakeups_passive;
965 u64 nr_wakeups_idle;
966};
967#endif
968
969struct sched_entity {
970 struct load_weight load; /* for load-balancing */
971 struct rb_node run_node;
972 struct list_head group_node;
973 unsigned int on_rq;
974
975 u64 exec_start;
976 u64 sum_exec_runtime;
977 u64 vruntime;
978 u64 prev_sum_exec_runtime;
979
980 u64 nr_migrations;
981
982#ifdef CONFIG_SCHEDSTATS
983 struct sched_statistics statistics;
984#endif
985
986#ifdef CONFIG_FAIR_GROUP_SCHED
987 struct sched_entity *parent;
988 /* rq on which this entity is (to be) queued: */
989 struct cfs_rq *cfs_rq;
990 /* rq "owned" by this entity/group: */
991 struct cfs_rq *my_q;
992#endif
993
994/*
995 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
996 * removed when useful for applications beyond shares distribution (e.g.
997 * load-balance).
998 */
999#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1000 /* Per-entity load-tracking */
1001 struct sched_avg avg;
1002#endif
1003};
1004
1005struct sched_rt_entity {
1006 struct list_head run_list;
1007 unsigned long timeout;
1008 unsigned long watchdog_stamp;
1009 unsigned int time_slice;
1010
1011 struct sched_rt_entity *back;
1012#ifdef CONFIG_RT_GROUP_SCHED
1013 struct sched_rt_entity *parent;
1014 /* rq on which this entity is (to be) queued: */
1015 struct rt_rq *rt_rq;
1016 /* rq "owned" by this entity/group: */
1017 struct rt_rq *my_q;
1018#endif
1019};
1020
1021
1022struct rcu_node;
1023
1024enum perf_event_task_context {
1025 perf_invalid_context = -1,
1026 perf_hw_context = 0,
1027 perf_sw_context,
1028 perf_nr_task_contexts,
1029};
1030
1031struct task_struct {
1032 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1033 void *stack;
1034 atomic_t usage;
1035 unsigned int flags; /* per process flags, defined below */
1036 unsigned int ptrace;
1037
1038#ifdef CONFIG_SMP
1039 struct llist_node wake_entry;
1040 int on_cpu;
1041#endif
1042 int on_rq;
1043
1044 int prio, static_prio, normal_prio;
1045 unsigned int rt_priority;
1046 const struct sched_class *sched_class;
1047 struct sched_entity se;
1048 struct sched_rt_entity rt;
1049#ifdef CONFIG_CGROUP_SCHED
1050 struct task_group *sched_task_group;
1051#endif
1052
1053#ifdef CONFIG_PREEMPT_NOTIFIERS
1054 /* list of struct preempt_notifier: */
1055 struct hlist_head preempt_notifiers;
1056#endif
1057
1058 /*
1059 * fpu_counter contains the number of consecutive context switches
1060 * that the FPU is used. If this is over a threshold, the lazy fpu
1061 * saving becomes unlazy to save the trap. This is an unsigned char
1062 * so that after 256 times the counter wraps and the behavior turns
1063 * lazy again; this to deal with bursty apps that only use FPU for
1064 * a short time
1065 */
1066 unsigned char fpu_counter;
1067#ifdef CONFIG_BLK_DEV_IO_TRACE
1068 unsigned int btrace_seq;
1069#endif
1070
1071 unsigned int policy;
1072 int nr_cpus_allowed;
1073 cpumask_t cpus_allowed;
1074
1075#ifdef CONFIG_PREEMPT_RCU
1076 int rcu_read_lock_nesting;
1077 char rcu_read_unlock_special;
1078 struct list_head rcu_node_entry;
1079#endif /* #ifdef CONFIG_PREEMPT_RCU */
1080#ifdef CONFIG_TREE_PREEMPT_RCU
1081 struct rcu_node *rcu_blocked_node;
1082#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1083#ifdef CONFIG_RCU_BOOST
1084 struct rt_mutex *rcu_boost_mutex;
1085#endif /* #ifdef CONFIG_RCU_BOOST */
1086
1087#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1088 struct sched_info sched_info;
1089#endif
1090
1091 struct list_head tasks;
1092#ifdef CONFIG_SMP
1093 struct plist_node pushable_tasks;
1094#endif
1095
1096 struct mm_struct *mm, *active_mm;
1097#ifdef CONFIG_COMPAT_BRK
1098 unsigned brk_randomized:1;
1099#endif
1100#if defined(SPLIT_RSS_COUNTING)
1101 struct task_rss_stat rss_stat;
1102#endif
1103/* task state */
1104 int exit_state;
1105 int exit_code, exit_signal;
1106 int pdeath_signal; /* The signal sent when the parent dies */
1107 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1108 /* ??? */
1109 unsigned int personality;
1110 unsigned did_exec:1;
1111 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1112 * execve */
1113 unsigned in_iowait:1;
1114
1115 /* task may not gain privileges */
1116 unsigned no_new_privs:1;
1117
1118 /* Revert to default priority/policy when forking */
1119 unsigned sched_reset_on_fork:1;
1120 unsigned sched_contributes_to_load:1;
1121
1122 pid_t pid;
1123 pid_t tgid;
1124
1125#ifdef CONFIG_CC_STACKPROTECTOR
1126 /* Canary value for the -fstack-protector gcc feature */
1127 unsigned long stack_canary;
1128#endif
1129 /*
1130 * pointers to (original) parent process, youngest child, younger sibling,
1131 * older sibling, respectively. (p->father can be replaced with
1132 * p->real_parent->pid)
1133 */
1134 struct task_struct __rcu *real_parent; /* real parent process */
1135 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1136 /*
1137 * children/sibling forms the list of my natural children
1138 */
1139 struct list_head children; /* list of my children */
1140 struct list_head sibling; /* linkage in my parent's children list */
1141 struct task_struct *group_leader; /* threadgroup leader */
1142
1143 /*
1144 * ptraced is the list of tasks this task is using ptrace on.
1145 * This includes both natural children and PTRACE_ATTACH targets.
1146 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1147 */
1148 struct list_head ptraced;
1149 struct list_head ptrace_entry;
1150
1151 /* PID/PID hash table linkage. */
1152 struct pid_link pids[PIDTYPE_MAX];
1153 struct list_head thread_group;
1154
1155 struct completion *vfork_done; /* for vfork() */
1156 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1157 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1158
1159 cputime_t utime, stime, utimescaled, stimescaled;
1160 cputime_t gtime;
1161#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1162 struct cputime prev_cputime;
1163#endif
1164#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1165 seqlock_t vtime_seqlock;
1166 unsigned long long vtime_snap;
1167 enum {
1168 VTIME_SLEEPING = 0,
1169 VTIME_USER,
1170 VTIME_SYS,
1171 } vtime_snap_whence;
1172#endif
1173 unsigned long nvcsw, nivcsw; /* context switch counts */
1174 struct timespec start_time; /* monotonic time */
1175 struct timespec real_start_time; /* boot based time */
1176/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1177 unsigned long min_flt, maj_flt;
1178
1179 struct task_cputime cputime_expires;
1180 struct list_head cpu_timers[3];
1181
1182/* process credentials */
1183 const struct cred __rcu *real_cred; /* objective and real subjective task
1184 * credentials (COW) */
1185 const struct cred __rcu *cred; /* effective (overridable) subjective task
1186 * credentials (COW) */
1187 char comm[TASK_COMM_LEN]; /* executable name excluding path
1188 - access with [gs]et_task_comm (which lock
1189 it with task_lock())
1190 - initialized normally by setup_new_exec */
1191/* file system info */
1192 int link_count, total_link_count;
1193#ifdef CONFIG_SYSVIPC
1194/* ipc stuff */
1195 struct sysv_sem sysvsem;
1196#endif
1197#ifdef CONFIG_DETECT_HUNG_TASK
1198/* hung task detection */
1199 unsigned long last_switch_count;
1200#endif
1201/* CPU-specific state of this task */
1202 struct thread_struct thread;
1203/* filesystem information */
1204 struct fs_struct *fs;
1205/* open file information */
1206 struct files_struct *files;
1207/* namespaces */
1208 struct nsproxy *nsproxy;
1209/* signal handlers */
1210 struct signal_struct *signal;
1211 struct sighand_struct *sighand;
1212
1213 sigset_t blocked, real_blocked;
1214 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1215 struct sigpending pending;
1216
1217 unsigned long sas_ss_sp;
1218 size_t sas_ss_size;
1219 int (*notifier)(void *priv);
1220 void *notifier_data;
1221 sigset_t *notifier_mask;
1222 struct callback_head *task_works;
1223
1224 struct audit_context *audit_context;
1225#ifdef CONFIG_AUDITSYSCALL
1226 kuid_t loginuid;
1227 unsigned int sessionid;
1228#endif
1229 struct seccomp seccomp;
1230
1231/* Thread group tracking */
1232 u32 parent_exec_id;
1233 u32 self_exec_id;
1234/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1235 * mempolicy */
1236 spinlock_t alloc_lock;
1237
1238 /* Protection of the PI data structures: */
1239 raw_spinlock_t pi_lock;
1240
1241#ifdef CONFIG_RT_MUTEXES
1242 /* PI waiters blocked on a rt_mutex held by this task */
1243 struct plist_head pi_waiters;
1244 /* Deadlock detection and priority inheritance handling */
1245 struct rt_mutex_waiter *pi_blocked_on;
1246#endif
1247
1248#ifdef CONFIG_DEBUG_MUTEXES
1249 /* mutex deadlock detection */
1250 struct mutex_waiter *blocked_on;
1251#endif
1252#ifdef CONFIG_TRACE_IRQFLAGS
1253 unsigned int irq_events;
1254 unsigned long hardirq_enable_ip;
1255 unsigned long hardirq_disable_ip;
1256 unsigned int hardirq_enable_event;
1257 unsigned int hardirq_disable_event;
1258 int hardirqs_enabled;
1259 int hardirq_context;
1260 unsigned long softirq_disable_ip;
1261 unsigned long softirq_enable_ip;
1262 unsigned int softirq_disable_event;
1263 unsigned int softirq_enable_event;
1264 int softirqs_enabled;
1265 int softirq_context;
1266#endif
1267#ifdef CONFIG_LOCKDEP
1268# define MAX_LOCK_DEPTH 48UL
1269 u64 curr_chain_key;
1270 int lockdep_depth;
1271 unsigned int lockdep_recursion;
1272 struct held_lock held_locks[MAX_LOCK_DEPTH];
1273 gfp_t lockdep_reclaim_gfp;
1274#endif
1275
1276/* journalling filesystem info */
1277 void *journal_info;
1278
1279/* stacked block device info */
1280 struct bio_list *bio_list;
1281
1282#ifdef CONFIG_BLOCK
1283/* stack plugging */
1284 struct blk_plug *plug;
1285#endif
1286
1287/* VM state */
1288 struct reclaim_state *reclaim_state;
1289
1290 struct backing_dev_info *backing_dev_info;
1291
1292 struct io_context *io_context;
1293
1294 unsigned long ptrace_message;
1295 siginfo_t *last_siginfo; /* For ptrace use. */
1296 struct task_io_accounting ioac;
1297#if defined(CONFIG_TASK_XACCT)
1298 u64 acct_rss_mem1; /* accumulated rss usage */
1299 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1300 cputime_t acct_timexpd; /* stime + utime since last update */
1301#endif
1302#ifdef CONFIG_CPUSETS
1303 nodemask_t mems_allowed; /* Protected by alloc_lock */
1304 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1305 int cpuset_mem_spread_rotor;
1306 int cpuset_slab_spread_rotor;
1307#endif
1308#ifdef CONFIG_CGROUPS
1309 /* Control Group info protected by css_set_lock */
1310 struct css_set __rcu *cgroups;
1311 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1312 struct list_head cg_list;
1313#endif
1314#ifdef CONFIG_FUTEX
1315 struct robust_list_head __user *robust_list;
1316#ifdef CONFIG_COMPAT
1317 struct compat_robust_list_head __user *compat_robust_list;
1318#endif
1319 struct list_head pi_state_list;
1320 struct futex_pi_state *pi_state_cache;
1321#endif
1322#ifdef CONFIG_PERF_EVENTS
1323 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1324 struct mutex perf_event_mutex;
1325 struct list_head perf_event_list;
1326#endif
1327#ifdef CONFIG_NUMA
1328 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1329 short il_next;
1330 short pref_node_fork;
1331#endif
1332#ifdef CONFIG_NUMA_BALANCING
1333 int numa_scan_seq;
1334 int numa_migrate_seq;
1335 unsigned int numa_scan_period;
1336 u64 node_stamp; /* migration stamp */
1337 struct callback_head numa_work;
1338#endif /* CONFIG_NUMA_BALANCING */
1339
1340 struct rcu_head rcu;
1341
1342 /*
1343 * cache last used pipe for splice
1344 */
1345 struct pipe_inode_info *splice_pipe;
1346
1347 struct page_frag task_frag;
1348
1349#ifdef CONFIG_TASK_DELAY_ACCT
1350 struct task_delay_info *delays;
1351#endif
1352#ifdef CONFIG_FAULT_INJECTION
1353 int make_it_fail;
1354#endif
1355 /*
1356 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1357 * balance_dirty_pages() for some dirty throttling pause
1358 */
1359 int nr_dirtied;
1360 int nr_dirtied_pause;
1361 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1362
1363#ifdef CONFIG_LATENCYTOP
1364 int latency_record_count;
1365 struct latency_record latency_record[LT_SAVECOUNT];
1366#endif
1367 /*
1368 * time slack values; these are used to round up poll() and
1369 * select() etc timeout values. These are in nanoseconds.
1370 */
1371 unsigned long timer_slack_ns;
1372 unsigned long default_timer_slack_ns;
1373
1374#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1375 /* Index of current stored address in ret_stack */
1376 int curr_ret_stack;
1377 /* Stack of return addresses for return function tracing */
1378 struct ftrace_ret_stack *ret_stack;
1379 /* time stamp for last schedule */
1380 unsigned long long ftrace_timestamp;
1381 /*
1382 * Number of functions that haven't been traced
1383 * because of depth overrun.
1384 */
1385 atomic_t trace_overrun;
1386 /* Pause for the tracing */
1387 atomic_t tracing_graph_pause;
1388#endif
1389#ifdef CONFIG_TRACING
1390 /* state flags for use by tracers */
1391 unsigned long trace;
1392 /* bitmask and counter of trace recursion */
1393 unsigned long trace_recursion;
1394#endif /* CONFIG_TRACING */
1395#ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1396 struct memcg_batch_info {
1397 int do_batch; /* incremented when batch uncharge started */
1398 struct mem_cgroup *memcg; /* target memcg of uncharge */
1399 unsigned long nr_pages; /* uncharged usage */
1400 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1401 } memcg_batch;
1402 unsigned int memcg_kmem_skip_account;
1403#endif
1404#ifdef CONFIG_HAVE_HW_BREAKPOINT
1405 atomic_t ptrace_bp_refcnt;
1406#endif
1407#ifdef CONFIG_UPROBES
1408 struct uprobe_task *utask;
1409#endif
1410};
1411
1412/* Future-safe accessor for struct task_struct's cpus_allowed. */
1413#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1414
1415#ifdef CONFIG_NUMA_BALANCING
1416extern void task_numa_fault(int node, int pages, bool migrated);
1417extern void set_numabalancing_state(bool enabled);
1418#else
1419static inline void task_numa_fault(int node, int pages, bool migrated)
1420{
1421}
1422static inline void set_numabalancing_state(bool enabled)
1423{
1424}
1425#endif
1426
1427static inline struct pid *task_pid(struct task_struct *task)
1428{
1429 return task->pids[PIDTYPE_PID].pid;
1430}
1431
1432static inline struct pid *task_tgid(struct task_struct *task)
1433{
1434 return task->group_leader->pids[PIDTYPE_PID].pid;
1435}
1436
1437/*
1438 * Without tasklist or rcu lock it is not safe to dereference
1439 * the result of task_pgrp/task_session even if task == current,
1440 * we can race with another thread doing sys_setsid/sys_setpgid.
1441 */
1442static inline struct pid *task_pgrp(struct task_struct *task)
1443{
1444 return task->group_leader->pids[PIDTYPE_PGID].pid;
1445}
1446
1447static inline struct pid *task_session(struct task_struct *task)
1448{
1449 return task->group_leader->pids[PIDTYPE_SID].pid;
1450}
1451
1452struct pid_namespace;
1453
1454/*
1455 * the helpers to get the task's different pids as they are seen
1456 * from various namespaces
1457 *
1458 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1459 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1460 * current.
1461 * task_xid_nr_ns() : id seen from the ns specified;
1462 *
1463 * set_task_vxid() : assigns a virtual id to a task;
1464 *
1465 * see also pid_nr() etc in include/linux/pid.h
1466 */
1467pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1468 struct pid_namespace *ns);
1469
1470static inline pid_t task_pid_nr(struct task_struct *tsk)
1471{
1472 return tsk->pid;
1473}
1474
1475static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1476 struct pid_namespace *ns)
1477{
1478 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1479}
1480
1481static inline pid_t task_pid_vnr(struct task_struct *tsk)
1482{
1483 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1484}
1485
1486
1487static inline pid_t task_tgid_nr(struct task_struct *tsk)
1488{
1489 return tsk->tgid;
1490}
1491
1492pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1493
1494static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1495{
1496 return pid_vnr(task_tgid(tsk));
1497}
1498
1499
1500static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1501 struct pid_namespace *ns)
1502{
1503 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1504}
1505
1506static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1507{
1508 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1509}
1510
1511
1512static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1513 struct pid_namespace *ns)
1514{
1515 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1516}
1517
1518static inline pid_t task_session_vnr(struct task_struct *tsk)
1519{
1520 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1521}
1522
1523/* obsolete, do not use */
1524static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1525{
1526 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1527}
1528
1529/**
1530 * pid_alive - check that a task structure is not stale
1531 * @p: Task structure to be checked.
1532 *
1533 * Test if a process is not yet dead (at most zombie state)
1534 * If pid_alive fails, then pointers within the task structure
1535 * can be stale and must not be dereferenced.
1536 */
1537static inline int pid_alive(struct task_struct *p)
1538{
1539 return p->pids[PIDTYPE_PID].pid != NULL;
1540}
1541
1542/**
1543 * is_global_init - check if a task structure is init
1544 * @tsk: Task structure to be checked.
1545 *
1546 * Check if a task structure is the first user space task the kernel created.
1547 */
1548static inline int is_global_init(struct task_struct *tsk)
1549{
1550 return tsk->pid == 1;
1551}
1552
1553extern struct pid *cad_pid;
1554
1555extern void free_task(struct task_struct *tsk);
1556#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1557
1558extern void __put_task_struct(struct task_struct *t);
1559
1560static inline void put_task_struct(struct task_struct *t)
1561{
1562 if (atomic_dec_and_test(&t->usage))
1563 __put_task_struct(t);
1564}
1565
1566#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1567extern void task_cputime(struct task_struct *t,
1568 cputime_t *utime, cputime_t *stime);
1569extern void task_cputime_scaled(struct task_struct *t,
1570 cputime_t *utimescaled, cputime_t *stimescaled);
1571extern cputime_t task_gtime(struct task_struct *t);
1572#else
1573static inline void task_cputime(struct task_struct *t,
1574 cputime_t *utime, cputime_t *stime)
1575{
1576 if (utime)
1577 *utime = t->utime;
1578 if (stime)
1579 *stime = t->stime;
1580}
1581
1582static inline void task_cputime_scaled(struct task_struct *t,
1583 cputime_t *utimescaled,
1584 cputime_t *stimescaled)
1585{
1586 if (utimescaled)
1587 *utimescaled = t->utimescaled;
1588 if (stimescaled)
1589 *stimescaled = t->stimescaled;
1590}
1591
1592static inline cputime_t task_gtime(struct task_struct *t)
1593{
1594 return t->gtime;
1595}
1596#endif
1597extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1598extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1599
1600/*
1601 * Per process flags
1602 */
1603#define PF_EXITING 0x00000004 /* getting shut down */
1604#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1605#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1606#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1607#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1608#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1609#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1610#define PF_DUMPCORE 0x00000200 /* dumped core */
1611#define PF_SIGNALED 0x00000400 /* killed by a signal */
1612#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1613#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1614#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1615#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1616#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1617#define PF_FROZEN 0x00010000 /* frozen for system suspend */
1618#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1619#define PF_KSWAPD 0x00040000 /* I am kswapd */
1620#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1621#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1622#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1623#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1624#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1625#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1626#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1627#define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1628#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1629#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1630#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1631#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1632
1633/*
1634 * Only the _current_ task can read/write to tsk->flags, but other
1635 * tasks can access tsk->flags in readonly mode for example
1636 * with tsk_used_math (like during threaded core dumping).
1637 * There is however an exception to this rule during ptrace
1638 * or during fork: the ptracer task is allowed to write to the
1639 * child->flags of its traced child (same goes for fork, the parent
1640 * can write to the child->flags), because we're guaranteed the
1641 * child is not running and in turn not changing child->flags
1642 * at the same time the parent does it.
1643 */
1644#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1645#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1646#define clear_used_math() clear_stopped_child_used_math(current)
1647#define set_used_math() set_stopped_child_used_math(current)
1648#define conditional_stopped_child_used_math(condition, child) \
1649 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1650#define conditional_used_math(condition) \
1651 conditional_stopped_child_used_math(condition, current)
1652#define copy_to_stopped_child_used_math(child) \
1653 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1654/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1655#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1656#define used_math() tsk_used_math(current)
1657
1658/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1659static inline gfp_t memalloc_noio_flags(gfp_t flags)
1660{
1661 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1662 flags &= ~__GFP_IO;
1663 return flags;
1664}
1665
1666static inline unsigned int memalloc_noio_save(void)
1667{
1668 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1669 current->flags |= PF_MEMALLOC_NOIO;
1670 return flags;
1671}
1672
1673static inline void memalloc_noio_restore(unsigned int flags)
1674{
1675 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1676}
1677
1678/*
1679 * task->jobctl flags
1680 */
1681#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1682
1683#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1684#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1685#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1686#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1687#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1688#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1689#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1690
1691#define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1692#define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1693#define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1694#define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1695#define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1696#define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1697#define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1698
1699#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1700#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1701
1702extern bool task_set_jobctl_pending(struct task_struct *task,
1703 unsigned int mask);
1704extern void task_clear_jobctl_trapping(struct task_struct *task);
1705extern void task_clear_jobctl_pending(struct task_struct *task,
1706 unsigned int mask);
1707
1708#ifdef CONFIG_PREEMPT_RCU
1709
1710#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1711#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1712
1713static inline void rcu_copy_process(struct task_struct *p)
1714{
1715 p->rcu_read_lock_nesting = 0;
1716 p->rcu_read_unlock_special = 0;
1717#ifdef CONFIG_TREE_PREEMPT_RCU
1718 p->rcu_blocked_node = NULL;
1719#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1720#ifdef CONFIG_RCU_BOOST
1721 p->rcu_boost_mutex = NULL;
1722#endif /* #ifdef CONFIG_RCU_BOOST */
1723 INIT_LIST_HEAD(&p->rcu_node_entry);
1724}
1725
1726#else
1727
1728static inline void rcu_copy_process(struct task_struct *p)
1729{
1730}
1731
1732#endif
1733
1734static inline void tsk_restore_flags(struct task_struct *task,
1735 unsigned long orig_flags, unsigned long flags)
1736{
1737 task->flags &= ~flags;
1738 task->flags |= orig_flags & flags;
1739}
1740
1741#ifdef CONFIG_SMP
1742extern void do_set_cpus_allowed(struct task_struct *p,
1743 const struct cpumask *new_mask);
1744
1745extern int set_cpus_allowed_ptr(struct task_struct *p,
1746 const struct cpumask *new_mask);
1747#else
1748static inline void do_set_cpus_allowed(struct task_struct *p,
1749 const struct cpumask *new_mask)
1750{
1751}
1752static inline int set_cpus_allowed_ptr(struct task_struct *p,
1753 const struct cpumask *new_mask)
1754{
1755 if (!cpumask_test_cpu(0, new_mask))
1756 return -EINVAL;
1757 return 0;
1758}
1759#endif
1760
1761#ifdef CONFIG_NO_HZ_COMMON
1762void calc_load_enter_idle(void);
1763void calc_load_exit_idle(void);
1764#else
1765static inline void calc_load_enter_idle(void) { }
1766static inline void calc_load_exit_idle(void) { }
1767#endif /* CONFIG_NO_HZ_COMMON */
1768
1769#ifndef CONFIG_CPUMASK_OFFSTACK
1770static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1771{
1772 return set_cpus_allowed_ptr(p, &new_mask);
1773}
1774#endif
1775
1776/*
1777 * Do not use outside of architecture code which knows its limitations.
1778 *
1779 * sched_clock() has no promise of monotonicity or bounded drift between
1780 * CPUs, use (which you should not) requires disabling IRQs.
1781 *
1782 * Please use one of the three interfaces below.
1783 */
1784extern unsigned long long notrace sched_clock(void);
1785/*
1786 * See the comment in kernel/sched/clock.c
1787 */
1788extern u64 cpu_clock(int cpu);
1789extern u64 local_clock(void);
1790extern u64 sched_clock_cpu(int cpu);
1791
1792
1793extern void sched_clock_init(void);
1794
1795#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1796static inline void sched_clock_tick(void)
1797{
1798}
1799
1800static inline void sched_clock_idle_sleep_event(void)
1801{
1802}
1803
1804static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1805{
1806}
1807#else
1808/*
1809 * Architectures can set this to 1 if they have specified
1810 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1811 * but then during bootup it turns out that sched_clock()
1812 * is reliable after all:
1813 */
1814extern int sched_clock_stable;
1815
1816extern void sched_clock_tick(void);
1817extern void sched_clock_idle_sleep_event(void);
1818extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1819#endif
1820
1821#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1822/*
1823 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1824 * The reason for this explicit opt-in is not to have perf penalty with
1825 * slow sched_clocks.
1826 */
1827extern void enable_sched_clock_irqtime(void);
1828extern void disable_sched_clock_irqtime(void);
1829#else
1830static inline void enable_sched_clock_irqtime(void) {}
1831static inline void disable_sched_clock_irqtime(void) {}
1832#endif
1833
1834extern unsigned long long
1835task_sched_runtime(struct task_struct *task);
1836
1837/* sched_exec is called by processes performing an exec */
1838#ifdef CONFIG_SMP
1839extern void sched_exec(void);
1840#else
1841#define sched_exec() {}
1842#endif
1843
1844extern void sched_clock_idle_sleep_event(void);
1845extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1846
1847#ifdef CONFIG_HOTPLUG_CPU
1848extern void idle_task_exit(void);
1849#else
1850static inline void idle_task_exit(void) {}
1851#endif
1852
1853#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1854extern void wake_up_nohz_cpu(int cpu);
1855#else
1856static inline void wake_up_nohz_cpu(int cpu) { }
1857#endif
1858
1859#ifdef CONFIG_SCHED_AUTOGROUP
1860extern void sched_autogroup_create_attach(struct task_struct *p);
1861extern void sched_autogroup_detach(struct task_struct *p);
1862extern void sched_autogroup_fork(struct signal_struct *sig);
1863extern void sched_autogroup_exit(struct signal_struct *sig);
1864#ifdef CONFIG_PROC_FS
1865extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1866extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
1867#endif
1868#else
1869static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1870static inline void sched_autogroup_detach(struct task_struct *p) { }
1871static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1872static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1873#endif
1874
1875extern bool yield_to(struct task_struct *p, bool preempt);
1876extern void set_user_nice(struct task_struct *p, long nice);
1877extern int task_prio(const struct task_struct *p);
1878extern int task_nice(const struct task_struct *p);
1879extern int can_nice(const struct task_struct *p, const int nice);
1880extern int task_curr(const struct task_struct *p);
1881extern int idle_cpu(int cpu);
1882extern int sched_setscheduler(struct task_struct *, int,
1883 const struct sched_param *);
1884extern int sched_setscheduler_nocheck(struct task_struct *, int,
1885 const struct sched_param *);
1886extern struct task_struct *idle_task(int cpu);
1887/**
1888 * is_idle_task - is the specified task an idle task?
1889 * @p: the task in question.
1890 */
1891static inline bool is_idle_task(const struct task_struct *p)
1892{
1893 return p->pid == 0;
1894}
1895extern struct task_struct *curr_task(int cpu);
1896extern void set_curr_task(int cpu, struct task_struct *p);
1897
1898void yield(void);
1899
1900/*
1901 * The default (Linux) execution domain.
1902 */
1903extern struct exec_domain default_exec_domain;
1904
1905union thread_union {
1906 struct thread_info thread_info;
1907 unsigned long stack[THREAD_SIZE/sizeof(long)];
1908};
1909
1910#ifndef __HAVE_ARCH_KSTACK_END
1911static inline int kstack_end(void *addr)
1912{
1913 /* Reliable end of stack detection:
1914 * Some APM bios versions misalign the stack
1915 */
1916 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1917}
1918#endif
1919
1920extern union thread_union init_thread_union;
1921extern struct task_struct init_task;
1922
1923extern struct mm_struct init_mm;
1924
1925extern struct pid_namespace init_pid_ns;
1926
1927/*
1928 * find a task by one of its numerical ids
1929 *
1930 * find_task_by_pid_ns():
1931 * finds a task by its pid in the specified namespace
1932 * find_task_by_vpid():
1933 * finds a task by its virtual pid
1934 *
1935 * see also find_vpid() etc in include/linux/pid.h
1936 */
1937
1938extern struct task_struct *find_task_by_vpid(pid_t nr);
1939extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1940 struct pid_namespace *ns);
1941
1942extern void __set_special_pids(struct pid *pid);
1943
1944/* per-UID process charging. */
1945extern struct user_struct * alloc_uid(kuid_t);
1946static inline struct user_struct *get_uid(struct user_struct *u)
1947{
1948 atomic_inc(&u->__count);
1949 return u;
1950}
1951extern void free_uid(struct user_struct *);
1952
1953#include <asm/current.h>
1954
1955extern void xtime_update(unsigned long ticks);
1956
1957extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1958extern int wake_up_process(struct task_struct *tsk);
1959extern void wake_up_new_task(struct task_struct *tsk);
1960#ifdef CONFIG_SMP
1961 extern void kick_process(struct task_struct *tsk);
1962#else
1963 static inline void kick_process(struct task_struct *tsk) { }
1964#endif
1965extern void sched_fork(struct task_struct *p);
1966extern void sched_dead(struct task_struct *p);
1967
1968extern void proc_caches_init(void);
1969extern void flush_signals(struct task_struct *);
1970extern void __flush_signals(struct task_struct *);
1971extern void ignore_signals(struct task_struct *);
1972extern void flush_signal_handlers(struct task_struct *, int force_default);
1973extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1974
1975static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1976{
1977 unsigned long flags;
1978 int ret;
1979
1980 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1981 ret = dequeue_signal(tsk, mask, info);
1982 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1983
1984 return ret;
1985}
1986
1987extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1988 sigset_t *mask);
1989extern void unblock_all_signals(void);
1990extern void release_task(struct task_struct * p);
1991extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1992extern int force_sigsegv(int, struct task_struct *);
1993extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1994extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1995extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1996extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
1997 const struct cred *, u32);
1998extern int kill_pgrp(struct pid *pid, int sig, int priv);
1999extern int kill_pid(struct pid *pid, int sig, int priv);
2000extern int kill_proc_info(int, struct siginfo *, pid_t);
2001extern __must_check bool do_notify_parent(struct task_struct *, int);
2002extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2003extern void force_sig(int, struct task_struct *);
2004extern int send_sig(int, struct task_struct *, int);
2005extern int zap_other_threads(struct task_struct *p);
2006extern struct sigqueue *sigqueue_alloc(void);
2007extern void sigqueue_free(struct sigqueue *);
2008extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2009extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2010
2011static inline void restore_saved_sigmask(void)
2012{
2013 if (test_and_clear_restore_sigmask())
2014 __set_current_blocked(&current->saved_sigmask);
2015}
2016
2017static inline sigset_t *sigmask_to_save(void)
2018{
2019 sigset_t *res = &current->blocked;
2020 if (unlikely(test_restore_sigmask()))
2021 res = &current->saved_sigmask;
2022 return res;
2023}
2024
2025static inline int kill_cad_pid(int sig, int priv)
2026{
2027 return kill_pid(cad_pid, sig, priv);
2028}
2029
2030/* These can be the second arg to send_sig_info/send_group_sig_info. */
2031#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2032#define SEND_SIG_PRIV ((struct siginfo *) 1)
2033#define SEND_SIG_FORCED ((struct siginfo *) 2)
2034
2035/*
2036 * True if we are on the alternate signal stack.
2037 */
2038static inline int on_sig_stack(unsigned long sp)
2039{
2040#ifdef CONFIG_STACK_GROWSUP
2041 return sp >= current->sas_ss_sp &&
2042 sp - current->sas_ss_sp < current->sas_ss_size;
2043#else
2044 return sp > current->sas_ss_sp &&
2045 sp - current->sas_ss_sp <= current->sas_ss_size;
2046#endif
2047}
2048
2049static inline int sas_ss_flags(unsigned long sp)
2050{
2051 return (current->sas_ss_size == 0 ? SS_DISABLE
2052 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2053}
2054
2055static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2056{
2057 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2058#ifdef CONFIG_STACK_GROWSUP
2059 return current->sas_ss_sp;
2060#else
2061 return current->sas_ss_sp + current->sas_ss_size;
2062#endif
2063 return sp;
2064}
2065
2066/*
2067 * Routines for handling mm_structs
2068 */
2069extern struct mm_struct * mm_alloc(void);
2070
2071/* mmdrop drops the mm and the page tables */
2072extern void __mmdrop(struct mm_struct *);
2073static inline void mmdrop(struct mm_struct * mm)
2074{
2075 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2076 __mmdrop(mm);
2077}
2078
2079/* mmput gets rid of the mappings and all user-space */
2080extern void mmput(struct mm_struct *);
2081/* Grab a reference to a task's mm, if it is not already going away */
2082extern struct mm_struct *get_task_mm(struct task_struct *task);
2083/*
2084 * Grab a reference to a task's mm, if it is not already going away
2085 * and ptrace_may_access with the mode parameter passed to it
2086 * succeeds.
2087 */
2088extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2089/* Remove the current tasks stale references to the old mm_struct */
2090extern void mm_release(struct task_struct *, struct mm_struct *);
2091/* Allocate a new mm structure and copy contents from tsk->mm */
2092extern struct mm_struct *dup_mm(struct task_struct *tsk);
2093
2094extern int copy_thread(unsigned long, unsigned long, unsigned long,
2095 struct task_struct *);
2096extern void flush_thread(void);
2097extern void exit_thread(void);
2098
2099extern void exit_files(struct task_struct *);
2100extern void __cleanup_sighand(struct sighand_struct *);
2101
2102extern void exit_itimers(struct signal_struct *);
2103extern void flush_itimer_signals(void);
2104
2105extern void do_group_exit(int);
2106
2107extern int allow_signal(int);
2108extern int disallow_signal(int);
2109
2110extern int do_execve(const char *,
2111 const char __user * const __user *,
2112 const char __user * const __user *);
2113extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2114struct task_struct *fork_idle(int);
2115extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2116
2117extern void set_task_comm(struct task_struct *tsk, char *from);
2118extern char *get_task_comm(char *to, struct task_struct *tsk);
2119
2120#ifdef CONFIG_SMP
2121void scheduler_ipi(void);
2122extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2123#else
2124static inline void scheduler_ipi(void) { }
2125static inline unsigned long wait_task_inactive(struct task_struct *p,
2126 long match_state)
2127{
2128 return 1;
2129}
2130#endif
2131
2132#define next_task(p) \
2133 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2134
2135#define for_each_process(p) \
2136 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2137
2138extern bool current_is_single_threaded(void);
2139
2140/*
2141 * Careful: do_each_thread/while_each_thread is a double loop so
2142 * 'break' will not work as expected - use goto instead.
2143 */
2144#define do_each_thread(g, t) \
2145 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2146
2147#define while_each_thread(g, t) \
2148 while ((t = next_thread(t)) != g)
2149
2150static inline int get_nr_threads(struct task_struct *tsk)
2151{
2152 return tsk->signal->nr_threads;
2153}
2154
2155static inline bool thread_group_leader(struct task_struct *p)
2156{
2157 return p->exit_signal >= 0;
2158}
2159
2160/* Do to the insanities of de_thread it is possible for a process
2161 * to have the pid of the thread group leader without actually being
2162 * the thread group leader. For iteration through the pids in proc
2163 * all we care about is that we have a task with the appropriate
2164 * pid, we don't actually care if we have the right task.
2165 */
2166static inline int has_group_leader_pid(struct task_struct *p)
2167{
2168 return p->pid == p->tgid;
2169}
2170
2171static inline
2172int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2173{
2174 return p1->tgid == p2->tgid;
2175}
2176
2177static inline struct task_struct *next_thread(const struct task_struct *p)
2178{
2179 return list_entry_rcu(p->thread_group.next,
2180 struct task_struct, thread_group);
2181}
2182
2183static inline int thread_group_empty(struct task_struct *p)
2184{
2185 return list_empty(&p->thread_group);
2186}
2187
2188#define delay_group_leader(p) \
2189 (thread_group_leader(p) && !thread_group_empty(p))
2190
2191/*
2192 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2193 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2194 * pins the final release of task.io_context. Also protects ->cpuset and
2195 * ->cgroup.subsys[]. And ->vfork_done.
2196 *
2197 * Nests both inside and outside of read_lock(&tasklist_lock).
2198 * It must not be nested with write_lock_irq(&tasklist_lock),
2199 * neither inside nor outside.
2200 */
2201static inline void task_lock(struct task_struct *p)
2202{
2203 spin_lock(&p->alloc_lock);
2204}
2205
2206static inline void task_unlock(struct task_struct *p)
2207{
2208 spin_unlock(&p->alloc_lock);
2209}
2210
2211extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2212 unsigned long *flags);
2213
2214static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2215 unsigned long *flags)
2216{
2217 struct sighand_struct *ret;
2218
2219 ret = __lock_task_sighand(tsk, flags);
2220 (void)__cond_lock(&tsk->sighand->siglock, ret);
2221 return ret;
2222}
2223
2224static inline void unlock_task_sighand(struct task_struct *tsk,
2225 unsigned long *flags)
2226{
2227 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2228}
2229
2230#ifdef CONFIG_CGROUPS
2231static inline void threadgroup_change_begin(struct task_struct *tsk)
2232{
2233 down_read(&tsk->signal->group_rwsem);
2234}
2235static inline void threadgroup_change_end(struct task_struct *tsk)
2236{
2237 up_read(&tsk->signal->group_rwsem);
2238}
2239
2240/**
2241 * threadgroup_lock - lock threadgroup
2242 * @tsk: member task of the threadgroup to lock
2243 *
2244 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2245 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2246 * perform exec. This is useful for cases where the threadgroup needs to
2247 * stay stable across blockable operations.
2248 *
2249 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2250 * synchronization. While held, no new task will be added to threadgroup
2251 * and no existing live task will have its PF_EXITING set.
2252 *
2253 * During exec, a task goes and puts its thread group through unusual
2254 * changes. After de-threading, exclusive access is assumed to resources
2255 * which are usually shared by tasks in the same group - e.g. sighand may
2256 * be replaced with a new one. Also, the exec'ing task takes over group
2257 * leader role including its pid. Exclude these changes while locked by
2258 * grabbing cred_guard_mutex which is used to synchronize exec path.
2259 */
2260static inline void threadgroup_lock(struct task_struct *tsk)
2261{
2262 /*
2263 * exec uses exit for de-threading nesting group_rwsem inside
2264 * cred_guard_mutex. Grab cred_guard_mutex first.
2265 */
2266 mutex_lock(&tsk->signal->cred_guard_mutex);
2267 down_write(&tsk->signal->group_rwsem);
2268}
2269
2270/**
2271 * threadgroup_unlock - unlock threadgroup
2272 * @tsk: member task of the threadgroup to unlock
2273 *
2274 * Reverse threadgroup_lock().
2275 */
2276static inline void threadgroup_unlock(struct task_struct *tsk)
2277{
2278 up_write(&tsk->signal->group_rwsem);
2279 mutex_unlock(&tsk->signal->cred_guard_mutex);
2280}
2281#else
2282static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2283static inline void threadgroup_change_end(struct task_struct *tsk) {}
2284static inline void threadgroup_lock(struct task_struct *tsk) {}
2285static inline void threadgroup_unlock(struct task_struct *tsk) {}
2286#endif
2287
2288#ifndef __HAVE_THREAD_FUNCTIONS
2289
2290#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2291#define task_stack_page(task) ((task)->stack)
2292
2293static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2294{
2295 *task_thread_info(p) = *task_thread_info(org);
2296 task_thread_info(p)->task = p;
2297}
2298
2299static inline unsigned long *end_of_stack(struct task_struct *p)
2300{
2301 return (unsigned long *)(task_thread_info(p) + 1);
2302}
2303
2304#endif
2305
2306static inline int object_is_on_stack(void *obj)
2307{
2308 void *stack = task_stack_page(current);
2309
2310 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2311}
2312
2313extern void thread_info_cache_init(void);
2314
2315#ifdef CONFIG_DEBUG_STACK_USAGE
2316static inline unsigned long stack_not_used(struct task_struct *p)
2317{
2318 unsigned long *n = end_of_stack(p);
2319
2320 do { /* Skip over canary */
2321 n++;
2322 } while (!*n);
2323
2324 return (unsigned long)n - (unsigned long)end_of_stack(p);
2325}
2326#endif
2327
2328/* set thread flags in other task's structures
2329 * - see asm/thread_info.h for TIF_xxxx flags available
2330 */
2331static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2332{
2333 set_ti_thread_flag(task_thread_info(tsk), flag);
2334}
2335
2336static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2337{
2338 clear_ti_thread_flag(task_thread_info(tsk), flag);
2339}
2340
2341static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2342{
2343 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2344}
2345
2346static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2347{
2348 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2349}
2350
2351static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2352{
2353 return test_ti_thread_flag(task_thread_info(tsk), flag);
2354}
2355
2356static inline void set_tsk_need_resched(struct task_struct *tsk)
2357{
2358 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2359}
2360
2361static inline void clear_tsk_need_resched(struct task_struct *tsk)
2362{
2363 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2364}
2365
2366static inline int test_tsk_need_resched(struct task_struct *tsk)
2367{
2368 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2369}
2370
2371static inline int restart_syscall(void)
2372{
2373 set_tsk_thread_flag(current, TIF_SIGPENDING);
2374 return -ERESTARTNOINTR;
2375}
2376
2377static inline int signal_pending(struct task_struct *p)
2378{
2379 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2380}
2381
2382static inline int __fatal_signal_pending(struct task_struct *p)
2383{
2384 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2385}
2386
2387static inline int fatal_signal_pending(struct task_struct *p)
2388{
2389 return signal_pending(p) && __fatal_signal_pending(p);
2390}
2391
2392static inline int signal_pending_state(long state, struct task_struct *p)
2393{
2394 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2395 return 0;
2396 if (!signal_pending(p))
2397 return 0;
2398
2399 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2400}
2401
2402static inline int need_resched(void)
2403{
2404 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2405}
2406
2407/*
2408 * cond_resched() and cond_resched_lock(): latency reduction via
2409 * explicit rescheduling in places that are safe. The return
2410 * value indicates whether a reschedule was done in fact.
2411 * cond_resched_lock() will drop the spinlock before scheduling,
2412 * cond_resched_softirq() will enable bhs before scheduling.
2413 */
2414extern int _cond_resched(void);
2415
2416#define cond_resched() ({ \
2417 __might_sleep(__FILE__, __LINE__, 0); \
2418 _cond_resched(); \
2419})
2420
2421extern int __cond_resched_lock(spinlock_t *lock);
2422
2423#ifdef CONFIG_PREEMPT_COUNT
2424#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2425#else
2426#define PREEMPT_LOCK_OFFSET 0
2427#endif
2428
2429#define cond_resched_lock(lock) ({ \
2430 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2431 __cond_resched_lock(lock); \
2432})
2433
2434extern int __cond_resched_softirq(void);
2435
2436#define cond_resched_softirq() ({ \
2437 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2438 __cond_resched_softirq(); \
2439})
2440
2441/*
2442 * Does a critical section need to be broken due to another
2443 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2444 * but a general need for low latency)
2445 */
2446static inline int spin_needbreak(spinlock_t *lock)
2447{
2448#ifdef CONFIG_PREEMPT
2449 return spin_is_contended(lock);
2450#else
2451 return 0;
2452#endif
2453}
2454
2455/*
2456 * Thread group CPU time accounting.
2457 */
2458void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2459void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2460
2461static inline void thread_group_cputime_init(struct signal_struct *sig)
2462{
2463 raw_spin_lock_init(&sig->cputimer.lock);
2464}
2465
2466/*
2467 * Reevaluate whether the task has signals pending delivery.
2468 * Wake the task if so.
2469 * This is required every time the blocked sigset_t changes.
2470 * callers must hold sighand->siglock.
2471 */
2472extern void recalc_sigpending_and_wake(struct task_struct *t);
2473extern void recalc_sigpending(void);
2474
2475extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2476
2477static inline void signal_wake_up(struct task_struct *t, bool resume)
2478{
2479 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2480}
2481static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2482{
2483 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2484}
2485
2486/*
2487 * Wrappers for p->thread_info->cpu access. No-op on UP.
2488 */
2489#ifdef CONFIG_SMP
2490
2491static inline unsigned int task_cpu(const struct task_struct *p)
2492{
2493 return task_thread_info(p)->cpu;
2494}
2495
2496extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2497
2498#else
2499
2500static inline unsigned int task_cpu(const struct task_struct *p)
2501{
2502 return 0;
2503}
2504
2505static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2506{
2507}
2508
2509#endif /* CONFIG_SMP */
2510
2511extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2512extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2513
2514#ifdef CONFIG_CGROUP_SCHED
2515extern struct task_group root_task_group;
2516#endif /* CONFIG_CGROUP_SCHED */
2517
2518extern int task_can_switch_user(struct user_struct *up,
2519 struct task_struct *tsk);
2520
2521#ifdef CONFIG_TASK_XACCT
2522static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2523{
2524 tsk->ioac.rchar += amt;
2525}
2526
2527static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2528{
2529 tsk->ioac.wchar += amt;
2530}
2531
2532static inline void inc_syscr(struct task_struct *tsk)
2533{
2534 tsk->ioac.syscr++;
2535}
2536
2537static inline void inc_syscw(struct task_struct *tsk)
2538{
2539 tsk->ioac.syscw++;
2540}
2541#else
2542static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2543{
2544}
2545
2546static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2547{
2548}
2549
2550static inline void inc_syscr(struct task_struct *tsk)
2551{
2552}
2553
2554static inline void inc_syscw(struct task_struct *tsk)
2555{
2556}
2557#endif
2558
2559#ifndef TASK_SIZE_OF
2560#define TASK_SIZE_OF(tsk) TASK_SIZE
2561#endif
2562
2563#ifdef CONFIG_MM_OWNER
2564extern void mm_update_next_owner(struct mm_struct *mm);
2565extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2566#else
2567static inline void mm_update_next_owner(struct mm_struct *mm)
2568{
2569}
2570
2571static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2572{
2573}
2574#endif /* CONFIG_MM_OWNER */
2575
2576static inline unsigned long task_rlimit(const struct task_struct *tsk,
2577 unsigned int limit)
2578{
2579 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2580}
2581
2582static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2583 unsigned int limit)
2584{
2585 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2586}
2587
2588static inline unsigned long rlimit(unsigned int limit)
2589{
2590 return task_rlimit(current, limit);
2591}
2592
2593static inline unsigned long rlimit_max(unsigned int limit)
2594{
2595 return task_rlimit_max(current, limit);
2596}
2597
2598#endif
This page took 0.060176 seconds and 5 git commands to generate.