rcu: New rcu_user_enter() and rcu_user_exit() APIs
[deliverable/linux.git] / kernel / rcutree.c
... / ...
CommitLineData
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
38#include <linux/nmi.h>
39#include <linux/atomic.h>
40#include <linux/bitops.h>
41#include <linux/export.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
49#include <linux/kernel_stat.h>
50#include <linux/wait.h>
51#include <linux/kthread.h>
52#include <linux/prefetch.h>
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
55#include <linux/random.h>
56
57#include "rcutree.h"
58#include <trace/events/rcu.h>
59
60#include "rcu.h"
61
62/* Data structures. */
63
64static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
65static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
66
67#define RCU_STATE_INITIALIZER(sname, cr) { \
68 .level = { &sname##_state.node[0] }, \
69 .call = cr, \
70 .fqs_state = RCU_GP_IDLE, \
71 .gpnum = -300, \
72 .completed = -300, \
73 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \
74 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
75 .orphan_donetail = &sname##_state.orphan_donelist, \
76 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
77 .name = #sname, \
78}
79
80struct rcu_state rcu_sched_state =
81 RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
82DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
83
84struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
85DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
86
87static struct rcu_state *rcu_state;
88LIST_HEAD(rcu_struct_flavors);
89
90/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
91static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
92module_param(rcu_fanout_leaf, int, 0444);
93int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
94static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
95 NUM_RCU_LVL_0,
96 NUM_RCU_LVL_1,
97 NUM_RCU_LVL_2,
98 NUM_RCU_LVL_3,
99 NUM_RCU_LVL_4,
100};
101int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
102
103/*
104 * The rcu_scheduler_active variable transitions from zero to one just
105 * before the first task is spawned. So when this variable is zero, RCU
106 * can assume that there is but one task, allowing RCU to (for example)
107 * optimized synchronize_sched() to a simple barrier(). When this variable
108 * is one, RCU must actually do all the hard work required to detect real
109 * grace periods. This variable is also used to suppress boot-time false
110 * positives from lockdep-RCU error checking.
111 */
112int rcu_scheduler_active __read_mostly;
113EXPORT_SYMBOL_GPL(rcu_scheduler_active);
114
115/*
116 * The rcu_scheduler_fully_active variable transitions from zero to one
117 * during the early_initcall() processing, which is after the scheduler
118 * is capable of creating new tasks. So RCU processing (for example,
119 * creating tasks for RCU priority boosting) must be delayed until after
120 * rcu_scheduler_fully_active transitions from zero to one. We also
121 * currently delay invocation of any RCU callbacks until after this point.
122 *
123 * It might later prove better for people registering RCU callbacks during
124 * early boot to take responsibility for these callbacks, but one step at
125 * a time.
126 */
127static int rcu_scheduler_fully_active __read_mostly;
128
129#ifdef CONFIG_RCU_BOOST
130
131/*
132 * Control variables for per-CPU and per-rcu_node kthreads. These
133 * handle all flavors of RCU.
134 */
135static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
136DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
137DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
138DEFINE_PER_CPU(char, rcu_cpu_has_work);
139
140#endif /* #ifdef CONFIG_RCU_BOOST */
141
142static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
143static void invoke_rcu_core(void);
144static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
145
146/*
147 * Track the rcutorture test sequence number and the update version
148 * number within a given test. The rcutorture_testseq is incremented
149 * on every rcutorture module load and unload, so has an odd value
150 * when a test is running. The rcutorture_vernum is set to zero
151 * when rcutorture starts and is incremented on each rcutorture update.
152 * These variables enable correlating rcutorture output with the
153 * RCU tracing information.
154 */
155unsigned long rcutorture_testseq;
156unsigned long rcutorture_vernum;
157
158/*
159 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
160 * permit this function to be invoked without holding the root rcu_node
161 * structure's ->lock, but of course results can be subject to change.
162 */
163static int rcu_gp_in_progress(struct rcu_state *rsp)
164{
165 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
166}
167
168/*
169 * Note a quiescent state. Because we do not need to know
170 * how many quiescent states passed, just if there was at least
171 * one since the start of the grace period, this just sets a flag.
172 * The caller must have disabled preemption.
173 */
174void rcu_sched_qs(int cpu)
175{
176 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
177
178 if (rdp->passed_quiesce == 0)
179 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
180 rdp->passed_quiesce = 1;
181}
182
183void rcu_bh_qs(int cpu)
184{
185 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
186
187 if (rdp->passed_quiesce == 0)
188 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
189 rdp->passed_quiesce = 1;
190}
191
192/*
193 * Note a context switch. This is a quiescent state for RCU-sched,
194 * and requires special handling for preemptible RCU.
195 * The caller must have disabled preemption.
196 */
197void rcu_note_context_switch(int cpu)
198{
199 trace_rcu_utilization("Start context switch");
200 rcu_sched_qs(cpu);
201 rcu_preempt_note_context_switch(cpu);
202 trace_rcu_utilization("End context switch");
203}
204EXPORT_SYMBOL_GPL(rcu_note_context_switch);
205
206DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
207 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
208 .dynticks = ATOMIC_INIT(1),
209};
210
211static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
212static int qhimark = 10000; /* If this many pending, ignore blimit. */
213static int qlowmark = 100; /* Once only this many pending, use blimit. */
214
215module_param(blimit, int, 0444);
216module_param(qhimark, int, 0444);
217module_param(qlowmark, int, 0444);
218
219int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
220int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
221
222module_param(rcu_cpu_stall_suppress, int, 0644);
223module_param(rcu_cpu_stall_timeout, int, 0644);
224
225static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
226static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;
227
228module_param(jiffies_till_first_fqs, ulong, 0644);
229module_param(jiffies_till_next_fqs, ulong, 0644);
230
231static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
232static void force_quiescent_state(struct rcu_state *rsp);
233static int rcu_pending(int cpu);
234
235/*
236 * Return the number of RCU-sched batches processed thus far for debug & stats.
237 */
238long rcu_batches_completed_sched(void)
239{
240 return rcu_sched_state.completed;
241}
242EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
243
244/*
245 * Return the number of RCU BH batches processed thus far for debug & stats.
246 */
247long rcu_batches_completed_bh(void)
248{
249 return rcu_bh_state.completed;
250}
251EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
252
253/*
254 * Force a quiescent state for RCU BH.
255 */
256void rcu_bh_force_quiescent_state(void)
257{
258 force_quiescent_state(&rcu_bh_state);
259}
260EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
261
262/*
263 * Record the number of times rcutorture tests have been initiated and
264 * terminated. This information allows the debugfs tracing stats to be
265 * correlated to the rcutorture messages, even when the rcutorture module
266 * is being repeatedly loaded and unloaded. In other words, we cannot
267 * store this state in rcutorture itself.
268 */
269void rcutorture_record_test_transition(void)
270{
271 rcutorture_testseq++;
272 rcutorture_vernum = 0;
273}
274EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
275
276/*
277 * Record the number of writer passes through the current rcutorture test.
278 * This is also used to correlate debugfs tracing stats with the rcutorture
279 * messages.
280 */
281void rcutorture_record_progress(unsigned long vernum)
282{
283 rcutorture_vernum++;
284}
285EXPORT_SYMBOL_GPL(rcutorture_record_progress);
286
287/*
288 * Force a quiescent state for RCU-sched.
289 */
290void rcu_sched_force_quiescent_state(void)
291{
292 force_quiescent_state(&rcu_sched_state);
293}
294EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
295
296/*
297 * Does the CPU have callbacks ready to be invoked?
298 */
299static int
300cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
301{
302 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
303}
304
305/*
306 * Does the current CPU require a yet-as-unscheduled grace period?
307 */
308static int
309cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
310{
311 return *rdp->nxttail[RCU_DONE_TAIL +
312 ACCESS_ONCE(rsp->completed) != rdp->completed] &&
313 !rcu_gp_in_progress(rsp);
314}
315
316/*
317 * Return the root node of the specified rcu_state structure.
318 */
319static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
320{
321 return &rsp->node[0];
322}
323
324/*
325 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
326 *
327 * If the new value of the ->dynticks_nesting counter now is zero,
328 * we really have entered idle, and must do the appropriate accounting.
329 * The caller must have disabled interrupts.
330 */
331static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
332 bool user)
333{
334 trace_rcu_dyntick("Start", oldval, 0);
335 if (!is_idle_task(current) && !user) {
336 struct task_struct *idle = idle_task(smp_processor_id());
337
338 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
339 ftrace_dump(DUMP_ORIG);
340 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
341 current->pid, current->comm,
342 idle->pid, idle->comm); /* must be idle task! */
343 }
344 rcu_prepare_for_idle(smp_processor_id());
345 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
346 smp_mb__before_atomic_inc(); /* See above. */
347 atomic_inc(&rdtp->dynticks);
348 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
349 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
350
351 /*
352 * It is illegal to enter an extended quiescent state while
353 * in an RCU read-side critical section.
354 */
355 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
356 "Illegal idle entry in RCU read-side critical section.");
357 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
358 "Illegal idle entry in RCU-bh read-side critical section.");
359 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
360 "Illegal idle entry in RCU-sched read-side critical section.");
361}
362
363/*
364 * Enter an RCU extended quiescent state, which can be either the
365 * idle loop or adaptive-tickless usermode execution.
366 */
367static void rcu_eqs_enter(bool user)
368{
369 unsigned long flags;
370 long long oldval;
371 struct rcu_dynticks *rdtp;
372
373 local_irq_save(flags);
374 rdtp = &__get_cpu_var(rcu_dynticks);
375 oldval = rdtp->dynticks_nesting;
376 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
377 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
378 rdtp->dynticks_nesting = 0;
379 else
380 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
381 rcu_eqs_enter_common(rdtp, oldval, user);
382 local_irq_restore(flags);
383}
384
385/**
386 * rcu_idle_enter - inform RCU that current CPU is entering idle
387 *
388 * Enter idle mode, in other words, -leave- the mode in which RCU
389 * read-side critical sections can occur. (Though RCU read-side
390 * critical sections can occur in irq handlers in idle, a possibility
391 * handled by irq_enter() and irq_exit().)
392 *
393 * We crowbar the ->dynticks_nesting field to zero to allow for
394 * the possibility of usermode upcalls having messed up our count
395 * of interrupt nesting level during the prior busy period.
396 */
397void rcu_idle_enter(void)
398{
399 rcu_eqs_enter(0);
400}
401EXPORT_SYMBOL_GPL(rcu_idle_enter);
402
403/**
404 * rcu_user_enter - inform RCU that we are resuming userspace.
405 *
406 * Enter RCU idle mode right before resuming userspace. No use of RCU
407 * is permitted between this call and rcu_user_exit(). This way the
408 * CPU doesn't need to maintain the tick for RCU maintenance purposes
409 * when the CPU runs in userspace.
410 */
411void rcu_user_enter(void)
412{
413 /*
414 * Some contexts may involve an exception occuring in an irq,
415 * leading to that nesting:
416 * rcu_irq_enter() rcu_user_exit() rcu_user_exit() rcu_irq_exit()
417 * This would mess up the dyntick_nesting count though. And rcu_irq_*()
418 * helpers are enough to protect RCU uses inside the exception. So
419 * just return immediately if we detect we are in an IRQ.
420 */
421 if (in_interrupt())
422 return;
423
424 rcu_eqs_enter(1);
425}
426
427
428/**
429 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
430 *
431 * Exit from an interrupt handler, which might possibly result in entering
432 * idle mode, in other words, leaving the mode in which read-side critical
433 * sections can occur.
434 *
435 * This code assumes that the idle loop never does anything that might
436 * result in unbalanced calls to irq_enter() and irq_exit(). If your
437 * architecture violates this assumption, RCU will give you what you
438 * deserve, good and hard. But very infrequently and irreproducibly.
439 *
440 * Use things like work queues to work around this limitation.
441 *
442 * You have been warned.
443 */
444void rcu_irq_exit(void)
445{
446 unsigned long flags;
447 long long oldval;
448 struct rcu_dynticks *rdtp;
449
450 local_irq_save(flags);
451 rdtp = &__get_cpu_var(rcu_dynticks);
452 oldval = rdtp->dynticks_nesting;
453 rdtp->dynticks_nesting--;
454 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
455 if (rdtp->dynticks_nesting)
456 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
457 else
458 rcu_eqs_enter_common(rdtp, oldval, 1);
459 local_irq_restore(flags);
460}
461
462/*
463 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
464 *
465 * If the new value of the ->dynticks_nesting counter was previously zero,
466 * we really have exited idle, and must do the appropriate accounting.
467 * The caller must have disabled interrupts.
468 */
469static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
470 int user)
471{
472 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
473 atomic_inc(&rdtp->dynticks);
474 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
475 smp_mb__after_atomic_inc(); /* See above. */
476 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
477 rcu_cleanup_after_idle(smp_processor_id());
478 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
479 if (!is_idle_task(current) && !user) {
480 struct task_struct *idle = idle_task(smp_processor_id());
481
482 trace_rcu_dyntick("Error on exit: not idle task",
483 oldval, rdtp->dynticks_nesting);
484 ftrace_dump(DUMP_ORIG);
485 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
486 current->pid, current->comm,
487 idle->pid, idle->comm); /* must be idle task! */
488 }
489}
490
491/*
492 * Exit an RCU extended quiescent state, which can be either the
493 * idle loop or adaptive-tickless usermode execution.
494 */
495static void rcu_eqs_exit(bool user)
496{
497 unsigned long flags;
498 struct rcu_dynticks *rdtp;
499 long long oldval;
500
501 local_irq_save(flags);
502 rdtp = &__get_cpu_var(rcu_dynticks);
503 oldval = rdtp->dynticks_nesting;
504 WARN_ON_ONCE(oldval < 0);
505 if (oldval & DYNTICK_TASK_NEST_MASK)
506 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
507 else
508 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
509 rcu_eqs_exit_common(rdtp, oldval, user);
510 local_irq_restore(flags);
511}
512
513/**
514 * rcu_idle_exit - inform RCU that current CPU is leaving idle
515 *
516 * Exit idle mode, in other words, -enter- the mode in which RCU
517 * read-side critical sections can occur.
518 *
519 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
520 * allow for the possibility of usermode upcalls messing up our count
521 * of interrupt nesting level during the busy period that is just
522 * now starting.
523 */
524void rcu_idle_exit(void)
525{
526 rcu_eqs_exit(0);
527}
528EXPORT_SYMBOL_GPL(rcu_idle_exit);
529
530/**
531 * rcu_user_exit - inform RCU that we are exiting userspace.
532 *
533 * Exit RCU idle mode while entering the kernel because it can
534 * run a RCU read side critical section anytime.
535 */
536void rcu_user_exit(void)
537{
538 /*
539 * Some contexts may involve an exception occuring in an irq,
540 * leading to that nesting:
541 * rcu_irq_enter() rcu_user_exit() rcu_user_exit() rcu_irq_exit()
542 * This would mess up the dyntick_nesting count though. And rcu_irq_*()
543 * helpers are enough to protect RCU uses inside the exception. So
544 * just return immediately if we detect we are in an IRQ.
545 */
546 if (in_interrupt())
547 return;
548
549 rcu_eqs_exit(1);
550}
551
552/**
553 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
554 *
555 * Enter an interrupt handler, which might possibly result in exiting
556 * idle mode, in other words, entering the mode in which read-side critical
557 * sections can occur.
558 *
559 * Note that the Linux kernel is fully capable of entering an interrupt
560 * handler that it never exits, for example when doing upcalls to
561 * user mode! This code assumes that the idle loop never does upcalls to
562 * user mode. If your architecture does do upcalls from the idle loop (or
563 * does anything else that results in unbalanced calls to the irq_enter()
564 * and irq_exit() functions), RCU will give you what you deserve, good
565 * and hard. But very infrequently and irreproducibly.
566 *
567 * Use things like work queues to work around this limitation.
568 *
569 * You have been warned.
570 */
571void rcu_irq_enter(void)
572{
573 unsigned long flags;
574 struct rcu_dynticks *rdtp;
575 long long oldval;
576
577 local_irq_save(flags);
578 rdtp = &__get_cpu_var(rcu_dynticks);
579 oldval = rdtp->dynticks_nesting;
580 rdtp->dynticks_nesting++;
581 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
582 if (oldval)
583 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
584 else
585 rcu_eqs_exit_common(rdtp, oldval, 1);
586 local_irq_restore(flags);
587}
588
589/**
590 * rcu_nmi_enter - inform RCU of entry to NMI context
591 *
592 * If the CPU was idle with dynamic ticks active, and there is no
593 * irq handler running, this updates rdtp->dynticks_nmi to let the
594 * RCU grace-period handling know that the CPU is active.
595 */
596void rcu_nmi_enter(void)
597{
598 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
599
600 if (rdtp->dynticks_nmi_nesting == 0 &&
601 (atomic_read(&rdtp->dynticks) & 0x1))
602 return;
603 rdtp->dynticks_nmi_nesting++;
604 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
605 atomic_inc(&rdtp->dynticks);
606 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
607 smp_mb__after_atomic_inc(); /* See above. */
608 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
609}
610
611/**
612 * rcu_nmi_exit - inform RCU of exit from NMI context
613 *
614 * If the CPU was idle with dynamic ticks active, and there is no
615 * irq handler running, this updates rdtp->dynticks_nmi to let the
616 * RCU grace-period handling know that the CPU is no longer active.
617 */
618void rcu_nmi_exit(void)
619{
620 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
621
622 if (rdtp->dynticks_nmi_nesting == 0 ||
623 --rdtp->dynticks_nmi_nesting != 0)
624 return;
625 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
626 smp_mb__before_atomic_inc(); /* See above. */
627 atomic_inc(&rdtp->dynticks);
628 smp_mb__after_atomic_inc(); /* Force delay to next write. */
629 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
630}
631
632/**
633 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
634 *
635 * If the current CPU is in its idle loop and is neither in an interrupt
636 * or NMI handler, return true.
637 */
638int rcu_is_cpu_idle(void)
639{
640 int ret;
641
642 preempt_disable();
643 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
644 preempt_enable();
645 return ret;
646}
647EXPORT_SYMBOL(rcu_is_cpu_idle);
648
649#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
650
651/*
652 * Is the current CPU online? Disable preemption to avoid false positives
653 * that could otherwise happen due to the current CPU number being sampled,
654 * this task being preempted, its old CPU being taken offline, resuming
655 * on some other CPU, then determining that its old CPU is now offline.
656 * It is OK to use RCU on an offline processor during initial boot, hence
657 * the check for rcu_scheduler_fully_active. Note also that it is OK
658 * for a CPU coming online to use RCU for one jiffy prior to marking itself
659 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
660 * offline to continue to use RCU for one jiffy after marking itself
661 * offline in the cpu_online_mask. This leniency is necessary given the
662 * non-atomic nature of the online and offline processing, for example,
663 * the fact that a CPU enters the scheduler after completing the CPU_DYING
664 * notifiers.
665 *
666 * This is also why RCU internally marks CPUs online during the
667 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
668 *
669 * Disable checking if in an NMI handler because we cannot safely report
670 * errors from NMI handlers anyway.
671 */
672bool rcu_lockdep_current_cpu_online(void)
673{
674 struct rcu_data *rdp;
675 struct rcu_node *rnp;
676 bool ret;
677
678 if (in_nmi())
679 return 1;
680 preempt_disable();
681 rdp = &__get_cpu_var(rcu_sched_data);
682 rnp = rdp->mynode;
683 ret = (rdp->grpmask & rnp->qsmaskinit) ||
684 !rcu_scheduler_fully_active;
685 preempt_enable();
686 return ret;
687}
688EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
689
690#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
691
692/**
693 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
694 *
695 * If the current CPU is idle or running at a first-level (not nested)
696 * interrupt from idle, return true. The caller must have at least
697 * disabled preemption.
698 */
699int rcu_is_cpu_rrupt_from_idle(void)
700{
701 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
702}
703
704/*
705 * Snapshot the specified CPU's dynticks counter so that we can later
706 * credit them with an implicit quiescent state. Return 1 if this CPU
707 * is in dynticks idle mode, which is an extended quiescent state.
708 */
709static int dyntick_save_progress_counter(struct rcu_data *rdp)
710{
711 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
712 return (rdp->dynticks_snap & 0x1) == 0;
713}
714
715/*
716 * Return true if the specified CPU has passed through a quiescent
717 * state by virtue of being in or having passed through an dynticks
718 * idle state since the last call to dyntick_save_progress_counter()
719 * for this same CPU, or by virtue of having been offline.
720 */
721static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
722{
723 unsigned int curr;
724 unsigned int snap;
725
726 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
727 snap = (unsigned int)rdp->dynticks_snap;
728
729 /*
730 * If the CPU passed through or entered a dynticks idle phase with
731 * no active irq/NMI handlers, then we can safely pretend that the CPU
732 * already acknowledged the request to pass through a quiescent
733 * state. Either way, that CPU cannot possibly be in an RCU
734 * read-side critical section that started before the beginning
735 * of the current RCU grace period.
736 */
737 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
738 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
739 rdp->dynticks_fqs++;
740 return 1;
741 }
742
743 /*
744 * Check for the CPU being offline, but only if the grace period
745 * is old enough. We don't need to worry about the CPU changing
746 * state: If we see it offline even once, it has been through a
747 * quiescent state.
748 *
749 * The reason for insisting that the grace period be at least
750 * one jiffy old is that CPUs that are not quite online and that
751 * have just gone offline can still execute RCU read-side critical
752 * sections.
753 */
754 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
755 return 0; /* Grace period is not old enough. */
756 barrier();
757 if (cpu_is_offline(rdp->cpu)) {
758 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
759 rdp->offline_fqs++;
760 return 1;
761 }
762 return 0;
763}
764
765static int jiffies_till_stall_check(void)
766{
767 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
768
769 /*
770 * Limit check must be consistent with the Kconfig limits
771 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
772 */
773 if (till_stall_check < 3) {
774 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
775 till_stall_check = 3;
776 } else if (till_stall_check > 300) {
777 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
778 till_stall_check = 300;
779 }
780 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
781}
782
783static void record_gp_stall_check_time(struct rcu_state *rsp)
784{
785 rsp->gp_start = jiffies;
786 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
787}
788
789static void print_other_cpu_stall(struct rcu_state *rsp)
790{
791 int cpu;
792 long delta;
793 unsigned long flags;
794 int ndetected = 0;
795 struct rcu_node *rnp = rcu_get_root(rsp);
796
797 /* Only let one CPU complain about others per time interval. */
798
799 raw_spin_lock_irqsave(&rnp->lock, flags);
800 delta = jiffies - rsp->jiffies_stall;
801 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
802 raw_spin_unlock_irqrestore(&rnp->lock, flags);
803 return;
804 }
805 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
806 raw_spin_unlock_irqrestore(&rnp->lock, flags);
807
808 /*
809 * OK, time to rat on our buddy...
810 * See Documentation/RCU/stallwarn.txt for info on how to debug
811 * RCU CPU stall warnings.
812 */
813 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
814 rsp->name);
815 print_cpu_stall_info_begin();
816 rcu_for_each_leaf_node(rsp, rnp) {
817 raw_spin_lock_irqsave(&rnp->lock, flags);
818 ndetected += rcu_print_task_stall(rnp);
819 if (rnp->qsmask != 0) {
820 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
821 if (rnp->qsmask & (1UL << cpu)) {
822 print_cpu_stall_info(rsp,
823 rnp->grplo + cpu);
824 ndetected++;
825 }
826 }
827 raw_spin_unlock_irqrestore(&rnp->lock, flags);
828 }
829
830 /*
831 * Now rat on any tasks that got kicked up to the root rcu_node
832 * due to CPU offlining.
833 */
834 rnp = rcu_get_root(rsp);
835 raw_spin_lock_irqsave(&rnp->lock, flags);
836 ndetected += rcu_print_task_stall(rnp);
837 raw_spin_unlock_irqrestore(&rnp->lock, flags);
838
839 print_cpu_stall_info_end();
840 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
841 smp_processor_id(), (long)(jiffies - rsp->gp_start));
842 if (ndetected == 0)
843 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
844 else if (!trigger_all_cpu_backtrace())
845 dump_stack();
846
847 /* Complain about tasks blocking the grace period. */
848
849 rcu_print_detail_task_stall(rsp);
850
851 force_quiescent_state(rsp); /* Kick them all. */
852}
853
854static void print_cpu_stall(struct rcu_state *rsp)
855{
856 unsigned long flags;
857 struct rcu_node *rnp = rcu_get_root(rsp);
858
859 /*
860 * OK, time to rat on ourselves...
861 * See Documentation/RCU/stallwarn.txt for info on how to debug
862 * RCU CPU stall warnings.
863 */
864 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
865 print_cpu_stall_info_begin();
866 print_cpu_stall_info(rsp, smp_processor_id());
867 print_cpu_stall_info_end();
868 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
869 if (!trigger_all_cpu_backtrace())
870 dump_stack();
871
872 raw_spin_lock_irqsave(&rnp->lock, flags);
873 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
874 rsp->jiffies_stall = jiffies +
875 3 * jiffies_till_stall_check() + 3;
876 raw_spin_unlock_irqrestore(&rnp->lock, flags);
877
878 set_need_resched(); /* kick ourselves to get things going. */
879}
880
881static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
882{
883 unsigned long j;
884 unsigned long js;
885 struct rcu_node *rnp;
886
887 if (rcu_cpu_stall_suppress)
888 return;
889 j = ACCESS_ONCE(jiffies);
890 js = ACCESS_ONCE(rsp->jiffies_stall);
891 rnp = rdp->mynode;
892 if (rcu_gp_in_progress(rsp) &&
893 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
894
895 /* We haven't checked in, so go dump stack. */
896 print_cpu_stall(rsp);
897
898 } else if (rcu_gp_in_progress(rsp) &&
899 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
900
901 /* They had a few time units to dump stack, so complain. */
902 print_other_cpu_stall(rsp);
903 }
904}
905
906static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
907{
908 rcu_cpu_stall_suppress = 1;
909 return NOTIFY_DONE;
910}
911
912/**
913 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
914 *
915 * Set the stall-warning timeout way off into the future, thus preventing
916 * any RCU CPU stall-warning messages from appearing in the current set of
917 * RCU grace periods.
918 *
919 * The caller must disable hard irqs.
920 */
921void rcu_cpu_stall_reset(void)
922{
923 struct rcu_state *rsp;
924
925 for_each_rcu_flavor(rsp)
926 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
927}
928
929static struct notifier_block rcu_panic_block = {
930 .notifier_call = rcu_panic,
931};
932
933static void __init check_cpu_stall_init(void)
934{
935 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
936}
937
938/*
939 * Update CPU-local rcu_data state to record the newly noticed grace period.
940 * This is used both when we started the grace period and when we notice
941 * that someone else started the grace period. The caller must hold the
942 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
943 * and must have irqs disabled.
944 */
945static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
946{
947 if (rdp->gpnum != rnp->gpnum) {
948 /*
949 * If the current grace period is waiting for this CPU,
950 * set up to detect a quiescent state, otherwise don't
951 * go looking for one.
952 */
953 rdp->gpnum = rnp->gpnum;
954 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
955 rdp->passed_quiesce = 0;
956 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
957 zero_cpu_stall_ticks(rdp);
958 }
959}
960
961static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
962{
963 unsigned long flags;
964 struct rcu_node *rnp;
965
966 local_irq_save(flags);
967 rnp = rdp->mynode;
968 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
969 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
970 local_irq_restore(flags);
971 return;
972 }
973 __note_new_gpnum(rsp, rnp, rdp);
974 raw_spin_unlock_irqrestore(&rnp->lock, flags);
975}
976
977/*
978 * Did someone else start a new RCU grace period start since we last
979 * checked? Update local state appropriately if so. Must be called
980 * on the CPU corresponding to rdp.
981 */
982static int
983check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
984{
985 unsigned long flags;
986 int ret = 0;
987
988 local_irq_save(flags);
989 if (rdp->gpnum != rsp->gpnum) {
990 note_new_gpnum(rsp, rdp);
991 ret = 1;
992 }
993 local_irq_restore(flags);
994 return ret;
995}
996
997/*
998 * Initialize the specified rcu_data structure's callback list to empty.
999 */
1000static void init_callback_list(struct rcu_data *rdp)
1001{
1002 int i;
1003
1004 rdp->nxtlist = NULL;
1005 for (i = 0; i < RCU_NEXT_SIZE; i++)
1006 rdp->nxttail[i] = &rdp->nxtlist;
1007}
1008
1009/*
1010 * Advance this CPU's callbacks, but only if the current grace period
1011 * has ended. This may be called only from the CPU to whom the rdp
1012 * belongs. In addition, the corresponding leaf rcu_node structure's
1013 * ->lock must be held by the caller, with irqs disabled.
1014 */
1015static void
1016__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1017{
1018 /* Did another grace period end? */
1019 if (rdp->completed != rnp->completed) {
1020
1021 /* Advance callbacks. No harm if list empty. */
1022 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
1023 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
1024 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1025
1026 /* Remember that we saw this grace-period completion. */
1027 rdp->completed = rnp->completed;
1028 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
1029
1030 /*
1031 * If we were in an extended quiescent state, we may have
1032 * missed some grace periods that others CPUs handled on
1033 * our behalf. Catch up with this state to avoid noting
1034 * spurious new grace periods. If another grace period
1035 * has started, then rnp->gpnum will have advanced, so
1036 * we will detect this later on. Of course, any quiescent
1037 * states we found for the old GP are now invalid.
1038 */
1039 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed)) {
1040 rdp->gpnum = rdp->completed;
1041 rdp->passed_quiesce = 0;
1042 }
1043
1044 /*
1045 * If RCU does not need a quiescent state from this CPU,
1046 * then make sure that this CPU doesn't go looking for one.
1047 */
1048 if ((rnp->qsmask & rdp->grpmask) == 0)
1049 rdp->qs_pending = 0;
1050 }
1051}
1052
1053/*
1054 * Advance this CPU's callbacks, but only if the current grace period
1055 * has ended. This may be called only from the CPU to whom the rdp
1056 * belongs.
1057 */
1058static void
1059rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
1060{
1061 unsigned long flags;
1062 struct rcu_node *rnp;
1063
1064 local_irq_save(flags);
1065 rnp = rdp->mynode;
1066 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1067 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1068 local_irq_restore(flags);
1069 return;
1070 }
1071 __rcu_process_gp_end(rsp, rnp, rdp);
1072 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1073}
1074
1075/*
1076 * Do per-CPU grace-period initialization for running CPU. The caller
1077 * must hold the lock of the leaf rcu_node structure corresponding to
1078 * this CPU.
1079 */
1080static void
1081rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1082{
1083 /* Prior grace period ended, so advance callbacks for current CPU. */
1084 __rcu_process_gp_end(rsp, rnp, rdp);
1085
1086 /* Set state so that this CPU will detect the next quiescent state. */
1087 __note_new_gpnum(rsp, rnp, rdp);
1088}
1089
1090/*
1091 * Initialize a new grace period.
1092 */
1093static int rcu_gp_init(struct rcu_state *rsp)
1094{
1095 struct rcu_data *rdp;
1096 struct rcu_node *rnp = rcu_get_root(rsp);
1097
1098 raw_spin_lock_irq(&rnp->lock);
1099 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1100
1101 if (rcu_gp_in_progress(rsp)) {
1102 /* Grace period already in progress, don't start another. */
1103 raw_spin_unlock_irq(&rnp->lock);
1104 return 0;
1105 }
1106
1107 /* Advance to a new grace period and initialize state. */
1108 rsp->gpnum++;
1109 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1110 record_gp_stall_check_time(rsp);
1111 raw_spin_unlock_irq(&rnp->lock);
1112
1113 /* Exclude any concurrent CPU-hotplug operations. */
1114 get_online_cpus();
1115
1116 /*
1117 * Set the quiescent-state-needed bits in all the rcu_node
1118 * structures for all currently online CPUs in breadth-first order,
1119 * starting from the root rcu_node structure, relying on the layout
1120 * of the tree within the rsp->node[] array. Note that other CPUs
1121 * will access only the leaves of the hierarchy, thus seeing that no
1122 * grace period is in progress, at least until the corresponding
1123 * leaf node has been initialized. In addition, we have excluded
1124 * CPU-hotplug operations.
1125 *
1126 * The grace period cannot complete until the initialization
1127 * process finishes, because this kthread handles both.
1128 */
1129 rcu_for_each_node_breadth_first(rsp, rnp) {
1130 raw_spin_lock_irq(&rnp->lock);
1131 rdp = this_cpu_ptr(rsp->rda);
1132 rcu_preempt_check_blocked_tasks(rnp);
1133 rnp->qsmask = rnp->qsmaskinit;
1134 rnp->gpnum = rsp->gpnum;
1135 WARN_ON_ONCE(rnp->completed != rsp->completed);
1136 rnp->completed = rsp->completed;
1137 if (rnp == rdp->mynode)
1138 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1139 rcu_preempt_boost_start_gp(rnp);
1140 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1141 rnp->level, rnp->grplo,
1142 rnp->grphi, rnp->qsmask);
1143 raw_spin_unlock_irq(&rnp->lock);
1144#ifdef CONFIG_PROVE_RCU_DELAY
1145 if ((random32() % (rcu_num_nodes * 8)) == 0)
1146 schedule_timeout_uninterruptible(2);
1147#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1148 cond_resched();
1149 }
1150
1151 put_online_cpus();
1152 return 1;
1153}
1154
1155/*
1156 * Do one round of quiescent-state forcing.
1157 */
1158int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1159{
1160 int fqs_state = fqs_state_in;
1161 struct rcu_node *rnp = rcu_get_root(rsp);
1162
1163 rsp->n_force_qs++;
1164 if (fqs_state == RCU_SAVE_DYNTICK) {
1165 /* Collect dyntick-idle snapshots. */
1166 force_qs_rnp(rsp, dyntick_save_progress_counter);
1167 fqs_state = RCU_FORCE_QS;
1168 } else {
1169 /* Handle dyntick-idle and offline CPUs. */
1170 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1171 }
1172 /* Clear flag to prevent immediate re-entry. */
1173 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1174 raw_spin_lock_irq(&rnp->lock);
1175 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1176 raw_spin_unlock_irq(&rnp->lock);
1177 }
1178 return fqs_state;
1179}
1180
1181/*
1182 * Clean up after the old grace period.
1183 */
1184static void rcu_gp_cleanup(struct rcu_state *rsp)
1185{
1186 unsigned long gp_duration;
1187 struct rcu_data *rdp;
1188 struct rcu_node *rnp = rcu_get_root(rsp);
1189
1190 raw_spin_lock_irq(&rnp->lock);
1191 gp_duration = jiffies - rsp->gp_start;
1192 if (gp_duration > rsp->gp_max)
1193 rsp->gp_max = gp_duration;
1194
1195 /*
1196 * We know the grace period is complete, but to everyone else
1197 * it appears to still be ongoing. But it is also the case
1198 * that to everyone else it looks like there is nothing that
1199 * they can do to advance the grace period. It is therefore
1200 * safe for us to drop the lock in order to mark the grace
1201 * period as completed in all of the rcu_node structures.
1202 */
1203 raw_spin_unlock_irq(&rnp->lock);
1204
1205 /*
1206 * Propagate new ->completed value to rcu_node structures so
1207 * that other CPUs don't have to wait until the start of the next
1208 * grace period to process their callbacks. This also avoids
1209 * some nasty RCU grace-period initialization races by forcing
1210 * the end of the current grace period to be completely recorded in
1211 * all of the rcu_node structures before the beginning of the next
1212 * grace period is recorded in any of the rcu_node structures.
1213 */
1214 rcu_for_each_node_breadth_first(rsp, rnp) {
1215 raw_spin_lock_irq(&rnp->lock);
1216 rnp->completed = rsp->gpnum;
1217 raw_spin_unlock_irq(&rnp->lock);
1218 cond_resched();
1219 }
1220 rnp = rcu_get_root(rsp);
1221 raw_spin_lock_irq(&rnp->lock);
1222
1223 rsp->completed = rsp->gpnum; /* Declare grace period done. */
1224 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1225 rsp->fqs_state = RCU_GP_IDLE;
1226 rdp = this_cpu_ptr(rsp->rda);
1227 if (cpu_needs_another_gp(rsp, rdp))
1228 rsp->gp_flags = 1;
1229 raw_spin_unlock_irq(&rnp->lock);
1230}
1231
1232/*
1233 * Body of kthread that handles grace periods.
1234 */
1235static int __noreturn rcu_gp_kthread(void *arg)
1236{
1237 int fqs_state;
1238 unsigned long j;
1239 int ret;
1240 struct rcu_state *rsp = arg;
1241 struct rcu_node *rnp = rcu_get_root(rsp);
1242
1243 for (;;) {
1244
1245 /* Handle grace-period start. */
1246 for (;;) {
1247 wait_event_interruptible(rsp->gp_wq,
1248 rsp->gp_flags &
1249 RCU_GP_FLAG_INIT);
1250 if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
1251 rcu_gp_init(rsp))
1252 break;
1253 cond_resched();
1254 flush_signals(current);
1255 }
1256
1257 /* Handle quiescent-state forcing. */
1258 fqs_state = RCU_SAVE_DYNTICK;
1259 j = jiffies_till_first_fqs;
1260 if (j > HZ) {
1261 j = HZ;
1262 jiffies_till_first_fqs = HZ;
1263 }
1264 for (;;) {
1265 rsp->jiffies_force_qs = jiffies + j;
1266 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1267 (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1268 (!ACCESS_ONCE(rnp->qsmask) &&
1269 !rcu_preempt_blocked_readers_cgp(rnp)),
1270 j);
1271 /* If grace period done, leave loop. */
1272 if (!ACCESS_ONCE(rnp->qsmask) &&
1273 !rcu_preempt_blocked_readers_cgp(rnp))
1274 break;
1275 /* If time for quiescent-state forcing, do it. */
1276 if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1277 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1278 cond_resched();
1279 } else {
1280 /* Deal with stray signal. */
1281 cond_resched();
1282 flush_signals(current);
1283 }
1284 j = jiffies_till_next_fqs;
1285 if (j > HZ) {
1286 j = HZ;
1287 jiffies_till_next_fqs = HZ;
1288 } else if (j < 1) {
1289 j = 1;
1290 jiffies_till_next_fqs = 1;
1291 }
1292 }
1293
1294 /* Handle grace-period end. */
1295 rcu_gp_cleanup(rsp);
1296 }
1297}
1298
1299/*
1300 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1301 * in preparation for detecting the next grace period. The caller must hold
1302 * the root node's ->lock, which is released before return. Hard irqs must
1303 * be disabled.
1304 *
1305 * Note that it is legal for a dying CPU (which is marked as offline) to
1306 * invoke this function. This can happen when the dying CPU reports its
1307 * quiescent state.
1308 */
1309static void
1310rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1311 __releases(rcu_get_root(rsp)->lock)
1312{
1313 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1314 struct rcu_node *rnp = rcu_get_root(rsp);
1315
1316 if (!rsp->gp_kthread ||
1317 !cpu_needs_another_gp(rsp, rdp)) {
1318 /*
1319 * Either we have not yet spawned the grace-period
1320 * task or this CPU does not need another grace period.
1321 * Either way, don't start a new grace period.
1322 */
1323 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1324 return;
1325 }
1326
1327 rsp->gp_flags = RCU_GP_FLAG_INIT;
1328 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1329 wake_up(&rsp->gp_wq);
1330}
1331
1332/*
1333 * Report a full set of quiescent states to the specified rcu_state
1334 * data structure. This involves cleaning up after the prior grace
1335 * period and letting rcu_start_gp() start up the next grace period
1336 * if one is needed. Note that the caller must hold rnp->lock, as
1337 * required by rcu_start_gp(), which will release it.
1338 */
1339static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1340 __releases(rcu_get_root(rsp)->lock)
1341{
1342 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1343 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1344 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1345}
1346
1347/*
1348 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1349 * Allows quiescent states for a group of CPUs to be reported at one go
1350 * to the specified rcu_node structure, though all the CPUs in the group
1351 * must be represented by the same rcu_node structure (which need not be
1352 * a leaf rcu_node structure, though it often will be). That structure's
1353 * lock must be held upon entry, and it is released before return.
1354 */
1355static void
1356rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1357 struct rcu_node *rnp, unsigned long flags)
1358 __releases(rnp->lock)
1359{
1360 struct rcu_node *rnp_c;
1361
1362 /* Walk up the rcu_node hierarchy. */
1363 for (;;) {
1364 if (!(rnp->qsmask & mask)) {
1365
1366 /* Our bit has already been cleared, so done. */
1367 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1368 return;
1369 }
1370 rnp->qsmask &= ~mask;
1371 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1372 mask, rnp->qsmask, rnp->level,
1373 rnp->grplo, rnp->grphi,
1374 !!rnp->gp_tasks);
1375 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1376
1377 /* Other bits still set at this level, so done. */
1378 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1379 return;
1380 }
1381 mask = rnp->grpmask;
1382 if (rnp->parent == NULL) {
1383
1384 /* No more levels. Exit loop holding root lock. */
1385
1386 break;
1387 }
1388 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1389 rnp_c = rnp;
1390 rnp = rnp->parent;
1391 raw_spin_lock_irqsave(&rnp->lock, flags);
1392 WARN_ON_ONCE(rnp_c->qsmask);
1393 }
1394
1395 /*
1396 * Get here if we are the last CPU to pass through a quiescent
1397 * state for this grace period. Invoke rcu_report_qs_rsp()
1398 * to clean up and start the next grace period if one is needed.
1399 */
1400 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1401}
1402
1403/*
1404 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1405 * structure. This must be either called from the specified CPU, or
1406 * called when the specified CPU is known to be offline (and when it is
1407 * also known that no other CPU is concurrently trying to help the offline
1408 * CPU). The lastcomp argument is used to make sure we are still in the
1409 * grace period of interest. We don't want to end the current grace period
1410 * based on quiescent states detected in an earlier grace period!
1411 */
1412static void
1413rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1414{
1415 unsigned long flags;
1416 unsigned long mask;
1417 struct rcu_node *rnp;
1418
1419 rnp = rdp->mynode;
1420 raw_spin_lock_irqsave(&rnp->lock, flags);
1421 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1422 rnp->completed == rnp->gpnum) {
1423
1424 /*
1425 * The grace period in which this quiescent state was
1426 * recorded has ended, so don't report it upwards.
1427 * We will instead need a new quiescent state that lies
1428 * within the current grace period.
1429 */
1430 rdp->passed_quiesce = 0; /* need qs for new gp. */
1431 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1432 return;
1433 }
1434 mask = rdp->grpmask;
1435 if ((rnp->qsmask & mask) == 0) {
1436 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1437 } else {
1438 rdp->qs_pending = 0;
1439
1440 /*
1441 * This GP can't end until cpu checks in, so all of our
1442 * callbacks can be processed during the next GP.
1443 */
1444 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1445
1446 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1447 }
1448}
1449
1450/*
1451 * Check to see if there is a new grace period of which this CPU
1452 * is not yet aware, and if so, set up local rcu_data state for it.
1453 * Otherwise, see if this CPU has just passed through its first
1454 * quiescent state for this grace period, and record that fact if so.
1455 */
1456static void
1457rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1458{
1459 /* If there is now a new grace period, record and return. */
1460 if (check_for_new_grace_period(rsp, rdp))
1461 return;
1462
1463 /*
1464 * Does this CPU still need to do its part for current grace period?
1465 * If no, return and let the other CPUs do their part as well.
1466 */
1467 if (!rdp->qs_pending)
1468 return;
1469
1470 /*
1471 * Was there a quiescent state since the beginning of the grace
1472 * period? If no, then exit and wait for the next call.
1473 */
1474 if (!rdp->passed_quiesce)
1475 return;
1476
1477 /*
1478 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1479 * judge of that).
1480 */
1481 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1482}
1483
1484#ifdef CONFIG_HOTPLUG_CPU
1485
1486/*
1487 * Send the specified CPU's RCU callbacks to the orphanage. The
1488 * specified CPU must be offline, and the caller must hold the
1489 * ->onofflock.
1490 */
1491static void
1492rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1493 struct rcu_node *rnp, struct rcu_data *rdp)
1494{
1495 /*
1496 * Orphan the callbacks. First adjust the counts. This is safe
1497 * because ->onofflock excludes _rcu_barrier()'s adoption of
1498 * the callbacks, thus no memory barrier is required.
1499 */
1500 if (rdp->nxtlist != NULL) {
1501 rsp->qlen_lazy += rdp->qlen_lazy;
1502 rsp->qlen += rdp->qlen;
1503 rdp->n_cbs_orphaned += rdp->qlen;
1504 rdp->qlen_lazy = 0;
1505 ACCESS_ONCE(rdp->qlen) = 0;
1506 }
1507
1508 /*
1509 * Next, move those callbacks still needing a grace period to
1510 * the orphanage, where some other CPU will pick them up.
1511 * Some of the callbacks might have gone partway through a grace
1512 * period, but that is too bad. They get to start over because we
1513 * cannot assume that grace periods are synchronized across CPUs.
1514 * We don't bother updating the ->nxttail[] array yet, instead
1515 * we just reset the whole thing later on.
1516 */
1517 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1518 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1519 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1520 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1521 }
1522
1523 /*
1524 * Then move the ready-to-invoke callbacks to the orphanage,
1525 * where some other CPU will pick them up. These will not be
1526 * required to pass though another grace period: They are done.
1527 */
1528 if (rdp->nxtlist != NULL) {
1529 *rsp->orphan_donetail = rdp->nxtlist;
1530 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1531 }
1532
1533 /* Finally, initialize the rcu_data structure's list to empty. */
1534 init_callback_list(rdp);
1535}
1536
1537/*
1538 * Adopt the RCU callbacks from the specified rcu_state structure's
1539 * orphanage. The caller must hold the ->onofflock.
1540 */
1541static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1542{
1543 int i;
1544 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1545
1546 /* Do the accounting first. */
1547 rdp->qlen_lazy += rsp->qlen_lazy;
1548 rdp->qlen += rsp->qlen;
1549 rdp->n_cbs_adopted += rsp->qlen;
1550 if (rsp->qlen_lazy != rsp->qlen)
1551 rcu_idle_count_callbacks_posted();
1552 rsp->qlen_lazy = 0;
1553 rsp->qlen = 0;
1554
1555 /*
1556 * We do not need a memory barrier here because the only way we
1557 * can get here if there is an rcu_barrier() in flight is if
1558 * we are the task doing the rcu_barrier().
1559 */
1560
1561 /* First adopt the ready-to-invoke callbacks. */
1562 if (rsp->orphan_donelist != NULL) {
1563 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1564 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1565 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1566 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1567 rdp->nxttail[i] = rsp->orphan_donetail;
1568 rsp->orphan_donelist = NULL;
1569 rsp->orphan_donetail = &rsp->orphan_donelist;
1570 }
1571
1572 /* And then adopt the callbacks that still need a grace period. */
1573 if (rsp->orphan_nxtlist != NULL) {
1574 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1575 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1576 rsp->orphan_nxtlist = NULL;
1577 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1578 }
1579}
1580
1581/*
1582 * Trace the fact that this CPU is going offline.
1583 */
1584static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1585{
1586 RCU_TRACE(unsigned long mask);
1587 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1588 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1589
1590 RCU_TRACE(mask = rdp->grpmask);
1591 trace_rcu_grace_period(rsp->name,
1592 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1593 "cpuofl");
1594}
1595
1596/*
1597 * The CPU has been completely removed, and some other CPU is reporting
1598 * this fact from process context. Do the remainder of the cleanup,
1599 * including orphaning the outgoing CPU's RCU callbacks, and also
1600 * adopting them. There can only be one CPU hotplug operation at a time,
1601 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
1602 */
1603static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1604{
1605 unsigned long flags;
1606 unsigned long mask;
1607 int need_report = 0;
1608 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1609 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
1610
1611 /* Adjust any no-longer-needed kthreads. */
1612 rcu_boost_kthread_setaffinity(rnp, -1);
1613
1614 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1615
1616 /* Exclude any attempts to start a new grace period. */
1617 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1618
1619 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1620 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1621 rcu_adopt_orphan_cbs(rsp);
1622
1623 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1624 mask = rdp->grpmask; /* rnp->grplo is constant. */
1625 do {
1626 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1627 rnp->qsmaskinit &= ~mask;
1628 if (rnp->qsmaskinit != 0) {
1629 if (rnp != rdp->mynode)
1630 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1631 break;
1632 }
1633 if (rnp == rdp->mynode)
1634 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1635 else
1636 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1637 mask = rnp->grpmask;
1638 rnp = rnp->parent;
1639 } while (rnp != NULL);
1640
1641 /*
1642 * We still hold the leaf rcu_node structure lock here, and
1643 * irqs are still disabled. The reason for this subterfuge is
1644 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1645 * held leads to deadlock.
1646 */
1647 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1648 rnp = rdp->mynode;
1649 if (need_report & RCU_OFL_TASKS_NORM_GP)
1650 rcu_report_unblock_qs_rnp(rnp, flags);
1651 else
1652 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1653 if (need_report & RCU_OFL_TASKS_EXP_GP)
1654 rcu_report_exp_rnp(rsp, rnp, true);
1655 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1656 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1657 cpu, rdp->qlen, rdp->nxtlist);
1658 init_callback_list(rdp);
1659 /* Disallow further callbacks on this CPU. */
1660 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
1661}
1662
1663#else /* #ifdef CONFIG_HOTPLUG_CPU */
1664
1665static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1666{
1667}
1668
1669static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1670{
1671}
1672
1673#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1674
1675/*
1676 * Invoke any RCU callbacks that have made it to the end of their grace
1677 * period. Thottle as specified by rdp->blimit.
1678 */
1679static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1680{
1681 unsigned long flags;
1682 struct rcu_head *next, *list, **tail;
1683 int bl, count, count_lazy, i;
1684
1685 /* If no callbacks are ready, just return.*/
1686 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1687 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1688 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1689 need_resched(), is_idle_task(current),
1690 rcu_is_callbacks_kthread());
1691 return;
1692 }
1693
1694 /*
1695 * Extract the list of ready callbacks, disabling to prevent
1696 * races with call_rcu() from interrupt handlers.
1697 */
1698 local_irq_save(flags);
1699 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1700 bl = rdp->blimit;
1701 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1702 list = rdp->nxtlist;
1703 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1704 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1705 tail = rdp->nxttail[RCU_DONE_TAIL];
1706 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1707 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1708 rdp->nxttail[i] = &rdp->nxtlist;
1709 local_irq_restore(flags);
1710
1711 /* Invoke callbacks. */
1712 count = count_lazy = 0;
1713 while (list) {
1714 next = list->next;
1715 prefetch(next);
1716 debug_rcu_head_unqueue(list);
1717 if (__rcu_reclaim(rsp->name, list))
1718 count_lazy++;
1719 list = next;
1720 /* Stop only if limit reached and CPU has something to do. */
1721 if (++count >= bl &&
1722 (need_resched() ||
1723 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1724 break;
1725 }
1726
1727 local_irq_save(flags);
1728 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1729 is_idle_task(current),
1730 rcu_is_callbacks_kthread());
1731
1732 /* Update count, and requeue any remaining callbacks. */
1733 if (list != NULL) {
1734 *tail = rdp->nxtlist;
1735 rdp->nxtlist = list;
1736 for (i = 0; i < RCU_NEXT_SIZE; i++)
1737 if (&rdp->nxtlist == rdp->nxttail[i])
1738 rdp->nxttail[i] = tail;
1739 else
1740 break;
1741 }
1742 smp_mb(); /* List handling before counting for rcu_barrier(). */
1743 rdp->qlen_lazy -= count_lazy;
1744 ACCESS_ONCE(rdp->qlen) -= count;
1745 rdp->n_cbs_invoked += count;
1746
1747 /* Reinstate batch limit if we have worked down the excess. */
1748 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1749 rdp->blimit = blimit;
1750
1751 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1752 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1753 rdp->qlen_last_fqs_check = 0;
1754 rdp->n_force_qs_snap = rsp->n_force_qs;
1755 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1756 rdp->qlen_last_fqs_check = rdp->qlen;
1757 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
1758
1759 local_irq_restore(flags);
1760
1761 /* Re-invoke RCU core processing if there are callbacks remaining. */
1762 if (cpu_has_callbacks_ready_to_invoke(rdp))
1763 invoke_rcu_core();
1764}
1765
1766/*
1767 * Check to see if this CPU is in a non-context-switch quiescent state
1768 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1769 * Also schedule RCU core processing.
1770 *
1771 * This function must be called from hardirq context. It is normally
1772 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1773 * false, there is no point in invoking rcu_check_callbacks().
1774 */
1775void rcu_check_callbacks(int cpu, int user)
1776{
1777 trace_rcu_utilization("Start scheduler-tick");
1778 increment_cpu_stall_ticks();
1779 if (user || rcu_is_cpu_rrupt_from_idle()) {
1780
1781 /*
1782 * Get here if this CPU took its interrupt from user
1783 * mode or from the idle loop, and if this is not a
1784 * nested interrupt. In this case, the CPU is in
1785 * a quiescent state, so note it.
1786 *
1787 * No memory barrier is required here because both
1788 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1789 * variables that other CPUs neither access nor modify,
1790 * at least not while the corresponding CPU is online.
1791 */
1792
1793 rcu_sched_qs(cpu);
1794 rcu_bh_qs(cpu);
1795
1796 } else if (!in_softirq()) {
1797
1798 /*
1799 * Get here if this CPU did not take its interrupt from
1800 * softirq, in other words, if it is not interrupting
1801 * a rcu_bh read-side critical section. This is an _bh
1802 * critical section, so note it.
1803 */
1804
1805 rcu_bh_qs(cpu);
1806 }
1807 rcu_preempt_check_callbacks(cpu);
1808 if (rcu_pending(cpu))
1809 invoke_rcu_core();
1810 trace_rcu_utilization("End scheduler-tick");
1811}
1812
1813/*
1814 * Scan the leaf rcu_node structures, processing dyntick state for any that
1815 * have not yet encountered a quiescent state, using the function specified.
1816 * Also initiate boosting for any threads blocked on the root rcu_node.
1817 *
1818 * The caller must have suppressed start of new grace periods.
1819 */
1820static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1821{
1822 unsigned long bit;
1823 int cpu;
1824 unsigned long flags;
1825 unsigned long mask;
1826 struct rcu_node *rnp;
1827
1828 rcu_for_each_leaf_node(rsp, rnp) {
1829 cond_resched();
1830 mask = 0;
1831 raw_spin_lock_irqsave(&rnp->lock, flags);
1832 if (!rcu_gp_in_progress(rsp)) {
1833 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1834 return;
1835 }
1836 if (rnp->qsmask == 0) {
1837 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1838 continue;
1839 }
1840 cpu = rnp->grplo;
1841 bit = 1;
1842 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1843 if ((rnp->qsmask & bit) != 0 &&
1844 f(per_cpu_ptr(rsp->rda, cpu)))
1845 mask |= bit;
1846 }
1847 if (mask != 0) {
1848
1849 /* rcu_report_qs_rnp() releases rnp->lock. */
1850 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1851 continue;
1852 }
1853 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1854 }
1855 rnp = rcu_get_root(rsp);
1856 if (rnp->qsmask == 0) {
1857 raw_spin_lock_irqsave(&rnp->lock, flags);
1858 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1859 }
1860}
1861
1862/*
1863 * Force quiescent states on reluctant CPUs, and also detect which
1864 * CPUs are in dyntick-idle mode.
1865 */
1866static void force_quiescent_state(struct rcu_state *rsp)
1867{
1868 unsigned long flags;
1869 bool ret;
1870 struct rcu_node *rnp;
1871 struct rcu_node *rnp_old = NULL;
1872
1873 /* Funnel through hierarchy to reduce memory contention. */
1874 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
1875 for (; rnp != NULL; rnp = rnp->parent) {
1876 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
1877 !raw_spin_trylock(&rnp->fqslock);
1878 if (rnp_old != NULL)
1879 raw_spin_unlock(&rnp_old->fqslock);
1880 if (ret) {
1881 rsp->n_force_qs_lh++;
1882 return;
1883 }
1884 rnp_old = rnp;
1885 }
1886 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
1887
1888 /* Reached the root of the rcu_node tree, acquire lock. */
1889 raw_spin_lock_irqsave(&rnp_old->lock, flags);
1890 raw_spin_unlock(&rnp_old->fqslock);
1891 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1892 rsp->n_force_qs_lh++;
1893 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
1894 return; /* Someone beat us to it. */
1895 }
1896 rsp->gp_flags |= RCU_GP_FLAG_FQS;
1897 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
1898 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1899}
1900
1901/*
1902 * This does the RCU core processing work for the specified rcu_state
1903 * and rcu_data structures. This may be called only from the CPU to
1904 * whom the rdp belongs.
1905 */
1906static void
1907__rcu_process_callbacks(struct rcu_state *rsp)
1908{
1909 unsigned long flags;
1910 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1911
1912 WARN_ON_ONCE(rdp->beenonline == 0);
1913
1914 /*
1915 * Advance callbacks in response to end of earlier grace
1916 * period that some other CPU ended.
1917 */
1918 rcu_process_gp_end(rsp, rdp);
1919
1920 /* Update RCU state based on any recent quiescent states. */
1921 rcu_check_quiescent_state(rsp, rdp);
1922
1923 /* Does this CPU require a not-yet-started grace period? */
1924 if (cpu_needs_another_gp(rsp, rdp)) {
1925 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1926 rcu_start_gp(rsp, flags); /* releases above lock */
1927 }
1928
1929 /* If there are callbacks ready, invoke them. */
1930 if (cpu_has_callbacks_ready_to_invoke(rdp))
1931 invoke_rcu_callbacks(rsp, rdp);
1932}
1933
1934/*
1935 * Do RCU core processing for the current CPU.
1936 */
1937static void rcu_process_callbacks(struct softirq_action *unused)
1938{
1939 struct rcu_state *rsp;
1940
1941 if (cpu_is_offline(smp_processor_id()))
1942 return;
1943 trace_rcu_utilization("Start RCU core");
1944 for_each_rcu_flavor(rsp)
1945 __rcu_process_callbacks(rsp);
1946 trace_rcu_utilization("End RCU core");
1947}
1948
1949/*
1950 * Schedule RCU callback invocation. If the specified type of RCU
1951 * does not support RCU priority boosting, just do a direct call,
1952 * otherwise wake up the per-CPU kernel kthread. Note that because we
1953 * are running on the current CPU with interrupts disabled, the
1954 * rcu_cpu_kthread_task cannot disappear out from under us.
1955 */
1956static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1957{
1958 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1959 return;
1960 if (likely(!rsp->boost)) {
1961 rcu_do_batch(rsp, rdp);
1962 return;
1963 }
1964 invoke_rcu_callbacks_kthread();
1965}
1966
1967static void invoke_rcu_core(void)
1968{
1969 raise_softirq(RCU_SOFTIRQ);
1970}
1971
1972/*
1973 * Handle any core-RCU processing required by a call_rcu() invocation.
1974 */
1975static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
1976 struct rcu_head *head, unsigned long flags)
1977{
1978 /*
1979 * If called from an extended quiescent state, invoke the RCU
1980 * core in order to force a re-evaluation of RCU's idleness.
1981 */
1982 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
1983 invoke_rcu_core();
1984
1985 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
1986 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
1987 return;
1988
1989 /*
1990 * Force the grace period if too many callbacks or too long waiting.
1991 * Enforce hysteresis, and don't invoke force_quiescent_state()
1992 * if some other CPU has recently done so. Also, don't bother
1993 * invoking force_quiescent_state() if the newly enqueued callback
1994 * is the only one waiting for a grace period to complete.
1995 */
1996 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1997
1998 /* Are we ignoring a completed grace period? */
1999 rcu_process_gp_end(rsp, rdp);
2000 check_for_new_grace_period(rsp, rdp);
2001
2002 /* Start a new grace period if one not already started. */
2003 if (!rcu_gp_in_progress(rsp)) {
2004 unsigned long nestflag;
2005 struct rcu_node *rnp_root = rcu_get_root(rsp);
2006
2007 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
2008 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
2009 } else {
2010 /* Give the grace period a kick. */
2011 rdp->blimit = LONG_MAX;
2012 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2013 *rdp->nxttail[RCU_DONE_TAIL] != head)
2014 force_quiescent_state(rsp);
2015 rdp->n_force_qs_snap = rsp->n_force_qs;
2016 rdp->qlen_last_fqs_check = rdp->qlen;
2017 }
2018 }
2019}
2020
2021static void
2022__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2023 struct rcu_state *rsp, bool lazy)
2024{
2025 unsigned long flags;
2026 struct rcu_data *rdp;
2027
2028 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2029 debug_rcu_head_queue(head);
2030 head->func = func;
2031 head->next = NULL;
2032
2033 /*
2034 * Opportunistically note grace-period endings and beginnings.
2035 * Note that we might see a beginning right after we see an
2036 * end, but never vice versa, since this CPU has to pass through
2037 * a quiescent state betweentimes.
2038 */
2039 local_irq_save(flags);
2040 rdp = this_cpu_ptr(rsp->rda);
2041
2042 /* Add the callback to our list. */
2043 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL)) {
2044 /* _call_rcu() is illegal on offline CPU; leak the callback. */
2045 WARN_ON_ONCE(1);
2046 local_irq_restore(flags);
2047 return;
2048 }
2049 ACCESS_ONCE(rdp->qlen)++;
2050 if (lazy)
2051 rdp->qlen_lazy++;
2052 else
2053 rcu_idle_count_callbacks_posted();
2054 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2055 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2056 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2057
2058 if (__is_kfree_rcu_offset((unsigned long)func))
2059 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2060 rdp->qlen_lazy, rdp->qlen);
2061 else
2062 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2063
2064 /* Go handle any RCU core processing required. */
2065 __call_rcu_core(rsp, rdp, head, flags);
2066 local_irq_restore(flags);
2067}
2068
2069/*
2070 * Queue an RCU-sched callback for invocation after a grace period.
2071 */
2072void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2073{
2074 __call_rcu(head, func, &rcu_sched_state, 0);
2075}
2076EXPORT_SYMBOL_GPL(call_rcu_sched);
2077
2078/*
2079 * Queue an RCU callback for invocation after a quicker grace period.
2080 */
2081void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2082{
2083 __call_rcu(head, func, &rcu_bh_state, 0);
2084}
2085EXPORT_SYMBOL_GPL(call_rcu_bh);
2086
2087/*
2088 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2089 * any blocking grace-period wait automatically implies a grace period
2090 * if there is only one CPU online at any point time during execution
2091 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2092 * occasionally incorrectly indicate that there are multiple CPUs online
2093 * when there was in fact only one the whole time, as this just adds
2094 * some overhead: RCU still operates correctly.
2095 */
2096static inline int rcu_blocking_is_gp(void)
2097{
2098 int ret;
2099
2100 might_sleep(); /* Check for RCU read-side critical section. */
2101 preempt_disable();
2102 ret = num_online_cpus() <= 1;
2103 preempt_enable();
2104 return ret;
2105}
2106
2107/**
2108 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2109 *
2110 * Control will return to the caller some time after a full rcu-sched
2111 * grace period has elapsed, in other words after all currently executing
2112 * rcu-sched read-side critical sections have completed. These read-side
2113 * critical sections are delimited by rcu_read_lock_sched() and
2114 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2115 * local_irq_disable(), and so on may be used in place of
2116 * rcu_read_lock_sched().
2117 *
2118 * This means that all preempt_disable code sequences, including NMI and
2119 * hardware-interrupt handlers, in progress on entry will have completed
2120 * before this primitive returns. However, this does not guarantee that
2121 * softirq handlers will have completed, since in some kernels, these
2122 * handlers can run in process context, and can block.
2123 *
2124 * This primitive provides the guarantees made by the (now removed)
2125 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2126 * guarantees that rcu_read_lock() sections will have completed.
2127 * In "classic RCU", these two guarantees happen to be one and
2128 * the same, but can differ in realtime RCU implementations.
2129 */
2130void synchronize_sched(void)
2131{
2132 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2133 !lock_is_held(&rcu_lock_map) &&
2134 !lock_is_held(&rcu_sched_lock_map),
2135 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2136 if (rcu_blocking_is_gp())
2137 return;
2138 wait_rcu_gp(call_rcu_sched);
2139}
2140EXPORT_SYMBOL_GPL(synchronize_sched);
2141
2142/**
2143 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2144 *
2145 * Control will return to the caller some time after a full rcu_bh grace
2146 * period has elapsed, in other words after all currently executing rcu_bh
2147 * read-side critical sections have completed. RCU read-side critical
2148 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2149 * and may be nested.
2150 */
2151void synchronize_rcu_bh(void)
2152{
2153 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2154 !lock_is_held(&rcu_lock_map) &&
2155 !lock_is_held(&rcu_sched_lock_map),
2156 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2157 if (rcu_blocking_is_gp())
2158 return;
2159 wait_rcu_gp(call_rcu_bh);
2160}
2161EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2162
2163static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
2164static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
2165
2166static int synchronize_sched_expedited_cpu_stop(void *data)
2167{
2168 /*
2169 * There must be a full memory barrier on each affected CPU
2170 * between the time that try_stop_cpus() is called and the
2171 * time that it returns.
2172 *
2173 * In the current initial implementation of cpu_stop, the
2174 * above condition is already met when the control reaches
2175 * this point and the following smp_mb() is not strictly
2176 * necessary. Do smp_mb() anyway for documentation and
2177 * robustness against future implementation changes.
2178 */
2179 smp_mb(); /* See above comment block. */
2180 return 0;
2181}
2182
2183/**
2184 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2185 *
2186 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2187 * approach to force the grace period to end quickly. This consumes
2188 * significant time on all CPUs and is unfriendly to real-time workloads,
2189 * so is thus not recommended for any sort of common-case code. In fact,
2190 * if you are using synchronize_sched_expedited() in a loop, please
2191 * restructure your code to batch your updates, and then use a single
2192 * synchronize_sched() instead.
2193 *
2194 * Note that it is illegal to call this function while holding any lock
2195 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2196 * to call this function from a CPU-hotplug notifier. Failing to observe
2197 * these restriction will result in deadlock.
2198 *
2199 * This implementation can be thought of as an application of ticket
2200 * locking to RCU, with sync_sched_expedited_started and
2201 * sync_sched_expedited_done taking on the roles of the halves
2202 * of the ticket-lock word. Each task atomically increments
2203 * sync_sched_expedited_started upon entry, snapshotting the old value,
2204 * then attempts to stop all the CPUs. If this succeeds, then each
2205 * CPU will have executed a context switch, resulting in an RCU-sched
2206 * grace period. We are then done, so we use atomic_cmpxchg() to
2207 * update sync_sched_expedited_done to match our snapshot -- but
2208 * only if someone else has not already advanced past our snapshot.
2209 *
2210 * On the other hand, if try_stop_cpus() fails, we check the value
2211 * of sync_sched_expedited_done. If it has advanced past our
2212 * initial snapshot, then someone else must have forced a grace period
2213 * some time after we took our snapshot. In this case, our work is
2214 * done for us, and we can simply return. Otherwise, we try again,
2215 * but keep our initial snapshot for purposes of checking for someone
2216 * doing our work for us.
2217 *
2218 * If we fail too many times in a row, we fall back to synchronize_sched().
2219 */
2220void synchronize_sched_expedited(void)
2221{
2222 int firstsnap, s, snap, trycount = 0;
2223
2224 /* Note that atomic_inc_return() implies full memory barrier. */
2225 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2226 get_online_cpus();
2227 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2228
2229 /*
2230 * Each pass through the following loop attempts to force a
2231 * context switch on each CPU.
2232 */
2233 while (try_stop_cpus(cpu_online_mask,
2234 synchronize_sched_expedited_cpu_stop,
2235 NULL) == -EAGAIN) {
2236 put_online_cpus();
2237
2238 /* No joy, try again later. Or just synchronize_sched(). */
2239 if (trycount++ < 10) {
2240 udelay(trycount * num_online_cpus());
2241 } else {
2242 synchronize_sched();
2243 return;
2244 }
2245
2246 /* Check to see if someone else did our work for us. */
2247 s = atomic_read(&sync_sched_expedited_done);
2248 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2249 smp_mb(); /* ensure test happens before caller kfree */
2250 return;
2251 }
2252
2253 /*
2254 * Refetching sync_sched_expedited_started allows later
2255 * callers to piggyback on our grace period. We subtract
2256 * 1 to get the same token that the last incrementer got.
2257 * We retry after they started, so our grace period works
2258 * for them, and they started after our first try, so their
2259 * grace period works for us.
2260 */
2261 get_online_cpus();
2262 snap = atomic_read(&sync_sched_expedited_started);
2263 smp_mb(); /* ensure read is before try_stop_cpus(). */
2264 }
2265
2266 /*
2267 * Everyone up to our most recent fetch is covered by our grace
2268 * period. Update the counter, but only if our work is still
2269 * relevant -- which it won't be if someone who started later
2270 * than we did beat us to the punch.
2271 */
2272 do {
2273 s = atomic_read(&sync_sched_expedited_done);
2274 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2275 smp_mb(); /* ensure test happens before caller kfree */
2276 break;
2277 }
2278 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2279
2280 put_online_cpus();
2281}
2282EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2283
2284/*
2285 * Check to see if there is any immediate RCU-related work to be done
2286 * by the current CPU, for the specified type of RCU, returning 1 if so.
2287 * The checks are in order of increasing expense: checks that can be
2288 * carried out against CPU-local state are performed first. However,
2289 * we must check for CPU stalls first, else we might not get a chance.
2290 */
2291static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2292{
2293 struct rcu_node *rnp = rdp->mynode;
2294
2295 rdp->n_rcu_pending++;
2296
2297 /* Check for CPU stalls, if enabled. */
2298 check_cpu_stall(rsp, rdp);
2299
2300 /* Is the RCU core waiting for a quiescent state from this CPU? */
2301 if (rcu_scheduler_fully_active &&
2302 rdp->qs_pending && !rdp->passed_quiesce) {
2303 rdp->n_rp_qs_pending++;
2304 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2305 rdp->n_rp_report_qs++;
2306 return 1;
2307 }
2308
2309 /* Does this CPU have callbacks ready to invoke? */
2310 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2311 rdp->n_rp_cb_ready++;
2312 return 1;
2313 }
2314
2315 /* Has RCU gone idle with this CPU needing another grace period? */
2316 if (cpu_needs_another_gp(rsp, rdp)) {
2317 rdp->n_rp_cpu_needs_gp++;
2318 return 1;
2319 }
2320
2321 /* Has another RCU grace period completed? */
2322 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2323 rdp->n_rp_gp_completed++;
2324 return 1;
2325 }
2326
2327 /* Has a new RCU grace period started? */
2328 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2329 rdp->n_rp_gp_started++;
2330 return 1;
2331 }
2332
2333 /* nothing to do */
2334 rdp->n_rp_need_nothing++;
2335 return 0;
2336}
2337
2338/*
2339 * Check to see if there is any immediate RCU-related work to be done
2340 * by the current CPU, returning 1 if so. This function is part of the
2341 * RCU implementation; it is -not- an exported member of the RCU API.
2342 */
2343static int rcu_pending(int cpu)
2344{
2345 struct rcu_state *rsp;
2346
2347 for_each_rcu_flavor(rsp)
2348 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2349 return 1;
2350 return 0;
2351}
2352
2353/*
2354 * Check to see if any future RCU-related work will need to be done
2355 * by the current CPU, even if none need be done immediately, returning
2356 * 1 if so.
2357 */
2358static int rcu_cpu_has_callbacks(int cpu)
2359{
2360 struct rcu_state *rsp;
2361
2362 /* RCU callbacks either ready or pending? */
2363 for_each_rcu_flavor(rsp)
2364 if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
2365 return 1;
2366 return 0;
2367}
2368
2369/*
2370 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2371 * the compiler is expected to optimize this away.
2372 */
2373static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2374 int cpu, unsigned long done)
2375{
2376 trace_rcu_barrier(rsp->name, s, cpu,
2377 atomic_read(&rsp->barrier_cpu_count), done);
2378}
2379
2380/*
2381 * RCU callback function for _rcu_barrier(). If we are last, wake
2382 * up the task executing _rcu_barrier().
2383 */
2384static void rcu_barrier_callback(struct rcu_head *rhp)
2385{
2386 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2387 struct rcu_state *rsp = rdp->rsp;
2388
2389 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2390 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2391 complete(&rsp->barrier_completion);
2392 } else {
2393 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2394 }
2395}
2396
2397/*
2398 * Called with preemption disabled, and from cross-cpu IRQ context.
2399 */
2400static void rcu_barrier_func(void *type)
2401{
2402 struct rcu_state *rsp = type;
2403 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2404
2405 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2406 atomic_inc(&rsp->barrier_cpu_count);
2407 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2408}
2409
2410/*
2411 * Orchestrate the specified type of RCU barrier, waiting for all
2412 * RCU callbacks of the specified type to complete.
2413 */
2414static void _rcu_barrier(struct rcu_state *rsp)
2415{
2416 int cpu;
2417 struct rcu_data *rdp;
2418 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2419 unsigned long snap_done;
2420
2421 _rcu_barrier_trace(rsp, "Begin", -1, snap);
2422
2423 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2424 mutex_lock(&rsp->barrier_mutex);
2425
2426 /*
2427 * Ensure that all prior references, including to ->n_barrier_done,
2428 * are ordered before the _rcu_barrier() machinery.
2429 */
2430 smp_mb(); /* See above block comment. */
2431
2432 /*
2433 * Recheck ->n_barrier_done to see if others did our work for us.
2434 * This means checking ->n_barrier_done for an even-to-odd-to-even
2435 * transition. The "if" expression below therefore rounds the old
2436 * value up to the next even number and adds two before comparing.
2437 */
2438 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
2439 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
2440 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
2441 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2442 smp_mb(); /* caller's subsequent code after above check. */
2443 mutex_unlock(&rsp->barrier_mutex);
2444 return;
2445 }
2446
2447 /*
2448 * Increment ->n_barrier_done to avoid duplicate work. Use
2449 * ACCESS_ONCE() to prevent the compiler from speculating
2450 * the increment to precede the early-exit check.
2451 */
2452 ACCESS_ONCE(rsp->n_barrier_done)++;
2453 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2454 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2455 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2456
2457 /*
2458 * Initialize the count to one rather than to zero in order to
2459 * avoid a too-soon return to zero in case of a short grace period
2460 * (or preemption of this task). Exclude CPU-hotplug operations
2461 * to ensure that no offline CPU has callbacks queued.
2462 */
2463 init_completion(&rsp->barrier_completion);
2464 atomic_set(&rsp->barrier_cpu_count, 1);
2465 get_online_cpus();
2466
2467 /*
2468 * Force each CPU with callbacks to register a new callback.
2469 * When that callback is invoked, we will know that all of the
2470 * corresponding CPU's preceding callbacks have been invoked.
2471 */
2472 for_each_online_cpu(cpu) {
2473 rdp = per_cpu_ptr(rsp->rda, cpu);
2474 if (ACCESS_ONCE(rdp->qlen)) {
2475 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2476 rsp->n_barrier_done);
2477 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2478 } else {
2479 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2480 rsp->n_barrier_done);
2481 }
2482 }
2483 put_online_cpus();
2484
2485 /*
2486 * Now that we have an rcu_barrier_callback() callback on each
2487 * CPU, and thus each counted, remove the initial count.
2488 */
2489 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2490 complete(&rsp->barrier_completion);
2491
2492 /* Increment ->n_barrier_done to prevent duplicate work. */
2493 smp_mb(); /* Keep increment after above mechanism. */
2494 ACCESS_ONCE(rsp->n_barrier_done)++;
2495 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2496 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2497 smp_mb(); /* Keep increment before caller's subsequent code. */
2498
2499 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2500 wait_for_completion(&rsp->barrier_completion);
2501
2502 /* Other rcu_barrier() invocations can now safely proceed. */
2503 mutex_unlock(&rsp->barrier_mutex);
2504}
2505
2506/**
2507 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2508 */
2509void rcu_barrier_bh(void)
2510{
2511 _rcu_barrier(&rcu_bh_state);
2512}
2513EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2514
2515/**
2516 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2517 */
2518void rcu_barrier_sched(void)
2519{
2520 _rcu_barrier(&rcu_sched_state);
2521}
2522EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2523
2524/*
2525 * Do boot-time initialization of a CPU's per-CPU RCU data.
2526 */
2527static void __init
2528rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2529{
2530 unsigned long flags;
2531 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2532 struct rcu_node *rnp = rcu_get_root(rsp);
2533
2534 /* Set up local state, ensuring consistent view of global state. */
2535 raw_spin_lock_irqsave(&rnp->lock, flags);
2536 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2537 init_callback_list(rdp);
2538 rdp->qlen_lazy = 0;
2539 ACCESS_ONCE(rdp->qlen) = 0;
2540 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2541 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2542 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2543 rdp->cpu = cpu;
2544 rdp->rsp = rsp;
2545 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2546}
2547
2548/*
2549 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2550 * offline event can be happening at a given time. Note also that we
2551 * can accept some slop in the rsp->completed access due to the fact
2552 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2553 */
2554static void __cpuinit
2555rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2556{
2557 unsigned long flags;
2558 unsigned long mask;
2559 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2560 struct rcu_node *rnp = rcu_get_root(rsp);
2561
2562 /* Set up local state, ensuring consistent view of global state. */
2563 raw_spin_lock_irqsave(&rnp->lock, flags);
2564 rdp->beenonline = 1; /* We have now been online. */
2565 rdp->preemptible = preemptible;
2566 rdp->qlen_last_fqs_check = 0;
2567 rdp->n_force_qs_snap = rsp->n_force_qs;
2568 rdp->blimit = blimit;
2569 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
2570 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2571 atomic_set(&rdp->dynticks->dynticks,
2572 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2573 rcu_prepare_for_idle_init(cpu);
2574 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2575
2576 /*
2577 * A new grace period might start here. If so, we won't be part
2578 * of it, but that is OK, as we are currently in a quiescent state.
2579 */
2580
2581 /* Exclude any attempts to start a new GP on large systems. */
2582 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2583
2584 /* Add CPU to rcu_node bitmasks. */
2585 rnp = rdp->mynode;
2586 mask = rdp->grpmask;
2587 do {
2588 /* Exclude any attempts to start a new GP on small systems. */
2589 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2590 rnp->qsmaskinit |= mask;
2591 mask = rnp->grpmask;
2592 if (rnp == rdp->mynode) {
2593 /*
2594 * If there is a grace period in progress, we will
2595 * set up to wait for it next time we run the
2596 * RCU core code.
2597 */
2598 rdp->gpnum = rnp->completed;
2599 rdp->completed = rnp->completed;
2600 rdp->passed_quiesce = 0;
2601 rdp->qs_pending = 0;
2602 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2603 }
2604 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2605 rnp = rnp->parent;
2606 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2607
2608 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2609}
2610
2611static void __cpuinit rcu_prepare_cpu(int cpu)
2612{
2613 struct rcu_state *rsp;
2614
2615 for_each_rcu_flavor(rsp)
2616 rcu_init_percpu_data(cpu, rsp,
2617 strcmp(rsp->name, "rcu_preempt") == 0);
2618}
2619
2620/*
2621 * Handle CPU online/offline notification events.
2622 */
2623static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2624 unsigned long action, void *hcpu)
2625{
2626 long cpu = (long)hcpu;
2627 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2628 struct rcu_node *rnp = rdp->mynode;
2629 struct rcu_state *rsp;
2630
2631 trace_rcu_utilization("Start CPU hotplug");
2632 switch (action) {
2633 case CPU_UP_PREPARE:
2634 case CPU_UP_PREPARE_FROZEN:
2635 rcu_prepare_cpu(cpu);
2636 rcu_prepare_kthreads(cpu);
2637 break;
2638 case CPU_ONLINE:
2639 case CPU_DOWN_FAILED:
2640 rcu_boost_kthread_setaffinity(rnp, -1);
2641 break;
2642 case CPU_DOWN_PREPARE:
2643 rcu_boost_kthread_setaffinity(rnp, cpu);
2644 break;
2645 case CPU_DYING:
2646 case CPU_DYING_FROZEN:
2647 /*
2648 * The whole machine is "stopped" except this CPU, so we can
2649 * touch any data without introducing corruption. We send the
2650 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2651 */
2652 for_each_rcu_flavor(rsp)
2653 rcu_cleanup_dying_cpu(rsp);
2654 rcu_cleanup_after_idle(cpu);
2655 break;
2656 case CPU_DEAD:
2657 case CPU_DEAD_FROZEN:
2658 case CPU_UP_CANCELED:
2659 case CPU_UP_CANCELED_FROZEN:
2660 for_each_rcu_flavor(rsp)
2661 rcu_cleanup_dead_cpu(cpu, rsp);
2662 break;
2663 default:
2664 break;
2665 }
2666 trace_rcu_utilization("End CPU hotplug");
2667 return NOTIFY_OK;
2668}
2669
2670/*
2671 * Spawn the kthread that handles this RCU flavor's grace periods.
2672 */
2673static int __init rcu_spawn_gp_kthread(void)
2674{
2675 unsigned long flags;
2676 struct rcu_node *rnp;
2677 struct rcu_state *rsp;
2678 struct task_struct *t;
2679
2680 for_each_rcu_flavor(rsp) {
2681 t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
2682 BUG_ON(IS_ERR(t));
2683 rnp = rcu_get_root(rsp);
2684 raw_spin_lock_irqsave(&rnp->lock, flags);
2685 rsp->gp_kthread = t;
2686 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2687 }
2688 return 0;
2689}
2690early_initcall(rcu_spawn_gp_kthread);
2691
2692/*
2693 * This function is invoked towards the end of the scheduler's initialization
2694 * process. Before this is called, the idle task might contain
2695 * RCU read-side critical sections (during which time, this idle
2696 * task is booting the system). After this function is called, the
2697 * idle tasks are prohibited from containing RCU read-side critical
2698 * sections. This function also enables RCU lockdep checking.
2699 */
2700void rcu_scheduler_starting(void)
2701{
2702 WARN_ON(num_online_cpus() != 1);
2703 WARN_ON(nr_context_switches() > 0);
2704 rcu_scheduler_active = 1;
2705}
2706
2707/*
2708 * Compute the per-level fanout, either using the exact fanout specified
2709 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2710 */
2711#ifdef CONFIG_RCU_FANOUT_EXACT
2712static void __init rcu_init_levelspread(struct rcu_state *rsp)
2713{
2714 int i;
2715
2716 for (i = rcu_num_lvls - 1; i > 0; i--)
2717 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2718 rsp->levelspread[0] = rcu_fanout_leaf;
2719}
2720#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2721static void __init rcu_init_levelspread(struct rcu_state *rsp)
2722{
2723 int ccur;
2724 int cprv;
2725 int i;
2726
2727 cprv = nr_cpu_ids;
2728 for (i = rcu_num_lvls - 1; i >= 0; i--) {
2729 ccur = rsp->levelcnt[i];
2730 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2731 cprv = ccur;
2732 }
2733}
2734#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2735
2736/*
2737 * Helper function for rcu_init() that initializes one rcu_state structure.
2738 */
2739static void __init rcu_init_one(struct rcu_state *rsp,
2740 struct rcu_data __percpu *rda)
2741{
2742 static char *buf[] = { "rcu_node_0",
2743 "rcu_node_1",
2744 "rcu_node_2",
2745 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
2746 static char *fqs[] = { "rcu_node_fqs_0",
2747 "rcu_node_fqs_1",
2748 "rcu_node_fqs_2",
2749 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
2750 int cpustride = 1;
2751 int i;
2752 int j;
2753 struct rcu_node *rnp;
2754
2755 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2756
2757 /* Initialize the level-tracking arrays. */
2758
2759 for (i = 0; i < rcu_num_lvls; i++)
2760 rsp->levelcnt[i] = num_rcu_lvl[i];
2761 for (i = 1; i < rcu_num_lvls; i++)
2762 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2763 rcu_init_levelspread(rsp);
2764
2765 /* Initialize the elements themselves, starting from the leaves. */
2766
2767 for (i = rcu_num_lvls - 1; i >= 0; i--) {
2768 cpustride *= rsp->levelspread[i];
2769 rnp = rsp->level[i];
2770 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2771 raw_spin_lock_init(&rnp->lock);
2772 lockdep_set_class_and_name(&rnp->lock,
2773 &rcu_node_class[i], buf[i]);
2774 raw_spin_lock_init(&rnp->fqslock);
2775 lockdep_set_class_and_name(&rnp->fqslock,
2776 &rcu_fqs_class[i], fqs[i]);
2777 rnp->gpnum = rsp->gpnum;
2778 rnp->completed = rsp->completed;
2779 rnp->qsmask = 0;
2780 rnp->qsmaskinit = 0;
2781 rnp->grplo = j * cpustride;
2782 rnp->grphi = (j + 1) * cpustride - 1;
2783 if (rnp->grphi >= NR_CPUS)
2784 rnp->grphi = NR_CPUS - 1;
2785 if (i == 0) {
2786 rnp->grpnum = 0;
2787 rnp->grpmask = 0;
2788 rnp->parent = NULL;
2789 } else {
2790 rnp->grpnum = j % rsp->levelspread[i - 1];
2791 rnp->grpmask = 1UL << rnp->grpnum;
2792 rnp->parent = rsp->level[i - 1] +
2793 j / rsp->levelspread[i - 1];
2794 }
2795 rnp->level = i;
2796 INIT_LIST_HEAD(&rnp->blkd_tasks);
2797 }
2798 }
2799
2800 rsp->rda = rda;
2801 init_waitqueue_head(&rsp->gp_wq);
2802 rnp = rsp->level[rcu_num_lvls - 1];
2803 for_each_possible_cpu(i) {
2804 while (i > rnp->grphi)
2805 rnp++;
2806 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2807 rcu_boot_init_percpu_data(i, rsp);
2808 }
2809 list_add(&rsp->flavors, &rcu_struct_flavors);
2810}
2811
2812/*
2813 * Compute the rcu_node tree geometry from kernel parameters. This cannot
2814 * replace the definitions in rcutree.h because those are needed to size
2815 * the ->node array in the rcu_state structure.
2816 */
2817static void __init rcu_init_geometry(void)
2818{
2819 int i;
2820 int j;
2821 int n = nr_cpu_ids;
2822 int rcu_capacity[MAX_RCU_LVLS + 1];
2823
2824 /* If the compile-time values are accurate, just leave. */
2825 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
2826 nr_cpu_ids == NR_CPUS)
2827 return;
2828
2829 /*
2830 * Compute number of nodes that can be handled an rcu_node tree
2831 * with the given number of levels. Setting rcu_capacity[0] makes
2832 * some of the arithmetic easier.
2833 */
2834 rcu_capacity[0] = 1;
2835 rcu_capacity[1] = rcu_fanout_leaf;
2836 for (i = 2; i <= MAX_RCU_LVLS; i++)
2837 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
2838
2839 /*
2840 * The boot-time rcu_fanout_leaf parameter is only permitted
2841 * to increase the leaf-level fanout, not decrease it. Of course,
2842 * the leaf-level fanout cannot exceed the number of bits in
2843 * the rcu_node masks. Finally, the tree must be able to accommodate
2844 * the configured number of CPUs. Complain and fall back to the
2845 * compile-time values if these limits are exceeded.
2846 */
2847 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
2848 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
2849 n > rcu_capacity[MAX_RCU_LVLS]) {
2850 WARN_ON(1);
2851 return;
2852 }
2853
2854 /* Calculate the number of rcu_nodes at each level of the tree. */
2855 for (i = 1; i <= MAX_RCU_LVLS; i++)
2856 if (n <= rcu_capacity[i]) {
2857 for (j = 0; j <= i; j++)
2858 num_rcu_lvl[j] =
2859 DIV_ROUND_UP(n, rcu_capacity[i - j]);
2860 rcu_num_lvls = i;
2861 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
2862 num_rcu_lvl[j] = 0;
2863 break;
2864 }
2865
2866 /* Calculate the total number of rcu_node structures. */
2867 rcu_num_nodes = 0;
2868 for (i = 0; i <= MAX_RCU_LVLS; i++)
2869 rcu_num_nodes += num_rcu_lvl[i];
2870 rcu_num_nodes -= n;
2871}
2872
2873void __init rcu_init(void)
2874{
2875 int cpu;
2876
2877 rcu_bootup_announce();
2878 rcu_init_geometry();
2879 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2880 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2881 __rcu_init_preempt();
2882 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2883
2884 /*
2885 * We don't need protection against CPU-hotplug here because
2886 * this is called early in boot, before either interrupts
2887 * or the scheduler are operational.
2888 */
2889 cpu_notifier(rcu_cpu_notify, 0);
2890 for_each_online_cpu(cpu)
2891 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2892 check_cpu_stall_init();
2893}
2894
2895#include "rcutree_plugin.h"
This page took 0.03667 seconds and 5 git commands to generate.