net: attempt high order allocations in sock_alloc_send_pskb()
[deliverable/linux.git] / include / net / sock.h
... / ...
CommitLineData
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40#ifndef _SOCK_H
41#define _SOCK_H
42
43#include <linux/hardirq.h>
44#include <linux/kernel.h>
45#include <linux/list.h>
46#include <linux/list_nulls.h>
47#include <linux/timer.h>
48#include <linux/cache.h>
49#include <linux/bitops.h>
50#include <linux/lockdep.h>
51#include <linux/netdevice.h>
52#include <linux/skbuff.h> /* struct sk_buff */
53#include <linux/mm.h>
54#include <linux/security.h>
55#include <linux/slab.h>
56#include <linux/uaccess.h>
57#include <linux/memcontrol.h>
58#include <linux/res_counter.h>
59#include <linux/static_key.h>
60#include <linux/aio.h>
61#include <linux/sched.h>
62
63#include <linux/filter.h>
64#include <linux/rculist_nulls.h>
65#include <linux/poll.h>
66
67#include <linux/atomic.h>
68#include <net/dst.h>
69#include <net/checksum.h>
70
71struct cgroup;
72struct cgroup_subsys;
73#ifdef CONFIG_NET
74int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
75void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
76#else
77static inline
78int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
79{
80 return 0;
81}
82static inline
83void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
84{
85}
86#endif
87/*
88 * This structure really needs to be cleaned up.
89 * Most of it is for TCP, and not used by any of
90 * the other protocols.
91 */
92
93/* Define this to get the SOCK_DBG debugging facility. */
94#define SOCK_DEBUGGING
95#ifdef SOCK_DEBUGGING
96#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
97 printk(KERN_DEBUG msg); } while (0)
98#else
99/* Validate arguments and do nothing */
100static inline __printf(2, 3)
101void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
102{
103}
104#endif
105
106/* This is the per-socket lock. The spinlock provides a synchronization
107 * between user contexts and software interrupt processing, whereas the
108 * mini-semaphore synchronizes multiple users amongst themselves.
109 */
110typedef struct {
111 spinlock_t slock;
112 int owned;
113 wait_queue_head_t wq;
114 /*
115 * We express the mutex-alike socket_lock semantics
116 * to the lock validator by explicitly managing
117 * the slock as a lock variant (in addition to
118 * the slock itself):
119 */
120#ifdef CONFIG_DEBUG_LOCK_ALLOC
121 struct lockdep_map dep_map;
122#endif
123} socket_lock_t;
124
125struct sock;
126struct proto;
127struct net;
128
129typedef __u32 __bitwise __portpair;
130typedef __u64 __bitwise __addrpair;
131
132/**
133 * struct sock_common - minimal network layer representation of sockets
134 * @skc_daddr: Foreign IPv4 addr
135 * @skc_rcv_saddr: Bound local IPv4 addr
136 * @skc_hash: hash value used with various protocol lookup tables
137 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
138 * @skc_dport: placeholder for inet_dport/tw_dport
139 * @skc_num: placeholder for inet_num/tw_num
140 * @skc_family: network address family
141 * @skc_state: Connection state
142 * @skc_reuse: %SO_REUSEADDR setting
143 * @skc_reuseport: %SO_REUSEPORT setting
144 * @skc_bound_dev_if: bound device index if != 0
145 * @skc_bind_node: bind hash linkage for various protocol lookup tables
146 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
147 * @skc_prot: protocol handlers inside a network family
148 * @skc_net: reference to the network namespace of this socket
149 * @skc_node: main hash linkage for various protocol lookup tables
150 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
151 * @skc_tx_queue_mapping: tx queue number for this connection
152 * @skc_refcnt: reference count
153 *
154 * This is the minimal network layer representation of sockets, the header
155 * for struct sock and struct inet_timewait_sock.
156 */
157struct sock_common {
158 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
159 * address on 64bit arches : cf INET_MATCH() and INET_TW_MATCH()
160 */
161 union {
162 __addrpair skc_addrpair;
163 struct {
164 __be32 skc_daddr;
165 __be32 skc_rcv_saddr;
166 };
167 };
168 union {
169 unsigned int skc_hash;
170 __u16 skc_u16hashes[2];
171 };
172 /* skc_dport && skc_num must be grouped as well */
173 union {
174 __portpair skc_portpair;
175 struct {
176 __be16 skc_dport;
177 __u16 skc_num;
178 };
179 };
180
181 unsigned short skc_family;
182 volatile unsigned char skc_state;
183 unsigned char skc_reuse:4;
184 unsigned char skc_reuseport:4;
185 int skc_bound_dev_if;
186 union {
187 struct hlist_node skc_bind_node;
188 struct hlist_nulls_node skc_portaddr_node;
189 };
190 struct proto *skc_prot;
191#ifdef CONFIG_NET_NS
192 struct net *skc_net;
193#endif
194 /*
195 * fields between dontcopy_begin/dontcopy_end
196 * are not copied in sock_copy()
197 */
198 /* private: */
199 int skc_dontcopy_begin[0];
200 /* public: */
201 union {
202 struct hlist_node skc_node;
203 struct hlist_nulls_node skc_nulls_node;
204 };
205 int skc_tx_queue_mapping;
206 atomic_t skc_refcnt;
207 /* private: */
208 int skc_dontcopy_end[0];
209 /* public: */
210};
211
212struct cg_proto;
213/**
214 * struct sock - network layer representation of sockets
215 * @__sk_common: shared layout with inet_timewait_sock
216 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
217 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
218 * @sk_lock: synchronizer
219 * @sk_rcvbuf: size of receive buffer in bytes
220 * @sk_wq: sock wait queue and async head
221 * @sk_rx_dst: receive input route used by early tcp demux
222 * @sk_dst_cache: destination cache
223 * @sk_dst_lock: destination cache lock
224 * @sk_policy: flow policy
225 * @sk_receive_queue: incoming packets
226 * @sk_wmem_alloc: transmit queue bytes committed
227 * @sk_write_queue: Packet sending queue
228 * @sk_async_wait_queue: DMA copied packets
229 * @sk_omem_alloc: "o" is "option" or "other"
230 * @sk_wmem_queued: persistent queue size
231 * @sk_forward_alloc: space allocated forward
232 * @sk_napi_id: id of the last napi context to receive data for sk
233 * @sk_ll_usec: usecs to busypoll when there is no data
234 * @sk_allocation: allocation mode
235 * @sk_sndbuf: size of send buffer in bytes
236 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
237 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
238 * @sk_no_check: %SO_NO_CHECK setting, whether or not checkup packets
239 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
240 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
241 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
242 * @sk_gso_max_size: Maximum GSO segment size to build
243 * @sk_gso_max_segs: Maximum number of GSO segments
244 * @sk_lingertime: %SO_LINGER l_linger setting
245 * @sk_backlog: always used with the per-socket spinlock held
246 * @sk_callback_lock: used with the callbacks in the end of this struct
247 * @sk_error_queue: rarely used
248 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
249 * IPV6_ADDRFORM for instance)
250 * @sk_err: last error
251 * @sk_err_soft: errors that don't cause failure but are the cause of a
252 * persistent failure not just 'timed out'
253 * @sk_drops: raw/udp drops counter
254 * @sk_ack_backlog: current listen backlog
255 * @sk_max_ack_backlog: listen backlog set in listen()
256 * @sk_priority: %SO_PRIORITY setting
257 * @sk_cgrp_prioidx: socket group's priority map index
258 * @sk_type: socket type (%SOCK_STREAM, etc)
259 * @sk_protocol: which protocol this socket belongs in this network family
260 * @sk_peer_pid: &struct pid for this socket's peer
261 * @sk_peer_cred: %SO_PEERCRED setting
262 * @sk_rcvlowat: %SO_RCVLOWAT setting
263 * @sk_rcvtimeo: %SO_RCVTIMEO setting
264 * @sk_sndtimeo: %SO_SNDTIMEO setting
265 * @sk_rxhash: flow hash received from netif layer
266 * @sk_filter: socket filtering instructions
267 * @sk_protinfo: private area, net family specific, when not using slab
268 * @sk_timer: sock cleanup timer
269 * @sk_stamp: time stamp of last packet received
270 * @sk_socket: Identd and reporting IO signals
271 * @sk_user_data: RPC layer private data
272 * @sk_frag: cached page frag
273 * @sk_peek_off: current peek_offset value
274 * @sk_send_head: front of stuff to transmit
275 * @sk_security: used by security modules
276 * @sk_mark: generic packet mark
277 * @sk_classid: this socket's cgroup classid
278 * @sk_cgrp: this socket's cgroup-specific proto data
279 * @sk_write_pending: a write to stream socket waits to start
280 * @sk_state_change: callback to indicate change in the state of the sock
281 * @sk_data_ready: callback to indicate there is data to be processed
282 * @sk_write_space: callback to indicate there is bf sending space available
283 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
284 * @sk_backlog_rcv: callback to process the backlog
285 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
286 */
287struct sock {
288 /*
289 * Now struct inet_timewait_sock also uses sock_common, so please just
290 * don't add nothing before this first member (__sk_common) --acme
291 */
292 struct sock_common __sk_common;
293#define sk_node __sk_common.skc_node
294#define sk_nulls_node __sk_common.skc_nulls_node
295#define sk_refcnt __sk_common.skc_refcnt
296#define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
297
298#define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
299#define sk_dontcopy_end __sk_common.skc_dontcopy_end
300#define sk_hash __sk_common.skc_hash
301#define sk_family __sk_common.skc_family
302#define sk_state __sk_common.skc_state
303#define sk_reuse __sk_common.skc_reuse
304#define sk_reuseport __sk_common.skc_reuseport
305#define sk_bound_dev_if __sk_common.skc_bound_dev_if
306#define sk_bind_node __sk_common.skc_bind_node
307#define sk_prot __sk_common.skc_prot
308#define sk_net __sk_common.skc_net
309 socket_lock_t sk_lock;
310 struct sk_buff_head sk_receive_queue;
311 /*
312 * The backlog queue is special, it is always used with
313 * the per-socket spinlock held and requires low latency
314 * access. Therefore we special case it's implementation.
315 * Note : rmem_alloc is in this structure to fill a hole
316 * on 64bit arches, not because its logically part of
317 * backlog.
318 */
319 struct {
320 atomic_t rmem_alloc;
321 int len;
322 struct sk_buff *head;
323 struct sk_buff *tail;
324 } sk_backlog;
325#define sk_rmem_alloc sk_backlog.rmem_alloc
326 int sk_forward_alloc;
327#ifdef CONFIG_RPS
328 __u32 sk_rxhash;
329#endif
330#ifdef CONFIG_NET_RX_BUSY_POLL
331 unsigned int sk_napi_id;
332 unsigned int sk_ll_usec;
333#endif
334 atomic_t sk_drops;
335 int sk_rcvbuf;
336
337 struct sk_filter __rcu *sk_filter;
338 struct socket_wq __rcu *sk_wq;
339
340#ifdef CONFIG_NET_DMA
341 struct sk_buff_head sk_async_wait_queue;
342#endif
343
344#ifdef CONFIG_XFRM
345 struct xfrm_policy *sk_policy[2];
346#endif
347 unsigned long sk_flags;
348 struct dst_entry *sk_rx_dst;
349 struct dst_entry __rcu *sk_dst_cache;
350 spinlock_t sk_dst_lock;
351 atomic_t sk_wmem_alloc;
352 atomic_t sk_omem_alloc;
353 int sk_sndbuf;
354 struct sk_buff_head sk_write_queue;
355 kmemcheck_bitfield_begin(flags);
356 unsigned int sk_shutdown : 2,
357 sk_no_check : 2,
358 sk_userlocks : 4,
359 sk_protocol : 8,
360 sk_type : 16;
361 kmemcheck_bitfield_end(flags);
362 int sk_wmem_queued;
363 gfp_t sk_allocation;
364 netdev_features_t sk_route_caps;
365 netdev_features_t sk_route_nocaps;
366 int sk_gso_type;
367 unsigned int sk_gso_max_size;
368 u16 sk_gso_max_segs;
369 int sk_rcvlowat;
370 unsigned long sk_lingertime;
371 struct sk_buff_head sk_error_queue;
372 struct proto *sk_prot_creator;
373 rwlock_t sk_callback_lock;
374 int sk_err,
375 sk_err_soft;
376 unsigned short sk_ack_backlog;
377 unsigned short sk_max_ack_backlog;
378 __u32 sk_priority;
379#if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
380 __u32 sk_cgrp_prioidx;
381#endif
382 struct pid *sk_peer_pid;
383 const struct cred *sk_peer_cred;
384 long sk_rcvtimeo;
385 long sk_sndtimeo;
386 void *sk_protinfo;
387 struct timer_list sk_timer;
388 ktime_t sk_stamp;
389 struct socket *sk_socket;
390 void *sk_user_data;
391 struct page_frag sk_frag;
392 struct sk_buff *sk_send_head;
393 __s32 sk_peek_off;
394 int sk_write_pending;
395#ifdef CONFIG_SECURITY
396 void *sk_security;
397#endif
398 __u32 sk_mark;
399 u32 sk_classid;
400 struct cg_proto *sk_cgrp;
401 void (*sk_state_change)(struct sock *sk);
402 void (*sk_data_ready)(struct sock *sk, int bytes);
403 void (*sk_write_space)(struct sock *sk);
404 void (*sk_error_report)(struct sock *sk);
405 int (*sk_backlog_rcv)(struct sock *sk,
406 struct sk_buff *skb);
407 void (*sk_destruct)(struct sock *sk);
408};
409
410/*
411 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
412 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
413 * on a socket means that the socket will reuse everybody else's port
414 * without looking at the other's sk_reuse value.
415 */
416
417#define SK_NO_REUSE 0
418#define SK_CAN_REUSE 1
419#define SK_FORCE_REUSE 2
420
421static inline int sk_peek_offset(struct sock *sk, int flags)
422{
423 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
424 return sk->sk_peek_off;
425 else
426 return 0;
427}
428
429static inline void sk_peek_offset_bwd(struct sock *sk, int val)
430{
431 if (sk->sk_peek_off >= 0) {
432 if (sk->sk_peek_off >= val)
433 sk->sk_peek_off -= val;
434 else
435 sk->sk_peek_off = 0;
436 }
437}
438
439static inline void sk_peek_offset_fwd(struct sock *sk, int val)
440{
441 if (sk->sk_peek_off >= 0)
442 sk->sk_peek_off += val;
443}
444
445/*
446 * Hashed lists helper routines
447 */
448static inline struct sock *sk_entry(const struct hlist_node *node)
449{
450 return hlist_entry(node, struct sock, sk_node);
451}
452
453static inline struct sock *__sk_head(const struct hlist_head *head)
454{
455 return hlist_entry(head->first, struct sock, sk_node);
456}
457
458static inline struct sock *sk_head(const struct hlist_head *head)
459{
460 return hlist_empty(head) ? NULL : __sk_head(head);
461}
462
463static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
464{
465 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
466}
467
468static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
469{
470 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
471}
472
473static inline struct sock *sk_next(const struct sock *sk)
474{
475 return sk->sk_node.next ?
476 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
477}
478
479static inline struct sock *sk_nulls_next(const struct sock *sk)
480{
481 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
482 hlist_nulls_entry(sk->sk_nulls_node.next,
483 struct sock, sk_nulls_node) :
484 NULL;
485}
486
487static inline bool sk_unhashed(const struct sock *sk)
488{
489 return hlist_unhashed(&sk->sk_node);
490}
491
492static inline bool sk_hashed(const struct sock *sk)
493{
494 return !sk_unhashed(sk);
495}
496
497static inline void sk_node_init(struct hlist_node *node)
498{
499 node->pprev = NULL;
500}
501
502static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
503{
504 node->pprev = NULL;
505}
506
507static inline void __sk_del_node(struct sock *sk)
508{
509 __hlist_del(&sk->sk_node);
510}
511
512/* NB: equivalent to hlist_del_init_rcu */
513static inline bool __sk_del_node_init(struct sock *sk)
514{
515 if (sk_hashed(sk)) {
516 __sk_del_node(sk);
517 sk_node_init(&sk->sk_node);
518 return true;
519 }
520 return false;
521}
522
523/* Grab socket reference count. This operation is valid only
524 when sk is ALREADY grabbed f.e. it is found in hash table
525 or a list and the lookup is made under lock preventing hash table
526 modifications.
527 */
528
529static inline void sock_hold(struct sock *sk)
530{
531 atomic_inc(&sk->sk_refcnt);
532}
533
534/* Ungrab socket in the context, which assumes that socket refcnt
535 cannot hit zero, f.e. it is true in context of any socketcall.
536 */
537static inline void __sock_put(struct sock *sk)
538{
539 atomic_dec(&sk->sk_refcnt);
540}
541
542static inline bool sk_del_node_init(struct sock *sk)
543{
544 bool rc = __sk_del_node_init(sk);
545
546 if (rc) {
547 /* paranoid for a while -acme */
548 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
549 __sock_put(sk);
550 }
551 return rc;
552}
553#define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
554
555static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
556{
557 if (sk_hashed(sk)) {
558 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
559 return true;
560 }
561 return false;
562}
563
564static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
565{
566 bool rc = __sk_nulls_del_node_init_rcu(sk);
567
568 if (rc) {
569 /* paranoid for a while -acme */
570 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
571 __sock_put(sk);
572 }
573 return rc;
574}
575
576static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
577{
578 hlist_add_head(&sk->sk_node, list);
579}
580
581static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
582{
583 sock_hold(sk);
584 __sk_add_node(sk, list);
585}
586
587static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
588{
589 sock_hold(sk);
590 hlist_add_head_rcu(&sk->sk_node, list);
591}
592
593static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
594{
595 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
596}
597
598static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
599{
600 sock_hold(sk);
601 __sk_nulls_add_node_rcu(sk, list);
602}
603
604static inline void __sk_del_bind_node(struct sock *sk)
605{
606 __hlist_del(&sk->sk_bind_node);
607}
608
609static inline void sk_add_bind_node(struct sock *sk,
610 struct hlist_head *list)
611{
612 hlist_add_head(&sk->sk_bind_node, list);
613}
614
615#define sk_for_each(__sk, list) \
616 hlist_for_each_entry(__sk, list, sk_node)
617#define sk_for_each_rcu(__sk, list) \
618 hlist_for_each_entry_rcu(__sk, list, sk_node)
619#define sk_nulls_for_each(__sk, node, list) \
620 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
621#define sk_nulls_for_each_rcu(__sk, node, list) \
622 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
623#define sk_for_each_from(__sk) \
624 hlist_for_each_entry_from(__sk, sk_node)
625#define sk_nulls_for_each_from(__sk, node) \
626 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
627 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
628#define sk_for_each_safe(__sk, tmp, list) \
629 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
630#define sk_for_each_bound(__sk, list) \
631 hlist_for_each_entry(__sk, list, sk_bind_node)
632
633static inline struct user_namespace *sk_user_ns(struct sock *sk)
634{
635 /* Careful only use this in a context where these parameters
636 * can not change and must all be valid, such as recvmsg from
637 * userspace.
638 */
639 return sk->sk_socket->file->f_cred->user_ns;
640}
641
642/* Sock flags */
643enum sock_flags {
644 SOCK_DEAD,
645 SOCK_DONE,
646 SOCK_URGINLINE,
647 SOCK_KEEPOPEN,
648 SOCK_LINGER,
649 SOCK_DESTROY,
650 SOCK_BROADCAST,
651 SOCK_TIMESTAMP,
652 SOCK_ZAPPED,
653 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
654 SOCK_DBG, /* %SO_DEBUG setting */
655 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
656 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
657 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
658 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
659 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
660 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
661 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
662 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
663 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
664 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
665 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
666 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
667 SOCK_FASYNC, /* fasync() active */
668 SOCK_RXQ_OVFL,
669 SOCK_ZEROCOPY, /* buffers from userspace */
670 SOCK_WIFI_STATUS, /* push wifi status to userspace */
671 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
672 * Will use last 4 bytes of packet sent from
673 * user-space instead.
674 */
675 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
676 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
677};
678
679static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
680{
681 nsk->sk_flags = osk->sk_flags;
682}
683
684static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
685{
686 __set_bit(flag, &sk->sk_flags);
687}
688
689static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
690{
691 __clear_bit(flag, &sk->sk_flags);
692}
693
694static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
695{
696 return test_bit(flag, &sk->sk_flags);
697}
698
699#ifdef CONFIG_NET
700extern struct static_key memalloc_socks;
701static inline int sk_memalloc_socks(void)
702{
703 return static_key_false(&memalloc_socks);
704}
705#else
706
707static inline int sk_memalloc_socks(void)
708{
709 return 0;
710}
711
712#endif
713
714static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
715{
716 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
717}
718
719static inline void sk_acceptq_removed(struct sock *sk)
720{
721 sk->sk_ack_backlog--;
722}
723
724static inline void sk_acceptq_added(struct sock *sk)
725{
726 sk->sk_ack_backlog++;
727}
728
729static inline bool sk_acceptq_is_full(const struct sock *sk)
730{
731 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
732}
733
734/*
735 * Compute minimal free write space needed to queue new packets.
736 */
737static inline int sk_stream_min_wspace(const struct sock *sk)
738{
739 return sk->sk_wmem_queued >> 1;
740}
741
742static inline int sk_stream_wspace(const struct sock *sk)
743{
744 return sk->sk_sndbuf - sk->sk_wmem_queued;
745}
746
747extern void sk_stream_write_space(struct sock *sk);
748
749/* OOB backlog add */
750static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
751{
752 /* dont let skb dst not refcounted, we are going to leave rcu lock */
753 skb_dst_force(skb);
754
755 if (!sk->sk_backlog.tail)
756 sk->sk_backlog.head = skb;
757 else
758 sk->sk_backlog.tail->next = skb;
759
760 sk->sk_backlog.tail = skb;
761 skb->next = NULL;
762}
763
764/*
765 * Take into account size of receive queue and backlog queue
766 * Do not take into account this skb truesize,
767 * to allow even a single big packet to come.
768 */
769static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
770 unsigned int limit)
771{
772 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
773
774 return qsize > limit;
775}
776
777/* The per-socket spinlock must be held here. */
778static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
779 unsigned int limit)
780{
781 if (sk_rcvqueues_full(sk, skb, limit))
782 return -ENOBUFS;
783
784 __sk_add_backlog(sk, skb);
785 sk->sk_backlog.len += skb->truesize;
786 return 0;
787}
788
789extern int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
790
791static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
792{
793 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
794 return __sk_backlog_rcv(sk, skb);
795
796 return sk->sk_backlog_rcv(sk, skb);
797}
798
799static inline void sock_rps_record_flow(const struct sock *sk)
800{
801#ifdef CONFIG_RPS
802 struct rps_sock_flow_table *sock_flow_table;
803
804 rcu_read_lock();
805 sock_flow_table = rcu_dereference(rps_sock_flow_table);
806 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
807 rcu_read_unlock();
808#endif
809}
810
811static inline void sock_rps_reset_flow(const struct sock *sk)
812{
813#ifdef CONFIG_RPS
814 struct rps_sock_flow_table *sock_flow_table;
815
816 rcu_read_lock();
817 sock_flow_table = rcu_dereference(rps_sock_flow_table);
818 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
819 rcu_read_unlock();
820#endif
821}
822
823static inline void sock_rps_save_rxhash(struct sock *sk,
824 const struct sk_buff *skb)
825{
826#ifdef CONFIG_RPS
827 if (unlikely(sk->sk_rxhash != skb->rxhash)) {
828 sock_rps_reset_flow(sk);
829 sk->sk_rxhash = skb->rxhash;
830 }
831#endif
832}
833
834static inline void sock_rps_reset_rxhash(struct sock *sk)
835{
836#ifdef CONFIG_RPS
837 sock_rps_reset_flow(sk);
838 sk->sk_rxhash = 0;
839#endif
840}
841
842#define sk_wait_event(__sk, __timeo, __condition) \
843 ({ int __rc; \
844 release_sock(__sk); \
845 __rc = __condition; \
846 if (!__rc) { \
847 *(__timeo) = schedule_timeout(*(__timeo)); \
848 } \
849 lock_sock(__sk); \
850 __rc = __condition; \
851 __rc; \
852 })
853
854extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
855extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
856extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
857extern int sk_stream_error(struct sock *sk, int flags, int err);
858extern void sk_stream_kill_queues(struct sock *sk);
859extern void sk_set_memalloc(struct sock *sk);
860extern void sk_clear_memalloc(struct sock *sk);
861
862extern int sk_wait_data(struct sock *sk, long *timeo);
863
864struct request_sock_ops;
865struct timewait_sock_ops;
866struct inet_hashinfo;
867struct raw_hashinfo;
868struct module;
869
870/*
871 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
872 * un-modified. Special care is taken when initializing object to zero.
873 */
874static inline void sk_prot_clear_nulls(struct sock *sk, int size)
875{
876 if (offsetof(struct sock, sk_node.next) != 0)
877 memset(sk, 0, offsetof(struct sock, sk_node.next));
878 memset(&sk->sk_node.pprev, 0,
879 size - offsetof(struct sock, sk_node.pprev));
880}
881
882/* Networking protocol blocks we attach to sockets.
883 * socket layer -> transport layer interface
884 * transport -> network interface is defined by struct inet_proto
885 */
886struct proto {
887 void (*close)(struct sock *sk,
888 long timeout);
889 int (*connect)(struct sock *sk,
890 struct sockaddr *uaddr,
891 int addr_len);
892 int (*disconnect)(struct sock *sk, int flags);
893
894 struct sock * (*accept)(struct sock *sk, int flags, int *err);
895
896 int (*ioctl)(struct sock *sk, int cmd,
897 unsigned long arg);
898 int (*init)(struct sock *sk);
899 void (*destroy)(struct sock *sk);
900 void (*shutdown)(struct sock *sk, int how);
901 int (*setsockopt)(struct sock *sk, int level,
902 int optname, char __user *optval,
903 unsigned int optlen);
904 int (*getsockopt)(struct sock *sk, int level,
905 int optname, char __user *optval,
906 int __user *option);
907#ifdef CONFIG_COMPAT
908 int (*compat_setsockopt)(struct sock *sk,
909 int level,
910 int optname, char __user *optval,
911 unsigned int optlen);
912 int (*compat_getsockopt)(struct sock *sk,
913 int level,
914 int optname, char __user *optval,
915 int __user *option);
916 int (*compat_ioctl)(struct sock *sk,
917 unsigned int cmd, unsigned long arg);
918#endif
919 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
920 struct msghdr *msg, size_t len);
921 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
922 struct msghdr *msg,
923 size_t len, int noblock, int flags,
924 int *addr_len);
925 int (*sendpage)(struct sock *sk, struct page *page,
926 int offset, size_t size, int flags);
927 int (*bind)(struct sock *sk,
928 struct sockaddr *uaddr, int addr_len);
929
930 int (*backlog_rcv) (struct sock *sk,
931 struct sk_buff *skb);
932
933 void (*release_cb)(struct sock *sk);
934 void (*mtu_reduced)(struct sock *sk);
935
936 /* Keeping track of sk's, looking them up, and port selection methods. */
937 void (*hash)(struct sock *sk);
938 void (*unhash)(struct sock *sk);
939 void (*rehash)(struct sock *sk);
940 int (*get_port)(struct sock *sk, unsigned short snum);
941 void (*clear_sk)(struct sock *sk, int size);
942
943 /* Keeping track of sockets in use */
944#ifdef CONFIG_PROC_FS
945 unsigned int inuse_idx;
946#endif
947
948 bool (*stream_memory_free)(const struct sock *sk);
949 /* Memory pressure */
950 void (*enter_memory_pressure)(struct sock *sk);
951 atomic_long_t *memory_allocated; /* Current allocated memory. */
952 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
953 /*
954 * Pressure flag: try to collapse.
955 * Technical note: it is used by multiple contexts non atomically.
956 * All the __sk_mem_schedule() is of this nature: accounting
957 * is strict, actions are advisory and have some latency.
958 */
959 int *memory_pressure;
960 long *sysctl_mem;
961 int *sysctl_wmem;
962 int *sysctl_rmem;
963 int max_header;
964 bool no_autobind;
965
966 struct kmem_cache *slab;
967 unsigned int obj_size;
968 int slab_flags;
969
970 struct percpu_counter *orphan_count;
971
972 struct request_sock_ops *rsk_prot;
973 struct timewait_sock_ops *twsk_prot;
974
975 union {
976 struct inet_hashinfo *hashinfo;
977 struct udp_table *udp_table;
978 struct raw_hashinfo *raw_hash;
979 } h;
980
981 struct module *owner;
982
983 char name[32];
984
985 struct list_head node;
986#ifdef SOCK_REFCNT_DEBUG
987 atomic_t socks;
988#endif
989#ifdef CONFIG_MEMCG_KMEM
990 /*
991 * cgroup specific init/deinit functions. Called once for all
992 * protocols that implement it, from cgroups populate function.
993 * This function has to setup any files the protocol want to
994 * appear in the kmem cgroup filesystem.
995 */
996 int (*init_cgroup)(struct mem_cgroup *memcg,
997 struct cgroup_subsys *ss);
998 void (*destroy_cgroup)(struct mem_cgroup *memcg);
999 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
1000#endif
1001};
1002
1003/*
1004 * Bits in struct cg_proto.flags
1005 */
1006enum cg_proto_flags {
1007 /* Currently active and new sockets should be assigned to cgroups */
1008 MEMCG_SOCK_ACTIVE,
1009 /* It was ever activated; we must disarm static keys on destruction */
1010 MEMCG_SOCK_ACTIVATED,
1011};
1012
1013struct cg_proto {
1014 void (*enter_memory_pressure)(struct sock *sk);
1015 struct res_counter *memory_allocated; /* Current allocated memory. */
1016 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1017 int *memory_pressure;
1018 long *sysctl_mem;
1019 unsigned long flags;
1020 /*
1021 * memcg field is used to find which memcg we belong directly
1022 * Each memcg struct can hold more than one cg_proto, so container_of
1023 * won't really cut.
1024 *
1025 * The elegant solution would be having an inverse function to
1026 * proto_cgroup in struct proto, but that means polluting the structure
1027 * for everybody, instead of just for memcg users.
1028 */
1029 struct mem_cgroup *memcg;
1030};
1031
1032extern int proto_register(struct proto *prot, int alloc_slab);
1033extern void proto_unregister(struct proto *prot);
1034
1035static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1036{
1037 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1038}
1039
1040static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1041{
1042 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1043}
1044
1045#ifdef SOCK_REFCNT_DEBUG
1046static inline void sk_refcnt_debug_inc(struct sock *sk)
1047{
1048 atomic_inc(&sk->sk_prot->socks);
1049}
1050
1051static inline void sk_refcnt_debug_dec(struct sock *sk)
1052{
1053 atomic_dec(&sk->sk_prot->socks);
1054 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1055 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1056}
1057
1058static inline void sk_refcnt_debug_release(const struct sock *sk)
1059{
1060 if (atomic_read(&sk->sk_refcnt) != 1)
1061 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1062 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1063}
1064#else /* SOCK_REFCNT_DEBUG */
1065#define sk_refcnt_debug_inc(sk) do { } while (0)
1066#define sk_refcnt_debug_dec(sk) do { } while (0)
1067#define sk_refcnt_debug_release(sk) do { } while (0)
1068#endif /* SOCK_REFCNT_DEBUG */
1069
1070#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1071extern struct static_key memcg_socket_limit_enabled;
1072static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1073 struct cg_proto *cg_proto)
1074{
1075 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1076}
1077#define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1078#else
1079#define mem_cgroup_sockets_enabled 0
1080static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1081 struct cg_proto *cg_proto)
1082{
1083 return NULL;
1084}
1085#endif
1086
1087static inline bool sk_stream_memory_free(const struct sock *sk)
1088{
1089 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1090 return false;
1091
1092 return sk->sk_prot->stream_memory_free ?
1093 sk->sk_prot->stream_memory_free(sk) : true;
1094}
1095
1096static inline bool sk_stream_is_writeable(const struct sock *sk)
1097{
1098 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1099 sk_stream_memory_free(sk);
1100}
1101
1102
1103static inline bool sk_has_memory_pressure(const struct sock *sk)
1104{
1105 return sk->sk_prot->memory_pressure != NULL;
1106}
1107
1108static inline bool sk_under_memory_pressure(const struct sock *sk)
1109{
1110 if (!sk->sk_prot->memory_pressure)
1111 return false;
1112
1113 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1114 return !!*sk->sk_cgrp->memory_pressure;
1115
1116 return !!*sk->sk_prot->memory_pressure;
1117}
1118
1119static inline void sk_leave_memory_pressure(struct sock *sk)
1120{
1121 int *memory_pressure = sk->sk_prot->memory_pressure;
1122
1123 if (!memory_pressure)
1124 return;
1125
1126 if (*memory_pressure)
1127 *memory_pressure = 0;
1128
1129 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1130 struct cg_proto *cg_proto = sk->sk_cgrp;
1131 struct proto *prot = sk->sk_prot;
1132
1133 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1134 if (*cg_proto->memory_pressure)
1135 *cg_proto->memory_pressure = 0;
1136 }
1137
1138}
1139
1140static inline void sk_enter_memory_pressure(struct sock *sk)
1141{
1142 if (!sk->sk_prot->enter_memory_pressure)
1143 return;
1144
1145 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1146 struct cg_proto *cg_proto = sk->sk_cgrp;
1147 struct proto *prot = sk->sk_prot;
1148
1149 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1150 cg_proto->enter_memory_pressure(sk);
1151 }
1152
1153 sk->sk_prot->enter_memory_pressure(sk);
1154}
1155
1156static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1157{
1158 long *prot = sk->sk_prot->sysctl_mem;
1159 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1160 prot = sk->sk_cgrp->sysctl_mem;
1161 return prot[index];
1162}
1163
1164static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1165 unsigned long amt,
1166 int *parent_status)
1167{
1168 struct res_counter *fail;
1169 int ret;
1170
1171 ret = res_counter_charge_nofail(prot->memory_allocated,
1172 amt << PAGE_SHIFT, &fail);
1173 if (ret < 0)
1174 *parent_status = OVER_LIMIT;
1175}
1176
1177static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1178 unsigned long amt)
1179{
1180 res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1181}
1182
1183static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1184{
1185 u64 ret;
1186 ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1187 return ret >> PAGE_SHIFT;
1188}
1189
1190static inline long
1191sk_memory_allocated(const struct sock *sk)
1192{
1193 struct proto *prot = sk->sk_prot;
1194 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1195 return memcg_memory_allocated_read(sk->sk_cgrp);
1196
1197 return atomic_long_read(prot->memory_allocated);
1198}
1199
1200static inline long
1201sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1202{
1203 struct proto *prot = sk->sk_prot;
1204
1205 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1206 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1207 /* update the root cgroup regardless */
1208 atomic_long_add_return(amt, prot->memory_allocated);
1209 return memcg_memory_allocated_read(sk->sk_cgrp);
1210 }
1211
1212 return atomic_long_add_return(amt, prot->memory_allocated);
1213}
1214
1215static inline void
1216sk_memory_allocated_sub(struct sock *sk, int amt)
1217{
1218 struct proto *prot = sk->sk_prot;
1219
1220 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1221 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1222
1223 atomic_long_sub(amt, prot->memory_allocated);
1224}
1225
1226static inline void sk_sockets_allocated_dec(struct sock *sk)
1227{
1228 struct proto *prot = sk->sk_prot;
1229
1230 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1231 struct cg_proto *cg_proto = sk->sk_cgrp;
1232
1233 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1234 percpu_counter_dec(cg_proto->sockets_allocated);
1235 }
1236
1237 percpu_counter_dec(prot->sockets_allocated);
1238}
1239
1240static inline void sk_sockets_allocated_inc(struct sock *sk)
1241{
1242 struct proto *prot = sk->sk_prot;
1243
1244 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1245 struct cg_proto *cg_proto = sk->sk_cgrp;
1246
1247 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1248 percpu_counter_inc(cg_proto->sockets_allocated);
1249 }
1250
1251 percpu_counter_inc(prot->sockets_allocated);
1252}
1253
1254static inline int
1255sk_sockets_allocated_read_positive(struct sock *sk)
1256{
1257 struct proto *prot = sk->sk_prot;
1258
1259 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1260 return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated);
1261
1262 return percpu_counter_read_positive(prot->sockets_allocated);
1263}
1264
1265static inline int
1266proto_sockets_allocated_sum_positive(struct proto *prot)
1267{
1268 return percpu_counter_sum_positive(prot->sockets_allocated);
1269}
1270
1271static inline long
1272proto_memory_allocated(struct proto *prot)
1273{
1274 return atomic_long_read(prot->memory_allocated);
1275}
1276
1277static inline bool
1278proto_memory_pressure(struct proto *prot)
1279{
1280 if (!prot->memory_pressure)
1281 return false;
1282 return !!*prot->memory_pressure;
1283}
1284
1285
1286#ifdef CONFIG_PROC_FS
1287/* Called with local bh disabled */
1288extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1289extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1290#else
1291static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1292 int inc)
1293{
1294}
1295#endif
1296
1297
1298/* With per-bucket locks this operation is not-atomic, so that
1299 * this version is not worse.
1300 */
1301static inline void __sk_prot_rehash(struct sock *sk)
1302{
1303 sk->sk_prot->unhash(sk);
1304 sk->sk_prot->hash(sk);
1305}
1306
1307void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1308
1309/* About 10 seconds */
1310#define SOCK_DESTROY_TIME (10*HZ)
1311
1312/* Sockets 0-1023 can't be bound to unless you are superuser */
1313#define PROT_SOCK 1024
1314
1315#define SHUTDOWN_MASK 3
1316#define RCV_SHUTDOWN 1
1317#define SEND_SHUTDOWN 2
1318
1319#define SOCK_SNDBUF_LOCK 1
1320#define SOCK_RCVBUF_LOCK 2
1321#define SOCK_BINDADDR_LOCK 4
1322#define SOCK_BINDPORT_LOCK 8
1323
1324/* sock_iocb: used to kick off async processing of socket ios */
1325struct sock_iocb {
1326 struct list_head list;
1327
1328 int flags;
1329 int size;
1330 struct socket *sock;
1331 struct sock *sk;
1332 struct scm_cookie *scm;
1333 struct msghdr *msg, async_msg;
1334 struct kiocb *kiocb;
1335};
1336
1337static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1338{
1339 return (struct sock_iocb *)iocb->private;
1340}
1341
1342static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1343{
1344 return si->kiocb;
1345}
1346
1347struct socket_alloc {
1348 struct socket socket;
1349 struct inode vfs_inode;
1350};
1351
1352static inline struct socket *SOCKET_I(struct inode *inode)
1353{
1354 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1355}
1356
1357static inline struct inode *SOCK_INODE(struct socket *socket)
1358{
1359 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1360}
1361
1362/*
1363 * Functions for memory accounting
1364 */
1365extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1366extern void __sk_mem_reclaim(struct sock *sk);
1367
1368#define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1369#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1370#define SK_MEM_SEND 0
1371#define SK_MEM_RECV 1
1372
1373static inline int sk_mem_pages(int amt)
1374{
1375 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1376}
1377
1378static inline bool sk_has_account(struct sock *sk)
1379{
1380 /* return true if protocol supports memory accounting */
1381 return !!sk->sk_prot->memory_allocated;
1382}
1383
1384static inline bool sk_wmem_schedule(struct sock *sk, int size)
1385{
1386 if (!sk_has_account(sk))
1387 return true;
1388 return size <= sk->sk_forward_alloc ||
1389 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1390}
1391
1392static inline bool
1393sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1394{
1395 if (!sk_has_account(sk))
1396 return true;
1397 return size<= sk->sk_forward_alloc ||
1398 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1399 skb_pfmemalloc(skb);
1400}
1401
1402static inline void sk_mem_reclaim(struct sock *sk)
1403{
1404 if (!sk_has_account(sk))
1405 return;
1406 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1407 __sk_mem_reclaim(sk);
1408}
1409
1410static inline void sk_mem_reclaim_partial(struct sock *sk)
1411{
1412 if (!sk_has_account(sk))
1413 return;
1414 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1415 __sk_mem_reclaim(sk);
1416}
1417
1418static inline void sk_mem_charge(struct sock *sk, int size)
1419{
1420 if (!sk_has_account(sk))
1421 return;
1422 sk->sk_forward_alloc -= size;
1423}
1424
1425static inline void sk_mem_uncharge(struct sock *sk, int size)
1426{
1427 if (!sk_has_account(sk))
1428 return;
1429 sk->sk_forward_alloc += size;
1430}
1431
1432static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1433{
1434 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1435 sk->sk_wmem_queued -= skb->truesize;
1436 sk_mem_uncharge(sk, skb->truesize);
1437 __kfree_skb(skb);
1438}
1439
1440/* Used by processes to "lock" a socket state, so that
1441 * interrupts and bottom half handlers won't change it
1442 * from under us. It essentially blocks any incoming
1443 * packets, so that we won't get any new data or any
1444 * packets that change the state of the socket.
1445 *
1446 * While locked, BH processing will add new packets to
1447 * the backlog queue. This queue is processed by the
1448 * owner of the socket lock right before it is released.
1449 *
1450 * Since ~2.3.5 it is also exclusive sleep lock serializing
1451 * accesses from user process context.
1452 */
1453#define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1454
1455/*
1456 * Macro so as to not evaluate some arguments when
1457 * lockdep is not enabled.
1458 *
1459 * Mark both the sk_lock and the sk_lock.slock as a
1460 * per-address-family lock class.
1461 */
1462#define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1463do { \
1464 sk->sk_lock.owned = 0; \
1465 init_waitqueue_head(&sk->sk_lock.wq); \
1466 spin_lock_init(&(sk)->sk_lock.slock); \
1467 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1468 sizeof((sk)->sk_lock)); \
1469 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1470 (skey), (sname)); \
1471 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1472} while (0)
1473
1474extern void lock_sock_nested(struct sock *sk, int subclass);
1475
1476static inline void lock_sock(struct sock *sk)
1477{
1478 lock_sock_nested(sk, 0);
1479}
1480
1481extern void release_sock(struct sock *sk);
1482
1483/* BH context may only use the following locking interface. */
1484#define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1485#define bh_lock_sock_nested(__sk) \
1486 spin_lock_nested(&((__sk)->sk_lock.slock), \
1487 SINGLE_DEPTH_NESTING)
1488#define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1489
1490extern bool lock_sock_fast(struct sock *sk);
1491/**
1492 * unlock_sock_fast - complement of lock_sock_fast
1493 * @sk: socket
1494 * @slow: slow mode
1495 *
1496 * fast unlock socket for user context.
1497 * If slow mode is on, we call regular release_sock()
1498 */
1499static inline void unlock_sock_fast(struct sock *sk, bool slow)
1500{
1501 if (slow)
1502 release_sock(sk);
1503 else
1504 spin_unlock_bh(&sk->sk_lock.slock);
1505}
1506
1507
1508extern struct sock *sk_alloc(struct net *net, int family,
1509 gfp_t priority,
1510 struct proto *prot);
1511extern void sk_free(struct sock *sk);
1512extern void sk_release_kernel(struct sock *sk);
1513extern struct sock *sk_clone_lock(const struct sock *sk,
1514 const gfp_t priority);
1515
1516extern struct sk_buff *sock_wmalloc(struct sock *sk,
1517 unsigned long size, int force,
1518 gfp_t priority);
1519extern struct sk_buff *sock_rmalloc(struct sock *sk,
1520 unsigned long size, int force,
1521 gfp_t priority);
1522extern void sock_wfree(struct sk_buff *skb);
1523extern void skb_orphan_partial(struct sk_buff *skb);
1524extern void sock_rfree(struct sk_buff *skb);
1525extern void sock_edemux(struct sk_buff *skb);
1526
1527extern int sock_setsockopt(struct socket *sock, int level,
1528 int op, char __user *optval,
1529 unsigned int optlen);
1530
1531extern int sock_getsockopt(struct socket *sock, int level,
1532 int op, char __user *optval,
1533 int __user *optlen);
1534extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1535 unsigned long size,
1536 int noblock,
1537 int *errcode);
1538extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1539 unsigned long header_len,
1540 unsigned long data_len,
1541 int noblock,
1542 int *errcode,
1543 int max_page_order);
1544extern void *sock_kmalloc(struct sock *sk, int size,
1545 gfp_t priority);
1546extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1547extern void sk_send_sigurg(struct sock *sk);
1548
1549/*
1550 * Functions to fill in entries in struct proto_ops when a protocol
1551 * does not implement a particular function.
1552 */
1553extern int sock_no_bind(struct socket *,
1554 struct sockaddr *, int);
1555extern int sock_no_connect(struct socket *,
1556 struct sockaddr *, int, int);
1557extern int sock_no_socketpair(struct socket *,
1558 struct socket *);
1559extern int sock_no_accept(struct socket *,
1560 struct socket *, int);
1561extern int sock_no_getname(struct socket *,
1562 struct sockaddr *, int *, int);
1563extern unsigned int sock_no_poll(struct file *, struct socket *,
1564 struct poll_table_struct *);
1565extern int sock_no_ioctl(struct socket *, unsigned int,
1566 unsigned long);
1567extern int sock_no_listen(struct socket *, int);
1568extern int sock_no_shutdown(struct socket *, int);
1569extern int sock_no_getsockopt(struct socket *, int , int,
1570 char __user *, int __user *);
1571extern int sock_no_setsockopt(struct socket *, int, int,
1572 char __user *, unsigned int);
1573extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1574 struct msghdr *, size_t);
1575extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1576 struct msghdr *, size_t, int);
1577extern int sock_no_mmap(struct file *file,
1578 struct socket *sock,
1579 struct vm_area_struct *vma);
1580extern ssize_t sock_no_sendpage(struct socket *sock,
1581 struct page *page,
1582 int offset, size_t size,
1583 int flags);
1584
1585/*
1586 * Functions to fill in entries in struct proto_ops when a protocol
1587 * uses the inet style.
1588 */
1589extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1590 char __user *optval, int __user *optlen);
1591extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1592 struct msghdr *msg, size_t size, int flags);
1593extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1594 char __user *optval, unsigned int optlen);
1595extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1596 int optname, char __user *optval, int __user *optlen);
1597extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1598 int optname, char __user *optval, unsigned int optlen);
1599
1600extern void sk_common_release(struct sock *sk);
1601
1602/*
1603 * Default socket callbacks and setup code
1604 */
1605
1606/* Initialise core socket variables */
1607extern void sock_init_data(struct socket *sock, struct sock *sk);
1608
1609extern void sk_filter_release_rcu(struct rcu_head *rcu);
1610
1611/**
1612 * sk_filter_release - release a socket filter
1613 * @fp: filter to remove
1614 *
1615 * Remove a filter from a socket and release its resources.
1616 */
1617
1618static inline void sk_filter_release(struct sk_filter *fp)
1619{
1620 if (atomic_dec_and_test(&fp->refcnt))
1621 call_rcu(&fp->rcu, sk_filter_release_rcu);
1622}
1623
1624static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1625{
1626 unsigned int size = sk_filter_len(fp);
1627
1628 atomic_sub(size, &sk->sk_omem_alloc);
1629 sk_filter_release(fp);
1630}
1631
1632static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1633{
1634 atomic_inc(&fp->refcnt);
1635 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1636}
1637
1638/*
1639 * Socket reference counting postulates.
1640 *
1641 * * Each user of socket SHOULD hold a reference count.
1642 * * Each access point to socket (an hash table bucket, reference from a list,
1643 * running timer, skb in flight MUST hold a reference count.
1644 * * When reference count hits 0, it means it will never increase back.
1645 * * When reference count hits 0, it means that no references from
1646 * outside exist to this socket and current process on current CPU
1647 * is last user and may/should destroy this socket.
1648 * * sk_free is called from any context: process, BH, IRQ. When
1649 * it is called, socket has no references from outside -> sk_free
1650 * may release descendant resources allocated by the socket, but
1651 * to the time when it is called, socket is NOT referenced by any
1652 * hash tables, lists etc.
1653 * * Packets, delivered from outside (from network or from another process)
1654 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1655 * when they sit in queue. Otherwise, packets will leak to hole, when
1656 * socket is looked up by one cpu and unhasing is made by another CPU.
1657 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1658 * (leak to backlog). Packet socket does all the processing inside
1659 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1660 * use separate SMP lock, so that they are prone too.
1661 */
1662
1663/* Ungrab socket and destroy it, if it was the last reference. */
1664static inline void sock_put(struct sock *sk)
1665{
1666 if (atomic_dec_and_test(&sk->sk_refcnt))
1667 sk_free(sk);
1668}
1669
1670extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1671 const int nested);
1672
1673static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1674{
1675 sk->sk_tx_queue_mapping = tx_queue;
1676}
1677
1678static inline void sk_tx_queue_clear(struct sock *sk)
1679{
1680 sk->sk_tx_queue_mapping = -1;
1681}
1682
1683static inline int sk_tx_queue_get(const struct sock *sk)
1684{
1685 return sk ? sk->sk_tx_queue_mapping : -1;
1686}
1687
1688static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1689{
1690 sk_tx_queue_clear(sk);
1691 sk->sk_socket = sock;
1692}
1693
1694static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1695{
1696 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1697 return &rcu_dereference_raw(sk->sk_wq)->wait;
1698}
1699/* Detach socket from process context.
1700 * Announce socket dead, detach it from wait queue and inode.
1701 * Note that parent inode held reference count on this struct sock,
1702 * we do not release it in this function, because protocol
1703 * probably wants some additional cleanups or even continuing
1704 * to work with this socket (TCP).
1705 */
1706static inline void sock_orphan(struct sock *sk)
1707{
1708 write_lock_bh(&sk->sk_callback_lock);
1709 sock_set_flag(sk, SOCK_DEAD);
1710 sk_set_socket(sk, NULL);
1711 sk->sk_wq = NULL;
1712 write_unlock_bh(&sk->sk_callback_lock);
1713}
1714
1715static inline void sock_graft(struct sock *sk, struct socket *parent)
1716{
1717 write_lock_bh(&sk->sk_callback_lock);
1718 sk->sk_wq = parent->wq;
1719 parent->sk = sk;
1720 sk_set_socket(sk, parent);
1721 security_sock_graft(sk, parent);
1722 write_unlock_bh(&sk->sk_callback_lock);
1723}
1724
1725extern kuid_t sock_i_uid(struct sock *sk);
1726extern unsigned long sock_i_ino(struct sock *sk);
1727
1728static inline struct dst_entry *
1729__sk_dst_get(struct sock *sk)
1730{
1731 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1732 lockdep_is_held(&sk->sk_lock.slock));
1733}
1734
1735static inline struct dst_entry *
1736sk_dst_get(struct sock *sk)
1737{
1738 struct dst_entry *dst;
1739
1740 rcu_read_lock();
1741 dst = rcu_dereference(sk->sk_dst_cache);
1742 if (dst)
1743 dst_hold(dst);
1744 rcu_read_unlock();
1745 return dst;
1746}
1747
1748extern void sk_reset_txq(struct sock *sk);
1749
1750static inline void dst_negative_advice(struct sock *sk)
1751{
1752 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1753
1754 if (dst && dst->ops->negative_advice) {
1755 ndst = dst->ops->negative_advice(dst);
1756
1757 if (ndst != dst) {
1758 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1759 sk_reset_txq(sk);
1760 }
1761 }
1762}
1763
1764static inline void
1765__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1766{
1767 struct dst_entry *old_dst;
1768
1769 sk_tx_queue_clear(sk);
1770 /*
1771 * This can be called while sk is owned by the caller only,
1772 * with no state that can be checked in a rcu_dereference_check() cond
1773 */
1774 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1775 rcu_assign_pointer(sk->sk_dst_cache, dst);
1776 dst_release(old_dst);
1777}
1778
1779static inline void
1780sk_dst_set(struct sock *sk, struct dst_entry *dst)
1781{
1782 spin_lock(&sk->sk_dst_lock);
1783 __sk_dst_set(sk, dst);
1784 spin_unlock(&sk->sk_dst_lock);
1785}
1786
1787static inline void
1788__sk_dst_reset(struct sock *sk)
1789{
1790 __sk_dst_set(sk, NULL);
1791}
1792
1793static inline void
1794sk_dst_reset(struct sock *sk)
1795{
1796 spin_lock(&sk->sk_dst_lock);
1797 __sk_dst_reset(sk);
1798 spin_unlock(&sk->sk_dst_lock);
1799}
1800
1801extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1802
1803extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1804
1805static inline bool sk_can_gso(const struct sock *sk)
1806{
1807 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1808}
1809
1810extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1811
1812static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1813{
1814 sk->sk_route_nocaps |= flags;
1815 sk->sk_route_caps &= ~flags;
1816}
1817
1818static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1819 char __user *from, char *to,
1820 int copy, int offset)
1821{
1822 if (skb->ip_summed == CHECKSUM_NONE) {
1823 int err = 0;
1824 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1825 if (err)
1826 return err;
1827 skb->csum = csum_block_add(skb->csum, csum, offset);
1828 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1829 if (!access_ok(VERIFY_READ, from, copy) ||
1830 __copy_from_user_nocache(to, from, copy))
1831 return -EFAULT;
1832 } else if (copy_from_user(to, from, copy))
1833 return -EFAULT;
1834
1835 return 0;
1836}
1837
1838static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1839 char __user *from, int copy)
1840{
1841 int err, offset = skb->len;
1842
1843 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1844 copy, offset);
1845 if (err)
1846 __skb_trim(skb, offset);
1847
1848 return err;
1849}
1850
1851static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1852 struct sk_buff *skb,
1853 struct page *page,
1854 int off, int copy)
1855{
1856 int err;
1857
1858 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1859 copy, skb->len);
1860 if (err)
1861 return err;
1862
1863 skb->len += copy;
1864 skb->data_len += copy;
1865 skb->truesize += copy;
1866 sk->sk_wmem_queued += copy;
1867 sk_mem_charge(sk, copy);
1868 return 0;
1869}
1870
1871static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1872 struct sk_buff *skb, struct page *page,
1873 int off, int copy)
1874{
1875 if (skb->ip_summed == CHECKSUM_NONE) {
1876 int err = 0;
1877 __wsum csum = csum_and_copy_from_user(from,
1878 page_address(page) + off,
1879 copy, 0, &err);
1880 if (err)
1881 return err;
1882 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1883 } else if (copy_from_user(page_address(page) + off, from, copy))
1884 return -EFAULT;
1885
1886 skb->len += copy;
1887 skb->data_len += copy;
1888 skb->truesize += copy;
1889 sk->sk_wmem_queued += copy;
1890 sk_mem_charge(sk, copy);
1891 return 0;
1892}
1893
1894/**
1895 * sk_wmem_alloc_get - returns write allocations
1896 * @sk: socket
1897 *
1898 * Returns sk_wmem_alloc minus initial offset of one
1899 */
1900static inline int sk_wmem_alloc_get(const struct sock *sk)
1901{
1902 return atomic_read(&sk->sk_wmem_alloc) - 1;
1903}
1904
1905/**
1906 * sk_rmem_alloc_get - returns read allocations
1907 * @sk: socket
1908 *
1909 * Returns sk_rmem_alloc
1910 */
1911static inline int sk_rmem_alloc_get(const struct sock *sk)
1912{
1913 return atomic_read(&sk->sk_rmem_alloc);
1914}
1915
1916/**
1917 * sk_has_allocations - check if allocations are outstanding
1918 * @sk: socket
1919 *
1920 * Returns true if socket has write or read allocations
1921 */
1922static inline bool sk_has_allocations(const struct sock *sk)
1923{
1924 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1925}
1926
1927/**
1928 * wq_has_sleeper - check if there are any waiting processes
1929 * @wq: struct socket_wq
1930 *
1931 * Returns true if socket_wq has waiting processes
1932 *
1933 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1934 * barrier call. They were added due to the race found within the tcp code.
1935 *
1936 * Consider following tcp code paths:
1937 *
1938 * CPU1 CPU2
1939 *
1940 * sys_select receive packet
1941 * ... ...
1942 * __add_wait_queue update tp->rcv_nxt
1943 * ... ...
1944 * tp->rcv_nxt check sock_def_readable
1945 * ... {
1946 * schedule rcu_read_lock();
1947 * wq = rcu_dereference(sk->sk_wq);
1948 * if (wq && waitqueue_active(&wq->wait))
1949 * wake_up_interruptible(&wq->wait)
1950 * ...
1951 * }
1952 *
1953 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1954 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1955 * could then endup calling schedule and sleep forever if there are no more
1956 * data on the socket.
1957 *
1958 */
1959static inline bool wq_has_sleeper(struct socket_wq *wq)
1960{
1961 /* We need to be sure we are in sync with the
1962 * add_wait_queue modifications to the wait queue.
1963 *
1964 * This memory barrier is paired in the sock_poll_wait.
1965 */
1966 smp_mb();
1967 return wq && waitqueue_active(&wq->wait);
1968}
1969
1970/**
1971 * sock_poll_wait - place memory barrier behind the poll_wait call.
1972 * @filp: file
1973 * @wait_address: socket wait queue
1974 * @p: poll_table
1975 *
1976 * See the comments in the wq_has_sleeper function.
1977 */
1978static inline void sock_poll_wait(struct file *filp,
1979 wait_queue_head_t *wait_address, poll_table *p)
1980{
1981 if (!poll_does_not_wait(p) && wait_address) {
1982 poll_wait(filp, wait_address, p);
1983 /* We need to be sure we are in sync with the
1984 * socket flags modification.
1985 *
1986 * This memory barrier is paired in the wq_has_sleeper.
1987 */
1988 smp_mb();
1989 }
1990}
1991
1992/*
1993 * Queue a received datagram if it will fit. Stream and sequenced
1994 * protocols can't normally use this as they need to fit buffers in
1995 * and play with them.
1996 *
1997 * Inlined as it's very short and called for pretty much every
1998 * packet ever received.
1999 */
2000
2001static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2002{
2003 skb_orphan(skb);
2004 skb->sk = sk;
2005 skb->destructor = sock_wfree;
2006 /*
2007 * We used to take a refcount on sk, but following operation
2008 * is enough to guarantee sk_free() wont free this sock until
2009 * all in-flight packets are completed
2010 */
2011 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
2012}
2013
2014static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2015{
2016 skb_orphan(skb);
2017 skb->sk = sk;
2018 skb->destructor = sock_rfree;
2019 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2020 sk_mem_charge(sk, skb->truesize);
2021}
2022
2023extern void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2024 unsigned long expires);
2025
2026extern void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2027
2028extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2029
2030extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2031
2032/*
2033 * Recover an error report and clear atomically
2034 */
2035
2036static inline int sock_error(struct sock *sk)
2037{
2038 int err;
2039 if (likely(!sk->sk_err))
2040 return 0;
2041 err = xchg(&sk->sk_err, 0);
2042 return -err;
2043}
2044
2045static inline unsigned long sock_wspace(struct sock *sk)
2046{
2047 int amt = 0;
2048
2049 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2050 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2051 if (amt < 0)
2052 amt = 0;
2053 }
2054 return amt;
2055}
2056
2057static inline void sk_wake_async(struct sock *sk, int how, int band)
2058{
2059 if (sock_flag(sk, SOCK_FASYNC))
2060 sock_wake_async(sk->sk_socket, how, band);
2061}
2062
2063/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2064 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2065 * Note: for send buffers, TCP works better if we can build two skbs at
2066 * minimum.
2067 */
2068#define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2069
2070#define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2071#define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2072
2073static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2074{
2075 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2076 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2077 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2078 }
2079}
2080
2081struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2082
2083/**
2084 * sk_page_frag - return an appropriate page_frag
2085 * @sk: socket
2086 *
2087 * If socket allocation mode allows current thread to sleep, it means its
2088 * safe to use the per task page_frag instead of the per socket one.
2089 */
2090static inline struct page_frag *sk_page_frag(struct sock *sk)
2091{
2092 if (sk->sk_allocation & __GFP_WAIT)
2093 return &current->task_frag;
2094
2095 return &sk->sk_frag;
2096}
2097
2098extern bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2099
2100/*
2101 * Default write policy as shown to user space via poll/select/SIGIO
2102 */
2103static inline bool sock_writeable(const struct sock *sk)
2104{
2105 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2106}
2107
2108static inline gfp_t gfp_any(void)
2109{
2110 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2111}
2112
2113static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2114{
2115 return noblock ? 0 : sk->sk_rcvtimeo;
2116}
2117
2118static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2119{
2120 return noblock ? 0 : sk->sk_sndtimeo;
2121}
2122
2123static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2124{
2125 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2126}
2127
2128/* Alas, with timeout socket operations are not restartable.
2129 * Compare this to poll().
2130 */
2131static inline int sock_intr_errno(long timeo)
2132{
2133 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2134}
2135
2136extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2137 struct sk_buff *skb);
2138extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2139 struct sk_buff *skb);
2140
2141static inline void
2142sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2143{
2144 ktime_t kt = skb->tstamp;
2145 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2146
2147 /*
2148 * generate control messages if
2149 * - receive time stamping in software requested (SOCK_RCVTSTAMP
2150 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
2151 * - software time stamp available and wanted
2152 * (SOCK_TIMESTAMPING_SOFTWARE)
2153 * - hardware time stamps available and wanted
2154 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
2155 * SOCK_TIMESTAMPING_RAW_HARDWARE)
2156 */
2157 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2158 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2159 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2160 (hwtstamps->hwtstamp.tv64 &&
2161 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2162 (hwtstamps->syststamp.tv64 &&
2163 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2164 __sock_recv_timestamp(msg, sk, skb);
2165 else
2166 sk->sk_stamp = kt;
2167
2168 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2169 __sock_recv_wifi_status(msg, sk, skb);
2170}
2171
2172extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2173 struct sk_buff *skb);
2174
2175static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2176 struct sk_buff *skb)
2177{
2178#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2179 (1UL << SOCK_RCVTSTAMP) | \
2180 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
2181 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
2182 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
2183 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2184
2185 if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2186 __sock_recv_ts_and_drops(msg, sk, skb);
2187 else
2188 sk->sk_stamp = skb->tstamp;
2189}
2190
2191/**
2192 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2193 * @sk: socket sending this packet
2194 * @tx_flags: filled with instructions for time stamping
2195 *
2196 * Currently only depends on SOCK_TIMESTAMPING* flags.
2197 */
2198extern void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2199
2200/**
2201 * sk_eat_skb - Release a skb if it is no longer needed
2202 * @sk: socket to eat this skb from
2203 * @skb: socket buffer to eat
2204 * @copied_early: flag indicating whether DMA operations copied this data early
2205 *
2206 * This routine must be called with interrupts disabled or with the socket
2207 * locked so that the sk_buff queue operation is ok.
2208*/
2209#ifdef CONFIG_NET_DMA
2210static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2211{
2212 __skb_unlink(skb, &sk->sk_receive_queue);
2213 if (!copied_early)
2214 __kfree_skb(skb);
2215 else
2216 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
2217}
2218#else
2219static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2220{
2221 __skb_unlink(skb, &sk->sk_receive_queue);
2222 __kfree_skb(skb);
2223}
2224#endif
2225
2226static inline
2227struct net *sock_net(const struct sock *sk)
2228{
2229 return read_pnet(&sk->sk_net);
2230}
2231
2232static inline
2233void sock_net_set(struct sock *sk, struct net *net)
2234{
2235 write_pnet(&sk->sk_net, net);
2236}
2237
2238/*
2239 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2240 * They should not hold a reference to a namespace in order to allow
2241 * to stop it.
2242 * Sockets after sk_change_net should be released using sk_release_kernel
2243 */
2244static inline void sk_change_net(struct sock *sk, struct net *net)
2245{
2246 put_net(sock_net(sk));
2247 sock_net_set(sk, hold_net(net));
2248}
2249
2250static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2251{
2252 if (skb->sk) {
2253 struct sock *sk = skb->sk;
2254
2255 skb->destructor = NULL;
2256 skb->sk = NULL;
2257 return sk;
2258 }
2259 return NULL;
2260}
2261
2262extern void sock_enable_timestamp(struct sock *sk, int flag);
2263extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2264extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2265extern int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2266 int level, int type);
2267
2268/*
2269 * Enable debug/info messages
2270 */
2271extern int net_msg_warn;
2272#define NETDEBUG(fmt, args...) \
2273 do { if (net_msg_warn) printk(fmt,##args); } while (0)
2274
2275#define LIMIT_NETDEBUG(fmt, args...) \
2276 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2277
2278extern __u32 sysctl_wmem_max;
2279extern __u32 sysctl_rmem_max;
2280
2281extern int sysctl_optmem_max;
2282
2283extern __u32 sysctl_wmem_default;
2284extern __u32 sysctl_rmem_default;
2285
2286#endif /* _SOCK_H */
This page took 0.034904 seconds and 5 git commands to generate.