rcu: Fix incorrect notes for code
[deliverable/linux.git] / kernel / rcu / tree.c
... / ...
CommitLineData
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
38#include <linux/nmi.h>
39#include <linux/atomic.h>
40#include <linux/bitops.h>
41#include <linux/export.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/module.h>
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
50#include <linux/kernel_stat.h>
51#include <linux/wait.h>
52#include <linux/kthread.h>
53#include <linux/prefetch.h>
54#include <linux/delay.h>
55#include <linux/stop_machine.h>
56#include <linux/random.h>
57#include <linux/ftrace_event.h>
58#include <linux/suspend.h>
59
60#include "tree.h"
61#include "rcu.h"
62
63MODULE_ALIAS("rcutree");
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "rcutree."
68
69/* Data structures. */
70
71static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73
74/*
75 * In order to export the rcu_state name to the tracing tools, it
76 * needs to be added in the __tracepoint_string section.
77 * This requires defining a separate variable tp_<sname>_varname
78 * that points to the string being used, and this will allow
79 * the tracing userspace tools to be able to decipher the string
80 * address to the matching string.
81 */
82#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
83static char sname##_varname[] = #sname; \
84static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
85struct rcu_state sname##_state = { \
86 .level = { &sname##_state.node[0] }, \
87 .call = cr, \
88 .fqs_state = RCU_GP_IDLE, \
89 .gpnum = 0UL - 300UL, \
90 .completed = 0UL - 300UL, \
91 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
92 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
93 .orphan_donetail = &sname##_state.orphan_donelist, \
94 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
95 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
96 .name = sname##_varname, \
97 .abbr = sabbr, \
98}; \
99DEFINE_PER_CPU(struct rcu_data, sname##_data)
100
101RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
102RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
103
104static struct rcu_state *rcu_state;
105LIST_HEAD(rcu_struct_flavors);
106
107/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
108static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
109module_param(rcu_fanout_leaf, int, 0444);
110int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
111static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
112 NUM_RCU_LVL_0,
113 NUM_RCU_LVL_1,
114 NUM_RCU_LVL_2,
115 NUM_RCU_LVL_3,
116 NUM_RCU_LVL_4,
117};
118int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
119
120/*
121 * The rcu_scheduler_active variable transitions from zero to one just
122 * before the first task is spawned. So when this variable is zero, RCU
123 * can assume that there is but one task, allowing RCU to (for example)
124 * optimize synchronize_sched() to a simple barrier(). When this variable
125 * is one, RCU must actually do all the hard work required to detect real
126 * grace periods. This variable is also used to suppress boot-time false
127 * positives from lockdep-RCU error checking.
128 */
129int rcu_scheduler_active __read_mostly;
130EXPORT_SYMBOL_GPL(rcu_scheduler_active);
131
132/*
133 * The rcu_scheduler_fully_active variable transitions from zero to one
134 * during the early_initcall() processing, which is after the scheduler
135 * is capable of creating new tasks. So RCU processing (for example,
136 * creating tasks for RCU priority boosting) must be delayed until after
137 * rcu_scheduler_fully_active transitions from zero to one. We also
138 * currently delay invocation of any RCU callbacks until after this point.
139 *
140 * It might later prove better for people registering RCU callbacks during
141 * early boot to take responsibility for these callbacks, but one step at
142 * a time.
143 */
144static int rcu_scheduler_fully_active __read_mostly;
145
146#ifdef CONFIG_RCU_BOOST
147
148/*
149 * Control variables for per-CPU and per-rcu_node kthreads. These
150 * handle all flavors of RCU.
151 */
152static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
153DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
154DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
155DEFINE_PER_CPU(char, rcu_cpu_has_work);
156
157#endif /* #ifdef CONFIG_RCU_BOOST */
158
159static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
160static void invoke_rcu_core(void);
161static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
162
163/*
164 * Track the rcutorture test sequence number and the update version
165 * number within a given test. The rcutorture_testseq is incremented
166 * on every rcutorture module load and unload, so has an odd value
167 * when a test is running. The rcutorture_vernum is set to zero
168 * when rcutorture starts and is incremented on each rcutorture update.
169 * These variables enable correlating rcutorture output with the
170 * RCU tracing information.
171 */
172unsigned long rcutorture_testseq;
173unsigned long rcutorture_vernum;
174
175/*
176 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
177 * permit this function to be invoked without holding the root rcu_node
178 * structure's ->lock, but of course results can be subject to change.
179 */
180static int rcu_gp_in_progress(struct rcu_state *rsp)
181{
182 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
183}
184
185/*
186 * Note a quiescent state. Because we do not need to know
187 * how many quiescent states passed, just if there was at least
188 * one since the start of the grace period, this just sets a flag.
189 * The caller must have disabled preemption.
190 */
191void rcu_sched_qs(int cpu)
192{
193 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
194
195 if (rdp->passed_quiesce == 0)
196 trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
197 rdp->passed_quiesce = 1;
198}
199
200void rcu_bh_qs(int cpu)
201{
202 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
203
204 if (rdp->passed_quiesce == 0)
205 trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
206 rdp->passed_quiesce = 1;
207}
208
209/*
210 * Note a context switch. This is a quiescent state for RCU-sched,
211 * and requires special handling for preemptible RCU.
212 * The caller must have disabled preemption.
213 */
214void rcu_note_context_switch(int cpu)
215{
216 trace_rcu_utilization(TPS("Start context switch"));
217 rcu_sched_qs(cpu);
218 rcu_preempt_note_context_switch(cpu);
219 trace_rcu_utilization(TPS("End context switch"));
220}
221EXPORT_SYMBOL_GPL(rcu_note_context_switch);
222
223static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
224 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
225 .dynticks = ATOMIC_INIT(1),
226#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
227 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
228 .dynticks_idle = ATOMIC_INIT(1),
229#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
230};
231
232static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
233static long qhimark = 10000; /* If this many pending, ignore blimit. */
234static long qlowmark = 100; /* Once only this many pending, use blimit. */
235
236module_param(blimit, long, 0444);
237module_param(qhimark, long, 0444);
238module_param(qlowmark, long, 0444);
239
240static ulong jiffies_till_first_fqs = ULONG_MAX;
241static ulong jiffies_till_next_fqs = ULONG_MAX;
242
243module_param(jiffies_till_first_fqs, ulong, 0644);
244module_param(jiffies_till_next_fqs, ulong, 0644);
245
246static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
247 struct rcu_data *rdp);
248static void force_qs_rnp(struct rcu_state *rsp,
249 int (*f)(struct rcu_data *rsp, bool *isidle,
250 unsigned long *maxj),
251 bool *isidle, unsigned long *maxj);
252static void force_quiescent_state(struct rcu_state *rsp);
253static int rcu_pending(int cpu);
254
255/*
256 * Return the number of RCU-sched batches processed thus far for debug & stats.
257 */
258long rcu_batches_completed_sched(void)
259{
260 return rcu_sched_state.completed;
261}
262EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
263
264/*
265 * Return the number of RCU BH batches processed thus far for debug & stats.
266 */
267long rcu_batches_completed_bh(void)
268{
269 return rcu_bh_state.completed;
270}
271EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
272
273/*
274 * Force a quiescent state for RCU BH.
275 */
276void rcu_bh_force_quiescent_state(void)
277{
278 force_quiescent_state(&rcu_bh_state);
279}
280EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
281
282/*
283 * Record the number of times rcutorture tests have been initiated and
284 * terminated. This information allows the debugfs tracing stats to be
285 * correlated to the rcutorture messages, even when the rcutorture module
286 * is being repeatedly loaded and unloaded. In other words, we cannot
287 * store this state in rcutorture itself.
288 */
289void rcutorture_record_test_transition(void)
290{
291 rcutorture_testseq++;
292 rcutorture_vernum = 0;
293}
294EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
295
296/*
297 * Record the number of writer passes through the current rcutorture test.
298 * This is also used to correlate debugfs tracing stats with the rcutorture
299 * messages.
300 */
301void rcutorture_record_progress(unsigned long vernum)
302{
303 rcutorture_vernum++;
304}
305EXPORT_SYMBOL_GPL(rcutorture_record_progress);
306
307/*
308 * Force a quiescent state for RCU-sched.
309 */
310void rcu_sched_force_quiescent_state(void)
311{
312 force_quiescent_state(&rcu_sched_state);
313}
314EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
315
316/*
317 * Does the CPU have callbacks ready to be invoked?
318 */
319static int
320cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
321{
322 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
323 rdp->nxttail[RCU_DONE_TAIL] != NULL;
324}
325
326/*
327 * Does the current CPU require a not-yet-started grace period?
328 * The caller must have disabled interrupts to prevent races with
329 * normal callback registry.
330 */
331static int
332cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
333{
334 int i;
335
336 if (rcu_gp_in_progress(rsp))
337 return 0; /* No, a grace period is already in progress. */
338 if (rcu_nocb_needs_gp(rsp))
339 return 1; /* Yes, a no-CBs CPU needs one. */
340 if (!rdp->nxttail[RCU_NEXT_TAIL])
341 return 0; /* No, this is a no-CBs (or offline) CPU. */
342 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
343 return 1; /* Yes, this CPU has newly registered callbacks. */
344 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
345 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
346 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
347 rdp->nxtcompleted[i]))
348 return 1; /* Yes, CBs for future grace period. */
349 return 0; /* No grace period needed. */
350}
351
352/*
353 * Return the root node of the specified rcu_state structure.
354 */
355static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
356{
357 return &rsp->node[0];
358}
359
360/*
361 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
362 *
363 * If the new value of the ->dynticks_nesting counter now is zero,
364 * we really have entered idle, and must do the appropriate accounting.
365 * The caller must have disabled interrupts.
366 */
367static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
368 bool user)
369{
370 struct rcu_state *rsp;
371 struct rcu_data *rdp;
372
373 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
374 if (!user && !is_idle_task(current)) {
375 struct task_struct *idle __maybe_unused =
376 idle_task(smp_processor_id());
377
378 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
379 ftrace_dump(DUMP_ORIG);
380 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
381 current->pid, current->comm,
382 idle->pid, idle->comm); /* must be idle task! */
383 }
384 for_each_rcu_flavor(rsp) {
385 rdp = this_cpu_ptr(rsp->rda);
386 do_nocb_deferred_wakeup(rdp);
387 }
388 rcu_prepare_for_idle(smp_processor_id());
389 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
390 smp_mb__before_atomic_inc(); /* See above. */
391 atomic_inc(&rdtp->dynticks);
392 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
393 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
394
395 /*
396 * It is illegal to enter an extended quiescent state while
397 * in an RCU read-side critical section.
398 */
399 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
400 "Illegal idle entry in RCU read-side critical section.");
401 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
402 "Illegal idle entry in RCU-bh read-side critical section.");
403 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
404 "Illegal idle entry in RCU-sched read-side critical section.");
405}
406
407/*
408 * Enter an RCU extended quiescent state, which can be either the
409 * idle loop or adaptive-tickless usermode execution.
410 */
411static void rcu_eqs_enter(bool user)
412{
413 long long oldval;
414 struct rcu_dynticks *rdtp;
415
416 rdtp = this_cpu_ptr(&rcu_dynticks);
417 oldval = rdtp->dynticks_nesting;
418 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
419 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
420 rdtp->dynticks_nesting = 0;
421 rcu_eqs_enter_common(rdtp, oldval, user);
422 } else {
423 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
424 }
425}
426
427/**
428 * rcu_idle_enter - inform RCU that current CPU is entering idle
429 *
430 * Enter idle mode, in other words, -leave- the mode in which RCU
431 * read-side critical sections can occur. (Though RCU read-side
432 * critical sections can occur in irq handlers in idle, a possibility
433 * handled by irq_enter() and irq_exit().)
434 *
435 * We crowbar the ->dynticks_nesting field to zero to allow for
436 * the possibility of usermode upcalls having messed up our count
437 * of interrupt nesting level during the prior busy period.
438 */
439void rcu_idle_enter(void)
440{
441 unsigned long flags;
442
443 local_irq_save(flags);
444 rcu_eqs_enter(false);
445 rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
446 local_irq_restore(flags);
447}
448EXPORT_SYMBOL_GPL(rcu_idle_enter);
449
450#ifdef CONFIG_RCU_USER_QS
451/**
452 * rcu_user_enter - inform RCU that we are resuming userspace.
453 *
454 * Enter RCU idle mode right before resuming userspace. No use of RCU
455 * is permitted between this call and rcu_user_exit(). This way the
456 * CPU doesn't need to maintain the tick for RCU maintenance purposes
457 * when the CPU runs in userspace.
458 */
459void rcu_user_enter(void)
460{
461 rcu_eqs_enter(1);
462}
463#endif /* CONFIG_RCU_USER_QS */
464
465/**
466 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
467 *
468 * Exit from an interrupt handler, which might possibly result in entering
469 * idle mode, in other words, leaving the mode in which read-side critical
470 * sections can occur.
471 *
472 * This code assumes that the idle loop never does anything that might
473 * result in unbalanced calls to irq_enter() and irq_exit(). If your
474 * architecture violates this assumption, RCU will give you what you
475 * deserve, good and hard. But very infrequently and irreproducibly.
476 *
477 * Use things like work queues to work around this limitation.
478 *
479 * You have been warned.
480 */
481void rcu_irq_exit(void)
482{
483 unsigned long flags;
484 long long oldval;
485 struct rcu_dynticks *rdtp;
486
487 local_irq_save(flags);
488 rdtp = this_cpu_ptr(&rcu_dynticks);
489 oldval = rdtp->dynticks_nesting;
490 rdtp->dynticks_nesting--;
491 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
492 if (rdtp->dynticks_nesting)
493 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
494 else
495 rcu_eqs_enter_common(rdtp, oldval, true);
496 rcu_sysidle_enter(rdtp, 1);
497 local_irq_restore(flags);
498}
499
500/*
501 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
502 *
503 * If the new value of the ->dynticks_nesting counter was previously zero,
504 * we really have exited idle, and must do the appropriate accounting.
505 * The caller must have disabled interrupts.
506 */
507static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
508 int user)
509{
510 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
511 atomic_inc(&rdtp->dynticks);
512 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
513 smp_mb__after_atomic_inc(); /* See above. */
514 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
515 rcu_cleanup_after_idle(smp_processor_id());
516 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
517 if (!user && !is_idle_task(current)) {
518 struct task_struct *idle __maybe_unused =
519 idle_task(smp_processor_id());
520
521 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
522 oldval, rdtp->dynticks_nesting);
523 ftrace_dump(DUMP_ORIG);
524 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
525 current->pid, current->comm,
526 idle->pid, idle->comm); /* must be idle task! */
527 }
528}
529
530/*
531 * Exit an RCU extended quiescent state, which can be either the
532 * idle loop or adaptive-tickless usermode execution.
533 */
534static void rcu_eqs_exit(bool user)
535{
536 struct rcu_dynticks *rdtp;
537 long long oldval;
538
539 rdtp = this_cpu_ptr(&rcu_dynticks);
540 oldval = rdtp->dynticks_nesting;
541 WARN_ON_ONCE(oldval < 0);
542 if (oldval & DYNTICK_TASK_NEST_MASK) {
543 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
544 } else {
545 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
546 rcu_eqs_exit_common(rdtp, oldval, user);
547 }
548}
549
550/**
551 * rcu_idle_exit - inform RCU that current CPU is leaving idle
552 *
553 * Exit idle mode, in other words, -enter- the mode in which RCU
554 * read-side critical sections can occur.
555 *
556 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
557 * allow for the possibility of usermode upcalls messing up our count
558 * of interrupt nesting level during the busy period that is just
559 * now starting.
560 */
561void rcu_idle_exit(void)
562{
563 unsigned long flags;
564
565 local_irq_save(flags);
566 rcu_eqs_exit(false);
567 rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
568 local_irq_restore(flags);
569}
570EXPORT_SYMBOL_GPL(rcu_idle_exit);
571
572#ifdef CONFIG_RCU_USER_QS
573/**
574 * rcu_user_exit - inform RCU that we are exiting userspace.
575 *
576 * Exit RCU idle mode while entering the kernel because it can
577 * run a RCU read side critical section anytime.
578 */
579void rcu_user_exit(void)
580{
581 rcu_eqs_exit(1);
582}
583#endif /* CONFIG_RCU_USER_QS */
584
585/**
586 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
587 *
588 * Enter an interrupt handler, which might possibly result in exiting
589 * idle mode, in other words, entering the mode in which read-side critical
590 * sections can occur.
591 *
592 * Note that the Linux kernel is fully capable of entering an interrupt
593 * handler that it never exits, for example when doing upcalls to
594 * user mode! This code assumes that the idle loop never does upcalls to
595 * user mode. If your architecture does do upcalls from the idle loop (or
596 * does anything else that results in unbalanced calls to the irq_enter()
597 * and irq_exit() functions), RCU will give you what you deserve, good
598 * and hard. But very infrequently and irreproducibly.
599 *
600 * Use things like work queues to work around this limitation.
601 *
602 * You have been warned.
603 */
604void rcu_irq_enter(void)
605{
606 unsigned long flags;
607 struct rcu_dynticks *rdtp;
608 long long oldval;
609
610 local_irq_save(flags);
611 rdtp = this_cpu_ptr(&rcu_dynticks);
612 oldval = rdtp->dynticks_nesting;
613 rdtp->dynticks_nesting++;
614 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
615 if (oldval)
616 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
617 else
618 rcu_eqs_exit_common(rdtp, oldval, true);
619 rcu_sysidle_exit(rdtp, 1);
620 local_irq_restore(flags);
621}
622
623/**
624 * rcu_nmi_enter - inform RCU of entry to NMI context
625 *
626 * If the CPU was idle with dynamic ticks active, and there is no
627 * irq handler running, this updates rdtp->dynticks_nmi to let the
628 * RCU grace-period handling know that the CPU is active.
629 */
630void rcu_nmi_enter(void)
631{
632 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
633
634 if (rdtp->dynticks_nmi_nesting == 0 &&
635 (atomic_read(&rdtp->dynticks) & 0x1))
636 return;
637 rdtp->dynticks_nmi_nesting++;
638 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
639 atomic_inc(&rdtp->dynticks);
640 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
641 smp_mb__after_atomic_inc(); /* See above. */
642 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
643}
644
645/**
646 * rcu_nmi_exit - inform RCU of exit from NMI context
647 *
648 * If the CPU was idle with dynamic ticks active, and there is no
649 * irq handler running, this updates rdtp->dynticks_nmi to let the
650 * RCU grace-period handling know that the CPU is no longer active.
651 */
652void rcu_nmi_exit(void)
653{
654 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
655
656 if (rdtp->dynticks_nmi_nesting == 0 ||
657 --rdtp->dynticks_nmi_nesting != 0)
658 return;
659 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
660 smp_mb__before_atomic_inc(); /* See above. */
661 atomic_inc(&rdtp->dynticks);
662 smp_mb__after_atomic_inc(); /* Force delay to next write. */
663 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
664}
665
666/**
667 * __rcu_is_watching - are RCU read-side critical sections safe?
668 *
669 * Return true if RCU is watching the running CPU, which means that
670 * this CPU can safely enter RCU read-side critical sections. Unlike
671 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
672 * least disabled preemption.
673 */
674bool notrace __rcu_is_watching(void)
675{
676 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
677}
678
679/**
680 * rcu_is_watching - see if RCU thinks that the current CPU is idle
681 *
682 * If the current CPU is in its idle loop and is neither in an interrupt
683 * or NMI handler, return true.
684 */
685bool notrace rcu_is_watching(void)
686{
687 int ret;
688
689 preempt_disable();
690 ret = __rcu_is_watching();
691 preempt_enable();
692 return ret;
693}
694EXPORT_SYMBOL_GPL(rcu_is_watching);
695
696#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
697
698/*
699 * Is the current CPU online? Disable preemption to avoid false positives
700 * that could otherwise happen due to the current CPU number being sampled,
701 * this task being preempted, its old CPU being taken offline, resuming
702 * on some other CPU, then determining that its old CPU is now offline.
703 * It is OK to use RCU on an offline processor during initial boot, hence
704 * the check for rcu_scheduler_fully_active. Note also that it is OK
705 * for a CPU coming online to use RCU for one jiffy prior to marking itself
706 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
707 * offline to continue to use RCU for one jiffy after marking itself
708 * offline in the cpu_online_mask. This leniency is necessary given the
709 * non-atomic nature of the online and offline processing, for example,
710 * the fact that a CPU enters the scheduler after completing the CPU_DYING
711 * notifiers.
712 *
713 * This is also why RCU internally marks CPUs online during the
714 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
715 *
716 * Disable checking if in an NMI handler because we cannot safely report
717 * errors from NMI handlers anyway.
718 */
719bool rcu_lockdep_current_cpu_online(void)
720{
721 struct rcu_data *rdp;
722 struct rcu_node *rnp;
723 bool ret;
724
725 if (in_nmi())
726 return true;
727 preempt_disable();
728 rdp = this_cpu_ptr(&rcu_sched_data);
729 rnp = rdp->mynode;
730 ret = (rdp->grpmask & rnp->qsmaskinit) ||
731 !rcu_scheduler_fully_active;
732 preempt_enable();
733 return ret;
734}
735EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
736
737#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
738
739/**
740 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
741 *
742 * If the current CPU is idle or running at a first-level (not nested)
743 * interrupt from idle, return true. The caller must have at least
744 * disabled preemption.
745 */
746static int rcu_is_cpu_rrupt_from_idle(void)
747{
748 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
749}
750
751/*
752 * Snapshot the specified CPU's dynticks counter so that we can later
753 * credit them with an implicit quiescent state. Return 1 if this CPU
754 * is in dynticks idle mode, which is an extended quiescent state.
755 */
756static int dyntick_save_progress_counter(struct rcu_data *rdp,
757 bool *isidle, unsigned long *maxj)
758{
759 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
760 rcu_sysidle_check_cpu(rdp, isidle, maxj);
761 return (rdp->dynticks_snap & 0x1) == 0;
762}
763
764/*
765 * This function really isn't for public consumption, but RCU is special in
766 * that context switches can allow the state machine to make progress.
767 */
768extern void resched_cpu(int cpu);
769
770/*
771 * Return true if the specified CPU has passed through a quiescent
772 * state by virtue of being in or having passed through an dynticks
773 * idle state since the last call to dyntick_save_progress_counter()
774 * for this same CPU, or by virtue of having been offline.
775 */
776static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
777 bool *isidle, unsigned long *maxj)
778{
779 unsigned int curr;
780 unsigned int snap;
781
782 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
783 snap = (unsigned int)rdp->dynticks_snap;
784
785 /*
786 * If the CPU passed through or entered a dynticks idle phase with
787 * no active irq/NMI handlers, then we can safely pretend that the CPU
788 * already acknowledged the request to pass through a quiescent
789 * state. Either way, that CPU cannot possibly be in an RCU
790 * read-side critical section that started before the beginning
791 * of the current RCU grace period.
792 */
793 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
794 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
795 rdp->dynticks_fqs++;
796 return 1;
797 }
798
799 /*
800 * Check for the CPU being offline, but only if the grace period
801 * is old enough. We don't need to worry about the CPU changing
802 * state: If we see it offline even once, it has been through a
803 * quiescent state.
804 *
805 * The reason for insisting that the grace period be at least
806 * one jiffy old is that CPUs that are not quite online and that
807 * have just gone offline can still execute RCU read-side critical
808 * sections.
809 */
810 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
811 return 0; /* Grace period is not old enough. */
812 barrier();
813 if (cpu_is_offline(rdp->cpu)) {
814 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
815 rdp->offline_fqs++;
816 return 1;
817 }
818
819 /*
820 * There is a possibility that a CPU in adaptive-ticks state
821 * might run in the kernel with the scheduling-clock tick disabled
822 * for an extended time period. Invoke rcu_kick_nohz_cpu() to
823 * force the CPU to restart the scheduling-clock tick in this
824 * CPU is in this state.
825 */
826 rcu_kick_nohz_cpu(rdp->cpu);
827
828 /*
829 * Alternatively, the CPU might be running in the kernel
830 * for an extended period of time without a quiescent state.
831 * Attempt to force the CPU through the scheduler to gain the
832 * needed quiescent state, but only if the grace period has gone
833 * on for an uncommonly long time. If there are many stuck CPUs,
834 * we will beat on the first one until it gets unstuck, then move
835 * to the next. Only do this for the primary flavor of RCU.
836 */
837 if (rdp->rsp == rcu_state &&
838 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
839 rdp->rsp->jiffies_resched += 5;
840 resched_cpu(rdp->cpu);
841 }
842
843 return 0;
844}
845
846static void record_gp_stall_check_time(struct rcu_state *rsp)
847{
848 unsigned long j = jiffies;
849 unsigned long j1;
850
851 rsp->gp_start = j;
852 smp_wmb(); /* Record start time before stall time. */
853 j1 = rcu_jiffies_till_stall_check();
854 rsp->jiffies_stall = j + j1;
855 rsp->jiffies_resched = j + j1 / 2;
856}
857
858/*
859 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
860 * for architectures that do not implement trigger_all_cpu_backtrace().
861 * The NMI-triggered stack traces are more accurate because they are
862 * printed by the target CPU.
863 */
864static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
865{
866 int cpu;
867 unsigned long flags;
868 struct rcu_node *rnp;
869
870 rcu_for_each_leaf_node(rsp, rnp) {
871 raw_spin_lock_irqsave(&rnp->lock, flags);
872 if (rnp->qsmask != 0) {
873 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
874 if (rnp->qsmask & (1UL << cpu))
875 dump_cpu_task(rnp->grplo + cpu);
876 }
877 raw_spin_unlock_irqrestore(&rnp->lock, flags);
878 }
879}
880
881static void print_other_cpu_stall(struct rcu_state *rsp)
882{
883 int cpu;
884 long delta;
885 unsigned long flags;
886 int ndetected = 0;
887 struct rcu_node *rnp = rcu_get_root(rsp);
888 long totqlen = 0;
889
890 /* Only let one CPU complain about others per time interval. */
891
892 raw_spin_lock_irqsave(&rnp->lock, flags);
893 delta = jiffies - rsp->jiffies_stall;
894 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
895 raw_spin_unlock_irqrestore(&rnp->lock, flags);
896 return;
897 }
898 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
899 raw_spin_unlock_irqrestore(&rnp->lock, flags);
900
901 /*
902 * OK, time to rat on our buddy...
903 * See Documentation/RCU/stallwarn.txt for info on how to debug
904 * RCU CPU stall warnings.
905 */
906 pr_err("INFO: %s detected stalls on CPUs/tasks:",
907 rsp->name);
908 print_cpu_stall_info_begin();
909 rcu_for_each_leaf_node(rsp, rnp) {
910 raw_spin_lock_irqsave(&rnp->lock, flags);
911 ndetected += rcu_print_task_stall(rnp);
912 if (rnp->qsmask != 0) {
913 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
914 if (rnp->qsmask & (1UL << cpu)) {
915 print_cpu_stall_info(rsp,
916 rnp->grplo + cpu);
917 ndetected++;
918 }
919 }
920 raw_spin_unlock_irqrestore(&rnp->lock, flags);
921 }
922
923 /*
924 * Now rat on any tasks that got kicked up to the root rcu_node
925 * due to CPU offlining.
926 */
927 rnp = rcu_get_root(rsp);
928 raw_spin_lock_irqsave(&rnp->lock, flags);
929 ndetected += rcu_print_task_stall(rnp);
930 raw_spin_unlock_irqrestore(&rnp->lock, flags);
931
932 print_cpu_stall_info_end();
933 for_each_possible_cpu(cpu)
934 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
935 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
936 smp_processor_id(), (long)(jiffies - rsp->gp_start),
937 rsp->gpnum, rsp->completed, totqlen);
938 if (ndetected == 0)
939 pr_err("INFO: Stall ended before state dump start\n");
940 else if (!trigger_all_cpu_backtrace())
941 rcu_dump_cpu_stacks(rsp);
942
943 /* Complain about tasks blocking the grace period. */
944
945 rcu_print_detail_task_stall(rsp);
946
947 force_quiescent_state(rsp); /* Kick them all. */
948}
949
950/*
951 * This function really isn't for public consumption, but RCU is special in
952 * that context switches can allow the state machine to make progress.
953 */
954extern void resched_cpu(int cpu);
955
956static void print_cpu_stall(struct rcu_state *rsp)
957{
958 int cpu;
959 unsigned long flags;
960 struct rcu_node *rnp = rcu_get_root(rsp);
961 long totqlen = 0;
962
963 /*
964 * OK, time to rat on ourselves...
965 * See Documentation/RCU/stallwarn.txt for info on how to debug
966 * RCU CPU stall warnings.
967 */
968 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
969 print_cpu_stall_info_begin();
970 print_cpu_stall_info(rsp, smp_processor_id());
971 print_cpu_stall_info_end();
972 for_each_possible_cpu(cpu)
973 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
974 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
975 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
976 if (!trigger_all_cpu_backtrace())
977 dump_stack();
978
979 raw_spin_lock_irqsave(&rnp->lock, flags);
980 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
981 rsp->jiffies_stall = jiffies +
982 3 * rcu_jiffies_till_stall_check() + 3;
983 raw_spin_unlock_irqrestore(&rnp->lock, flags);
984
985 /*
986 * Attempt to revive the RCU machinery by forcing a context switch.
987 *
988 * A context switch would normally allow the RCU state machine to make
989 * progress and it could be we're stuck in kernel space without context
990 * switches for an entirely unreasonable amount of time.
991 */
992 resched_cpu(smp_processor_id());
993}
994
995static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
996{
997 unsigned long completed;
998 unsigned long gpnum;
999 unsigned long gps;
1000 unsigned long j;
1001 unsigned long js;
1002 struct rcu_node *rnp;
1003
1004 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1005 return;
1006 j = jiffies;
1007
1008 /*
1009 * Lots of memory barriers to reject false positives.
1010 *
1011 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1012 * then rsp->gp_start, and finally rsp->completed. These values
1013 * are updated in the opposite order with memory barriers (or
1014 * equivalent) during grace-period initialization and cleanup.
1015 * Now, a false positive can occur if we get an new value of
1016 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1017 * the memory barriers, the only way that this can happen is if one
1018 * grace period ends and another starts between these two fetches.
1019 * Detect this by comparing rsp->completed with the previous fetch
1020 * from rsp->gpnum.
1021 *
1022 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1023 * and rsp->gp_start suffice to forestall false positives.
1024 */
1025 gpnum = ACCESS_ONCE(rsp->gpnum);
1026 smp_rmb(); /* Pick up ->gpnum first... */
1027 js = ACCESS_ONCE(rsp->jiffies_stall);
1028 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1029 gps = ACCESS_ONCE(rsp->gp_start);
1030 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1031 completed = ACCESS_ONCE(rsp->completed);
1032 if (ULONG_CMP_GE(completed, gpnum) ||
1033 ULONG_CMP_LT(j, js) ||
1034 ULONG_CMP_GE(gps, js))
1035 return; /* No stall or GP completed since entering function. */
1036 rnp = rdp->mynode;
1037 if (rcu_gp_in_progress(rsp) &&
1038 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
1039
1040 /* We haven't checked in, so go dump stack. */
1041 print_cpu_stall(rsp);
1042
1043 } else if (rcu_gp_in_progress(rsp) &&
1044 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1045
1046 /* They had a few time units to dump stack, so complain. */
1047 print_other_cpu_stall(rsp);
1048 }
1049}
1050
1051/**
1052 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1053 *
1054 * Set the stall-warning timeout way off into the future, thus preventing
1055 * any RCU CPU stall-warning messages from appearing in the current set of
1056 * RCU grace periods.
1057 *
1058 * The caller must disable hard irqs.
1059 */
1060void rcu_cpu_stall_reset(void)
1061{
1062 struct rcu_state *rsp;
1063
1064 for_each_rcu_flavor(rsp)
1065 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
1066}
1067
1068/*
1069 * Initialize the specified rcu_data structure's callback list to empty.
1070 */
1071static void init_callback_list(struct rcu_data *rdp)
1072{
1073 int i;
1074
1075 if (init_nocb_callback_list(rdp))
1076 return;
1077 rdp->nxtlist = NULL;
1078 for (i = 0; i < RCU_NEXT_SIZE; i++)
1079 rdp->nxttail[i] = &rdp->nxtlist;
1080}
1081
1082/*
1083 * Determine the value that ->completed will have at the end of the
1084 * next subsequent grace period. This is used to tag callbacks so that
1085 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1086 * been dyntick-idle for an extended period with callbacks under the
1087 * influence of RCU_FAST_NO_HZ.
1088 *
1089 * The caller must hold rnp->lock with interrupts disabled.
1090 */
1091static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1092 struct rcu_node *rnp)
1093{
1094 /*
1095 * If RCU is idle, we just wait for the next grace period.
1096 * But we can only be sure that RCU is idle if we are looking
1097 * at the root rcu_node structure -- otherwise, a new grace
1098 * period might have started, but just not yet gotten around
1099 * to initializing the current non-root rcu_node structure.
1100 */
1101 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1102 return rnp->completed + 1;
1103
1104 /*
1105 * Otherwise, wait for a possible partial grace period and
1106 * then the subsequent full grace period.
1107 */
1108 return rnp->completed + 2;
1109}
1110
1111/*
1112 * Trace-event helper function for rcu_start_future_gp() and
1113 * rcu_nocb_wait_gp().
1114 */
1115static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1116 unsigned long c, const char *s)
1117{
1118 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1119 rnp->completed, c, rnp->level,
1120 rnp->grplo, rnp->grphi, s);
1121}
1122
1123/*
1124 * Start some future grace period, as needed to handle newly arrived
1125 * callbacks. The required future grace periods are recorded in each
1126 * rcu_node structure's ->need_future_gp field.
1127 *
1128 * The caller must hold the specified rcu_node structure's ->lock.
1129 */
1130static unsigned long __maybe_unused
1131rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
1132{
1133 unsigned long c;
1134 int i;
1135 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1136
1137 /*
1138 * Pick up grace-period number for new callbacks. If this
1139 * grace period is already marked as needed, return to the caller.
1140 */
1141 c = rcu_cbs_completed(rdp->rsp, rnp);
1142 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1143 if (rnp->need_future_gp[c & 0x1]) {
1144 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1145 return c;
1146 }
1147
1148 /*
1149 * If either this rcu_node structure or the root rcu_node structure
1150 * believe that a grace period is in progress, then we must wait
1151 * for the one following, which is in "c". Because our request
1152 * will be noticed at the end of the current grace period, we don't
1153 * need to explicitly start one.
1154 */
1155 if (rnp->gpnum != rnp->completed ||
1156 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1157 rnp->need_future_gp[c & 0x1]++;
1158 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1159 return c;
1160 }
1161
1162 /*
1163 * There might be no grace period in progress. If we don't already
1164 * hold it, acquire the root rcu_node structure's lock in order to
1165 * start one (if needed).
1166 */
1167 if (rnp != rnp_root) {
1168 raw_spin_lock(&rnp_root->lock);
1169 smp_mb__after_unlock_lock();
1170 }
1171
1172 /*
1173 * Get a new grace-period number. If there really is no grace
1174 * period in progress, it will be smaller than the one we obtained
1175 * earlier. Adjust callbacks as needed. Note that even no-CBs
1176 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1177 */
1178 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1179 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1180 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1181 rdp->nxtcompleted[i] = c;
1182
1183 /*
1184 * If the needed for the required grace period is already
1185 * recorded, trace and leave.
1186 */
1187 if (rnp_root->need_future_gp[c & 0x1]) {
1188 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1189 goto unlock_out;
1190 }
1191
1192 /* Record the need for the future grace period. */
1193 rnp_root->need_future_gp[c & 0x1]++;
1194
1195 /* If a grace period is not already in progress, start one. */
1196 if (rnp_root->gpnum != rnp_root->completed) {
1197 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1198 } else {
1199 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1200 rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1201 }
1202unlock_out:
1203 if (rnp != rnp_root)
1204 raw_spin_unlock(&rnp_root->lock);
1205 return c;
1206}
1207
1208/*
1209 * Clean up any old requests for the just-ended grace period. Also return
1210 * whether any additional grace periods have been requested. Also invoke
1211 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1212 * waiting for this grace period to complete.
1213 */
1214static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1215{
1216 int c = rnp->completed;
1217 int needmore;
1218 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1219
1220 rcu_nocb_gp_cleanup(rsp, rnp);
1221 rnp->need_future_gp[c & 0x1] = 0;
1222 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1223 trace_rcu_future_gp(rnp, rdp, c,
1224 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1225 return needmore;
1226}
1227
1228/*
1229 * If there is room, assign a ->completed number to any callbacks on
1230 * this CPU that have not already been assigned. Also accelerate any
1231 * callbacks that were previously assigned a ->completed number that has
1232 * since proven to be too conservative, which can happen if callbacks get
1233 * assigned a ->completed number while RCU is idle, but with reference to
1234 * a non-root rcu_node structure. This function is idempotent, so it does
1235 * not hurt to call it repeatedly.
1236 *
1237 * The caller must hold rnp->lock with interrupts disabled.
1238 */
1239static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1240 struct rcu_data *rdp)
1241{
1242 unsigned long c;
1243 int i;
1244
1245 /* If the CPU has no callbacks, nothing to do. */
1246 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1247 return;
1248
1249 /*
1250 * Starting from the sublist containing the callbacks most
1251 * recently assigned a ->completed number and working down, find the
1252 * first sublist that is not assignable to an upcoming grace period.
1253 * Such a sublist has something in it (first two tests) and has
1254 * a ->completed number assigned that will complete sooner than
1255 * the ->completed number for newly arrived callbacks (last test).
1256 *
1257 * The key point is that any later sublist can be assigned the
1258 * same ->completed number as the newly arrived callbacks, which
1259 * means that the callbacks in any of these later sublist can be
1260 * grouped into a single sublist, whether or not they have already
1261 * been assigned a ->completed number.
1262 */
1263 c = rcu_cbs_completed(rsp, rnp);
1264 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1265 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1266 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1267 break;
1268
1269 /*
1270 * If there are no sublist for unassigned callbacks, leave.
1271 * At the same time, advance "i" one sublist, so that "i" will
1272 * index into the sublist where all the remaining callbacks should
1273 * be grouped into.
1274 */
1275 if (++i >= RCU_NEXT_TAIL)
1276 return;
1277
1278 /*
1279 * Assign all subsequent callbacks' ->completed number to the next
1280 * full grace period and group them all in the sublist initially
1281 * indexed by "i".
1282 */
1283 for (; i <= RCU_NEXT_TAIL; i++) {
1284 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1285 rdp->nxtcompleted[i] = c;
1286 }
1287 /* Record any needed additional grace periods. */
1288 rcu_start_future_gp(rnp, rdp);
1289
1290 /* Trace depending on how much we were able to accelerate. */
1291 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1292 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1293 else
1294 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1295}
1296
1297/*
1298 * Move any callbacks whose grace period has completed to the
1299 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1300 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1301 * sublist. This function is idempotent, so it does not hurt to
1302 * invoke it repeatedly. As long as it is not invoked -too- often...
1303 *
1304 * The caller must hold rnp->lock with interrupts disabled.
1305 */
1306static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1307 struct rcu_data *rdp)
1308{
1309 int i, j;
1310
1311 /* If the CPU has no callbacks, nothing to do. */
1312 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1313 return;
1314
1315 /*
1316 * Find all callbacks whose ->completed numbers indicate that they
1317 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1318 */
1319 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1320 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1321 break;
1322 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1323 }
1324 /* Clean up any sublist tail pointers that were misordered above. */
1325 for (j = RCU_WAIT_TAIL; j < i; j++)
1326 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1327
1328 /* Copy down callbacks to fill in empty sublists. */
1329 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1330 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1331 break;
1332 rdp->nxttail[j] = rdp->nxttail[i];
1333 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1334 }
1335
1336 /* Classify any remaining callbacks. */
1337 rcu_accelerate_cbs(rsp, rnp, rdp);
1338}
1339
1340/*
1341 * Update CPU-local rcu_data state to record the beginnings and ends of
1342 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1343 * structure corresponding to the current CPU, and must have irqs disabled.
1344 */
1345static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1346{
1347 /* Handle the ends of any preceding grace periods first. */
1348 if (rdp->completed == rnp->completed) {
1349
1350 /* No grace period end, so just accelerate recent callbacks. */
1351 rcu_accelerate_cbs(rsp, rnp, rdp);
1352
1353 } else {
1354
1355 /* Advance callbacks. */
1356 rcu_advance_cbs(rsp, rnp, rdp);
1357
1358 /* Remember that we saw this grace-period completion. */
1359 rdp->completed = rnp->completed;
1360 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1361 }
1362
1363 if (rdp->gpnum != rnp->gpnum) {
1364 /*
1365 * If the current grace period is waiting for this CPU,
1366 * set up to detect a quiescent state, otherwise don't
1367 * go looking for one.
1368 */
1369 rdp->gpnum = rnp->gpnum;
1370 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1371 rdp->passed_quiesce = 0;
1372 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1373 zero_cpu_stall_ticks(rdp);
1374 }
1375}
1376
1377static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1378{
1379 unsigned long flags;
1380 struct rcu_node *rnp;
1381
1382 local_irq_save(flags);
1383 rnp = rdp->mynode;
1384 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1385 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
1386 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1387 local_irq_restore(flags);
1388 return;
1389 }
1390 smp_mb__after_unlock_lock();
1391 __note_gp_changes(rsp, rnp, rdp);
1392 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1393}
1394
1395/*
1396 * Initialize a new grace period. Return 0 if no grace period required.
1397 */
1398static int rcu_gp_init(struct rcu_state *rsp)
1399{
1400 struct rcu_data *rdp;
1401 struct rcu_node *rnp = rcu_get_root(rsp);
1402
1403 rcu_bind_gp_kthread();
1404 raw_spin_lock_irq(&rnp->lock);
1405 smp_mb__after_unlock_lock();
1406 if (!ACCESS_ONCE(rsp->gp_flags)) {
1407 /* Spurious wakeup, tell caller to go back to sleep. */
1408 raw_spin_unlock_irq(&rnp->lock);
1409 return 0;
1410 }
1411 ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
1412
1413 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1414 /*
1415 * Grace period already in progress, don't start another.
1416 * Not supposed to be able to happen.
1417 */
1418 raw_spin_unlock_irq(&rnp->lock);
1419 return 0;
1420 }
1421
1422 /* Advance to a new grace period and initialize state. */
1423 record_gp_stall_check_time(rsp);
1424 /* Record GP times before starting GP, hence smp_store_release(). */
1425 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1426 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1427 raw_spin_unlock_irq(&rnp->lock);
1428
1429 /* Exclude any concurrent CPU-hotplug operations. */
1430 mutex_lock(&rsp->onoff_mutex);
1431 smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
1432
1433 /*
1434 * Set the quiescent-state-needed bits in all the rcu_node
1435 * structures for all currently online CPUs in breadth-first order,
1436 * starting from the root rcu_node structure, relying on the layout
1437 * of the tree within the rsp->node[] array. Note that other CPUs
1438 * will access only the leaves of the hierarchy, thus seeing that no
1439 * grace period is in progress, at least until the corresponding
1440 * leaf node has been initialized. In addition, we have excluded
1441 * CPU-hotplug operations.
1442 *
1443 * The grace period cannot complete until the initialization
1444 * process finishes, because this kthread handles both.
1445 */
1446 rcu_for_each_node_breadth_first(rsp, rnp) {
1447 raw_spin_lock_irq(&rnp->lock);
1448 smp_mb__after_unlock_lock();
1449 rdp = this_cpu_ptr(rsp->rda);
1450 rcu_preempt_check_blocked_tasks(rnp);
1451 rnp->qsmask = rnp->qsmaskinit;
1452 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1453 WARN_ON_ONCE(rnp->completed != rsp->completed);
1454 ACCESS_ONCE(rnp->completed) = rsp->completed;
1455 if (rnp == rdp->mynode)
1456 __note_gp_changes(rsp, rnp, rdp);
1457 rcu_preempt_boost_start_gp(rnp);
1458 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1459 rnp->level, rnp->grplo,
1460 rnp->grphi, rnp->qsmask);
1461 raw_spin_unlock_irq(&rnp->lock);
1462#ifdef CONFIG_PROVE_RCU_DELAY
1463 if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
1464 system_state == SYSTEM_RUNNING)
1465 udelay(200);
1466#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1467 cond_resched();
1468 }
1469
1470 mutex_unlock(&rsp->onoff_mutex);
1471 return 1;
1472}
1473
1474/*
1475 * Do one round of quiescent-state forcing.
1476 */
1477static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1478{
1479 int fqs_state = fqs_state_in;
1480 bool isidle = false;
1481 unsigned long maxj;
1482 struct rcu_node *rnp = rcu_get_root(rsp);
1483
1484 rsp->n_force_qs++;
1485 if (fqs_state == RCU_SAVE_DYNTICK) {
1486 /* Collect dyntick-idle snapshots. */
1487 if (is_sysidle_rcu_state(rsp)) {
1488 isidle = 1;
1489 maxj = jiffies - ULONG_MAX / 4;
1490 }
1491 force_qs_rnp(rsp, dyntick_save_progress_counter,
1492 &isidle, &maxj);
1493 rcu_sysidle_report_gp(rsp, isidle, maxj);
1494 fqs_state = RCU_FORCE_QS;
1495 } else {
1496 /* Handle dyntick-idle and offline CPUs. */
1497 isidle = 0;
1498 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1499 }
1500 /* Clear flag to prevent immediate re-entry. */
1501 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1502 raw_spin_lock_irq(&rnp->lock);
1503 smp_mb__after_unlock_lock();
1504 ACCESS_ONCE(rsp->gp_flags) &= ~RCU_GP_FLAG_FQS;
1505 raw_spin_unlock_irq(&rnp->lock);
1506 }
1507 return fqs_state;
1508}
1509
1510/*
1511 * Clean up after the old grace period.
1512 */
1513static void rcu_gp_cleanup(struct rcu_state *rsp)
1514{
1515 unsigned long gp_duration;
1516 int nocb = 0;
1517 struct rcu_data *rdp;
1518 struct rcu_node *rnp = rcu_get_root(rsp);
1519
1520 raw_spin_lock_irq(&rnp->lock);
1521 smp_mb__after_unlock_lock();
1522 gp_duration = jiffies - rsp->gp_start;
1523 if (gp_duration > rsp->gp_max)
1524 rsp->gp_max = gp_duration;
1525
1526 /*
1527 * We know the grace period is complete, but to everyone else
1528 * it appears to still be ongoing. But it is also the case
1529 * that to everyone else it looks like there is nothing that
1530 * they can do to advance the grace period. It is therefore
1531 * safe for us to drop the lock in order to mark the grace
1532 * period as completed in all of the rcu_node structures.
1533 */
1534 raw_spin_unlock_irq(&rnp->lock);
1535
1536 /*
1537 * Propagate new ->completed value to rcu_node structures so
1538 * that other CPUs don't have to wait until the start of the next
1539 * grace period to process their callbacks. This also avoids
1540 * some nasty RCU grace-period initialization races by forcing
1541 * the end of the current grace period to be completely recorded in
1542 * all of the rcu_node structures before the beginning of the next
1543 * grace period is recorded in any of the rcu_node structures.
1544 */
1545 rcu_for_each_node_breadth_first(rsp, rnp) {
1546 raw_spin_lock_irq(&rnp->lock);
1547 smp_mb__after_unlock_lock();
1548 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1549 rdp = this_cpu_ptr(rsp->rda);
1550 if (rnp == rdp->mynode)
1551 __note_gp_changes(rsp, rnp, rdp);
1552 /* smp_mb() provided by prior unlock-lock pair. */
1553 nocb += rcu_future_gp_cleanup(rsp, rnp);
1554 raw_spin_unlock_irq(&rnp->lock);
1555 cond_resched();
1556 }
1557 rnp = rcu_get_root(rsp);
1558 raw_spin_lock_irq(&rnp->lock);
1559 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1560 rcu_nocb_gp_set(rnp, nocb);
1561
1562 /* Declare grace period done. */
1563 ACCESS_ONCE(rsp->completed) = rsp->gpnum;
1564 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1565 rsp->fqs_state = RCU_GP_IDLE;
1566 rdp = this_cpu_ptr(rsp->rda);
1567 rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */
1568 if (cpu_needs_another_gp(rsp, rdp)) {
1569 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1570 trace_rcu_grace_period(rsp->name,
1571 ACCESS_ONCE(rsp->gpnum),
1572 TPS("newreq"));
1573 }
1574 raw_spin_unlock_irq(&rnp->lock);
1575}
1576
1577/*
1578 * Body of kthread that handles grace periods.
1579 */
1580static int __noreturn rcu_gp_kthread(void *arg)
1581{
1582 int fqs_state;
1583 int gf;
1584 unsigned long j;
1585 int ret;
1586 struct rcu_state *rsp = arg;
1587 struct rcu_node *rnp = rcu_get_root(rsp);
1588
1589 for (;;) {
1590
1591 /* Handle grace-period start. */
1592 for (;;) {
1593 trace_rcu_grace_period(rsp->name,
1594 ACCESS_ONCE(rsp->gpnum),
1595 TPS("reqwait"));
1596 wait_event_interruptible(rsp->gp_wq,
1597 ACCESS_ONCE(rsp->gp_flags) &
1598 RCU_GP_FLAG_INIT);
1599 /* Locking provides needed memory barrier. */
1600 if (rcu_gp_init(rsp))
1601 break;
1602 cond_resched();
1603 flush_signals(current);
1604 trace_rcu_grace_period(rsp->name,
1605 ACCESS_ONCE(rsp->gpnum),
1606 TPS("reqwaitsig"));
1607 }
1608
1609 /* Handle quiescent-state forcing. */
1610 fqs_state = RCU_SAVE_DYNTICK;
1611 j = jiffies_till_first_fqs;
1612 if (j > HZ) {
1613 j = HZ;
1614 jiffies_till_first_fqs = HZ;
1615 }
1616 ret = 0;
1617 for (;;) {
1618 if (!ret)
1619 rsp->jiffies_force_qs = jiffies + j;
1620 trace_rcu_grace_period(rsp->name,
1621 ACCESS_ONCE(rsp->gpnum),
1622 TPS("fqswait"));
1623 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1624 ((gf = ACCESS_ONCE(rsp->gp_flags)) &
1625 RCU_GP_FLAG_FQS) ||
1626 (!ACCESS_ONCE(rnp->qsmask) &&
1627 !rcu_preempt_blocked_readers_cgp(rnp)),
1628 j);
1629 /* Locking provides needed memory barriers. */
1630 /* If grace period done, leave loop. */
1631 if (!ACCESS_ONCE(rnp->qsmask) &&
1632 !rcu_preempt_blocked_readers_cgp(rnp))
1633 break;
1634 /* If time for quiescent-state forcing, do it. */
1635 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1636 (gf & RCU_GP_FLAG_FQS)) {
1637 trace_rcu_grace_period(rsp->name,
1638 ACCESS_ONCE(rsp->gpnum),
1639 TPS("fqsstart"));
1640 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1641 trace_rcu_grace_period(rsp->name,
1642 ACCESS_ONCE(rsp->gpnum),
1643 TPS("fqsend"));
1644 cond_resched();
1645 } else {
1646 /* Deal with stray signal. */
1647 cond_resched();
1648 flush_signals(current);
1649 trace_rcu_grace_period(rsp->name,
1650 ACCESS_ONCE(rsp->gpnum),
1651 TPS("fqswaitsig"));
1652 }
1653 j = jiffies_till_next_fqs;
1654 if (j > HZ) {
1655 j = HZ;
1656 jiffies_till_next_fqs = HZ;
1657 } else if (j < 1) {
1658 j = 1;
1659 jiffies_till_next_fqs = 1;
1660 }
1661 }
1662
1663 /* Handle grace-period end. */
1664 rcu_gp_cleanup(rsp);
1665 }
1666}
1667
1668static void rsp_wakeup(struct irq_work *work)
1669{
1670 struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);
1671
1672 /* Wake up rcu_gp_kthread() to start the grace period. */
1673 wake_up(&rsp->gp_wq);
1674}
1675
1676/*
1677 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1678 * in preparation for detecting the next grace period. The caller must hold
1679 * the root node's ->lock and hard irqs must be disabled.
1680 *
1681 * Note that it is legal for a dying CPU (which is marked as offline) to
1682 * invoke this function. This can happen when the dying CPU reports its
1683 * quiescent state.
1684 */
1685static void
1686rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1687 struct rcu_data *rdp)
1688{
1689 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1690 /*
1691 * Either we have not yet spawned the grace-period
1692 * task, this CPU does not need another grace period,
1693 * or a grace period is already in progress.
1694 * Either way, don't start a new grace period.
1695 */
1696 return;
1697 }
1698 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1699 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
1700 TPS("newreq"));
1701
1702 /*
1703 * We can't do wakeups while holding the rnp->lock, as that
1704 * could cause possible deadlocks with the rq->lock. Defer
1705 * the wakeup to interrupt context. And don't bother waking
1706 * up the running kthread.
1707 */
1708 if (current != rsp->gp_kthread)
1709 irq_work_queue(&rsp->wakeup_work);
1710}
1711
1712/*
1713 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1714 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1715 * is invoked indirectly from rcu_advance_cbs(), which would result in
1716 * endless recursion -- or would do so if it wasn't for the self-deadlock
1717 * that is encountered beforehand.
1718 */
1719static void
1720rcu_start_gp(struct rcu_state *rsp)
1721{
1722 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1723 struct rcu_node *rnp = rcu_get_root(rsp);
1724
1725 /*
1726 * If there is no grace period in progress right now, any
1727 * callbacks we have up to this point will be satisfied by the
1728 * next grace period. Also, advancing the callbacks reduces the
1729 * probability of false positives from cpu_needs_another_gp()
1730 * resulting in pointless grace periods. So, advance callbacks
1731 * then start the grace period!
1732 */
1733 rcu_advance_cbs(rsp, rnp, rdp);
1734 rcu_start_gp_advanced(rsp, rnp, rdp);
1735}
1736
1737/*
1738 * Report a full set of quiescent states to the specified rcu_state
1739 * data structure. This involves cleaning up after the prior grace
1740 * period and letting rcu_start_gp() start up the next grace period
1741 * if one is needed. Note that the caller must hold rnp->lock, which
1742 * is released before return.
1743 */
1744static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1745 __releases(rcu_get_root(rsp)->lock)
1746{
1747 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1748 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1749 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1750}
1751
1752/*
1753 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1754 * Allows quiescent states for a group of CPUs to be reported at one go
1755 * to the specified rcu_node structure, though all the CPUs in the group
1756 * must be represented by the same rcu_node structure (which need not be
1757 * a leaf rcu_node structure, though it often will be). That structure's
1758 * lock must be held upon entry, and it is released before return.
1759 */
1760static void
1761rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1762 struct rcu_node *rnp, unsigned long flags)
1763 __releases(rnp->lock)
1764{
1765 struct rcu_node *rnp_c;
1766
1767 /* Walk up the rcu_node hierarchy. */
1768 for (;;) {
1769 if (!(rnp->qsmask & mask)) {
1770
1771 /* Our bit has already been cleared, so done. */
1772 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1773 return;
1774 }
1775 rnp->qsmask &= ~mask;
1776 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1777 mask, rnp->qsmask, rnp->level,
1778 rnp->grplo, rnp->grphi,
1779 !!rnp->gp_tasks);
1780 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1781
1782 /* Other bits still set at this level, so done. */
1783 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1784 return;
1785 }
1786 mask = rnp->grpmask;
1787 if (rnp->parent == NULL) {
1788
1789 /* No more levels. Exit loop holding root lock. */
1790
1791 break;
1792 }
1793 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1794 rnp_c = rnp;
1795 rnp = rnp->parent;
1796 raw_spin_lock_irqsave(&rnp->lock, flags);
1797 smp_mb__after_unlock_lock();
1798 WARN_ON_ONCE(rnp_c->qsmask);
1799 }
1800
1801 /*
1802 * Get here if we are the last CPU to pass through a quiescent
1803 * state for this grace period. Invoke rcu_report_qs_rsp()
1804 * to clean up and start the next grace period if one is needed.
1805 */
1806 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1807}
1808
1809/*
1810 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1811 * structure. This must be either called from the specified CPU, or
1812 * called when the specified CPU is known to be offline (and when it is
1813 * also known that no other CPU is concurrently trying to help the offline
1814 * CPU). The lastcomp argument is used to make sure we are still in the
1815 * grace period of interest. We don't want to end the current grace period
1816 * based on quiescent states detected in an earlier grace period!
1817 */
1818static void
1819rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1820{
1821 unsigned long flags;
1822 unsigned long mask;
1823 struct rcu_node *rnp;
1824
1825 rnp = rdp->mynode;
1826 raw_spin_lock_irqsave(&rnp->lock, flags);
1827 smp_mb__after_unlock_lock();
1828 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1829 rnp->completed == rnp->gpnum) {
1830
1831 /*
1832 * The grace period in which this quiescent state was
1833 * recorded has ended, so don't report it upwards.
1834 * We will instead need a new quiescent state that lies
1835 * within the current grace period.
1836 */
1837 rdp->passed_quiesce = 0; /* need qs for new gp. */
1838 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1839 return;
1840 }
1841 mask = rdp->grpmask;
1842 if ((rnp->qsmask & mask) == 0) {
1843 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1844 } else {
1845 rdp->qs_pending = 0;
1846
1847 /*
1848 * This GP can't end until cpu checks in, so all of our
1849 * callbacks can be processed during the next GP.
1850 */
1851 rcu_accelerate_cbs(rsp, rnp, rdp);
1852
1853 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1854 }
1855}
1856
1857/*
1858 * Check to see if there is a new grace period of which this CPU
1859 * is not yet aware, and if so, set up local rcu_data state for it.
1860 * Otherwise, see if this CPU has just passed through its first
1861 * quiescent state for this grace period, and record that fact if so.
1862 */
1863static void
1864rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1865{
1866 /* Check for grace-period ends and beginnings. */
1867 note_gp_changes(rsp, rdp);
1868
1869 /*
1870 * Does this CPU still need to do its part for current grace period?
1871 * If no, return and let the other CPUs do their part as well.
1872 */
1873 if (!rdp->qs_pending)
1874 return;
1875
1876 /*
1877 * Was there a quiescent state since the beginning of the grace
1878 * period? If no, then exit and wait for the next call.
1879 */
1880 if (!rdp->passed_quiesce)
1881 return;
1882
1883 /*
1884 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1885 * judge of that).
1886 */
1887 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1888}
1889
1890#ifdef CONFIG_HOTPLUG_CPU
1891
1892/*
1893 * Send the specified CPU's RCU callbacks to the orphanage. The
1894 * specified CPU must be offline, and the caller must hold the
1895 * ->orphan_lock.
1896 */
1897static void
1898rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1899 struct rcu_node *rnp, struct rcu_data *rdp)
1900{
1901 /* No-CBs CPUs do not have orphanable callbacks. */
1902 if (rcu_is_nocb_cpu(rdp->cpu))
1903 return;
1904
1905 /*
1906 * Orphan the callbacks. First adjust the counts. This is safe
1907 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1908 * cannot be running now. Thus no memory barrier is required.
1909 */
1910 if (rdp->nxtlist != NULL) {
1911 rsp->qlen_lazy += rdp->qlen_lazy;
1912 rsp->qlen += rdp->qlen;
1913 rdp->n_cbs_orphaned += rdp->qlen;
1914 rdp->qlen_lazy = 0;
1915 ACCESS_ONCE(rdp->qlen) = 0;
1916 }
1917
1918 /*
1919 * Next, move those callbacks still needing a grace period to
1920 * the orphanage, where some other CPU will pick them up.
1921 * Some of the callbacks might have gone partway through a grace
1922 * period, but that is too bad. They get to start over because we
1923 * cannot assume that grace periods are synchronized across CPUs.
1924 * We don't bother updating the ->nxttail[] array yet, instead
1925 * we just reset the whole thing later on.
1926 */
1927 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1928 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1929 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1930 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1931 }
1932
1933 /*
1934 * Then move the ready-to-invoke callbacks to the orphanage,
1935 * where some other CPU will pick them up. These will not be
1936 * required to pass though another grace period: They are done.
1937 */
1938 if (rdp->nxtlist != NULL) {
1939 *rsp->orphan_donetail = rdp->nxtlist;
1940 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1941 }
1942
1943 /* Finally, initialize the rcu_data structure's list to empty. */
1944 init_callback_list(rdp);
1945}
1946
1947/*
1948 * Adopt the RCU callbacks from the specified rcu_state structure's
1949 * orphanage. The caller must hold the ->orphan_lock.
1950 */
1951static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
1952{
1953 int i;
1954 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1955
1956 /* No-CBs CPUs are handled specially. */
1957 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
1958 return;
1959
1960 /* Do the accounting first. */
1961 rdp->qlen_lazy += rsp->qlen_lazy;
1962 rdp->qlen += rsp->qlen;
1963 rdp->n_cbs_adopted += rsp->qlen;
1964 if (rsp->qlen_lazy != rsp->qlen)
1965 rcu_idle_count_callbacks_posted();
1966 rsp->qlen_lazy = 0;
1967 rsp->qlen = 0;
1968
1969 /*
1970 * We do not need a memory barrier here because the only way we
1971 * can get here if there is an rcu_barrier() in flight is if
1972 * we are the task doing the rcu_barrier().
1973 */
1974
1975 /* First adopt the ready-to-invoke callbacks. */
1976 if (rsp->orphan_donelist != NULL) {
1977 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1978 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1979 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1980 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1981 rdp->nxttail[i] = rsp->orphan_donetail;
1982 rsp->orphan_donelist = NULL;
1983 rsp->orphan_donetail = &rsp->orphan_donelist;
1984 }
1985
1986 /* And then adopt the callbacks that still need a grace period. */
1987 if (rsp->orphan_nxtlist != NULL) {
1988 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1989 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1990 rsp->orphan_nxtlist = NULL;
1991 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1992 }
1993}
1994
1995/*
1996 * Trace the fact that this CPU is going offline.
1997 */
1998static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1999{
2000 RCU_TRACE(unsigned long mask);
2001 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2002 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2003
2004 RCU_TRACE(mask = rdp->grpmask);
2005 trace_rcu_grace_period(rsp->name,
2006 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2007 TPS("cpuofl"));
2008}
2009
2010/*
2011 * The CPU has been completely removed, and some other CPU is reporting
2012 * this fact from process context. Do the remainder of the cleanup,
2013 * including orphaning the outgoing CPU's RCU callbacks, and also
2014 * adopting them. There can only be one CPU hotplug operation at a time,
2015 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2016 */
2017static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2018{
2019 unsigned long flags;
2020 unsigned long mask;
2021 int need_report = 0;
2022 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2023 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2024
2025 /* Adjust any no-longer-needed kthreads. */
2026 rcu_boost_kthread_setaffinity(rnp, -1);
2027
2028 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2029
2030 /* Exclude any attempts to start a new grace period. */
2031 mutex_lock(&rsp->onoff_mutex);
2032 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2033
2034 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2035 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2036 rcu_adopt_orphan_cbs(rsp, flags);
2037
2038 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
2039 mask = rdp->grpmask; /* rnp->grplo is constant. */
2040 do {
2041 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2042 smp_mb__after_unlock_lock();
2043 rnp->qsmaskinit &= ~mask;
2044 if (rnp->qsmaskinit != 0) {
2045 if (rnp != rdp->mynode)
2046 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2047 break;
2048 }
2049 if (rnp == rdp->mynode)
2050 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
2051 else
2052 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2053 mask = rnp->grpmask;
2054 rnp = rnp->parent;
2055 } while (rnp != NULL);
2056
2057 /*
2058 * We still hold the leaf rcu_node structure lock here, and
2059 * irqs are still disabled. The reason for this subterfuge is
2060 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2061 * held leads to deadlock.
2062 */
2063 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2064 rnp = rdp->mynode;
2065 if (need_report & RCU_OFL_TASKS_NORM_GP)
2066 rcu_report_unblock_qs_rnp(rnp, flags);
2067 else
2068 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2069 if (need_report & RCU_OFL_TASKS_EXP_GP)
2070 rcu_report_exp_rnp(rsp, rnp, true);
2071 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2072 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2073 cpu, rdp->qlen, rdp->nxtlist);
2074 init_callback_list(rdp);
2075 /* Disallow further callbacks on this CPU. */
2076 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2077 mutex_unlock(&rsp->onoff_mutex);
2078}
2079
2080#else /* #ifdef CONFIG_HOTPLUG_CPU */
2081
2082static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2083{
2084}
2085
2086static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2087{
2088}
2089
2090#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2091
2092/*
2093 * Invoke any RCU callbacks that have made it to the end of their grace
2094 * period. Thottle as specified by rdp->blimit.
2095 */
2096static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2097{
2098 unsigned long flags;
2099 struct rcu_head *next, *list, **tail;
2100 long bl, count, count_lazy;
2101 int i;
2102
2103 /* If no callbacks are ready, just return. */
2104 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2105 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2106 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2107 need_resched(), is_idle_task(current),
2108 rcu_is_callbacks_kthread());
2109 return;
2110 }
2111
2112 /*
2113 * Extract the list of ready callbacks, disabling to prevent
2114 * races with call_rcu() from interrupt handlers.
2115 */
2116 local_irq_save(flags);
2117 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2118 bl = rdp->blimit;
2119 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2120 list = rdp->nxtlist;
2121 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2122 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2123 tail = rdp->nxttail[RCU_DONE_TAIL];
2124 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2125 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2126 rdp->nxttail[i] = &rdp->nxtlist;
2127 local_irq_restore(flags);
2128
2129 /* Invoke callbacks. */
2130 count = count_lazy = 0;
2131 while (list) {
2132 next = list->next;
2133 prefetch(next);
2134 debug_rcu_head_unqueue(list);
2135 if (__rcu_reclaim(rsp->name, list))
2136 count_lazy++;
2137 list = next;
2138 /* Stop only if limit reached and CPU has something to do. */
2139 if (++count >= bl &&
2140 (need_resched() ||
2141 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2142 break;
2143 }
2144
2145 local_irq_save(flags);
2146 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2147 is_idle_task(current),
2148 rcu_is_callbacks_kthread());
2149
2150 /* Update count, and requeue any remaining callbacks. */
2151 if (list != NULL) {
2152 *tail = rdp->nxtlist;
2153 rdp->nxtlist = list;
2154 for (i = 0; i < RCU_NEXT_SIZE; i++)
2155 if (&rdp->nxtlist == rdp->nxttail[i])
2156 rdp->nxttail[i] = tail;
2157 else
2158 break;
2159 }
2160 smp_mb(); /* List handling before counting for rcu_barrier(). */
2161 rdp->qlen_lazy -= count_lazy;
2162 ACCESS_ONCE(rdp->qlen) -= count;
2163 rdp->n_cbs_invoked += count;
2164
2165 /* Reinstate batch limit if we have worked down the excess. */
2166 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2167 rdp->blimit = blimit;
2168
2169 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2170 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2171 rdp->qlen_last_fqs_check = 0;
2172 rdp->n_force_qs_snap = rsp->n_force_qs;
2173 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2174 rdp->qlen_last_fqs_check = rdp->qlen;
2175 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2176
2177 local_irq_restore(flags);
2178
2179 /* Re-invoke RCU core processing if there are callbacks remaining. */
2180 if (cpu_has_callbacks_ready_to_invoke(rdp))
2181 invoke_rcu_core();
2182}
2183
2184/*
2185 * Check to see if this CPU is in a non-context-switch quiescent state
2186 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2187 * Also schedule RCU core processing.
2188 *
2189 * This function must be called from hardirq context. It is normally
2190 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2191 * false, there is no point in invoking rcu_check_callbacks().
2192 */
2193void rcu_check_callbacks(int cpu, int user)
2194{
2195 trace_rcu_utilization(TPS("Start scheduler-tick"));
2196 increment_cpu_stall_ticks();
2197 if (user || rcu_is_cpu_rrupt_from_idle()) {
2198
2199 /*
2200 * Get here if this CPU took its interrupt from user
2201 * mode or from the idle loop, and if this is not a
2202 * nested interrupt. In this case, the CPU is in
2203 * a quiescent state, so note it.
2204 *
2205 * No memory barrier is required here because both
2206 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2207 * variables that other CPUs neither access nor modify,
2208 * at least not while the corresponding CPU is online.
2209 */
2210
2211 rcu_sched_qs(cpu);
2212 rcu_bh_qs(cpu);
2213
2214 } else if (!in_softirq()) {
2215
2216 /*
2217 * Get here if this CPU did not take its interrupt from
2218 * softirq, in other words, if it is not interrupting
2219 * a rcu_bh read-side critical section. This is an _bh
2220 * critical section, so note it.
2221 */
2222
2223 rcu_bh_qs(cpu);
2224 }
2225 rcu_preempt_check_callbacks(cpu);
2226 if (rcu_pending(cpu))
2227 invoke_rcu_core();
2228 trace_rcu_utilization(TPS("End scheduler-tick"));
2229}
2230
2231/*
2232 * Scan the leaf rcu_node structures, processing dyntick state for any that
2233 * have not yet encountered a quiescent state, using the function specified.
2234 * Also initiate boosting for any threads blocked on the root rcu_node.
2235 *
2236 * The caller must have suppressed start of new grace periods.
2237 */
2238static void force_qs_rnp(struct rcu_state *rsp,
2239 int (*f)(struct rcu_data *rsp, bool *isidle,
2240 unsigned long *maxj),
2241 bool *isidle, unsigned long *maxj)
2242{
2243 unsigned long bit;
2244 int cpu;
2245 unsigned long flags;
2246 unsigned long mask;
2247 struct rcu_node *rnp;
2248
2249 rcu_for_each_leaf_node(rsp, rnp) {
2250 cond_resched();
2251 mask = 0;
2252 raw_spin_lock_irqsave(&rnp->lock, flags);
2253 smp_mb__after_unlock_lock();
2254 if (!rcu_gp_in_progress(rsp)) {
2255 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2256 return;
2257 }
2258 if (rnp->qsmask == 0) {
2259 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2260 continue;
2261 }
2262 cpu = rnp->grplo;
2263 bit = 1;
2264 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2265 if ((rnp->qsmask & bit) != 0) {
2266 if ((rnp->qsmaskinit & bit) != 0)
2267 *isidle = 0;
2268 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2269 mask |= bit;
2270 }
2271 }
2272 if (mask != 0) {
2273
2274 /* rcu_report_qs_rnp() releases rnp->lock. */
2275 rcu_report_qs_rnp(mask, rsp, rnp, flags);
2276 continue;
2277 }
2278 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2279 }
2280 rnp = rcu_get_root(rsp);
2281 if (rnp->qsmask == 0) {
2282 raw_spin_lock_irqsave(&rnp->lock, flags);
2283 smp_mb__after_unlock_lock();
2284 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2285 }
2286}
2287
2288/*
2289 * Force quiescent states on reluctant CPUs, and also detect which
2290 * CPUs are in dyntick-idle mode.
2291 */
2292static void force_quiescent_state(struct rcu_state *rsp)
2293{
2294 unsigned long flags;
2295 bool ret;
2296 struct rcu_node *rnp;
2297 struct rcu_node *rnp_old = NULL;
2298
2299 /* Funnel through hierarchy to reduce memory contention. */
2300 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2301 for (; rnp != NULL; rnp = rnp->parent) {
2302 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2303 !raw_spin_trylock(&rnp->fqslock);
2304 if (rnp_old != NULL)
2305 raw_spin_unlock(&rnp_old->fqslock);
2306 if (ret) {
2307 ACCESS_ONCE(rsp->n_force_qs_lh)++;
2308 return;
2309 }
2310 rnp_old = rnp;
2311 }
2312 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2313
2314 /* Reached the root of the rcu_node tree, acquire lock. */
2315 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2316 smp_mb__after_unlock_lock();
2317 raw_spin_unlock(&rnp_old->fqslock);
2318 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2319 ACCESS_ONCE(rsp->n_force_qs_lh)++;
2320 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2321 return; /* Someone beat us to it. */
2322 }
2323 ACCESS_ONCE(rsp->gp_flags) |= RCU_GP_FLAG_FQS;
2324 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2325 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
2326}
2327
2328/*
2329 * This does the RCU core processing work for the specified rcu_state
2330 * and rcu_data structures. This may be called only from the CPU to
2331 * whom the rdp belongs.
2332 */
2333static void
2334__rcu_process_callbacks(struct rcu_state *rsp)
2335{
2336 unsigned long flags;
2337 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2338
2339 WARN_ON_ONCE(rdp->beenonline == 0);
2340
2341 /* Update RCU state based on any recent quiescent states. */
2342 rcu_check_quiescent_state(rsp, rdp);
2343
2344 /* Does this CPU require a not-yet-started grace period? */
2345 local_irq_save(flags);
2346 if (cpu_needs_another_gp(rsp, rdp)) {
2347 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2348 rcu_start_gp(rsp);
2349 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2350 } else {
2351 local_irq_restore(flags);
2352 }
2353
2354 /* If there are callbacks ready, invoke them. */
2355 if (cpu_has_callbacks_ready_to_invoke(rdp))
2356 invoke_rcu_callbacks(rsp, rdp);
2357
2358 /* Do any needed deferred wakeups of rcuo kthreads. */
2359 do_nocb_deferred_wakeup(rdp);
2360}
2361
2362/*
2363 * Do RCU core processing for the current CPU.
2364 */
2365static void rcu_process_callbacks(struct softirq_action *unused)
2366{
2367 struct rcu_state *rsp;
2368
2369 if (cpu_is_offline(smp_processor_id()))
2370 return;
2371 trace_rcu_utilization(TPS("Start RCU core"));
2372 for_each_rcu_flavor(rsp)
2373 __rcu_process_callbacks(rsp);
2374 trace_rcu_utilization(TPS("End RCU core"));
2375}
2376
2377/*
2378 * Schedule RCU callback invocation. If the specified type of RCU
2379 * does not support RCU priority boosting, just do a direct call,
2380 * otherwise wake up the per-CPU kernel kthread. Note that because we
2381 * are running on the current CPU with interrupts disabled, the
2382 * rcu_cpu_kthread_task cannot disappear out from under us.
2383 */
2384static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2385{
2386 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2387 return;
2388 if (likely(!rsp->boost)) {
2389 rcu_do_batch(rsp, rdp);
2390 return;
2391 }
2392 invoke_rcu_callbacks_kthread();
2393}
2394
2395static void invoke_rcu_core(void)
2396{
2397 if (cpu_online(smp_processor_id()))
2398 raise_softirq(RCU_SOFTIRQ);
2399}
2400
2401/*
2402 * Handle any core-RCU processing required by a call_rcu() invocation.
2403 */
2404static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2405 struct rcu_head *head, unsigned long flags)
2406{
2407 /*
2408 * If called from an extended quiescent state, invoke the RCU
2409 * core in order to force a re-evaluation of RCU's idleness.
2410 */
2411 if (!rcu_is_watching() && cpu_online(smp_processor_id()))
2412 invoke_rcu_core();
2413
2414 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2415 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2416 return;
2417
2418 /*
2419 * Force the grace period if too many callbacks or too long waiting.
2420 * Enforce hysteresis, and don't invoke force_quiescent_state()
2421 * if some other CPU has recently done so. Also, don't bother
2422 * invoking force_quiescent_state() if the newly enqueued callback
2423 * is the only one waiting for a grace period to complete.
2424 */
2425 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2426
2427 /* Are we ignoring a completed grace period? */
2428 note_gp_changes(rsp, rdp);
2429
2430 /* Start a new grace period if one not already started. */
2431 if (!rcu_gp_in_progress(rsp)) {
2432 struct rcu_node *rnp_root = rcu_get_root(rsp);
2433
2434 raw_spin_lock(&rnp_root->lock);
2435 smp_mb__after_unlock_lock();
2436 rcu_start_gp(rsp);
2437 raw_spin_unlock(&rnp_root->lock);
2438 } else {
2439 /* Give the grace period a kick. */
2440 rdp->blimit = LONG_MAX;
2441 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2442 *rdp->nxttail[RCU_DONE_TAIL] != head)
2443 force_quiescent_state(rsp);
2444 rdp->n_force_qs_snap = rsp->n_force_qs;
2445 rdp->qlen_last_fqs_check = rdp->qlen;
2446 }
2447 }
2448}
2449
2450/*
2451 * RCU callback function to leak a callback.
2452 */
2453static void rcu_leak_callback(struct rcu_head *rhp)
2454{
2455}
2456
2457/*
2458 * Helper function for call_rcu() and friends. The cpu argument will
2459 * normally be -1, indicating "currently running CPU". It may specify
2460 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2461 * is expected to specify a CPU.
2462 */
2463static void
2464__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2465 struct rcu_state *rsp, int cpu, bool lazy)
2466{
2467 unsigned long flags;
2468 struct rcu_data *rdp;
2469
2470 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2471 if (debug_rcu_head_queue(head)) {
2472 /* Probable double call_rcu(), so leak the callback. */
2473 ACCESS_ONCE(head->func) = rcu_leak_callback;
2474 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2475 return;
2476 }
2477 head->func = func;
2478 head->next = NULL;
2479
2480 /*
2481 * Opportunistically note grace-period endings and beginnings.
2482 * Note that we might see a beginning right after we see an
2483 * end, but never vice versa, since this CPU has to pass through
2484 * a quiescent state betweentimes.
2485 */
2486 local_irq_save(flags);
2487 rdp = this_cpu_ptr(rsp->rda);
2488
2489 /* Add the callback to our list. */
2490 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2491 int offline;
2492
2493 if (cpu != -1)
2494 rdp = per_cpu_ptr(rsp->rda, cpu);
2495 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2496 WARN_ON_ONCE(offline);
2497 /* _call_rcu() is illegal on offline CPU; leak the callback. */
2498 local_irq_restore(flags);
2499 return;
2500 }
2501 ACCESS_ONCE(rdp->qlen)++;
2502 if (lazy)
2503 rdp->qlen_lazy++;
2504 else
2505 rcu_idle_count_callbacks_posted();
2506 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2507 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2508 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2509
2510 if (__is_kfree_rcu_offset((unsigned long)func))
2511 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2512 rdp->qlen_lazy, rdp->qlen);
2513 else
2514 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2515
2516 /* Go handle any RCU core processing required. */
2517 __call_rcu_core(rsp, rdp, head, flags);
2518 local_irq_restore(flags);
2519}
2520
2521/*
2522 * Queue an RCU-sched callback for invocation after a grace period.
2523 */
2524void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2525{
2526 __call_rcu(head, func, &rcu_sched_state, -1, 0);
2527}
2528EXPORT_SYMBOL_GPL(call_rcu_sched);
2529
2530/*
2531 * Queue an RCU callback for invocation after a quicker grace period.
2532 */
2533void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2534{
2535 __call_rcu(head, func, &rcu_bh_state, -1, 0);
2536}
2537EXPORT_SYMBOL_GPL(call_rcu_bh);
2538
2539/*
2540 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2541 * any blocking grace-period wait automatically implies a grace period
2542 * if there is only one CPU online at any point time during execution
2543 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2544 * occasionally incorrectly indicate that there are multiple CPUs online
2545 * when there was in fact only one the whole time, as this just adds
2546 * some overhead: RCU still operates correctly.
2547 */
2548static inline int rcu_blocking_is_gp(void)
2549{
2550 int ret;
2551
2552 might_sleep(); /* Check for RCU read-side critical section. */
2553 preempt_disable();
2554 ret = num_online_cpus() <= 1;
2555 preempt_enable();
2556 return ret;
2557}
2558
2559/**
2560 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2561 *
2562 * Control will return to the caller some time after a full rcu-sched
2563 * grace period has elapsed, in other words after all currently executing
2564 * rcu-sched read-side critical sections have completed. These read-side
2565 * critical sections are delimited by rcu_read_lock_sched() and
2566 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2567 * local_irq_disable(), and so on may be used in place of
2568 * rcu_read_lock_sched().
2569 *
2570 * This means that all preempt_disable code sequences, including NMI and
2571 * non-threaded hardware-interrupt handlers, in progress on entry will
2572 * have completed before this primitive returns. However, this does not
2573 * guarantee that softirq handlers will have completed, since in some
2574 * kernels, these handlers can run in process context, and can block.
2575 *
2576 * Note that this guarantee implies further memory-ordering guarantees.
2577 * On systems with more than one CPU, when synchronize_sched() returns,
2578 * each CPU is guaranteed to have executed a full memory barrier since the
2579 * end of its last RCU-sched read-side critical section whose beginning
2580 * preceded the call to synchronize_sched(). In addition, each CPU having
2581 * an RCU read-side critical section that extends beyond the return from
2582 * synchronize_sched() is guaranteed to have executed a full memory barrier
2583 * after the beginning of synchronize_sched() and before the beginning of
2584 * that RCU read-side critical section. Note that these guarantees include
2585 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2586 * that are executing in the kernel.
2587 *
2588 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2589 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2590 * to have executed a full memory barrier during the execution of
2591 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2592 * again only if the system has more than one CPU).
2593 *
2594 * This primitive provides the guarantees made by the (now removed)
2595 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2596 * guarantees that rcu_read_lock() sections will have completed.
2597 * In "classic RCU", these two guarantees happen to be one and
2598 * the same, but can differ in realtime RCU implementations.
2599 */
2600void synchronize_sched(void)
2601{
2602 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2603 !lock_is_held(&rcu_lock_map) &&
2604 !lock_is_held(&rcu_sched_lock_map),
2605 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2606 if (rcu_blocking_is_gp())
2607 return;
2608 if (rcu_expedited)
2609 synchronize_sched_expedited();
2610 else
2611 wait_rcu_gp(call_rcu_sched);
2612}
2613EXPORT_SYMBOL_GPL(synchronize_sched);
2614
2615/**
2616 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2617 *
2618 * Control will return to the caller some time after a full rcu_bh grace
2619 * period has elapsed, in other words after all currently executing rcu_bh
2620 * read-side critical sections have completed. RCU read-side critical
2621 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2622 * and may be nested.
2623 *
2624 * See the description of synchronize_sched() for more detailed information
2625 * on memory ordering guarantees.
2626 */
2627void synchronize_rcu_bh(void)
2628{
2629 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2630 !lock_is_held(&rcu_lock_map) &&
2631 !lock_is_held(&rcu_sched_lock_map),
2632 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2633 if (rcu_blocking_is_gp())
2634 return;
2635 if (rcu_expedited)
2636 synchronize_rcu_bh_expedited();
2637 else
2638 wait_rcu_gp(call_rcu_bh);
2639}
2640EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2641
2642/**
2643 * get_state_synchronize_rcu - Snapshot current RCU state
2644 *
2645 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2646 * to determine whether or not a full grace period has elapsed in the
2647 * meantime.
2648 */
2649unsigned long get_state_synchronize_rcu(void)
2650{
2651 /*
2652 * Any prior manipulation of RCU-protected data must happen
2653 * before the load from ->gpnum.
2654 */
2655 smp_mb(); /* ^^^ */
2656
2657 /*
2658 * Make sure this load happens before the purportedly
2659 * time-consuming work between get_state_synchronize_rcu()
2660 * and cond_synchronize_rcu().
2661 */
2662 return smp_load_acquire(&rcu_state->gpnum);
2663}
2664EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2665
2666/**
2667 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2668 *
2669 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2670 *
2671 * If a full RCU grace period has elapsed since the earlier call to
2672 * get_state_synchronize_rcu(), just return. Otherwise, invoke
2673 * synchronize_rcu() to wait for a full grace period.
2674 *
2675 * Yes, this function does not take counter wrap into account. But
2676 * counter wrap is harmless. If the counter wraps, we have waited for
2677 * more than 2 billion grace periods (and way more on a 64-bit system!),
2678 * so waiting for one additional grace period should be just fine.
2679 */
2680void cond_synchronize_rcu(unsigned long oldstate)
2681{
2682 unsigned long newstate;
2683
2684 /*
2685 * Ensure that this load happens before any RCU-destructive
2686 * actions the caller might carry out after we return.
2687 */
2688 newstate = smp_load_acquire(&rcu_state->completed);
2689 if (ULONG_CMP_GE(oldstate, newstate))
2690 synchronize_rcu();
2691}
2692EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2693
2694static int synchronize_sched_expedited_cpu_stop(void *data)
2695{
2696 /*
2697 * There must be a full memory barrier on each affected CPU
2698 * between the time that try_stop_cpus() is called and the
2699 * time that it returns.
2700 *
2701 * In the current initial implementation of cpu_stop, the
2702 * above condition is already met when the control reaches
2703 * this point and the following smp_mb() is not strictly
2704 * necessary. Do smp_mb() anyway for documentation and
2705 * robustness against future implementation changes.
2706 */
2707 smp_mb(); /* See above comment block. */
2708 return 0;
2709}
2710
2711/**
2712 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2713 *
2714 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2715 * approach to force the grace period to end quickly. This consumes
2716 * significant time on all CPUs and is unfriendly to real-time workloads,
2717 * so is thus not recommended for any sort of common-case code. In fact,
2718 * if you are using synchronize_sched_expedited() in a loop, please
2719 * restructure your code to batch your updates, and then use a single
2720 * synchronize_sched() instead.
2721 *
2722 * Note that it is illegal to call this function while holding any lock
2723 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2724 * to call this function from a CPU-hotplug notifier. Failing to observe
2725 * these restriction will result in deadlock.
2726 *
2727 * This implementation can be thought of as an application of ticket
2728 * locking to RCU, with sync_sched_expedited_started and
2729 * sync_sched_expedited_done taking on the roles of the halves
2730 * of the ticket-lock word. Each task atomically increments
2731 * sync_sched_expedited_started upon entry, snapshotting the old value,
2732 * then attempts to stop all the CPUs. If this succeeds, then each
2733 * CPU will have executed a context switch, resulting in an RCU-sched
2734 * grace period. We are then done, so we use atomic_cmpxchg() to
2735 * update sync_sched_expedited_done to match our snapshot -- but
2736 * only if someone else has not already advanced past our snapshot.
2737 *
2738 * On the other hand, if try_stop_cpus() fails, we check the value
2739 * of sync_sched_expedited_done. If it has advanced past our
2740 * initial snapshot, then someone else must have forced a grace period
2741 * some time after we took our snapshot. In this case, our work is
2742 * done for us, and we can simply return. Otherwise, we try again,
2743 * but keep our initial snapshot for purposes of checking for someone
2744 * doing our work for us.
2745 *
2746 * If we fail too many times in a row, we fall back to synchronize_sched().
2747 */
2748void synchronize_sched_expedited(void)
2749{
2750 long firstsnap, s, snap;
2751 int trycount = 0;
2752 struct rcu_state *rsp = &rcu_sched_state;
2753
2754 /*
2755 * If we are in danger of counter wrap, just do synchronize_sched().
2756 * By allowing sync_sched_expedited_started to advance no more than
2757 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2758 * that more than 3.5 billion CPUs would be required to force a
2759 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2760 * course be required on a 64-bit system.
2761 */
2762 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2763 (ulong)atomic_long_read(&rsp->expedited_done) +
2764 ULONG_MAX / 8)) {
2765 synchronize_sched();
2766 atomic_long_inc(&rsp->expedited_wrap);
2767 return;
2768 }
2769
2770 /*
2771 * Take a ticket. Note that atomic_inc_return() implies a
2772 * full memory barrier.
2773 */
2774 snap = atomic_long_inc_return(&rsp->expedited_start);
2775 firstsnap = snap;
2776 get_online_cpus();
2777 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2778
2779 /*
2780 * Each pass through the following loop attempts to force a
2781 * context switch on each CPU.
2782 */
2783 while (try_stop_cpus(cpu_online_mask,
2784 synchronize_sched_expedited_cpu_stop,
2785 NULL) == -EAGAIN) {
2786 put_online_cpus();
2787 atomic_long_inc(&rsp->expedited_tryfail);
2788
2789 /* Check to see if someone else did our work for us. */
2790 s = atomic_long_read(&rsp->expedited_done);
2791 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2792 /* ensure test happens before caller kfree */
2793 smp_mb__before_atomic_inc(); /* ^^^ */
2794 atomic_long_inc(&rsp->expedited_workdone1);
2795 return;
2796 }
2797
2798 /* No joy, try again later. Or just synchronize_sched(). */
2799 if (trycount++ < 10) {
2800 udelay(trycount * num_online_cpus());
2801 } else {
2802 wait_rcu_gp(call_rcu_sched);
2803 atomic_long_inc(&rsp->expedited_normal);
2804 return;
2805 }
2806
2807 /* Recheck to see if someone else did our work for us. */
2808 s = atomic_long_read(&rsp->expedited_done);
2809 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2810 /* ensure test happens before caller kfree */
2811 smp_mb__before_atomic_inc(); /* ^^^ */
2812 atomic_long_inc(&rsp->expedited_workdone2);
2813 return;
2814 }
2815
2816 /*
2817 * Refetching sync_sched_expedited_started allows later
2818 * callers to piggyback on our grace period. We retry
2819 * after they started, so our grace period works for them,
2820 * and they started after our first try, so their grace
2821 * period works for us.
2822 */
2823 get_online_cpus();
2824 snap = atomic_long_read(&rsp->expedited_start);
2825 smp_mb(); /* ensure read is before try_stop_cpus(). */
2826 }
2827 atomic_long_inc(&rsp->expedited_stoppedcpus);
2828
2829 /*
2830 * Everyone up to our most recent fetch is covered by our grace
2831 * period. Update the counter, but only if our work is still
2832 * relevant -- which it won't be if someone who started later
2833 * than we did already did their update.
2834 */
2835 do {
2836 atomic_long_inc(&rsp->expedited_done_tries);
2837 s = atomic_long_read(&rsp->expedited_done);
2838 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
2839 /* ensure test happens before caller kfree */
2840 smp_mb__before_atomic_inc(); /* ^^^ */
2841 atomic_long_inc(&rsp->expedited_done_lost);
2842 break;
2843 }
2844 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
2845 atomic_long_inc(&rsp->expedited_done_exit);
2846
2847 put_online_cpus();
2848}
2849EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2850
2851/*
2852 * Check to see if there is any immediate RCU-related work to be done
2853 * by the current CPU, for the specified type of RCU, returning 1 if so.
2854 * The checks are in order of increasing expense: checks that can be
2855 * carried out against CPU-local state are performed first. However,
2856 * we must check for CPU stalls first, else we might not get a chance.
2857 */
2858static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2859{
2860 struct rcu_node *rnp = rdp->mynode;
2861
2862 rdp->n_rcu_pending++;
2863
2864 /* Check for CPU stalls, if enabled. */
2865 check_cpu_stall(rsp, rdp);
2866
2867 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
2868 if (rcu_nohz_full_cpu(rsp))
2869 return 0;
2870
2871 /* Is the RCU core waiting for a quiescent state from this CPU? */
2872 if (rcu_scheduler_fully_active &&
2873 rdp->qs_pending && !rdp->passed_quiesce) {
2874 rdp->n_rp_qs_pending++;
2875 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2876 rdp->n_rp_report_qs++;
2877 return 1;
2878 }
2879
2880 /* Does this CPU have callbacks ready to invoke? */
2881 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2882 rdp->n_rp_cb_ready++;
2883 return 1;
2884 }
2885
2886 /* Has RCU gone idle with this CPU needing another grace period? */
2887 if (cpu_needs_another_gp(rsp, rdp)) {
2888 rdp->n_rp_cpu_needs_gp++;
2889 return 1;
2890 }
2891
2892 /* Has another RCU grace period completed? */
2893 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2894 rdp->n_rp_gp_completed++;
2895 return 1;
2896 }
2897
2898 /* Has a new RCU grace period started? */
2899 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2900 rdp->n_rp_gp_started++;
2901 return 1;
2902 }
2903
2904 /* Does this CPU need a deferred NOCB wakeup? */
2905 if (rcu_nocb_need_deferred_wakeup(rdp)) {
2906 rdp->n_rp_nocb_defer_wakeup++;
2907 return 1;
2908 }
2909
2910 /* nothing to do */
2911 rdp->n_rp_need_nothing++;
2912 return 0;
2913}
2914
2915/*
2916 * Check to see if there is any immediate RCU-related work to be done
2917 * by the current CPU, returning 1 if so. This function is part of the
2918 * RCU implementation; it is -not- an exported member of the RCU API.
2919 */
2920static int rcu_pending(int cpu)
2921{
2922 struct rcu_state *rsp;
2923
2924 for_each_rcu_flavor(rsp)
2925 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2926 return 1;
2927 return 0;
2928}
2929
2930/*
2931 * Return true if the specified CPU has any callback. If all_lazy is
2932 * non-NULL, store an indication of whether all callbacks are lazy.
2933 * (If there are no callbacks, all of them are deemed to be lazy.)
2934 */
2935static int __maybe_unused rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
2936{
2937 bool al = true;
2938 bool hc = false;
2939 struct rcu_data *rdp;
2940 struct rcu_state *rsp;
2941
2942 for_each_rcu_flavor(rsp) {
2943 rdp = per_cpu_ptr(rsp->rda, cpu);
2944 if (!rdp->nxtlist)
2945 continue;
2946 hc = true;
2947 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
2948 al = false;
2949 break;
2950 }
2951 }
2952 if (all_lazy)
2953 *all_lazy = al;
2954 return hc;
2955}
2956
2957/*
2958 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2959 * the compiler is expected to optimize this away.
2960 */
2961static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
2962 int cpu, unsigned long done)
2963{
2964 trace_rcu_barrier(rsp->name, s, cpu,
2965 atomic_read(&rsp->barrier_cpu_count), done);
2966}
2967
2968/*
2969 * RCU callback function for _rcu_barrier(). If we are last, wake
2970 * up the task executing _rcu_barrier().
2971 */
2972static void rcu_barrier_callback(struct rcu_head *rhp)
2973{
2974 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2975 struct rcu_state *rsp = rdp->rsp;
2976
2977 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2978 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2979 complete(&rsp->barrier_completion);
2980 } else {
2981 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2982 }
2983}
2984
2985/*
2986 * Called with preemption disabled, and from cross-cpu IRQ context.
2987 */
2988static void rcu_barrier_func(void *type)
2989{
2990 struct rcu_state *rsp = type;
2991 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2992
2993 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2994 atomic_inc(&rsp->barrier_cpu_count);
2995 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2996}
2997
2998/*
2999 * Orchestrate the specified type of RCU barrier, waiting for all
3000 * RCU callbacks of the specified type to complete.
3001 */
3002static void _rcu_barrier(struct rcu_state *rsp)
3003{
3004 int cpu;
3005 struct rcu_data *rdp;
3006 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
3007 unsigned long snap_done;
3008
3009 _rcu_barrier_trace(rsp, "Begin", -1, snap);
3010
3011 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3012 mutex_lock(&rsp->barrier_mutex);
3013
3014 /*
3015 * Ensure that all prior references, including to ->n_barrier_done,
3016 * are ordered before the _rcu_barrier() machinery.
3017 */
3018 smp_mb(); /* See above block comment. */
3019
3020 /*
3021 * Recheck ->n_barrier_done to see if others did our work for us.
3022 * This means checking ->n_barrier_done for an even-to-odd-to-even
3023 * transition. The "if" expression below therefore rounds the old
3024 * value up to the next even number and adds two before comparing.
3025 */
3026 snap_done = rsp->n_barrier_done;
3027 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
3028
3029 /*
3030 * If the value in snap is odd, we needed to wait for the current
3031 * rcu_barrier() to complete, then wait for the next one, in other
3032 * words, we need the value of snap_done to be three larger than
3033 * the value of snap. On the other hand, if the value in snap is
3034 * even, we only had to wait for the next rcu_barrier() to complete,
3035 * in other words, we need the value of snap_done to be only two
3036 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
3037 * this for us (thank you, Linus!).
3038 */
3039 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3040 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3041 smp_mb(); /* caller's subsequent code after above check. */
3042 mutex_unlock(&rsp->barrier_mutex);
3043 return;
3044 }
3045
3046 /*
3047 * Increment ->n_barrier_done to avoid duplicate work. Use
3048 * ACCESS_ONCE() to prevent the compiler from speculating
3049 * the increment to precede the early-exit check.
3050 */
3051 ACCESS_ONCE(rsp->n_barrier_done)++;
3052 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3053 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3054 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3055
3056 /*
3057 * Initialize the count to one rather than to zero in order to
3058 * avoid a too-soon return to zero in case of a short grace period
3059 * (or preemption of this task). Exclude CPU-hotplug operations
3060 * to ensure that no offline CPU has callbacks queued.
3061 */
3062 init_completion(&rsp->barrier_completion);
3063 atomic_set(&rsp->barrier_cpu_count, 1);
3064 get_online_cpus();
3065
3066 /*
3067 * Force each CPU with callbacks to register a new callback.
3068 * When that callback is invoked, we will know that all of the
3069 * corresponding CPU's preceding callbacks have been invoked.
3070 */
3071 for_each_possible_cpu(cpu) {
3072 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3073 continue;
3074 rdp = per_cpu_ptr(rsp->rda, cpu);
3075 if (rcu_is_nocb_cpu(cpu)) {
3076 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3077 rsp->n_barrier_done);
3078 atomic_inc(&rsp->barrier_cpu_count);
3079 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
3080 rsp, cpu, 0);
3081 } else if (ACCESS_ONCE(rdp->qlen)) {
3082 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3083 rsp->n_barrier_done);
3084 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3085 } else {
3086 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3087 rsp->n_barrier_done);
3088 }
3089 }
3090 put_online_cpus();
3091
3092 /*
3093 * Now that we have an rcu_barrier_callback() callback on each
3094 * CPU, and thus each counted, remove the initial count.
3095 */
3096 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3097 complete(&rsp->barrier_completion);
3098
3099 /* Increment ->n_barrier_done to prevent duplicate work. */
3100 smp_mb(); /* Keep increment after above mechanism. */
3101 ACCESS_ONCE(rsp->n_barrier_done)++;
3102 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3103 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3104 smp_mb(); /* Keep increment before caller's subsequent code. */
3105
3106 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3107 wait_for_completion(&rsp->barrier_completion);
3108
3109 /* Other rcu_barrier() invocations can now safely proceed. */
3110 mutex_unlock(&rsp->barrier_mutex);
3111}
3112
3113/**
3114 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3115 */
3116void rcu_barrier_bh(void)
3117{
3118 _rcu_barrier(&rcu_bh_state);
3119}
3120EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3121
3122/**
3123 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3124 */
3125void rcu_barrier_sched(void)
3126{
3127 _rcu_barrier(&rcu_sched_state);
3128}
3129EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3130
3131/*
3132 * Do boot-time initialization of a CPU's per-CPU RCU data.
3133 */
3134static void __init
3135rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3136{
3137 unsigned long flags;
3138 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3139 struct rcu_node *rnp = rcu_get_root(rsp);
3140
3141 /* Set up local state, ensuring consistent view of global state. */
3142 raw_spin_lock_irqsave(&rnp->lock, flags);
3143 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3144 init_callback_list(rdp);
3145 rdp->qlen_lazy = 0;
3146 ACCESS_ONCE(rdp->qlen) = 0;
3147 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3148 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3149 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3150 rdp->cpu = cpu;
3151 rdp->rsp = rsp;
3152 rcu_boot_init_nocb_percpu_data(rdp);
3153 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3154}
3155
3156/*
3157 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3158 * offline event can be happening at a given time. Note also that we
3159 * can accept some slop in the rsp->completed access due to the fact
3160 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3161 */
3162static void
3163rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
3164{
3165 unsigned long flags;
3166 unsigned long mask;
3167 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3168 struct rcu_node *rnp = rcu_get_root(rsp);
3169
3170 /* Exclude new grace periods. */
3171 mutex_lock(&rsp->onoff_mutex);
3172
3173 /* Set up local state, ensuring consistent view of global state. */
3174 raw_spin_lock_irqsave(&rnp->lock, flags);
3175 rdp->beenonline = 1; /* We have now been online. */
3176 rdp->preemptible = preemptible;
3177 rdp->qlen_last_fqs_check = 0;
3178 rdp->n_force_qs_snap = rsp->n_force_qs;
3179 rdp->blimit = blimit;
3180 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
3181 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3182 rcu_sysidle_init_percpu_data(rdp->dynticks);
3183 atomic_set(&rdp->dynticks->dynticks,
3184 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3185 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
3186
3187 /* Add CPU to rcu_node bitmasks. */
3188 rnp = rdp->mynode;
3189 mask = rdp->grpmask;
3190 do {
3191 /* Exclude any attempts to start a new GP on small systems. */
3192 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
3193 rnp->qsmaskinit |= mask;
3194 mask = rnp->grpmask;
3195 if (rnp == rdp->mynode) {
3196 /*
3197 * If there is a grace period in progress, we will
3198 * set up to wait for it next time we run the
3199 * RCU core code.
3200 */
3201 rdp->gpnum = rnp->completed;
3202 rdp->completed = rnp->completed;
3203 rdp->passed_quiesce = 0;
3204 rdp->qs_pending = 0;
3205 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3206 }
3207 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
3208 rnp = rnp->parent;
3209 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
3210 local_irq_restore(flags);
3211
3212 mutex_unlock(&rsp->onoff_mutex);
3213}
3214
3215static void rcu_prepare_cpu(int cpu)
3216{
3217 struct rcu_state *rsp;
3218
3219 for_each_rcu_flavor(rsp)
3220 rcu_init_percpu_data(cpu, rsp,
3221 strcmp(rsp->name, "rcu_preempt") == 0);
3222}
3223
3224/*
3225 * Handle CPU online/offline notification events.
3226 */
3227static int rcu_cpu_notify(struct notifier_block *self,
3228 unsigned long action, void *hcpu)
3229{
3230 long cpu = (long)hcpu;
3231 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
3232 struct rcu_node *rnp = rdp->mynode;
3233 struct rcu_state *rsp;
3234
3235 trace_rcu_utilization(TPS("Start CPU hotplug"));
3236 switch (action) {
3237 case CPU_UP_PREPARE:
3238 case CPU_UP_PREPARE_FROZEN:
3239 rcu_prepare_cpu(cpu);
3240 rcu_prepare_kthreads(cpu);
3241 break;
3242 case CPU_ONLINE:
3243 case CPU_DOWN_FAILED:
3244 rcu_boost_kthread_setaffinity(rnp, -1);
3245 break;
3246 case CPU_DOWN_PREPARE:
3247 rcu_boost_kthread_setaffinity(rnp, cpu);
3248 break;
3249 case CPU_DYING:
3250 case CPU_DYING_FROZEN:
3251 for_each_rcu_flavor(rsp)
3252 rcu_cleanup_dying_cpu(rsp);
3253 break;
3254 case CPU_DEAD:
3255 case CPU_DEAD_FROZEN:
3256 case CPU_UP_CANCELED:
3257 case CPU_UP_CANCELED_FROZEN:
3258 for_each_rcu_flavor(rsp)
3259 rcu_cleanup_dead_cpu(cpu, rsp);
3260 break;
3261 default:
3262 break;
3263 }
3264 trace_rcu_utilization(TPS("End CPU hotplug"));
3265 return NOTIFY_OK;
3266}
3267
3268static int rcu_pm_notify(struct notifier_block *self,
3269 unsigned long action, void *hcpu)
3270{
3271 switch (action) {
3272 case PM_HIBERNATION_PREPARE:
3273 case PM_SUSPEND_PREPARE:
3274 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3275 rcu_expedited = 1;
3276 break;
3277 case PM_POST_HIBERNATION:
3278 case PM_POST_SUSPEND:
3279 rcu_expedited = 0;
3280 break;
3281 default:
3282 break;
3283 }
3284 return NOTIFY_OK;
3285}
3286
3287/*
3288 * Spawn the kthread that handles this RCU flavor's grace periods.
3289 */
3290static int __init rcu_spawn_gp_kthread(void)
3291{
3292 unsigned long flags;
3293 struct rcu_node *rnp;
3294 struct rcu_state *rsp;
3295 struct task_struct *t;
3296
3297 for_each_rcu_flavor(rsp) {
3298 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
3299 BUG_ON(IS_ERR(t));
3300 rnp = rcu_get_root(rsp);
3301 raw_spin_lock_irqsave(&rnp->lock, flags);
3302 rsp->gp_kthread = t;
3303 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3304 rcu_spawn_nocb_kthreads(rsp);
3305 }
3306 return 0;
3307}
3308early_initcall(rcu_spawn_gp_kthread);
3309
3310/*
3311 * This function is invoked towards the end of the scheduler's initialization
3312 * process. Before this is called, the idle task might contain
3313 * RCU read-side critical sections (during which time, this idle
3314 * task is booting the system). After this function is called, the
3315 * idle tasks are prohibited from containing RCU read-side critical
3316 * sections. This function also enables RCU lockdep checking.
3317 */
3318void rcu_scheduler_starting(void)
3319{
3320 WARN_ON(num_online_cpus() != 1);
3321 WARN_ON(nr_context_switches() > 0);
3322 rcu_scheduler_active = 1;
3323}
3324
3325/*
3326 * Compute the per-level fanout, either using the exact fanout specified
3327 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3328 */
3329#ifdef CONFIG_RCU_FANOUT_EXACT
3330static void __init rcu_init_levelspread(struct rcu_state *rsp)
3331{
3332 int i;
3333
3334 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3335 for (i = rcu_num_lvls - 2; i >= 0; i--)
3336 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3337}
3338#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3339static void __init rcu_init_levelspread(struct rcu_state *rsp)
3340{
3341 int ccur;
3342 int cprv;
3343 int i;
3344
3345 cprv = nr_cpu_ids;
3346 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3347 ccur = rsp->levelcnt[i];
3348 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3349 cprv = ccur;
3350 }
3351}
3352#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3353
3354/*
3355 * Helper function for rcu_init() that initializes one rcu_state structure.
3356 */
3357static void __init rcu_init_one(struct rcu_state *rsp,
3358 struct rcu_data __percpu *rda)
3359{
3360 static char *buf[] = { "rcu_node_0",
3361 "rcu_node_1",
3362 "rcu_node_2",
3363 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3364 static char *fqs[] = { "rcu_node_fqs_0",
3365 "rcu_node_fqs_1",
3366 "rcu_node_fqs_2",
3367 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
3368 int cpustride = 1;
3369 int i;
3370 int j;
3371 struct rcu_node *rnp;
3372
3373 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3374
3375 /* Silence gcc 4.8 warning about array index out of range. */
3376 if (rcu_num_lvls > RCU_NUM_LVLS)
3377 panic("rcu_init_one: rcu_num_lvls overflow");
3378
3379 /* Initialize the level-tracking arrays. */
3380
3381 for (i = 0; i < rcu_num_lvls; i++)
3382 rsp->levelcnt[i] = num_rcu_lvl[i];
3383 for (i = 1; i < rcu_num_lvls; i++)
3384 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3385 rcu_init_levelspread(rsp);
3386
3387 /* Initialize the elements themselves, starting from the leaves. */
3388
3389 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3390 cpustride *= rsp->levelspread[i];
3391 rnp = rsp->level[i];
3392 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
3393 raw_spin_lock_init(&rnp->lock);
3394 lockdep_set_class_and_name(&rnp->lock,
3395 &rcu_node_class[i], buf[i]);
3396 raw_spin_lock_init(&rnp->fqslock);
3397 lockdep_set_class_and_name(&rnp->fqslock,
3398 &rcu_fqs_class[i], fqs[i]);
3399 rnp->gpnum = rsp->gpnum;
3400 rnp->completed = rsp->completed;
3401 rnp->qsmask = 0;
3402 rnp->qsmaskinit = 0;
3403 rnp->grplo = j * cpustride;
3404 rnp->grphi = (j + 1) * cpustride - 1;
3405 if (rnp->grphi >= NR_CPUS)
3406 rnp->grphi = NR_CPUS - 1;
3407 if (i == 0) {
3408 rnp->grpnum = 0;
3409 rnp->grpmask = 0;
3410 rnp->parent = NULL;
3411 } else {
3412 rnp->grpnum = j % rsp->levelspread[i - 1];
3413 rnp->grpmask = 1UL << rnp->grpnum;
3414 rnp->parent = rsp->level[i - 1] +
3415 j / rsp->levelspread[i - 1];
3416 }
3417 rnp->level = i;
3418 INIT_LIST_HEAD(&rnp->blkd_tasks);
3419 rcu_init_one_nocb(rnp);
3420 }
3421 }
3422
3423 rsp->rda = rda;
3424 init_waitqueue_head(&rsp->gp_wq);
3425 init_irq_work(&rsp->wakeup_work, rsp_wakeup);
3426 rnp = rsp->level[rcu_num_lvls - 1];
3427 for_each_possible_cpu(i) {
3428 while (i > rnp->grphi)
3429 rnp++;
3430 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3431 rcu_boot_init_percpu_data(i, rsp);
3432 }
3433 list_add(&rsp->flavors, &rcu_struct_flavors);
3434}
3435
3436/*
3437 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3438 * replace the definitions in tree.h because those are needed to size
3439 * the ->node array in the rcu_state structure.
3440 */
3441static void __init rcu_init_geometry(void)
3442{
3443 ulong d;
3444 int i;
3445 int j;
3446 int n = nr_cpu_ids;
3447 int rcu_capacity[MAX_RCU_LVLS + 1];
3448
3449 /*
3450 * Initialize any unspecified boot parameters.
3451 * The default values of jiffies_till_first_fqs and
3452 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3453 * value, which is a function of HZ, then adding one for each
3454 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3455 */
3456 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3457 if (jiffies_till_first_fqs == ULONG_MAX)
3458 jiffies_till_first_fqs = d;
3459 if (jiffies_till_next_fqs == ULONG_MAX)
3460 jiffies_till_next_fqs = d;
3461
3462 /* If the compile-time values are accurate, just leave. */
3463 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3464 nr_cpu_ids == NR_CPUS)
3465 return;
3466 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
3467 rcu_fanout_leaf, nr_cpu_ids);
3468
3469 /*
3470 * Compute number of nodes that can be handled an rcu_node tree
3471 * with the given number of levels. Setting rcu_capacity[0] makes
3472 * some of the arithmetic easier.
3473 */
3474 rcu_capacity[0] = 1;
3475 rcu_capacity[1] = rcu_fanout_leaf;
3476 for (i = 2; i <= MAX_RCU_LVLS; i++)
3477 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3478
3479 /*
3480 * The boot-time rcu_fanout_leaf parameter is only permitted
3481 * to increase the leaf-level fanout, not decrease it. Of course,
3482 * the leaf-level fanout cannot exceed the number of bits in
3483 * the rcu_node masks. Finally, the tree must be able to accommodate
3484 * the configured number of CPUs. Complain and fall back to the
3485 * compile-time values if these limits are exceeded.
3486 */
3487 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3488 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3489 n > rcu_capacity[MAX_RCU_LVLS]) {
3490 WARN_ON(1);
3491 return;
3492 }
3493
3494 /* Calculate the number of rcu_nodes at each level of the tree. */
3495 for (i = 1; i <= MAX_RCU_LVLS; i++)
3496 if (n <= rcu_capacity[i]) {
3497 for (j = 0; j <= i; j++)
3498 num_rcu_lvl[j] =
3499 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3500 rcu_num_lvls = i;
3501 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3502 num_rcu_lvl[j] = 0;
3503 break;
3504 }
3505
3506 /* Calculate the total number of rcu_node structures. */
3507 rcu_num_nodes = 0;
3508 for (i = 0; i <= MAX_RCU_LVLS; i++)
3509 rcu_num_nodes += num_rcu_lvl[i];
3510 rcu_num_nodes -= n;
3511}
3512
3513void __init rcu_init(void)
3514{
3515 int cpu;
3516
3517 rcu_bootup_announce();
3518 rcu_init_geometry();
3519 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3520 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3521 __rcu_init_preempt();
3522 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3523
3524 /*
3525 * We don't need protection against CPU-hotplug here because
3526 * this is called early in boot, before either interrupts
3527 * or the scheduler are operational.
3528 */
3529 cpu_notifier(rcu_cpu_notify, 0);
3530 pm_notifier(rcu_pm_notify, 0);
3531 for_each_online_cpu(cpu)
3532 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3533}
3534
3535#include "tree_plugin.h"
This page took 0.036349 seconds and 5 git commands to generate.