kexec: fix memory leak in function kimage_normal_alloc
[deliverable/linux.git] / kernel / kexec.c
... / ...
CommitLineData
1/*
2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
9#include <linux/capability.h>
10#include <linux/mm.h>
11#include <linux/file.h>
12#include <linux/slab.h>
13#include <linux/fs.h>
14#include <linux/kexec.h>
15#include <linux/mutex.h>
16#include <linux/list.h>
17#include <linux/highmem.h>
18#include <linux/syscalls.h>
19#include <linux/reboot.h>
20#include <linux/ioport.h>
21#include <linux/hardirq.h>
22#include <linux/elf.h>
23#include <linux/elfcore.h>
24#include <linux/utsname.h>
25#include <linux/numa.h>
26#include <linux/suspend.h>
27#include <linux/device.h>
28#include <linux/freezer.h>
29#include <linux/pm.h>
30#include <linux/cpu.h>
31#include <linux/console.h>
32#include <linux/vmalloc.h>
33#include <linux/swap.h>
34#include <linux/syscore_ops.h>
35
36#include <asm/page.h>
37#include <asm/uaccess.h>
38#include <asm/io.h>
39#include <asm/sections.h>
40
41/* Per cpu memory for storing cpu states in case of system crash. */
42note_buf_t __percpu *crash_notes;
43
44/* vmcoreinfo stuff */
45static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
46u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
47size_t vmcoreinfo_size;
48size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
49
50/* Location of the reserved area for the crash kernel */
51struct resource crashk_res = {
52 .name = "Crash kernel",
53 .start = 0,
54 .end = 0,
55 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
56};
57struct resource crashk_low_res = {
58 .name = "Crash kernel low",
59 .start = 0,
60 .end = 0,
61 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
62};
63
64int kexec_should_crash(struct task_struct *p)
65{
66 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
67 return 1;
68 return 0;
69}
70
71/*
72 * When kexec transitions to the new kernel there is a one-to-one
73 * mapping between physical and virtual addresses. On processors
74 * where you can disable the MMU this is trivial, and easy. For
75 * others it is still a simple predictable page table to setup.
76 *
77 * In that environment kexec copies the new kernel to its final
78 * resting place. This means I can only support memory whose
79 * physical address can fit in an unsigned long. In particular
80 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
81 * If the assembly stub has more restrictive requirements
82 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
83 * defined more restrictively in <asm/kexec.h>.
84 *
85 * The code for the transition from the current kernel to the
86 * the new kernel is placed in the control_code_buffer, whose size
87 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
88 * page of memory is necessary, but some architectures require more.
89 * Because this memory must be identity mapped in the transition from
90 * virtual to physical addresses it must live in the range
91 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
92 * modifiable.
93 *
94 * The assembly stub in the control code buffer is passed a linked list
95 * of descriptor pages detailing the source pages of the new kernel,
96 * and the destination addresses of those source pages. As this data
97 * structure is not used in the context of the current OS, it must
98 * be self-contained.
99 *
100 * The code has been made to work with highmem pages and will use a
101 * destination page in its final resting place (if it happens
102 * to allocate it). The end product of this is that most of the
103 * physical address space, and most of RAM can be used.
104 *
105 * Future directions include:
106 * - allocating a page table with the control code buffer identity
107 * mapped, to simplify machine_kexec and make kexec_on_panic more
108 * reliable.
109 */
110
111/*
112 * KIMAGE_NO_DEST is an impossible destination address..., for
113 * allocating pages whose destination address we do not care about.
114 */
115#define KIMAGE_NO_DEST (-1UL)
116
117static int kimage_is_destination_range(struct kimage *image,
118 unsigned long start, unsigned long end);
119static struct page *kimage_alloc_page(struct kimage *image,
120 gfp_t gfp_mask,
121 unsigned long dest);
122
123static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
124 unsigned long nr_segments,
125 struct kexec_segment __user *segments)
126{
127 size_t segment_bytes;
128 struct kimage *image;
129 unsigned long i;
130 int result;
131
132 /* Allocate a controlling structure */
133 result = -ENOMEM;
134 image = kzalloc(sizeof(*image), GFP_KERNEL);
135 if (!image)
136 goto out;
137
138 image->head = 0;
139 image->entry = &image->head;
140 image->last_entry = &image->head;
141 image->control_page = ~0; /* By default this does not apply */
142 image->start = entry;
143 image->type = KEXEC_TYPE_DEFAULT;
144
145 /* Initialize the list of control pages */
146 INIT_LIST_HEAD(&image->control_pages);
147
148 /* Initialize the list of destination pages */
149 INIT_LIST_HEAD(&image->dest_pages);
150
151 /* Initialize the list of unusable pages */
152 INIT_LIST_HEAD(&image->unuseable_pages);
153
154 /* Read in the segments */
155 image->nr_segments = nr_segments;
156 segment_bytes = nr_segments * sizeof(*segments);
157 result = copy_from_user(image->segment, segments, segment_bytes);
158 if (result) {
159 result = -EFAULT;
160 goto out;
161 }
162
163 /*
164 * Verify we have good destination addresses. The caller is
165 * responsible for making certain we don't attempt to load
166 * the new image into invalid or reserved areas of RAM. This
167 * just verifies it is an address we can use.
168 *
169 * Since the kernel does everything in page size chunks ensure
170 * the destination addresses are page aligned. Too many
171 * special cases crop of when we don't do this. The most
172 * insidious is getting overlapping destination addresses
173 * simply because addresses are changed to page size
174 * granularity.
175 */
176 result = -EADDRNOTAVAIL;
177 for (i = 0; i < nr_segments; i++) {
178 unsigned long mstart, mend;
179
180 mstart = image->segment[i].mem;
181 mend = mstart + image->segment[i].memsz;
182 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
183 goto out;
184 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
185 goto out;
186 }
187
188 /* Verify our destination addresses do not overlap.
189 * If we alloed overlapping destination addresses
190 * through very weird things can happen with no
191 * easy explanation as one segment stops on another.
192 */
193 result = -EINVAL;
194 for (i = 0; i < nr_segments; i++) {
195 unsigned long mstart, mend;
196 unsigned long j;
197
198 mstart = image->segment[i].mem;
199 mend = mstart + image->segment[i].memsz;
200 for (j = 0; j < i; j++) {
201 unsigned long pstart, pend;
202 pstart = image->segment[j].mem;
203 pend = pstart + image->segment[j].memsz;
204 /* Do the segments overlap ? */
205 if ((mend > pstart) && (mstart < pend))
206 goto out;
207 }
208 }
209
210 /* Ensure our buffer sizes are strictly less than
211 * our memory sizes. This should always be the case,
212 * and it is easier to check up front than to be surprised
213 * later on.
214 */
215 result = -EINVAL;
216 for (i = 0; i < nr_segments; i++) {
217 if (image->segment[i].bufsz > image->segment[i].memsz)
218 goto out;
219 }
220
221 result = 0;
222out:
223 if (result == 0)
224 *rimage = image;
225 else
226 kfree(image);
227
228 return result;
229
230}
231
232static void kimage_free_page_list(struct list_head *list);
233
234static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
235 unsigned long nr_segments,
236 struct kexec_segment __user *segments)
237{
238 int result;
239 struct kimage *image;
240
241 /* Allocate and initialize a controlling structure */
242 image = NULL;
243 result = do_kimage_alloc(&image, entry, nr_segments, segments);
244 if (result)
245 goto out;
246
247 /*
248 * Find a location for the control code buffer, and add it
249 * the vector of segments so that it's pages will also be
250 * counted as destination pages.
251 */
252 result = -ENOMEM;
253 image->control_code_page = kimage_alloc_control_pages(image,
254 get_order(KEXEC_CONTROL_PAGE_SIZE));
255 if (!image->control_code_page) {
256 printk(KERN_ERR "Could not allocate control_code_buffer\n");
257 goto out_free;
258 }
259
260 image->swap_page = kimage_alloc_control_pages(image, 0);
261 if (!image->swap_page) {
262 printk(KERN_ERR "Could not allocate swap buffer\n");
263 goto out_free;
264 }
265
266 *rimage = image;
267 return 0;
268
269out_free:
270 kimage_free_page_list(&image->control_pages);
271 kfree(image);
272out:
273 return result;
274}
275
276static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
277 unsigned long nr_segments,
278 struct kexec_segment __user *segments)
279{
280 int result;
281 struct kimage *image;
282 unsigned long i;
283
284 image = NULL;
285 /* Verify we have a valid entry point */
286 if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
287 result = -EADDRNOTAVAIL;
288 goto out;
289 }
290
291 /* Allocate and initialize a controlling structure */
292 result = do_kimage_alloc(&image, entry, nr_segments, segments);
293 if (result)
294 goto out;
295
296 /* Enable the special crash kernel control page
297 * allocation policy.
298 */
299 image->control_page = crashk_res.start;
300 image->type = KEXEC_TYPE_CRASH;
301
302 /*
303 * Verify we have good destination addresses. Normally
304 * the caller is responsible for making certain we don't
305 * attempt to load the new image into invalid or reserved
306 * areas of RAM. But crash kernels are preloaded into a
307 * reserved area of ram. We must ensure the addresses
308 * are in the reserved area otherwise preloading the
309 * kernel could corrupt things.
310 */
311 result = -EADDRNOTAVAIL;
312 for (i = 0; i < nr_segments; i++) {
313 unsigned long mstart, mend;
314
315 mstart = image->segment[i].mem;
316 mend = mstart + image->segment[i].memsz - 1;
317 /* Ensure we are within the crash kernel limits */
318 if ((mstart < crashk_res.start) || (mend > crashk_res.end))
319 goto out;
320 }
321
322 /*
323 * Find a location for the control code buffer, and add
324 * the vector of segments so that it's pages will also be
325 * counted as destination pages.
326 */
327 result = -ENOMEM;
328 image->control_code_page = kimage_alloc_control_pages(image,
329 get_order(KEXEC_CONTROL_PAGE_SIZE));
330 if (!image->control_code_page) {
331 printk(KERN_ERR "Could not allocate control_code_buffer\n");
332 goto out;
333 }
334
335 result = 0;
336out:
337 if (result == 0)
338 *rimage = image;
339 else
340 kfree(image);
341
342 return result;
343}
344
345static int kimage_is_destination_range(struct kimage *image,
346 unsigned long start,
347 unsigned long end)
348{
349 unsigned long i;
350
351 for (i = 0; i < image->nr_segments; i++) {
352 unsigned long mstart, mend;
353
354 mstart = image->segment[i].mem;
355 mend = mstart + image->segment[i].memsz;
356 if ((end > mstart) && (start < mend))
357 return 1;
358 }
359
360 return 0;
361}
362
363static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
364{
365 struct page *pages;
366
367 pages = alloc_pages(gfp_mask, order);
368 if (pages) {
369 unsigned int count, i;
370 pages->mapping = NULL;
371 set_page_private(pages, order);
372 count = 1 << order;
373 for (i = 0; i < count; i++)
374 SetPageReserved(pages + i);
375 }
376
377 return pages;
378}
379
380static void kimage_free_pages(struct page *page)
381{
382 unsigned int order, count, i;
383
384 order = page_private(page);
385 count = 1 << order;
386 for (i = 0; i < count; i++)
387 ClearPageReserved(page + i);
388 __free_pages(page, order);
389}
390
391static void kimage_free_page_list(struct list_head *list)
392{
393 struct list_head *pos, *next;
394
395 list_for_each_safe(pos, next, list) {
396 struct page *page;
397
398 page = list_entry(pos, struct page, lru);
399 list_del(&page->lru);
400 kimage_free_pages(page);
401 }
402}
403
404static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
405 unsigned int order)
406{
407 /* Control pages are special, they are the intermediaries
408 * that are needed while we copy the rest of the pages
409 * to their final resting place. As such they must
410 * not conflict with either the destination addresses
411 * or memory the kernel is already using.
412 *
413 * The only case where we really need more than one of
414 * these are for architectures where we cannot disable
415 * the MMU and must instead generate an identity mapped
416 * page table for all of the memory.
417 *
418 * At worst this runs in O(N) of the image size.
419 */
420 struct list_head extra_pages;
421 struct page *pages;
422 unsigned int count;
423
424 count = 1 << order;
425 INIT_LIST_HEAD(&extra_pages);
426
427 /* Loop while I can allocate a page and the page allocated
428 * is a destination page.
429 */
430 do {
431 unsigned long pfn, epfn, addr, eaddr;
432
433 pages = kimage_alloc_pages(GFP_KERNEL, order);
434 if (!pages)
435 break;
436 pfn = page_to_pfn(pages);
437 epfn = pfn + count;
438 addr = pfn << PAGE_SHIFT;
439 eaddr = epfn << PAGE_SHIFT;
440 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
441 kimage_is_destination_range(image, addr, eaddr)) {
442 list_add(&pages->lru, &extra_pages);
443 pages = NULL;
444 }
445 } while (!pages);
446
447 if (pages) {
448 /* Remember the allocated page... */
449 list_add(&pages->lru, &image->control_pages);
450
451 /* Because the page is already in it's destination
452 * location we will never allocate another page at
453 * that address. Therefore kimage_alloc_pages
454 * will not return it (again) and we don't need
455 * to give it an entry in image->segment[].
456 */
457 }
458 /* Deal with the destination pages I have inadvertently allocated.
459 *
460 * Ideally I would convert multi-page allocations into single
461 * page allocations, and add everything to image->dest_pages.
462 *
463 * For now it is simpler to just free the pages.
464 */
465 kimage_free_page_list(&extra_pages);
466
467 return pages;
468}
469
470static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
471 unsigned int order)
472{
473 /* Control pages are special, they are the intermediaries
474 * that are needed while we copy the rest of the pages
475 * to their final resting place. As such they must
476 * not conflict with either the destination addresses
477 * or memory the kernel is already using.
478 *
479 * Control pages are also the only pags we must allocate
480 * when loading a crash kernel. All of the other pages
481 * are specified by the segments and we just memcpy
482 * into them directly.
483 *
484 * The only case where we really need more than one of
485 * these are for architectures where we cannot disable
486 * the MMU and must instead generate an identity mapped
487 * page table for all of the memory.
488 *
489 * Given the low demand this implements a very simple
490 * allocator that finds the first hole of the appropriate
491 * size in the reserved memory region, and allocates all
492 * of the memory up to and including the hole.
493 */
494 unsigned long hole_start, hole_end, size;
495 struct page *pages;
496
497 pages = NULL;
498 size = (1 << order) << PAGE_SHIFT;
499 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
500 hole_end = hole_start + size - 1;
501 while (hole_end <= crashk_res.end) {
502 unsigned long i;
503
504 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
505 break;
506 /* See if I overlap any of the segments */
507 for (i = 0; i < image->nr_segments; i++) {
508 unsigned long mstart, mend;
509
510 mstart = image->segment[i].mem;
511 mend = mstart + image->segment[i].memsz - 1;
512 if ((hole_end >= mstart) && (hole_start <= mend)) {
513 /* Advance the hole to the end of the segment */
514 hole_start = (mend + (size - 1)) & ~(size - 1);
515 hole_end = hole_start + size - 1;
516 break;
517 }
518 }
519 /* If I don't overlap any segments I have found my hole! */
520 if (i == image->nr_segments) {
521 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
522 break;
523 }
524 }
525 if (pages)
526 image->control_page = hole_end;
527
528 return pages;
529}
530
531
532struct page *kimage_alloc_control_pages(struct kimage *image,
533 unsigned int order)
534{
535 struct page *pages = NULL;
536
537 switch (image->type) {
538 case KEXEC_TYPE_DEFAULT:
539 pages = kimage_alloc_normal_control_pages(image, order);
540 break;
541 case KEXEC_TYPE_CRASH:
542 pages = kimage_alloc_crash_control_pages(image, order);
543 break;
544 }
545
546 return pages;
547}
548
549static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
550{
551 if (*image->entry != 0)
552 image->entry++;
553
554 if (image->entry == image->last_entry) {
555 kimage_entry_t *ind_page;
556 struct page *page;
557
558 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
559 if (!page)
560 return -ENOMEM;
561
562 ind_page = page_address(page);
563 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
564 image->entry = ind_page;
565 image->last_entry = ind_page +
566 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
567 }
568 *image->entry = entry;
569 image->entry++;
570 *image->entry = 0;
571
572 return 0;
573}
574
575static int kimage_set_destination(struct kimage *image,
576 unsigned long destination)
577{
578 int result;
579
580 destination &= PAGE_MASK;
581 result = kimage_add_entry(image, destination | IND_DESTINATION);
582 if (result == 0)
583 image->destination = destination;
584
585 return result;
586}
587
588
589static int kimage_add_page(struct kimage *image, unsigned long page)
590{
591 int result;
592
593 page &= PAGE_MASK;
594 result = kimage_add_entry(image, page | IND_SOURCE);
595 if (result == 0)
596 image->destination += PAGE_SIZE;
597
598 return result;
599}
600
601
602static void kimage_free_extra_pages(struct kimage *image)
603{
604 /* Walk through and free any extra destination pages I may have */
605 kimage_free_page_list(&image->dest_pages);
606
607 /* Walk through and free any unusable pages I have cached */
608 kimage_free_page_list(&image->unuseable_pages);
609
610}
611static void kimage_terminate(struct kimage *image)
612{
613 if (*image->entry != 0)
614 image->entry++;
615
616 *image->entry = IND_DONE;
617}
618
619#define for_each_kimage_entry(image, ptr, entry) \
620 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
621 ptr = (entry & IND_INDIRECTION)? \
622 phys_to_virt((entry & PAGE_MASK)): ptr +1)
623
624static void kimage_free_entry(kimage_entry_t entry)
625{
626 struct page *page;
627
628 page = pfn_to_page(entry >> PAGE_SHIFT);
629 kimage_free_pages(page);
630}
631
632static void kimage_free(struct kimage *image)
633{
634 kimage_entry_t *ptr, entry;
635 kimage_entry_t ind = 0;
636
637 if (!image)
638 return;
639
640 kimage_free_extra_pages(image);
641 for_each_kimage_entry(image, ptr, entry) {
642 if (entry & IND_INDIRECTION) {
643 /* Free the previous indirection page */
644 if (ind & IND_INDIRECTION)
645 kimage_free_entry(ind);
646 /* Save this indirection page until we are
647 * done with it.
648 */
649 ind = entry;
650 }
651 else if (entry & IND_SOURCE)
652 kimage_free_entry(entry);
653 }
654 /* Free the final indirection page */
655 if (ind & IND_INDIRECTION)
656 kimage_free_entry(ind);
657
658 /* Handle any machine specific cleanup */
659 machine_kexec_cleanup(image);
660
661 /* Free the kexec control pages... */
662 kimage_free_page_list(&image->control_pages);
663 kfree(image);
664}
665
666static kimage_entry_t *kimage_dst_used(struct kimage *image,
667 unsigned long page)
668{
669 kimage_entry_t *ptr, entry;
670 unsigned long destination = 0;
671
672 for_each_kimage_entry(image, ptr, entry) {
673 if (entry & IND_DESTINATION)
674 destination = entry & PAGE_MASK;
675 else if (entry & IND_SOURCE) {
676 if (page == destination)
677 return ptr;
678 destination += PAGE_SIZE;
679 }
680 }
681
682 return NULL;
683}
684
685static struct page *kimage_alloc_page(struct kimage *image,
686 gfp_t gfp_mask,
687 unsigned long destination)
688{
689 /*
690 * Here we implement safeguards to ensure that a source page
691 * is not copied to its destination page before the data on
692 * the destination page is no longer useful.
693 *
694 * To do this we maintain the invariant that a source page is
695 * either its own destination page, or it is not a
696 * destination page at all.
697 *
698 * That is slightly stronger than required, but the proof
699 * that no problems will not occur is trivial, and the
700 * implementation is simply to verify.
701 *
702 * When allocating all pages normally this algorithm will run
703 * in O(N) time, but in the worst case it will run in O(N^2)
704 * time. If the runtime is a problem the data structures can
705 * be fixed.
706 */
707 struct page *page;
708 unsigned long addr;
709
710 /*
711 * Walk through the list of destination pages, and see if I
712 * have a match.
713 */
714 list_for_each_entry(page, &image->dest_pages, lru) {
715 addr = page_to_pfn(page) << PAGE_SHIFT;
716 if (addr == destination) {
717 list_del(&page->lru);
718 return page;
719 }
720 }
721 page = NULL;
722 while (1) {
723 kimage_entry_t *old;
724
725 /* Allocate a page, if we run out of memory give up */
726 page = kimage_alloc_pages(gfp_mask, 0);
727 if (!page)
728 return NULL;
729 /* If the page cannot be used file it away */
730 if (page_to_pfn(page) >
731 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
732 list_add(&page->lru, &image->unuseable_pages);
733 continue;
734 }
735 addr = page_to_pfn(page) << PAGE_SHIFT;
736
737 /* If it is the destination page we want use it */
738 if (addr == destination)
739 break;
740
741 /* If the page is not a destination page use it */
742 if (!kimage_is_destination_range(image, addr,
743 addr + PAGE_SIZE))
744 break;
745
746 /*
747 * I know that the page is someones destination page.
748 * See if there is already a source page for this
749 * destination page. And if so swap the source pages.
750 */
751 old = kimage_dst_used(image, addr);
752 if (old) {
753 /* If so move it */
754 unsigned long old_addr;
755 struct page *old_page;
756
757 old_addr = *old & PAGE_MASK;
758 old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
759 copy_highpage(page, old_page);
760 *old = addr | (*old & ~PAGE_MASK);
761
762 /* The old page I have found cannot be a
763 * destination page, so return it if it's
764 * gfp_flags honor the ones passed in.
765 */
766 if (!(gfp_mask & __GFP_HIGHMEM) &&
767 PageHighMem(old_page)) {
768 kimage_free_pages(old_page);
769 continue;
770 }
771 addr = old_addr;
772 page = old_page;
773 break;
774 }
775 else {
776 /* Place the page on the destination list I
777 * will use it later.
778 */
779 list_add(&page->lru, &image->dest_pages);
780 }
781 }
782
783 return page;
784}
785
786static int kimage_load_normal_segment(struct kimage *image,
787 struct kexec_segment *segment)
788{
789 unsigned long maddr;
790 unsigned long ubytes, mbytes;
791 int result;
792 unsigned char __user *buf;
793
794 result = 0;
795 buf = segment->buf;
796 ubytes = segment->bufsz;
797 mbytes = segment->memsz;
798 maddr = segment->mem;
799
800 result = kimage_set_destination(image, maddr);
801 if (result < 0)
802 goto out;
803
804 while (mbytes) {
805 struct page *page;
806 char *ptr;
807 size_t uchunk, mchunk;
808
809 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
810 if (!page) {
811 result = -ENOMEM;
812 goto out;
813 }
814 result = kimage_add_page(image, page_to_pfn(page)
815 << PAGE_SHIFT);
816 if (result < 0)
817 goto out;
818
819 ptr = kmap(page);
820 /* Start with a clear page */
821 clear_page(ptr);
822 ptr += maddr & ~PAGE_MASK;
823 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
824 if (mchunk > mbytes)
825 mchunk = mbytes;
826
827 uchunk = mchunk;
828 if (uchunk > ubytes)
829 uchunk = ubytes;
830
831 result = copy_from_user(ptr, buf, uchunk);
832 kunmap(page);
833 if (result) {
834 result = -EFAULT;
835 goto out;
836 }
837 ubytes -= uchunk;
838 maddr += mchunk;
839 buf += mchunk;
840 mbytes -= mchunk;
841 }
842out:
843 return result;
844}
845
846static int kimage_load_crash_segment(struct kimage *image,
847 struct kexec_segment *segment)
848{
849 /* For crash dumps kernels we simply copy the data from
850 * user space to it's destination.
851 * We do things a page at a time for the sake of kmap.
852 */
853 unsigned long maddr;
854 unsigned long ubytes, mbytes;
855 int result;
856 unsigned char __user *buf;
857
858 result = 0;
859 buf = segment->buf;
860 ubytes = segment->bufsz;
861 mbytes = segment->memsz;
862 maddr = segment->mem;
863 while (mbytes) {
864 struct page *page;
865 char *ptr;
866 size_t uchunk, mchunk;
867
868 page = pfn_to_page(maddr >> PAGE_SHIFT);
869 if (!page) {
870 result = -ENOMEM;
871 goto out;
872 }
873 ptr = kmap(page);
874 ptr += maddr & ~PAGE_MASK;
875 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
876 if (mchunk > mbytes)
877 mchunk = mbytes;
878
879 uchunk = mchunk;
880 if (uchunk > ubytes) {
881 uchunk = ubytes;
882 /* Zero the trailing part of the page */
883 memset(ptr + uchunk, 0, mchunk - uchunk);
884 }
885 result = copy_from_user(ptr, buf, uchunk);
886 kexec_flush_icache_page(page);
887 kunmap(page);
888 if (result) {
889 result = -EFAULT;
890 goto out;
891 }
892 ubytes -= uchunk;
893 maddr += mchunk;
894 buf += mchunk;
895 mbytes -= mchunk;
896 }
897out:
898 return result;
899}
900
901static int kimage_load_segment(struct kimage *image,
902 struct kexec_segment *segment)
903{
904 int result = -ENOMEM;
905
906 switch (image->type) {
907 case KEXEC_TYPE_DEFAULT:
908 result = kimage_load_normal_segment(image, segment);
909 break;
910 case KEXEC_TYPE_CRASH:
911 result = kimage_load_crash_segment(image, segment);
912 break;
913 }
914
915 return result;
916}
917
918/*
919 * Exec Kernel system call: for obvious reasons only root may call it.
920 *
921 * This call breaks up into three pieces.
922 * - A generic part which loads the new kernel from the current
923 * address space, and very carefully places the data in the
924 * allocated pages.
925 *
926 * - A generic part that interacts with the kernel and tells all of
927 * the devices to shut down. Preventing on-going dmas, and placing
928 * the devices in a consistent state so a later kernel can
929 * reinitialize them.
930 *
931 * - A machine specific part that includes the syscall number
932 * and the copies the image to it's final destination. And
933 * jumps into the image at entry.
934 *
935 * kexec does not sync, or unmount filesystems so if you need
936 * that to happen you need to do that yourself.
937 */
938struct kimage *kexec_image;
939struct kimage *kexec_crash_image;
940
941static DEFINE_MUTEX(kexec_mutex);
942
943SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
944 struct kexec_segment __user *, segments, unsigned long, flags)
945{
946 struct kimage **dest_image, *image;
947 int result;
948
949 /* We only trust the superuser with rebooting the system. */
950 if (!capable(CAP_SYS_BOOT))
951 return -EPERM;
952
953 /*
954 * Verify we have a legal set of flags
955 * This leaves us room for future extensions.
956 */
957 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
958 return -EINVAL;
959
960 /* Verify we are on the appropriate architecture */
961 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
962 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
963 return -EINVAL;
964
965 /* Put an artificial cap on the number
966 * of segments passed to kexec_load.
967 */
968 if (nr_segments > KEXEC_SEGMENT_MAX)
969 return -EINVAL;
970
971 image = NULL;
972 result = 0;
973
974 /* Because we write directly to the reserved memory
975 * region when loading crash kernels we need a mutex here to
976 * prevent multiple crash kernels from attempting to load
977 * simultaneously, and to prevent a crash kernel from loading
978 * over the top of a in use crash kernel.
979 *
980 * KISS: always take the mutex.
981 */
982 if (!mutex_trylock(&kexec_mutex))
983 return -EBUSY;
984
985 dest_image = &kexec_image;
986 if (flags & KEXEC_ON_CRASH)
987 dest_image = &kexec_crash_image;
988 if (nr_segments > 0) {
989 unsigned long i;
990
991 /* Loading another kernel to reboot into */
992 if ((flags & KEXEC_ON_CRASH) == 0)
993 result = kimage_normal_alloc(&image, entry,
994 nr_segments, segments);
995 /* Loading another kernel to switch to if this one crashes */
996 else if (flags & KEXEC_ON_CRASH) {
997 /* Free any current crash dump kernel before
998 * we corrupt it.
999 */
1000 kimage_free(xchg(&kexec_crash_image, NULL));
1001 result = kimage_crash_alloc(&image, entry,
1002 nr_segments, segments);
1003 crash_map_reserved_pages();
1004 }
1005 if (result)
1006 goto out;
1007
1008 if (flags & KEXEC_PRESERVE_CONTEXT)
1009 image->preserve_context = 1;
1010 result = machine_kexec_prepare(image);
1011 if (result)
1012 goto out;
1013
1014 for (i = 0; i < nr_segments; i++) {
1015 result = kimage_load_segment(image, &image->segment[i]);
1016 if (result)
1017 goto out;
1018 }
1019 kimage_terminate(image);
1020 if (flags & KEXEC_ON_CRASH)
1021 crash_unmap_reserved_pages();
1022 }
1023 /* Install the new kernel, and Uninstall the old */
1024 image = xchg(dest_image, image);
1025
1026out:
1027 mutex_unlock(&kexec_mutex);
1028 kimage_free(image);
1029
1030 return result;
1031}
1032
1033/*
1034 * Add and remove page tables for crashkernel memory
1035 *
1036 * Provide an empty default implementation here -- architecture
1037 * code may override this
1038 */
1039void __weak crash_map_reserved_pages(void)
1040{}
1041
1042void __weak crash_unmap_reserved_pages(void)
1043{}
1044
1045#ifdef CONFIG_COMPAT
1046asmlinkage long compat_sys_kexec_load(unsigned long entry,
1047 unsigned long nr_segments,
1048 struct compat_kexec_segment __user *segments,
1049 unsigned long flags)
1050{
1051 struct compat_kexec_segment in;
1052 struct kexec_segment out, __user *ksegments;
1053 unsigned long i, result;
1054
1055 /* Don't allow clients that don't understand the native
1056 * architecture to do anything.
1057 */
1058 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1059 return -EINVAL;
1060
1061 if (nr_segments > KEXEC_SEGMENT_MAX)
1062 return -EINVAL;
1063
1064 ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1065 for (i=0; i < nr_segments; i++) {
1066 result = copy_from_user(&in, &segments[i], sizeof(in));
1067 if (result)
1068 return -EFAULT;
1069
1070 out.buf = compat_ptr(in.buf);
1071 out.bufsz = in.bufsz;
1072 out.mem = in.mem;
1073 out.memsz = in.memsz;
1074
1075 result = copy_to_user(&ksegments[i], &out, sizeof(out));
1076 if (result)
1077 return -EFAULT;
1078 }
1079
1080 return sys_kexec_load(entry, nr_segments, ksegments, flags);
1081}
1082#endif
1083
1084void crash_kexec(struct pt_regs *regs)
1085{
1086 /* Take the kexec_mutex here to prevent sys_kexec_load
1087 * running on one cpu from replacing the crash kernel
1088 * we are using after a panic on a different cpu.
1089 *
1090 * If the crash kernel was not located in a fixed area
1091 * of memory the xchg(&kexec_crash_image) would be
1092 * sufficient. But since I reuse the memory...
1093 */
1094 if (mutex_trylock(&kexec_mutex)) {
1095 if (kexec_crash_image) {
1096 struct pt_regs fixed_regs;
1097
1098 crash_setup_regs(&fixed_regs, regs);
1099 crash_save_vmcoreinfo();
1100 machine_crash_shutdown(&fixed_regs);
1101 machine_kexec(kexec_crash_image);
1102 }
1103 mutex_unlock(&kexec_mutex);
1104 }
1105}
1106
1107size_t crash_get_memory_size(void)
1108{
1109 size_t size = 0;
1110 mutex_lock(&kexec_mutex);
1111 if (crashk_res.end != crashk_res.start)
1112 size = resource_size(&crashk_res);
1113 mutex_unlock(&kexec_mutex);
1114 return size;
1115}
1116
1117void __weak crash_free_reserved_phys_range(unsigned long begin,
1118 unsigned long end)
1119{
1120 unsigned long addr;
1121
1122 for (addr = begin; addr < end; addr += PAGE_SIZE) {
1123 ClearPageReserved(pfn_to_page(addr >> PAGE_SHIFT));
1124 init_page_count(pfn_to_page(addr >> PAGE_SHIFT));
1125 free_page((unsigned long)__va(addr));
1126 totalram_pages++;
1127 }
1128}
1129
1130int crash_shrink_memory(unsigned long new_size)
1131{
1132 int ret = 0;
1133 unsigned long start, end;
1134 unsigned long old_size;
1135 struct resource *ram_res;
1136
1137 mutex_lock(&kexec_mutex);
1138
1139 if (kexec_crash_image) {
1140 ret = -ENOENT;
1141 goto unlock;
1142 }
1143 start = crashk_res.start;
1144 end = crashk_res.end;
1145 old_size = (end == 0) ? 0 : end - start + 1;
1146 if (new_size >= old_size) {
1147 ret = (new_size == old_size) ? 0 : -EINVAL;
1148 goto unlock;
1149 }
1150
1151 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1152 if (!ram_res) {
1153 ret = -ENOMEM;
1154 goto unlock;
1155 }
1156
1157 start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1158 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1159
1160 crash_map_reserved_pages();
1161 crash_free_reserved_phys_range(end, crashk_res.end);
1162
1163 if ((start == end) && (crashk_res.parent != NULL))
1164 release_resource(&crashk_res);
1165
1166 ram_res->start = end;
1167 ram_res->end = crashk_res.end;
1168 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1169 ram_res->name = "System RAM";
1170
1171 crashk_res.end = end - 1;
1172
1173 insert_resource(&iomem_resource, ram_res);
1174 crash_unmap_reserved_pages();
1175
1176unlock:
1177 mutex_unlock(&kexec_mutex);
1178 return ret;
1179}
1180
1181static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1182 size_t data_len)
1183{
1184 struct elf_note note;
1185
1186 note.n_namesz = strlen(name) + 1;
1187 note.n_descsz = data_len;
1188 note.n_type = type;
1189 memcpy(buf, &note, sizeof(note));
1190 buf += (sizeof(note) + 3)/4;
1191 memcpy(buf, name, note.n_namesz);
1192 buf += (note.n_namesz + 3)/4;
1193 memcpy(buf, data, note.n_descsz);
1194 buf += (note.n_descsz + 3)/4;
1195
1196 return buf;
1197}
1198
1199static void final_note(u32 *buf)
1200{
1201 struct elf_note note;
1202
1203 note.n_namesz = 0;
1204 note.n_descsz = 0;
1205 note.n_type = 0;
1206 memcpy(buf, &note, sizeof(note));
1207}
1208
1209void crash_save_cpu(struct pt_regs *regs, int cpu)
1210{
1211 struct elf_prstatus prstatus;
1212 u32 *buf;
1213
1214 if ((cpu < 0) || (cpu >= nr_cpu_ids))
1215 return;
1216
1217 /* Using ELF notes here is opportunistic.
1218 * I need a well defined structure format
1219 * for the data I pass, and I need tags
1220 * on the data to indicate what information I have
1221 * squirrelled away. ELF notes happen to provide
1222 * all of that, so there is no need to invent something new.
1223 */
1224 buf = (u32*)per_cpu_ptr(crash_notes, cpu);
1225 if (!buf)
1226 return;
1227 memset(&prstatus, 0, sizeof(prstatus));
1228 prstatus.pr_pid = current->pid;
1229 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1230 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1231 &prstatus, sizeof(prstatus));
1232 final_note(buf);
1233}
1234
1235static int __init crash_notes_memory_init(void)
1236{
1237 /* Allocate memory for saving cpu registers. */
1238 crash_notes = alloc_percpu(note_buf_t);
1239 if (!crash_notes) {
1240 printk("Kexec: Memory allocation for saving cpu register"
1241 " states failed\n");
1242 return -ENOMEM;
1243 }
1244 return 0;
1245}
1246module_init(crash_notes_memory_init)
1247
1248
1249/*
1250 * parsing the "crashkernel" commandline
1251 *
1252 * this code is intended to be called from architecture specific code
1253 */
1254
1255
1256/*
1257 * This function parses command lines in the format
1258 *
1259 * crashkernel=ramsize-range:size[,...][@offset]
1260 *
1261 * The function returns 0 on success and -EINVAL on failure.
1262 */
1263static int __init parse_crashkernel_mem(char *cmdline,
1264 unsigned long long system_ram,
1265 unsigned long long *crash_size,
1266 unsigned long long *crash_base)
1267{
1268 char *cur = cmdline, *tmp;
1269
1270 /* for each entry of the comma-separated list */
1271 do {
1272 unsigned long long start, end = ULLONG_MAX, size;
1273
1274 /* get the start of the range */
1275 start = memparse(cur, &tmp);
1276 if (cur == tmp) {
1277 pr_warning("crashkernel: Memory value expected\n");
1278 return -EINVAL;
1279 }
1280 cur = tmp;
1281 if (*cur != '-') {
1282 pr_warning("crashkernel: '-' expected\n");
1283 return -EINVAL;
1284 }
1285 cur++;
1286
1287 /* if no ':' is here, than we read the end */
1288 if (*cur != ':') {
1289 end = memparse(cur, &tmp);
1290 if (cur == tmp) {
1291 pr_warning("crashkernel: Memory "
1292 "value expected\n");
1293 return -EINVAL;
1294 }
1295 cur = tmp;
1296 if (end <= start) {
1297 pr_warning("crashkernel: end <= start\n");
1298 return -EINVAL;
1299 }
1300 }
1301
1302 if (*cur != ':') {
1303 pr_warning("crashkernel: ':' expected\n");
1304 return -EINVAL;
1305 }
1306 cur++;
1307
1308 size = memparse(cur, &tmp);
1309 if (cur == tmp) {
1310 pr_warning("Memory value expected\n");
1311 return -EINVAL;
1312 }
1313 cur = tmp;
1314 if (size >= system_ram) {
1315 pr_warning("crashkernel: invalid size\n");
1316 return -EINVAL;
1317 }
1318
1319 /* match ? */
1320 if (system_ram >= start && system_ram < end) {
1321 *crash_size = size;
1322 break;
1323 }
1324 } while (*cur++ == ',');
1325
1326 if (*crash_size > 0) {
1327 while (*cur && *cur != ' ' && *cur != '@')
1328 cur++;
1329 if (*cur == '@') {
1330 cur++;
1331 *crash_base = memparse(cur, &tmp);
1332 if (cur == tmp) {
1333 pr_warning("Memory value expected "
1334 "after '@'\n");
1335 return -EINVAL;
1336 }
1337 }
1338 }
1339
1340 return 0;
1341}
1342
1343/*
1344 * That function parses "simple" (old) crashkernel command lines like
1345 *
1346 * crashkernel=size[@offset]
1347 *
1348 * It returns 0 on success and -EINVAL on failure.
1349 */
1350static int __init parse_crashkernel_simple(char *cmdline,
1351 unsigned long long *crash_size,
1352 unsigned long long *crash_base)
1353{
1354 char *cur = cmdline;
1355
1356 *crash_size = memparse(cmdline, &cur);
1357 if (cmdline == cur) {
1358 pr_warning("crashkernel: memory value expected\n");
1359 return -EINVAL;
1360 }
1361
1362 if (*cur == '@')
1363 *crash_base = memparse(cur+1, &cur);
1364 else if (*cur != ' ' && *cur != '\0') {
1365 pr_warning("crashkernel: unrecognized char\n");
1366 return -EINVAL;
1367 }
1368
1369 return 0;
1370}
1371
1372/*
1373 * That function is the entry point for command line parsing and should be
1374 * called from the arch-specific code.
1375 */
1376static int __init __parse_crashkernel(char *cmdline,
1377 unsigned long long system_ram,
1378 unsigned long long *crash_size,
1379 unsigned long long *crash_base,
1380 const char *name)
1381{
1382 char *p = cmdline, *ck_cmdline = NULL;
1383 char *first_colon, *first_space;
1384
1385 BUG_ON(!crash_size || !crash_base);
1386 *crash_size = 0;
1387 *crash_base = 0;
1388
1389 /* find crashkernel and use the last one if there are more */
1390 p = strstr(p, name);
1391 while (p) {
1392 ck_cmdline = p;
1393 p = strstr(p+1, name);
1394 }
1395
1396 if (!ck_cmdline)
1397 return -EINVAL;
1398
1399 ck_cmdline += strlen(name);
1400
1401 /*
1402 * if the commandline contains a ':', then that's the extended
1403 * syntax -- if not, it must be the classic syntax
1404 */
1405 first_colon = strchr(ck_cmdline, ':');
1406 first_space = strchr(ck_cmdline, ' ');
1407 if (first_colon && (!first_space || first_colon < first_space))
1408 return parse_crashkernel_mem(ck_cmdline, system_ram,
1409 crash_size, crash_base);
1410 else
1411 return parse_crashkernel_simple(ck_cmdline, crash_size,
1412 crash_base);
1413
1414 return 0;
1415}
1416
1417int __init parse_crashkernel(char *cmdline,
1418 unsigned long long system_ram,
1419 unsigned long long *crash_size,
1420 unsigned long long *crash_base)
1421{
1422 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1423 "crashkernel=");
1424}
1425
1426int __init parse_crashkernel_low(char *cmdline,
1427 unsigned long long system_ram,
1428 unsigned long long *crash_size,
1429 unsigned long long *crash_base)
1430{
1431 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1432 "crashkernel_low=");
1433}
1434
1435static void update_vmcoreinfo_note(void)
1436{
1437 u32 *buf = vmcoreinfo_note;
1438
1439 if (!vmcoreinfo_size)
1440 return;
1441 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1442 vmcoreinfo_size);
1443 final_note(buf);
1444}
1445
1446void crash_save_vmcoreinfo(void)
1447{
1448 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1449 update_vmcoreinfo_note();
1450}
1451
1452void vmcoreinfo_append_str(const char *fmt, ...)
1453{
1454 va_list args;
1455 char buf[0x50];
1456 int r;
1457
1458 va_start(args, fmt);
1459 r = vsnprintf(buf, sizeof(buf), fmt, args);
1460 va_end(args);
1461
1462 if (r + vmcoreinfo_size > vmcoreinfo_max_size)
1463 r = vmcoreinfo_max_size - vmcoreinfo_size;
1464
1465 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1466
1467 vmcoreinfo_size += r;
1468}
1469
1470/*
1471 * provide an empty default implementation here -- architecture
1472 * code may override this
1473 */
1474void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void)
1475{}
1476
1477unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void)
1478{
1479 return __pa((unsigned long)(char *)&vmcoreinfo_note);
1480}
1481
1482static int __init crash_save_vmcoreinfo_init(void)
1483{
1484 VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1485 VMCOREINFO_PAGESIZE(PAGE_SIZE);
1486
1487 VMCOREINFO_SYMBOL(init_uts_ns);
1488 VMCOREINFO_SYMBOL(node_online_map);
1489#ifdef CONFIG_MMU
1490 VMCOREINFO_SYMBOL(swapper_pg_dir);
1491#endif
1492 VMCOREINFO_SYMBOL(_stext);
1493 VMCOREINFO_SYMBOL(vmlist);
1494
1495#ifndef CONFIG_NEED_MULTIPLE_NODES
1496 VMCOREINFO_SYMBOL(mem_map);
1497 VMCOREINFO_SYMBOL(contig_page_data);
1498#endif
1499#ifdef CONFIG_SPARSEMEM
1500 VMCOREINFO_SYMBOL(mem_section);
1501 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1502 VMCOREINFO_STRUCT_SIZE(mem_section);
1503 VMCOREINFO_OFFSET(mem_section, section_mem_map);
1504#endif
1505 VMCOREINFO_STRUCT_SIZE(page);
1506 VMCOREINFO_STRUCT_SIZE(pglist_data);
1507 VMCOREINFO_STRUCT_SIZE(zone);
1508 VMCOREINFO_STRUCT_SIZE(free_area);
1509 VMCOREINFO_STRUCT_SIZE(list_head);
1510 VMCOREINFO_SIZE(nodemask_t);
1511 VMCOREINFO_OFFSET(page, flags);
1512 VMCOREINFO_OFFSET(page, _count);
1513 VMCOREINFO_OFFSET(page, mapping);
1514 VMCOREINFO_OFFSET(page, lru);
1515 VMCOREINFO_OFFSET(page, _mapcount);
1516 VMCOREINFO_OFFSET(page, private);
1517 VMCOREINFO_OFFSET(pglist_data, node_zones);
1518 VMCOREINFO_OFFSET(pglist_data, nr_zones);
1519#ifdef CONFIG_FLAT_NODE_MEM_MAP
1520 VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1521#endif
1522 VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1523 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1524 VMCOREINFO_OFFSET(pglist_data, node_id);
1525 VMCOREINFO_OFFSET(zone, free_area);
1526 VMCOREINFO_OFFSET(zone, vm_stat);
1527 VMCOREINFO_OFFSET(zone, spanned_pages);
1528 VMCOREINFO_OFFSET(free_area, free_list);
1529 VMCOREINFO_OFFSET(list_head, next);
1530 VMCOREINFO_OFFSET(list_head, prev);
1531 VMCOREINFO_OFFSET(vm_struct, addr);
1532 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1533 log_buf_kexec_setup();
1534 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1535 VMCOREINFO_NUMBER(NR_FREE_PAGES);
1536 VMCOREINFO_NUMBER(PG_lru);
1537 VMCOREINFO_NUMBER(PG_private);
1538 VMCOREINFO_NUMBER(PG_swapcache);
1539 VMCOREINFO_NUMBER(PG_slab);
1540#ifdef CONFIG_MEMORY_FAILURE
1541 VMCOREINFO_NUMBER(PG_hwpoison);
1542#endif
1543 VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
1544
1545 arch_crash_save_vmcoreinfo();
1546 update_vmcoreinfo_note();
1547
1548 return 0;
1549}
1550
1551module_init(crash_save_vmcoreinfo_init)
1552
1553/*
1554 * Move into place and start executing a preloaded standalone
1555 * executable. If nothing was preloaded return an error.
1556 */
1557int kernel_kexec(void)
1558{
1559 int error = 0;
1560
1561 if (!mutex_trylock(&kexec_mutex))
1562 return -EBUSY;
1563 if (!kexec_image) {
1564 error = -EINVAL;
1565 goto Unlock;
1566 }
1567
1568#ifdef CONFIG_KEXEC_JUMP
1569 if (kexec_image->preserve_context) {
1570 lock_system_sleep();
1571 pm_prepare_console();
1572 error = freeze_processes();
1573 if (error) {
1574 error = -EBUSY;
1575 goto Restore_console;
1576 }
1577 suspend_console();
1578 error = dpm_suspend_start(PMSG_FREEZE);
1579 if (error)
1580 goto Resume_console;
1581 /* At this point, dpm_suspend_start() has been called,
1582 * but *not* dpm_suspend_end(). We *must* call
1583 * dpm_suspend_end() now. Otherwise, drivers for
1584 * some devices (e.g. interrupt controllers) become
1585 * desynchronized with the actual state of the
1586 * hardware at resume time, and evil weirdness ensues.
1587 */
1588 error = dpm_suspend_end(PMSG_FREEZE);
1589 if (error)
1590 goto Resume_devices;
1591 error = disable_nonboot_cpus();
1592 if (error)
1593 goto Enable_cpus;
1594 local_irq_disable();
1595 error = syscore_suspend();
1596 if (error)
1597 goto Enable_irqs;
1598 } else
1599#endif
1600 {
1601 kernel_restart_prepare(NULL);
1602 printk(KERN_EMERG "Starting new kernel\n");
1603 machine_shutdown();
1604 }
1605
1606 machine_kexec(kexec_image);
1607
1608#ifdef CONFIG_KEXEC_JUMP
1609 if (kexec_image->preserve_context) {
1610 syscore_resume();
1611 Enable_irqs:
1612 local_irq_enable();
1613 Enable_cpus:
1614 enable_nonboot_cpus();
1615 dpm_resume_start(PMSG_RESTORE);
1616 Resume_devices:
1617 dpm_resume_end(PMSG_RESTORE);
1618 Resume_console:
1619 resume_console();
1620 thaw_processes();
1621 Restore_console:
1622 pm_restore_console();
1623 unlock_system_sleep();
1624 }
1625#endif
1626
1627 Unlock:
1628 mutex_unlock(&kexec_mutex);
1629 return error;
1630}
This page took 0.045585 seconds and 5 git commands to generate.