mac80211: Convert call_rcu() to kfree_rcu(), drop mesh_gate_node_reclaim()
[deliverable/linux.git] / kernel / rcutree.c
... / ...
CommitLineData
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
38#include <linux/nmi.h>
39#include <linux/atomic.h>
40#include <linux/bitops.h>
41#include <linux/export.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
49#include <linux/kernel_stat.h>
50#include <linux/wait.h>
51#include <linux/kthread.h>
52#include <linux/prefetch.h>
53
54#include "rcutree.h"
55#include <trace/events/rcu.h>
56
57#include "rcu.h"
58
59/* Data structures. */
60
61static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
62
63#define RCU_STATE_INITIALIZER(structname) { \
64 .level = { &structname##_state.node[0] }, \
65 .levelcnt = { \
66 NUM_RCU_LVL_0, /* root of hierarchy. */ \
67 NUM_RCU_LVL_1, \
68 NUM_RCU_LVL_2, \
69 NUM_RCU_LVL_3, \
70 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
71 }, \
72 .fqs_state = RCU_GP_IDLE, \
73 .gpnum = -300, \
74 .completed = -300, \
75 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
76 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
77 .n_force_qs = 0, \
78 .n_force_qs_ngp = 0, \
79 .name = #structname, \
80}
81
82struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
83DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
84
85struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
86DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
87
88static struct rcu_state *rcu_state;
89
90/*
91 * The rcu_scheduler_active variable transitions from zero to one just
92 * before the first task is spawned. So when this variable is zero, RCU
93 * can assume that there is but one task, allowing RCU to (for example)
94 * optimized synchronize_sched() to a simple barrier(). When this variable
95 * is one, RCU must actually do all the hard work required to detect real
96 * grace periods. This variable is also used to suppress boot-time false
97 * positives from lockdep-RCU error checking.
98 */
99int rcu_scheduler_active __read_mostly;
100EXPORT_SYMBOL_GPL(rcu_scheduler_active);
101
102/*
103 * The rcu_scheduler_fully_active variable transitions from zero to one
104 * during the early_initcall() processing, which is after the scheduler
105 * is capable of creating new tasks. So RCU processing (for example,
106 * creating tasks for RCU priority boosting) must be delayed until after
107 * rcu_scheduler_fully_active transitions from zero to one. We also
108 * currently delay invocation of any RCU callbacks until after this point.
109 *
110 * It might later prove better for people registering RCU callbacks during
111 * early boot to take responsibility for these callbacks, but one step at
112 * a time.
113 */
114static int rcu_scheduler_fully_active __read_mostly;
115
116#ifdef CONFIG_RCU_BOOST
117
118/*
119 * Control variables for per-CPU and per-rcu_node kthreads. These
120 * handle all flavors of RCU.
121 */
122static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
123DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
124DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
125DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
126DEFINE_PER_CPU(char, rcu_cpu_has_work);
127
128#endif /* #ifdef CONFIG_RCU_BOOST */
129
130static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
131static void invoke_rcu_core(void);
132static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
133
134/*
135 * Track the rcutorture test sequence number and the update version
136 * number within a given test. The rcutorture_testseq is incremented
137 * on every rcutorture module load and unload, so has an odd value
138 * when a test is running. The rcutorture_vernum is set to zero
139 * when rcutorture starts and is incremented on each rcutorture update.
140 * These variables enable correlating rcutorture output with the
141 * RCU tracing information.
142 */
143unsigned long rcutorture_testseq;
144unsigned long rcutorture_vernum;
145
146/*
147 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
148 * permit this function to be invoked without holding the root rcu_node
149 * structure's ->lock, but of course results can be subject to change.
150 */
151static int rcu_gp_in_progress(struct rcu_state *rsp)
152{
153 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
154}
155
156/*
157 * Note a quiescent state. Because we do not need to know
158 * how many quiescent states passed, just if there was at least
159 * one since the start of the grace period, this just sets a flag.
160 * The caller must have disabled preemption.
161 */
162void rcu_sched_qs(int cpu)
163{
164 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
165
166 rdp->passed_quiesce_gpnum = rdp->gpnum;
167 barrier();
168 if (rdp->passed_quiesce == 0)
169 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
170 rdp->passed_quiesce = 1;
171}
172
173void rcu_bh_qs(int cpu)
174{
175 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
176
177 rdp->passed_quiesce_gpnum = rdp->gpnum;
178 barrier();
179 if (rdp->passed_quiesce == 0)
180 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
181 rdp->passed_quiesce = 1;
182}
183
184/*
185 * Note a context switch. This is a quiescent state for RCU-sched,
186 * and requires special handling for preemptible RCU.
187 * The caller must have disabled preemption.
188 */
189void rcu_note_context_switch(int cpu)
190{
191 trace_rcu_utilization("Start context switch");
192 rcu_sched_qs(cpu);
193 rcu_preempt_note_context_switch(cpu);
194 trace_rcu_utilization("End context switch");
195}
196EXPORT_SYMBOL_GPL(rcu_note_context_switch);
197
198DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
199 .dynticks_nesting = DYNTICK_TASK_NESTING,
200 .dynticks = ATOMIC_INIT(1),
201};
202
203static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
204static int qhimark = 10000; /* If this many pending, ignore blimit. */
205static int qlowmark = 100; /* Once only this many pending, use blimit. */
206
207module_param(blimit, int, 0);
208module_param(qhimark, int, 0);
209module_param(qlowmark, int, 0);
210
211int rcu_cpu_stall_suppress __read_mostly;
212module_param(rcu_cpu_stall_suppress, int, 0644);
213
214static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
215static int rcu_pending(int cpu);
216
217/*
218 * Return the number of RCU-sched batches processed thus far for debug & stats.
219 */
220long rcu_batches_completed_sched(void)
221{
222 return rcu_sched_state.completed;
223}
224EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
225
226/*
227 * Return the number of RCU BH batches processed thus far for debug & stats.
228 */
229long rcu_batches_completed_bh(void)
230{
231 return rcu_bh_state.completed;
232}
233EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
234
235/*
236 * Force a quiescent state for RCU BH.
237 */
238void rcu_bh_force_quiescent_state(void)
239{
240 force_quiescent_state(&rcu_bh_state, 0);
241}
242EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
243
244/*
245 * Record the number of times rcutorture tests have been initiated and
246 * terminated. This information allows the debugfs tracing stats to be
247 * correlated to the rcutorture messages, even when the rcutorture module
248 * is being repeatedly loaded and unloaded. In other words, we cannot
249 * store this state in rcutorture itself.
250 */
251void rcutorture_record_test_transition(void)
252{
253 rcutorture_testseq++;
254 rcutorture_vernum = 0;
255}
256EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
257
258/*
259 * Record the number of writer passes through the current rcutorture test.
260 * This is also used to correlate debugfs tracing stats with the rcutorture
261 * messages.
262 */
263void rcutorture_record_progress(unsigned long vernum)
264{
265 rcutorture_vernum++;
266}
267EXPORT_SYMBOL_GPL(rcutorture_record_progress);
268
269/*
270 * Force a quiescent state for RCU-sched.
271 */
272void rcu_sched_force_quiescent_state(void)
273{
274 force_quiescent_state(&rcu_sched_state, 0);
275}
276EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
277
278/*
279 * Does the CPU have callbacks ready to be invoked?
280 */
281static int
282cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
283{
284 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
285}
286
287/*
288 * Does the current CPU require a yet-as-unscheduled grace period?
289 */
290static int
291cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
292{
293 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
294}
295
296/*
297 * Return the root node of the specified rcu_state structure.
298 */
299static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
300{
301 return &rsp->node[0];
302}
303
304#ifdef CONFIG_SMP
305
306/*
307 * If the specified CPU is offline, tell the caller that it is in
308 * a quiescent state. Otherwise, whack it with a reschedule IPI.
309 * Grace periods can end up waiting on an offline CPU when that
310 * CPU is in the process of coming online -- it will be added to the
311 * rcu_node bitmasks before it actually makes it online. The same thing
312 * can happen while a CPU is in the process of coming online. Because this
313 * race is quite rare, we check for it after detecting that the grace
314 * period has been delayed rather than checking each and every CPU
315 * each and every time we start a new grace period.
316 */
317static int rcu_implicit_offline_qs(struct rcu_data *rdp)
318{
319 /*
320 * If the CPU is offline, it is in a quiescent state. We can
321 * trust its state not to change because interrupts are disabled.
322 */
323 if (cpu_is_offline(rdp->cpu)) {
324 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
325 rdp->offline_fqs++;
326 return 1;
327 }
328
329 /*
330 * The CPU is online, so send it a reschedule IPI. This forces
331 * it through the scheduler, and (inefficiently) also handles cases
332 * where idle loops fail to inform RCU about the CPU being idle.
333 */
334 if (rdp->cpu != smp_processor_id())
335 smp_send_reschedule(rdp->cpu);
336 else
337 set_need_resched();
338 rdp->resched_ipi++;
339 return 0;
340}
341
342#endif /* #ifdef CONFIG_SMP */
343
344/*
345 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
346 *
347 * If the new value of the ->dynticks_nesting counter now is zero,
348 * we really have entered idle, and must do the appropriate accounting.
349 * The caller must have disabled interrupts.
350 */
351static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
352{
353 trace_rcu_dyntick("Start", oldval, 0);
354 if (!is_idle_task(current)) {
355 struct task_struct *idle = idle_task(smp_processor_id());
356
357 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
358 ftrace_dump(DUMP_ALL);
359 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
360 current->pid, current->comm,
361 idle->pid, idle->comm); /* must be idle task! */
362 }
363 rcu_prepare_for_idle(smp_processor_id());
364 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
365 smp_mb__before_atomic_inc(); /* See above. */
366 atomic_inc(&rdtp->dynticks);
367 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
368 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
369}
370
371/**
372 * rcu_idle_enter - inform RCU that current CPU is entering idle
373 *
374 * Enter idle mode, in other words, -leave- the mode in which RCU
375 * read-side critical sections can occur. (Though RCU read-side
376 * critical sections can occur in irq handlers in idle, a possibility
377 * handled by irq_enter() and irq_exit().)
378 *
379 * We crowbar the ->dynticks_nesting field to zero to allow for
380 * the possibility of usermode upcalls having messed up our count
381 * of interrupt nesting level during the prior busy period.
382 */
383void rcu_idle_enter(void)
384{
385 unsigned long flags;
386 long long oldval;
387 struct rcu_dynticks *rdtp;
388
389 local_irq_save(flags);
390 rdtp = &__get_cpu_var(rcu_dynticks);
391 oldval = rdtp->dynticks_nesting;
392 rdtp->dynticks_nesting = 0;
393 rcu_idle_enter_common(rdtp, oldval);
394 local_irq_restore(flags);
395}
396
397/**
398 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
399 *
400 * Exit from an interrupt handler, which might possibly result in entering
401 * idle mode, in other words, leaving the mode in which read-side critical
402 * sections can occur.
403 *
404 * This code assumes that the idle loop never does anything that might
405 * result in unbalanced calls to irq_enter() and irq_exit(). If your
406 * architecture violates this assumption, RCU will give you what you
407 * deserve, good and hard. But very infrequently and irreproducibly.
408 *
409 * Use things like work queues to work around this limitation.
410 *
411 * You have been warned.
412 */
413void rcu_irq_exit(void)
414{
415 unsigned long flags;
416 long long oldval;
417 struct rcu_dynticks *rdtp;
418
419 local_irq_save(flags);
420 rdtp = &__get_cpu_var(rcu_dynticks);
421 oldval = rdtp->dynticks_nesting;
422 rdtp->dynticks_nesting--;
423 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
424 if (rdtp->dynticks_nesting)
425 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
426 else
427 rcu_idle_enter_common(rdtp, oldval);
428 local_irq_restore(flags);
429}
430
431/*
432 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
433 *
434 * If the new value of the ->dynticks_nesting counter was previously zero,
435 * we really have exited idle, and must do the appropriate accounting.
436 * The caller must have disabled interrupts.
437 */
438static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
439{
440 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
441 atomic_inc(&rdtp->dynticks);
442 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
443 smp_mb__after_atomic_inc(); /* See above. */
444 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
445 rcu_cleanup_after_idle(smp_processor_id());
446 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
447 if (!is_idle_task(current)) {
448 struct task_struct *idle = idle_task(smp_processor_id());
449
450 trace_rcu_dyntick("Error on exit: not idle task",
451 oldval, rdtp->dynticks_nesting);
452 ftrace_dump(DUMP_ALL);
453 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
454 current->pid, current->comm,
455 idle->pid, idle->comm); /* must be idle task! */
456 }
457}
458
459/**
460 * rcu_idle_exit - inform RCU that current CPU is leaving idle
461 *
462 * Exit idle mode, in other words, -enter- the mode in which RCU
463 * read-side critical sections can occur.
464 *
465 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NESTING to
466 * allow for the possibility of usermode upcalls messing up our count
467 * of interrupt nesting level during the busy period that is just
468 * now starting.
469 */
470void rcu_idle_exit(void)
471{
472 unsigned long flags;
473 struct rcu_dynticks *rdtp;
474 long long oldval;
475
476 local_irq_save(flags);
477 rdtp = &__get_cpu_var(rcu_dynticks);
478 oldval = rdtp->dynticks_nesting;
479 WARN_ON_ONCE(oldval != 0);
480 rdtp->dynticks_nesting = DYNTICK_TASK_NESTING;
481 rcu_idle_exit_common(rdtp, oldval);
482 local_irq_restore(flags);
483}
484
485/**
486 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
487 *
488 * Enter an interrupt handler, which might possibly result in exiting
489 * idle mode, in other words, entering the mode in which read-side critical
490 * sections can occur.
491 *
492 * Note that the Linux kernel is fully capable of entering an interrupt
493 * handler that it never exits, for example when doing upcalls to
494 * user mode! This code assumes that the idle loop never does upcalls to
495 * user mode. If your architecture does do upcalls from the idle loop (or
496 * does anything else that results in unbalanced calls to the irq_enter()
497 * and irq_exit() functions), RCU will give you what you deserve, good
498 * and hard. But very infrequently and irreproducibly.
499 *
500 * Use things like work queues to work around this limitation.
501 *
502 * You have been warned.
503 */
504void rcu_irq_enter(void)
505{
506 unsigned long flags;
507 struct rcu_dynticks *rdtp;
508 long long oldval;
509
510 local_irq_save(flags);
511 rdtp = &__get_cpu_var(rcu_dynticks);
512 oldval = rdtp->dynticks_nesting;
513 rdtp->dynticks_nesting++;
514 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
515 if (oldval)
516 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
517 else
518 rcu_idle_exit_common(rdtp, oldval);
519 local_irq_restore(flags);
520}
521
522/**
523 * rcu_nmi_enter - inform RCU of entry to NMI context
524 *
525 * If the CPU was idle with dynamic ticks active, and there is no
526 * irq handler running, this updates rdtp->dynticks_nmi to let the
527 * RCU grace-period handling know that the CPU is active.
528 */
529void rcu_nmi_enter(void)
530{
531 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
532
533 if (rdtp->dynticks_nmi_nesting == 0 &&
534 (atomic_read(&rdtp->dynticks) & 0x1))
535 return;
536 rdtp->dynticks_nmi_nesting++;
537 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
538 atomic_inc(&rdtp->dynticks);
539 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
540 smp_mb__after_atomic_inc(); /* See above. */
541 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
542}
543
544/**
545 * rcu_nmi_exit - inform RCU of exit from NMI context
546 *
547 * If the CPU was idle with dynamic ticks active, and there is no
548 * irq handler running, this updates rdtp->dynticks_nmi to let the
549 * RCU grace-period handling know that the CPU is no longer active.
550 */
551void rcu_nmi_exit(void)
552{
553 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
554
555 if (rdtp->dynticks_nmi_nesting == 0 ||
556 --rdtp->dynticks_nmi_nesting != 0)
557 return;
558 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
559 smp_mb__before_atomic_inc(); /* See above. */
560 atomic_inc(&rdtp->dynticks);
561 smp_mb__after_atomic_inc(); /* Force delay to next write. */
562 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
563}
564
565#ifdef CONFIG_PROVE_RCU
566
567/**
568 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
569 *
570 * If the current CPU is in its idle loop and is neither in an interrupt
571 * or NMI handler, return true.
572 */
573int rcu_is_cpu_idle(void)
574{
575 int ret;
576
577 preempt_disable();
578 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
579 preempt_enable();
580 return ret;
581}
582EXPORT_SYMBOL(rcu_is_cpu_idle);
583
584#endif /* #ifdef CONFIG_PROVE_RCU */
585
586/**
587 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
588 *
589 * If the current CPU is idle or running at a first-level (not nested)
590 * interrupt from idle, return true. The caller must have at least
591 * disabled preemption.
592 */
593int rcu_is_cpu_rrupt_from_idle(void)
594{
595 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
596}
597
598#ifdef CONFIG_SMP
599
600/*
601 * Snapshot the specified CPU's dynticks counter so that we can later
602 * credit them with an implicit quiescent state. Return 1 if this CPU
603 * is in dynticks idle mode, which is an extended quiescent state.
604 */
605static int dyntick_save_progress_counter(struct rcu_data *rdp)
606{
607 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
608 return (rdp->dynticks_snap & 0x1) == 0;
609}
610
611/*
612 * Return true if the specified CPU has passed through a quiescent
613 * state by virtue of being in or having passed through an dynticks
614 * idle state since the last call to dyntick_save_progress_counter()
615 * for this same CPU.
616 */
617static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
618{
619 unsigned int curr;
620 unsigned int snap;
621
622 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
623 snap = (unsigned int)rdp->dynticks_snap;
624
625 /*
626 * If the CPU passed through or entered a dynticks idle phase with
627 * no active irq/NMI handlers, then we can safely pretend that the CPU
628 * already acknowledged the request to pass through a quiescent
629 * state. Either way, that CPU cannot possibly be in an RCU
630 * read-side critical section that started before the beginning
631 * of the current RCU grace period.
632 */
633 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
634 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
635 rdp->dynticks_fqs++;
636 return 1;
637 }
638
639 /* Go check for the CPU being offline. */
640 return rcu_implicit_offline_qs(rdp);
641}
642
643#endif /* #ifdef CONFIG_SMP */
644
645static void record_gp_stall_check_time(struct rcu_state *rsp)
646{
647 rsp->gp_start = jiffies;
648 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
649}
650
651static void print_other_cpu_stall(struct rcu_state *rsp)
652{
653 int cpu;
654 long delta;
655 unsigned long flags;
656 int ndetected;
657 struct rcu_node *rnp = rcu_get_root(rsp);
658
659 /* Only let one CPU complain about others per time interval. */
660
661 raw_spin_lock_irqsave(&rnp->lock, flags);
662 delta = jiffies - rsp->jiffies_stall;
663 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
664 raw_spin_unlock_irqrestore(&rnp->lock, flags);
665 return;
666 }
667 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
668
669 /*
670 * Now rat on any tasks that got kicked up to the root rcu_node
671 * due to CPU offlining.
672 */
673 ndetected = rcu_print_task_stall(rnp);
674 raw_spin_unlock_irqrestore(&rnp->lock, flags);
675
676 /*
677 * OK, time to rat on our buddy...
678 * See Documentation/RCU/stallwarn.txt for info on how to debug
679 * RCU CPU stall warnings.
680 */
681 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
682 rsp->name);
683 rcu_for_each_leaf_node(rsp, rnp) {
684 raw_spin_lock_irqsave(&rnp->lock, flags);
685 ndetected += rcu_print_task_stall(rnp);
686 raw_spin_unlock_irqrestore(&rnp->lock, flags);
687 if (rnp->qsmask == 0)
688 continue;
689 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
690 if (rnp->qsmask & (1UL << cpu)) {
691 printk(" %d", rnp->grplo + cpu);
692 ndetected++;
693 }
694 }
695 printk("} (detected by %d, t=%ld jiffies)\n",
696 smp_processor_id(), (long)(jiffies - rsp->gp_start));
697 if (ndetected == 0)
698 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
699 else if (!trigger_all_cpu_backtrace())
700 dump_stack();
701
702 /* If so configured, complain about tasks blocking the grace period. */
703
704 rcu_print_detail_task_stall(rsp);
705
706 force_quiescent_state(rsp, 0); /* Kick them all. */
707}
708
709static void print_cpu_stall(struct rcu_state *rsp)
710{
711 unsigned long flags;
712 struct rcu_node *rnp = rcu_get_root(rsp);
713
714 /*
715 * OK, time to rat on ourselves...
716 * See Documentation/RCU/stallwarn.txt for info on how to debug
717 * RCU CPU stall warnings.
718 */
719 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
720 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
721 if (!trigger_all_cpu_backtrace())
722 dump_stack();
723
724 raw_spin_lock_irqsave(&rnp->lock, flags);
725 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
726 rsp->jiffies_stall =
727 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
728 raw_spin_unlock_irqrestore(&rnp->lock, flags);
729
730 set_need_resched(); /* kick ourselves to get things going. */
731}
732
733static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
734{
735 unsigned long j;
736 unsigned long js;
737 struct rcu_node *rnp;
738
739 if (rcu_cpu_stall_suppress)
740 return;
741 j = ACCESS_ONCE(jiffies);
742 js = ACCESS_ONCE(rsp->jiffies_stall);
743 rnp = rdp->mynode;
744 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
745
746 /* We haven't checked in, so go dump stack. */
747 print_cpu_stall(rsp);
748
749 } else if (rcu_gp_in_progress(rsp) &&
750 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
751
752 /* They had a few time units to dump stack, so complain. */
753 print_other_cpu_stall(rsp);
754 }
755}
756
757static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
758{
759 rcu_cpu_stall_suppress = 1;
760 return NOTIFY_DONE;
761}
762
763/**
764 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
765 *
766 * Set the stall-warning timeout way off into the future, thus preventing
767 * any RCU CPU stall-warning messages from appearing in the current set of
768 * RCU grace periods.
769 *
770 * The caller must disable hard irqs.
771 */
772void rcu_cpu_stall_reset(void)
773{
774 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
775 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
776 rcu_preempt_stall_reset();
777}
778
779static struct notifier_block rcu_panic_block = {
780 .notifier_call = rcu_panic,
781};
782
783static void __init check_cpu_stall_init(void)
784{
785 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
786}
787
788/*
789 * Update CPU-local rcu_data state to record the newly noticed grace period.
790 * This is used both when we started the grace period and when we notice
791 * that someone else started the grace period. The caller must hold the
792 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
793 * and must have irqs disabled.
794 */
795static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
796{
797 if (rdp->gpnum != rnp->gpnum) {
798 /*
799 * If the current grace period is waiting for this CPU,
800 * set up to detect a quiescent state, otherwise don't
801 * go looking for one.
802 */
803 rdp->gpnum = rnp->gpnum;
804 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
805 if (rnp->qsmask & rdp->grpmask) {
806 rdp->qs_pending = 1;
807 rdp->passed_quiesce = 0;
808 } else
809 rdp->qs_pending = 0;
810 }
811}
812
813static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
814{
815 unsigned long flags;
816 struct rcu_node *rnp;
817
818 local_irq_save(flags);
819 rnp = rdp->mynode;
820 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
821 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
822 local_irq_restore(flags);
823 return;
824 }
825 __note_new_gpnum(rsp, rnp, rdp);
826 raw_spin_unlock_irqrestore(&rnp->lock, flags);
827}
828
829/*
830 * Did someone else start a new RCU grace period start since we last
831 * checked? Update local state appropriately if so. Must be called
832 * on the CPU corresponding to rdp.
833 */
834static int
835check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
836{
837 unsigned long flags;
838 int ret = 0;
839
840 local_irq_save(flags);
841 if (rdp->gpnum != rsp->gpnum) {
842 note_new_gpnum(rsp, rdp);
843 ret = 1;
844 }
845 local_irq_restore(flags);
846 return ret;
847}
848
849/*
850 * Advance this CPU's callbacks, but only if the current grace period
851 * has ended. This may be called only from the CPU to whom the rdp
852 * belongs. In addition, the corresponding leaf rcu_node structure's
853 * ->lock must be held by the caller, with irqs disabled.
854 */
855static void
856__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
857{
858 /* Did another grace period end? */
859 if (rdp->completed != rnp->completed) {
860
861 /* Advance callbacks. No harm if list empty. */
862 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
863 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
864 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
865
866 /* Remember that we saw this grace-period completion. */
867 rdp->completed = rnp->completed;
868 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
869
870 /*
871 * If we were in an extended quiescent state, we may have
872 * missed some grace periods that others CPUs handled on
873 * our behalf. Catch up with this state to avoid noting
874 * spurious new grace periods. If another grace period
875 * has started, then rnp->gpnum will have advanced, so
876 * we will detect this later on.
877 */
878 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
879 rdp->gpnum = rdp->completed;
880
881 /*
882 * If RCU does not need a quiescent state from this CPU,
883 * then make sure that this CPU doesn't go looking for one.
884 */
885 if ((rnp->qsmask & rdp->grpmask) == 0)
886 rdp->qs_pending = 0;
887 }
888}
889
890/*
891 * Advance this CPU's callbacks, but only if the current grace period
892 * has ended. This may be called only from the CPU to whom the rdp
893 * belongs.
894 */
895static void
896rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
897{
898 unsigned long flags;
899 struct rcu_node *rnp;
900
901 local_irq_save(flags);
902 rnp = rdp->mynode;
903 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
904 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
905 local_irq_restore(flags);
906 return;
907 }
908 __rcu_process_gp_end(rsp, rnp, rdp);
909 raw_spin_unlock_irqrestore(&rnp->lock, flags);
910}
911
912/*
913 * Do per-CPU grace-period initialization for running CPU. The caller
914 * must hold the lock of the leaf rcu_node structure corresponding to
915 * this CPU.
916 */
917static void
918rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
919{
920 /* Prior grace period ended, so advance callbacks for current CPU. */
921 __rcu_process_gp_end(rsp, rnp, rdp);
922
923 /*
924 * Because this CPU just now started the new grace period, we know
925 * that all of its callbacks will be covered by this upcoming grace
926 * period, even the ones that were registered arbitrarily recently.
927 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
928 *
929 * Other CPUs cannot be sure exactly when the grace period started.
930 * Therefore, their recently registered callbacks must pass through
931 * an additional RCU_NEXT_READY stage, so that they will be handled
932 * by the next RCU grace period.
933 */
934 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
935 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
936
937 /* Set state so that this CPU will detect the next quiescent state. */
938 __note_new_gpnum(rsp, rnp, rdp);
939}
940
941/*
942 * Start a new RCU grace period if warranted, re-initializing the hierarchy
943 * in preparation for detecting the next grace period. The caller must hold
944 * the root node's ->lock, which is released before return. Hard irqs must
945 * be disabled.
946 */
947static void
948rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
949 __releases(rcu_get_root(rsp)->lock)
950{
951 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
952 struct rcu_node *rnp = rcu_get_root(rsp);
953
954 if (!rcu_scheduler_fully_active ||
955 !cpu_needs_another_gp(rsp, rdp)) {
956 /*
957 * Either the scheduler hasn't yet spawned the first
958 * non-idle task or this CPU does not need another
959 * grace period. Either way, don't start a new grace
960 * period.
961 */
962 raw_spin_unlock_irqrestore(&rnp->lock, flags);
963 return;
964 }
965
966 if (rsp->fqs_active) {
967 /*
968 * This CPU needs a grace period, but force_quiescent_state()
969 * is running. Tell it to start one on this CPU's behalf.
970 */
971 rsp->fqs_need_gp = 1;
972 raw_spin_unlock_irqrestore(&rnp->lock, flags);
973 return;
974 }
975
976 /* Advance to a new grace period and initialize state. */
977 rsp->gpnum++;
978 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
979 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
980 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
981 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
982 record_gp_stall_check_time(rsp);
983
984 /* Special-case the common single-level case. */
985 if (NUM_RCU_NODES == 1) {
986 rcu_preempt_check_blocked_tasks(rnp);
987 rnp->qsmask = rnp->qsmaskinit;
988 rnp->gpnum = rsp->gpnum;
989 rnp->completed = rsp->completed;
990 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state OK */
991 rcu_start_gp_per_cpu(rsp, rnp, rdp);
992 rcu_preempt_boost_start_gp(rnp);
993 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
994 rnp->level, rnp->grplo,
995 rnp->grphi, rnp->qsmask);
996 raw_spin_unlock_irqrestore(&rnp->lock, flags);
997 return;
998 }
999
1000 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
1001
1002
1003 /* Exclude any concurrent CPU-hotplug operations. */
1004 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
1005
1006 /*
1007 * Set the quiescent-state-needed bits in all the rcu_node
1008 * structures for all currently online CPUs in breadth-first
1009 * order, starting from the root rcu_node structure. This
1010 * operation relies on the layout of the hierarchy within the
1011 * rsp->node[] array. Note that other CPUs will access only
1012 * the leaves of the hierarchy, which still indicate that no
1013 * grace period is in progress, at least until the corresponding
1014 * leaf node has been initialized. In addition, we have excluded
1015 * CPU-hotplug operations.
1016 *
1017 * Note that the grace period cannot complete until we finish
1018 * the initialization process, as there will be at least one
1019 * qsmask bit set in the root node until that time, namely the
1020 * one corresponding to this CPU, due to the fact that we have
1021 * irqs disabled.
1022 */
1023 rcu_for_each_node_breadth_first(rsp, rnp) {
1024 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1025 rcu_preempt_check_blocked_tasks(rnp);
1026 rnp->qsmask = rnp->qsmaskinit;
1027 rnp->gpnum = rsp->gpnum;
1028 rnp->completed = rsp->completed;
1029 if (rnp == rdp->mynode)
1030 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1031 rcu_preempt_boost_start_gp(rnp);
1032 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1033 rnp->level, rnp->grplo,
1034 rnp->grphi, rnp->qsmask);
1035 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1036 }
1037
1038 rnp = rcu_get_root(rsp);
1039 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1040 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1041 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1042 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1043}
1044
1045/*
1046 * Report a full set of quiescent states to the specified rcu_state
1047 * data structure. This involves cleaning up after the prior grace
1048 * period and letting rcu_start_gp() start up the next grace period
1049 * if one is needed. Note that the caller must hold rnp->lock, as
1050 * required by rcu_start_gp(), which will release it.
1051 */
1052static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1053 __releases(rcu_get_root(rsp)->lock)
1054{
1055 unsigned long gp_duration;
1056 struct rcu_node *rnp = rcu_get_root(rsp);
1057 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1058
1059 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1060
1061 /*
1062 * Ensure that all grace-period and pre-grace-period activity
1063 * is seen before the assignment to rsp->completed.
1064 */
1065 smp_mb(); /* See above block comment. */
1066 gp_duration = jiffies - rsp->gp_start;
1067 if (gp_duration > rsp->gp_max)
1068 rsp->gp_max = gp_duration;
1069
1070 /*
1071 * We know the grace period is complete, but to everyone else
1072 * it appears to still be ongoing. But it is also the case
1073 * that to everyone else it looks like there is nothing that
1074 * they can do to advance the grace period. It is therefore
1075 * safe for us to drop the lock in order to mark the grace
1076 * period as completed in all of the rcu_node structures.
1077 *
1078 * But if this CPU needs another grace period, it will take
1079 * care of this while initializing the next grace period.
1080 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1081 * because the callbacks have not yet been advanced: Those
1082 * callbacks are waiting on the grace period that just now
1083 * completed.
1084 */
1085 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1086 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1087
1088 /*
1089 * Propagate new ->completed value to rcu_node structures
1090 * so that other CPUs don't have to wait until the start
1091 * of the next grace period to process their callbacks.
1092 */
1093 rcu_for_each_node_breadth_first(rsp, rnp) {
1094 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1095 rnp->completed = rsp->gpnum;
1096 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1097 }
1098 rnp = rcu_get_root(rsp);
1099 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1100 }
1101
1102 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
1103 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1104 rsp->fqs_state = RCU_GP_IDLE;
1105 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1106}
1107
1108/*
1109 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1110 * Allows quiescent states for a group of CPUs to be reported at one go
1111 * to the specified rcu_node structure, though all the CPUs in the group
1112 * must be represented by the same rcu_node structure (which need not be
1113 * a leaf rcu_node structure, though it often will be). That structure's
1114 * lock must be held upon entry, and it is released before return.
1115 */
1116static void
1117rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1118 struct rcu_node *rnp, unsigned long flags)
1119 __releases(rnp->lock)
1120{
1121 struct rcu_node *rnp_c;
1122
1123 /* Walk up the rcu_node hierarchy. */
1124 for (;;) {
1125 if (!(rnp->qsmask & mask)) {
1126
1127 /* Our bit has already been cleared, so done. */
1128 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1129 return;
1130 }
1131 rnp->qsmask &= ~mask;
1132 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1133 mask, rnp->qsmask, rnp->level,
1134 rnp->grplo, rnp->grphi,
1135 !!rnp->gp_tasks);
1136 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1137
1138 /* Other bits still set at this level, so done. */
1139 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1140 return;
1141 }
1142 mask = rnp->grpmask;
1143 if (rnp->parent == NULL) {
1144
1145 /* No more levels. Exit loop holding root lock. */
1146
1147 break;
1148 }
1149 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1150 rnp_c = rnp;
1151 rnp = rnp->parent;
1152 raw_spin_lock_irqsave(&rnp->lock, flags);
1153 WARN_ON_ONCE(rnp_c->qsmask);
1154 }
1155
1156 /*
1157 * Get here if we are the last CPU to pass through a quiescent
1158 * state for this grace period. Invoke rcu_report_qs_rsp()
1159 * to clean up and start the next grace period if one is needed.
1160 */
1161 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1162}
1163
1164/*
1165 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1166 * structure. This must be either called from the specified CPU, or
1167 * called when the specified CPU is known to be offline (and when it is
1168 * also known that no other CPU is concurrently trying to help the offline
1169 * CPU). The lastcomp argument is used to make sure we are still in the
1170 * grace period of interest. We don't want to end the current grace period
1171 * based on quiescent states detected in an earlier grace period!
1172 */
1173static void
1174rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1175{
1176 unsigned long flags;
1177 unsigned long mask;
1178 struct rcu_node *rnp;
1179
1180 rnp = rdp->mynode;
1181 raw_spin_lock_irqsave(&rnp->lock, flags);
1182 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1183
1184 /*
1185 * The grace period in which this quiescent state was
1186 * recorded has ended, so don't report it upwards.
1187 * We will instead need a new quiescent state that lies
1188 * within the current grace period.
1189 */
1190 rdp->passed_quiesce = 0; /* need qs for new gp. */
1191 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1192 return;
1193 }
1194 mask = rdp->grpmask;
1195 if ((rnp->qsmask & mask) == 0) {
1196 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1197 } else {
1198 rdp->qs_pending = 0;
1199
1200 /*
1201 * This GP can't end until cpu checks in, so all of our
1202 * callbacks can be processed during the next GP.
1203 */
1204 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1205
1206 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1207 }
1208}
1209
1210/*
1211 * Check to see if there is a new grace period of which this CPU
1212 * is not yet aware, and if so, set up local rcu_data state for it.
1213 * Otherwise, see if this CPU has just passed through its first
1214 * quiescent state for this grace period, and record that fact if so.
1215 */
1216static void
1217rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1218{
1219 /* If there is now a new grace period, record and return. */
1220 if (check_for_new_grace_period(rsp, rdp))
1221 return;
1222
1223 /*
1224 * Does this CPU still need to do its part for current grace period?
1225 * If no, return and let the other CPUs do their part as well.
1226 */
1227 if (!rdp->qs_pending)
1228 return;
1229
1230 /*
1231 * Was there a quiescent state since the beginning of the grace
1232 * period? If no, then exit and wait for the next call.
1233 */
1234 if (!rdp->passed_quiesce)
1235 return;
1236
1237 /*
1238 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1239 * judge of that).
1240 */
1241 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1242}
1243
1244#ifdef CONFIG_HOTPLUG_CPU
1245
1246/*
1247 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1248 * Synchronization is not required because this function executes
1249 * in stop_machine() context.
1250 */
1251static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1252{
1253 int i;
1254 /* current DYING CPU is cleared in the cpu_online_mask */
1255 int receive_cpu = cpumask_any(cpu_online_mask);
1256 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1257 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1258
1259 if (rdp->nxtlist == NULL)
1260 return; /* irqs disabled, so comparison is stable. */
1261
1262 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1263 receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1264 receive_rdp->qlen_lazy += rdp->qlen_lazy;
1265 receive_rdp->qlen += rdp->qlen;
1266 receive_rdp->n_cbs_adopted += rdp->qlen;
1267 rdp->n_cbs_orphaned += rdp->qlen;
1268
1269 rdp->nxtlist = NULL;
1270 for (i = 0; i < RCU_NEXT_SIZE; i++)
1271 rdp->nxttail[i] = &rdp->nxtlist;
1272 rdp->qlen_lazy = 0;
1273 rdp->qlen = 0;
1274}
1275
1276/*
1277 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1278 * and move all callbacks from the outgoing CPU to the current one.
1279 * There can only be one CPU hotplug operation at a time, so no other
1280 * CPU can be attempting to update rcu_cpu_kthread_task.
1281 */
1282static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1283{
1284 unsigned long flags;
1285 unsigned long mask;
1286 int need_report = 0;
1287 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1288 struct rcu_node *rnp;
1289
1290 rcu_stop_cpu_kthread(cpu);
1291
1292 /* Exclude any attempts to start a new grace period. */
1293 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1294
1295 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1296 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
1297 mask = rdp->grpmask; /* rnp->grplo is constant. */
1298 do {
1299 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1300 rnp->qsmaskinit &= ~mask;
1301 if (rnp->qsmaskinit != 0) {
1302 if (rnp != rdp->mynode)
1303 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1304 else
1305 trace_rcu_grace_period(rsp->name,
1306 rnp->gpnum + 1 -
1307 !!(rnp->qsmask & mask),
1308 "cpuofl");
1309 break;
1310 }
1311 if (rnp == rdp->mynode) {
1312 trace_rcu_grace_period(rsp->name,
1313 rnp->gpnum + 1 -
1314 !!(rnp->qsmask & mask),
1315 "cpuofl");
1316 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1317 } else
1318 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1319 mask = rnp->grpmask;
1320 rnp = rnp->parent;
1321 } while (rnp != NULL);
1322
1323 /*
1324 * We still hold the leaf rcu_node structure lock here, and
1325 * irqs are still disabled. The reason for this subterfuge is
1326 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1327 * held leads to deadlock.
1328 */
1329 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1330 rnp = rdp->mynode;
1331 if (need_report & RCU_OFL_TASKS_NORM_GP)
1332 rcu_report_unblock_qs_rnp(rnp, flags);
1333 else
1334 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1335 if (need_report & RCU_OFL_TASKS_EXP_GP)
1336 rcu_report_exp_rnp(rsp, rnp, true);
1337 rcu_node_kthread_setaffinity(rnp, -1);
1338}
1339
1340/*
1341 * Remove the specified CPU from the RCU hierarchy and move any pending
1342 * callbacks that it might have to the current CPU. This code assumes
1343 * that at least one CPU in the system will remain running at all times.
1344 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1345 */
1346static void rcu_offline_cpu(int cpu)
1347{
1348 __rcu_offline_cpu(cpu, &rcu_sched_state);
1349 __rcu_offline_cpu(cpu, &rcu_bh_state);
1350 rcu_preempt_offline_cpu(cpu);
1351}
1352
1353#else /* #ifdef CONFIG_HOTPLUG_CPU */
1354
1355static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1356{
1357}
1358
1359static void rcu_offline_cpu(int cpu)
1360{
1361}
1362
1363#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1364
1365/*
1366 * Invoke any RCU callbacks that have made it to the end of their grace
1367 * period. Thottle as specified by rdp->blimit.
1368 */
1369static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1370{
1371 unsigned long flags;
1372 struct rcu_head *next, *list, **tail;
1373 int bl, count, count_lazy;
1374
1375 /* If no callbacks are ready, just return.*/
1376 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1377 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1378 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1379 need_resched(), is_idle_task(current),
1380 rcu_is_callbacks_kthread());
1381 return;
1382 }
1383
1384 /*
1385 * Extract the list of ready callbacks, disabling to prevent
1386 * races with call_rcu() from interrupt handlers.
1387 */
1388 local_irq_save(flags);
1389 bl = rdp->blimit;
1390 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1391 list = rdp->nxtlist;
1392 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1393 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1394 tail = rdp->nxttail[RCU_DONE_TAIL];
1395 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1396 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1397 rdp->nxttail[count] = &rdp->nxtlist;
1398 local_irq_restore(flags);
1399
1400 /* Invoke callbacks. */
1401 count = count_lazy = 0;
1402 while (list) {
1403 next = list->next;
1404 prefetch(next);
1405 debug_rcu_head_unqueue(list);
1406 if (__rcu_reclaim(rsp->name, list))
1407 count_lazy++;
1408 list = next;
1409 /* Stop only if limit reached and CPU has something to do. */
1410 if (++count >= bl &&
1411 (need_resched() ||
1412 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1413 break;
1414 }
1415
1416 local_irq_save(flags);
1417 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1418 is_idle_task(current),
1419 rcu_is_callbacks_kthread());
1420
1421 /* Update count, and requeue any remaining callbacks. */
1422 rdp->qlen_lazy -= count_lazy;
1423 rdp->qlen -= count;
1424 rdp->n_cbs_invoked += count;
1425 if (list != NULL) {
1426 *tail = rdp->nxtlist;
1427 rdp->nxtlist = list;
1428 for (count = 0; count < RCU_NEXT_SIZE; count++)
1429 if (&rdp->nxtlist == rdp->nxttail[count])
1430 rdp->nxttail[count] = tail;
1431 else
1432 break;
1433 }
1434
1435 /* Reinstate batch limit if we have worked down the excess. */
1436 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1437 rdp->blimit = blimit;
1438
1439 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1440 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1441 rdp->qlen_last_fqs_check = 0;
1442 rdp->n_force_qs_snap = rsp->n_force_qs;
1443 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1444 rdp->qlen_last_fqs_check = rdp->qlen;
1445
1446 local_irq_restore(flags);
1447
1448 /* Re-invoke RCU core processing if there are callbacks remaining. */
1449 if (cpu_has_callbacks_ready_to_invoke(rdp))
1450 invoke_rcu_core();
1451}
1452
1453/*
1454 * Check to see if this CPU is in a non-context-switch quiescent state
1455 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1456 * Also schedule RCU core processing.
1457 *
1458 * This function must be called from hardirq context. It is normally
1459 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1460 * false, there is no point in invoking rcu_check_callbacks().
1461 */
1462void rcu_check_callbacks(int cpu, int user)
1463{
1464 trace_rcu_utilization("Start scheduler-tick");
1465 if (user || rcu_is_cpu_rrupt_from_idle()) {
1466
1467 /*
1468 * Get here if this CPU took its interrupt from user
1469 * mode or from the idle loop, and if this is not a
1470 * nested interrupt. In this case, the CPU is in
1471 * a quiescent state, so note it.
1472 *
1473 * No memory barrier is required here because both
1474 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1475 * variables that other CPUs neither access nor modify,
1476 * at least not while the corresponding CPU is online.
1477 */
1478
1479 rcu_sched_qs(cpu);
1480 rcu_bh_qs(cpu);
1481
1482 } else if (!in_softirq()) {
1483
1484 /*
1485 * Get here if this CPU did not take its interrupt from
1486 * softirq, in other words, if it is not interrupting
1487 * a rcu_bh read-side critical section. This is an _bh
1488 * critical section, so note it.
1489 */
1490
1491 rcu_bh_qs(cpu);
1492 }
1493 rcu_preempt_check_callbacks(cpu);
1494 if (rcu_pending(cpu))
1495 invoke_rcu_core();
1496 trace_rcu_utilization("End scheduler-tick");
1497}
1498
1499#ifdef CONFIG_SMP
1500
1501/*
1502 * Scan the leaf rcu_node structures, processing dyntick state for any that
1503 * have not yet encountered a quiescent state, using the function specified.
1504 * Also initiate boosting for any threads blocked on the root rcu_node.
1505 *
1506 * The caller must have suppressed start of new grace periods.
1507 */
1508static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1509{
1510 unsigned long bit;
1511 int cpu;
1512 unsigned long flags;
1513 unsigned long mask;
1514 struct rcu_node *rnp;
1515
1516 rcu_for_each_leaf_node(rsp, rnp) {
1517 mask = 0;
1518 raw_spin_lock_irqsave(&rnp->lock, flags);
1519 if (!rcu_gp_in_progress(rsp)) {
1520 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1521 return;
1522 }
1523 if (rnp->qsmask == 0) {
1524 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1525 continue;
1526 }
1527 cpu = rnp->grplo;
1528 bit = 1;
1529 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1530 if ((rnp->qsmask & bit) != 0 &&
1531 f(per_cpu_ptr(rsp->rda, cpu)))
1532 mask |= bit;
1533 }
1534 if (mask != 0) {
1535
1536 /* rcu_report_qs_rnp() releases rnp->lock. */
1537 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1538 continue;
1539 }
1540 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1541 }
1542 rnp = rcu_get_root(rsp);
1543 if (rnp->qsmask == 0) {
1544 raw_spin_lock_irqsave(&rnp->lock, flags);
1545 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1546 }
1547}
1548
1549/*
1550 * Force quiescent states on reluctant CPUs, and also detect which
1551 * CPUs are in dyntick-idle mode.
1552 */
1553static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1554{
1555 unsigned long flags;
1556 struct rcu_node *rnp = rcu_get_root(rsp);
1557
1558 trace_rcu_utilization("Start fqs");
1559 if (!rcu_gp_in_progress(rsp)) {
1560 trace_rcu_utilization("End fqs");
1561 return; /* No grace period in progress, nothing to force. */
1562 }
1563 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1564 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1565 trace_rcu_utilization("End fqs");
1566 return; /* Someone else is already on the job. */
1567 }
1568 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1569 goto unlock_fqs_ret; /* no emergency and done recently. */
1570 rsp->n_force_qs++;
1571 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1572 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1573 if(!rcu_gp_in_progress(rsp)) {
1574 rsp->n_force_qs_ngp++;
1575 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1576 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1577 }
1578 rsp->fqs_active = 1;
1579 switch (rsp->fqs_state) {
1580 case RCU_GP_IDLE:
1581 case RCU_GP_INIT:
1582
1583 break; /* grace period idle or initializing, ignore. */
1584
1585 case RCU_SAVE_DYNTICK:
1586 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1587 break; /* So gcc recognizes the dead code. */
1588
1589 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1590
1591 /* Record dyntick-idle state. */
1592 force_qs_rnp(rsp, dyntick_save_progress_counter);
1593 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1594 if (rcu_gp_in_progress(rsp))
1595 rsp->fqs_state = RCU_FORCE_QS;
1596 break;
1597
1598 case RCU_FORCE_QS:
1599
1600 /* Check dyntick-idle state, send IPI to laggarts. */
1601 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1602 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1603
1604 /* Leave state in case more forcing is required. */
1605
1606 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1607 break;
1608 }
1609 rsp->fqs_active = 0;
1610 if (rsp->fqs_need_gp) {
1611 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1612 rsp->fqs_need_gp = 0;
1613 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1614 trace_rcu_utilization("End fqs");
1615 return;
1616 }
1617 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1618unlock_fqs_ret:
1619 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1620 trace_rcu_utilization("End fqs");
1621}
1622
1623#else /* #ifdef CONFIG_SMP */
1624
1625static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1626{
1627 set_need_resched();
1628}
1629
1630#endif /* #else #ifdef CONFIG_SMP */
1631
1632/*
1633 * This does the RCU core processing work for the specified rcu_state
1634 * and rcu_data structures. This may be called only from the CPU to
1635 * whom the rdp belongs.
1636 */
1637static void
1638__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1639{
1640 unsigned long flags;
1641
1642 WARN_ON_ONCE(rdp->beenonline == 0);
1643
1644 /*
1645 * If an RCU GP has gone long enough, go check for dyntick
1646 * idle CPUs and, if needed, send resched IPIs.
1647 */
1648 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1649 force_quiescent_state(rsp, 1);
1650
1651 /*
1652 * Advance callbacks in response to end of earlier grace
1653 * period that some other CPU ended.
1654 */
1655 rcu_process_gp_end(rsp, rdp);
1656
1657 /* Update RCU state based on any recent quiescent states. */
1658 rcu_check_quiescent_state(rsp, rdp);
1659
1660 /* Does this CPU require a not-yet-started grace period? */
1661 if (cpu_needs_another_gp(rsp, rdp)) {
1662 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1663 rcu_start_gp(rsp, flags); /* releases above lock */
1664 }
1665
1666 /* If there are callbacks ready, invoke them. */
1667 if (cpu_has_callbacks_ready_to_invoke(rdp))
1668 invoke_rcu_callbacks(rsp, rdp);
1669}
1670
1671/*
1672 * Do RCU core processing for the current CPU.
1673 */
1674static void rcu_process_callbacks(struct softirq_action *unused)
1675{
1676 trace_rcu_utilization("Start RCU core");
1677 __rcu_process_callbacks(&rcu_sched_state,
1678 &__get_cpu_var(rcu_sched_data));
1679 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1680 rcu_preempt_process_callbacks();
1681 trace_rcu_utilization("End RCU core");
1682}
1683
1684/*
1685 * Schedule RCU callback invocation. If the specified type of RCU
1686 * does not support RCU priority boosting, just do a direct call,
1687 * otherwise wake up the per-CPU kernel kthread. Note that because we
1688 * are running on the current CPU with interrupts disabled, the
1689 * rcu_cpu_kthread_task cannot disappear out from under us.
1690 */
1691static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1692{
1693 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1694 return;
1695 if (likely(!rsp->boost)) {
1696 rcu_do_batch(rsp, rdp);
1697 return;
1698 }
1699 invoke_rcu_callbacks_kthread();
1700}
1701
1702static void invoke_rcu_core(void)
1703{
1704 raise_softirq(RCU_SOFTIRQ);
1705}
1706
1707static void
1708__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1709 struct rcu_state *rsp, bool lazy)
1710{
1711 unsigned long flags;
1712 struct rcu_data *rdp;
1713
1714 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1715 debug_rcu_head_queue(head);
1716 head->func = func;
1717 head->next = NULL;
1718
1719 smp_mb(); /* Ensure RCU update seen before callback registry. */
1720
1721 /*
1722 * Opportunistically note grace-period endings and beginnings.
1723 * Note that we might see a beginning right after we see an
1724 * end, but never vice versa, since this CPU has to pass through
1725 * a quiescent state betweentimes.
1726 */
1727 local_irq_save(flags);
1728 rdp = this_cpu_ptr(rsp->rda);
1729
1730 /* Add the callback to our list. */
1731 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1732 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1733 rdp->qlen++;
1734 if (lazy)
1735 rdp->qlen_lazy++;
1736
1737 if (__is_kfree_rcu_offset((unsigned long)func))
1738 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1739 rdp->qlen_lazy, rdp->qlen);
1740 else
1741 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
1742
1743 /* If interrupts were disabled, don't dive into RCU core. */
1744 if (irqs_disabled_flags(flags)) {
1745 local_irq_restore(flags);
1746 return;
1747 }
1748
1749 /*
1750 * Force the grace period if too many callbacks or too long waiting.
1751 * Enforce hysteresis, and don't invoke force_quiescent_state()
1752 * if some other CPU has recently done so. Also, don't bother
1753 * invoking force_quiescent_state() if the newly enqueued callback
1754 * is the only one waiting for a grace period to complete.
1755 */
1756 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1757
1758 /* Are we ignoring a completed grace period? */
1759 rcu_process_gp_end(rsp, rdp);
1760 check_for_new_grace_period(rsp, rdp);
1761
1762 /* Start a new grace period if one not already started. */
1763 if (!rcu_gp_in_progress(rsp)) {
1764 unsigned long nestflag;
1765 struct rcu_node *rnp_root = rcu_get_root(rsp);
1766
1767 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1768 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1769 } else {
1770 /* Give the grace period a kick. */
1771 rdp->blimit = LONG_MAX;
1772 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1773 *rdp->nxttail[RCU_DONE_TAIL] != head)
1774 force_quiescent_state(rsp, 0);
1775 rdp->n_force_qs_snap = rsp->n_force_qs;
1776 rdp->qlen_last_fqs_check = rdp->qlen;
1777 }
1778 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1779 force_quiescent_state(rsp, 1);
1780 local_irq_restore(flags);
1781}
1782
1783/*
1784 * Queue an RCU-sched callback for invocation after a grace period.
1785 */
1786void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1787{
1788 __call_rcu(head, func, &rcu_sched_state, 0);
1789}
1790EXPORT_SYMBOL_GPL(call_rcu_sched);
1791
1792/*
1793 * Queue an RCU callback for invocation after a quicker grace period.
1794 */
1795void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1796{
1797 __call_rcu(head, func, &rcu_bh_state, 0);
1798}
1799EXPORT_SYMBOL_GPL(call_rcu_bh);
1800
1801/**
1802 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1803 *
1804 * Control will return to the caller some time after a full rcu-sched
1805 * grace period has elapsed, in other words after all currently executing
1806 * rcu-sched read-side critical sections have completed. These read-side
1807 * critical sections are delimited by rcu_read_lock_sched() and
1808 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1809 * local_irq_disable(), and so on may be used in place of
1810 * rcu_read_lock_sched().
1811 *
1812 * This means that all preempt_disable code sequences, including NMI and
1813 * hardware-interrupt handlers, in progress on entry will have completed
1814 * before this primitive returns. However, this does not guarantee that
1815 * softirq handlers will have completed, since in some kernels, these
1816 * handlers can run in process context, and can block.
1817 *
1818 * This primitive provides the guarantees made by the (now removed)
1819 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1820 * guarantees that rcu_read_lock() sections will have completed.
1821 * In "classic RCU", these two guarantees happen to be one and
1822 * the same, but can differ in realtime RCU implementations.
1823 */
1824void synchronize_sched(void)
1825{
1826 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
1827 !lock_is_held(&rcu_lock_map) &&
1828 !lock_is_held(&rcu_sched_lock_map),
1829 "Illegal synchronize_sched() in RCU-sched read-side critical section");
1830 if (rcu_blocking_is_gp())
1831 return;
1832 wait_rcu_gp(call_rcu_sched);
1833}
1834EXPORT_SYMBOL_GPL(synchronize_sched);
1835
1836/**
1837 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1838 *
1839 * Control will return to the caller some time after a full rcu_bh grace
1840 * period has elapsed, in other words after all currently executing rcu_bh
1841 * read-side critical sections have completed. RCU read-side critical
1842 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1843 * and may be nested.
1844 */
1845void synchronize_rcu_bh(void)
1846{
1847 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
1848 !lock_is_held(&rcu_lock_map) &&
1849 !lock_is_held(&rcu_sched_lock_map),
1850 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
1851 if (rcu_blocking_is_gp())
1852 return;
1853 wait_rcu_gp(call_rcu_bh);
1854}
1855EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1856
1857/*
1858 * Check to see if there is any immediate RCU-related work to be done
1859 * by the current CPU, for the specified type of RCU, returning 1 if so.
1860 * The checks are in order of increasing expense: checks that can be
1861 * carried out against CPU-local state are performed first. However,
1862 * we must check for CPU stalls first, else we might not get a chance.
1863 */
1864static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1865{
1866 struct rcu_node *rnp = rdp->mynode;
1867
1868 rdp->n_rcu_pending++;
1869
1870 /* Check for CPU stalls, if enabled. */
1871 check_cpu_stall(rsp, rdp);
1872
1873 /* Is the RCU core waiting for a quiescent state from this CPU? */
1874 if (rcu_scheduler_fully_active &&
1875 rdp->qs_pending && !rdp->passed_quiesce) {
1876
1877 /*
1878 * If force_quiescent_state() coming soon and this CPU
1879 * needs a quiescent state, and this is either RCU-sched
1880 * or RCU-bh, force a local reschedule.
1881 */
1882 rdp->n_rp_qs_pending++;
1883 if (!rdp->preemptible &&
1884 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1885 jiffies))
1886 set_need_resched();
1887 } else if (rdp->qs_pending && rdp->passed_quiesce) {
1888 rdp->n_rp_report_qs++;
1889 return 1;
1890 }
1891
1892 /* Does this CPU have callbacks ready to invoke? */
1893 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1894 rdp->n_rp_cb_ready++;
1895 return 1;
1896 }
1897
1898 /* Has RCU gone idle with this CPU needing another grace period? */
1899 if (cpu_needs_another_gp(rsp, rdp)) {
1900 rdp->n_rp_cpu_needs_gp++;
1901 return 1;
1902 }
1903
1904 /* Has another RCU grace period completed? */
1905 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1906 rdp->n_rp_gp_completed++;
1907 return 1;
1908 }
1909
1910 /* Has a new RCU grace period started? */
1911 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1912 rdp->n_rp_gp_started++;
1913 return 1;
1914 }
1915
1916 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1917 if (rcu_gp_in_progress(rsp) &&
1918 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1919 rdp->n_rp_need_fqs++;
1920 return 1;
1921 }
1922
1923 /* nothing to do */
1924 rdp->n_rp_need_nothing++;
1925 return 0;
1926}
1927
1928/*
1929 * Check to see if there is any immediate RCU-related work to be done
1930 * by the current CPU, returning 1 if so. This function is part of the
1931 * RCU implementation; it is -not- an exported member of the RCU API.
1932 */
1933static int rcu_pending(int cpu)
1934{
1935 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1936 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1937 rcu_preempt_pending(cpu);
1938}
1939
1940/*
1941 * Check to see if any future RCU-related work will need to be done
1942 * by the current CPU, even if none need be done immediately, returning
1943 * 1 if so.
1944 */
1945static int rcu_cpu_has_callbacks(int cpu)
1946{
1947 /* RCU callbacks either ready or pending? */
1948 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1949 per_cpu(rcu_bh_data, cpu).nxtlist ||
1950 rcu_preempt_needs_cpu(cpu);
1951}
1952
1953static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1954static atomic_t rcu_barrier_cpu_count;
1955static DEFINE_MUTEX(rcu_barrier_mutex);
1956static struct completion rcu_barrier_completion;
1957
1958static void rcu_barrier_callback(struct rcu_head *notused)
1959{
1960 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1961 complete(&rcu_barrier_completion);
1962}
1963
1964/*
1965 * Called with preemption disabled, and from cross-cpu IRQ context.
1966 */
1967static void rcu_barrier_func(void *type)
1968{
1969 int cpu = smp_processor_id();
1970 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1971 void (*call_rcu_func)(struct rcu_head *head,
1972 void (*func)(struct rcu_head *head));
1973
1974 atomic_inc(&rcu_barrier_cpu_count);
1975 call_rcu_func = type;
1976 call_rcu_func(head, rcu_barrier_callback);
1977}
1978
1979/*
1980 * Orchestrate the specified type of RCU barrier, waiting for all
1981 * RCU callbacks of the specified type to complete.
1982 */
1983static void _rcu_barrier(struct rcu_state *rsp,
1984 void (*call_rcu_func)(struct rcu_head *head,
1985 void (*func)(struct rcu_head *head)))
1986{
1987 BUG_ON(in_interrupt());
1988 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1989 mutex_lock(&rcu_barrier_mutex);
1990 init_completion(&rcu_barrier_completion);
1991 /*
1992 * Initialize rcu_barrier_cpu_count to 1, then invoke
1993 * rcu_barrier_func() on each CPU, so that each CPU also has
1994 * incremented rcu_barrier_cpu_count. Only then is it safe to
1995 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1996 * might complete its grace period before all of the other CPUs
1997 * did their increment, causing this function to return too
1998 * early. Note that on_each_cpu() disables irqs, which prevents
1999 * any CPUs from coming online or going offline until each online
2000 * CPU has queued its RCU-barrier callback.
2001 */
2002 atomic_set(&rcu_barrier_cpu_count, 1);
2003 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
2004 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2005 complete(&rcu_barrier_completion);
2006 wait_for_completion(&rcu_barrier_completion);
2007 mutex_unlock(&rcu_barrier_mutex);
2008}
2009
2010/**
2011 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2012 */
2013void rcu_barrier_bh(void)
2014{
2015 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
2016}
2017EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2018
2019/**
2020 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2021 */
2022void rcu_barrier_sched(void)
2023{
2024 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
2025}
2026EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2027
2028/*
2029 * Do boot-time initialization of a CPU's per-CPU RCU data.
2030 */
2031static void __init
2032rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2033{
2034 unsigned long flags;
2035 int i;
2036 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2037 struct rcu_node *rnp = rcu_get_root(rsp);
2038
2039 /* Set up local state, ensuring consistent view of global state. */
2040 raw_spin_lock_irqsave(&rnp->lock, flags);
2041 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2042 rdp->nxtlist = NULL;
2043 for (i = 0; i < RCU_NEXT_SIZE; i++)
2044 rdp->nxttail[i] = &rdp->nxtlist;
2045 rdp->qlen_lazy = 0;
2046 rdp->qlen = 0;
2047 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2048 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_NESTING);
2049 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2050 rdp->cpu = cpu;
2051 rdp->rsp = rsp;
2052 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2053}
2054
2055/*
2056 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2057 * offline event can be happening at a given time. Note also that we
2058 * can accept some slop in the rsp->completed access due to the fact
2059 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2060 */
2061static void __cpuinit
2062rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2063{
2064 unsigned long flags;
2065 unsigned long mask;
2066 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2067 struct rcu_node *rnp = rcu_get_root(rsp);
2068
2069 /* Set up local state, ensuring consistent view of global state. */
2070 raw_spin_lock_irqsave(&rnp->lock, flags);
2071 rdp->beenonline = 1; /* We have now been online. */
2072 rdp->preemptible = preemptible;
2073 rdp->qlen_last_fqs_check = 0;
2074 rdp->n_force_qs_snap = rsp->n_force_qs;
2075 rdp->blimit = blimit;
2076 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_NESTING;
2077 atomic_set(&rdp->dynticks->dynticks,
2078 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2079 rcu_prepare_for_idle_init(cpu);
2080 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2081
2082 /*
2083 * A new grace period might start here. If so, we won't be part
2084 * of it, but that is OK, as we are currently in a quiescent state.
2085 */
2086
2087 /* Exclude any attempts to start a new GP on large systems. */
2088 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2089
2090 /* Add CPU to rcu_node bitmasks. */
2091 rnp = rdp->mynode;
2092 mask = rdp->grpmask;
2093 do {
2094 /* Exclude any attempts to start a new GP on small systems. */
2095 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2096 rnp->qsmaskinit |= mask;
2097 mask = rnp->grpmask;
2098 if (rnp == rdp->mynode) {
2099 /*
2100 * If there is a grace period in progress, we will
2101 * set up to wait for it next time we run the
2102 * RCU core code.
2103 */
2104 rdp->gpnum = rnp->completed;
2105 rdp->completed = rnp->completed;
2106 rdp->passed_quiesce = 0;
2107 rdp->qs_pending = 0;
2108 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2109 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2110 }
2111 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2112 rnp = rnp->parent;
2113 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2114
2115 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2116}
2117
2118static void __cpuinit rcu_prepare_cpu(int cpu)
2119{
2120 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2121 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2122 rcu_preempt_init_percpu_data(cpu);
2123}
2124
2125/*
2126 * Handle CPU online/offline notification events.
2127 */
2128static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2129 unsigned long action, void *hcpu)
2130{
2131 long cpu = (long)hcpu;
2132 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2133 struct rcu_node *rnp = rdp->mynode;
2134
2135 trace_rcu_utilization("Start CPU hotplug");
2136 switch (action) {
2137 case CPU_UP_PREPARE:
2138 case CPU_UP_PREPARE_FROZEN:
2139 rcu_prepare_cpu(cpu);
2140 rcu_prepare_kthreads(cpu);
2141 break;
2142 case CPU_ONLINE:
2143 case CPU_DOWN_FAILED:
2144 rcu_node_kthread_setaffinity(rnp, -1);
2145 rcu_cpu_kthread_setrt(cpu, 1);
2146 break;
2147 case CPU_DOWN_PREPARE:
2148 rcu_node_kthread_setaffinity(rnp, cpu);
2149 rcu_cpu_kthread_setrt(cpu, 0);
2150 break;
2151 case CPU_DYING:
2152 case CPU_DYING_FROZEN:
2153 /*
2154 * The whole machine is "stopped" except this CPU, so we can
2155 * touch any data without introducing corruption. We send the
2156 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2157 */
2158 rcu_send_cbs_to_online(&rcu_bh_state);
2159 rcu_send_cbs_to_online(&rcu_sched_state);
2160 rcu_preempt_send_cbs_to_online();
2161 rcu_cleanup_after_idle(cpu);
2162 break;
2163 case CPU_DEAD:
2164 case CPU_DEAD_FROZEN:
2165 case CPU_UP_CANCELED:
2166 case CPU_UP_CANCELED_FROZEN:
2167 rcu_offline_cpu(cpu);
2168 break;
2169 default:
2170 break;
2171 }
2172 trace_rcu_utilization("End CPU hotplug");
2173 return NOTIFY_OK;
2174}
2175
2176/*
2177 * This function is invoked towards the end of the scheduler's initialization
2178 * process. Before this is called, the idle task might contain
2179 * RCU read-side critical sections (during which time, this idle
2180 * task is booting the system). After this function is called, the
2181 * idle tasks are prohibited from containing RCU read-side critical
2182 * sections. This function also enables RCU lockdep checking.
2183 */
2184void rcu_scheduler_starting(void)
2185{
2186 WARN_ON(num_online_cpus() != 1);
2187 WARN_ON(nr_context_switches() > 0);
2188 rcu_scheduler_active = 1;
2189}
2190
2191/*
2192 * Compute the per-level fanout, either using the exact fanout specified
2193 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2194 */
2195#ifdef CONFIG_RCU_FANOUT_EXACT
2196static void __init rcu_init_levelspread(struct rcu_state *rsp)
2197{
2198 int i;
2199
2200 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2201 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2202 rsp->levelspread[0] = RCU_FANOUT_LEAF;
2203}
2204#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2205static void __init rcu_init_levelspread(struct rcu_state *rsp)
2206{
2207 int ccur;
2208 int cprv;
2209 int i;
2210
2211 cprv = NR_CPUS;
2212 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2213 ccur = rsp->levelcnt[i];
2214 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2215 cprv = ccur;
2216 }
2217}
2218#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2219
2220/*
2221 * Helper function for rcu_init() that initializes one rcu_state structure.
2222 */
2223static void __init rcu_init_one(struct rcu_state *rsp,
2224 struct rcu_data __percpu *rda)
2225{
2226 static char *buf[] = { "rcu_node_level_0",
2227 "rcu_node_level_1",
2228 "rcu_node_level_2",
2229 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2230 int cpustride = 1;
2231 int i;
2232 int j;
2233 struct rcu_node *rnp;
2234
2235 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2236
2237 /* Initialize the level-tracking arrays. */
2238
2239 for (i = 1; i < NUM_RCU_LVLS; i++)
2240 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2241 rcu_init_levelspread(rsp);
2242
2243 /* Initialize the elements themselves, starting from the leaves. */
2244
2245 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2246 cpustride *= rsp->levelspread[i];
2247 rnp = rsp->level[i];
2248 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2249 raw_spin_lock_init(&rnp->lock);
2250 lockdep_set_class_and_name(&rnp->lock,
2251 &rcu_node_class[i], buf[i]);
2252 rnp->gpnum = 0;
2253 rnp->qsmask = 0;
2254 rnp->qsmaskinit = 0;
2255 rnp->grplo = j * cpustride;
2256 rnp->grphi = (j + 1) * cpustride - 1;
2257 if (rnp->grphi >= NR_CPUS)
2258 rnp->grphi = NR_CPUS - 1;
2259 if (i == 0) {
2260 rnp->grpnum = 0;
2261 rnp->grpmask = 0;
2262 rnp->parent = NULL;
2263 } else {
2264 rnp->grpnum = j % rsp->levelspread[i - 1];
2265 rnp->grpmask = 1UL << rnp->grpnum;
2266 rnp->parent = rsp->level[i - 1] +
2267 j / rsp->levelspread[i - 1];
2268 }
2269 rnp->level = i;
2270 INIT_LIST_HEAD(&rnp->blkd_tasks);
2271 }
2272 }
2273
2274 rsp->rda = rda;
2275 rnp = rsp->level[NUM_RCU_LVLS - 1];
2276 for_each_possible_cpu(i) {
2277 while (i > rnp->grphi)
2278 rnp++;
2279 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2280 rcu_boot_init_percpu_data(i, rsp);
2281 }
2282}
2283
2284void __init rcu_init(void)
2285{
2286 int cpu;
2287
2288 rcu_bootup_announce();
2289 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2290 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2291 __rcu_init_preempt();
2292 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2293
2294 /*
2295 * We don't need protection against CPU-hotplug here because
2296 * this is called early in boot, before either interrupts
2297 * or the scheduler are operational.
2298 */
2299 cpu_notifier(rcu_cpu_notify, 0);
2300 for_each_online_cpu(cpu)
2301 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2302 check_cpu_stall_init();
2303}
2304
2305#include "rcutree_plugin.h"
This page took 0.031128 seconds and 5 git commands to generate.