rcu: Allow RCU grace-period cleanup to be preempted
[deliverable/linux.git] / kernel / rcutree.c
... / ...
CommitLineData
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
38#include <linux/nmi.h>
39#include <linux/atomic.h>
40#include <linux/bitops.h>
41#include <linux/export.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
49#include <linux/kernel_stat.h>
50#include <linux/wait.h>
51#include <linux/kthread.h>
52#include <linux/prefetch.h>
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
55
56#include "rcutree.h"
57#include <trace/events/rcu.h>
58
59#include "rcu.h"
60
61/* Data structures. */
62
63static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
64
65#define RCU_STATE_INITIALIZER(sname, cr) { \
66 .level = { &sname##_state.node[0] }, \
67 .call = cr, \
68 .fqs_state = RCU_GP_IDLE, \
69 .gpnum = -300, \
70 .completed = -300, \
71 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \
72 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
73 .orphan_donetail = &sname##_state.orphan_donelist, \
74 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
75 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.fqslock), \
76 .name = #sname, \
77}
78
79struct rcu_state rcu_sched_state =
80 RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
81DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
82
83struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
84DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
85
86static struct rcu_state *rcu_state;
87LIST_HEAD(rcu_struct_flavors);
88
89/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
90static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
91module_param(rcu_fanout_leaf, int, 0);
92int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
93static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
94 NUM_RCU_LVL_0,
95 NUM_RCU_LVL_1,
96 NUM_RCU_LVL_2,
97 NUM_RCU_LVL_3,
98 NUM_RCU_LVL_4,
99};
100int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
101
102/*
103 * The rcu_scheduler_active variable transitions from zero to one just
104 * before the first task is spawned. So when this variable is zero, RCU
105 * can assume that there is but one task, allowing RCU to (for example)
106 * optimized synchronize_sched() to a simple barrier(). When this variable
107 * is one, RCU must actually do all the hard work required to detect real
108 * grace periods. This variable is also used to suppress boot-time false
109 * positives from lockdep-RCU error checking.
110 */
111int rcu_scheduler_active __read_mostly;
112EXPORT_SYMBOL_GPL(rcu_scheduler_active);
113
114/*
115 * The rcu_scheduler_fully_active variable transitions from zero to one
116 * during the early_initcall() processing, which is after the scheduler
117 * is capable of creating new tasks. So RCU processing (for example,
118 * creating tasks for RCU priority boosting) must be delayed until after
119 * rcu_scheduler_fully_active transitions from zero to one. We also
120 * currently delay invocation of any RCU callbacks until after this point.
121 *
122 * It might later prove better for people registering RCU callbacks during
123 * early boot to take responsibility for these callbacks, but one step at
124 * a time.
125 */
126static int rcu_scheduler_fully_active __read_mostly;
127
128#ifdef CONFIG_RCU_BOOST
129
130/*
131 * Control variables for per-CPU and per-rcu_node kthreads. These
132 * handle all flavors of RCU.
133 */
134static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
135DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
136DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
137DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
138DEFINE_PER_CPU(char, rcu_cpu_has_work);
139
140#endif /* #ifdef CONFIG_RCU_BOOST */
141
142static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
143static void invoke_rcu_core(void);
144static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
145
146/*
147 * Track the rcutorture test sequence number and the update version
148 * number within a given test. The rcutorture_testseq is incremented
149 * on every rcutorture module load and unload, so has an odd value
150 * when a test is running. The rcutorture_vernum is set to zero
151 * when rcutorture starts and is incremented on each rcutorture update.
152 * These variables enable correlating rcutorture output with the
153 * RCU tracing information.
154 */
155unsigned long rcutorture_testseq;
156unsigned long rcutorture_vernum;
157
158/*
159 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
160 * permit this function to be invoked without holding the root rcu_node
161 * structure's ->lock, but of course results can be subject to change.
162 */
163static int rcu_gp_in_progress(struct rcu_state *rsp)
164{
165 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
166}
167
168/*
169 * Note a quiescent state. Because we do not need to know
170 * how many quiescent states passed, just if there was at least
171 * one since the start of the grace period, this just sets a flag.
172 * The caller must have disabled preemption.
173 */
174void rcu_sched_qs(int cpu)
175{
176 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
177
178 rdp->passed_quiesce_gpnum = rdp->gpnum;
179 barrier();
180 if (rdp->passed_quiesce == 0)
181 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
182 rdp->passed_quiesce = 1;
183}
184
185void rcu_bh_qs(int cpu)
186{
187 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
188
189 rdp->passed_quiesce_gpnum = rdp->gpnum;
190 barrier();
191 if (rdp->passed_quiesce == 0)
192 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
193 rdp->passed_quiesce = 1;
194}
195
196/*
197 * Note a context switch. This is a quiescent state for RCU-sched,
198 * and requires special handling for preemptible RCU.
199 * The caller must have disabled preemption.
200 */
201void rcu_note_context_switch(int cpu)
202{
203 trace_rcu_utilization("Start context switch");
204 rcu_sched_qs(cpu);
205 rcu_preempt_note_context_switch(cpu);
206 trace_rcu_utilization("End context switch");
207}
208EXPORT_SYMBOL_GPL(rcu_note_context_switch);
209
210DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
211 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
212 .dynticks = ATOMIC_INIT(1),
213};
214
215static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
216static int qhimark = 10000; /* If this many pending, ignore blimit. */
217static int qlowmark = 100; /* Once only this many pending, use blimit. */
218
219module_param(blimit, int, 0);
220module_param(qhimark, int, 0);
221module_param(qlowmark, int, 0);
222
223int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
224int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
225
226module_param(rcu_cpu_stall_suppress, int, 0644);
227module_param(rcu_cpu_stall_timeout, int, 0644);
228
229static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
230static int rcu_pending(int cpu);
231
232/*
233 * Return the number of RCU-sched batches processed thus far for debug & stats.
234 */
235long rcu_batches_completed_sched(void)
236{
237 return rcu_sched_state.completed;
238}
239EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
240
241/*
242 * Return the number of RCU BH batches processed thus far for debug & stats.
243 */
244long rcu_batches_completed_bh(void)
245{
246 return rcu_bh_state.completed;
247}
248EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
249
250/*
251 * Force a quiescent state for RCU BH.
252 */
253void rcu_bh_force_quiescent_state(void)
254{
255 force_quiescent_state(&rcu_bh_state, 0);
256}
257EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
258
259/*
260 * Record the number of times rcutorture tests have been initiated and
261 * terminated. This information allows the debugfs tracing stats to be
262 * correlated to the rcutorture messages, even when the rcutorture module
263 * is being repeatedly loaded and unloaded. In other words, we cannot
264 * store this state in rcutorture itself.
265 */
266void rcutorture_record_test_transition(void)
267{
268 rcutorture_testseq++;
269 rcutorture_vernum = 0;
270}
271EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
272
273/*
274 * Record the number of writer passes through the current rcutorture test.
275 * This is also used to correlate debugfs tracing stats with the rcutorture
276 * messages.
277 */
278void rcutorture_record_progress(unsigned long vernum)
279{
280 rcutorture_vernum++;
281}
282EXPORT_SYMBOL_GPL(rcutorture_record_progress);
283
284/*
285 * Force a quiescent state for RCU-sched.
286 */
287void rcu_sched_force_quiescent_state(void)
288{
289 force_quiescent_state(&rcu_sched_state, 0);
290}
291EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
292
293/*
294 * Does the CPU have callbacks ready to be invoked?
295 */
296static int
297cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
298{
299 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
300}
301
302/*
303 * Does the current CPU require a yet-as-unscheduled grace period?
304 */
305static int
306cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
307{
308 return *rdp->nxttail[RCU_DONE_TAIL +
309 ACCESS_ONCE(rsp->completed) != rdp->completed] &&
310 !rcu_gp_in_progress(rsp);
311}
312
313/*
314 * Return the root node of the specified rcu_state structure.
315 */
316static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
317{
318 return &rsp->node[0];
319}
320
321/*
322 * If the specified CPU is offline, tell the caller that it is in
323 * a quiescent state. Otherwise, whack it with a reschedule IPI.
324 * Grace periods can end up waiting on an offline CPU when that
325 * CPU is in the process of coming online -- it will be added to the
326 * rcu_node bitmasks before it actually makes it online. The same thing
327 * can happen while a CPU is in the process of coming online. Because this
328 * race is quite rare, we check for it after detecting that the grace
329 * period has been delayed rather than checking each and every CPU
330 * each and every time we start a new grace period.
331 */
332static int rcu_implicit_offline_qs(struct rcu_data *rdp)
333{
334 /*
335 * If the CPU is offline for more than a jiffy, it is in a quiescent
336 * state. We can trust its state not to change because interrupts
337 * are disabled. The reason for the jiffy's worth of slack is to
338 * handle CPUs initializing on the way up and finding their way
339 * to the idle loop on the way down.
340 */
341 if (cpu_is_offline(rdp->cpu) &&
342 ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
343 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
344 rdp->offline_fqs++;
345 return 1;
346 }
347 return 0;
348}
349
350/*
351 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
352 *
353 * If the new value of the ->dynticks_nesting counter now is zero,
354 * we really have entered idle, and must do the appropriate accounting.
355 * The caller must have disabled interrupts.
356 */
357static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
358{
359 trace_rcu_dyntick("Start", oldval, 0);
360 if (!is_idle_task(current)) {
361 struct task_struct *idle = idle_task(smp_processor_id());
362
363 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
364 ftrace_dump(DUMP_ORIG);
365 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
366 current->pid, current->comm,
367 idle->pid, idle->comm); /* must be idle task! */
368 }
369 rcu_prepare_for_idle(smp_processor_id());
370 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
371 smp_mb__before_atomic_inc(); /* See above. */
372 atomic_inc(&rdtp->dynticks);
373 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
374 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
375
376 /*
377 * The idle task is not permitted to enter the idle loop while
378 * in an RCU read-side critical section.
379 */
380 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
381 "Illegal idle entry in RCU read-side critical section.");
382 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
383 "Illegal idle entry in RCU-bh read-side critical section.");
384 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
385 "Illegal idle entry in RCU-sched read-side critical section.");
386}
387
388/**
389 * rcu_idle_enter - inform RCU that current CPU is entering idle
390 *
391 * Enter idle mode, in other words, -leave- the mode in which RCU
392 * read-side critical sections can occur. (Though RCU read-side
393 * critical sections can occur in irq handlers in idle, a possibility
394 * handled by irq_enter() and irq_exit().)
395 *
396 * We crowbar the ->dynticks_nesting field to zero to allow for
397 * the possibility of usermode upcalls having messed up our count
398 * of interrupt nesting level during the prior busy period.
399 */
400void rcu_idle_enter(void)
401{
402 unsigned long flags;
403 long long oldval;
404 struct rcu_dynticks *rdtp;
405
406 local_irq_save(flags);
407 rdtp = &__get_cpu_var(rcu_dynticks);
408 oldval = rdtp->dynticks_nesting;
409 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
410 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
411 rdtp->dynticks_nesting = 0;
412 else
413 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
414 rcu_idle_enter_common(rdtp, oldval);
415 local_irq_restore(flags);
416}
417EXPORT_SYMBOL_GPL(rcu_idle_enter);
418
419/**
420 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
421 *
422 * Exit from an interrupt handler, which might possibly result in entering
423 * idle mode, in other words, leaving the mode in which read-side critical
424 * sections can occur.
425 *
426 * This code assumes that the idle loop never does anything that might
427 * result in unbalanced calls to irq_enter() and irq_exit(). If your
428 * architecture violates this assumption, RCU will give you what you
429 * deserve, good and hard. But very infrequently and irreproducibly.
430 *
431 * Use things like work queues to work around this limitation.
432 *
433 * You have been warned.
434 */
435void rcu_irq_exit(void)
436{
437 unsigned long flags;
438 long long oldval;
439 struct rcu_dynticks *rdtp;
440
441 local_irq_save(flags);
442 rdtp = &__get_cpu_var(rcu_dynticks);
443 oldval = rdtp->dynticks_nesting;
444 rdtp->dynticks_nesting--;
445 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
446 if (rdtp->dynticks_nesting)
447 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
448 else
449 rcu_idle_enter_common(rdtp, oldval);
450 local_irq_restore(flags);
451}
452
453/*
454 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
455 *
456 * If the new value of the ->dynticks_nesting counter was previously zero,
457 * we really have exited idle, and must do the appropriate accounting.
458 * The caller must have disabled interrupts.
459 */
460static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
461{
462 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
463 atomic_inc(&rdtp->dynticks);
464 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
465 smp_mb__after_atomic_inc(); /* See above. */
466 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
467 rcu_cleanup_after_idle(smp_processor_id());
468 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
469 if (!is_idle_task(current)) {
470 struct task_struct *idle = idle_task(smp_processor_id());
471
472 trace_rcu_dyntick("Error on exit: not idle task",
473 oldval, rdtp->dynticks_nesting);
474 ftrace_dump(DUMP_ORIG);
475 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
476 current->pid, current->comm,
477 idle->pid, idle->comm); /* must be idle task! */
478 }
479}
480
481/**
482 * rcu_idle_exit - inform RCU that current CPU is leaving idle
483 *
484 * Exit idle mode, in other words, -enter- the mode in which RCU
485 * read-side critical sections can occur.
486 *
487 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
488 * allow for the possibility of usermode upcalls messing up our count
489 * of interrupt nesting level during the busy period that is just
490 * now starting.
491 */
492void rcu_idle_exit(void)
493{
494 unsigned long flags;
495 struct rcu_dynticks *rdtp;
496 long long oldval;
497
498 local_irq_save(flags);
499 rdtp = &__get_cpu_var(rcu_dynticks);
500 oldval = rdtp->dynticks_nesting;
501 WARN_ON_ONCE(oldval < 0);
502 if (oldval & DYNTICK_TASK_NEST_MASK)
503 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
504 else
505 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
506 rcu_idle_exit_common(rdtp, oldval);
507 local_irq_restore(flags);
508}
509EXPORT_SYMBOL_GPL(rcu_idle_exit);
510
511/**
512 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
513 *
514 * Enter an interrupt handler, which might possibly result in exiting
515 * idle mode, in other words, entering the mode in which read-side critical
516 * sections can occur.
517 *
518 * Note that the Linux kernel is fully capable of entering an interrupt
519 * handler that it never exits, for example when doing upcalls to
520 * user mode! This code assumes that the idle loop never does upcalls to
521 * user mode. If your architecture does do upcalls from the idle loop (or
522 * does anything else that results in unbalanced calls to the irq_enter()
523 * and irq_exit() functions), RCU will give you what you deserve, good
524 * and hard. But very infrequently and irreproducibly.
525 *
526 * Use things like work queues to work around this limitation.
527 *
528 * You have been warned.
529 */
530void rcu_irq_enter(void)
531{
532 unsigned long flags;
533 struct rcu_dynticks *rdtp;
534 long long oldval;
535
536 local_irq_save(flags);
537 rdtp = &__get_cpu_var(rcu_dynticks);
538 oldval = rdtp->dynticks_nesting;
539 rdtp->dynticks_nesting++;
540 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
541 if (oldval)
542 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
543 else
544 rcu_idle_exit_common(rdtp, oldval);
545 local_irq_restore(flags);
546}
547
548/**
549 * rcu_nmi_enter - inform RCU of entry to NMI context
550 *
551 * If the CPU was idle with dynamic ticks active, and there is no
552 * irq handler running, this updates rdtp->dynticks_nmi to let the
553 * RCU grace-period handling know that the CPU is active.
554 */
555void rcu_nmi_enter(void)
556{
557 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
558
559 if (rdtp->dynticks_nmi_nesting == 0 &&
560 (atomic_read(&rdtp->dynticks) & 0x1))
561 return;
562 rdtp->dynticks_nmi_nesting++;
563 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
564 atomic_inc(&rdtp->dynticks);
565 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
566 smp_mb__after_atomic_inc(); /* See above. */
567 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
568}
569
570/**
571 * rcu_nmi_exit - inform RCU of exit from NMI context
572 *
573 * If the CPU was idle with dynamic ticks active, and there is no
574 * irq handler running, this updates rdtp->dynticks_nmi to let the
575 * RCU grace-period handling know that the CPU is no longer active.
576 */
577void rcu_nmi_exit(void)
578{
579 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
580
581 if (rdtp->dynticks_nmi_nesting == 0 ||
582 --rdtp->dynticks_nmi_nesting != 0)
583 return;
584 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
585 smp_mb__before_atomic_inc(); /* See above. */
586 atomic_inc(&rdtp->dynticks);
587 smp_mb__after_atomic_inc(); /* Force delay to next write. */
588 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
589}
590
591/**
592 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
593 *
594 * If the current CPU is in its idle loop and is neither in an interrupt
595 * or NMI handler, return true.
596 */
597int rcu_is_cpu_idle(void)
598{
599 int ret;
600
601 preempt_disable();
602 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
603 preempt_enable();
604 return ret;
605}
606EXPORT_SYMBOL(rcu_is_cpu_idle);
607
608#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
609
610/*
611 * Is the current CPU online? Disable preemption to avoid false positives
612 * that could otherwise happen due to the current CPU number being sampled,
613 * this task being preempted, its old CPU being taken offline, resuming
614 * on some other CPU, then determining that its old CPU is now offline.
615 * It is OK to use RCU on an offline processor during initial boot, hence
616 * the check for rcu_scheduler_fully_active. Note also that it is OK
617 * for a CPU coming online to use RCU for one jiffy prior to marking itself
618 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
619 * offline to continue to use RCU for one jiffy after marking itself
620 * offline in the cpu_online_mask. This leniency is necessary given the
621 * non-atomic nature of the online and offline processing, for example,
622 * the fact that a CPU enters the scheduler after completing the CPU_DYING
623 * notifiers.
624 *
625 * This is also why RCU internally marks CPUs online during the
626 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
627 *
628 * Disable checking if in an NMI handler because we cannot safely report
629 * errors from NMI handlers anyway.
630 */
631bool rcu_lockdep_current_cpu_online(void)
632{
633 struct rcu_data *rdp;
634 struct rcu_node *rnp;
635 bool ret;
636
637 if (in_nmi())
638 return 1;
639 preempt_disable();
640 rdp = &__get_cpu_var(rcu_sched_data);
641 rnp = rdp->mynode;
642 ret = (rdp->grpmask & rnp->qsmaskinit) ||
643 !rcu_scheduler_fully_active;
644 preempt_enable();
645 return ret;
646}
647EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
648
649#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
650
651/**
652 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
653 *
654 * If the current CPU is idle or running at a first-level (not nested)
655 * interrupt from idle, return true. The caller must have at least
656 * disabled preemption.
657 */
658int rcu_is_cpu_rrupt_from_idle(void)
659{
660 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
661}
662
663/*
664 * Snapshot the specified CPU's dynticks counter so that we can later
665 * credit them with an implicit quiescent state. Return 1 if this CPU
666 * is in dynticks idle mode, which is an extended quiescent state.
667 */
668static int dyntick_save_progress_counter(struct rcu_data *rdp)
669{
670 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
671 return (rdp->dynticks_snap & 0x1) == 0;
672}
673
674/*
675 * Return true if the specified CPU has passed through a quiescent
676 * state by virtue of being in or having passed through an dynticks
677 * idle state since the last call to dyntick_save_progress_counter()
678 * for this same CPU.
679 */
680static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
681{
682 unsigned int curr;
683 unsigned int snap;
684
685 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
686 snap = (unsigned int)rdp->dynticks_snap;
687
688 /*
689 * If the CPU passed through or entered a dynticks idle phase with
690 * no active irq/NMI handlers, then we can safely pretend that the CPU
691 * already acknowledged the request to pass through a quiescent
692 * state. Either way, that CPU cannot possibly be in an RCU
693 * read-side critical section that started before the beginning
694 * of the current RCU grace period.
695 */
696 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
697 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
698 rdp->dynticks_fqs++;
699 return 1;
700 }
701
702 /* Go check for the CPU being offline. */
703 return rcu_implicit_offline_qs(rdp);
704}
705
706static int jiffies_till_stall_check(void)
707{
708 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
709
710 /*
711 * Limit check must be consistent with the Kconfig limits
712 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
713 */
714 if (till_stall_check < 3) {
715 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
716 till_stall_check = 3;
717 } else if (till_stall_check > 300) {
718 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
719 till_stall_check = 300;
720 }
721 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
722}
723
724static void record_gp_stall_check_time(struct rcu_state *rsp)
725{
726 rsp->gp_start = jiffies;
727 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
728}
729
730static void print_other_cpu_stall(struct rcu_state *rsp)
731{
732 int cpu;
733 long delta;
734 unsigned long flags;
735 int ndetected = 0;
736 struct rcu_node *rnp = rcu_get_root(rsp);
737
738 /* Only let one CPU complain about others per time interval. */
739
740 raw_spin_lock_irqsave(&rnp->lock, flags);
741 delta = jiffies - rsp->jiffies_stall;
742 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
743 raw_spin_unlock_irqrestore(&rnp->lock, flags);
744 return;
745 }
746 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
747 raw_spin_unlock_irqrestore(&rnp->lock, flags);
748
749 /*
750 * OK, time to rat on our buddy...
751 * See Documentation/RCU/stallwarn.txt for info on how to debug
752 * RCU CPU stall warnings.
753 */
754 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
755 rsp->name);
756 print_cpu_stall_info_begin();
757 rcu_for_each_leaf_node(rsp, rnp) {
758 raw_spin_lock_irqsave(&rnp->lock, flags);
759 ndetected += rcu_print_task_stall(rnp);
760 raw_spin_unlock_irqrestore(&rnp->lock, flags);
761 if (rnp->qsmask == 0)
762 continue;
763 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
764 if (rnp->qsmask & (1UL << cpu)) {
765 print_cpu_stall_info(rsp, rnp->grplo + cpu);
766 ndetected++;
767 }
768 }
769
770 /*
771 * Now rat on any tasks that got kicked up to the root rcu_node
772 * due to CPU offlining.
773 */
774 rnp = rcu_get_root(rsp);
775 raw_spin_lock_irqsave(&rnp->lock, flags);
776 ndetected += rcu_print_task_stall(rnp);
777 raw_spin_unlock_irqrestore(&rnp->lock, flags);
778
779 print_cpu_stall_info_end();
780 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
781 smp_processor_id(), (long)(jiffies - rsp->gp_start));
782 if (ndetected == 0)
783 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
784 else if (!trigger_all_cpu_backtrace())
785 dump_stack();
786
787 /* If so configured, complain about tasks blocking the grace period. */
788
789 rcu_print_detail_task_stall(rsp);
790
791 force_quiescent_state(rsp, 0); /* Kick them all. */
792}
793
794static void print_cpu_stall(struct rcu_state *rsp)
795{
796 unsigned long flags;
797 struct rcu_node *rnp = rcu_get_root(rsp);
798
799 /*
800 * OK, time to rat on ourselves...
801 * See Documentation/RCU/stallwarn.txt for info on how to debug
802 * RCU CPU stall warnings.
803 */
804 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
805 print_cpu_stall_info_begin();
806 print_cpu_stall_info(rsp, smp_processor_id());
807 print_cpu_stall_info_end();
808 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
809 if (!trigger_all_cpu_backtrace())
810 dump_stack();
811
812 raw_spin_lock_irqsave(&rnp->lock, flags);
813 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
814 rsp->jiffies_stall = jiffies +
815 3 * jiffies_till_stall_check() + 3;
816 raw_spin_unlock_irqrestore(&rnp->lock, flags);
817
818 set_need_resched(); /* kick ourselves to get things going. */
819}
820
821static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
822{
823 unsigned long j;
824 unsigned long js;
825 struct rcu_node *rnp;
826
827 if (rcu_cpu_stall_suppress)
828 return;
829 j = ACCESS_ONCE(jiffies);
830 js = ACCESS_ONCE(rsp->jiffies_stall);
831 rnp = rdp->mynode;
832 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
833
834 /* We haven't checked in, so go dump stack. */
835 print_cpu_stall(rsp);
836
837 } else if (rcu_gp_in_progress(rsp) &&
838 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
839
840 /* They had a few time units to dump stack, so complain. */
841 print_other_cpu_stall(rsp);
842 }
843}
844
845static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
846{
847 rcu_cpu_stall_suppress = 1;
848 return NOTIFY_DONE;
849}
850
851/**
852 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
853 *
854 * Set the stall-warning timeout way off into the future, thus preventing
855 * any RCU CPU stall-warning messages from appearing in the current set of
856 * RCU grace periods.
857 *
858 * The caller must disable hard irqs.
859 */
860void rcu_cpu_stall_reset(void)
861{
862 struct rcu_state *rsp;
863
864 for_each_rcu_flavor(rsp)
865 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
866}
867
868static struct notifier_block rcu_panic_block = {
869 .notifier_call = rcu_panic,
870};
871
872static void __init check_cpu_stall_init(void)
873{
874 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
875}
876
877/*
878 * Update CPU-local rcu_data state to record the newly noticed grace period.
879 * This is used both when we started the grace period and when we notice
880 * that someone else started the grace period. The caller must hold the
881 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
882 * and must have irqs disabled.
883 */
884static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
885{
886 if (rdp->gpnum != rnp->gpnum) {
887 /*
888 * If the current grace period is waiting for this CPU,
889 * set up to detect a quiescent state, otherwise don't
890 * go looking for one.
891 */
892 rdp->gpnum = rnp->gpnum;
893 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
894 if (rnp->qsmask & rdp->grpmask) {
895 rdp->qs_pending = 1;
896 rdp->passed_quiesce = 0;
897 } else {
898 rdp->qs_pending = 0;
899 }
900 zero_cpu_stall_ticks(rdp);
901 }
902}
903
904static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
905{
906 unsigned long flags;
907 struct rcu_node *rnp;
908
909 local_irq_save(flags);
910 rnp = rdp->mynode;
911 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
912 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
913 local_irq_restore(flags);
914 return;
915 }
916 __note_new_gpnum(rsp, rnp, rdp);
917 raw_spin_unlock_irqrestore(&rnp->lock, flags);
918}
919
920/*
921 * Did someone else start a new RCU grace period start since we last
922 * checked? Update local state appropriately if so. Must be called
923 * on the CPU corresponding to rdp.
924 */
925static int
926check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
927{
928 unsigned long flags;
929 int ret = 0;
930
931 local_irq_save(flags);
932 if (rdp->gpnum != rsp->gpnum) {
933 note_new_gpnum(rsp, rdp);
934 ret = 1;
935 }
936 local_irq_restore(flags);
937 return ret;
938}
939
940/*
941 * Initialize the specified rcu_data structure's callback list to empty.
942 */
943static void init_callback_list(struct rcu_data *rdp)
944{
945 int i;
946
947 rdp->nxtlist = NULL;
948 for (i = 0; i < RCU_NEXT_SIZE; i++)
949 rdp->nxttail[i] = &rdp->nxtlist;
950}
951
952/*
953 * Advance this CPU's callbacks, but only if the current grace period
954 * has ended. This may be called only from the CPU to whom the rdp
955 * belongs. In addition, the corresponding leaf rcu_node structure's
956 * ->lock must be held by the caller, with irqs disabled.
957 */
958static void
959__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
960{
961 /* Did another grace period end? */
962 if (rdp->completed != rnp->completed) {
963
964 /* Advance callbacks. No harm if list empty. */
965 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
966 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
967 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
968
969 /* Remember that we saw this grace-period completion. */
970 rdp->completed = rnp->completed;
971 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
972
973 /*
974 * If we were in an extended quiescent state, we may have
975 * missed some grace periods that others CPUs handled on
976 * our behalf. Catch up with this state to avoid noting
977 * spurious new grace periods. If another grace period
978 * has started, then rnp->gpnum will have advanced, so
979 * we will detect this later on.
980 */
981 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
982 rdp->gpnum = rdp->completed;
983
984 /*
985 * If RCU does not need a quiescent state from this CPU,
986 * then make sure that this CPU doesn't go looking for one.
987 */
988 if ((rnp->qsmask & rdp->grpmask) == 0)
989 rdp->qs_pending = 0;
990 }
991}
992
993/*
994 * Advance this CPU's callbacks, but only if the current grace period
995 * has ended. This may be called only from the CPU to whom the rdp
996 * belongs.
997 */
998static void
999rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
1000{
1001 unsigned long flags;
1002 struct rcu_node *rnp;
1003
1004 local_irq_save(flags);
1005 rnp = rdp->mynode;
1006 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1007 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1008 local_irq_restore(flags);
1009 return;
1010 }
1011 __rcu_process_gp_end(rsp, rnp, rdp);
1012 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1013}
1014
1015/*
1016 * Do per-CPU grace-period initialization for running CPU. The caller
1017 * must hold the lock of the leaf rcu_node structure corresponding to
1018 * this CPU.
1019 */
1020static void
1021rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1022{
1023 /* Prior grace period ended, so advance callbacks for current CPU. */
1024 __rcu_process_gp_end(rsp, rnp, rdp);
1025
1026 /* Set state so that this CPU will detect the next quiescent state. */
1027 __note_new_gpnum(rsp, rnp, rdp);
1028}
1029
1030/*
1031 * Body of kthread that handles grace periods.
1032 */
1033static int __noreturn rcu_gp_kthread(void *arg)
1034{
1035 unsigned long gp_duration;
1036 struct rcu_data *rdp;
1037 struct rcu_node *rnp;
1038 struct rcu_state *rsp = arg;
1039
1040 for (;;) {
1041
1042 /* Handle grace-period start. */
1043 rnp = rcu_get_root(rsp);
1044 for (;;) {
1045 wait_event_interruptible(rsp->gp_wq, rsp->gp_flags);
1046 if (rsp->gp_flags)
1047 break;
1048 flush_signals(current);
1049 }
1050 raw_spin_lock_irq(&rnp->lock);
1051 rsp->gp_flags = 0;
1052 rdp = this_cpu_ptr(rsp->rda);
1053
1054 if (rcu_gp_in_progress(rsp)) {
1055 /*
1056 * A grace period is already in progress, so
1057 * don't start another one.
1058 */
1059 raw_spin_unlock_irq(&rnp->lock);
1060 cond_resched();
1061 continue;
1062 }
1063
1064 if (rsp->fqs_active) {
1065 /*
1066 * We need a grace period, but force_quiescent_state()
1067 * is running. Tell it to start one on our behalf.
1068 */
1069 rsp->fqs_need_gp = 1;
1070 raw_spin_unlock_irq(&rnp->lock);
1071 cond_resched();
1072 continue;
1073 }
1074
1075 /* Advance to a new grace period and initialize state. */
1076 rsp->gpnum++;
1077 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1078 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
1079 rsp->fqs_state = RCU_GP_INIT; /* Stop force_quiescent_state. */
1080 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1081 record_gp_stall_check_time(rsp);
1082 raw_spin_unlock_irq(&rnp->lock);
1083
1084 /* Exclude any concurrent CPU-hotplug operations. */
1085 get_online_cpus();
1086
1087 /*
1088 * Set the quiescent-state-needed bits in all the rcu_node
1089 * structures for all currently online CPUs in breadth-first
1090 * order, starting from the root rcu_node structure.
1091 * This operation relies on the layout of the hierarchy
1092 * within the rsp->node[] array. Note that other CPUs will
1093 * access only the leaves of the hierarchy, which still
1094 * indicate that no grace period is in progress, at least
1095 * until the corresponding leaf node has been initialized.
1096 * In addition, we have excluded CPU-hotplug operations.
1097 */
1098 rcu_for_each_node_breadth_first(rsp, rnp) {
1099 raw_spin_lock_irq(&rnp->lock);
1100 rcu_preempt_check_blocked_tasks(rnp);
1101 rnp->qsmask = rnp->qsmaskinit;
1102 rnp->gpnum = rsp->gpnum;
1103 rnp->completed = rsp->completed;
1104 if (rnp == rdp->mynode)
1105 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1106 rcu_preempt_boost_start_gp(rnp);
1107 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1108 rnp->level, rnp->grplo,
1109 rnp->grphi, rnp->qsmask);
1110 raw_spin_unlock_irq(&rnp->lock);
1111 cond_resched();
1112 }
1113
1114 rnp = rcu_get_root(rsp);
1115 raw_spin_lock_irq(&rnp->lock);
1116 /* force_quiescent_state() now OK. */
1117 rsp->fqs_state = RCU_SIGNAL_INIT;
1118 raw_spin_unlock_irq(&rnp->lock);
1119 put_online_cpus();
1120
1121 /* Handle grace-period end. */
1122 rnp = rcu_get_root(rsp);
1123 for (;;) {
1124 wait_event_interruptible(rsp->gp_wq,
1125 !ACCESS_ONCE(rnp->qsmask) &&
1126 !rcu_preempt_blocked_readers_cgp(rnp));
1127 if (!ACCESS_ONCE(rnp->qsmask) &&
1128 !rcu_preempt_blocked_readers_cgp(rnp))
1129 break;
1130 flush_signals(current);
1131 }
1132
1133 raw_spin_lock_irq(&rnp->lock);
1134 gp_duration = jiffies - rsp->gp_start;
1135 if (gp_duration > rsp->gp_max)
1136 rsp->gp_max = gp_duration;
1137
1138 /*
1139 * We know the grace period is complete, but to everyone else
1140 * it appears to still be ongoing. But it is also the case
1141 * that to everyone else it looks like there is nothing that
1142 * they can do to advance the grace period. It is therefore
1143 * safe for us to drop the lock in order to mark the grace
1144 * period as completed in all of the rcu_node structures.
1145 *
1146 * But if this CPU needs another grace period, it will take
1147 * care of this while initializing the next grace period.
1148 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1149 * because the callbacks have not yet been advanced: Those
1150 * callbacks are waiting on the grace period that just now
1151 * completed.
1152 */
1153 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1154 raw_spin_unlock_irq(&rnp->lock);
1155
1156 /*
1157 * Propagate new ->completed value to rcu_node
1158 * structures so that other CPUs don't have to
1159 * wait until the start of the next grace period
1160 * to process their callbacks.
1161 */
1162 rcu_for_each_node_breadth_first(rsp, rnp) {
1163 raw_spin_lock_irq(&rnp->lock);
1164 rnp->completed = rsp->gpnum;
1165 raw_spin_unlock_irq(&rnp->lock);
1166 cond_resched();
1167 }
1168 rnp = rcu_get_root(rsp);
1169 raw_spin_lock_irq(&rnp->lock);
1170 }
1171
1172 rsp->completed = rsp->gpnum; /* Declare grace period done. */
1173 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1174 rsp->fqs_state = RCU_GP_IDLE;
1175 if (cpu_needs_another_gp(rsp, rdp))
1176 rsp->gp_flags = 1;
1177 raw_spin_unlock_irq(&rnp->lock);
1178 }
1179}
1180
1181/*
1182 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1183 * in preparation for detecting the next grace period. The caller must hold
1184 * the root node's ->lock, which is released before return. Hard irqs must
1185 * be disabled.
1186 *
1187 * Note that it is legal for a dying CPU (which is marked as offline) to
1188 * invoke this function. This can happen when the dying CPU reports its
1189 * quiescent state.
1190 */
1191static void
1192rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1193 __releases(rcu_get_root(rsp)->lock)
1194{
1195 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1196 struct rcu_node *rnp = rcu_get_root(rsp);
1197
1198 if (!rsp->gp_kthread ||
1199 !cpu_needs_another_gp(rsp, rdp)) {
1200 /*
1201 * Either we have not yet spawned the grace-period
1202 * task or this CPU does not need another grace period.
1203 * Either way, don't start a new grace period.
1204 */
1205 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1206 return;
1207 }
1208
1209 rsp->gp_flags = 1;
1210 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1211 wake_up(&rsp->gp_wq);
1212}
1213
1214/*
1215 * Report a full set of quiescent states to the specified rcu_state
1216 * data structure. This involves cleaning up after the prior grace
1217 * period and letting rcu_start_gp() start up the next grace period
1218 * if one is needed. Note that the caller must hold rnp->lock, as
1219 * required by rcu_start_gp(), which will release it.
1220 */
1221static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1222 __releases(rcu_get_root(rsp)->lock)
1223{
1224 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1225 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1226 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1227}
1228
1229/*
1230 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1231 * Allows quiescent states for a group of CPUs to be reported at one go
1232 * to the specified rcu_node structure, though all the CPUs in the group
1233 * must be represented by the same rcu_node structure (which need not be
1234 * a leaf rcu_node structure, though it often will be). That structure's
1235 * lock must be held upon entry, and it is released before return.
1236 */
1237static void
1238rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1239 struct rcu_node *rnp, unsigned long flags)
1240 __releases(rnp->lock)
1241{
1242 struct rcu_node *rnp_c;
1243
1244 /* Walk up the rcu_node hierarchy. */
1245 for (;;) {
1246 if (!(rnp->qsmask & mask)) {
1247
1248 /* Our bit has already been cleared, so done. */
1249 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1250 return;
1251 }
1252 rnp->qsmask &= ~mask;
1253 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1254 mask, rnp->qsmask, rnp->level,
1255 rnp->grplo, rnp->grphi,
1256 !!rnp->gp_tasks);
1257 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1258
1259 /* Other bits still set at this level, so done. */
1260 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1261 return;
1262 }
1263 mask = rnp->grpmask;
1264 if (rnp->parent == NULL) {
1265
1266 /* No more levels. Exit loop holding root lock. */
1267
1268 break;
1269 }
1270 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1271 rnp_c = rnp;
1272 rnp = rnp->parent;
1273 raw_spin_lock_irqsave(&rnp->lock, flags);
1274 WARN_ON_ONCE(rnp_c->qsmask);
1275 }
1276
1277 /*
1278 * Get here if we are the last CPU to pass through a quiescent
1279 * state for this grace period. Invoke rcu_report_qs_rsp()
1280 * to clean up and start the next grace period if one is needed.
1281 */
1282 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1283}
1284
1285/*
1286 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1287 * structure. This must be either called from the specified CPU, or
1288 * called when the specified CPU is known to be offline (and when it is
1289 * also known that no other CPU is concurrently trying to help the offline
1290 * CPU). The lastcomp argument is used to make sure we are still in the
1291 * grace period of interest. We don't want to end the current grace period
1292 * based on quiescent states detected in an earlier grace period!
1293 */
1294static void
1295rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1296{
1297 unsigned long flags;
1298 unsigned long mask;
1299 struct rcu_node *rnp;
1300
1301 rnp = rdp->mynode;
1302 raw_spin_lock_irqsave(&rnp->lock, flags);
1303 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1304
1305 /*
1306 * The grace period in which this quiescent state was
1307 * recorded has ended, so don't report it upwards.
1308 * We will instead need a new quiescent state that lies
1309 * within the current grace period.
1310 */
1311 rdp->passed_quiesce = 0; /* need qs for new gp. */
1312 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1313 return;
1314 }
1315 mask = rdp->grpmask;
1316 if ((rnp->qsmask & mask) == 0) {
1317 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1318 } else {
1319 rdp->qs_pending = 0;
1320
1321 /*
1322 * This GP can't end until cpu checks in, so all of our
1323 * callbacks can be processed during the next GP.
1324 */
1325 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1326
1327 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1328 }
1329}
1330
1331/*
1332 * Check to see if there is a new grace period of which this CPU
1333 * is not yet aware, and if so, set up local rcu_data state for it.
1334 * Otherwise, see if this CPU has just passed through its first
1335 * quiescent state for this grace period, and record that fact if so.
1336 */
1337static void
1338rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1339{
1340 /* If there is now a new grace period, record and return. */
1341 if (check_for_new_grace_period(rsp, rdp))
1342 return;
1343
1344 /*
1345 * Does this CPU still need to do its part for current grace period?
1346 * If no, return and let the other CPUs do their part as well.
1347 */
1348 if (!rdp->qs_pending)
1349 return;
1350
1351 /*
1352 * Was there a quiescent state since the beginning of the grace
1353 * period? If no, then exit and wait for the next call.
1354 */
1355 if (!rdp->passed_quiesce)
1356 return;
1357
1358 /*
1359 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1360 * judge of that).
1361 */
1362 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1363}
1364
1365#ifdef CONFIG_HOTPLUG_CPU
1366
1367/*
1368 * Send the specified CPU's RCU callbacks to the orphanage. The
1369 * specified CPU must be offline, and the caller must hold the
1370 * ->onofflock.
1371 */
1372static void
1373rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1374 struct rcu_node *rnp, struct rcu_data *rdp)
1375{
1376 /*
1377 * Orphan the callbacks. First adjust the counts. This is safe
1378 * because ->onofflock excludes _rcu_barrier()'s adoption of
1379 * the callbacks, thus no memory barrier is required.
1380 */
1381 if (rdp->nxtlist != NULL) {
1382 rsp->qlen_lazy += rdp->qlen_lazy;
1383 rsp->qlen += rdp->qlen;
1384 rdp->n_cbs_orphaned += rdp->qlen;
1385 rdp->qlen_lazy = 0;
1386 ACCESS_ONCE(rdp->qlen) = 0;
1387 }
1388
1389 /*
1390 * Next, move those callbacks still needing a grace period to
1391 * the orphanage, where some other CPU will pick them up.
1392 * Some of the callbacks might have gone partway through a grace
1393 * period, but that is too bad. They get to start over because we
1394 * cannot assume that grace periods are synchronized across CPUs.
1395 * We don't bother updating the ->nxttail[] array yet, instead
1396 * we just reset the whole thing later on.
1397 */
1398 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1399 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1400 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1401 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1402 }
1403
1404 /*
1405 * Then move the ready-to-invoke callbacks to the orphanage,
1406 * where some other CPU will pick them up. These will not be
1407 * required to pass though another grace period: They are done.
1408 */
1409 if (rdp->nxtlist != NULL) {
1410 *rsp->orphan_donetail = rdp->nxtlist;
1411 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1412 }
1413
1414 /* Finally, initialize the rcu_data structure's list to empty. */
1415 init_callback_list(rdp);
1416}
1417
1418/*
1419 * Adopt the RCU callbacks from the specified rcu_state structure's
1420 * orphanage. The caller must hold the ->onofflock.
1421 */
1422static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1423{
1424 int i;
1425 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1426
1427 /*
1428 * If there is an rcu_barrier() operation in progress, then
1429 * only the task doing that operation is permitted to adopt
1430 * callbacks. To do otherwise breaks rcu_barrier() and friends
1431 * by causing them to fail to wait for the callbacks in the
1432 * orphanage.
1433 */
1434 if (rsp->rcu_barrier_in_progress &&
1435 rsp->rcu_barrier_in_progress != current)
1436 return;
1437
1438 /* Do the accounting first. */
1439 rdp->qlen_lazy += rsp->qlen_lazy;
1440 rdp->qlen += rsp->qlen;
1441 rdp->n_cbs_adopted += rsp->qlen;
1442 if (rsp->qlen_lazy != rsp->qlen)
1443 rcu_idle_count_callbacks_posted();
1444 rsp->qlen_lazy = 0;
1445 rsp->qlen = 0;
1446
1447 /*
1448 * We do not need a memory barrier here because the only way we
1449 * can get here if there is an rcu_barrier() in flight is if
1450 * we are the task doing the rcu_barrier().
1451 */
1452
1453 /* First adopt the ready-to-invoke callbacks. */
1454 if (rsp->orphan_donelist != NULL) {
1455 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1456 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1457 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1458 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1459 rdp->nxttail[i] = rsp->orphan_donetail;
1460 rsp->orphan_donelist = NULL;
1461 rsp->orphan_donetail = &rsp->orphan_donelist;
1462 }
1463
1464 /* And then adopt the callbacks that still need a grace period. */
1465 if (rsp->orphan_nxtlist != NULL) {
1466 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1467 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1468 rsp->orphan_nxtlist = NULL;
1469 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1470 }
1471}
1472
1473/*
1474 * Trace the fact that this CPU is going offline.
1475 */
1476static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1477{
1478 RCU_TRACE(unsigned long mask);
1479 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1480 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1481
1482 RCU_TRACE(mask = rdp->grpmask);
1483 trace_rcu_grace_period(rsp->name,
1484 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1485 "cpuofl");
1486}
1487
1488/*
1489 * The CPU has been completely removed, and some other CPU is reporting
1490 * this fact from process context. Do the remainder of the cleanup,
1491 * including orphaning the outgoing CPU's RCU callbacks, and also
1492 * adopting them, if there is no _rcu_barrier() instance running.
1493 * There can only be one CPU hotplug operation at a time, so no other
1494 * CPU can be attempting to update rcu_cpu_kthread_task.
1495 */
1496static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1497{
1498 unsigned long flags;
1499 unsigned long mask;
1500 int need_report = 0;
1501 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1502 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
1503
1504 /* Adjust any no-longer-needed kthreads. */
1505 rcu_stop_cpu_kthread(cpu);
1506 rcu_node_kthread_setaffinity(rnp, -1);
1507
1508 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1509
1510 /* Exclude any attempts to start a new grace period. */
1511 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1512
1513 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1514 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1515 rcu_adopt_orphan_cbs(rsp);
1516
1517 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1518 mask = rdp->grpmask; /* rnp->grplo is constant. */
1519 do {
1520 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1521 rnp->qsmaskinit &= ~mask;
1522 if (rnp->qsmaskinit != 0) {
1523 if (rnp != rdp->mynode)
1524 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1525 break;
1526 }
1527 if (rnp == rdp->mynode)
1528 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1529 else
1530 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1531 mask = rnp->grpmask;
1532 rnp = rnp->parent;
1533 } while (rnp != NULL);
1534
1535 /*
1536 * We still hold the leaf rcu_node structure lock here, and
1537 * irqs are still disabled. The reason for this subterfuge is
1538 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1539 * held leads to deadlock.
1540 */
1541 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1542 rnp = rdp->mynode;
1543 if (need_report & RCU_OFL_TASKS_NORM_GP)
1544 rcu_report_unblock_qs_rnp(rnp, flags);
1545 else
1546 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1547 if (need_report & RCU_OFL_TASKS_EXP_GP)
1548 rcu_report_exp_rnp(rsp, rnp, true);
1549 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1550 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1551 cpu, rdp->qlen, rdp->nxtlist);
1552}
1553
1554#else /* #ifdef CONFIG_HOTPLUG_CPU */
1555
1556static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1557{
1558}
1559
1560static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1561{
1562}
1563
1564static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1565{
1566}
1567
1568#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1569
1570/*
1571 * Invoke any RCU callbacks that have made it to the end of their grace
1572 * period. Thottle as specified by rdp->blimit.
1573 */
1574static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1575{
1576 unsigned long flags;
1577 struct rcu_head *next, *list, **tail;
1578 int bl, count, count_lazy, i;
1579
1580 /* If no callbacks are ready, just return.*/
1581 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1582 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1583 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1584 need_resched(), is_idle_task(current),
1585 rcu_is_callbacks_kthread());
1586 return;
1587 }
1588
1589 /*
1590 * Extract the list of ready callbacks, disabling to prevent
1591 * races with call_rcu() from interrupt handlers.
1592 */
1593 local_irq_save(flags);
1594 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1595 bl = rdp->blimit;
1596 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1597 list = rdp->nxtlist;
1598 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1599 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1600 tail = rdp->nxttail[RCU_DONE_TAIL];
1601 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1602 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1603 rdp->nxttail[i] = &rdp->nxtlist;
1604 local_irq_restore(flags);
1605
1606 /* Invoke callbacks. */
1607 count = count_lazy = 0;
1608 while (list) {
1609 next = list->next;
1610 prefetch(next);
1611 debug_rcu_head_unqueue(list);
1612 if (__rcu_reclaim(rsp->name, list))
1613 count_lazy++;
1614 list = next;
1615 /* Stop only if limit reached and CPU has something to do. */
1616 if (++count >= bl &&
1617 (need_resched() ||
1618 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1619 break;
1620 }
1621
1622 local_irq_save(flags);
1623 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1624 is_idle_task(current),
1625 rcu_is_callbacks_kthread());
1626
1627 /* Update count, and requeue any remaining callbacks. */
1628 if (list != NULL) {
1629 *tail = rdp->nxtlist;
1630 rdp->nxtlist = list;
1631 for (i = 0; i < RCU_NEXT_SIZE; i++)
1632 if (&rdp->nxtlist == rdp->nxttail[i])
1633 rdp->nxttail[i] = tail;
1634 else
1635 break;
1636 }
1637 smp_mb(); /* List handling before counting for rcu_barrier(). */
1638 rdp->qlen_lazy -= count_lazy;
1639 ACCESS_ONCE(rdp->qlen) -= count;
1640 rdp->n_cbs_invoked += count;
1641
1642 /* Reinstate batch limit if we have worked down the excess. */
1643 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1644 rdp->blimit = blimit;
1645
1646 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1647 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1648 rdp->qlen_last_fqs_check = 0;
1649 rdp->n_force_qs_snap = rsp->n_force_qs;
1650 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1651 rdp->qlen_last_fqs_check = rdp->qlen;
1652 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
1653
1654 local_irq_restore(flags);
1655
1656 /* Re-invoke RCU core processing if there are callbacks remaining. */
1657 if (cpu_has_callbacks_ready_to_invoke(rdp))
1658 invoke_rcu_core();
1659}
1660
1661/*
1662 * Check to see if this CPU is in a non-context-switch quiescent state
1663 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1664 * Also schedule RCU core processing.
1665 *
1666 * This function must be called from hardirq context. It is normally
1667 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1668 * false, there is no point in invoking rcu_check_callbacks().
1669 */
1670void rcu_check_callbacks(int cpu, int user)
1671{
1672 trace_rcu_utilization("Start scheduler-tick");
1673 increment_cpu_stall_ticks();
1674 if (user || rcu_is_cpu_rrupt_from_idle()) {
1675
1676 /*
1677 * Get here if this CPU took its interrupt from user
1678 * mode or from the idle loop, and if this is not a
1679 * nested interrupt. In this case, the CPU is in
1680 * a quiescent state, so note it.
1681 *
1682 * No memory barrier is required here because both
1683 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1684 * variables that other CPUs neither access nor modify,
1685 * at least not while the corresponding CPU is online.
1686 */
1687
1688 rcu_sched_qs(cpu);
1689 rcu_bh_qs(cpu);
1690
1691 } else if (!in_softirq()) {
1692
1693 /*
1694 * Get here if this CPU did not take its interrupt from
1695 * softirq, in other words, if it is not interrupting
1696 * a rcu_bh read-side critical section. This is an _bh
1697 * critical section, so note it.
1698 */
1699
1700 rcu_bh_qs(cpu);
1701 }
1702 rcu_preempt_check_callbacks(cpu);
1703 if (rcu_pending(cpu))
1704 invoke_rcu_core();
1705 trace_rcu_utilization("End scheduler-tick");
1706}
1707
1708/*
1709 * Scan the leaf rcu_node structures, processing dyntick state for any that
1710 * have not yet encountered a quiescent state, using the function specified.
1711 * Also initiate boosting for any threads blocked on the root rcu_node.
1712 *
1713 * The caller must have suppressed start of new grace periods.
1714 */
1715static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1716{
1717 unsigned long bit;
1718 int cpu;
1719 unsigned long flags;
1720 unsigned long mask;
1721 struct rcu_node *rnp;
1722
1723 rcu_for_each_leaf_node(rsp, rnp) {
1724 mask = 0;
1725 raw_spin_lock_irqsave(&rnp->lock, flags);
1726 if (!rcu_gp_in_progress(rsp)) {
1727 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1728 return;
1729 }
1730 if (rnp->qsmask == 0) {
1731 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1732 continue;
1733 }
1734 cpu = rnp->grplo;
1735 bit = 1;
1736 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1737 if ((rnp->qsmask & bit) != 0 &&
1738 f(per_cpu_ptr(rsp->rda, cpu)))
1739 mask |= bit;
1740 }
1741 if (mask != 0) {
1742
1743 /* rcu_report_qs_rnp() releases rnp->lock. */
1744 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1745 continue;
1746 }
1747 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1748 }
1749 rnp = rcu_get_root(rsp);
1750 if (rnp->qsmask == 0) {
1751 raw_spin_lock_irqsave(&rnp->lock, flags);
1752 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1753 }
1754}
1755
1756/*
1757 * Force quiescent states on reluctant CPUs, and also detect which
1758 * CPUs are in dyntick-idle mode.
1759 */
1760static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1761{
1762 unsigned long flags;
1763 struct rcu_node *rnp = rcu_get_root(rsp);
1764
1765 trace_rcu_utilization("Start fqs");
1766 if (!rcu_gp_in_progress(rsp)) {
1767 trace_rcu_utilization("End fqs");
1768 return; /* No grace period in progress, nothing to force. */
1769 }
1770 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1771 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1772 trace_rcu_utilization("End fqs");
1773 return; /* Someone else is already on the job. */
1774 }
1775 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1776 goto unlock_fqs_ret; /* no emergency and done recently. */
1777 rsp->n_force_qs++;
1778 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1779 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1780 if(!rcu_gp_in_progress(rsp)) {
1781 rsp->n_force_qs_ngp++;
1782 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1783 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1784 }
1785 rsp->fqs_active = 1;
1786 switch (rsp->fqs_state) {
1787 case RCU_GP_IDLE:
1788 case RCU_GP_INIT:
1789
1790 break; /* grace period idle or initializing, ignore. */
1791
1792 case RCU_SAVE_DYNTICK:
1793
1794 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1795
1796 /* Record dyntick-idle state. */
1797 force_qs_rnp(rsp, dyntick_save_progress_counter);
1798 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1799 if (rcu_gp_in_progress(rsp))
1800 rsp->fqs_state = RCU_FORCE_QS;
1801 break;
1802
1803 case RCU_FORCE_QS:
1804
1805 /* Check dyntick-idle state, send IPI to laggarts. */
1806 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1807 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1808
1809 /* Leave state in case more forcing is required. */
1810
1811 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1812 break;
1813 }
1814 rsp->fqs_active = 0;
1815 if (rsp->fqs_need_gp) {
1816 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1817 rsp->fqs_need_gp = 0;
1818 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1819 trace_rcu_utilization("End fqs");
1820 return;
1821 }
1822 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1823unlock_fqs_ret:
1824 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1825 trace_rcu_utilization("End fqs");
1826}
1827
1828/*
1829 * This does the RCU core processing work for the specified rcu_state
1830 * and rcu_data structures. This may be called only from the CPU to
1831 * whom the rdp belongs.
1832 */
1833static void
1834__rcu_process_callbacks(struct rcu_state *rsp)
1835{
1836 unsigned long flags;
1837 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1838
1839 WARN_ON_ONCE(rdp->beenonline == 0);
1840
1841 /*
1842 * If an RCU GP has gone long enough, go check for dyntick
1843 * idle CPUs and, if needed, send resched IPIs.
1844 */
1845 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1846 force_quiescent_state(rsp, 1);
1847
1848 /*
1849 * Advance callbacks in response to end of earlier grace
1850 * period that some other CPU ended.
1851 */
1852 rcu_process_gp_end(rsp, rdp);
1853
1854 /* Update RCU state based on any recent quiescent states. */
1855 rcu_check_quiescent_state(rsp, rdp);
1856
1857 /* Does this CPU require a not-yet-started grace period? */
1858 if (cpu_needs_another_gp(rsp, rdp)) {
1859 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1860 rcu_start_gp(rsp, flags); /* releases above lock */
1861 }
1862
1863 /* If there are callbacks ready, invoke them. */
1864 if (cpu_has_callbacks_ready_to_invoke(rdp))
1865 invoke_rcu_callbacks(rsp, rdp);
1866}
1867
1868/*
1869 * Do RCU core processing for the current CPU.
1870 */
1871static void rcu_process_callbacks(struct softirq_action *unused)
1872{
1873 struct rcu_state *rsp;
1874
1875 trace_rcu_utilization("Start RCU core");
1876 for_each_rcu_flavor(rsp)
1877 __rcu_process_callbacks(rsp);
1878 trace_rcu_utilization("End RCU core");
1879}
1880
1881/*
1882 * Schedule RCU callback invocation. If the specified type of RCU
1883 * does not support RCU priority boosting, just do a direct call,
1884 * otherwise wake up the per-CPU kernel kthread. Note that because we
1885 * are running on the current CPU with interrupts disabled, the
1886 * rcu_cpu_kthread_task cannot disappear out from under us.
1887 */
1888static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1889{
1890 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1891 return;
1892 if (likely(!rsp->boost)) {
1893 rcu_do_batch(rsp, rdp);
1894 return;
1895 }
1896 invoke_rcu_callbacks_kthread();
1897}
1898
1899static void invoke_rcu_core(void)
1900{
1901 raise_softirq(RCU_SOFTIRQ);
1902}
1903
1904/*
1905 * Handle any core-RCU processing required by a call_rcu() invocation.
1906 */
1907static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
1908 struct rcu_head *head, unsigned long flags)
1909{
1910 /*
1911 * If called from an extended quiescent state, invoke the RCU
1912 * core in order to force a re-evaluation of RCU's idleness.
1913 */
1914 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
1915 invoke_rcu_core();
1916
1917 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
1918 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
1919 return;
1920
1921 /*
1922 * Force the grace period if too many callbacks or too long waiting.
1923 * Enforce hysteresis, and don't invoke force_quiescent_state()
1924 * if some other CPU has recently done so. Also, don't bother
1925 * invoking force_quiescent_state() if the newly enqueued callback
1926 * is the only one waiting for a grace period to complete.
1927 */
1928 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1929
1930 /* Are we ignoring a completed grace period? */
1931 rcu_process_gp_end(rsp, rdp);
1932 check_for_new_grace_period(rsp, rdp);
1933
1934 /* Start a new grace period if one not already started. */
1935 if (!rcu_gp_in_progress(rsp)) {
1936 unsigned long nestflag;
1937 struct rcu_node *rnp_root = rcu_get_root(rsp);
1938
1939 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1940 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1941 } else {
1942 /* Give the grace period a kick. */
1943 rdp->blimit = LONG_MAX;
1944 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1945 *rdp->nxttail[RCU_DONE_TAIL] != head)
1946 force_quiescent_state(rsp, 0);
1947 rdp->n_force_qs_snap = rsp->n_force_qs;
1948 rdp->qlen_last_fqs_check = rdp->qlen;
1949 }
1950 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1951 force_quiescent_state(rsp, 1);
1952}
1953
1954static void
1955__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1956 struct rcu_state *rsp, bool lazy)
1957{
1958 unsigned long flags;
1959 struct rcu_data *rdp;
1960
1961 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1962 debug_rcu_head_queue(head);
1963 head->func = func;
1964 head->next = NULL;
1965
1966 smp_mb(); /* Ensure RCU update seen before callback registry. */
1967
1968 /*
1969 * Opportunistically note grace-period endings and beginnings.
1970 * Note that we might see a beginning right after we see an
1971 * end, but never vice versa, since this CPU has to pass through
1972 * a quiescent state betweentimes.
1973 */
1974 local_irq_save(flags);
1975 rdp = this_cpu_ptr(rsp->rda);
1976
1977 /* Add the callback to our list. */
1978 ACCESS_ONCE(rdp->qlen)++;
1979 if (lazy)
1980 rdp->qlen_lazy++;
1981 else
1982 rcu_idle_count_callbacks_posted();
1983 smp_mb(); /* Count before adding callback for rcu_barrier(). */
1984 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1985 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1986
1987 if (__is_kfree_rcu_offset((unsigned long)func))
1988 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1989 rdp->qlen_lazy, rdp->qlen);
1990 else
1991 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
1992
1993 /* Go handle any RCU core processing required. */
1994 __call_rcu_core(rsp, rdp, head, flags);
1995 local_irq_restore(flags);
1996}
1997
1998/*
1999 * Queue an RCU-sched callback for invocation after a grace period.
2000 */
2001void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2002{
2003 __call_rcu(head, func, &rcu_sched_state, 0);
2004}
2005EXPORT_SYMBOL_GPL(call_rcu_sched);
2006
2007/*
2008 * Queue an RCU callback for invocation after a quicker grace period.
2009 */
2010void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2011{
2012 __call_rcu(head, func, &rcu_bh_state, 0);
2013}
2014EXPORT_SYMBOL_GPL(call_rcu_bh);
2015
2016/*
2017 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2018 * any blocking grace-period wait automatically implies a grace period
2019 * if there is only one CPU online at any point time during execution
2020 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2021 * occasionally incorrectly indicate that there are multiple CPUs online
2022 * when there was in fact only one the whole time, as this just adds
2023 * some overhead: RCU still operates correctly.
2024 */
2025static inline int rcu_blocking_is_gp(void)
2026{
2027 int ret;
2028
2029 might_sleep(); /* Check for RCU read-side critical section. */
2030 preempt_disable();
2031 ret = num_online_cpus() <= 1;
2032 preempt_enable();
2033 return ret;
2034}
2035
2036/**
2037 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2038 *
2039 * Control will return to the caller some time after a full rcu-sched
2040 * grace period has elapsed, in other words after all currently executing
2041 * rcu-sched read-side critical sections have completed. These read-side
2042 * critical sections are delimited by rcu_read_lock_sched() and
2043 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2044 * local_irq_disable(), and so on may be used in place of
2045 * rcu_read_lock_sched().
2046 *
2047 * This means that all preempt_disable code sequences, including NMI and
2048 * hardware-interrupt handlers, in progress on entry will have completed
2049 * before this primitive returns. However, this does not guarantee that
2050 * softirq handlers will have completed, since in some kernels, these
2051 * handlers can run in process context, and can block.
2052 *
2053 * This primitive provides the guarantees made by the (now removed)
2054 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2055 * guarantees that rcu_read_lock() sections will have completed.
2056 * In "classic RCU", these two guarantees happen to be one and
2057 * the same, but can differ in realtime RCU implementations.
2058 */
2059void synchronize_sched(void)
2060{
2061 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2062 !lock_is_held(&rcu_lock_map) &&
2063 !lock_is_held(&rcu_sched_lock_map),
2064 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2065 if (rcu_blocking_is_gp())
2066 return;
2067 wait_rcu_gp(call_rcu_sched);
2068}
2069EXPORT_SYMBOL_GPL(synchronize_sched);
2070
2071/**
2072 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2073 *
2074 * Control will return to the caller some time after a full rcu_bh grace
2075 * period has elapsed, in other words after all currently executing rcu_bh
2076 * read-side critical sections have completed. RCU read-side critical
2077 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2078 * and may be nested.
2079 */
2080void synchronize_rcu_bh(void)
2081{
2082 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2083 !lock_is_held(&rcu_lock_map) &&
2084 !lock_is_held(&rcu_sched_lock_map),
2085 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2086 if (rcu_blocking_is_gp())
2087 return;
2088 wait_rcu_gp(call_rcu_bh);
2089}
2090EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2091
2092static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
2093static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
2094
2095static int synchronize_sched_expedited_cpu_stop(void *data)
2096{
2097 /*
2098 * There must be a full memory barrier on each affected CPU
2099 * between the time that try_stop_cpus() is called and the
2100 * time that it returns.
2101 *
2102 * In the current initial implementation of cpu_stop, the
2103 * above condition is already met when the control reaches
2104 * this point and the following smp_mb() is not strictly
2105 * necessary. Do smp_mb() anyway for documentation and
2106 * robustness against future implementation changes.
2107 */
2108 smp_mb(); /* See above comment block. */
2109 return 0;
2110}
2111
2112/**
2113 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2114 *
2115 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2116 * approach to force the grace period to end quickly. This consumes
2117 * significant time on all CPUs and is unfriendly to real-time workloads,
2118 * so is thus not recommended for any sort of common-case code. In fact,
2119 * if you are using synchronize_sched_expedited() in a loop, please
2120 * restructure your code to batch your updates, and then use a single
2121 * synchronize_sched() instead.
2122 *
2123 * Note that it is illegal to call this function while holding any lock
2124 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2125 * to call this function from a CPU-hotplug notifier. Failing to observe
2126 * these restriction will result in deadlock.
2127 *
2128 * This implementation can be thought of as an application of ticket
2129 * locking to RCU, with sync_sched_expedited_started and
2130 * sync_sched_expedited_done taking on the roles of the halves
2131 * of the ticket-lock word. Each task atomically increments
2132 * sync_sched_expedited_started upon entry, snapshotting the old value,
2133 * then attempts to stop all the CPUs. If this succeeds, then each
2134 * CPU will have executed a context switch, resulting in an RCU-sched
2135 * grace period. We are then done, so we use atomic_cmpxchg() to
2136 * update sync_sched_expedited_done to match our snapshot -- but
2137 * only if someone else has not already advanced past our snapshot.
2138 *
2139 * On the other hand, if try_stop_cpus() fails, we check the value
2140 * of sync_sched_expedited_done. If it has advanced past our
2141 * initial snapshot, then someone else must have forced a grace period
2142 * some time after we took our snapshot. In this case, our work is
2143 * done for us, and we can simply return. Otherwise, we try again,
2144 * but keep our initial snapshot for purposes of checking for someone
2145 * doing our work for us.
2146 *
2147 * If we fail too many times in a row, we fall back to synchronize_sched().
2148 */
2149void synchronize_sched_expedited(void)
2150{
2151 int firstsnap, s, snap, trycount = 0;
2152
2153 /* Note that atomic_inc_return() implies full memory barrier. */
2154 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2155 get_online_cpus();
2156 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2157
2158 /*
2159 * Each pass through the following loop attempts to force a
2160 * context switch on each CPU.
2161 */
2162 while (try_stop_cpus(cpu_online_mask,
2163 synchronize_sched_expedited_cpu_stop,
2164 NULL) == -EAGAIN) {
2165 put_online_cpus();
2166
2167 /* No joy, try again later. Or just synchronize_sched(). */
2168 if (trycount++ < 10) {
2169 udelay(trycount * num_online_cpus());
2170 } else {
2171 synchronize_sched();
2172 return;
2173 }
2174
2175 /* Check to see if someone else did our work for us. */
2176 s = atomic_read(&sync_sched_expedited_done);
2177 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2178 smp_mb(); /* ensure test happens before caller kfree */
2179 return;
2180 }
2181
2182 /*
2183 * Refetching sync_sched_expedited_started allows later
2184 * callers to piggyback on our grace period. We subtract
2185 * 1 to get the same token that the last incrementer got.
2186 * We retry after they started, so our grace period works
2187 * for them, and they started after our first try, so their
2188 * grace period works for us.
2189 */
2190 get_online_cpus();
2191 snap = atomic_read(&sync_sched_expedited_started);
2192 smp_mb(); /* ensure read is before try_stop_cpus(). */
2193 }
2194
2195 /*
2196 * Everyone up to our most recent fetch is covered by our grace
2197 * period. Update the counter, but only if our work is still
2198 * relevant -- which it won't be if someone who started later
2199 * than we did beat us to the punch.
2200 */
2201 do {
2202 s = atomic_read(&sync_sched_expedited_done);
2203 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2204 smp_mb(); /* ensure test happens before caller kfree */
2205 break;
2206 }
2207 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2208
2209 put_online_cpus();
2210}
2211EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2212
2213/*
2214 * Check to see if there is any immediate RCU-related work to be done
2215 * by the current CPU, for the specified type of RCU, returning 1 if so.
2216 * The checks are in order of increasing expense: checks that can be
2217 * carried out against CPU-local state are performed first. However,
2218 * we must check for CPU stalls first, else we might not get a chance.
2219 */
2220static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2221{
2222 struct rcu_node *rnp = rdp->mynode;
2223
2224 rdp->n_rcu_pending++;
2225
2226 /* Check for CPU stalls, if enabled. */
2227 check_cpu_stall(rsp, rdp);
2228
2229 /* Is the RCU core waiting for a quiescent state from this CPU? */
2230 if (rcu_scheduler_fully_active &&
2231 rdp->qs_pending && !rdp->passed_quiesce) {
2232
2233 /*
2234 * If force_quiescent_state() coming soon and this CPU
2235 * needs a quiescent state, and this is either RCU-sched
2236 * or RCU-bh, force a local reschedule.
2237 */
2238 rdp->n_rp_qs_pending++;
2239 if (!rdp->preemptible &&
2240 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
2241 jiffies))
2242 set_need_resched();
2243 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2244 rdp->n_rp_report_qs++;
2245 return 1;
2246 }
2247
2248 /* Does this CPU have callbacks ready to invoke? */
2249 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2250 rdp->n_rp_cb_ready++;
2251 return 1;
2252 }
2253
2254 /* Has RCU gone idle with this CPU needing another grace period? */
2255 if (cpu_needs_another_gp(rsp, rdp)) {
2256 rdp->n_rp_cpu_needs_gp++;
2257 return 1;
2258 }
2259
2260 /* Has another RCU grace period completed? */
2261 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2262 rdp->n_rp_gp_completed++;
2263 return 1;
2264 }
2265
2266 /* Has a new RCU grace period started? */
2267 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2268 rdp->n_rp_gp_started++;
2269 return 1;
2270 }
2271
2272 /* Has an RCU GP gone long enough to send resched IPIs &c? */
2273 if (rcu_gp_in_progress(rsp) &&
2274 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
2275 rdp->n_rp_need_fqs++;
2276 return 1;
2277 }
2278
2279 /* nothing to do */
2280 rdp->n_rp_need_nothing++;
2281 return 0;
2282}
2283
2284/*
2285 * Check to see if there is any immediate RCU-related work to be done
2286 * by the current CPU, returning 1 if so. This function is part of the
2287 * RCU implementation; it is -not- an exported member of the RCU API.
2288 */
2289static int rcu_pending(int cpu)
2290{
2291 struct rcu_state *rsp;
2292
2293 for_each_rcu_flavor(rsp)
2294 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2295 return 1;
2296 return 0;
2297}
2298
2299/*
2300 * Check to see if any future RCU-related work will need to be done
2301 * by the current CPU, even if none need be done immediately, returning
2302 * 1 if so.
2303 */
2304static int rcu_cpu_has_callbacks(int cpu)
2305{
2306 struct rcu_state *rsp;
2307
2308 /* RCU callbacks either ready or pending? */
2309 for_each_rcu_flavor(rsp)
2310 if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
2311 return 1;
2312 return 0;
2313}
2314
2315/*
2316 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2317 * the compiler is expected to optimize this away.
2318 */
2319static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2320 int cpu, unsigned long done)
2321{
2322 trace_rcu_barrier(rsp->name, s, cpu,
2323 atomic_read(&rsp->barrier_cpu_count), done);
2324}
2325
2326/*
2327 * RCU callback function for _rcu_barrier(). If we are last, wake
2328 * up the task executing _rcu_barrier().
2329 */
2330static void rcu_barrier_callback(struct rcu_head *rhp)
2331{
2332 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2333 struct rcu_state *rsp = rdp->rsp;
2334
2335 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2336 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2337 complete(&rsp->barrier_completion);
2338 } else {
2339 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2340 }
2341}
2342
2343/*
2344 * Called with preemption disabled, and from cross-cpu IRQ context.
2345 */
2346static void rcu_barrier_func(void *type)
2347{
2348 struct rcu_state *rsp = type;
2349 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2350
2351 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2352 atomic_inc(&rsp->barrier_cpu_count);
2353 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2354}
2355
2356/*
2357 * Orchestrate the specified type of RCU barrier, waiting for all
2358 * RCU callbacks of the specified type to complete.
2359 */
2360static void _rcu_barrier(struct rcu_state *rsp)
2361{
2362 int cpu;
2363 unsigned long flags;
2364 struct rcu_data *rdp;
2365 struct rcu_data rd;
2366 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2367 unsigned long snap_done;
2368
2369 init_rcu_head_on_stack(&rd.barrier_head);
2370 _rcu_barrier_trace(rsp, "Begin", -1, snap);
2371
2372 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2373 mutex_lock(&rsp->barrier_mutex);
2374
2375 /*
2376 * Ensure that all prior references, including to ->n_barrier_done,
2377 * are ordered before the _rcu_barrier() machinery.
2378 */
2379 smp_mb(); /* See above block comment. */
2380
2381 /*
2382 * Recheck ->n_barrier_done to see if others did our work for us.
2383 * This means checking ->n_barrier_done for an even-to-odd-to-even
2384 * transition. The "if" expression below therefore rounds the old
2385 * value up to the next even number and adds two before comparing.
2386 */
2387 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
2388 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
2389 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
2390 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2391 smp_mb(); /* caller's subsequent code after above check. */
2392 mutex_unlock(&rsp->barrier_mutex);
2393 return;
2394 }
2395
2396 /*
2397 * Increment ->n_barrier_done to avoid duplicate work. Use
2398 * ACCESS_ONCE() to prevent the compiler from speculating
2399 * the increment to precede the early-exit check.
2400 */
2401 ACCESS_ONCE(rsp->n_barrier_done)++;
2402 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2403 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2404 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2405
2406 /*
2407 * Initialize the count to one rather than to zero in order to
2408 * avoid a too-soon return to zero in case of a short grace period
2409 * (or preemption of this task). Also flag this task as doing
2410 * an rcu_barrier(). This will prevent anyone else from adopting
2411 * orphaned callbacks, which could cause otherwise failure if a
2412 * CPU went offline and quickly came back online. To see this,
2413 * consider the following sequence of events:
2414 *
2415 * 1. We cause CPU 0 to post an rcu_barrier_callback() callback.
2416 * 2. CPU 1 goes offline, orphaning its callbacks.
2417 * 3. CPU 0 adopts CPU 1's orphaned callbacks.
2418 * 4. CPU 1 comes back online.
2419 * 5. We cause CPU 1 to post an rcu_barrier_callback() callback.
2420 * 6. Both rcu_barrier_callback() callbacks are invoked, awakening
2421 * us -- but before CPU 1's orphaned callbacks are invoked!!!
2422 */
2423 init_completion(&rsp->barrier_completion);
2424 atomic_set(&rsp->barrier_cpu_count, 1);
2425 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2426 rsp->rcu_barrier_in_progress = current;
2427 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2428
2429 /*
2430 * Force every CPU with callbacks to register a new callback
2431 * that will tell us when all the preceding callbacks have
2432 * been invoked. If an offline CPU has callbacks, wait for
2433 * it to either come back online or to finish orphaning those
2434 * callbacks.
2435 */
2436 for_each_possible_cpu(cpu) {
2437 preempt_disable();
2438 rdp = per_cpu_ptr(rsp->rda, cpu);
2439 if (cpu_is_offline(cpu)) {
2440 _rcu_barrier_trace(rsp, "Offline", cpu,
2441 rsp->n_barrier_done);
2442 preempt_enable();
2443 while (cpu_is_offline(cpu) && ACCESS_ONCE(rdp->qlen))
2444 schedule_timeout_interruptible(1);
2445 } else if (ACCESS_ONCE(rdp->qlen)) {
2446 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2447 rsp->n_barrier_done);
2448 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2449 preempt_enable();
2450 } else {
2451 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2452 rsp->n_barrier_done);
2453 preempt_enable();
2454 }
2455 }
2456
2457 /*
2458 * Now that all online CPUs have rcu_barrier_callback() callbacks
2459 * posted, we can adopt all of the orphaned callbacks and place
2460 * an rcu_barrier_callback() callback after them. When that is done,
2461 * we are guaranteed to have an rcu_barrier_callback() callback
2462 * following every callback that could possibly have been
2463 * registered before _rcu_barrier() was called.
2464 */
2465 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2466 rcu_adopt_orphan_cbs(rsp);
2467 rsp->rcu_barrier_in_progress = NULL;
2468 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2469 atomic_inc(&rsp->barrier_cpu_count);
2470 smp_mb__after_atomic_inc(); /* Ensure atomic_inc() before callback. */
2471 rd.rsp = rsp;
2472 rsp->call(&rd.barrier_head, rcu_barrier_callback);
2473
2474 /*
2475 * Now that we have an rcu_barrier_callback() callback on each
2476 * CPU, and thus each counted, remove the initial count.
2477 */
2478 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2479 complete(&rsp->barrier_completion);
2480
2481 /* Increment ->n_barrier_done to prevent duplicate work. */
2482 smp_mb(); /* Keep increment after above mechanism. */
2483 ACCESS_ONCE(rsp->n_barrier_done)++;
2484 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2485 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2486 smp_mb(); /* Keep increment before caller's subsequent code. */
2487
2488 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2489 wait_for_completion(&rsp->barrier_completion);
2490
2491 /* Other rcu_barrier() invocations can now safely proceed. */
2492 mutex_unlock(&rsp->barrier_mutex);
2493
2494 destroy_rcu_head_on_stack(&rd.barrier_head);
2495}
2496
2497/**
2498 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2499 */
2500void rcu_barrier_bh(void)
2501{
2502 _rcu_barrier(&rcu_bh_state);
2503}
2504EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2505
2506/**
2507 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2508 */
2509void rcu_barrier_sched(void)
2510{
2511 _rcu_barrier(&rcu_sched_state);
2512}
2513EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2514
2515/*
2516 * Do boot-time initialization of a CPU's per-CPU RCU data.
2517 */
2518static void __init
2519rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2520{
2521 unsigned long flags;
2522 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2523 struct rcu_node *rnp = rcu_get_root(rsp);
2524
2525 /* Set up local state, ensuring consistent view of global state. */
2526 raw_spin_lock_irqsave(&rnp->lock, flags);
2527 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2528 init_callback_list(rdp);
2529 rdp->qlen_lazy = 0;
2530 ACCESS_ONCE(rdp->qlen) = 0;
2531 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2532 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2533 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2534 rdp->cpu = cpu;
2535 rdp->rsp = rsp;
2536 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2537}
2538
2539/*
2540 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2541 * offline event can be happening at a given time. Note also that we
2542 * can accept some slop in the rsp->completed access due to the fact
2543 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2544 */
2545static void __cpuinit
2546rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2547{
2548 unsigned long flags;
2549 unsigned long mask;
2550 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2551 struct rcu_node *rnp = rcu_get_root(rsp);
2552
2553 /* Set up local state, ensuring consistent view of global state. */
2554 raw_spin_lock_irqsave(&rnp->lock, flags);
2555 rdp->beenonline = 1; /* We have now been online. */
2556 rdp->preemptible = preemptible;
2557 rdp->qlen_last_fqs_check = 0;
2558 rdp->n_force_qs_snap = rsp->n_force_qs;
2559 rdp->blimit = blimit;
2560 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2561 atomic_set(&rdp->dynticks->dynticks,
2562 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2563 rcu_prepare_for_idle_init(cpu);
2564 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2565
2566 /*
2567 * A new grace period might start here. If so, we won't be part
2568 * of it, but that is OK, as we are currently in a quiescent state.
2569 */
2570
2571 /* Exclude any attempts to start a new GP on large systems. */
2572 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2573
2574 /* Add CPU to rcu_node bitmasks. */
2575 rnp = rdp->mynode;
2576 mask = rdp->grpmask;
2577 do {
2578 /* Exclude any attempts to start a new GP on small systems. */
2579 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2580 rnp->qsmaskinit |= mask;
2581 mask = rnp->grpmask;
2582 if (rnp == rdp->mynode) {
2583 /*
2584 * If there is a grace period in progress, we will
2585 * set up to wait for it next time we run the
2586 * RCU core code.
2587 */
2588 rdp->gpnum = rnp->completed;
2589 rdp->completed = rnp->completed;
2590 rdp->passed_quiesce = 0;
2591 rdp->qs_pending = 0;
2592 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2593 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2594 }
2595 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2596 rnp = rnp->parent;
2597 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2598
2599 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2600}
2601
2602static void __cpuinit rcu_prepare_cpu(int cpu)
2603{
2604 struct rcu_state *rsp;
2605
2606 for_each_rcu_flavor(rsp)
2607 rcu_init_percpu_data(cpu, rsp,
2608 strcmp(rsp->name, "rcu_preempt") == 0);
2609}
2610
2611/*
2612 * Handle CPU online/offline notification events.
2613 */
2614static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2615 unsigned long action, void *hcpu)
2616{
2617 long cpu = (long)hcpu;
2618 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2619 struct rcu_node *rnp = rdp->mynode;
2620 struct rcu_state *rsp;
2621
2622 trace_rcu_utilization("Start CPU hotplug");
2623 switch (action) {
2624 case CPU_UP_PREPARE:
2625 case CPU_UP_PREPARE_FROZEN:
2626 rcu_prepare_cpu(cpu);
2627 rcu_prepare_kthreads(cpu);
2628 break;
2629 case CPU_ONLINE:
2630 case CPU_DOWN_FAILED:
2631 rcu_node_kthread_setaffinity(rnp, -1);
2632 rcu_cpu_kthread_setrt(cpu, 1);
2633 break;
2634 case CPU_DOWN_PREPARE:
2635 rcu_node_kthread_setaffinity(rnp, cpu);
2636 rcu_cpu_kthread_setrt(cpu, 0);
2637 break;
2638 case CPU_DYING:
2639 case CPU_DYING_FROZEN:
2640 /*
2641 * The whole machine is "stopped" except this CPU, so we can
2642 * touch any data without introducing corruption. We send the
2643 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2644 */
2645 for_each_rcu_flavor(rsp)
2646 rcu_cleanup_dying_cpu(rsp);
2647 rcu_cleanup_after_idle(cpu);
2648 break;
2649 case CPU_DEAD:
2650 case CPU_DEAD_FROZEN:
2651 case CPU_UP_CANCELED:
2652 case CPU_UP_CANCELED_FROZEN:
2653 for_each_rcu_flavor(rsp)
2654 rcu_cleanup_dead_cpu(cpu, rsp);
2655 break;
2656 default:
2657 break;
2658 }
2659 trace_rcu_utilization("End CPU hotplug");
2660 return NOTIFY_OK;
2661}
2662
2663/*
2664 * Spawn the kthread that handles this RCU flavor's grace periods.
2665 */
2666static int __init rcu_spawn_gp_kthread(void)
2667{
2668 unsigned long flags;
2669 struct rcu_node *rnp;
2670 struct rcu_state *rsp;
2671 struct task_struct *t;
2672
2673 for_each_rcu_flavor(rsp) {
2674 t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
2675 BUG_ON(IS_ERR(t));
2676 rnp = rcu_get_root(rsp);
2677 raw_spin_lock_irqsave(&rnp->lock, flags);
2678 rsp->gp_kthread = t;
2679 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2680 }
2681 return 0;
2682}
2683early_initcall(rcu_spawn_gp_kthread);
2684
2685/*
2686 * This function is invoked towards the end of the scheduler's initialization
2687 * process. Before this is called, the idle task might contain
2688 * RCU read-side critical sections (during which time, this idle
2689 * task is booting the system). After this function is called, the
2690 * idle tasks are prohibited from containing RCU read-side critical
2691 * sections. This function also enables RCU lockdep checking.
2692 */
2693void rcu_scheduler_starting(void)
2694{
2695 WARN_ON(num_online_cpus() != 1);
2696 WARN_ON(nr_context_switches() > 0);
2697 rcu_scheduler_active = 1;
2698}
2699
2700/*
2701 * Compute the per-level fanout, either using the exact fanout specified
2702 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2703 */
2704#ifdef CONFIG_RCU_FANOUT_EXACT
2705static void __init rcu_init_levelspread(struct rcu_state *rsp)
2706{
2707 int i;
2708
2709 for (i = rcu_num_lvls - 1; i > 0; i--)
2710 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2711 rsp->levelspread[0] = rcu_fanout_leaf;
2712}
2713#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2714static void __init rcu_init_levelspread(struct rcu_state *rsp)
2715{
2716 int ccur;
2717 int cprv;
2718 int i;
2719
2720 cprv = NR_CPUS;
2721 for (i = rcu_num_lvls - 1; i >= 0; i--) {
2722 ccur = rsp->levelcnt[i];
2723 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2724 cprv = ccur;
2725 }
2726}
2727#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2728
2729/*
2730 * Helper function for rcu_init() that initializes one rcu_state structure.
2731 */
2732static void __init rcu_init_one(struct rcu_state *rsp,
2733 struct rcu_data __percpu *rda)
2734{
2735 static char *buf[] = { "rcu_node_level_0",
2736 "rcu_node_level_1",
2737 "rcu_node_level_2",
2738 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2739 int cpustride = 1;
2740 int i;
2741 int j;
2742 struct rcu_node *rnp;
2743
2744 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2745
2746 /* Initialize the level-tracking arrays. */
2747
2748 for (i = 0; i < rcu_num_lvls; i++)
2749 rsp->levelcnt[i] = num_rcu_lvl[i];
2750 for (i = 1; i < rcu_num_lvls; i++)
2751 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2752 rcu_init_levelspread(rsp);
2753
2754 /* Initialize the elements themselves, starting from the leaves. */
2755
2756 for (i = rcu_num_lvls - 1; i >= 0; i--) {
2757 cpustride *= rsp->levelspread[i];
2758 rnp = rsp->level[i];
2759 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2760 raw_spin_lock_init(&rnp->lock);
2761 lockdep_set_class_and_name(&rnp->lock,
2762 &rcu_node_class[i], buf[i]);
2763 rnp->gpnum = 0;
2764 rnp->qsmask = 0;
2765 rnp->qsmaskinit = 0;
2766 rnp->grplo = j * cpustride;
2767 rnp->grphi = (j + 1) * cpustride - 1;
2768 if (rnp->grphi >= NR_CPUS)
2769 rnp->grphi = NR_CPUS - 1;
2770 if (i == 0) {
2771 rnp->grpnum = 0;
2772 rnp->grpmask = 0;
2773 rnp->parent = NULL;
2774 } else {
2775 rnp->grpnum = j % rsp->levelspread[i - 1];
2776 rnp->grpmask = 1UL << rnp->grpnum;
2777 rnp->parent = rsp->level[i - 1] +
2778 j / rsp->levelspread[i - 1];
2779 }
2780 rnp->level = i;
2781 INIT_LIST_HEAD(&rnp->blkd_tasks);
2782 }
2783 }
2784
2785 rsp->rda = rda;
2786 init_waitqueue_head(&rsp->gp_wq);
2787 rnp = rsp->level[rcu_num_lvls - 1];
2788 for_each_possible_cpu(i) {
2789 while (i > rnp->grphi)
2790 rnp++;
2791 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2792 rcu_boot_init_percpu_data(i, rsp);
2793 }
2794 list_add(&rsp->flavors, &rcu_struct_flavors);
2795}
2796
2797/*
2798 * Compute the rcu_node tree geometry from kernel parameters. This cannot
2799 * replace the definitions in rcutree.h because those are needed to size
2800 * the ->node array in the rcu_state structure.
2801 */
2802static void __init rcu_init_geometry(void)
2803{
2804 int i;
2805 int j;
2806 int n = nr_cpu_ids;
2807 int rcu_capacity[MAX_RCU_LVLS + 1];
2808
2809 /* If the compile-time values are accurate, just leave. */
2810 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF)
2811 return;
2812
2813 /*
2814 * Compute number of nodes that can be handled an rcu_node tree
2815 * with the given number of levels. Setting rcu_capacity[0] makes
2816 * some of the arithmetic easier.
2817 */
2818 rcu_capacity[0] = 1;
2819 rcu_capacity[1] = rcu_fanout_leaf;
2820 for (i = 2; i <= MAX_RCU_LVLS; i++)
2821 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
2822
2823 /*
2824 * The boot-time rcu_fanout_leaf parameter is only permitted
2825 * to increase the leaf-level fanout, not decrease it. Of course,
2826 * the leaf-level fanout cannot exceed the number of bits in
2827 * the rcu_node masks. Finally, the tree must be able to accommodate
2828 * the configured number of CPUs. Complain and fall back to the
2829 * compile-time values if these limits are exceeded.
2830 */
2831 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
2832 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
2833 n > rcu_capacity[MAX_RCU_LVLS]) {
2834 WARN_ON(1);
2835 return;
2836 }
2837
2838 /* Calculate the number of rcu_nodes at each level of the tree. */
2839 for (i = 1; i <= MAX_RCU_LVLS; i++)
2840 if (n <= rcu_capacity[i]) {
2841 for (j = 0; j <= i; j++)
2842 num_rcu_lvl[j] =
2843 DIV_ROUND_UP(n, rcu_capacity[i - j]);
2844 rcu_num_lvls = i;
2845 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
2846 num_rcu_lvl[j] = 0;
2847 break;
2848 }
2849
2850 /* Calculate the total number of rcu_node structures. */
2851 rcu_num_nodes = 0;
2852 for (i = 0; i <= MAX_RCU_LVLS; i++)
2853 rcu_num_nodes += num_rcu_lvl[i];
2854 rcu_num_nodes -= n;
2855}
2856
2857void __init rcu_init(void)
2858{
2859 int cpu;
2860
2861 rcu_bootup_announce();
2862 rcu_init_geometry();
2863 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2864 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2865 __rcu_init_preempt();
2866 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2867
2868 /*
2869 * We don't need protection against CPU-hotplug here because
2870 * this is called early in boot, before either interrupts
2871 * or the scheduler are operational.
2872 */
2873 cpu_notifier(rcu_cpu_notify, 0);
2874 for_each_online_cpu(cpu)
2875 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2876 check_cpu_stall_init();
2877}
2878
2879#include "rcutree_plugin.h"
This page took 0.055352 seconds and 5 git commands to generate.