exec: do not abuse ->cred_guard_mutex in threadgroup_lock()
[deliverable/linux.git] / include / linux / sched.h
... / ...
CommitLineData
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
4#include <uapi/linux/sched.h>
5
6
7struct sched_param {
8 int sched_priority;
9};
10
11#include <asm/param.h> /* for HZ */
12
13#include <linux/capability.h>
14#include <linux/threads.h>
15#include <linux/kernel.h>
16#include <linux/types.h>
17#include <linux/timex.h>
18#include <linux/jiffies.h>
19#include <linux/rbtree.h>
20#include <linux/thread_info.h>
21#include <linux/cpumask.h>
22#include <linux/errno.h>
23#include <linux/nodemask.h>
24#include <linux/mm_types.h>
25
26#include <asm/page.h>
27#include <asm/ptrace.h>
28#include <asm/cputime.h>
29
30#include <linux/smp.h>
31#include <linux/sem.h>
32#include <linux/signal.h>
33#include <linux/compiler.h>
34#include <linux/completion.h>
35#include <linux/pid.h>
36#include <linux/percpu.h>
37#include <linux/topology.h>
38#include <linux/proportions.h>
39#include <linux/seccomp.h>
40#include <linux/rcupdate.h>
41#include <linux/rculist.h>
42#include <linux/rtmutex.h>
43
44#include <linux/time.h>
45#include <linux/param.h>
46#include <linux/resource.h>
47#include <linux/timer.h>
48#include <linux/hrtimer.h>
49#include <linux/task_io_accounting.h>
50#include <linux/latencytop.h>
51#include <linux/cred.h>
52#include <linux/llist.h>
53#include <linux/uidgid.h>
54#include <linux/gfp.h>
55
56#include <asm/processor.h>
57
58struct exec_domain;
59struct futex_pi_state;
60struct robust_list_head;
61struct bio_list;
62struct fs_struct;
63struct perf_event_context;
64struct blk_plug;
65
66/*
67 * List of flags we want to share for kernel threads,
68 * if only because they are not used by them anyway.
69 */
70#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
71
72/*
73 * These are the constant used to fake the fixed-point load-average
74 * counting. Some notes:
75 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
76 * a load-average precision of 10 bits integer + 11 bits fractional
77 * - if you want to count load-averages more often, you need more
78 * precision, or rounding will get you. With 2-second counting freq,
79 * the EXP_n values would be 1981, 2034 and 2043 if still using only
80 * 11 bit fractions.
81 */
82extern unsigned long avenrun[]; /* Load averages */
83extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
84
85#define FSHIFT 11 /* nr of bits of precision */
86#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
87#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
88#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
89#define EXP_5 2014 /* 1/exp(5sec/5min) */
90#define EXP_15 2037 /* 1/exp(5sec/15min) */
91
92#define CALC_LOAD(load,exp,n) \
93 load *= exp; \
94 load += n*(FIXED_1-exp); \
95 load >>= FSHIFT;
96
97extern unsigned long total_forks;
98extern int nr_threads;
99DECLARE_PER_CPU(unsigned long, process_counts);
100extern int nr_processes(void);
101extern unsigned long nr_running(void);
102extern unsigned long nr_iowait(void);
103extern unsigned long nr_iowait_cpu(int cpu);
104extern unsigned long this_cpu_load(void);
105
106
107extern void calc_global_load(unsigned long ticks);
108extern void update_cpu_load_nohz(void);
109
110/* Notifier for when a task gets migrated to a new CPU */
111struct task_migration_notifier {
112 struct task_struct *task;
113 int from_cpu;
114 int to_cpu;
115};
116extern void register_task_migration_notifier(struct notifier_block *n);
117
118extern unsigned long get_parent_ip(unsigned long addr);
119
120extern void dump_cpu_task(int cpu);
121
122struct seq_file;
123struct cfs_rq;
124struct task_group;
125#ifdef CONFIG_SCHED_DEBUG
126extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
127extern void proc_sched_set_task(struct task_struct *p);
128extern void
129print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
130#endif
131
132/*
133 * Task state bitmask. NOTE! These bits are also
134 * encoded in fs/proc/array.c: get_task_state().
135 *
136 * We have two separate sets of flags: task->state
137 * is about runnability, while task->exit_state are
138 * about the task exiting. Confusing, but this way
139 * modifying one set can't modify the other one by
140 * mistake.
141 */
142#define TASK_RUNNING 0
143#define TASK_INTERRUPTIBLE 1
144#define TASK_UNINTERRUPTIBLE 2
145#define __TASK_STOPPED 4
146#define __TASK_TRACED 8
147/* in tsk->exit_state */
148#define EXIT_ZOMBIE 16
149#define EXIT_DEAD 32
150/* in tsk->state again */
151#define TASK_DEAD 64
152#define TASK_WAKEKILL 128
153#define TASK_WAKING 256
154#define TASK_PARKED 512
155#define TASK_STATE_MAX 1024
156
157#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
158
159extern char ___assert_task_state[1 - 2*!!(
160 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
161
162/* Convenience macros for the sake of set_task_state */
163#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
164#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
165#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
166
167/* Convenience macros for the sake of wake_up */
168#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
169#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
170
171/* get_task_state() */
172#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
173 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
174 __TASK_TRACED)
175
176#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
177#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
178#define task_is_dead(task) ((task)->exit_state != 0)
179#define task_is_stopped_or_traced(task) \
180 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
181#define task_contributes_to_load(task) \
182 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
183 (task->flags & PF_FROZEN) == 0)
184
185#define __set_task_state(tsk, state_value) \
186 do { (tsk)->state = (state_value); } while (0)
187#define set_task_state(tsk, state_value) \
188 set_mb((tsk)->state, (state_value))
189
190/*
191 * set_current_state() includes a barrier so that the write of current->state
192 * is correctly serialised wrt the caller's subsequent test of whether to
193 * actually sleep:
194 *
195 * set_current_state(TASK_UNINTERRUPTIBLE);
196 * if (do_i_need_to_sleep())
197 * schedule();
198 *
199 * If the caller does not need such serialisation then use __set_current_state()
200 */
201#define __set_current_state(state_value) \
202 do { current->state = (state_value); } while (0)
203#define set_current_state(state_value) \
204 set_mb(current->state, (state_value))
205
206/* Task command name length */
207#define TASK_COMM_LEN 16
208
209#include <linux/spinlock.h>
210
211/*
212 * This serializes "schedule()" and also protects
213 * the run-queue from deletions/modifications (but
214 * _adding_ to the beginning of the run-queue has
215 * a separate lock).
216 */
217extern rwlock_t tasklist_lock;
218extern spinlock_t mmlist_lock;
219
220struct task_struct;
221
222#ifdef CONFIG_PROVE_RCU
223extern int lockdep_tasklist_lock_is_held(void);
224#endif /* #ifdef CONFIG_PROVE_RCU */
225
226extern void sched_init(void);
227extern void sched_init_smp(void);
228extern asmlinkage void schedule_tail(struct task_struct *prev);
229extern void init_idle(struct task_struct *idle, int cpu);
230extern void init_idle_bootup_task(struct task_struct *idle);
231
232extern int runqueue_is_locked(int cpu);
233
234#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
235extern void nohz_balance_enter_idle(int cpu);
236extern void set_cpu_sd_state_idle(void);
237extern int get_nohz_timer_target(void);
238#else
239static inline void nohz_balance_enter_idle(int cpu) { }
240static inline void set_cpu_sd_state_idle(void) { }
241#endif
242
243/*
244 * Only dump TASK_* tasks. (0 for all tasks)
245 */
246extern void show_state_filter(unsigned long state_filter);
247
248static inline void show_state(void)
249{
250 show_state_filter(0);
251}
252
253extern void show_regs(struct pt_regs *);
254
255/*
256 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
257 * task), SP is the stack pointer of the first frame that should be shown in the back
258 * trace (or NULL if the entire call-chain of the task should be shown).
259 */
260extern void show_stack(struct task_struct *task, unsigned long *sp);
261
262void io_schedule(void);
263long io_schedule_timeout(long timeout);
264
265extern void cpu_init (void);
266extern void trap_init(void);
267extern void update_process_times(int user);
268extern void scheduler_tick(void);
269
270extern void sched_show_task(struct task_struct *p);
271
272#ifdef CONFIG_LOCKUP_DETECTOR
273extern void touch_softlockup_watchdog(void);
274extern void touch_softlockup_watchdog_sync(void);
275extern void touch_all_softlockup_watchdogs(void);
276extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
277 void __user *buffer,
278 size_t *lenp, loff_t *ppos);
279extern unsigned int softlockup_panic;
280void lockup_detector_init(void);
281#else
282static inline void touch_softlockup_watchdog(void)
283{
284}
285static inline void touch_softlockup_watchdog_sync(void)
286{
287}
288static inline void touch_all_softlockup_watchdogs(void)
289{
290}
291static inline void lockup_detector_init(void)
292{
293}
294#endif
295
296/* Attach to any functions which should be ignored in wchan output. */
297#define __sched __attribute__((__section__(".sched.text")))
298
299/* Linker adds these: start and end of __sched functions */
300extern char __sched_text_start[], __sched_text_end[];
301
302/* Is this address in the __sched functions? */
303extern int in_sched_functions(unsigned long addr);
304
305#define MAX_SCHEDULE_TIMEOUT LONG_MAX
306extern signed long schedule_timeout(signed long timeout);
307extern signed long schedule_timeout_interruptible(signed long timeout);
308extern signed long schedule_timeout_killable(signed long timeout);
309extern signed long schedule_timeout_uninterruptible(signed long timeout);
310asmlinkage void schedule(void);
311extern void schedule_preempt_disabled(void);
312
313struct nsproxy;
314struct user_namespace;
315
316#include <linux/aio.h>
317
318#ifdef CONFIG_MMU
319extern void arch_pick_mmap_layout(struct mm_struct *mm);
320extern unsigned long
321arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
322 unsigned long, unsigned long);
323extern unsigned long
324arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
325 unsigned long len, unsigned long pgoff,
326 unsigned long flags);
327extern void arch_unmap_area(struct mm_struct *, unsigned long);
328extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
329#else
330static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
331#endif
332
333
334extern void set_dumpable(struct mm_struct *mm, int value);
335extern int get_dumpable(struct mm_struct *mm);
336
337/* mm flags */
338/* dumpable bits */
339#define MMF_DUMPABLE 0 /* core dump is permitted */
340#define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
341
342#define MMF_DUMPABLE_BITS 2
343#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
344
345/* coredump filter bits */
346#define MMF_DUMP_ANON_PRIVATE 2
347#define MMF_DUMP_ANON_SHARED 3
348#define MMF_DUMP_MAPPED_PRIVATE 4
349#define MMF_DUMP_MAPPED_SHARED 5
350#define MMF_DUMP_ELF_HEADERS 6
351#define MMF_DUMP_HUGETLB_PRIVATE 7
352#define MMF_DUMP_HUGETLB_SHARED 8
353
354#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
355#define MMF_DUMP_FILTER_BITS 7
356#define MMF_DUMP_FILTER_MASK \
357 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
358#define MMF_DUMP_FILTER_DEFAULT \
359 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
360 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
361
362#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
363# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
364#else
365# define MMF_DUMP_MASK_DEFAULT_ELF 0
366#endif
367 /* leave room for more dump flags */
368#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
369#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
370#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
371
372#define MMF_HAS_UPROBES 19 /* has uprobes */
373#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
374
375#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
376
377struct sighand_struct {
378 atomic_t count;
379 struct k_sigaction action[_NSIG];
380 spinlock_t siglock;
381 wait_queue_head_t signalfd_wqh;
382};
383
384struct pacct_struct {
385 int ac_flag;
386 long ac_exitcode;
387 unsigned long ac_mem;
388 cputime_t ac_utime, ac_stime;
389 unsigned long ac_minflt, ac_majflt;
390};
391
392struct cpu_itimer {
393 cputime_t expires;
394 cputime_t incr;
395 u32 error;
396 u32 incr_error;
397};
398
399/**
400 * struct cputime - snaphsot of system and user cputime
401 * @utime: time spent in user mode
402 * @stime: time spent in system mode
403 *
404 * Gathers a generic snapshot of user and system time.
405 */
406struct cputime {
407 cputime_t utime;
408 cputime_t stime;
409};
410
411/**
412 * struct task_cputime - collected CPU time counts
413 * @utime: time spent in user mode, in &cputime_t units
414 * @stime: time spent in kernel mode, in &cputime_t units
415 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
416 *
417 * This is an extension of struct cputime that includes the total runtime
418 * spent by the task from the scheduler point of view.
419 *
420 * As a result, this structure groups together three kinds of CPU time
421 * that are tracked for threads and thread groups. Most things considering
422 * CPU time want to group these counts together and treat all three
423 * of them in parallel.
424 */
425struct task_cputime {
426 cputime_t utime;
427 cputime_t stime;
428 unsigned long long sum_exec_runtime;
429};
430/* Alternate field names when used to cache expirations. */
431#define prof_exp stime
432#define virt_exp utime
433#define sched_exp sum_exec_runtime
434
435#define INIT_CPUTIME \
436 (struct task_cputime) { \
437 .utime = 0, \
438 .stime = 0, \
439 .sum_exec_runtime = 0, \
440 }
441
442/*
443 * Disable preemption until the scheduler is running.
444 * Reset by start_kernel()->sched_init()->init_idle().
445 *
446 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
447 * before the scheduler is active -- see should_resched().
448 */
449#define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
450
451/**
452 * struct thread_group_cputimer - thread group interval timer counts
453 * @cputime: thread group interval timers.
454 * @running: non-zero when there are timers running and
455 * @cputime receives updates.
456 * @lock: lock for fields in this struct.
457 *
458 * This structure contains the version of task_cputime, above, that is
459 * used for thread group CPU timer calculations.
460 */
461struct thread_group_cputimer {
462 struct task_cputime cputime;
463 int running;
464 raw_spinlock_t lock;
465};
466
467#include <linux/rwsem.h>
468struct autogroup;
469
470/*
471 * NOTE! "signal_struct" does not have its own
472 * locking, because a shared signal_struct always
473 * implies a shared sighand_struct, so locking
474 * sighand_struct is always a proper superset of
475 * the locking of signal_struct.
476 */
477struct signal_struct {
478 atomic_t sigcnt;
479 atomic_t live;
480 int nr_threads;
481
482 wait_queue_head_t wait_chldexit; /* for wait4() */
483
484 /* current thread group signal load-balancing target: */
485 struct task_struct *curr_target;
486
487 /* shared signal handling: */
488 struct sigpending shared_pending;
489
490 /* thread group exit support */
491 int group_exit_code;
492 /* overloaded:
493 * - notify group_exit_task when ->count is equal to notify_count
494 * - everyone except group_exit_task is stopped during signal delivery
495 * of fatal signals, group_exit_task processes the signal.
496 */
497 int notify_count;
498 struct task_struct *group_exit_task;
499
500 /* thread group stop support, overloads group_exit_code too */
501 int group_stop_count;
502 unsigned int flags; /* see SIGNAL_* flags below */
503
504 /*
505 * PR_SET_CHILD_SUBREAPER marks a process, like a service
506 * manager, to re-parent orphan (double-forking) child processes
507 * to this process instead of 'init'. The service manager is
508 * able to receive SIGCHLD signals and is able to investigate
509 * the process until it calls wait(). All children of this
510 * process will inherit a flag if they should look for a
511 * child_subreaper process at exit.
512 */
513 unsigned int is_child_subreaper:1;
514 unsigned int has_child_subreaper:1;
515
516 /* POSIX.1b Interval Timers */
517 int posix_timer_id;
518 struct list_head posix_timers;
519
520 /* ITIMER_REAL timer for the process */
521 struct hrtimer real_timer;
522 struct pid *leader_pid;
523 ktime_t it_real_incr;
524
525 /*
526 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
527 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
528 * values are defined to 0 and 1 respectively
529 */
530 struct cpu_itimer it[2];
531
532 /*
533 * Thread group totals for process CPU timers.
534 * See thread_group_cputimer(), et al, for details.
535 */
536 struct thread_group_cputimer cputimer;
537
538 /* Earliest-expiration cache. */
539 struct task_cputime cputime_expires;
540
541 struct list_head cpu_timers[3];
542
543 struct pid *tty_old_pgrp;
544
545 /* boolean value for session group leader */
546 int leader;
547
548 struct tty_struct *tty; /* NULL if no tty */
549
550#ifdef CONFIG_SCHED_AUTOGROUP
551 struct autogroup *autogroup;
552#endif
553 /*
554 * Cumulative resource counters for dead threads in the group,
555 * and for reaped dead child processes forked by this group.
556 * Live threads maintain their own counters and add to these
557 * in __exit_signal, except for the group leader.
558 */
559 cputime_t utime, stime, cutime, cstime;
560 cputime_t gtime;
561 cputime_t cgtime;
562#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
563 struct cputime prev_cputime;
564#endif
565 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
566 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
567 unsigned long inblock, oublock, cinblock, coublock;
568 unsigned long maxrss, cmaxrss;
569 struct task_io_accounting ioac;
570
571 /*
572 * Cumulative ns of schedule CPU time fo dead threads in the
573 * group, not including a zombie group leader, (This only differs
574 * from jiffies_to_ns(utime + stime) if sched_clock uses something
575 * other than jiffies.)
576 */
577 unsigned long long sum_sched_runtime;
578
579 /*
580 * We don't bother to synchronize most readers of this at all,
581 * because there is no reader checking a limit that actually needs
582 * to get both rlim_cur and rlim_max atomically, and either one
583 * alone is a single word that can safely be read normally.
584 * getrlimit/setrlimit use task_lock(current->group_leader) to
585 * protect this instead of the siglock, because they really
586 * have no need to disable irqs.
587 */
588 struct rlimit rlim[RLIM_NLIMITS];
589
590#ifdef CONFIG_BSD_PROCESS_ACCT
591 struct pacct_struct pacct; /* per-process accounting information */
592#endif
593#ifdef CONFIG_TASKSTATS
594 struct taskstats *stats;
595#endif
596#ifdef CONFIG_AUDIT
597 unsigned audit_tty;
598 struct tty_audit_buf *tty_audit_buf;
599#endif
600#ifdef CONFIG_CGROUPS
601 /*
602 * group_rwsem prevents new tasks from entering the threadgroup and
603 * member tasks from exiting,a more specifically, setting of
604 * PF_EXITING. fork and exit paths are protected with this rwsem
605 * using threadgroup_change_begin/end(). Users which require
606 * threadgroup to remain stable should use threadgroup_[un]lock()
607 * which also takes care of exec path. Currently, cgroup is the
608 * only user.
609 */
610 struct rw_semaphore group_rwsem;
611#endif
612
613 oom_flags_t oom_flags;
614 short oom_score_adj; /* OOM kill score adjustment */
615 short oom_score_adj_min; /* OOM kill score adjustment min value.
616 * Only settable by CAP_SYS_RESOURCE. */
617
618 struct mutex cred_guard_mutex; /* guard against foreign influences on
619 * credential calculations
620 * (notably. ptrace) */
621};
622
623/*
624 * Bits in flags field of signal_struct.
625 */
626#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
627#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
628#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
629#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
630/*
631 * Pending notifications to parent.
632 */
633#define SIGNAL_CLD_STOPPED 0x00000010
634#define SIGNAL_CLD_CONTINUED 0x00000020
635#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
636
637#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
638
639/* If true, all threads except ->group_exit_task have pending SIGKILL */
640static inline int signal_group_exit(const struct signal_struct *sig)
641{
642 return (sig->flags & SIGNAL_GROUP_EXIT) ||
643 (sig->group_exit_task != NULL);
644}
645
646/*
647 * Some day this will be a full-fledged user tracking system..
648 */
649struct user_struct {
650 atomic_t __count; /* reference count */
651 atomic_t processes; /* How many processes does this user have? */
652 atomic_t files; /* How many open files does this user have? */
653 atomic_t sigpending; /* How many pending signals does this user have? */
654#ifdef CONFIG_INOTIFY_USER
655 atomic_t inotify_watches; /* How many inotify watches does this user have? */
656 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
657#endif
658#ifdef CONFIG_FANOTIFY
659 atomic_t fanotify_listeners;
660#endif
661#ifdef CONFIG_EPOLL
662 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
663#endif
664#ifdef CONFIG_POSIX_MQUEUE
665 /* protected by mq_lock */
666 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
667#endif
668 unsigned long locked_shm; /* How many pages of mlocked shm ? */
669
670#ifdef CONFIG_KEYS
671 struct key *uid_keyring; /* UID specific keyring */
672 struct key *session_keyring; /* UID's default session keyring */
673#endif
674
675 /* Hash table maintenance information */
676 struct hlist_node uidhash_node;
677 kuid_t uid;
678
679#ifdef CONFIG_PERF_EVENTS
680 atomic_long_t locked_vm;
681#endif
682};
683
684extern int uids_sysfs_init(void);
685
686extern struct user_struct *find_user(kuid_t);
687
688extern struct user_struct root_user;
689#define INIT_USER (&root_user)
690
691
692struct backing_dev_info;
693struct reclaim_state;
694
695#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
696struct sched_info {
697 /* cumulative counters */
698 unsigned long pcount; /* # of times run on this cpu */
699 unsigned long long run_delay; /* time spent waiting on a runqueue */
700
701 /* timestamps */
702 unsigned long long last_arrival,/* when we last ran on a cpu */
703 last_queued; /* when we were last queued to run */
704};
705#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
706
707#ifdef CONFIG_TASK_DELAY_ACCT
708struct task_delay_info {
709 spinlock_t lock;
710 unsigned int flags; /* Private per-task flags */
711
712 /* For each stat XXX, add following, aligned appropriately
713 *
714 * struct timespec XXX_start, XXX_end;
715 * u64 XXX_delay;
716 * u32 XXX_count;
717 *
718 * Atomicity of updates to XXX_delay, XXX_count protected by
719 * single lock above (split into XXX_lock if contention is an issue).
720 */
721
722 /*
723 * XXX_count is incremented on every XXX operation, the delay
724 * associated with the operation is added to XXX_delay.
725 * XXX_delay contains the accumulated delay time in nanoseconds.
726 */
727 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
728 u64 blkio_delay; /* wait for sync block io completion */
729 u64 swapin_delay; /* wait for swapin block io completion */
730 u32 blkio_count; /* total count of the number of sync block */
731 /* io operations performed */
732 u32 swapin_count; /* total count of the number of swapin block */
733 /* io operations performed */
734
735 struct timespec freepages_start, freepages_end;
736 u64 freepages_delay; /* wait for memory reclaim */
737 u32 freepages_count; /* total count of memory reclaim */
738};
739#endif /* CONFIG_TASK_DELAY_ACCT */
740
741static inline int sched_info_on(void)
742{
743#ifdef CONFIG_SCHEDSTATS
744 return 1;
745#elif defined(CONFIG_TASK_DELAY_ACCT)
746 extern int delayacct_on;
747 return delayacct_on;
748#else
749 return 0;
750#endif
751}
752
753enum cpu_idle_type {
754 CPU_IDLE,
755 CPU_NOT_IDLE,
756 CPU_NEWLY_IDLE,
757 CPU_MAX_IDLE_TYPES
758};
759
760/*
761 * Increase resolution of cpu_power calculations
762 */
763#define SCHED_POWER_SHIFT 10
764#define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
765
766/*
767 * sched-domains (multiprocessor balancing) declarations:
768 */
769#ifdef CONFIG_SMP
770#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
771#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
772#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
773#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
774#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
775#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
776#define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
777#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
778#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
779#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
780#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
781#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
782
783extern int __weak arch_sd_sibiling_asym_packing(void);
784
785struct sched_domain_attr {
786 int relax_domain_level;
787};
788
789#define SD_ATTR_INIT (struct sched_domain_attr) { \
790 .relax_domain_level = -1, \
791}
792
793extern int sched_domain_level_max;
794
795struct sched_group;
796
797struct sched_domain {
798 /* These fields must be setup */
799 struct sched_domain *parent; /* top domain must be null terminated */
800 struct sched_domain *child; /* bottom domain must be null terminated */
801 struct sched_group *groups; /* the balancing groups of the domain */
802 unsigned long min_interval; /* Minimum balance interval ms */
803 unsigned long max_interval; /* Maximum balance interval ms */
804 unsigned int busy_factor; /* less balancing by factor if busy */
805 unsigned int imbalance_pct; /* No balance until over watermark */
806 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
807 unsigned int busy_idx;
808 unsigned int idle_idx;
809 unsigned int newidle_idx;
810 unsigned int wake_idx;
811 unsigned int forkexec_idx;
812 unsigned int smt_gain;
813
814 int nohz_idle; /* NOHZ IDLE status */
815 int flags; /* See SD_* */
816 int level;
817
818 /* Runtime fields. */
819 unsigned long last_balance; /* init to jiffies. units in jiffies */
820 unsigned int balance_interval; /* initialise to 1. units in ms. */
821 unsigned int nr_balance_failed; /* initialise to 0 */
822
823 u64 last_update;
824
825#ifdef CONFIG_SCHEDSTATS
826 /* load_balance() stats */
827 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
828 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
829 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
830 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
831 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
832 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
833 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
834 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
835
836 /* Active load balancing */
837 unsigned int alb_count;
838 unsigned int alb_failed;
839 unsigned int alb_pushed;
840
841 /* SD_BALANCE_EXEC stats */
842 unsigned int sbe_count;
843 unsigned int sbe_balanced;
844 unsigned int sbe_pushed;
845
846 /* SD_BALANCE_FORK stats */
847 unsigned int sbf_count;
848 unsigned int sbf_balanced;
849 unsigned int sbf_pushed;
850
851 /* try_to_wake_up() stats */
852 unsigned int ttwu_wake_remote;
853 unsigned int ttwu_move_affine;
854 unsigned int ttwu_move_balance;
855#endif
856#ifdef CONFIG_SCHED_DEBUG
857 char *name;
858#endif
859 union {
860 void *private; /* used during construction */
861 struct rcu_head rcu; /* used during destruction */
862 };
863
864 unsigned int span_weight;
865 /*
866 * Span of all CPUs in this domain.
867 *
868 * NOTE: this field is variable length. (Allocated dynamically
869 * by attaching extra space to the end of the structure,
870 * depending on how many CPUs the kernel has booted up with)
871 */
872 unsigned long span[0];
873};
874
875static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
876{
877 return to_cpumask(sd->span);
878}
879
880extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
881 struct sched_domain_attr *dattr_new);
882
883/* Allocate an array of sched domains, for partition_sched_domains(). */
884cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
885void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
886
887bool cpus_share_cache(int this_cpu, int that_cpu);
888
889#else /* CONFIG_SMP */
890
891struct sched_domain_attr;
892
893static inline void
894partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
895 struct sched_domain_attr *dattr_new)
896{
897}
898
899static inline bool cpus_share_cache(int this_cpu, int that_cpu)
900{
901 return true;
902}
903
904#endif /* !CONFIG_SMP */
905
906
907struct io_context; /* See blkdev.h */
908
909
910#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
911extern void prefetch_stack(struct task_struct *t);
912#else
913static inline void prefetch_stack(struct task_struct *t) { }
914#endif
915
916struct audit_context; /* See audit.c */
917struct mempolicy;
918struct pipe_inode_info;
919struct uts_namespace;
920
921struct load_weight {
922 unsigned long weight, inv_weight;
923};
924
925struct sched_avg {
926 /*
927 * These sums represent an infinite geometric series and so are bound
928 * above by 1024/(1-y). Thus we only need a u32 to store them for for all
929 * choices of y < 1-2^(-32)*1024.
930 */
931 u32 runnable_avg_sum, runnable_avg_period;
932 u64 last_runnable_update;
933 s64 decay_count;
934 unsigned long load_avg_contrib;
935};
936
937#ifdef CONFIG_SCHEDSTATS
938struct sched_statistics {
939 u64 wait_start;
940 u64 wait_max;
941 u64 wait_count;
942 u64 wait_sum;
943 u64 iowait_count;
944 u64 iowait_sum;
945
946 u64 sleep_start;
947 u64 sleep_max;
948 s64 sum_sleep_runtime;
949
950 u64 block_start;
951 u64 block_max;
952 u64 exec_max;
953 u64 slice_max;
954
955 u64 nr_migrations_cold;
956 u64 nr_failed_migrations_affine;
957 u64 nr_failed_migrations_running;
958 u64 nr_failed_migrations_hot;
959 u64 nr_forced_migrations;
960
961 u64 nr_wakeups;
962 u64 nr_wakeups_sync;
963 u64 nr_wakeups_migrate;
964 u64 nr_wakeups_local;
965 u64 nr_wakeups_remote;
966 u64 nr_wakeups_affine;
967 u64 nr_wakeups_affine_attempts;
968 u64 nr_wakeups_passive;
969 u64 nr_wakeups_idle;
970};
971#endif
972
973struct sched_entity {
974 struct load_weight load; /* for load-balancing */
975 struct rb_node run_node;
976 struct list_head group_node;
977 unsigned int on_rq;
978
979 u64 exec_start;
980 u64 sum_exec_runtime;
981 u64 vruntime;
982 u64 prev_sum_exec_runtime;
983
984 u64 nr_migrations;
985
986#ifdef CONFIG_SCHEDSTATS
987 struct sched_statistics statistics;
988#endif
989
990#ifdef CONFIG_FAIR_GROUP_SCHED
991 struct sched_entity *parent;
992 /* rq on which this entity is (to be) queued: */
993 struct cfs_rq *cfs_rq;
994 /* rq "owned" by this entity/group: */
995 struct cfs_rq *my_q;
996#endif
997
998/*
999 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1000 * removed when useful for applications beyond shares distribution (e.g.
1001 * load-balance).
1002 */
1003#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1004 /* Per-entity load-tracking */
1005 struct sched_avg avg;
1006#endif
1007};
1008
1009struct sched_rt_entity {
1010 struct list_head run_list;
1011 unsigned long timeout;
1012 unsigned long watchdog_stamp;
1013 unsigned int time_slice;
1014
1015 struct sched_rt_entity *back;
1016#ifdef CONFIG_RT_GROUP_SCHED
1017 struct sched_rt_entity *parent;
1018 /* rq on which this entity is (to be) queued: */
1019 struct rt_rq *rt_rq;
1020 /* rq "owned" by this entity/group: */
1021 struct rt_rq *my_q;
1022#endif
1023};
1024
1025
1026struct rcu_node;
1027
1028enum perf_event_task_context {
1029 perf_invalid_context = -1,
1030 perf_hw_context = 0,
1031 perf_sw_context,
1032 perf_nr_task_contexts,
1033};
1034
1035struct task_struct {
1036 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1037 void *stack;
1038 atomic_t usage;
1039 unsigned int flags; /* per process flags, defined below */
1040 unsigned int ptrace;
1041
1042#ifdef CONFIG_SMP
1043 struct llist_node wake_entry;
1044 int on_cpu;
1045#endif
1046 int on_rq;
1047
1048 int prio, static_prio, normal_prio;
1049 unsigned int rt_priority;
1050 const struct sched_class *sched_class;
1051 struct sched_entity se;
1052 struct sched_rt_entity rt;
1053#ifdef CONFIG_CGROUP_SCHED
1054 struct task_group *sched_task_group;
1055#endif
1056
1057#ifdef CONFIG_PREEMPT_NOTIFIERS
1058 /* list of struct preempt_notifier: */
1059 struct hlist_head preempt_notifiers;
1060#endif
1061
1062 /*
1063 * fpu_counter contains the number of consecutive context switches
1064 * that the FPU is used. If this is over a threshold, the lazy fpu
1065 * saving becomes unlazy to save the trap. This is an unsigned char
1066 * so that after 256 times the counter wraps and the behavior turns
1067 * lazy again; this to deal with bursty apps that only use FPU for
1068 * a short time
1069 */
1070 unsigned char fpu_counter;
1071#ifdef CONFIG_BLK_DEV_IO_TRACE
1072 unsigned int btrace_seq;
1073#endif
1074
1075 unsigned int policy;
1076 int nr_cpus_allowed;
1077 cpumask_t cpus_allowed;
1078
1079#ifdef CONFIG_PREEMPT_RCU
1080 int rcu_read_lock_nesting;
1081 char rcu_read_unlock_special;
1082 struct list_head rcu_node_entry;
1083#endif /* #ifdef CONFIG_PREEMPT_RCU */
1084#ifdef CONFIG_TREE_PREEMPT_RCU
1085 struct rcu_node *rcu_blocked_node;
1086#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1087#ifdef CONFIG_RCU_BOOST
1088 struct rt_mutex *rcu_boost_mutex;
1089#endif /* #ifdef CONFIG_RCU_BOOST */
1090
1091#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1092 struct sched_info sched_info;
1093#endif
1094
1095 struct list_head tasks;
1096#ifdef CONFIG_SMP
1097 struct plist_node pushable_tasks;
1098#endif
1099
1100 struct mm_struct *mm, *active_mm;
1101#ifdef CONFIG_COMPAT_BRK
1102 unsigned brk_randomized:1;
1103#endif
1104#if defined(SPLIT_RSS_COUNTING)
1105 struct task_rss_stat rss_stat;
1106#endif
1107/* task state */
1108 int exit_state;
1109 int exit_code, exit_signal;
1110 int pdeath_signal; /* The signal sent when the parent dies */
1111 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1112
1113 /* Used for emulating ABI behavior of previous Linux versions */
1114 unsigned int personality;
1115
1116 unsigned did_exec:1;
1117 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1118 * execve */
1119 unsigned in_iowait:1;
1120
1121 /* task may not gain privileges */
1122 unsigned no_new_privs:1;
1123
1124 /* Revert to default priority/policy when forking */
1125 unsigned sched_reset_on_fork:1;
1126 unsigned sched_contributes_to_load:1;
1127
1128 pid_t pid;
1129 pid_t tgid;
1130
1131#ifdef CONFIG_CC_STACKPROTECTOR
1132 /* Canary value for the -fstack-protector gcc feature */
1133 unsigned long stack_canary;
1134#endif
1135 /*
1136 * pointers to (original) parent process, youngest child, younger sibling,
1137 * older sibling, respectively. (p->father can be replaced with
1138 * p->real_parent->pid)
1139 */
1140 struct task_struct __rcu *real_parent; /* real parent process */
1141 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1142 /*
1143 * children/sibling forms the list of my natural children
1144 */
1145 struct list_head children; /* list of my children */
1146 struct list_head sibling; /* linkage in my parent's children list */
1147 struct task_struct *group_leader; /* threadgroup leader */
1148
1149 /*
1150 * ptraced is the list of tasks this task is using ptrace on.
1151 * This includes both natural children and PTRACE_ATTACH targets.
1152 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1153 */
1154 struct list_head ptraced;
1155 struct list_head ptrace_entry;
1156
1157 /* PID/PID hash table linkage. */
1158 struct pid_link pids[PIDTYPE_MAX];
1159 struct list_head thread_group;
1160
1161 struct completion *vfork_done; /* for vfork() */
1162 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1163 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1164
1165 cputime_t utime, stime, utimescaled, stimescaled;
1166 cputime_t gtime;
1167#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1168 struct cputime prev_cputime;
1169#endif
1170#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1171 seqlock_t vtime_seqlock;
1172 unsigned long long vtime_snap;
1173 enum {
1174 VTIME_SLEEPING = 0,
1175 VTIME_USER,
1176 VTIME_SYS,
1177 } vtime_snap_whence;
1178#endif
1179 unsigned long nvcsw, nivcsw; /* context switch counts */
1180 struct timespec start_time; /* monotonic time */
1181 struct timespec real_start_time; /* boot based time */
1182/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1183 unsigned long min_flt, maj_flt;
1184
1185 struct task_cputime cputime_expires;
1186 struct list_head cpu_timers[3];
1187
1188/* process credentials */
1189 const struct cred __rcu *real_cred; /* objective and real subjective task
1190 * credentials (COW) */
1191 const struct cred __rcu *cred; /* effective (overridable) subjective task
1192 * credentials (COW) */
1193 char comm[TASK_COMM_LEN]; /* executable name excluding path
1194 - access with [gs]et_task_comm (which lock
1195 it with task_lock())
1196 - initialized normally by setup_new_exec */
1197/* file system info */
1198 int link_count, total_link_count;
1199#ifdef CONFIG_SYSVIPC
1200/* ipc stuff */
1201 struct sysv_sem sysvsem;
1202#endif
1203#ifdef CONFIG_DETECT_HUNG_TASK
1204/* hung task detection */
1205 unsigned long last_switch_count;
1206#endif
1207/* CPU-specific state of this task */
1208 struct thread_struct thread;
1209/* filesystem information */
1210 struct fs_struct *fs;
1211/* open file information */
1212 struct files_struct *files;
1213/* namespaces */
1214 struct nsproxy *nsproxy;
1215/* signal handlers */
1216 struct signal_struct *signal;
1217 struct sighand_struct *sighand;
1218
1219 sigset_t blocked, real_blocked;
1220 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1221 struct sigpending pending;
1222
1223 unsigned long sas_ss_sp;
1224 size_t sas_ss_size;
1225 int (*notifier)(void *priv);
1226 void *notifier_data;
1227 sigset_t *notifier_mask;
1228 struct callback_head *task_works;
1229
1230 struct audit_context *audit_context;
1231#ifdef CONFIG_AUDITSYSCALL
1232 kuid_t loginuid;
1233 unsigned int sessionid;
1234#endif
1235 struct seccomp seccomp;
1236
1237/* Thread group tracking */
1238 u32 parent_exec_id;
1239 u32 self_exec_id;
1240/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1241 * mempolicy */
1242 spinlock_t alloc_lock;
1243
1244 /* Protection of the PI data structures: */
1245 raw_spinlock_t pi_lock;
1246
1247#ifdef CONFIG_RT_MUTEXES
1248 /* PI waiters blocked on a rt_mutex held by this task */
1249 struct plist_head pi_waiters;
1250 /* Deadlock detection and priority inheritance handling */
1251 struct rt_mutex_waiter *pi_blocked_on;
1252#endif
1253
1254#ifdef CONFIG_DEBUG_MUTEXES
1255 /* mutex deadlock detection */
1256 struct mutex_waiter *blocked_on;
1257#endif
1258#ifdef CONFIG_TRACE_IRQFLAGS
1259 unsigned int irq_events;
1260 unsigned long hardirq_enable_ip;
1261 unsigned long hardirq_disable_ip;
1262 unsigned int hardirq_enable_event;
1263 unsigned int hardirq_disable_event;
1264 int hardirqs_enabled;
1265 int hardirq_context;
1266 unsigned long softirq_disable_ip;
1267 unsigned long softirq_enable_ip;
1268 unsigned int softirq_disable_event;
1269 unsigned int softirq_enable_event;
1270 int softirqs_enabled;
1271 int softirq_context;
1272#endif
1273#ifdef CONFIG_LOCKDEP
1274# define MAX_LOCK_DEPTH 48UL
1275 u64 curr_chain_key;
1276 int lockdep_depth;
1277 unsigned int lockdep_recursion;
1278 struct held_lock held_locks[MAX_LOCK_DEPTH];
1279 gfp_t lockdep_reclaim_gfp;
1280#endif
1281
1282/* journalling filesystem info */
1283 void *journal_info;
1284
1285/* stacked block device info */
1286 struct bio_list *bio_list;
1287
1288#ifdef CONFIG_BLOCK
1289/* stack plugging */
1290 struct blk_plug *plug;
1291#endif
1292
1293/* VM state */
1294 struct reclaim_state *reclaim_state;
1295
1296 struct backing_dev_info *backing_dev_info;
1297
1298 struct io_context *io_context;
1299
1300 unsigned long ptrace_message;
1301 siginfo_t *last_siginfo; /* For ptrace use. */
1302 struct task_io_accounting ioac;
1303#if defined(CONFIG_TASK_XACCT)
1304 u64 acct_rss_mem1; /* accumulated rss usage */
1305 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1306 cputime_t acct_timexpd; /* stime + utime since last update */
1307#endif
1308#ifdef CONFIG_CPUSETS
1309 nodemask_t mems_allowed; /* Protected by alloc_lock */
1310 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1311 int cpuset_mem_spread_rotor;
1312 int cpuset_slab_spread_rotor;
1313#endif
1314#ifdef CONFIG_CGROUPS
1315 /* Control Group info protected by css_set_lock */
1316 struct css_set __rcu *cgroups;
1317 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1318 struct list_head cg_list;
1319#endif
1320#ifdef CONFIG_FUTEX
1321 struct robust_list_head __user *robust_list;
1322#ifdef CONFIG_COMPAT
1323 struct compat_robust_list_head __user *compat_robust_list;
1324#endif
1325 struct list_head pi_state_list;
1326 struct futex_pi_state *pi_state_cache;
1327#endif
1328#ifdef CONFIG_PERF_EVENTS
1329 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1330 struct mutex perf_event_mutex;
1331 struct list_head perf_event_list;
1332#endif
1333#ifdef CONFIG_NUMA
1334 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1335 short il_next;
1336 short pref_node_fork;
1337#endif
1338#ifdef CONFIG_NUMA_BALANCING
1339 int numa_scan_seq;
1340 int numa_migrate_seq;
1341 unsigned int numa_scan_period;
1342 u64 node_stamp; /* migration stamp */
1343 struct callback_head numa_work;
1344#endif /* CONFIG_NUMA_BALANCING */
1345
1346 struct rcu_head rcu;
1347
1348 /*
1349 * cache last used pipe for splice
1350 */
1351 struct pipe_inode_info *splice_pipe;
1352
1353 struct page_frag task_frag;
1354
1355#ifdef CONFIG_TASK_DELAY_ACCT
1356 struct task_delay_info *delays;
1357#endif
1358#ifdef CONFIG_FAULT_INJECTION
1359 int make_it_fail;
1360#endif
1361 /*
1362 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1363 * balance_dirty_pages() for some dirty throttling pause
1364 */
1365 int nr_dirtied;
1366 int nr_dirtied_pause;
1367 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1368
1369#ifdef CONFIG_LATENCYTOP
1370 int latency_record_count;
1371 struct latency_record latency_record[LT_SAVECOUNT];
1372#endif
1373 /*
1374 * time slack values; these are used to round up poll() and
1375 * select() etc timeout values. These are in nanoseconds.
1376 */
1377 unsigned long timer_slack_ns;
1378 unsigned long default_timer_slack_ns;
1379
1380#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1381 /* Index of current stored address in ret_stack */
1382 int curr_ret_stack;
1383 /* Stack of return addresses for return function tracing */
1384 struct ftrace_ret_stack *ret_stack;
1385 /* time stamp for last schedule */
1386 unsigned long long ftrace_timestamp;
1387 /*
1388 * Number of functions that haven't been traced
1389 * because of depth overrun.
1390 */
1391 atomic_t trace_overrun;
1392 /* Pause for the tracing */
1393 atomic_t tracing_graph_pause;
1394#endif
1395#ifdef CONFIG_TRACING
1396 /* state flags for use by tracers */
1397 unsigned long trace;
1398 /* bitmask and counter of trace recursion */
1399 unsigned long trace_recursion;
1400#endif /* CONFIG_TRACING */
1401#ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1402 struct memcg_batch_info {
1403 int do_batch; /* incremented when batch uncharge started */
1404 struct mem_cgroup *memcg; /* target memcg of uncharge */
1405 unsigned long nr_pages; /* uncharged usage */
1406 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1407 } memcg_batch;
1408 unsigned int memcg_kmem_skip_account;
1409#endif
1410#ifdef CONFIG_HAVE_HW_BREAKPOINT
1411 atomic_t ptrace_bp_refcnt;
1412#endif
1413#ifdef CONFIG_UPROBES
1414 struct uprobe_task *utask;
1415#endif
1416};
1417
1418/* Future-safe accessor for struct task_struct's cpus_allowed. */
1419#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1420
1421#ifdef CONFIG_NUMA_BALANCING
1422extern void task_numa_fault(int node, int pages, bool migrated);
1423extern void set_numabalancing_state(bool enabled);
1424#else
1425static inline void task_numa_fault(int node, int pages, bool migrated)
1426{
1427}
1428static inline void set_numabalancing_state(bool enabled)
1429{
1430}
1431#endif
1432
1433static inline struct pid *task_pid(struct task_struct *task)
1434{
1435 return task->pids[PIDTYPE_PID].pid;
1436}
1437
1438static inline struct pid *task_tgid(struct task_struct *task)
1439{
1440 return task->group_leader->pids[PIDTYPE_PID].pid;
1441}
1442
1443/*
1444 * Without tasklist or rcu lock it is not safe to dereference
1445 * the result of task_pgrp/task_session even if task == current,
1446 * we can race with another thread doing sys_setsid/sys_setpgid.
1447 */
1448static inline struct pid *task_pgrp(struct task_struct *task)
1449{
1450 return task->group_leader->pids[PIDTYPE_PGID].pid;
1451}
1452
1453static inline struct pid *task_session(struct task_struct *task)
1454{
1455 return task->group_leader->pids[PIDTYPE_SID].pid;
1456}
1457
1458struct pid_namespace;
1459
1460/*
1461 * the helpers to get the task's different pids as they are seen
1462 * from various namespaces
1463 *
1464 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1465 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1466 * current.
1467 * task_xid_nr_ns() : id seen from the ns specified;
1468 *
1469 * set_task_vxid() : assigns a virtual id to a task;
1470 *
1471 * see also pid_nr() etc in include/linux/pid.h
1472 */
1473pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1474 struct pid_namespace *ns);
1475
1476static inline pid_t task_pid_nr(struct task_struct *tsk)
1477{
1478 return tsk->pid;
1479}
1480
1481static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1482 struct pid_namespace *ns)
1483{
1484 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1485}
1486
1487static inline pid_t task_pid_vnr(struct task_struct *tsk)
1488{
1489 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1490}
1491
1492
1493static inline pid_t task_tgid_nr(struct task_struct *tsk)
1494{
1495 return tsk->tgid;
1496}
1497
1498pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1499
1500static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1501{
1502 return pid_vnr(task_tgid(tsk));
1503}
1504
1505
1506static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1507 struct pid_namespace *ns)
1508{
1509 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1510}
1511
1512static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1513{
1514 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1515}
1516
1517
1518static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1519 struct pid_namespace *ns)
1520{
1521 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1522}
1523
1524static inline pid_t task_session_vnr(struct task_struct *tsk)
1525{
1526 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1527}
1528
1529/* obsolete, do not use */
1530static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1531{
1532 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1533}
1534
1535/**
1536 * pid_alive - check that a task structure is not stale
1537 * @p: Task structure to be checked.
1538 *
1539 * Test if a process is not yet dead (at most zombie state)
1540 * If pid_alive fails, then pointers within the task structure
1541 * can be stale and must not be dereferenced.
1542 */
1543static inline int pid_alive(struct task_struct *p)
1544{
1545 return p->pids[PIDTYPE_PID].pid != NULL;
1546}
1547
1548/**
1549 * is_global_init - check if a task structure is init
1550 * @tsk: Task structure to be checked.
1551 *
1552 * Check if a task structure is the first user space task the kernel created.
1553 */
1554static inline int is_global_init(struct task_struct *tsk)
1555{
1556 return tsk->pid == 1;
1557}
1558
1559extern struct pid *cad_pid;
1560
1561extern void free_task(struct task_struct *tsk);
1562#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1563
1564extern void __put_task_struct(struct task_struct *t);
1565
1566static inline void put_task_struct(struct task_struct *t)
1567{
1568 if (atomic_dec_and_test(&t->usage))
1569 __put_task_struct(t);
1570}
1571
1572#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1573extern void task_cputime(struct task_struct *t,
1574 cputime_t *utime, cputime_t *stime);
1575extern void task_cputime_scaled(struct task_struct *t,
1576 cputime_t *utimescaled, cputime_t *stimescaled);
1577extern cputime_t task_gtime(struct task_struct *t);
1578#else
1579static inline void task_cputime(struct task_struct *t,
1580 cputime_t *utime, cputime_t *stime)
1581{
1582 if (utime)
1583 *utime = t->utime;
1584 if (stime)
1585 *stime = t->stime;
1586}
1587
1588static inline void task_cputime_scaled(struct task_struct *t,
1589 cputime_t *utimescaled,
1590 cputime_t *stimescaled)
1591{
1592 if (utimescaled)
1593 *utimescaled = t->utimescaled;
1594 if (stimescaled)
1595 *stimescaled = t->stimescaled;
1596}
1597
1598static inline cputime_t task_gtime(struct task_struct *t)
1599{
1600 return t->gtime;
1601}
1602#endif
1603extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1604extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1605
1606/*
1607 * Per process flags
1608 */
1609#define PF_EXITING 0x00000004 /* getting shut down */
1610#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1611#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1612#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1613#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1614#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1615#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1616#define PF_DUMPCORE 0x00000200 /* dumped core */
1617#define PF_SIGNALED 0x00000400 /* killed by a signal */
1618#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1619#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1620#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1621#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1622#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1623#define PF_FROZEN 0x00010000 /* frozen for system suspend */
1624#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1625#define PF_KSWAPD 0x00040000 /* I am kswapd */
1626#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1627#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1628#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1629#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1630#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1631#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1632#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1633#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1634#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1635#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1636#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1637#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1638
1639/*
1640 * Only the _current_ task can read/write to tsk->flags, but other
1641 * tasks can access tsk->flags in readonly mode for example
1642 * with tsk_used_math (like during threaded core dumping).
1643 * There is however an exception to this rule during ptrace
1644 * or during fork: the ptracer task is allowed to write to the
1645 * child->flags of its traced child (same goes for fork, the parent
1646 * can write to the child->flags), because we're guaranteed the
1647 * child is not running and in turn not changing child->flags
1648 * at the same time the parent does it.
1649 */
1650#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1651#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1652#define clear_used_math() clear_stopped_child_used_math(current)
1653#define set_used_math() set_stopped_child_used_math(current)
1654#define conditional_stopped_child_used_math(condition, child) \
1655 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1656#define conditional_used_math(condition) \
1657 conditional_stopped_child_used_math(condition, current)
1658#define copy_to_stopped_child_used_math(child) \
1659 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1660/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1661#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1662#define used_math() tsk_used_math(current)
1663
1664/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1665static inline gfp_t memalloc_noio_flags(gfp_t flags)
1666{
1667 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1668 flags &= ~__GFP_IO;
1669 return flags;
1670}
1671
1672static inline unsigned int memalloc_noio_save(void)
1673{
1674 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1675 current->flags |= PF_MEMALLOC_NOIO;
1676 return flags;
1677}
1678
1679static inline void memalloc_noio_restore(unsigned int flags)
1680{
1681 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1682}
1683
1684/*
1685 * task->jobctl flags
1686 */
1687#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1688
1689#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1690#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1691#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1692#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1693#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1694#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1695#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1696
1697#define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1698#define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1699#define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1700#define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1701#define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1702#define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1703#define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1704
1705#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1706#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1707
1708extern bool task_set_jobctl_pending(struct task_struct *task,
1709 unsigned int mask);
1710extern void task_clear_jobctl_trapping(struct task_struct *task);
1711extern void task_clear_jobctl_pending(struct task_struct *task,
1712 unsigned int mask);
1713
1714#ifdef CONFIG_PREEMPT_RCU
1715
1716#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1717#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1718
1719static inline void rcu_copy_process(struct task_struct *p)
1720{
1721 p->rcu_read_lock_nesting = 0;
1722 p->rcu_read_unlock_special = 0;
1723#ifdef CONFIG_TREE_PREEMPT_RCU
1724 p->rcu_blocked_node = NULL;
1725#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1726#ifdef CONFIG_RCU_BOOST
1727 p->rcu_boost_mutex = NULL;
1728#endif /* #ifdef CONFIG_RCU_BOOST */
1729 INIT_LIST_HEAD(&p->rcu_node_entry);
1730}
1731
1732#else
1733
1734static inline void rcu_copy_process(struct task_struct *p)
1735{
1736}
1737
1738#endif
1739
1740static inline void tsk_restore_flags(struct task_struct *task,
1741 unsigned long orig_flags, unsigned long flags)
1742{
1743 task->flags &= ~flags;
1744 task->flags |= orig_flags & flags;
1745}
1746
1747#ifdef CONFIG_SMP
1748extern void do_set_cpus_allowed(struct task_struct *p,
1749 const struct cpumask *new_mask);
1750
1751extern int set_cpus_allowed_ptr(struct task_struct *p,
1752 const struct cpumask *new_mask);
1753#else
1754static inline void do_set_cpus_allowed(struct task_struct *p,
1755 const struct cpumask *new_mask)
1756{
1757}
1758static inline int set_cpus_allowed_ptr(struct task_struct *p,
1759 const struct cpumask *new_mask)
1760{
1761 if (!cpumask_test_cpu(0, new_mask))
1762 return -EINVAL;
1763 return 0;
1764}
1765#endif
1766
1767#ifdef CONFIG_NO_HZ
1768void calc_load_enter_idle(void);
1769void calc_load_exit_idle(void);
1770#else
1771static inline void calc_load_enter_idle(void) { }
1772static inline void calc_load_exit_idle(void) { }
1773#endif /* CONFIG_NO_HZ */
1774
1775#ifndef CONFIG_CPUMASK_OFFSTACK
1776static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1777{
1778 return set_cpus_allowed_ptr(p, &new_mask);
1779}
1780#endif
1781
1782/*
1783 * Do not use outside of architecture code which knows its limitations.
1784 *
1785 * sched_clock() has no promise of monotonicity or bounded drift between
1786 * CPUs, use (which you should not) requires disabling IRQs.
1787 *
1788 * Please use one of the three interfaces below.
1789 */
1790extern unsigned long long notrace sched_clock(void);
1791/*
1792 * See the comment in kernel/sched/clock.c
1793 */
1794extern u64 cpu_clock(int cpu);
1795extern u64 local_clock(void);
1796extern u64 sched_clock_cpu(int cpu);
1797
1798
1799extern void sched_clock_init(void);
1800
1801#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1802static inline void sched_clock_tick(void)
1803{
1804}
1805
1806static inline void sched_clock_idle_sleep_event(void)
1807{
1808}
1809
1810static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1811{
1812}
1813#else
1814/*
1815 * Architectures can set this to 1 if they have specified
1816 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1817 * but then during bootup it turns out that sched_clock()
1818 * is reliable after all:
1819 */
1820extern int sched_clock_stable;
1821
1822extern void sched_clock_tick(void);
1823extern void sched_clock_idle_sleep_event(void);
1824extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1825#endif
1826
1827#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1828/*
1829 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1830 * The reason for this explicit opt-in is not to have perf penalty with
1831 * slow sched_clocks.
1832 */
1833extern void enable_sched_clock_irqtime(void);
1834extern void disable_sched_clock_irqtime(void);
1835#else
1836static inline void enable_sched_clock_irqtime(void) {}
1837static inline void disable_sched_clock_irqtime(void) {}
1838#endif
1839
1840extern unsigned long long
1841task_sched_runtime(struct task_struct *task);
1842
1843/* sched_exec is called by processes performing an exec */
1844#ifdef CONFIG_SMP
1845extern void sched_exec(void);
1846#else
1847#define sched_exec() {}
1848#endif
1849
1850extern void sched_clock_idle_sleep_event(void);
1851extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1852
1853#ifdef CONFIG_HOTPLUG_CPU
1854extern void idle_task_exit(void);
1855#else
1856static inline void idle_task_exit(void) {}
1857#endif
1858
1859#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1860extern void wake_up_idle_cpu(int cpu);
1861#else
1862static inline void wake_up_idle_cpu(int cpu) { }
1863#endif
1864
1865#ifdef CONFIG_SCHED_AUTOGROUP
1866extern void sched_autogroup_create_attach(struct task_struct *p);
1867extern void sched_autogroup_detach(struct task_struct *p);
1868extern void sched_autogroup_fork(struct signal_struct *sig);
1869extern void sched_autogroup_exit(struct signal_struct *sig);
1870#ifdef CONFIG_PROC_FS
1871extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1872extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
1873#endif
1874#else
1875static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1876static inline void sched_autogroup_detach(struct task_struct *p) { }
1877static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1878static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1879#endif
1880
1881extern bool yield_to(struct task_struct *p, bool preempt);
1882extern void set_user_nice(struct task_struct *p, long nice);
1883extern int task_prio(const struct task_struct *p);
1884extern int task_nice(const struct task_struct *p);
1885extern int can_nice(const struct task_struct *p, const int nice);
1886extern int task_curr(const struct task_struct *p);
1887extern int idle_cpu(int cpu);
1888extern int sched_setscheduler(struct task_struct *, int,
1889 const struct sched_param *);
1890extern int sched_setscheduler_nocheck(struct task_struct *, int,
1891 const struct sched_param *);
1892extern struct task_struct *idle_task(int cpu);
1893/**
1894 * is_idle_task - is the specified task an idle task?
1895 * @p: the task in question.
1896 */
1897static inline bool is_idle_task(const struct task_struct *p)
1898{
1899 return p->pid == 0;
1900}
1901extern struct task_struct *curr_task(int cpu);
1902extern void set_curr_task(int cpu, struct task_struct *p);
1903
1904void yield(void);
1905
1906/*
1907 * The default (Linux) execution domain.
1908 */
1909extern struct exec_domain default_exec_domain;
1910
1911union thread_union {
1912 struct thread_info thread_info;
1913 unsigned long stack[THREAD_SIZE/sizeof(long)];
1914};
1915
1916#ifndef __HAVE_ARCH_KSTACK_END
1917static inline int kstack_end(void *addr)
1918{
1919 /* Reliable end of stack detection:
1920 * Some APM bios versions misalign the stack
1921 */
1922 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1923}
1924#endif
1925
1926extern union thread_union init_thread_union;
1927extern struct task_struct init_task;
1928
1929extern struct mm_struct init_mm;
1930
1931extern struct pid_namespace init_pid_ns;
1932
1933/*
1934 * find a task by one of its numerical ids
1935 *
1936 * find_task_by_pid_ns():
1937 * finds a task by its pid in the specified namespace
1938 * find_task_by_vpid():
1939 * finds a task by its virtual pid
1940 *
1941 * see also find_vpid() etc in include/linux/pid.h
1942 */
1943
1944extern struct task_struct *find_task_by_vpid(pid_t nr);
1945extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1946 struct pid_namespace *ns);
1947
1948extern void __set_special_pids(struct pid *pid);
1949
1950/* per-UID process charging. */
1951extern struct user_struct * alloc_uid(kuid_t);
1952static inline struct user_struct *get_uid(struct user_struct *u)
1953{
1954 atomic_inc(&u->__count);
1955 return u;
1956}
1957extern void free_uid(struct user_struct *);
1958
1959#include <asm/current.h>
1960
1961extern void xtime_update(unsigned long ticks);
1962
1963extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1964extern int wake_up_process(struct task_struct *tsk);
1965extern void wake_up_new_task(struct task_struct *tsk);
1966#ifdef CONFIG_SMP
1967 extern void kick_process(struct task_struct *tsk);
1968#else
1969 static inline void kick_process(struct task_struct *tsk) { }
1970#endif
1971extern void sched_fork(struct task_struct *p);
1972extern void sched_dead(struct task_struct *p);
1973
1974extern void proc_caches_init(void);
1975extern void flush_signals(struct task_struct *);
1976extern void __flush_signals(struct task_struct *);
1977extern void ignore_signals(struct task_struct *);
1978extern void flush_signal_handlers(struct task_struct *, int force_default);
1979extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1980
1981static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1982{
1983 unsigned long flags;
1984 int ret;
1985
1986 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1987 ret = dequeue_signal(tsk, mask, info);
1988 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1989
1990 return ret;
1991}
1992
1993extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1994 sigset_t *mask);
1995extern void unblock_all_signals(void);
1996extern void release_task(struct task_struct * p);
1997extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1998extern int force_sigsegv(int, struct task_struct *);
1999extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2000extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2001extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2002extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2003 const struct cred *, u32);
2004extern int kill_pgrp(struct pid *pid, int sig, int priv);
2005extern int kill_pid(struct pid *pid, int sig, int priv);
2006extern int kill_proc_info(int, struct siginfo *, pid_t);
2007extern __must_check bool do_notify_parent(struct task_struct *, int);
2008extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2009extern void force_sig(int, struct task_struct *);
2010extern int send_sig(int, struct task_struct *, int);
2011extern int zap_other_threads(struct task_struct *p);
2012extern struct sigqueue *sigqueue_alloc(void);
2013extern void sigqueue_free(struct sigqueue *);
2014extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2015extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2016
2017static inline void restore_saved_sigmask(void)
2018{
2019 if (test_and_clear_restore_sigmask())
2020 __set_current_blocked(&current->saved_sigmask);
2021}
2022
2023static inline sigset_t *sigmask_to_save(void)
2024{
2025 sigset_t *res = &current->blocked;
2026 if (unlikely(test_restore_sigmask()))
2027 res = &current->saved_sigmask;
2028 return res;
2029}
2030
2031static inline int kill_cad_pid(int sig, int priv)
2032{
2033 return kill_pid(cad_pid, sig, priv);
2034}
2035
2036/* These can be the second arg to send_sig_info/send_group_sig_info. */
2037#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2038#define SEND_SIG_PRIV ((struct siginfo *) 1)
2039#define SEND_SIG_FORCED ((struct siginfo *) 2)
2040
2041/*
2042 * True if we are on the alternate signal stack.
2043 */
2044static inline int on_sig_stack(unsigned long sp)
2045{
2046#ifdef CONFIG_STACK_GROWSUP
2047 return sp >= current->sas_ss_sp &&
2048 sp - current->sas_ss_sp < current->sas_ss_size;
2049#else
2050 return sp > current->sas_ss_sp &&
2051 sp - current->sas_ss_sp <= current->sas_ss_size;
2052#endif
2053}
2054
2055static inline int sas_ss_flags(unsigned long sp)
2056{
2057 return (current->sas_ss_size == 0 ? SS_DISABLE
2058 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2059}
2060
2061static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2062{
2063 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2064#ifdef CONFIG_STACK_GROWSUP
2065 return current->sas_ss_sp;
2066#else
2067 return current->sas_ss_sp + current->sas_ss_size;
2068#endif
2069 return sp;
2070}
2071
2072/*
2073 * Routines for handling mm_structs
2074 */
2075extern struct mm_struct * mm_alloc(void);
2076
2077/* mmdrop drops the mm and the page tables */
2078extern void __mmdrop(struct mm_struct *);
2079static inline void mmdrop(struct mm_struct * mm)
2080{
2081 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2082 __mmdrop(mm);
2083}
2084
2085/* mmput gets rid of the mappings and all user-space */
2086extern void mmput(struct mm_struct *);
2087/* Grab a reference to a task's mm, if it is not already going away */
2088extern struct mm_struct *get_task_mm(struct task_struct *task);
2089/*
2090 * Grab a reference to a task's mm, if it is not already going away
2091 * and ptrace_may_access with the mode parameter passed to it
2092 * succeeds.
2093 */
2094extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2095/* Remove the current tasks stale references to the old mm_struct */
2096extern void mm_release(struct task_struct *, struct mm_struct *);
2097/* Allocate a new mm structure and copy contents from tsk->mm */
2098extern struct mm_struct *dup_mm(struct task_struct *tsk);
2099
2100extern int copy_thread(unsigned long, unsigned long, unsigned long,
2101 struct task_struct *);
2102extern void flush_thread(void);
2103extern void exit_thread(void);
2104
2105extern void exit_files(struct task_struct *);
2106extern void __cleanup_sighand(struct sighand_struct *);
2107
2108extern void exit_itimers(struct signal_struct *);
2109extern void flush_itimer_signals(void);
2110
2111extern void do_group_exit(int);
2112
2113extern int allow_signal(int);
2114extern int disallow_signal(int);
2115
2116extern int do_execve(const char *,
2117 const char __user * const __user *,
2118 const char __user * const __user *);
2119extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2120struct task_struct *fork_idle(int);
2121extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2122
2123extern void set_task_comm(struct task_struct *tsk, char *from);
2124extern char *get_task_comm(char *to, struct task_struct *tsk);
2125
2126#ifdef CONFIG_SMP
2127void scheduler_ipi(void);
2128extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2129#else
2130static inline void scheduler_ipi(void) { }
2131static inline unsigned long wait_task_inactive(struct task_struct *p,
2132 long match_state)
2133{
2134 return 1;
2135}
2136#endif
2137
2138#define next_task(p) \
2139 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2140
2141#define for_each_process(p) \
2142 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2143
2144extern bool current_is_single_threaded(void);
2145
2146/*
2147 * Careful: do_each_thread/while_each_thread is a double loop so
2148 * 'break' will not work as expected - use goto instead.
2149 */
2150#define do_each_thread(g, t) \
2151 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2152
2153#define while_each_thread(g, t) \
2154 while ((t = next_thread(t)) != g)
2155
2156static inline int get_nr_threads(struct task_struct *tsk)
2157{
2158 return tsk->signal->nr_threads;
2159}
2160
2161static inline bool thread_group_leader(struct task_struct *p)
2162{
2163 return p->exit_signal >= 0;
2164}
2165
2166/* Do to the insanities of de_thread it is possible for a process
2167 * to have the pid of the thread group leader without actually being
2168 * the thread group leader. For iteration through the pids in proc
2169 * all we care about is that we have a task with the appropriate
2170 * pid, we don't actually care if we have the right task.
2171 */
2172static inline int has_group_leader_pid(struct task_struct *p)
2173{
2174 return p->pid == p->tgid;
2175}
2176
2177static inline
2178int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2179{
2180 return p1->tgid == p2->tgid;
2181}
2182
2183static inline struct task_struct *next_thread(const struct task_struct *p)
2184{
2185 return list_entry_rcu(p->thread_group.next,
2186 struct task_struct, thread_group);
2187}
2188
2189static inline int thread_group_empty(struct task_struct *p)
2190{
2191 return list_empty(&p->thread_group);
2192}
2193
2194#define delay_group_leader(p) \
2195 (thread_group_leader(p) && !thread_group_empty(p))
2196
2197/*
2198 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2199 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2200 * pins the final release of task.io_context. Also protects ->cpuset and
2201 * ->cgroup.subsys[]. And ->vfork_done.
2202 *
2203 * Nests both inside and outside of read_lock(&tasklist_lock).
2204 * It must not be nested with write_lock_irq(&tasklist_lock),
2205 * neither inside nor outside.
2206 */
2207static inline void task_lock(struct task_struct *p)
2208{
2209 spin_lock(&p->alloc_lock);
2210}
2211
2212static inline void task_unlock(struct task_struct *p)
2213{
2214 spin_unlock(&p->alloc_lock);
2215}
2216
2217extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2218 unsigned long *flags);
2219
2220static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2221 unsigned long *flags)
2222{
2223 struct sighand_struct *ret;
2224
2225 ret = __lock_task_sighand(tsk, flags);
2226 (void)__cond_lock(&tsk->sighand->siglock, ret);
2227 return ret;
2228}
2229
2230static inline void unlock_task_sighand(struct task_struct *tsk,
2231 unsigned long *flags)
2232{
2233 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2234}
2235
2236#ifdef CONFIG_CGROUPS
2237static inline void threadgroup_change_begin(struct task_struct *tsk)
2238{
2239 down_read(&tsk->signal->group_rwsem);
2240}
2241static inline void threadgroup_change_end(struct task_struct *tsk)
2242{
2243 up_read(&tsk->signal->group_rwsem);
2244}
2245
2246/**
2247 * threadgroup_lock - lock threadgroup
2248 * @tsk: member task of the threadgroup to lock
2249 *
2250 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2251 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2252 * change ->group_leader/pid. This is useful for cases where the threadgroup
2253 * needs to stay stable across blockable operations.
2254 *
2255 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2256 * synchronization. While held, no new task will be added to threadgroup
2257 * and no existing live task will have its PF_EXITING set.
2258 *
2259 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2260 * sub-thread becomes a new leader.
2261 */
2262static inline void threadgroup_lock(struct task_struct *tsk)
2263{
2264 down_write(&tsk->signal->group_rwsem);
2265}
2266
2267/**
2268 * threadgroup_unlock - unlock threadgroup
2269 * @tsk: member task of the threadgroup to unlock
2270 *
2271 * Reverse threadgroup_lock().
2272 */
2273static inline void threadgroup_unlock(struct task_struct *tsk)
2274{
2275 up_write(&tsk->signal->group_rwsem);
2276}
2277#else
2278static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2279static inline void threadgroup_change_end(struct task_struct *tsk) {}
2280static inline void threadgroup_lock(struct task_struct *tsk) {}
2281static inline void threadgroup_unlock(struct task_struct *tsk) {}
2282#endif
2283
2284#ifndef __HAVE_THREAD_FUNCTIONS
2285
2286#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2287#define task_stack_page(task) ((task)->stack)
2288
2289static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2290{
2291 *task_thread_info(p) = *task_thread_info(org);
2292 task_thread_info(p)->task = p;
2293}
2294
2295static inline unsigned long *end_of_stack(struct task_struct *p)
2296{
2297 return (unsigned long *)(task_thread_info(p) + 1);
2298}
2299
2300#endif
2301
2302static inline int object_is_on_stack(void *obj)
2303{
2304 void *stack = task_stack_page(current);
2305
2306 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2307}
2308
2309extern void thread_info_cache_init(void);
2310
2311#ifdef CONFIG_DEBUG_STACK_USAGE
2312static inline unsigned long stack_not_used(struct task_struct *p)
2313{
2314 unsigned long *n = end_of_stack(p);
2315
2316 do { /* Skip over canary */
2317 n++;
2318 } while (!*n);
2319
2320 return (unsigned long)n - (unsigned long)end_of_stack(p);
2321}
2322#endif
2323
2324/* set thread flags in other task's structures
2325 * - see asm/thread_info.h for TIF_xxxx flags available
2326 */
2327static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2328{
2329 set_ti_thread_flag(task_thread_info(tsk), flag);
2330}
2331
2332static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2333{
2334 clear_ti_thread_flag(task_thread_info(tsk), flag);
2335}
2336
2337static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2338{
2339 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2340}
2341
2342static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2343{
2344 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2345}
2346
2347static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2348{
2349 return test_ti_thread_flag(task_thread_info(tsk), flag);
2350}
2351
2352static inline void set_tsk_need_resched(struct task_struct *tsk)
2353{
2354 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2355}
2356
2357static inline void clear_tsk_need_resched(struct task_struct *tsk)
2358{
2359 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2360}
2361
2362static inline int test_tsk_need_resched(struct task_struct *tsk)
2363{
2364 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2365}
2366
2367static inline int restart_syscall(void)
2368{
2369 set_tsk_thread_flag(current, TIF_SIGPENDING);
2370 return -ERESTARTNOINTR;
2371}
2372
2373static inline int signal_pending(struct task_struct *p)
2374{
2375 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2376}
2377
2378static inline int __fatal_signal_pending(struct task_struct *p)
2379{
2380 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2381}
2382
2383static inline int fatal_signal_pending(struct task_struct *p)
2384{
2385 return signal_pending(p) && __fatal_signal_pending(p);
2386}
2387
2388static inline int signal_pending_state(long state, struct task_struct *p)
2389{
2390 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2391 return 0;
2392 if (!signal_pending(p))
2393 return 0;
2394
2395 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2396}
2397
2398static inline int need_resched(void)
2399{
2400 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2401}
2402
2403/*
2404 * cond_resched() and cond_resched_lock(): latency reduction via
2405 * explicit rescheduling in places that are safe. The return
2406 * value indicates whether a reschedule was done in fact.
2407 * cond_resched_lock() will drop the spinlock before scheduling,
2408 * cond_resched_softirq() will enable bhs before scheduling.
2409 */
2410extern int _cond_resched(void);
2411
2412#define cond_resched() ({ \
2413 __might_sleep(__FILE__, __LINE__, 0); \
2414 _cond_resched(); \
2415})
2416
2417extern int __cond_resched_lock(spinlock_t *lock);
2418
2419#ifdef CONFIG_PREEMPT_COUNT
2420#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2421#else
2422#define PREEMPT_LOCK_OFFSET 0
2423#endif
2424
2425#define cond_resched_lock(lock) ({ \
2426 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2427 __cond_resched_lock(lock); \
2428})
2429
2430extern int __cond_resched_softirq(void);
2431
2432#define cond_resched_softirq() ({ \
2433 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2434 __cond_resched_softirq(); \
2435})
2436
2437/*
2438 * Does a critical section need to be broken due to another
2439 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2440 * but a general need for low latency)
2441 */
2442static inline int spin_needbreak(spinlock_t *lock)
2443{
2444#ifdef CONFIG_PREEMPT
2445 return spin_is_contended(lock);
2446#else
2447 return 0;
2448#endif
2449}
2450
2451/*
2452 * Idle thread specific functions to determine the need_resched
2453 * polling state. We have two versions, one based on TS_POLLING in
2454 * thread_info.status and one based on TIF_POLLING_NRFLAG in
2455 * thread_info.flags
2456 */
2457#ifdef TS_POLLING
2458static inline int tsk_is_polling(struct task_struct *p)
2459{
2460 return task_thread_info(p)->status & TS_POLLING;
2461}
2462static inline void current_set_polling(void)
2463{
2464 current_thread_info()->status |= TS_POLLING;
2465}
2466
2467static inline void current_clr_polling(void)
2468{
2469 current_thread_info()->status &= ~TS_POLLING;
2470 smp_mb__after_clear_bit();
2471}
2472#elif defined(TIF_POLLING_NRFLAG)
2473static inline int tsk_is_polling(struct task_struct *p)
2474{
2475 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2476}
2477static inline void current_set_polling(void)
2478{
2479 set_thread_flag(TIF_POLLING_NRFLAG);
2480}
2481
2482static inline void current_clr_polling(void)
2483{
2484 clear_thread_flag(TIF_POLLING_NRFLAG);
2485}
2486#else
2487static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2488static inline void current_set_polling(void) { }
2489static inline void current_clr_polling(void) { }
2490#endif
2491
2492/*
2493 * Thread group CPU time accounting.
2494 */
2495void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2496void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2497
2498static inline void thread_group_cputime_init(struct signal_struct *sig)
2499{
2500 raw_spin_lock_init(&sig->cputimer.lock);
2501}
2502
2503/*
2504 * Reevaluate whether the task has signals pending delivery.
2505 * Wake the task if so.
2506 * This is required every time the blocked sigset_t changes.
2507 * callers must hold sighand->siglock.
2508 */
2509extern void recalc_sigpending_and_wake(struct task_struct *t);
2510extern void recalc_sigpending(void);
2511
2512extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2513
2514static inline void signal_wake_up(struct task_struct *t, bool resume)
2515{
2516 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2517}
2518static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2519{
2520 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2521}
2522
2523/*
2524 * Wrappers for p->thread_info->cpu access. No-op on UP.
2525 */
2526#ifdef CONFIG_SMP
2527
2528static inline unsigned int task_cpu(const struct task_struct *p)
2529{
2530 return task_thread_info(p)->cpu;
2531}
2532
2533extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2534
2535#else
2536
2537static inline unsigned int task_cpu(const struct task_struct *p)
2538{
2539 return 0;
2540}
2541
2542static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2543{
2544}
2545
2546#endif /* CONFIG_SMP */
2547
2548extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2549extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2550
2551#ifdef CONFIG_CGROUP_SCHED
2552extern struct task_group root_task_group;
2553#endif /* CONFIG_CGROUP_SCHED */
2554
2555extern int task_can_switch_user(struct user_struct *up,
2556 struct task_struct *tsk);
2557
2558#ifdef CONFIG_TASK_XACCT
2559static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2560{
2561 tsk->ioac.rchar += amt;
2562}
2563
2564static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2565{
2566 tsk->ioac.wchar += amt;
2567}
2568
2569static inline void inc_syscr(struct task_struct *tsk)
2570{
2571 tsk->ioac.syscr++;
2572}
2573
2574static inline void inc_syscw(struct task_struct *tsk)
2575{
2576 tsk->ioac.syscw++;
2577}
2578#else
2579static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2580{
2581}
2582
2583static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2584{
2585}
2586
2587static inline void inc_syscr(struct task_struct *tsk)
2588{
2589}
2590
2591static inline void inc_syscw(struct task_struct *tsk)
2592{
2593}
2594#endif
2595
2596#ifndef TASK_SIZE_OF
2597#define TASK_SIZE_OF(tsk) TASK_SIZE
2598#endif
2599
2600#ifdef CONFIG_MM_OWNER
2601extern void mm_update_next_owner(struct mm_struct *mm);
2602extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2603#else
2604static inline void mm_update_next_owner(struct mm_struct *mm)
2605{
2606}
2607
2608static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2609{
2610}
2611#endif /* CONFIG_MM_OWNER */
2612
2613static inline unsigned long task_rlimit(const struct task_struct *tsk,
2614 unsigned int limit)
2615{
2616 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2617}
2618
2619static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2620 unsigned int limit)
2621{
2622 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2623}
2624
2625static inline unsigned long rlimit(unsigned int limit)
2626{
2627 return task_rlimit(current, limit);
2628}
2629
2630static inline unsigned long rlimit_max(unsigned int limit)
2631{
2632 return task_rlimit_max(current, limit);
2633}
2634
2635#endif
This page took 0.037235 seconds and 5 git commands to generate.