cpu: Provide smpboot_thread_init() on !CONFIG_SMP kernels as well
[deliverable/linux.git] / kernel / rcu / tree.c
... / ...
CommitLineData
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
38#include <linux/nmi.h>
39#include <linux/atomic.h>
40#include <linux/bitops.h>
41#include <linux/export.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/module.h>
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
50#include <linux/kernel_stat.h>
51#include <linux/wait.h>
52#include <linux/kthread.h>
53#include <linux/prefetch.h>
54#include <linux/delay.h>
55#include <linux/stop_machine.h>
56#include <linux/random.h>
57#include <linux/ftrace_event.h>
58#include <linux/suspend.h>
59
60#include "tree.h"
61#include "rcu.h"
62
63MODULE_ALIAS("rcutree");
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "rcutree."
68
69/* Data structures. */
70
71static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73
74/*
75 * In order to export the rcu_state name to the tracing tools, it
76 * needs to be added in the __tracepoint_string section.
77 * This requires defining a separate variable tp_<sname>_varname
78 * that points to the string being used, and this will allow
79 * the tracing userspace tools to be able to decipher the string
80 * address to the matching string.
81 */
82#ifdef CONFIG_TRACING
83# define DEFINE_RCU_TPS(sname) \
84static char sname##_varname[] = #sname; \
85static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
86# define RCU_STATE_NAME(sname) sname##_varname
87#else
88# define DEFINE_RCU_TPS(sname)
89# define RCU_STATE_NAME(sname) __stringify(sname)
90#endif
91
92#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
93DEFINE_RCU_TPS(sname) \
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
95struct rcu_state sname##_state = { \
96 .level = { &sname##_state.node[0] }, \
97 .rda = &sname##_data, \
98 .call = cr, \
99 .fqs_state = RCU_GP_IDLE, \
100 .gpnum = 0UL - 300UL, \
101 .completed = 0UL - 300UL, \
102 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
103 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
104 .orphan_donetail = &sname##_state.orphan_donelist, \
105 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
106 .name = RCU_STATE_NAME(sname), \
107 .abbr = sabbr, \
108}
109
110RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112
113static struct rcu_state *rcu_state_p;
114LIST_HEAD(rcu_struct_flavors);
115
116/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
117static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
118module_param(rcu_fanout_leaf, int, 0444);
119int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
120static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
121 NUM_RCU_LVL_0,
122 NUM_RCU_LVL_1,
123 NUM_RCU_LVL_2,
124 NUM_RCU_LVL_3,
125 NUM_RCU_LVL_4,
126};
127int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128
129/*
130 * The rcu_scheduler_active variable transitions from zero to one just
131 * before the first task is spawned. So when this variable is zero, RCU
132 * can assume that there is but one task, allowing RCU to (for example)
133 * optimize synchronize_sched() to a simple barrier(). When this variable
134 * is one, RCU must actually do all the hard work required to detect real
135 * grace periods. This variable is also used to suppress boot-time false
136 * positives from lockdep-RCU error checking.
137 */
138int rcu_scheduler_active __read_mostly;
139EXPORT_SYMBOL_GPL(rcu_scheduler_active);
140
141/*
142 * The rcu_scheduler_fully_active variable transitions from zero to one
143 * during the early_initcall() processing, which is after the scheduler
144 * is capable of creating new tasks. So RCU processing (for example,
145 * creating tasks for RCU priority boosting) must be delayed until after
146 * rcu_scheduler_fully_active transitions from zero to one. We also
147 * currently delay invocation of any RCU callbacks until after this point.
148 *
149 * It might later prove better for people registering RCU callbacks during
150 * early boot to take responsibility for these callbacks, but one step at
151 * a time.
152 */
153static int rcu_scheduler_fully_active __read_mostly;
154
155static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
156static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
157static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
158static void invoke_rcu_core(void);
159static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
160
161/* rcuc/rcub kthread realtime priority */
162static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
163module_param(kthread_prio, int, 0644);
164
165/* Delay in jiffies for grace-period initialization delays. */
166static int gp_init_delay = IS_ENABLED(CONFIG_RCU_TORTURE_TEST_SLOW_INIT)
167 ? CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY
168 : 0;
169module_param(gp_init_delay, int, 0644);
170
171/*
172 * Track the rcutorture test sequence number and the update version
173 * number within a given test. The rcutorture_testseq is incremented
174 * on every rcutorture module load and unload, so has an odd value
175 * when a test is running. The rcutorture_vernum is set to zero
176 * when rcutorture starts and is incremented on each rcutorture update.
177 * These variables enable correlating rcutorture output with the
178 * RCU tracing information.
179 */
180unsigned long rcutorture_testseq;
181unsigned long rcutorture_vernum;
182
183/*
184 * Compute the mask of online CPUs for the specified rcu_node structure.
185 * This will not be stable unless the rcu_node structure's ->lock is
186 * held, but the bit corresponding to the current CPU will be stable
187 * in most contexts.
188 */
189unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
190{
191 return ACCESS_ONCE(rnp->qsmaskinitnext);
192}
193
194/*
195 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
196 * permit this function to be invoked without holding the root rcu_node
197 * structure's ->lock, but of course results can be subject to change.
198 */
199static int rcu_gp_in_progress(struct rcu_state *rsp)
200{
201 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
202}
203
204/*
205 * Note a quiescent state. Because we do not need to know
206 * how many quiescent states passed, just if there was at least
207 * one since the start of the grace period, this just sets a flag.
208 * The caller must have disabled preemption.
209 */
210void rcu_sched_qs(void)
211{
212 if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
213 trace_rcu_grace_period(TPS("rcu_sched"),
214 __this_cpu_read(rcu_sched_data.gpnum),
215 TPS("cpuqs"));
216 __this_cpu_write(rcu_sched_data.passed_quiesce, 1);
217 }
218}
219
220void rcu_bh_qs(void)
221{
222 if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
223 trace_rcu_grace_period(TPS("rcu_bh"),
224 __this_cpu_read(rcu_bh_data.gpnum),
225 TPS("cpuqs"));
226 __this_cpu_write(rcu_bh_data.passed_quiesce, 1);
227 }
228}
229
230static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
231
232static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
233 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
234 .dynticks = ATOMIC_INIT(1),
235#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
236 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
237 .dynticks_idle = ATOMIC_INIT(1),
238#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
239};
240
241DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
242EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
243
244/*
245 * Let the RCU core know that this CPU has gone through the scheduler,
246 * which is a quiescent state. This is called when the need for a
247 * quiescent state is urgent, so we burn an atomic operation and full
248 * memory barriers to let the RCU core know about it, regardless of what
249 * this CPU might (or might not) do in the near future.
250 *
251 * We inform the RCU core by emulating a zero-duration dyntick-idle
252 * period, which we in turn do by incrementing the ->dynticks counter
253 * by two.
254 */
255static void rcu_momentary_dyntick_idle(void)
256{
257 unsigned long flags;
258 struct rcu_data *rdp;
259 struct rcu_dynticks *rdtp;
260 int resched_mask;
261 struct rcu_state *rsp;
262
263 local_irq_save(flags);
264
265 /*
266 * Yes, we can lose flag-setting operations. This is OK, because
267 * the flag will be set again after some delay.
268 */
269 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
270 raw_cpu_write(rcu_sched_qs_mask, 0);
271
272 /* Find the flavor that needs a quiescent state. */
273 for_each_rcu_flavor(rsp) {
274 rdp = raw_cpu_ptr(rsp->rda);
275 if (!(resched_mask & rsp->flavor_mask))
276 continue;
277 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
278 if (ACCESS_ONCE(rdp->mynode->completed) !=
279 ACCESS_ONCE(rdp->cond_resched_completed))
280 continue;
281
282 /*
283 * Pretend to be momentarily idle for the quiescent state.
284 * This allows the grace-period kthread to record the
285 * quiescent state, with no need for this CPU to do anything
286 * further.
287 */
288 rdtp = this_cpu_ptr(&rcu_dynticks);
289 smp_mb__before_atomic(); /* Earlier stuff before QS. */
290 atomic_add(2, &rdtp->dynticks); /* QS. */
291 smp_mb__after_atomic(); /* Later stuff after QS. */
292 break;
293 }
294 local_irq_restore(flags);
295}
296
297/*
298 * Note a context switch. This is a quiescent state for RCU-sched,
299 * and requires special handling for preemptible RCU.
300 * The caller must have disabled preemption.
301 */
302void rcu_note_context_switch(void)
303{
304 trace_rcu_utilization(TPS("Start context switch"));
305 rcu_sched_qs();
306 rcu_preempt_note_context_switch();
307 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
308 rcu_momentary_dyntick_idle();
309 trace_rcu_utilization(TPS("End context switch"));
310}
311EXPORT_SYMBOL_GPL(rcu_note_context_switch);
312
313/*
314 * Register a quiescent state for all RCU flavors. If there is an
315 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
316 * dyntick-idle quiescent state visible to other CPUs (but only for those
317 * RCU flavors in desperate need of a quiescent state, which will normally
318 * be none of them). Either way, do a lightweight quiescent state for
319 * all RCU flavors.
320 */
321void rcu_all_qs(void)
322{
323 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
324 rcu_momentary_dyntick_idle();
325 this_cpu_inc(rcu_qs_ctr);
326}
327EXPORT_SYMBOL_GPL(rcu_all_qs);
328
329static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
330static long qhimark = 10000; /* If this many pending, ignore blimit. */
331static long qlowmark = 100; /* Once only this many pending, use blimit. */
332
333module_param(blimit, long, 0444);
334module_param(qhimark, long, 0444);
335module_param(qlowmark, long, 0444);
336
337static ulong jiffies_till_first_fqs = ULONG_MAX;
338static ulong jiffies_till_next_fqs = ULONG_MAX;
339
340module_param(jiffies_till_first_fqs, ulong, 0644);
341module_param(jiffies_till_next_fqs, ulong, 0644);
342
343/*
344 * How long the grace period must be before we start recruiting
345 * quiescent-state help from rcu_note_context_switch().
346 */
347static ulong jiffies_till_sched_qs = HZ / 20;
348module_param(jiffies_till_sched_qs, ulong, 0644);
349
350static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
351 struct rcu_data *rdp);
352static void force_qs_rnp(struct rcu_state *rsp,
353 int (*f)(struct rcu_data *rsp, bool *isidle,
354 unsigned long *maxj),
355 bool *isidle, unsigned long *maxj);
356static void force_quiescent_state(struct rcu_state *rsp);
357static int rcu_pending(void);
358
359/*
360 * Return the number of RCU batches started thus far for debug & stats.
361 */
362unsigned long rcu_batches_started(void)
363{
364 return rcu_state_p->gpnum;
365}
366EXPORT_SYMBOL_GPL(rcu_batches_started);
367
368/*
369 * Return the number of RCU-sched batches started thus far for debug & stats.
370 */
371unsigned long rcu_batches_started_sched(void)
372{
373 return rcu_sched_state.gpnum;
374}
375EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
376
377/*
378 * Return the number of RCU BH batches started thus far for debug & stats.
379 */
380unsigned long rcu_batches_started_bh(void)
381{
382 return rcu_bh_state.gpnum;
383}
384EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
385
386/*
387 * Return the number of RCU batches completed thus far for debug & stats.
388 */
389unsigned long rcu_batches_completed(void)
390{
391 return rcu_state_p->completed;
392}
393EXPORT_SYMBOL_GPL(rcu_batches_completed);
394
395/*
396 * Return the number of RCU-sched batches completed thus far for debug & stats.
397 */
398unsigned long rcu_batches_completed_sched(void)
399{
400 return rcu_sched_state.completed;
401}
402EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
403
404/*
405 * Return the number of RCU BH batches completed thus far for debug & stats.
406 */
407unsigned long rcu_batches_completed_bh(void)
408{
409 return rcu_bh_state.completed;
410}
411EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
412
413/*
414 * Force a quiescent state.
415 */
416void rcu_force_quiescent_state(void)
417{
418 force_quiescent_state(rcu_state_p);
419}
420EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
421
422/*
423 * Force a quiescent state for RCU BH.
424 */
425void rcu_bh_force_quiescent_state(void)
426{
427 force_quiescent_state(&rcu_bh_state);
428}
429EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
430
431/*
432 * Force a quiescent state for RCU-sched.
433 */
434void rcu_sched_force_quiescent_state(void)
435{
436 force_quiescent_state(&rcu_sched_state);
437}
438EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
439
440/*
441 * Show the state of the grace-period kthreads.
442 */
443void show_rcu_gp_kthreads(void)
444{
445 struct rcu_state *rsp;
446
447 for_each_rcu_flavor(rsp) {
448 pr_info("%s: wait state: %d ->state: %#lx\n",
449 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
450 /* sched_show_task(rsp->gp_kthread); */
451 }
452}
453EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
454
455/*
456 * Record the number of times rcutorture tests have been initiated and
457 * terminated. This information allows the debugfs tracing stats to be
458 * correlated to the rcutorture messages, even when the rcutorture module
459 * is being repeatedly loaded and unloaded. In other words, we cannot
460 * store this state in rcutorture itself.
461 */
462void rcutorture_record_test_transition(void)
463{
464 rcutorture_testseq++;
465 rcutorture_vernum = 0;
466}
467EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
468
469/*
470 * Send along grace-period-related data for rcutorture diagnostics.
471 */
472void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
473 unsigned long *gpnum, unsigned long *completed)
474{
475 struct rcu_state *rsp = NULL;
476
477 switch (test_type) {
478 case RCU_FLAVOR:
479 rsp = rcu_state_p;
480 break;
481 case RCU_BH_FLAVOR:
482 rsp = &rcu_bh_state;
483 break;
484 case RCU_SCHED_FLAVOR:
485 rsp = &rcu_sched_state;
486 break;
487 default:
488 break;
489 }
490 if (rsp != NULL) {
491 *flags = ACCESS_ONCE(rsp->gp_flags);
492 *gpnum = ACCESS_ONCE(rsp->gpnum);
493 *completed = ACCESS_ONCE(rsp->completed);
494 return;
495 }
496 *flags = 0;
497 *gpnum = 0;
498 *completed = 0;
499}
500EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
501
502/*
503 * Record the number of writer passes through the current rcutorture test.
504 * This is also used to correlate debugfs tracing stats with the rcutorture
505 * messages.
506 */
507void rcutorture_record_progress(unsigned long vernum)
508{
509 rcutorture_vernum++;
510}
511EXPORT_SYMBOL_GPL(rcutorture_record_progress);
512
513/*
514 * Does the CPU have callbacks ready to be invoked?
515 */
516static int
517cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
518{
519 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
520 rdp->nxttail[RCU_DONE_TAIL] != NULL;
521}
522
523/*
524 * Return the root node of the specified rcu_state structure.
525 */
526static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
527{
528 return &rsp->node[0];
529}
530
531/*
532 * Is there any need for future grace periods?
533 * Interrupts must be disabled. If the caller does not hold the root
534 * rnp_node structure's ->lock, the results are advisory only.
535 */
536static int rcu_future_needs_gp(struct rcu_state *rsp)
537{
538 struct rcu_node *rnp = rcu_get_root(rsp);
539 int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
540 int *fp = &rnp->need_future_gp[idx];
541
542 return ACCESS_ONCE(*fp);
543}
544
545/*
546 * Does the current CPU require a not-yet-started grace period?
547 * The caller must have disabled interrupts to prevent races with
548 * normal callback registry.
549 */
550static int
551cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
552{
553 int i;
554
555 if (rcu_gp_in_progress(rsp))
556 return 0; /* No, a grace period is already in progress. */
557 if (rcu_future_needs_gp(rsp))
558 return 1; /* Yes, a no-CBs CPU needs one. */
559 if (!rdp->nxttail[RCU_NEXT_TAIL])
560 return 0; /* No, this is a no-CBs (or offline) CPU. */
561 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
562 return 1; /* Yes, this CPU has newly registered callbacks. */
563 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
564 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
565 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
566 rdp->nxtcompleted[i]))
567 return 1; /* Yes, CBs for future grace period. */
568 return 0; /* No grace period needed. */
569}
570
571/*
572 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
573 *
574 * If the new value of the ->dynticks_nesting counter now is zero,
575 * we really have entered idle, and must do the appropriate accounting.
576 * The caller must have disabled interrupts.
577 */
578static void rcu_eqs_enter_common(long long oldval, bool user)
579{
580 struct rcu_state *rsp;
581 struct rcu_data *rdp;
582 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
583
584 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
585 if (!user && !is_idle_task(current)) {
586 struct task_struct *idle __maybe_unused =
587 idle_task(smp_processor_id());
588
589 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
590 ftrace_dump(DUMP_ORIG);
591 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
592 current->pid, current->comm,
593 idle->pid, idle->comm); /* must be idle task! */
594 }
595 for_each_rcu_flavor(rsp) {
596 rdp = this_cpu_ptr(rsp->rda);
597 do_nocb_deferred_wakeup(rdp);
598 }
599 rcu_prepare_for_idle();
600 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
601 smp_mb__before_atomic(); /* See above. */
602 atomic_inc(&rdtp->dynticks);
603 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
604 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
605 rcu_dynticks_task_enter();
606
607 /*
608 * It is illegal to enter an extended quiescent state while
609 * in an RCU read-side critical section.
610 */
611 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
612 "Illegal idle entry in RCU read-side critical section.");
613 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
614 "Illegal idle entry in RCU-bh read-side critical section.");
615 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
616 "Illegal idle entry in RCU-sched read-side critical section.");
617}
618
619/*
620 * Enter an RCU extended quiescent state, which can be either the
621 * idle loop or adaptive-tickless usermode execution.
622 */
623static void rcu_eqs_enter(bool user)
624{
625 long long oldval;
626 struct rcu_dynticks *rdtp;
627
628 rdtp = this_cpu_ptr(&rcu_dynticks);
629 oldval = rdtp->dynticks_nesting;
630 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
631 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
632 rdtp->dynticks_nesting = 0;
633 rcu_eqs_enter_common(oldval, user);
634 } else {
635 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
636 }
637}
638
639/**
640 * rcu_idle_enter - inform RCU that current CPU is entering idle
641 *
642 * Enter idle mode, in other words, -leave- the mode in which RCU
643 * read-side critical sections can occur. (Though RCU read-side
644 * critical sections can occur in irq handlers in idle, a possibility
645 * handled by irq_enter() and irq_exit().)
646 *
647 * We crowbar the ->dynticks_nesting field to zero to allow for
648 * the possibility of usermode upcalls having messed up our count
649 * of interrupt nesting level during the prior busy period.
650 */
651void rcu_idle_enter(void)
652{
653 unsigned long flags;
654
655 local_irq_save(flags);
656 rcu_eqs_enter(false);
657 rcu_sysidle_enter(0);
658 local_irq_restore(flags);
659}
660EXPORT_SYMBOL_GPL(rcu_idle_enter);
661
662#ifdef CONFIG_RCU_USER_QS
663/**
664 * rcu_user_enter - inform RCU that we are resuming userspace.
665 *
666 * Enter RCU idle mode right before resuming userspace. No use of RCU
667 * is permitted between this call and rcu_user_exit(). This way the
668 * CPU doesn't need to maintain the tick for RCU maintenance purposes
669 * when the CPU runs in userspace.
670 */
671void rcu_user_enter(void)
672{
673 rcu_eqs_enter(1);
674}
675#endif /* CONFIG_RCU_USER_QS */
676
677/**
678 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
679 *
680 * Exit from an interrupt handler, which might possibly result in entering
681 * idle mode, in other words, leaving the mode in which read-side critical
682 * sections can occur.
683 *
684 * This code assumes that the idle loop never does anything that might
685 * result in unbalanced calls to irq_enter() and irq_exit(). If your
686 * architecture violates this assumption, RCU will give you what you
687 * deserve, good and hard. But very infrequently and irreproducibly.
688 *
689 * Use things like work queues to work around this limitation.
690 *
691 * You have been warned.
692 */
693void rcu_irq_exit(void)
694{
695 unsigned long flags;
696 long long oldval;
697 struct rcu_dynticks *rdtp;
698
699 local_irq_save(flags);
700 rdtp = this_cpu_ptr(&rcu_dynticks);
701 oldval = rdtp->dynticks_nesting;
702 rdtp->dynticks_nesting--;
703 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
704 if (rdtp->dynticks_nesting)
705 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
706 else
707 rcu_eqs_enter_common(oldval, true);
708 rcu_sysidle_enter(1);
709 local_irq_restore(flags);
710}
711
712/*
713 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
714 *
715 * If the new value of the ->dynticks_nesting counter was previously zero,
716 * we really have exited idle, and must do the appropriate accounting.
717 * The caller must have disabled interrupts.
718 */
719static void rcu_eqs_exit_common(long long oldval, int user)
720{
721 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
722
723 rcu_dynticks_task_exit();
724 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
725 atomic_inc(&rdtp->dynticks);
726 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
727 smp_mb__after_atomic(); /* See above. */
728 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
729 rcu_cleanup_after_idle();
730 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
731 if (!user && !is_idle_task(current)) {
732 struct task_struct *idle __maybe_unused =
733 idle_task(smp_processor_id());
734
735 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
736 oldval, rdtp->dynticks_nesting);
737 ftrace_dump(DUMP_ORIG);
738 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
739 current->pid, current->comm,
740 idle->pid, idle->comm); /* must be idle task! */
741 }
742}
743
744/*
745 * Exit an RCU extended quiescent state, which can be either the
746 * idle loop or adaptive-tickless usermode execution.
747 */
748static void rcu_eqs_exit(bool user)
749{
750 struct rcu_dynticks *rdtp;
751 long long oldval;
752
753 rdtp = this_cpu_ptr(&rcu_dynticks);
754 oldval = rdtp->dynticks_nesting;
755 WARN_ON_ONCE(oldval < 0);
756 if (oldval & DYNTICK_TASK_NEST_MASK) {
757 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
758 } else {
759 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
760 rcu_eqs_exit_common(oldval, user);
761 }
762}
763
764/**
765 * rcu_idle_exit - inform RCU that current CPU is leaving idle
766 *
767 * Exit idle mode, in other words, -enter- the mode in which RCU
768 * read-side critical sections can occur.
769 *
770 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
771 * allow for the possibility of usermode upcalls messing up our count
772 * of interrupt nesting level during the busy period that is just
773 * now starting.
774 */
775void rcu_idle_exit(void)
776{
777 unsigned long flags;
778
779 local_irq_save(flags);
780 rcu_eqs_exit(false);
781 rcu_sysidle_exit(0);
782 local_irq_restore(flags);
783}
784EXPORT_SYMBOL_GPL(rcu_idle_exit);
785
786#ifdef CONFIG_RCU_USER_QS
787/**
788 * rcu_user_exit - inform RCU that we are exiting userspace.
789 *
790 * Exit RCU idle mode while entering the kernel because it can
791 * run a RCU read side critical section anytime.
792 */
793void rcu_user_exit(void)
794{
795 rcu_eqs_exit(1);
796}
797#endif /* CONFIG_RCU_USER_QS */
798
799/**
800 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
801 *
802 * Enter an interrupt handler, which might possibly result in exiting
803 * idle mode, in other words, entering the mode in which read-side critical
804 * sections can occur.
805 *
806 * Note that the Linux kernel is fully capable of entering an interrupt
807 * handler that it never exits, for example when doing upcalls to
808 * user mode! This code assumes that the idle loop never does upcalls to
809 * user mode. If your architecture does do upcalls from the idle loop (or
810 * does anything else that results in unbalanced calls to the irq_enter()
811 * and irq_exit() functions), RCU will give you what you deserve, good
812 * and hard. But very infrequently and irreproducibly.
813 *
814 * Use things like work queues to work around this limitation.
815 *
816 * You have been warned.
817 */
818void rcu_irq_enter(void)
819{
820 unsigned long flags;
821 struct rcu_dynticks *rdtp;
822 long long oldval;
823
824 local_irq_save(flags);
825 rdtp = this_cpu_ptr(&rcu_dynticks);
826 oldval = rdtp->dynticks_nesting;
827 rdtp->dynticks_nesting++;
828 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
829 if (oldval)
830 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
831 else
832 rcu_eqs_exit_common(oldval, true);
833 rcu_sysidle_exit(1);
834 local_irq_restore(flags);
835}
836
837/**
838 * rcu_nmi_enter - inform RCU of entry to NMI context
839 *
840 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
841 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
842 * that the CPU is active. This implementation permits nested NMIs, as
843 * long as the nesting level does not overflow an int. (You will probably
844 * run out of stack space first.)
845 */
846void rcu_nmi_enter(void)
847{
848 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
849 int incby = 2;
850
851 /* Complain about underflow. */
852 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
853
854 /*
855 * If idle from RCU viewpoint, atomically increment ->dynticks
856 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
857 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
858 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
859 * to be in the outermost NMI handler that interrupted an RCU-idle
860 * period (observation due to Andy Lutomirski).
861 */
862 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
863 smp_mb__before_atomic(); /* Force delay from prior write. */
864 atomic_inc(&rdtp->dynticks);
865 /* atomic_inc() before later RCU read-side crit sects */
866 smp_mb__after_atomic(); /* See above. */
867 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
868 incby = 1;
869 }
870 rdtp->dynticks_nmi_nesting += incby;
871 barrier();
872}
873
874/**
875 * rcu_nmi_exit - inform RCU of exit from NMI context
876 *
877 * If we are returning from the outermost NMI handler that interrupted an
878 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
879 * to let the RCU grace-period handling know that the CPU is back to
880 * being RCU-idle.
881 */
882void rcu_nmi_exit(void)
883{
884 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
885
886 /*
887 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
888 * (We are exiting an NMI handler, so RCU better be paying attention
889 * to us!)
890 */
891 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
892 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
893
894 /*
895 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
896 * leave it in non-RCU-idle state.
897 */
898 if (rdtp->dynticks_nmi_nesting != 1) {
899 rdtp->dynticks_nmi_nesting -= 2;
900 return;
901 }
902
903 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
904 rdtp->dynticks_nmi_nesting = 0;
905 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
906 smp_mb__before_atomic(); /* See above. */
907 atomic_inc(&rdtp->dynticks);
908 smp_mb__after_atomic(); /* Force delay to next write. */
909 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
910}
911
912/**
913 * __rcu_is_watching - are RCU read-side critical sections safe?
914 *
915 * Return true if RCU is watching the running CPU, which means that
916 * this CPU can safely enter RCU read-side critical sections. Unlike
917 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
918 * least disabled preemption.
919 */
920bool notrace __rcu_is_watching(void)
921{
922 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
923}
924
925/**
926 * rcu_is_watching - see if RCU thinks that the current CPU is idle
927 *
928 * If the current CPU is in its idle loop and is neither in an interrupt
929 * or NMI handler, return true.
930 */
931bool notrace rcu_is_watching(void)
932{
933 bool ret;
934
935 preempt_disable();
936 ret = __rcu_is_watching();
937 preempt_enable();
938 return ret;
939}
940EXPORT_SYMBOL_GPL(rcu_is_watching);
941
942#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
943
944/*
945 * Is the current CPU online? Disable preemption to avoid false positives
946 * that could otherwise happen due to the current CPU number being sampled,
947 * this task being preempted, its old CPU being taken offline, resuming
948 * on some other CPU, then determining that its old CPU is now offline.
949 * It is OK to use RCU on an offline processor during initial boot, hence
950 * the check for rcu_scheduler_fully_active. Note also that it is OK
951 * for a CPU coming online to use RCU for one jiffy prior to marking itself
952 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
953 * offline to continue to use RCU for one jiffy after marking itself
954 * offline in the cpu_online_mask. This leniency is necessary given the
955 * non-atomic nature of the online and offline processing, for example,
956 * the fact that a CPU enters the scheduler after completing the CPU_DYING
957 * notifiers.
958 *
959 * This is also why RCU internally marks CPUs online during the
960 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
961 *
962 * Disable checking if in an NMI handler because we cannot safely report
963 * errors from NMI handlers anyway.
964 */
965bool rcu_lockdep_current_cpu_online(void)
966{
967 struct rcu_data *rdp;
968 struct rcu_node *rnp;
969 bool ret;
970
971 if (in_nmi())
972 return true;
973 preempt_disable();
974 rdp = this_cpu_ptr(&rcu_sched_data);
975 rnp = rdp->mynode;
976 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
977 !rcu_scheduler_fully_active;
978 preempt_enable();
979 return ret;
980}
981EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
982
983#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
984
985/**
986 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
987 *
988 * If the current CPU is idle or running at a first-level (not nested)
989 * interrupt from idle, return true. The caller must have at least
990 * disabled preemption.
991 */
992static int rcu_is_cpu_rrupt_from_idle(void)
993{
994 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
995}
996
997/*
998 * Snapshot the specified CPU's dynticks counter so that we can later
999 * credit them with an implicit quiescent state. Return 1 if this CPU
1000 * is in dynticks idle mode, which is an extended quiescent state.
1001 */
1002static int dyntick_save_progress_counter(struct rcu_data *rdp,
1003 bool *isidle, unsigned long *maxj)
1004{
1005 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1006 rcu_sysidle_check_cpu(rdp, isidle, maxj);
1007 if ((rdp->dynticks_snap & 0x1) == 0) {
1008 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1009 return 1;
1010 } else {
1011 if (ULONG_CMP_LT(ACCESS_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1012 rdp->mynode->gpnum))
1013 ACCESS_ONCE(rdp->gpwrap) = true;
1014 return 0;
1015 }
1016}
1017
1018/*
1019 * Return true if the specified CPU has passed through a quiescent
1020 * state by virtue of being in or having passed through an dynticks
1021 * idle state since the last call to dyntick_save_progress_counter()
1022 * for this same CPU, or by virtue of having been offline.
1023 */
1024static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1025 bool *isidle, unsigned long *maxj)
1026{
1027 unsigned int curr;
1028 int *rcrmp;
1029 unsigned int snap;
1030
1031 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1032 snap = (unsigned int)rdp->dynticks_snap;
1033
1034 /*
1035 * If the CPU passed through or entered a dynticks idle phase with
1036 * no active irq/NMI handlers, then we can safely pretend that the CPU
1037 * already acknowledged the request to pass through a quiescent
1038 * state. Either way, that CPU cannot possibly be in an RCU
1039 * read-side critical section that started before the beginning
1040 * of the current RCU grace period.
1041 */
1042 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1043 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1044 rdp->dynticks_fqs++;
1045 return 1;
1046 }
1047
1048 /*
1049 * Check for the CPU being offline, but only if the grace period
1050 * is old enough. We don't need to worry about the CPU changing
1051 * state: If we see it offline even once, it has been through a
1052 * quiescent state.
1053 *
1054 * The reason for insisting that the grace period be at least
1055 * one jiffy old is that CPUs that are not quite online and that
1056 * have just gone offline can still execute RCU read-side critical
1057 * sections.
1058 */
1059 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1060 return 0; /* Grace period is not old enough. */
1061 barrier();
1062 if (cpu_is_offline(rdp->cpu)) {
1063 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1064 rdp->offline_fqs++;
1065 return 1;
1066 }
1067
1068 /*
1069 * A CPU running for an extended time within the kernel can
1070 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1071 * even context-switching back and forth between a pair of
1072 * in-kernel CPU-bound tasks cannot advance grace periods.
1073 * So if the grace period is old enough, make the CPU pay attention.
1074 * Note that the unsynchronized assignments to the per-CPU
1075 * rcu_sched_qs_mask variable are safe. Yes, setting of
1076 * bits can be lost, but they will be set again on the next
1077 * force-quiescent-state pass. So lost bit sets do not result
1078 * in incorrect behavior, merely in a grace period lasting
1079 * a few jiffies longer than it might otherwise. Because
1080 * there are at most four threads involved, and because the
1081 * updates are only once every few jiffies, the probability of
1082 * lossage (and thus of slight grace-period extension) is
1083 * quite low.
1084 *
1085 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1086 * is set too high, we override with half of the RCU CPU stall
1087 * warning delay.
1088 */
1089 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1090 if (ULONG_CMP_GE(jiffies,
1091 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1092 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1093 if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1094 ACCESS_ONCE(rdp->cond_resched_completed) =
1095 ACCESS_ONCE(rdp->mynode->completed);
1096 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1097 ACCESS_ONCE(*rcrmp) =
1098 ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask;
1099 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1100 rdp->rsp->jiffies_resched += 5; /* Enable beating. */
1101 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1102 /* Time to beat on that CPU again! */
1103 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1104 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1105 }
1106 }
1107
1108 return 0;
1109}
1110
1111static void record_gp_stall_check_time(struct rcu_state *rsp)
1112{
1113 unsigned long j = jiffies;
1114 unsigned long j1;
1115
1116 rsp->gp_start = j;
1117 smp_wmb(); /* Record start time before stall time. */
1118 j1 = rcu_jiffies_till_stall_check();
1119 ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
1120 rsp->jiffies_resched = j + j1 / 2;
1121 rsp->n_force_qs_gpstart = ACCESS_ONCE(rsp->n_force_qs);
1122}
1123
1124/*
1125 * Complain about starvation of grace-period kthread.
1126 */
1127static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1128{
1129 unsigned long gpa;
1130 unsigned long j;
1131
1132 j = jiffies;
1133 gpa = ACCESS_ONCE(rsp->gp_activity);
1134 if (j - gpa > 2 * HZ)
1135 pr_err("%s kthread starved for %ld jiffies!\n",
1136 rsp->name, j - gpa);
1137}
1138
1139/*
1140 * Dump stacks of all tasks running on stalled CPUs.
1141 */
1142static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1143{
1144 int cpu;
1145 unsigned long flags;
1146 struct rcu_node *rnp;
1147
1148 rcu_for_each_leaf_node(rsp, rnp) {
1149 raw_spin_lock_irqsave(&rnp->lock, flags);
1150 if (rnp->qsmask != 0) {
1151 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1152 if (rnp->qsmask & (1UL << cpu))
1153 dump_cpu_task(rnp->grplo + cpu);
1154 }
1155 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1156 }
1157}
1158
1159static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1160{
1161 int cpu;
1162 long delta;
1163 unsigned long flags;
1164 unsigned long gpa;
1165 unsigned long j;
1166 int ndetected = 0;
1167 struct rcu_node *rnp = rcu_get_root(rsp);
1168 long totqlen = 0;
1169
1170 /* Only let one CPU complain about others per time interval. */
1171
1172 raw_spin_lock_irqsave(&rnp->lock, flags);
1173 delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
1174 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1175 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1176 return;
1177 }
1178 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1179 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1180
1181 /*
1182 * OK, time to rat on our buddy...
1183 * See Documentation/RCU/stallwarn.txt for info on how to debug
1184 * RCU CPU stall warnings.
1185 */
1186 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1187 rsp->name);
1188 print_cpu_stall_info_begin();
1189 rcu_for_each_leaf_node(rsp, rnp) {
1190 raw_spin_lock_irqsave(&rnp->lock, flags);
1191 ndetected += rcu_print_task_stall(rnp);
1192 if (rnp->qsmask != 0) {
1193 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1194 if (rnp->qsmask & (1UL << cpu)) {
1195 print_cpu_stall_info(rsp,
1196 rnp->grplo + cpu);
1197 ndetected++;
1198 }
1199 }
1200 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1201 }
1202
1203 print_cpu_stall_info_end();
1204 for_each_possible_cpu(cpu)
1205 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1206 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1207 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1208 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1209 if (ndetected) {
1210 rcu_dump_cpu_stacks(rsp);
1211 } else {
1212 if (ACCESS_ONCE(rsp->gpnum) != gpnum ||
1213 ACCESS_ONCE(rsp->completed) == gpnum) {
1214 pr_err("INFO: Stall ended before state dump start\n");
1215 } else {
1216 j = jiffies;
1217 gpa = ACCESS_ONCE(rsp->gp_activity);
1218 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1219 rsp->name, j - gpa, j, gpa,
1220 jiffies_till_next_fqs,
1221 rcu_get_root(rsp)->qsmask);
1222 /* In this case, the current CPU might be at fault. */
1223 sched_show_task(current);
1224 }
1225 }
1226
1227 /* Complain about tasks blocking the grace period. */
1228 rcu_print_detail_task_stall(rsp);
1229
1230 rcu_check_gp_kthread_starvation(rsp);
1231
1232 force_quiescent_state(rsp); /* Kick them all. */
1233}
1234
1235static void print_cpu_stall(struct rcu_state *rsp)
1236{
1237 int cpu;
1238 unsigned long flags;
1239 struct rcu_node *rnp = rcu_get_root(rsp);
1240 long totqlen = 0;
1241
1242 /*
1243 * OK, time to rat on ourselves...
1244 * See Documentation/RCU/stallwarn.txt for info on how to debug
1245 * RCU CPU stall warnings.
1246 */
1247 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1248 print_cpu_stall_info_begin();
1249 print_cpu_stall_info(rsp, smp_processor_id());
1250 print_cpu_stall_info_end();
1251 for_each_possible_cpu(cpu)
1252 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1253 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1254 jiffies - rsp->gp_start,
1255 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1256
1257 rcu_check_gp_kthread_starvation(rsp);
1258
1259 rcu_dump_cpu_stacks(rsp);
1260
1261 raw_spin_lock_irqsave(&rnp->lock, flags);
1262 if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
1263 ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
1264 3 * rcu_jiffies_till_stall_check() + 3;
1265 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1266
1267 /*
1268 * Attempt to revive the RCU machinery by forcing a context switch.
1269 *
1270 * A context switch would normally allow the RCU state machine to make
1271 * progress and it could be we're stuck in kernel space without context
1272 * switches for an entirely unreasonable amount of time.
1273 */
1274 resched_cpu(smp_processor_id());
1275}
1276
1277static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1278{
1279 unsigned long completed;
1280 unsigned long gpnum;
1281 unsigned long gps;
1282 unsigned long j;
1283 unsigned long js;
1284 struct rcu_node *rnp;
1285
1286 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1287 return;
1288 j = jiffies;
1289
1290 /*
1291 * Lots of memory barriers to reject false positives.
1292 *
1293 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1294 * then rsp->gp_start, and finally rsp->completed. These values
1295 * are updated in the opposite order with memory barriers (or
1296 * equivalent) during grace-period initialization and cleanup.
1297 * Now, a false positive can occur if we get an new value of
1298 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1299 * the memory barriers, the only way that this can happen is if one
1300 * grace period ends and another starts between these two fetches.
1301 * Detect this by comparing rsp->completed with the previous fetch
1302 * from rsp->gpnum.
1303 *
1304 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1305 * and rsp->gp_start suffice to forestall false positives.
1306 */
1307 gpnum = ACCESS_ONCE(rsp->gpnum);
1308 smp_rmb(); /* Pick up ->gpnum first... */
1309 js = ACCESS_ONCE(rsp->jiffies_stall);
1310 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1311 gps = ACCESS_ONCE(rsp->gp_start);
1312 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1313 completed = ACCESS_ONCE(rsp->completed);
1314 if (ULONG_CMP_GE(completed, gpnum) ||
1315 ULONG_CMP_LT(j, js) ||
1316 ULONG_CMP_GE(gps, js))
1317 return; /* No stall or GP completed since entering function. */
1318 rnp = rdp->mynode;
1319 if (rcu_gp_in_progress(rsp) &&
1320 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
1321
1322 /* We haven't checked in, so go dump stack. */
1323 print_cpu_stall(rsp);
1324
1325 } else if (rcu_gp_in_progress(rsp) &&
1326 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1327
1328 /* They had a few time units to dump stack, so complain. */
1329 print_other_cpu_stall(rsp, gpnum);
1330 }
1331}
1332
1333/**
1334 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1335 *
1336 * Set the stall-warning timeout way off into the future, thus preventing
1337 * any RCU CPU stall-warning messages from appearing in the current set of
1338 * RCU grace periods.
1339 *
1340 * The caller must disable hard irqs.
1341 */
1342void rcu_cpu_stall_reset(void)
1343{
1344 struct rcu_state *rsp;
1345
1346 for_each_rcu_flavor(rsp)
1347 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
1348}
1349
1350/*
1351 * Initialize the specified rcu_data structure's default callback list
1352 * to empty. The default callback list is the one that is not used by
1353 * no-callbacks CPUs.
1354 */
1355static void init_default_callback_list(struct rcu_data *rdp)
1356{
1357 int i;
1358
1359 rdp->nxtlist = NULL;
1360 for (i = 0; i < RCU_NEXT_SIZE; i++)
1361 rdp->nxttail[i] = &rdp->nxtlist;
1362}
1363
1364/*
1365 * Initialize the specified rcu_data structure's callback list to empty.
1366 */
1367static void init_callback_list(struct rcu_data *rdp)
1368{
1369 if (init_nocb_callback_list(rdp))
1370 return;
1371 init_default_callback_list(rdp);
1372}
1373
1374/*
1375 * Determine the value that ->completed will have at the end of the
1376 * next subsequent grace period. This is used to tag callbacks so that
1377 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1378 * been dyntick-idle for an extended period with callbacks under the
1379 * influence of RCU_FAST_NO_HZ.
1380 *
1381 * The caller must hold rnp->lock with interrupts disabled.
1382 */
1383static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1384 struct rcu_node *rnp)
1385{
1386 /*
1387 * If RCU is idle, we just wait for the next grace period.
1388 * But we can only be sure that RCU is idle if we are looking
1389 * at the root rcu_node structure -- otherwise, a new grace
1390 * period might have started, but just not yet gotten around
1391 * to initializing the current non-root rcu_node structure.
1392 */
1393 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1394 return rnp->completed + 1;
1395
1396 /*
1397 * Otherwise, wait for a possible partial grace period and
1398 * then the subsequent full grace period.
1399 */
1400 return rnp->completed + 2;
1401}
1402
1403/*
1404 * Trace-event helper function for rcu_start_future_gp() and
1405 * rcu_nocb_wait_gp().
1406 */
1407static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1408 unsigned long c, const char *s)
1409{
1410 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1411 rnp->completed, c, rnp->level,
1412 rnp->grplo, rnp->grphi, s);
1413}
1414
1415/*
1416 * Start some future grace period, as needed to handle newly arrived
1417 * callbacks. The required future grace periods are recorded in each
1418 * rcu_node structure's ->need_future_gp field. Returns true if there
1419 * is reason to awaken the grace-period kthread.
1420 *
1421 * The caller must hold the specified rcu_node structure's ->lock.
1422 */
1423static bool __maybe_unused
1424rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1425 unsigned long *c_out)
1426{
1427 unsigned long c;
1428 int i;
1429 bool ret = false;
1430 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1431
1432 /*
1433 * Pick up grace-period number for new callbacks. If this
1434 * grace period is already marked as needed, return to the caller.
1435 */
1436 c = rcu_cbs_completed(rdp->rsp, rnp);
1437 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1438 if (rnp->need_future_gp[c & 0x1]) {
1439 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1440 goto out;
1441 }
1442
1443 /*
1444 * If either this rcu_node structure or the root rcu_node structure
1445 * believe that a grace period is in progress, then we must wait
1446 * for the one following, which is in "c". Because our request
1447 * will be noticed at the end of the current grace period, we don't
1448 * need to explicitly start one. We only do the lockless check
1449 * of rnp_root's fields if the current rcu_node structure thinks
1450 * there is no grace period in flight, and because we hold rnp->lock,
1451 * the only possible change is when rnp_root's two fields are
1452 * equal, in which case rnp_root->gpnum might be concurrently
1453 * incremented. But that is OK, as it will just result in our
1454 * doing some extra useless work.
1455 */
1456 if (rnp->gpnum != rnp->completed ||
1457 ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) {
1458 rnp->need_future_gp[c & 0x1]++;
1459 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1460 goto out;
1461 }
1462
1463 /*
1464 * There might be no grace period in progress. If we don't already
1465 * hold it, acquire the root rcu_node structure's lock in order to
1466 * start one (if needed).
1467 */
1468 if (rnp != rnp_root) {
1469 raw_spin_lock(&rnp_root->lock);
1470 smp_mb__after_unlock_lock();
1471 }
1472
1473 /*
1474 * Get a new grace-period number. If there really is no grace
1475 * period in progress, it will be smaller than the one we obtained
1476 * earlier. Adjust callbacks as needed. Note that even no-CBs
1477 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1478 */
1479 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1480 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1481 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1482 rdp->nxtcompleted[i] = c;
1483
1484 /*
1485 * If the needed for the required grace period is already
1486 * recorded, trace and leave.
1487 */
1488 if (rnp_root->need_future_gp[c & 0x1]) {
1489 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1490 goto unlock_out;
1491 }
1492
1493 /* Record the need for the future grace period. */
1494 rnp_root->need_future_gp[c & 0x1]++;
1495
1496 /* If a grace period is not already in progress, start one. */
1497 if (rnp_root->gpnum != rnp_root->completed) {
1498 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1499 } else {
1500 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1501 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1502 }
1503unlock_out:
1504 if (rnp != rnp_root)
1505 raw_spin_unlock(&rnp_root->lock);
1506out:
1507 if (c_out != NULL)
1508 *c_out = c;
1509 return ret;
1510}
1511
1512/*
1513 * Clean up any old requests for the just-ended grace period. Also return
1514 * whether any additional grace periods have been requested. Also invoke
1515 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1516 * waiting for this grace period to complete.
1517 */
1518static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1519{
1520 int c = rnp->completed;
1521 int needmore;
1522 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1523
1524 rcu_nocb_gp_cleanup(rsp, rnp);
1525 rnp->need_future_gp[c & 0x1] = 0;
1526 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1527 trace_rcu_future_gp(rnp, rdp, c,
1528 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1529 return needmore;
1530}
1531
1532/*
1533 * Awaken the grace-period kthread for the specified flavor of RCU.
1534 * Don't do a self-awaken, and don't bother awakening when there is
1535 * nothing for the grace-period kthread to do (as in several CPUs
1536 * raced to awaken, and we lost), and finally don't try to awaken
1537 * a kthread that has not yet been created.
1538 */
1539static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1540{
1541 if (current == rsp->gp_kthread ||
1542 !ACCESS_ONCE(rsp->gp_flags) ||
1543 !rsp->gp_kthread)
1544 return;
1545 wake_up(&rsp->gp_wq);
1546}
1547
1548/*
1549 * If there is room, assign a ->completed number to any callbacks on
1550 * this CPU that have not already been assigned. Also accelerate any
1551 * callbacks that were previously assigned a ->completed number that has
1552 * since proven to be too conservative, which can happen if callbacks get
1553 * assigned a ->completed number while RCU is idle, but with reference to
1554 * a non-root rcu_node structure. This function is idempotent, so it does
1555 * not hurt to call it repeatedly. Returns an flag saying that we should
1556 * awaken the RCU grace-period kthread.
1557 *
1558 * The caller must hold rnp->lock with interrupts disabled.
1559 */
1560static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1561 struct rcu_data *rdp)
1562{
1563 unsigned long c;
1564 int i;
1565 bool ret;
1566
1567 /* If the CPU has no callbacks, nothing to do. */
1568 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1569 return false;
1570
1571 /*
1572 * Starting from the sublist containing the callbacks most
1573 * recently assigned a ->completed number and working down, find the
1574 * first sublist that is not assignable to an upcoming grace period.
1575 * Such a sublist has something in it (first two tests) and has
1576 * a ->completed number assigned that will complete sooner than
1577 * the ->completed number for newly arrived callbacks (last test).
1578 *
1579 * The key point is that any later sublist can be assigned the
1580 * same ->completed number as the newly arrived callbacks, which
1581 * means that the callbacks in any of these later sublist can be
1582 * grouped into a single sublist, whether or not they have already
1583 * been assigned a ->completed number.
1584 */
1585 c = rcu_cbs_completed(rsp, rnp);
1586 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1587 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1588 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1589 break;
1590
1591 /*
1592 * If there are no sublist for unassigned callbacks, leave.
1593 * At the same time, advance "i" one sublist, so that "i" will
1594 * index into the sublist where all the remaining callbacks should
1595 * be grouped into.
1596 */
1597 if (++i >= RCU_NEXT_TAIL)
1598 return false;
1599
1600 /*
1601 * Assign all subsequent callbacks' ->completed number to the next
1602 * full grace period and group them all in the sublist initially
1603 * indexed by "i".
1604 */
1605 for (; i <= RCU_NEXT_TAIL; i++) {
1606 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1607 rdp->nxtcompleted[i] = c;
1608 }
1609 /* Record any needed additional grace periods. */
1610 ret = rcu_start_future_gp(rnp, rdp, NULL);
1611
1612 /* Trace depending on how much we were able to accelerate. */
1613 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1614 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1615 else
1616 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1617 return ret;
1618}
1619
1620/*
1621 * Move any callbacks whose grace period has completed to the
1622 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1623 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1624 * sublist. This function is idempotent, so it does not hurt to
1625 * invoke it repeatedly. As long as it is not invoked -too- often...
1626 * Returns true if the RCU grace-period kthread needs to be awakened.
1627 *
1628 * The caller must hold rnp->lock with interrupts disabled.
1629 */
1630static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1631 struct rcu_data *rdp)
1632{
1633 int i, j;
1634
1635 /* If the CPU has no callbacks, nothing to do. */
1636 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1637 return false;
1638
1639 /*
1640 * Find all callbacks whose ->completed numbers indicate that they
1641 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1642 */
1643 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1644 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1645 break;
1646 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1647 }
1648 /* Clean up any sublist tail pointers that were misordered above. */
1649 for (j = RCU_WAIT_TAIL; j < i; j++)
1650 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1651
1652 /* Copy down callbacks to fill in empty sublists. */
1653 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1654 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1655 break;
1656 rdp->nxttail[j] = rdp->nxttail[i];
1657 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1658 }
1659
1660 /* Classify any remaining callbacks. */
1661 return rcu_accelerate_cbs(rsp, rnp, rdp);
1662}
1663
1664/*
1665 * Update CPU-local rcu_data state to record the beginnings and ends of
1666 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1667 * structure corresponding to the current CPU, and must have irqs disabled.
1668 * Returns true if the grace-period kthread needs to be awakened.
1669 */
1670static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1671 struct rcu_data *rdp)
1672{
1673 bool ret;
1674
1675 /* Handle the ends of any preceding grace periods first. */
1676 if (rdp->completed == rnp->completed &&
1677 !unlikely(ACCESS_ONCE(rdp->gpwrap))) {
1678
1679 /* No grace period end, so just accelerate recent callbacks. */
1680 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1681
1682 } else {
1683
1684 /* Advance callbacks. */
1685 ret = rcu_advance_cbs(rsp, rnp, rdp);
1686
1687 /* Remember that we saw this grace-period completion. */
1688 rdp->completed = rnp->completed;
1689 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1690 }
1691
1692 if (rdp->gpnum != rnp->gpnum || unlikely(ACCESS_ONCE(rdp->gpwrap))) {
1693 /*
1694 * If the current grace period is waiting for this CPU,
1695 * set up to detect a quiescent state, otherwise don't
1696 * go looking for one.
1697 */
1698 rdp->gpnum = rnp->gpnum;
1699 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1700 rdp->passed_quiesce = 0;
1701 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1702 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1703 zero_cpu_stall_ticks(rdp);
1704 ACCESS_ONCE(rdp->gpwrap) = false;
1705 }
1706 return ret;
1707}
1708
1709static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1710{
1711 unsigned long flags;
1712 bool needwake;
1713 struct rcu_node *rnp;
1714
1715 local_irq_save(flags);
1716 rnp = rdp->mynode;
1717 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1718 rdp->completed == ACCESS_ONCE(rnp->completed) &&
1719 !unlikely(ACCESS_ONCE(rdp->gpwrap))) || /* w/out lock. */
1720 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1721 local_irq_restore(flags);
1722 return;
1723 }
1724 smp_mb__after_unlock_lock();
1725 needwake = __note_gp_changes(rsp, rnp, rdp);
1726 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1727 if (needwake)
1728 rcu_gp_kthread_wake(rsp);
1729}
1730
1731/*
1732 * Initialize a new grace period. Return 0 if no grace period required.
1733 */
1734static int rcu_gp_init(struct rcu_state *rsp)
1735{
1736 unsigned long oldmask;
1737 struct rcu_data *rdp;
1738 struct rcu_node *rnp = rcu_get_root(rsp);
1739
1740 ACCESS_ONCE(rsp->gp_activity) = jiffies;
1741 raw_spin_lock_irq(&rnp->lock);
1742 smp_mb__after_unlock_lock();
1743 if (!ACCESS_ONCE(rsp->gp_flags)) {
1744 /* Spurious wakeup, tell caller to go back to sleep. */
1745 raw_spin_unlock_irq(&rnp->lock);
1746 return 0;
1747 }
1748 ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
1749
1750 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1751 /*
1752 * Grace period already in progress, don't start another.
1753 * Not supposed to be able to happen.
1754 */
1755 raw_spin_unlock_irq(&rnp->lock);
1756 return 0;
1757 }
1758
1759 /* Advance to a new grace period and initialize state. */
1760 record_gp_stall_check_time(rsp);
1761 /* Record GP times before starting GP, hence smp_store_release(). */
1762 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1763 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1764 raw_spin_unlock_irq(&rnp->lock);
1765
1766 /*
1767 * Apply per-leaf buffered online and offline operations to the
1768 * rcu_node tree. Note that this new grace period need not wait
1769 * for subsequent online CPUs, and that quiescent-state forcing
1770 * will handle subsequent offline CPUs.
1771 */
1772 rcu_for_each_leaf_node(rsp, rnp) {
1773 raw_spin_lock_irq(&rnp->lock);
1774 smp_mb__after_unlock_lock();
1775 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1776 !rnp->wait_blkd_tasks) {
1777 /* Nothing to do on this leaf rcu_node structure. */
1778 raw_spin_unlock_irq(&rnp->lock);
1779 continue;
1780 }
1781
1782 /* Record old state, apply changes to ->qsmaskinit field. */
1783 oldmask = rnp->qsmaskinit;
1784 rnp->qsmaskinit = rnp->qsmaskinitnext;
1785
1786 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1787 if (!oldmask != !rnp->qsmaskinit) {
1788 if (!oldmask) /* First online CPU for this rcu_node. */
1789 rcu_init_new_rnp(rnp);
1790 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1791 rnp->wait_blkd_tasks = true;
1792 else /* Last offline CPU and can propagate. */
1793 rcu_cleanup_dead_rnp(rnp);
1794 }
1795
1796 /*
1797 * If all waited-on tasks from prior grace period are
1798 * done, and if all this rcu_node structure's CPUs are
1799 * still offline, propagate up the rcu_node tree and
1800 * clear ->wait_blkd_tasks. Otherwise, if one of this
1801 * rcu_node structure's CPUs has since come back online,
1802 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1803 * checks for this, so just call it unconditionally).
1804 */
1805 if (rnp->wait_blkd_tasks &&
1806 (!rcu_preempt_has_tasks(rnp) ||
1807 rnp->qsmaskinit)) {
1808 rnp->wait_blkd_tasks = false;
1809 rcu_cleanup_dead_rnp(rnp);
1810 }
1811
1812 raw_spin_unlock_irq(&rnp->lock);
1813 }
1814
1815 /*
1816 * Set the quiescent-state-needed bits in all the rcu_node
1817 * structures for all currently online CPUs in breadth-first order,
1818 * starting from the root rcu_node structure, relying on the layout
1819 * of the tree within the rsp->node[] array. Note that other CPUs
1820 * will access only the leaves of the hierarchy, thus seeing that no
1821 * grace period is in progress, at least until the corresponding
1822 * leaf node has been initialized. In addition, we have excluded
1823 * CPU-hotplug operations.
1824 *
1825 * The grace period cannot complete until the initialization
1826 * process finishes, because this kthread handles both.
1827 */
1828 rcu_for_each_node_breadth_first(rsp, rnp) {
1829 raw_spin_lock_irq(&rnp->lock);
1830 smp_mb__after_unlock_lock();
1831 rdp = this_cpu_ptr(rsp->rda);
1832 rcu_preempt_check_blocked_tasks(rnp);
1833 rnp->qsmask = rnp->qsmaskinit;
1834 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1835 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1836 ACCESS_ONCE(rnp->completed) = rsp->completed;
1837 if (rnp == rdp->mynode)
1838 (void)__note_gp_changes(rsp, rnp, rdp);
1839 rcu_preempt_boost_start_gp(rnp);
1840 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1841 rnp->level, rnp->grplo,
1842 rnp->grphi, rnp->qsmask);
1843 raw_spin_unlock_irq(&rnp->lock);
1844 cond_resched_rcu_qs();
1845 ACCESS_ONCE(rsp->gp_activity) = jiffies;
1846 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_SLOW_INIT) &&
1847 gp_init_delay > 0 &&
1848 !(rsp->gpnum % (rcu_num_nodes * 10)))
1849 schedule_timeout_uninterruptible(gp_init_delay);
1850 }
1851
1852 return 1;
1853}
1854
1855/*
1856 * Do one round of quiescent-state forcing.
1857 */
1858static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1859{
1860 int fqs_state = fqs_state_in;
1861 bool isidle = false;
1862 unsigned long maxj;
1863 struct rcu_node *rnp = rcu_get_root(rsp);
1864
1865 ACCESS_ONCE(rsp->gp_activity) = jiffies;
1866 rsp->n_force_qs++;
1867 if (fqs_state == RCU_SAVE_DYNTICK) {
1868 /* Collect dyntick-idle snapshots. */
1869 if (is_sysidle_rcu_state(rsp)) {
1870 isidle = true;
1871 maxj = jiffies - ULONG_MAX / 4;
1872 }
1873 force_qs_rnp(rsp, dyntick_save_progress_counter,
1874 &isidle, &maxj);
1875 rcu_sysidle_report_gp(rsp, isidle, maxj);
1876 fqs_state = RCU_FORCE_QS;
1877 } else {
1878 /* Handle dyntick-idle and offline CPUs. */
1879 isidle = true;
1880 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1881 }
1882 /* Clear flag to prevent immediate re-entry. */
1883 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1884 raw_spin_lock_irq(&rnp->lock);
1885 smp_mb__after_unlock_lock();
1886 ACCESS_ONCE(rsp->gp_flags) =
1887 ACCESS_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS;
1888 raw_spin_unlock_irq(&rnp->lock);
1889 }
1890 return fqs_state;
1891}
1892
1893/*
1894 * Clean up after the old grace period.
1895 */
1896static void rcu_gp_cleanup(struct rcu_state *rsp)
1897{
1898 unsigned long gp_duration;
1899 bool needgp = false;
1900 int nocb = 0;
1901 struct rcu_data *rdp;
1902 struct rcu_node *rnp = rcu_get_root(rsp);
1903
1904 ACCESS_ONCE(rsp->gp_activity) = jiffies;
1905 raw_spin_lock_irq(&rnp->lock);
1906 smp_mb__after_unlock_lock();
1907 gp_duration = jiffies - rsp->gp_start;
1908 if (gp_duration > rsp->gp_max)
1909 rsp->gp_max = gp_duration;
1910
1911 /*
1912 * We know the grace period is complete, but to everyone else
1913 * it appears to still be ongoing. But it is also the case
1914 * that to everyone else it looks like there is nothing that
1915 * they can do to advance the grace period. It is therefore
1916 * safe for us to drop the lock in order to mark the grace
1917 * period as completed in all of the rcu_node structures.
1918 */
1919 raw_spin_unlock_irq(&rnp->lock);
1920
1921 /*
1922 * Propagate new ->completed value to rcu_node structures so
1923 * that other CPUs don't have to wait until the start of the next
1924 * grace period to process their callbacks. This also avoids
1925 * some nasty RCU grace-period initialization races by forcing
1926 * the end of the current grace period to be completely recorded in
1927 * all of the rcu_node structures before the beginning of the next
1928 * grace period is recorded in any of the rcu_node structures.
1929 */
1930 rcu_for_each_node_breadth_first(rsp, rnp) {
1931 raw_spin_lock_irq(&rnp->lock);
1932 smp_mb__after_unlock_lock();
1933 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
1934 WARN_ON_ONCE(rnp->qsmask);
1935 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1936 rdp = this_cpu_ptr(rsp->rda);
1937 if (rnp == rdp->mynode)
1938 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
1939 /* smp_mb() provided by prior unlock-lock pair. */
1940 nocb += rcu_future_gp_cleanup(rsp, rnp);
1941 raw_spin_unlock_irq(&rnp->lock);
1942 cond_resched_rcu_qs();
1943 ACCESS_ONCE(rsp->gp_activity) = jiffies;
1944 }
1945 rnp = rcu_get_root(rsp);
1946 raw_spin_lock_irq(&rnp->lock);
1947 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1948 rcu_nocb_gp_set(rnp, nocb);
1949
1950 /* Declare grace period done. */
1951 ACCESS_ONCE(rsp->completed) = rsp->gpnum;
1952 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1953 rsp->fqs_state = RCU_GP_IDLE;
1954 rdp = this_cpu_ptr(rsp->rda);
1955 /* Advance CBs to reduce false positives below. */
1956 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
1957 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
1958 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1959 trace_rcu_grace_period(rsp->name,
1960 ACCESS_ONCE(rsp->gpnum),
1961 TPS("newreq"));
1962 }
1963 raw_spin_unlock_irq(&rnp->lock);
1964}
1965
1966/*
1967 * Body of kthread that handles grace periods.
1968 */
1969static int __noreturn rcu_gp_kthread(void *arg)
1970{
1971 int fqs_state;
1972 int gf;
1973 unsigned long j;
1974 int ret;
1975 struct rcu_state *rsp = arg;
1976 struct rcu_node *rnp = rcu_get_root(rsp);
1977
1978 rcu_bind_gp_kthread();
1979 for (;;) {
1980
1981 /* Handle grace-period start. */
1982 for (;;) {
1983 trace_rcu_grace_period(rsp->name,
1984 ACCESS_ONCE(rsp->gpnum),
1985 TPS("reqwait"));
1986 rsp->gp_state = RCU_GP_WAIT_GPS;
1987 wait_event_interruptible(rsp->gp_wq,
1988 ACCESS_ONCE(rsp->gp_flags) &
1989 RCU_GP_FLAG_INIT);
1990 /* Locking provides needed memory barrier. */
1991 if (rcu_gp_init(rsp))
1992 break;
1993 cond_resched_rcu_qs();
1994 ACCESS_ONCE(rsp->gp_activity) = jiffies;
1995 WARN_ON(signal_pending(current));
1996 trace_rcu_grace_period(rsp->name,
1997 ACCESS_ONCE(rsp->gpnum),
1998 TPS("reqwaitsig"));
1999 }
2000
2001 /* Handle quiescent-state forcing. */
2002 fqs_state = RCU_SAVE_DYNTICK;
2003 j = jiffies_till_first_fqs;
2004 if (j > HZ) {
2005 j = HZ;
2006 jiffies_till_first_fqs = HZ;
2007 }
2008 ret = 0;
2009 for (;;) {
2010 if (!ret)
2011 rsp->jiffies_force_qs = jiffies + j;
2012 trace_rcu_grace_period(rsp->name,
2013 ACCESS_ONCE(rsp->gpnum),
2014 TPS("fqswait"));
2015 rsp->gp_state = RCU_GP_WAIT_FQS;
2016 ret = wait_event_interruptible_timeout(rsp->gp_wq,
2017 ((gf = ACCESS_ONCE(rsp->gp_flags)) &
2018 RCU_GP_FLAG_FQS) ||
2019 (!ACCESS_ONCE(rnp->qsmask) &&
2020 !rcu_preempt_blocked_readers_cgp(rnp)),
2021 j);
2022 /* Locking provides needed memory barriers. */
2023 /* If grace period done, leave loop. */
2024 if (!ACCESS_ONCE(rnp->qsmask) &&
2025 !rcu_preempt_blocked_readers_cgp(rnp))
2026 break;
2027 /* If time for quiescent-state forcing, do it. */
2028 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2029 (gf & RCU_GP_FLAG_FQS)) {
2030 trace_rcu_grace_period(rsp->name,
2031 ACCESS_ONCE(rsp->gpnum),
2032 TPS("fqsstart"));
2033 fqs_state = rcu_gp_fqs(rsp, fqs_state);
2034 trace_rcu_grace_period(rsp->name,
2035 ACCESS_ONCE(rsp->gpnum),
2036 TPS("fqsend"));
2037 cond_resched_rcu_qs();
2038 ACCESS_ONCE(rsp->gp_activity) = jiffies;
2039 } else {
2040 /* Deal with stray signal. */
2041 cond_resched_rcu_qs();
2042 ACCESS_ONCE(rsp->gp_activity) = jiffies;
2043 WARN_ON(signal_pending(current));
2044 trace_rcu_grace_period(rsp->name,
2045 ACCESS_ONCE(rsp->gpnum),
2046 TPS("fqswaitsig"));
2047 }
2048 j = jiffies_till_next_fqs;
2049 if (j > HZ) {
2050 j = HZ;
2051 jiffies_till_next_fqs = HZ;
2052 } else if (j < 1) {
2053 j = 1;
2054 jiffies_till_next_fqs = 1;
2055 }
2056 }
2057
2058 /* Handle grace-period end. */
2059 rcu_gp_cleanup(rsp);
2060 }
2061}
2062
2063/*
2064 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2065 * in preparation for detecting the next grace period. The caller must hold
2066 * the root node's ->lock and hard irqs must be disabled.
2067 *
2068 * Note that it is legal for a dying CPU (which is marked as offline) to
2069 * invoke this function. This can happen when the dying CPU reports its
2070 * quiescent state.
2071 *
2072 * Returns true if the grace-period kthread must be awakened.
2073 */
2074static bool
2075rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2076 struct rcu_data *rdp)
2077{
2078 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2079 /*
2080 * Either we have not yet spawned the grace-period
2081 * task, this CPU does not need another grace period,
2082 * or a grace period is already in progress.
2083 * Either way, don't start a new grace period.
2084 */
2085 return false;
2086 }
2087 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
2088 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
2089 TPS("newreq"));
2090
2091 /*
2092 * We can't do wakeups while holding the rnp->lock, as that
2093 * could cause possible deadlocks with the rq->lock. Defer
2094 * the wakeup to our caller.
2095 */
2096 return true;
2097}
2098
2099/*
2100 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2101 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2102 * is invoked indirectly from rcu_advance_cbs(), which would result in
2103 * endless recursion -- or would do so if it wasn't for the self-deadlock
2104 * that is encountered beforehand.
2105 *
2106 * Returns true if the grace-period kthread needs to be awakened.
2107 */
2108static bool rcu_start_gp(struct rcu_state *rsp)
2109{
2110 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2111 struct rcu_node *rnp = rcu_get_root(rsp);
2112 bool ret = false;
2113
2114 /*
2115 * If there is no grace period in progress right now, any
2116 * callbacks we have up to this point will be satisfied by the
2117 * next grace period. Also, advancing the callbacks reduces the
2118 * probability of false positives from cpu_needs_another_gp()
2119 * resulting in pointless grace periods. So, advance callbacks
2120 * then start the grace period!
2121 */
2122 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2123 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2124 return ret;
2125}
2126
2127/*
2128 * Report a full set of quiescent states to the specified rcu_state
2129 * data structure. This involves cleaning up after the prior grace
2130 * period and letting rcu_start_gp() start up the next grace period
2131 * if one is needed. Note that the caller must hold rnp->lock, which
2132 * is released before return.
2133 */
2134static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2135 __releases(rcu_get_root(rsp)->lock)
2136{
2137 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2138 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2139 rcu_gp_kthread_wake(rsp);
2140}
2141
2142/*
2143 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2144 * Allows quiescent states for a group of CPUs to be reported at one go
2145 * to the specified rcu_node structure, though all the CPUs in the group
2146 * must be represented by the same rcu_node structure (which need not be a
2147 * leaf rcu_node structure, though it often will be). The gps parameter
2148 * is the grace-period snapshot, which means that the quiescent states
2149 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2150 * must be held upon entry, and it is released before return.
2151 */
2152static void
2153rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2154 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2155 __releases(rnp->lock)
2156{
2157 unsigned long oldmask = 0;
2158 struct rcu_node *rnp_c;
2159
2160 /* Walk up the rcu_node hierarchy. */
2161 for (;;) {
2162 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2163
2164 /*
2165 * Our bit has already been cleared, or the
2166 * relevant grace period is already over, so done.
2167 */
2168 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2169 return;
2170 }
2171 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2172 rnp->qsmask &= ~mask;
2173 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2174 mask, rnp->qsmask, rnp->level,
2175 rnp->grplo, rnp->grphi,
2176 !!rnp->gp_tasks);
2177 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2178
2179 /* Other bits still set at this level, so done. */
2180 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2181 return;
2182 }
2183 mask = rnp->grpmask;
2184 if (rnp->parent == NULL) {
2185
2186 /* No more levels. Exit loop holding root lock. */
2187
2188 break;
2189 }
2190 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2191 rnp_c = rnp;
2192 rnp = rnp->parent;
2193 raw_spin_lock_irqsave(&rnp->lock, flags);
2194 smp_mb__after_unlock_lock();
2195 oldmask = rnp_c->qsmask;
2196 }
2197
2198 /*
2199 * Get here if we are the last CPU to pass through a quiescent
2200 * state for this grace period. Invoke rcu_report_qs_rsp()
2201 * to clean up and start the next grace period if one is needed.
2202 */
2203 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2204}
2205
2206/*
2207 * Record a quiescent state for all tasks that were previously queued
2208 * on the specified rcu_node structure and that were blocking the current
2209 * RCU grace period. The caller must hold the specified rnp->lock with
2210 * irqs disabled, and this lock is released upon return, but irqs remain
2211 * disabled.
2212 */
2213static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2214 struct rcu_node *rnp, unsigned long flags)
2215 __releases(rnp->lock)
2216{
2217 unsigned long gps;
2218 unsigned long mask;
2219 struct rcu_node *rnp_p;
2220
2221 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2222 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2223 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2224 return; /* Still need more quiescent states! */
2225 }
2226
2227 rnp_p = rnp->parent;
2228 if (rnp_p == NULL) {
2229 /*
2230 * Only one rcu_node structure in the tree, so don't
2231 * try to report up to its nonexistent parent!
2232 */
2233 rcu_report_qs_rsp(rsp, flags);
2234 return;
2235 }
2236
2237 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2238 gps = rnp->gpnum;
2239 mask = rnp->grpmask;
2240 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2241 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
2242 smp_mb__after_unlock_lock();
2243 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2244}
2245
2246/*
2247 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2248 * structure. This must be either called from the specified CPU, or
2249 * called when the specified CPU is known to be offline (and when it is
2250 * also known that no other CPU is concurrently trying to help the offline
2251 * CPU). The lastcomp argument is used to make sure we are still in the
2252 * grace period of interest. We don't want to end the current grace period
2253 * based on quiescent states detected in an earlier grace period!
2254 */
2255static void
2256rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2257{
2258 unsigned long flags;
2259 unsigned long mask;
2260 bool needwake;
2261 struct rcu_node *rnp;
2262
2263 rnp = rdp->mynode;
2264 raw_spin_lock_irqsave(&rnp->lock, flags);
2265 smp_mb__after_unlock_lock();
2266 if ((rdp->passed_quiesce == 0 &&
2267 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2268 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2269 rdp->gpwrap) {
2270
2271 /*
2272 * The grace period in which this quiescent state was
2273 * recorded has ended, so don't report it upwards.
2274 * We will instead need a new quiescent state that lies
2275 * within the current grace period.
2276 */
2277 rdp->passed_quiesce = 0; /* need qs for new gp. */
2278 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2279 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2280 return;
2281 }
2282 mask = rdp->grpmask;
2283 if ((rnp->qsmask & mask) == 0) {
2284 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2285 } else {
2286 rdp->qs_pending = 0;
2287
2288 /*
2289 * This GP can't end until cpu checks in, so all of our
2290 * callbacks can be processed during the next GP.
2291 */
2292 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2293
2294 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2295 /* ^^^ Released rnp->lock */
2296 if (needwake)
2297 rcu_gp_kthread_wake(rsp);
2298 }
2299}
2300
2301/*
2302 * Check to see if there is a new grace period of which this CPU
2303 * is not yet aware, and if so, set up local rcu_data state for it.
2304 * Otherwise, see if this CPU has just passed through its first
2305 * quiescent state for this grace period, and record that fact if so.
2306 */
2307static void
2308rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2309{
2310 /* Check for grace-period ends and beginnings. */
2311 note_gp_changes(rsp, rdp);
2312
2313 /*
2314 * Does this CPU still need to do its part for current grace period?
2315 * If no, return and let the other CPUs do their part as well.
2316 */
2317 if (!rdp->qs_pending)
2318 return;
2319
2320 /*
2321 * Was there a quiescent state since the beginning of the grace
2322 * period? If no, then exit and wait for the next call.
2323 */
2324 if (!rdp->passed_quiesce &&
2325 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2326 return;
2327
2328 /*
2329 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2330 * judge of that).
2331 */
2332 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2333}
2334
2335#ifdef CONFIG_HOTPLUG_CPU
2336
2337/*
2338 * Send the specified CPU's RCU callbacks to the orphanage. The
2339 * specified CPU must be offline, and the caller must hold the
2340 * ->orphan_lock.
2341 */
2342static void
2343rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2344 struct rcu_node *rnp, struct rcu_data *rdp)
2345{
2346 /* No-CBs CPUs do not have orphanable callbacks. */
2347 if (rcu_is_nocb_cpu(rdp->cpu))
2348 return;
2349
2350 /*
2351 * Orphan the callbacks. First adjust the counts. This is safe
2352 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2353 * cannot be running now. Thus no memory barrier is required.
2354 */
2355 if (rdp->nxtlist != NULL) {
2356 rsp->qlen_lazy += rdp->qlen_lazy;
2357 rsp->qlen += rdp->qlen;
2358 rdp->n_cbs_orphaned += rdp->qlen;
2359 rdp->qlen_lazy = 0;
2360 ACCESS_ONCE(rdp->qlen) = 0;
2361 }
2362
2363 /*
2364 * Next, move those callbacks still needing a grace period to
2365 * the orphanage, where some other CPU will pick them up.
2366 * Some of the callbacks might have gone partway through a grace
2367 * period, but that is too bad. They get to start over because we
2368 * cannot assume that grace periods are synchronized across CPUs.
2369 * We don't bother updating the ->nxttail[] array yet, instead
2370 * we just reset the whole thing later on.
2371 */
2372 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2373 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2374 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2375 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2376 }
2377
2378 /*
2379 * Then move the ready-to-invoke callbacks to the orphanage,
2380 * where some other CPU will pick them up. These will not be
2381 * required to pass though another grace period: They are done.
2382 */
2383 if (rdp->nxtlist != NULL) {
2384 *rsp->orphan_donetail = rdp->nxtlist;
2385 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2386 }
2387
2388 /*
2389 * Finally, initialize the rcu_data structure's list to empty and
2390 * disallow further callbacks on this CPU.
2391 */
2392 init_callback_list(rdp);
2393 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2394}
2395
2396/*
2397 * Adopt the RCU callbacks from the specified rcu_state structure's
2398 * orphanage. The caller must hold the ->orphan_lock.
2399 */
2400static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2401{
2402 int i;
2403 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2404
2405 /* No-CBs CPUs are handled specially. */
2406 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2407 return;
2408
2409 /* Do the accounting first. */
2410 rdp->qlen_lazy += rsp->qlen_lazy;
2411 rdp->qlen += rsp->qlen;
2412 rdp->n_cbs_adopted += rsp->qlen;
2413 if (rsp->qlen_lazy != rsp->qlen)
2414 rcu_idle_count_callbacks_posted();
2415 rsp->qlen_lazy = 0;
2416 rsp->qlen = 0;
2417
2418 /*
2419 * We do not need a memory barrier here because the only way we
2420 * can get here if there is an rcu_barrier() in flight is if
2421 * we are the task doing the rcu_barrier().
2422 */
2423
2424 /* First adopt the ready-to-invoke callbacks. */
2425 if (rsp->orphan_donelist != NULL) {
2426 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2427 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2428 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2429 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2430 rdp->nxttail[i] = rsp->orphan_donetail;
2431 rsp->orphan_donelist = NULL;
2432 rsp->orphan_donetail = &rsp->orphan_donelist;
2433 }
2434
2435 /* And then adopt the callbacks that still need a grace period. */
2436 if (rsp->orphan_nxtlist != NULL) {
2437 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2438 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2439 rsp->orphan_nxtlist = NULL;
2440 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2441 }
2442}
2443
2444/*
2445 * Trace the fact that this CPU is going offline.
2446 */
2447static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2448{
2449 RCU_TRACE(unsigned long mask);
2450 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2451 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2452
2453 RCU_TRACE(mask = rdp->grpmask);
2454 trace_rcu_grace_period(rsp->name,
2455 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2456 TPS("cpuofl"));
2457}
2458
2459/*
2460 * All CPUs for the specified rcu_node structure have gone offline,
2461 * and all tasks that were preempted within an RCU read-side critical
2462 * section while running on one of those CPUs have since exited their RCU
2463 * read-side critical section. Some other CPU is reporting this fact with
2464 * the specified rcu_node structure's ->lock held and interrupts disabled.
2465 * This function therefore goes up the tree of rcu_node structures,
2466 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2467 * the leaf rcu_node structure's ->qsmaskinit field has already been
2468 * updated
2469 *
2470 * This function does check that the specified rcu_node structure has
2471 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2472 * prematurely. That said, invoking it after the fact will cost you
2473 * a needless lock acquisition. So once it has done its work, don't
2474 * invoke it again.
2475 */
2476static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2477{
2478 long mask;
2479 struct rcu_node *rnp = rnp_leaf;
2480
2481 if (rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2482 return;
2483 for (;;) {
2484 mask = rnp->grpmask;
2485 rnp = rnp->parent;
2486 if (!rnp)
2487 break;
2488 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2489 smp_mb__after_unlock_lock(); /* GP memory ordering. */
2490 rnp->qsmaskinit &= ~mask;
2491 rnp->qsmask &= ~mask;
2492 if (rnp->qsmaskinit) {
2493 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2494 return;
2495 }
2496 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2497 }
2498}
2499
2500/*
2501 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
2502 * function. We now remove it from the rcu_node tree's ->qsmaskinit
2503 * bit masks.
2504 */
2505static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
2506{
2507 unsigned long flags;
2508 unsigned long mask;
2509 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2510 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2511
2512 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
2513 mask = rdp->grpmask;
2514 raw_spin_lock_irqsave(&rnp->lock, flags);
2515 smp_mb__after_unlock_lock(); /* Enforce GP memory-order guarantee. */
2516 rnp->qsmaskinitnext &= ~mask;
2517 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2518}
2519
2520/*
2521 * The CPU has been completely removed, and some other CPU is reporting
2522 * this fact from process context. Do the remainder of the cleanup,
2523 * including orphaning the outgoing CPU's RCU callbacks, and also
2524 * adopting them. There can only be one CPU hotplug operation at a time,
2525 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2526 */
2527static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2528{
2529 unsigned long flags;
2530 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2531 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2532
2533 /* Adjust any no-longer-needed kthreads. */
2534 rcu_boost_kthread_setaffinity(rnp, -1);
2535
2536 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2537 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2538 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2539 rcu_adopt_orphan_cbs(rsp, flags);
2540 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2541
2542 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2543 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2544 cpu, rdp->qlen, rdp->nxtlist);
2545}
2546
2547#else /* #ifdef CONFIG_HOTPLUG_CPU */
2548
2549static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2550{
2551}
2552
2553static void __maybe_unused rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2554{
2555}
2556
2557static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
2558{
2559}
2560
2561static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2562{
2563}
2564
2565#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2566
2567/*
2568 * Invoke any RCU callbacks that have made it to the end of their grace
2569 * period. Thottle as specified by rdp->blimit.
2570 */
2571static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2572{
2573 unsigned long flags;
2574 struct rcu_head *next, *list, **tail;
2575 long bl, count, count_lazy;
2576 int i;
2577
2578 /* If no callbacks are ready, just return. */
2579 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2580 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2581 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2582 need_resched(), is_idle_task(current),
2583 rcu_is_callbacks_kthread());
2584 return;
2585 }
2586
2587 /*
2588 * Extract the list of ready callbacks, disabling to prevent
2589 * races with call_rcu() from interrupt handlers.
2590 */
2591 local_irq_save(flags);
2592 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2593 bl = rdp->blimit;
2594 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2595 list = rdp->nxtlist;
2596 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2597 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2598 tail = rdp->nxttail[RCU_DONE_TAIL];
2599 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2600 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2601 rdp->nxttail[i] = &rdp->nxtlist;
2602 local_irq_restore(flags);
2603
2604 /* Invoke callbacks. */
2605 count = count_lazy = 0;
2606 while (list) {
2607 next = list->next;
2608 prefetch(next);
2609 debug_rcu_head_unqueue(list);
2610 if (__rcu_reclaim(rsp->name, list))
2611 count_lazy++;
2612 list = next;
2613 /* Stop only if limit reached and CPU has something to do. */
2614 if (++count >= bl &&
2615 (need_resched() ||
2616 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2617 break;
2618 }
2619
2620 local_irq_save(flags);
2621 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2622 is_idle_task(current),
2623 rcu_is_callbacks_kthread());
2624
2625 /* Update count, and requeue any remaining callbacks. */
2626 if (list != NULL) {
2627 *tail = rdp->nxtlist;
2628 rdp->nxtlist = list;
2629 for (i = 0; i < RCU_NEXT_SIZE; i++)
2630 if (&rdp->nxtlist == rdp->nxttail[i])
2631 rdp->nxttail[i] = tail;
2632 else
2633 break;
2634 }
2635 smp_mb(); /* List handling before counting for rcu_barrier(). */
2636 rdp->qlen_lazy -= count_lazy;
2637 ACCESS_ONCE(rdp->qlen) = rdp->qlen - count;
2638 rdp->n_cbs_invoked += count;
2639
2640 /* Reinstate batch limit if we have worked down the excess. */
2641 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2642 rdp->blimit = blimit;
2643
2644 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2645 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2646 rdp->qlen_last_fqs_check = 0;
2647 rdp->n_force_qs_snap = rsp->n_force_qs;
2648 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2649 rdp->qlen_last_fqs_check = rdp->qlen;
2650 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2651
2652 local_irq_restore(flags);
2653
2654 /* Re-invoke RCU core processing if there are callbacks remaining. */
2655 if (cpu_has_callbacks_ready_to_invoke(rdp))
2656 invoke_rcu_core();
2657}
2658
2659/*
2660 * Check to see if this CPU is in a non-context-switch quiescent state
2661 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2662 * Also schedule RCU core processing.
2663 *
2664 * This function must be called from hardirq context. It is normally
2665 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2666 * false, there is no point in invoking rcu_check_callbacks().
2667 */
2668void rcu_check_callbacks(int user)
2669{
2670 trace_rcu_utilization(TPS("Start scheduler-tick"));
2671 increment_cpu_stall_ticks();
2672 if (user || rcu_is_cpu_rrupt_from_idle()) {
2673
2674 /*
2675 * Get here if this CPU took its interrupt from user
2676 * mode or from the idle loop, and if this is not a
2677 * nested interrupt. In this case, the CPU is in
2678 * a quiescent state, so note it.
2679 *
2680 * No memory barrier is required here because both
2681 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2682 * variables that other CPUs neither access nor modify,
2683 * at least not while the corresponding CPU is online.
2684 */
2685
2686 rcu_sched_qs();
2687 rcu_bh_qs();
2688
2689 } else if (!in_softirq()) {
2690
2691 /*
2692 * Get here if this CPU did not take its interrupt from
2693 * softirq, in other words, if it is not interrupting
2694 * a rcu_bh read-side critical section. This is an _bh
2695 * critical section, so note it.
2696 */
2697
2698 rcu_bh_qs();
2699 }
2700 rcu_preempt_check_callbacks();
2701 if (rcu_pending())
2702 invoke_rcu_core();
2703 if (user)
2704 rcu_note_voluntary_context_switch(current);
2705 trace_rcu_utilization(TPS("End scheduler-tick"));
2706}
2707
2708/*
2709 * Scan the leaf rcu_node structures, processing dyntick state for any that
2710 * have not yet encountered a quiescent state, using the function specified.
2711 * Also initiate boosting for any threads blocked on the root rcu_node.
2712 *
2713 * The caller must have suppressed start of new grace periods.
2714 */
2715static void force_qs_rnp(struct rcu_state *rsp,
2716 int (*f)(struct rcu_data *rsp, bool *isidle,
2717 unsigned long *maxj),
2718 bool *isidle, unsigned long *maxj)
2719{
2720 unsigned long bit;
2721 int cpu;
2722 unsigned long flags;
2723 unsigned long mask;
2724 struct rcu_node *rnp;
2725
2726 rcu_for_each_leaf_node(rsp, rnp) {
2727 cond_resched_rcu_qs();
2728 mask = 0;
2729 raw_spin_lock_irqsave(&rnp->lock, flags);
2730 smp_mb__after_unlock_lock();
2731 if (!rcu_gp_in_progress(rsp)) {
2732 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2733 return;
2734 }
2735 if (rnp->qsmask == 0) {
2736 if (rcu_state_p == &rcu_sched_state ||
2737 rsp != rcu_state_p ||
2738 rcu_preempt_blocked_readers_cgp(rnp)) {
2739 /*
2740 * No point in scanning bits because they
2741 * are all zero. But we might need to
2742 * priority-boost blocked readers.
2743 */
2744 rcu_initiate_boost(rnp, flags);
2745 /* rcu_initiate_boost() releases rnp->lock */
2746 continue;
2747 }
2748 if (rnp->parent &&
2749 (rnp->parent->qsmask & rnp->grpmask)) {
2750 /*
2751 * Race between grace-period
2752 * initialization and task exiting RCU
2753 * read-side critical section: Report.
2754 */
2755 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2756 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2757 continue;
2758 }
2759 }
2760 cpu = rnp->grplo;
2761 bit = 1;
2762 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2763 if ((rnp->qsmask & bit) != 0) {
2764 if ((rnp->qsmaskinit & bit) == 0)
2765 *isidle = false; /* Pending hotplug. */
2766 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2767 mask |= bit;
2768 }
2769 }
2770 if (mask != 0) {
2771 /* Idle/offline CPUs, report (releases rnp->lock. */
2772 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2773 } else {
2774 /* Nothing to do here, so just drop the lock. */
2775 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2776 }
2777 }
2778}
2779
2780/*
2781 * Force quiescent states on reluctant CPUs, and also detect which
2782 * CPUs are in dyntick-idle mode.
2783 */
2784static void force_quiescent_state(struct rcu_state *rsp)
2785{
2786 unsigned long flags;
2787 bool ret;
2788 struct rcu_node *rnp;
2789 struct rcu_node *rnp_old = NULL;
2790
2791 /* Funnel through hierarchy to reduce memory contention. */
2792 rnp = __this_cpu_read(rsp->rda->mynode);
2793 for (; rnp != NULL; rnp = rnp->parent) {
2794 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2795 !raw_spin_trylock(&rnp->fqslock);
2796 if (rnp_old != NULL)
2797 raw_spin_unlock(&rnp_old->fqslock);
2798 if (ret) {
2799 rsp->n_force_qs_lh++;
2800 return;
2801 }
2802 rnp_old = rnp;
2803 }
2804 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2805
2806 /* Reached the root of the rcu_node tree, acquire lock. */
2807 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2808 smp_mb__after_unlock_lock();
2809 raw_spin_unlock(&rnp_old->fqslock);
2810 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2811 rsp->n_force_qs_lh++;
2812 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2813 return; /* Someone beat us to it. */
2814 }
2815 ACCESS_ONCE(rsp->gp_flags) =
2816 ACCESS_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS;
2817 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2818 rcu_gp_kthread_wake(rsp);
2819}
2820
2821/*
2822 * This does the RCU core processing work for the specified rcu_state
2823 * and rcu_data structures. This may be called only from the CPU to
2824 * whom the rdp belongs.
2825 */
2826static void
2827__rcu_process_callbacks(struct rcu_state *rsp)
2828{
2829 unsigned long flags;
2830 bool needwake;
2831 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2832
2833 WARN_ON_ONCE(rdp->beenonline == 0);
2834
2835 /* Update RCU state based on any recent quiescent states. */
2836 rcu_check_quiescent_state(rsp, rdp);
2837
2838 /* Does this CPU require a not-yet-started grace period? */
2839 local_irq_save(flags);
2840 if (cpu_needs_another_gp(rsp, rdp)) {
2841 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2842 needwake = rcu_start_gp(rsp);
2843 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2844 if (needwake)
2845 rcu_gp_kthread_wake(rsp);
2846 } else {
2847 local_irq_restore(flags);
2848 }
2849
2850 /* If there are callbacks ready, invoke them. */
2851 if (cpu_has_callbacks_ready_to_invoke(rdp))
2852 invoke_rcu_callbacks(rsp, rdp);
2853
2854 /* Do any needed deferred wakeups of rcuo kthreads. */
2855 do_nocb_deferred_wakeup(rdp);
2856}
2857
2858/*
2859 * Do RCU core processing for the current CPU.
2860 */
2861static void rcu_process_callbacks(struct softirq_action *unused)
2862{
2863 struct rcu_state *rsp;
2864
2865 if (cpu_is_offline(smp_processor_id()))
2866 return;
2867 trace_rcu_utilization(TPS("Start RCU core"));
2868 for_each_rcu_flavor(rsp)
2869 __rcu_process_callbacks(rsp);
2870 trace_rcu_utilization(TPS("End RCU core"));
2871}
2872
2873/*
2874 * Schedule RCU callback invocation. If the specified type of RCU
2875 * does not support RCU priority boosting, just do a direct call,
2876 * otherwise wake up the per-CPU kernel kthread. Note that because we
2877 * are running on the current CPU with softirqs disabled, the
2878 * rcu_cpu_kthread_task cannot disappear out from under us.
2879 */
2880static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2881{
2882 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2883 return;
2884 if (likely(!rsp->boost)) {
2885 rcu_do_batch(rsp, rdp);
2886 return;
2887 }
2888 invoke_rcu_callbacks_kthread();
2889}
2890
2891static void invoke_rcu_core(void)
2892{
2893 if (cpu_online(smp_processor_id()))
2894 raise_softirq(RCU_SOFTIRQ);
2895}
2896
2897/*
2898 * Handle any core-RCU processing required by a call_rcu() invocation.
2899 */
2900static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2901 struct rcu_head *head, unsigned long flags)
2902{
2903 bool needwake;
2904
2905 /*
2906 * If called from an extended quiescent state, invoke the RCU
2907 * core in order to force a re-evaluation of RCU's idleness.
2908 */
2909 if (!rcu_is_watching())
2910 invoke_rcu_core();
2911
2912 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2913 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2914 return;
2915
2916 /*
2917 * Force the grace period if too many callbacks or too long waiting.
2918 * Enforce hysteresis, and don't invoke force_quiescent_state()
2919 * if some other CPU has recently done so. Also, don't bother
2920 * invoking force_quiescent_state() if the newly enqueued callback
2921 * is the only one waiting for a grace period to complete.
2922 */
2923 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2924
2925 /* Are we ignoring a completed grace period? */
2926 note_gp_changes(rsp, rdp);
2927
2928 /* Start a new grace period if one not already started. */
2929 if (!rcu_gp_in_progress(rsp)) {
2930 struct rcu_node *rnp_root = rcu_get_root(rsp);
2931
2932 raw_spin_lock(&rnp_root->lock);
2933 smp_mb__after_unlock_lock();
2934 needwake = rcu_start_gp(rsp);
2935 raw_spin_unlock(&rnp_root->lock);
2936 if (needwake)
2937 rcu_gp_kthread_wake(rsp);
2938 } else {
2939 /* Give the grace period a kick. */
2940 rdp->blimit = LONG_MAX;
2941 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2942 *rdp->nxttail[RCU_DONE_TAIL] != head)
2943 force_quiescent_state(rsp);
2944 rdp->n_force_qs_snap = rsp->n_force_qs;
2945 rdp->qlen_last_fqs_check = rdp->qlen;
2946 }
2947 }
2948}
2949
2950/*
2951 * RCU callback function to leak a callback.
2952 */
2953static void rcu_leak_callback(struct rcu_head *rhp)
2954{
2955}
2956
2957/*
2958 * Helper function for call_rcu() and friends. The cpu argument will
2959 * normally be -1, indicating "currently running CPU". It may specify
2960 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2961 * is expected to specify a CPU.
2962 */
2963static void
2964__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2965 struct rcu_state *rsp, int cpu, bool lazy)
2966{
2967 unsigned long flags;
2968 struct rcu_data *rdp;
2969
2970 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
2971 if (debug_rcu_head_queue(head)) {
2972 /* Probable double call_rcu(), so leak the callback. */
2973 ACCESS_ONCE(head->func) = rcu_leak_callback;
2974 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2975 return;
2976 }
2977 head->func = func;
2978 head->next = NULL;
2979
2980 /*
2981 * Opportunistically note grace-period endings and beginnings.
2982 * Note that we might see a beginning right after we see an
2983 * end, but never vice versa, since this CPU has to pass through
2984 * a quiescent state betweentimes.
2985 */
2986 local_irq_save(flags);
2987 rdp = this_cpu_ptr(rsp->rda);
2988
2989 /* Add the callback to our list. */
2990 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2991 int offline;
2992
2993 if (cpu != -1)
2994 rdp = per_cpu_ptr(rsp->rda, cpu);
2995 if (likely(rdp->mynode)) {
2996 /* Post-boot, so this should be for a no-CBs CPU. */
2997 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2998 WARN_ON_ONCE(offline);
2999 /* Offline CPU, _call_rcu() illegal, leak callback. */
3000 local_irq_restore(flags);
3001 return;
3002 }
3003 /*
3004 * Very early boot, before rcu_init(). Initialize if needed
3005 * and then drop through to queue the callback.
3006 */
3007 BUG_ON(cpu != -1);
3008 WARN_ON_ONCE(!rcu_is_watching());
3009 if (!likely(rdp->nxtlist))
3010 init_default_callback_list(rdp);
3011 }
3012 ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1;
3013 if (lazy)
3014 rdp->qlen_lazy++;
3015 else
3016 rcu_idle_count_callbacks_posted();
3017 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3018 *rdp->nxttail[RCU_NEXT_TAIL] = head;
3019 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3020
3021 if (__is_kfree_rcu_offset((unsigned long)func))
3022 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3023 rdp->qlen_lazy, rdp->qlen);
3024 else
3025 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3026
3027 /* Go handle any RCU core processing required. */
3028 __call_rcu_core(rsp, rdp, head, flags);
3029 local_irq_restore(flags);
3030}
3031
3032/*
3033 * Queue an RCU-sched callback for invocation after a grace period.
3034 */
3035void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
3036{
3037 __call_rcu(head, func, &rcu_sched_state, -1, 0);
3038}
3039EXPORT_SYMBOL_GPL(call_rcu_sched);
3040
3041/*
3042 * Queue an RCU callback for invocation after a quicker grace period.
3043 */
3044void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
3045{
3046 __call_rcu(head, func, &rcu_bh_state, -1, 0);
3047}
3048EXPORT_SYMBOL_GPL(call_rcu_bh);
3049
3050/*
3051 * Queue an RCU callback for lazy invocation after a grace period.
3052 * This will likely be later named something like "call_rcu_lazy()",
3053 * but this change will require some way of tagging the lazy RCU
3054 * callbacks in the list of pending callbacks. Until then, this
3055 * function may only be called from __kfree_rcu().
3056 */
3057void kfree_call_rcu(struct rcu_head *head,
3058 void (*func)(struct rcu_head *rcu))
3059{
3060 __call_rcu(head, func, rcu_state_p, -1, 1);
3061}
3062EXPORT_SYMBOL_GPL(kfree_call_rcu);
3063
3064/*
3065 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3066 * any blocking grace-period wait automatically implies a grace period
3067 * if there is only one CPU online at any point time during execution
3068 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3069 * occasionally incorrectly indicate that there are multiple CPUs online
3070 * when there was in fact only one the whole time, as this just adds
3071 * some overhead: RCU still operates correctly.
3072 */
3073static inline int rcu_blocking_is_gp(void)
3074{
3075 int ret;
3076
3077 might_sleep(); /* Check for RCU read-side critical section. */
3078 preempt_disable();
3079 ret = num_online_cpus() <= 1;
3080 preempt_enable();
3081 return ret;
3082}
3083
3084/**
3085 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3086 *
3087 * Control will return to the caller some time after a full rcu-sched
3088 * grace period has elapsed, in other words after all currently executing
3089 * rcu-sched read-side critical sections have completed. These read-side
3090 * critical sections are delimited by rcu_read_lock_sched() and
3091 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3092 * local_irq_disable(), and so on may be used in place of
3093 * rcu_read_lock_sched().
3094 *
3095 * This means that all preempt_disable code sequences, including NMI and
3096 * non-threaded hardware-interrupt handlers, in progress on entry will
3097 * have completed before this primitive returns. However, this does not
3098 * guarantee that softirq handlers will have completed, since in some
3099 * kernels, these handlers can run in process context, and can block.
3100 *
3101 * Note that this guarantee implies further memory-ordering guarantees.
3102 * On systems with more than one CPU, when synchronize_sched() returns,
3103 * each CPU is guaranteed to have executed a full memory barrier since the
3104 * end of its last RCU-sched read-side critical section whose beginning
3105 * preceded the call to synchronize_sched(). In addition, each CPU having
3106 * an RCU read-side critical section that extends beyond the return from
3107 * synchronize_sched() is guaranteed to have executed a full memory barrier
3108 * after the beginning of synchronize_sched() and before the beginning of
3109 * that RCU read-side critical section. Note that these guarantees include
3110 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3111 * that are executing in the kernel.
3112 *
3113 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3114 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3115 * to have executed a full memory barrier during the execution of
3116 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3117 * again only if the system has more than one CPU).
3118 *
3119 * This primitive provides the guarantees made by the (now removed)
3120 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3121 * guarantees that rcu_read_lock() sections will have completed.
3122 * In "classic RCU", these two guarantees happen to be one and
3123 * the same, but can differ in realtime RCU implementations.
3124 */
3125void synchronize_sched(void)
3126{
3127 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
3128 !lock_is_held(&rcu_lock_map) &&
3129 !lock_is_held(&rcu_sched_lock_map),
3130 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3131 if (rcu_blocking_is_gp())
3132 return;
3133 if (rcu_gp_is_expedited())
3134 synchronize_sched_expedited();
3135 else
3136 wait_rcu_gp(call_rcu_sched);
3137}
3138EXPORT_SYMBOL_GPL(synchronize_sched);
3139
3140/**
3141 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3142 *
3143 * Control will return to the caller some time after a full rcu_bh grace
3144 * period has elapsed, in other words after all currently executing rcu_bh
3145 * read-side critical sections have completed. RCU read-side critical
3146 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3147 * and may be nested.
3148 *
3149 * See the description of synchronize_sched() for more detailed information
3150 * on memory ordering guarantees.
3151 */
3152void synchronize_rcu_bh(void)
3153{
3154 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
3155 !lock_is_held(&rcu_lock_map) &&
3156 !lock_is_held(&rcu_sched_lock_map),
3157 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3158 if (rcu_blocking_is_gp())
3159 return;
3160 if (rcu_gp_is_expedited())
3161 synchronize_rcu_bh_expedited();
3162 else
3163 wait_rcu_gp(call_rcu_bh);
3164}
3165EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3166
3167/**
3168 * get_state_synchronize_rcu - Snapshot current RCU state
3169 *
3170 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3171 * to determine whether or not a full grace period has elapsed in the
3172 * meantime.
3173 */
3174unsigned long get_state_synchronize_rcu(void)
3175{
3176 /*
3177 * Any prior manipulation of RCU-protected data must happen
3178 * before the load from ->gpnum.
3179 */
3180 smp_mb(); /* ^^^ */
3181
3182 /*
3183 * Make sure this load happens before the purportedly
3184 * time-consuming work between get_state_synchronize_rcu()
3185 * and cond_synchronize_rcu().
3186 */
3187 return smp_load_acquire(&rcu_state_p->gpnum);
3188}
3189EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3190
3191/**
3192 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3193 *
3194 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3195 *
3196 * If a full RCU grace period has elapsed since the earlier call to
3197 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3198 * synchronize_rcu() to wait for a full grace period.
3199 *
3200 * Yes, this function does not take counter wrap into account. But
3201 * counter wrap is harmless. If the counter wraps, we have waited for
3202 * more than 2 billion grace periods (and way more on a 64-bit system!),
3203 * so waiting for one additional grace period should be just fine.
3204 */
3205void cond_synchronize_rcu(unsigned long oldstate)
3206{
3207 unsigned long newstate;
3208
3209 /*
3210 * Ensure that this load happens before any RCU-destructive
3211 * actions the caller might carry out after we return.
3212 */
3213 newstate = smp_load_acquire(&rcu_state_p->completed);
3214 if (ULONG_CMP_GE(oldstate, newstate))
3215 synchronize_rcu();
3216}
3217EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3218
3219static int synchronize_sched_expedited_cpu_stop(void *data)
3220{
3221 /*
3222 * There must be a full memory barrier on each affected CPU
3223 * between the time that try_stop_cpus() is called and the
3224 * time that it returns.
3225 *
3226 * In the current initial implementation of cpu_stop, the
3227 * above condition is already met when the control reaches
3228 * this point and the following smp_mb() is not strictly
3229 * necessary. Do smp_mb() anyway for documentation and
3230 * robustness against future implementation changes.
3231 */
3232 smp_mb(); /* See above comment block. */
3233 return 0;
3234}
3235
3236/**
3237 * synchronize_sched_expedited - Brute-force RCU-sched grace period
3238 *
3239 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3240 * approach to force the grace period to end quickly. This consumes
3241 * significant time on all CPUs and is unfriendly to real-time workloads,
3242 * so is thus not recommended for any sort of common-case code. In fact,
3243 * if you are using synchronize_sched_expedited() in a loop, please
3244 * restructure your code to batch your updates, and then use a single
3245 * synchronize_sched() instead.
3246 *
3247 * This implementation can be thought of as an application of ticket
3248 * locking to RCU, with sync_sched_expedited_started and
3249 * sync_sched_expedited_done taking on the roles of the halves
3250 * of the ticket-lock word. Each task atomically increments
3251 * sync_sched_expedited_started upon entry, snapshotting the old value,
3252 * then attempts to stop all the CPUs. If this succeeds, then each
3253 * CPU will have executed a context switch, resulting in an RCU-sched
3254 * grace period. We are then done, so we use atomic_cmpxchg() to
3255 * update sync_sched_expedited_done to match our snapshot -- but
3256 * only if someone else has not already advanced past our snapshot.
3257 *
3258 * On the other hand, if try_stop_cpus() fails, we check the value
3259 * of sync_sched_expedited_done. If it has advanced past our
3260 * initial snapshot, then someone else must have forced a grace period
3261 * some time after we took our snapshot. In this case, our work is
3262 * done for us, and we can simply return. Otherwise, we try again,
3263 * but keep our initial snapshot for purposes of checking for someone
3264 * doing our work for us.
3265 *
3266 * If we fail too many times in a row, we fall back to synchronize_sched().
3267 */
3268void synchronize_sched_expedited(void)
3269{
3270 cpumask_var_t cm;
3271 bool cma = false;
3272 int cpu;
3273 long firstsnap, s, snap;
3274 int trycount = 0;
3275 struct rcu_state *rsp = &rcu_sched_state;
3276
3277 /*
3278 * If we are in danger of counter wrap, just do synchronize_sched().
3279 * By allowing sync_sched_expedited_started to advance no more than
3280 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
3281 * that more than 3.5 billion CPUs would be required to force a
3282 * counter wrap on a 32-bit system. Quite a few more CPUs would of
3283 * course be required on a 64-bit system.
3284 */
3285 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
3286 (ulong)atomic_long_read(&rsp->expedited_done) +
3287 ULONG_MAX / 8)) {
3288 synchronize_sched();
3289 atomic_long_inc(&rsp->expedited_wrap);
3290 return;
3291 }
3292
3293 /*
3294 * Take a ticket. Note that atomic_inc_return() implies a
3295 * full memory barrier.
3296 */
3297 snap = atomic_long_inc_return(&rsp->expedited_start);
3298 firstsnap = snap;
3299 if (!try_get_online_cpus()) {
3300 /* CPU hotplug operation in flight, fall back to normal GP. */
3301 wait_rcu_gp(call_rcu_sched);
3302 atomic_long_inc(&rsp->expedited_normal);
3303 return;
3304 }
3305 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3306
3307 /* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */
3308 cma = zalloc_cpumask_var(&cm, GFP_KERNEL);
3309 if (cma) {
3310 cpumask_copy(cm, cpu_online_mask);
3311 cpumask_clear_cpu(raw_smp_processor_id(), cm);
3312 for_each_cpu(cpu, cm) {
3313 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3314
3315 if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3316 cpumask_clear_cpu(cpu, cm);
3317 }
3318 if (cpumask_weight(cm) == 0)
3319 goto all_cpus_idle;
3320 }
3321
3322 /*
3323 * Each pass through the following loop attempts to force a
3324 * context switch on each CPU.
3325 */
3326 while (try_stop_cpus(cma ? cm : cpu_online_mask,
3327 synchronize_sched_expedited_cpu_stop,
3328 NULL) == -EAGAIN) {
3329 put_online_cpus();
3330 atomic_long_inc(&rsp->expedited_tryfail);
3331
3332 /* Check to see if someone else did our work for us. */
3333 s = atomic_long_read(&rsp->expedited_done);
3334 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3335 /* ensure test happens before caller kfree */
3336 smp_mb__before_atomic(); /* ^^^ */
3337 atomic_long_inc(&rsp->expedited_workdone1);
3338 free_cpumask_var(cm);
3339 return;
3340 }
3341
3342 /* No joy, try again later. Or just synchronize_sched(). */
3343 if (trycount++ < 10) {
3344 udelay(trycount * num_online_cpus());
3345 } else {
3346 wait_rcu_gp(call_rcu_sched);
3347 atomic_long_inc(&rsp->expedited_normal);
3348 free_cpumask_var(cm);
3349 return;
3350 }
3351
3352 /* Recheck to see if someone else did our work for us. */
3353 s = atomic_long_read(&rsp->expedited_done);
3354 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3355 /* ensure test happens before caller kfree */
3356 smp_mb__before_atomic(); /* ^^^ */
3357 atomic_long_inc(&rsp->expedited_workdone2);
3358 free_cpumask_var(cm);
3359 return;
3360 }
3361
3362 /*
3363 * Refetching sync_sched_expedited_started allows later
3364 * callers to piggyback on our grace period. We retry
3365 * after they started, so our grace period works for them,
3366 * and they started after our first try, so their grace
3367 * period works for us.
3368 */
3369 if (!try_get_online_cpus()) {
3370 /* CPU hotplug operation in flight, use normal GP. */
3371 wait_rcu_gp(call_rcu_sched);
3372 atomic_long_inc(&rsp->expedited_normal);
3373 free_cpumask_var(cm);
3374 return;
3375 }
3376 snap = atomic_long_read(&rsp->expedited_start);
3377 smp_mb(); /* ensure read is before try_stop_cpus(). */
3378 }
3379 atomic_long_inc(&rsp->expedited_stoppedcpus);
3380
3381all_cpus_idle:
3382 free_cpumask_var(cm);
3383
3384 /*
3385 * Everyone up to our most recent fetch is covered by our grace
3386 * period. Update the counter, but only if our work is still
3387 * relevant -- which it won't be if someone who started later
3388 * than we did already did their update.
3389 */
3390 do {
3391 atomic_long_inc(&rsp->expedited_done_tries);
3392 s = atomic_long_read(&rsp->expedited_done);
3393 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
3394 /* ensure test happens before caller kfree */
3395 smp_mb__before_atomic(); /* ^^^ */
3396 atomic_long_inc(&rsp->expedited_done_lost);
3397 break;
3398 }
3399 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
3400 atomic_long_inc(&rsp->expedited_done_exit);
3401
3402 put_online_cpus();
3403}
3404EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3405
3406/*
3407 * Check to see if there is any immediate RCU-related work to be done
3408 * by the current CPU, for the specified type of RCU, returning 1 if so.
3409 * The checks are in order of increasing expense: checks that can be
3410 * carried out against CPU-local state are performed first. However,
3411 * we must check for CPU stalls first, else we might not get a chance.
3412 */
3413static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3414{
3415 struct rcu_node *rnp = rdp->mynode;
3416
3417 rdp->n_rcu_pending++;
3418
3419 /* Check for CPU stalls, if enabled. */
3420 check_cpu_stall(rsp, rdp);
3421
3422 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3423 if (rcu_nohz_full_cpu(rsp))
3424 return 0;
3425
3426 /* Is the RCU core waiting for a quiescent state from this CPU? */
3427 if (rcu_scheduler_fully_active &&
3428 rdp->qs_pending && !rdp->passed_quiesce &&
3429 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3430 rdp->n_rp_qs_pending++;
3431 } else if (rdp->qs_pending &&
3432 (rdp->passed_quiesce ||
3433 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3434 rdp->n_rp_report_qs++;
3435 return 1;
3436 }
3437
3438 /* Does this CPU have callbacks ready to invoke? */
3439 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3440 rdp->n_rp_cb_ready++;
3441 return 1;
3442 }
3443
3444 /* Has RCU gone idle with this CPU needing another grace period? */
3445 if (cpu_needs_another_gp(rsp, rdp)) {
3446 rdp->n_rp_cpu_needs_gp++;
3447 return 1;
3448 }
3449
3450 /* Has another RCU grace period completed? */
3451 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3452 rdp->n_rp_gp_completed++;
3453 return 1;
3454 }
3455
3456 /* Has a new RCU grace period started? */
3457 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum ||
3458 unlikely(ACCESS_ONCE(rdp->gpwrap))) { /* outside lock */
3459 rdp->n_rp_gp_started++;
3460 return 1;
3461 }
3462
3463 /* Does this CPU need a deferred NOCB wakeup? */
3464 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3465 rdp->n_rp_nocb_defer_wakeup++;
3466 return 1;
3467 }
3468
3469 /* nothing to do */
3470 rdp->n_rp_need_nothing++;
3471 return 0;
3472}
3473
3474/*
3475 * Check to see if there is any immediate RCU-related work to be done
3476 * by the current CPU, returning 1 if so. This function is part of the
3477 * RCU implementation; it is -not- an exported member of the RCU API.
3478 */
3479static int rcu_pending(void)
3480{
3481 struct rcu_state *rsp;
3482
3483 for_each_rcu_flavor(rsp)
3484 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3485 return 1;
3486 return 0;
3487}
3488
3489/*
3490 * Return true if the specified CPU has any callback. If all_lazy is
3491 * non-NULL, store an indication of whether all callbacks are lazy.
3492 * (If there are no callbacks, all of them are deemed to be lazy.)
3493 */
3494static int __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3495{
3496 bool al = true;
3497 bool hc = false;
3498 struct rcu_data *rdp;
3499 struct rcu_state *rsp;
3500
3501 for_each_rcu_flavor(rsp) {
3502 rdp = this_cpu_ptr(rsp->rda);
3503 if (!rdp->nxtlist)
3504 continue;
3505 hc = true;
3506 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3507 al = false;
3508 break;
3509 }
3510 }
3511 if (all_lazy)
3512 *all_lazy = al;
3513 return hc;
3514}
3515
3516/*
3517 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3518 * the compiler is expected to optimize this away.
3519 */
3520static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3521 int cpu, unsigned long done)
3522{
3523 trace_rcu_barrier(rsp->name, s, cpu,
3524 atomic_read(&rsp->barrier_cpu_count), done);
3525}
3526
3527/*
3528 * RCU callback function for _rcu_barrier(). If we are last, wake
3529 * up the task executing _rcu_barrier().
3530 */
3531static void rcu_barrier_callback(struct rcu_head *rhp)
3532{
3533 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3534 struct rcu_state *rsp = rdp->rsp;
3535
3536 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3537 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
3538 complete(&rsp->barrier_completion);
3539 } else {
3540 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
3541 }
3542}
3543
3544/*
3545 * Called with preemption disabled, and from cross-cpu IRQ context.
3546 */
3547static void rcu_barrier_func(void *type)
3548{
3549 struct rcu_state *rsp = type;
3550 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3551
3552 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
3553 atomic_inc(&rsp->barrier_cpu_count);
3554 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3555}
3556
3557/*
3558 * Orchestrate the specified type of RCU barrier, waiting for all
3559 * RCU callbacks of the specified type to complete.
3560 */
3561static void _rcu_barrier(struct rcu_state *rsp)
3562{
3563 int cpu;
3564 struct rcu_data *rdp;
3565 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
3566 unsigned long snap_done;
3567
3568 _rcu_barrier_trace(rsp, "Begin", -1, snap);
3569
3570 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3571 mutex_lock(&rsp->barrier_mutex);
3572
3573 /*
3574 * Ensure that all prior references, including to ->n_barrier_done,
3575 * are ordered before the _rcu_barrier() machinery.
3576 */
3577 smp_mb(); /* See above block comment. */
3578
3579 /*
3580 * Recheck ->n_barrier_done to see if others did our work for us.
3581 * This means checking ->n_barrier_done for an even-to-odd-to-even
3582 * transition. The "if" expression below therefore rounds the old
3583 * value up to the next even number and adds two before comparing.
3584 */
3585 snap_done = rsp->n_barrier_done;
3586 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
3587
3588 /*
3589 * If the value in snap is odd, we needed to wait for the current
3590 * rcu_barrier() to complete, then wait for the next one, in other
3591 * words, we need the value of snap_done to be three larger than
3592 * the value of snap. On the other hand, if the value in snap is
3593 * even, we only had to wait for the next rcu_barrier() to complete,
3594 * in other words, we need the value of snap_done to be only two
3595 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
3596 * this for us (thank you, Linus!).
3597 */
3598 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3599 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3600 smp_mb(); /* caller's subsequent code after above check. */
3601 mutex_unlock(&rsp->barrier_mutex);
3602 return;
3603 }
3604
3605 /*
3606 * Increment ->n_barrier_done to avoid duplicate work. Use
3607 * ACCESS_ONCE() to prevent the compiler from speculating
3608 * the increment to precede the early-exit check.
3609 */
3610 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
3611 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3612 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3613 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3614
3615 /*
3616 * Initialize the count to one rather than to zero in order to
3617 * avoid a too-soon return to zero in case of a short grace period
3618 * (or preemption of this task). Exclude CPU-hotplug operations
3619 * to ensure that no offline CPU has callbacks queued.
3620 */
3621 init_completion(&rsp->barrier_completion);
3622 atomic_set(&rsp->barrier_cpu_count, 1);
3623 get_online_cpus();
3624
3625 /*
3626 * Force each CPU with callbacks to register a new callback.
3627 * When that callback is invoked, we will know that all of the
3628 * corresponding CPU's preceding callbacks have been invoked.
3629 */
3630 for_each_possible_cpu(cpu) {
3631 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3632 continue;
3633 rdp = per_cpu_ptr(rsp->rda, cpu);
3634 if (rcu_is_nocb_cpu(cpu)) {
3635 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3636 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3637 rsp->n_barrier_done);
3638 } else {
3639 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3640 rsp->n_barrier_done);
3641 smp_mb__before_atomic();
3642 atomic_inc(&rsp->barrier_cpu_count);
3643 __call_rcu(&rdp->barrier_head,
3644 rcu_barrier_callback, rsp, cpu, 0);
3645 }
3646 } else if (ACCESS_ONCE(rdp->qlen)) {
3647 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3648 rsp->n_barrier_done);
3649 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3650 } else {
3651 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3652 rsp->n_barrier_done);
3653 }
3654 }
3655 put_online_cpus();
3656
3657 /*
3658 * Now that we have an rcu_barrier_callback() callback on each
3659 * CPU, and thus each counted, remove the initial count.
3660 */
3661 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3662 complete(&rsp->barrier_completion);
3663
3664 /* Increment ->n_barrier_done to prevent duplicate work. */
3665 smp_mb(); /* Keep increment after above mechanism. */
3666 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
3667 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3668 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3669 smp_mb(); /* Keep increment before caller's subsequent code. */
3670
3671 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3672 wait_for_completion(&rsp->barrier_completion);
3673
3674 /* Other rcu_barrier() invocations can now safely proceed. */
3675 mutex_unlock(&rsp->barrier_mutex);
3676}
3677
3678/**
3679 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3680 */
3681void rcu_barrier_bh(void)
3682{
3683 _rcu_barrier(&rcu_bh_state);
3684}
3685EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3686
3687/**
3688 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3689 */
3690void rcu_barrier_sched(void)
3691{
3692 _rcu_barrier(&rcu_sched_state);
3693}
3694EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3695
3696/*
3697 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3698 * first CPU in a given leaf rcu_node structure coming online. The caller
3699 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3700 * disabled.
3701 */
3702static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3703{
3704 long mask;
3705 struct rcu_node *rnp = rnp_leaf;
3706
3707 for (;;) {
3708 mask = rnp->grpmask;
3709 rnp = rnp->parent;
3710 if (rnp == NULL)
3711 return;
3712 raw_spin_lock(&rnp->lock); /* Interrupts already disabled. */
3713 rnp->qsmaskinit |= mask;
3714 raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
3715 }
3716}
3717
3718/*
3719 * Do boot-time initialization of a CPU's per-CPU RCU data.
3720 */
3721static void __init
3722rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3723{
3724 unsigned long flags;
3725 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3726 struct rcu_node *rnp = rcu_get_root(rsp);
3727
3728 /* Set up local state, ensuring consistent view of global state. */
3729 raw_spin_lock_irqsave(&rnp->lock, flags);
3730 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3731 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3732 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3733 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3734 rdp->cpu = cpu;
3735 rdp->rsp = rsp;
3736 rcu_boot_init_nocb_percpu_data(rdp);
3737 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3738}
3739
3740/*
3741 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3742 * offline event can be happening at a given time. Note also that we
3743 * can accept some slop in the rsp->completed access due to the fact
3744 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3745 */
3746static void
3747rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3748{
3749 unsigned long flags;
3750 unsigned long mask;
3751 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3752 struct rcu_node *rnp = rcu_get_root(rsp);
3753
3754 /* Set up local state, ensuring consistent view of global state. */
3755 raw_spin_lock_irqsave(&rnp->lock, flags);
3756 rdp->beenonline = 1; /* We have now been online. */
3757 rdp->qlen_last_fqs_check = 0;
3758 rdp->n_force_qs_snap = rsp->n_force_qs;
3759 rdp->blimit = blimit;
3760 if (!rdp->nxtlist)
3761 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
3762 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3763 rcu_sysidle_init_percpu_data(rdp->dynticks);
3764 atomic_set(&rdp->dynticks->dynticks,
3765 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3766 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
3767
3768 /*
3769 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3770 * propagation up the rcu_node tree will happen at the beginning
3771 * of the next grace period.
3772 */
3773 rnp = rdp->mynode;
3774 mask = rdp->grpmask;
3775 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
3776 smp_mb__after_unlock_lock();
3777 rnp->qsmaskinitnext |= mask;
3778 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3779 rdp->completed = rnp->completed;
3780 rdp->passed_quiesce = false;
3781 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
3782 rdp->qs_pending = false;
3783 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3784 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3785}
3786
3787static void rcu_prepare_cpu(int cpu)
3788{
3789 struct rcu_state *rsp;
3790
3791 for_each_rcu_flavor(rsp)
3792 rcu_init_percpu_data(cpu, rsp);
3793}
3794
3795/*
3796 * Handle CPU online/offline notification events.
3797 */
3798int rcu_cpu_notify(struct notifier_block *self,
3799 unsigned long action, void *hcpu)
3800{
3801 long cpu = (long)hcpu;
3802 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3803 struct rcu_node *rnp = rdp->mynode;
3804 struct rcu_state *rsp;
3805
3806 switch (action) {
3807 case CPU_UP_PREPARE:
3808 case CPU_UP_PREPARE_FROZEN:
3809 rcu_prepare_cpu(cpu);
3810 rcu_prepare_kthreads(cpu);
3811 rcu_spawn_all_nocb_kthreads(cpu);
3812 break;
3813 case CPU_ONLINE:
3814 case CPU_DOWN_FAILED:
3815 rcu_boost_kthread_setaffinity(rnp, -1);
3816 break;
3817 case CPU_DOWN_PREPARE:
3818 rcu_boost_kthread_setaffinity(rnp, cpu);
3819 break;
3820 case CPU_DYING:
3821 case CPU_DYING_FROZEN:
3822 for_each_rcu_flavor(rsp)
3823 rcu_cleanup_dying_cpu(rsp);
3824 break;
3825 case CPU_DYING_IDLE:
3826 for_each_rcu_flavor(rsp) {
3827 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3828 }
3829 break;
3830 case CPU_DEAD:
3831 case CPU_DEAD_FROZEN:
3832 case CPU_UP_CANCELED:
3833 case CPU_UP_CANCELED_FROZEN:
3834 for_each_rcu_flavor(rsp) {
3835 rcu_cleanup_dead_cpu(cpu, rsp);
3836 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3837 }
3838 break;
3839 default:
3840 break;
3841 }
3842 return NOTIFY_OK;
3843}
3844
3845static int rcu_pm_notify(struct notifier_block *self,
3846 unsigned long action, void *hcpu)
3847{
3848 switch (action) {
3849 case PM_HIBERNATION_PREPARE:
3850 case PM_SUSPEND_PREPARE:
3851 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3852 rcu_expedite_gp();
3853 break;
3854 case PM_POST_HIBERNATION:
3855 case PM_POST_SUSPEND:
3856 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3857 rcu_unexpedite_gp();
3858 break;
3859 default:
3860 break;
3861 }
3862 return NOTIFY_OK;
3863}
3864
3865/*
3866 * Spawn the kthreads that handle each RCU flavor's grace periods.
3867 */
3868static int __init rcu_spawn_gp_kthread(void)
3869{
3870 unsigned long flags;
3871 int kthread_prio_in = kthread_prio;
3872 struct rcu_node *rnp;
3873 struct rcu_state *rsp;
3874 struct sched_param sp;
3875 struct task_struct *t;
3876
3877 /* Force priority into range. */
3878 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3879 kthread_prio = 1;
3880 else if (kthread_prio < 0)
3881 kthread_prio = 0;
3882 else if (kthread_prio > 99)
3883 kthread_prio = 99;
3884 if (kthread_prio != kthread_prio_in)
3885 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3886 kthread_prio, kthread_prio_in);
3887
3888 rcu_scheduler_fully_active = 1;
3889 for_each_rcu_flavor(rsp) {
3890 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3891 BUG_ON(IS_ERR(t));
3892 rnp = rcu_get_root(rsp);
3893 raw_spin_lock_irqsave(&rnp->lock, flags);
3894 rsp->gp_kthread = t;
3895 if (kthread_prio) {
3896 sp.sched_priority = kthread_prio;
3897 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3898 }
3899 wake_up_process(t);
3900 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3901 }
3902 rcu_spawn_nocb_kthreads();
3903 rcu_spawn_boost_kthreads();
3904 return 0;
3905}
3906early_initcall(rcu_spawn_gp_kthread);
3907
3908/*
3909 * This function is invoked towards the end of the scheduler's initialization
3910 * process. Before this is called, the idle task might contain
3911 * RCU read-side critical sections (during which time, this idle
3912 * task is booting the system). After this function is called, the
3913 * idle tasks are prohibited from containing RCU read-side critical
3914 * sections. This function also enables RCU lockdep checking.
3915 */
3916void rcu_scheduler_starting(void)
3917{
3918 WARN_ON(num_online_cpus() != 1);
3919 WARN_ON(nr_context_switches() > 0);
3920 rcu_scheduler_active = 1;
3921}
3922
3923/*
3924 * Compute the per-level fanout, either using the exact fanout specified
3925 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3926 */
3927static void __init rcu_init_levelspread(struct rcu_state *rsp)
3928{
3929 int i;
3930
3931 if (IS_ENABLED(CONFIG_RCU_FANOUT_EXACT)) {
3932 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3933 for (i = rcu_num_lvls - 2; i >= 0; i--)
3934 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3935 } else {
3936 int ccur;
3937 int cprv;
3938
3939 cprv = nr_cpu_ids;
3940 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3941 ccur = rsp->levelcnt[i];
3942 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3943 cprv = ccur;
3944 }
3945 }
3946}
3947
3948/*
3949 * Helper function for rcu_init() that initializes one rcu_state structure.
3950 */
3951static void __init rcu_init_one(struct rcu_state *rsp,
3952 struct rcu_data __percpu *rda)
3953{
3954 static const char * const buf[] = {
3955 "rcu_node_0",
3956 "rcu_node_1",
3957 "rcu_node_2",
3958 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3959 static const char * const fqs[] = {
3960 "rcu_node_fqs_0",
3961 "rcu_node_fqs_1",
3962 "rcu_node_fqs_2",
3963 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
3964 static u8 fl_mask = 0x1;
3965 int cpustride = 1;
3966 int i;
3967 int j;
3968 struct rcu_node *rnp;
3969
3970 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3971
3972 /* Silence gcc 4.8 warning about array index out of range. */
3973 if (rcu_num_lvls > RCU_NUM_LVLS)
3974 panic("rcu_init_one: rcu_num_lvls overflow");
3975
3976 /* Initialize the level-tracking arrays. */
3977
3978 for (i = 0; i < rcu_num_lvls; i++)
3979 rsp->levelcnt[i] = num_rcu_lvl[i];
3980 for (i = 1; i < rcu_num_lvls; i++)
3981 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3982 rcu_init_levelspread(rsp);
3983 rsp->flavor_mask = fl_mask;
3984 fl_mask <<= 1;
3985
3986 /* Initialize the elements themselves, starting from the leaves. */
3987
3988 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3989 cpustride *= rsp->levelspread[i];
3990 rnp = rsp->level[i];
3991 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
3992 raw_spin_lock_init(&rnp->lock);
3993 lockdep_set_class_and_name(&rnp->lock,
3994 &rcu_node_class[i], buf[i]);
3995 raw_spin_lock_init(&rnp->fqslock);
3996 lockdep_set_class_and_name(&rnp->fqslock,
3997 &rcu_fqs_class[i], fqs[i]);
3998 rnp->gpnum = rsp->gpnum;
3999 rnp->completed = rsp->completed;
4000 rnp->qsmask = 0;
4001 rnp->qsmaskinit = 0;
4002 rnp->grplo = j * cpustride;
4003 rnp->grphi = (j + 1) * cpustride - 1;
4004 if (rnp->grphi >= nr_cpu_ids)
4005 rnp->grphi = nr_cpu_ids - 1;
4006 if (i == 0) {
4007 rnp->grpnum = 0;
4008 rnp->grpmask = 0;
4009 rnp->parent = NULL;
4010 } else {
4011 rnp->grpnum = j % rsp->levelspread[i - 1];
4012 rnp->grpmask = 1UL << rnp->grpnum;
4013 rnp->parent = rsp->level[i - 1] +
4014 j / rsp->levelspread[i - 1];
4015 }
4016 rnp->level = i;
4017 INIT_LIST_HEAD(&rnp->blkd_tasks);
4018 rcu_init_one_nocb(rnp);
4019 }
4020 }
4021
4022 init_waitqueue_head(&rsp->gp_wq);
4023 rnp = rsp->level[rcu_num_lvls - 1];
4024 for_each_possible_cpu(i) {
4025 while (i > rnp->grphi)
4026 rnp++;
4027 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4028 rcu_boot_init_percpu_data(i, rsp);
4029 }
4030 list_add(&rsp->flavors, &rcu_struct_flavors);
4031}
4032
4033/*
4034 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4035 * replace the definitions in tree.h because those are needed to size
4036 * the ->node array in the rcu_state structure.
4037 */
4038static void __init rcu_init_geometry(void)
4039{
4040 ulong d;
4041 int i;
4042 int j;
4043 int n = nr_cpu_ids;
4044 int rcu_capacity[MAX_RCU_LVLS + 1];
4045
4046 /*
4047 * Initialize any unspecified boot parameters.
4048 * The default values of jiffies_till_first_fqs and
4049 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4050 * value, which is a function of HZ, then adding one for each
4051 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4052 */
4053 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4054 if (jiffies_till_first_fqs == ULONG_MAX)
4055 jiffies_till_first_fqs = d;
4056 if (jiffies_till_next_fqs == ULONG_MAX)
4057 jiffies_till_next_fqs = d;
4058
4059 /* If the compile-time values are accurate, just leave. */
4060 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
4061 nr_cpu_ids == NR_CPUS)
4062 return;
4063 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4064 rcu_fanout_leaf, nr_cpu_ids);
4065
4066 /*
4067 * Compute number of nodes that can be handled an rcu_node tree
4068 * with the given number of levels. Setting rcu_capacity[0] makes
4069 * some of the arithmetic easier.
4070 */
4071 rcu_capacity[0] = 1;
4072 rcu_capacity[1] = rcu_fanout_leaf;
4073 for (i = 2; i <= MAX_RCU_LVLS; i++)
4074 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
4075
4076 /*
4077 * The boot-time rcu_fanout_leaf parameter is only permitted
4078 * to increase the leaf-level fanout, not decrease it. Of course,
4079 * the leaf-level fanout cannot exceed the number of bits in
4080 * the rcu_node masks. Finally, the tree must be able to accommodate
4081 * the configured number of CPUs. Complain and fall back to the
4082 * compile-time values if these limits are exceeded.
4083 */
4084 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
4085 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
4086 n > rcu_capacity[MAX_RCU_LVLS]) {
4087 WARN_ON(1);
4088 return;
4089 }
4090
4091 /* Calculate the number of rcu_nodes at each level of the tree. */
4092 for (i = 1; i <= MAX_RCU_LVLS; i++)
4093 if (n <= rcu_capacity[i]) {
4094 for (j = 0; j <= i; j++)
4095 num_rcu_lvl[j] =
4096 DIV_ROUND_UP(n, rcu_capacity[i - j]);
4097 rcu_num_lvls = i;
4098 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
4099 num_rcu_lvl[j] = 0;
4100 break;
4101 }
4102
4103 /* Calculate the total number of rcu_node structures. */
4104 rcu_num_nodes = 0;
4105 for (i = 0; i <= MAX_RCU_LVLS; i++)
4106 rcu_num_nodes += num_rcu_lvl[i];
4107 rcu_num_nodes -= n;
4108}
4109
4110void __init rcu_init(void)
4111{
4112 int cpu;
4113
4114 rcu_early_boot_tests();
4115
4116 rcu_bootup_announce();
4117 rcu_init_geometry();
4118 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
4119 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
4120 __rcu_init_preempt();
4121 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4122
4123 /*
4124 * We don't need protection against CPU-hotplug here because
4125 * this is called early in boot, before either interrupts
4126 * or the scheduler are operational.
4127 */
4128 cpu_notifier(rcu_cpu_notify, 0);
4129 pm_notifier(rcu_pm_notify, 0);
4130 for_each_online_cpu(cpu)
4131 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4132}
4133
4134#include "tree_plugin.h"
This page took 0.038877 seconds and 5 git commands to generate.