rcu: Tag callback lists with corresponding grace-period number
[deliverable/linux.git] / kernel / rcutree.c
... / ...
CommitLineData
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
38#include <linux/nmi.h>
39#include <linux/atomic.h>
40#include <linux/bitops.h>
41#include <linux/export.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
49#include <linux/kernel_stat.h>
50#include <linux/wait.h>
51#include <linux/kthread.h>
52#include <linux/prefetch.h>
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
55#include <linux/random.h>
56
57#include "rcutree.h"
58#include <trace/events/rcu.h>
59
60#include "rcu.h"
61
62/* Data structures. */
63
64static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
65static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
66
67#define RCU_STATE_INITIALIZER(sname, cr) { \
68 .level = { &sname##_state.node[0] }, \
69 .call = cr, \
70 .fqs_state = RCU_GP_IDLE, \
71 .gpnum = 0UL - 300UL, \
72 .completed = 0UL - 300UL, \
73 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
74 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
75 .orphan_donetail = &sname##_state.orphan_donelist, \
76 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
77 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
78 .name = #sname, \
79}
80
81struct rcu_state rcu_sched_state =
82 RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
83DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
84
85struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
86DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
87
88static struct rcu_state *rcu_state;
89LIST_HEAD(rcu_struct_flavors);
90
91/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
92static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
93module_param(rcu_fanout_leaf, int, 0444);
94int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
95static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
96 NUM_RCU_LVL_0,
97 NUM_RCU_LVL_1,
98 NUM_RCU_LVL_2,
99 NUM_RCU_LVL_3,
100 NUM_RCU_LVL_4,
101};
102int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
103
104/*
105 * The rcu_scheduler_active variable transitions from zero to one just
106 * before the first task is spawned. So when this variable is zero, RCU
107 * can assume that there is but one task, allowing RCU to (for example)
108 * optimized synchronize_sched() to a simple barrier(). When this variable
109 * is one, RCU must actually do all the hard work required to detect real
110 * grace periods. This variable is also used to suppress boot-time false
111 * positives from lockdep-RCU error checking.
112 */
113int rcu_scheduler_active __read_mostly;
114EXPORT_SYMBOL_GPL(rcu_scheduler_active);
115
116/*
117 * The rcu_scheduler_fully_active variable transitions from zero to one
118 * during the early_initcall() processing, which is after the scheduler
119 * is capable of creating new tasks. So RCU processing (for example,
120 * creating tasks for RCU priority boosting) must be delayed until after
121 * rcu_scheduler_fully_active transitions from zero to one. We also
122 * currently delay invocation of any RCU callbacks until after this point.
123 *
124 * It might later prove better for people registering RCU callbacks during
125 * early boot to take responsibility for these callbacks, but one step at
126 * a time.
127 */
128static int rcu_scheduler_fully_active __read_mostly;
129
130#ifdef CONFIG_RCU_BOOST
131
132/*
133 * Control variables for per-CPU and per-rcu_node kthreads. These
134 * handle all flavors of RCU.
135 */
136static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
137DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
138DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
139DEFINE_PER_CPU(char, rcu_cpu_has_work);
140
141#endif /* #ifdef CONFIG_RCU_BOOST */
142
143static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
144static void invoke_rcu_core(void);
145static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
146
147/*
148 * Track the rcutorture test sequence number and the update version
149 * number within a given test. The rcutorture_testseq is incremented
150 * on every rcutorture module load and unload, so has an odd value
151 * when a test is running. The rcutorture_vernum is set to zero
152 * when rcutorture starts and is incremented on each rcutorture update.
153 * These variables enable correlating rcutorture output with the
154 * RCU tracing information.
155 */
156unsigned long rcutorture_testseq;
157unsigned long rcutorture_vernum;
158
159/*
160 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
161 * permit this function to be invoked without holding the root rcu_node
162 * structure's ->lock, but of course results can be subject to change.
163 */
164static int rcu_gp_in_progress(struct rcu_state *rsp)
165{
166 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
167}
168
169/*
170 * Note a quiescent state. Because we do not need to know
171 * how many quiescent states passed, just if there was at least
172 * one since the start of the grace period, this just sets a flag.
173 * The caller must have disabled preemption.
174 */
175void rcu_sched_qs(int cpu)
176{
177 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
178
179 if (rdp->passed_quiesce == 0)
180 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
181 rdp->passed_quiesce = 1;
182}
183
184void rcu_bh_qs(int cpu)
185{
186 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
187
188 if (rdp->passed_quiesce == 0)
189 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
190 rdp->passed_quiesce = 1;
191}
192
193/*
194 * Note a context switch. This is a quiescent state for RCU-sched,
195 * and requires special handling for preemptible RCU.
196 * The caller must have disabled preemption.
197 */
198void rcu_note_context_switch(int cpu)
199{
200 trace_rcu_utilization("Start context switch");
201 rcu_sched_qs(cpu);
202 rcu_preempt_note_context_switch(cpu);
203 trace_rcu_utilization("End context switch");
204}
205EXPORT_SYMBOL_GPL(rcu_note_context_switch);
206
207DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
208 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
209 .dynticks = ATOMIC_INIT(1),
210};
211
212static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
213static long qhimark = 10000; /* If this many pending, ignore blimit. */
214static long qlowmark = 100; /* Once only this many pending, use blimit. */
215
216module_param(blimit, long, 0444);
217module_param(qhimark, long, 0444);
218module_param(qlowmark, long, 0444);
219
220int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
221int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
222
223module_param(rcu_cpu_stall_suppress, int, 0644);
224module_param(rcu_cpu_stall_timeout, int, 0644);
225
226static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
227static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;
228
229module_param(jiffies_till_first_fqs, ulong, 0644);
230module_param(jiffies_till_next_fqs, ulong, 0644);
231
232static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
233static void force_quiescent_state(struct rcu_state *rsp);
234static int rcu_pending(int cpu);
235
236/*
237 * Return the number of RCU-sched batches processed thus far for debug & stats.
238 */
239long rcu_batches_completed_sched(void)
240{
241 return rcu_sched_state.completed;
242}
243EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
244
245/*
246 * Return the number of RCU BH batches processed thus far for debug & stats.
247 */
248long rcu_batches_completed_bh(void)
249{
250 return rcu_bh_state.completed;
251}
252EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
253
254/*
255 * Force a quiescent state for RCU BH.
256 */
257void rcu_bh_force_quiescent_state(void)
258{
259 force_quiescent_state(&rcu_bh_state);
260}
261EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
262
263/*
264 * Record the number of times rcutorture tests have been initiated and
265 * terminated. This information allows the debugfs tracing stats to be
266 * correlated to the rcutorture messages, even when the rcutorture module
267 * is being repeatedly loaded and unloaded. In other words, we cannot
268 * store this state in rcutorture itself.
269 */
270void rcutorture_record_test_transition(void)
271{
272 rcutorture_testseq++;
273 rcutorture_vernum = 0;
274}
275EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
276
277/*
278 * Record the number of writer passes through the current rcutorture test.
279 * This is also used to correlate debugfs tracing stats with the rcutorture
280 * messages.
281 */
282void rcutorture_record_progress(unsigned long vernum)
283{
284 rcutorture_vernum++;
285}
286EXPORT_SYMBOL_GPL(rcutorture_record_progress);
287
288/*
289 * Force a quiescent state for RCU-sched.
290 */
291void rcu_sched_force_quiescent_state(void)
292{
293 force_quiescent_state(&rcu_sched_state);
294}
295EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
296
297/*
298 * Does the CPU have callbacks ready to be invoked?
299 */
300static int
301cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
302{
303 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
304 rdp->nxttail[RCU_DONE_TAIL] != NULL;
305}
306
307/*
308 * Does the current CPU require a not-yet-started grace period?
309 * The caller must have disabled interrupts to prevent races with
310 * normal callback registry.
311 */
312static int
313cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
314{
315 int i;
316
317 if (rcu_gp_in_progress(rsp))
318 return 0; /* No, a grace period is already in progress. */
319 if (!rdp->nxttail[RCU_NEXT_TAIL])
320 return 0; /* No, this is a no-CBs (or offline) CPU. */
321 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
322 return 1; /* Yes, this CPU has newly registered callbacks. */
323 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
324 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
325 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
326 rdp->nxtcompleted[i]))
327 return 1; /* Yes, CBs for future grace period. */
328 return 0; /* No grace period needed. */
329}
330
331/*
332 * Return the root node of the specified rcu_state structure.
333 */
334static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
335{
336 return &rsp->node[0];
337}
338
339/*
340 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
341 *
342 * If the new value of the ->dynticks_nesting counter now is zero,
343 * we really have entered idle, and must do the appropriate accounting.
344 * The caller must have disabled interrupts.
345 */
346static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
347 bool user)
348{
349 trace_rcu_dyntick("Start", oldval, 0);
350 if (!user && !is_idle_task(current)) {
351 struct task_struct *idle = idle_task(smp_processor_id());
352
353 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
354 ftrace_dump(DUMP_ORIG);
355 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
356 current->pid, current->comm,
357 idle->pid, idle->comm); /* must be idle task! */
358 }
359 rcu_prepare_for_idle(smp_processor_id());
360 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
361 smp_mb__before_atomic_inc(); /* See above. */
362 atomic_inc(&rdtp->dynticks);
363 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
364 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
365
366 /*
367 * It is illegal to enter an extended quiescent state while
368 * in an RCU read-side critical section.
369 */
370 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
371 "Illegal idle entry in RCU read-side critical section.");
372 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
373 "Illegal idle entry in RCU-bh read-side critical section.");
374 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
375 "Illegal idle entry in RCU-sched read-side critical section.");
376}
377
378/*
379 * Enter an RCU extended quiescent state, which can be either the
380 * idle loop or adaptive-tickless usermode execution.
381 */
382static void rcu_eqs_enter(bool user)
383{
384 long long oldval;
385 struct rcu_dynticks *rdtp;
386
387 rdtp = &__get_cpu_var(rcu_dynticks);
388 oldval = rdtp->dynticks_nesting;
389 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
390 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
391 rdtp->dynticks_nesting = 0;
392 else
393 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
394 rcu_eqs_enter_common(rdtp, oldval, user);
395}
396
397/**
398 * rcu_idle_enter - inform RCU that current CPU is entering idle
399 *
400 * Enter idle mode, in other words, -leave- the mode in which RCU
401 * read-side critical sections can occur. (Though RCU read-side
402 * critical sections can occur in irq handlers in idle, a possibility
403 * handled by irq_enter() and irq_exit().)
404 *
405 * We crowbar the ->dynticks_nesting field to zero to allow for
406 * the possibility of usermode upcalls having messed up our count
407 * of interrupt nesting level during the prior busy period.
408 */
409void rcu_idle_enter(void)
410{
411 unsigned long flags;
412
413 local_irq_save(flags);
414 rcu_eqs_enter(false);
415 local_irq_restore(flags);
416}
417EXPORT_SYMBOL_GPL(rcu_idle_enter);
418
419#ifdef CONFIG_RCU_USER_QS
420/**
421 * rcu_user_enter - inform RCU that we are resuming userspace.
422 *
423 * Enter RCU idle mode right before resuming userspace. No use of RCU
424 * is permitted between this call and rcu_user_exit(). This way the
425 * CPU doesn't need to maintain the tick for RCU maintenance purposes
426 * when the CPU runs in userspace.
427 */
428void rcu_user_enter(void)
429{
430 rcu_eqs_enter(1);
431}
432
433/**
434 * rcu_user_enter_after_irq - inform RCU that we are going to resume userspace
435 * after the current irq returns.
436 *
437 * This is similar to rcu_user_enter() but in the context of a non-nesting
438 * irq. After this call, RCU enters into idle mode when the interrupt
439 * returns.
440 */
441void rcu_user_enter_after_irq(void)
442{
443 unsigned long flags;
444 struct rcu_dynticks *rdtp;
445
446 local_irq_save(flags);
447 rdtp = &__get_cpu_var(rcu_dynticks);
448 /* Ensure this irq is interrupting a non-idle RCU state. */
449 WARN_ON_ONCE(!(rdtp->dynticks_nesting & DYNTICK_TASK_MASK));
450 rdtp->dynticks_nesting = 1;
451 local_irq_restore(flags);
452}
453#endif /* CONFIG_RCU_USER_QS */
454
455/**
456 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
457 *
458 * Exit from an interrupt handler, which might possibly result in entering
459 * idle mode, in other words, leaving the mode in which read-side critical
460 * sections can occur.
461 *
462 * This code assumes that the idle loop never does anything that might
463 * result in unbalanced calls to irq_enter() and irq_exit(). If your
464 * architecture violates this assumption, RCU will give you what you
465 * deserve, good and hard. But very infrequently and irreproducibly.
466 *
467 * Use things like work queues to work around this limitation.
468 *
469 * You have been warned.
470 */
471void rcu_irq_exit(void)
472{
473 unsigned long flags;
474 long long oldval;
475 struct rcu_dynticks *rdtp;
476
477 local_irq_save(flags);
478 rdtp = &__get_cpu_var(rcu_dynticks);
479 oldval = rdtp->dynticks_nesting;
480 rdtp->dynticks_nesting--;
481 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
482 if (rdtp->dynticks_nesting)
483 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
484 else
485 rcu_eqs_enter_common(rdtp, oldval, true);
486 local_irq_restore(flags);
487}
488
489/*
490 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
491 *
492 * If the new value of the ->dynticks_nesting counter was previously zero,
493 * we really have exited idle, and must do the appropriate accounting.
494 * The caller must have disabled interrupts.
495 */
496static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
497 int user)
498{
499 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
500 atomic_inc(&rdtp->dynticks);
501 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
502 smp_mb__after_atomic_inc(); /* See above. */
503 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
504 rcu_cleanup_after_idle(smp_processor_id());
505 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
506 if (!user && !is_idle_task(current)) {
507 struct task_struct *idle = idle_task(smp_processor_id());
508
509 trace_rcu_dyntick("Error on exit: not idle task",
510 oldval, rdtp->dynticks_nesting);
511 ftrace_dump(DUMP_ORIG);
512 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
513 current->pid, current->comm,
514 idle->pid, idle->comm); /* must be idle task! */
515 }
516}
517
518/*
519 * Exit an RCU extended quiescent state, which can be either the
520 * idle loop or adaptive-tickless usermode execution.
521 */
522static void rcu_eqs_exit(bool user)
523{
524 struct rcu_dynticks *rdtp;
525 long long oldval;
526
527 rdtp = &__get_cpu_var(rcu_dynticks);
528 oldval = rdtp->dynticks_nesting;
529 WARN_ON_ONCE(oldval < 0);
530 if (oldval & DYNTICK_TASK_NEST_MASK)
531 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
532 else
533 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
534 rcu_eqs_exit_common(rdtp, oldval, user);
535}
536
537/**
538 * rcu_idle_exit - inform RCU that current CPU is leaving idle
539 *
540 * Exit idle mode, in other words, -enter- the mode in which RCU
541 * read-side critical sections can occur.
542 *
543 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
544 * allow for the possibility of usermode upcalls messing up our count
545 * of interrupt nesting level during the busy period that is just
546 * now starting.
547 */
548void rcu_idle_exit(void)
549{
550 unsigned long flags;
551
552 local_irq_save(flags);
553 rcu_eqs_exit(false);
554 local_irq_restore(flags);
555}
556EXPORT_SYMBOL_GPL(rcu_idle_exit);
557
558#ifdef CONFIG_RCU_USER_QS
559/**
560 * rcu_user_exit - inform RCU that we are exiting userspace.
561 *
562 * Exit RCU idle mode while entering the kernel because it can
563 * run a RCU read side critical section anytime.
564 */
565void rcu_user_exit(void)
566{
567 rcu_eqs_exit(1);
568}
569
570/**
571 * rcu_user_exit_after_irq - inform RCU that we won't resume to userspace
572 * idle mode after the current non-nesting irq returns.
573 *
574 * This is similar to rcu_user_exit() but in the context of an irq.
575 * This is called when the irq has interrupted a userspace RCU idle mode
576 * context. When the current non-nesting interrupt returns after this call,
577 * the CPU won't restore the RCU idle mode.
578 */
579void rcu_user_exit_after_irq(void)
580{
581 unsigned long flags;
582 struct rcu_dynticks *rdtp;
583
584 local_irq_save(flags);
585 rdtp = &__get_cpu_var(rcu_dynticks);
586 /* Ensure we are interrupting an RCU idle mode. */
587 WARN_ON_ONCE(rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK);
588 rdtp->dynticks_nesting += DYNTICK_TASK_EXIT_IDLE;
589 local_irq_restore(flags);
590}
591#endif /* CONFIG_RCU_USER_QS */
592
593/**
594 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
595 *
596 * Enter an interrupt handler, which might possibly result in exiting
597 * idle mode, in other words, entering the mode in which read-side critical
598 * sections can occur.
599 *
600 * Note that the Linux kernel is fully capable of entering an interrupt
601 * handler that it never exits, for example when doing upcalls to
602 * user mode! This code assumes that the idle loop never does upcalls to
603 * user mode. If your architecture does do upcalls from the idle loop (or
604 * does anything else that results in unbalanced calls to the irq_enter()
605 * and irq_exit() functions), RCU will give you what you deserve, good
606 * and hard. But very infrequently and irreproducibly.
607 *
608 * Use things like work queues to work around this limitation.
609 *
610 * You have been warned.
611 */
612void rcu_irq_enter(void)
613{
614 unsigned long flags;
615 struct rcu_dynticks *rdtp;
616 long long oldval;
617
618 local_irq_save(flags);
619 rdtp = &__get_cpu_var(rcu_dynticks);
620 oldval = rdtp->dynticks_nesting;
621 rdtp->dynticks_nesting++;
622 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
623 if (oldval)
624 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
625 else
626 rcu_eqs_exit_common(rdtp, oldval, true);
627 local_irq_restore(flags);
628}
629
630/**
631 * rcu_nmi_enter - inform RCU of entry to NMI context
632 *
633 * If the CPU was idle with dynamic ticks active, and there is no
634 * irq handler running, this updates rdtp->dynticks_nmi to let the
635 * RCU grace-period handling know that the CPU is active.
636 */
637void rcu_nmi_enter(void)
638{
639 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
640
641 if (rdtp->dynticks_nmi_nesting == 0 &&
642 (atomic_read(&rdtp->dynticks) & 0x1))
643 return;
644 rdtp->dynticks_nmi_nesting++;
645 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
646 atomic_inc(&rdtp->dynticks);
647 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
648 smp_mb__after_atomic_inc(); /* See above. */
649 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
650}
651
652/**
653 * rcu_nmi_exit - inform RCU of exit from NMI context
654 *
655 * If the CPU was idle with dynamic ticks active, and there is no
656 * irq handler running, this updates rdtp->dynticks_nmi to let the
657 * RCU grace-period handling know that the CPU is no longer active.
658 */
659void rcu_nmi_exit(void)
660{
661 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
662
663 if (rdtp->dynticks_nmi_nesting == 0 ||
664 --rdtp->dynticks_nmi_nesting != 0)
665 return;
666 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
667 smp_mb__before_atomic_inc(); /* See above. */
668 atomic_inc(&rdtp->dynticks);
669 smp_mb__after_atomic_inc(); /* Force delay to next write. */
670 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
671}
672
673/**
674 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
675 *
676 * If the current CPU is in its idle loop and is neither in an interrupt
677 * or NMI handler, return true.
678 */
679int rcu_is_cpu_idle(void)
680{
681 int ret;
682
683 preempt_disable();
684 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
685 preempt_enable();
686 return ret;
687}
688EXPORT_SYMBOL(rcu_is_cpu_idle);
689
690#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
691
692/*
693 * Is the current CPU online? Disable preemption to avoid false positives
694 * that could otherwise happen due to the current CPU number being sampled,
695 * this task being preempted, its old CPU being taken offline, resuming
696 * on some other CPU, then determining that its old CPU is now offline.
697 * It is OK to use RCU on an offline processor during initial boot, hence
698 * the check for rcu_scheduler_fully_active. Note also that it is OK
699 * for a CPU coming online to use RCU for one jiffy prior to marking itself
700 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
701 * offline to continue to use RCU for one jiffy after marking itself
702 * offline in the cpu_online_mask. This leniency is necessary given the
703 * non-atomic nature of the online and offline processing, for example,
704 * the fact that a CPU enters the scheduler after completing the CPU_DYING
705 * notifiers.
706 *
707 * This is also why RCU internally marks CPUs online during the
708 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
709 *
710 * Disable checking if in an NMI handler because we cannot safely report
711 * errors from NMI handlers anyway.
712 */
713bool rcu_lockdep_current_cpu_online(void)
714{
715 struct rcu_data *rdp;
716 struct rcu_node *rnp;
717 bool ret;
718
719 if (in_nmi())
720 return 1;
721 preempt_disable();
722 rdp = &__get_cpu_var(rcu_sched_data);
723 rnp = rdp->mynode;
724 ret = (rdp->grpmask & rnp->qsmaskinit) ||
725 !rcu_scheduler_fully_active;
726 preempt_enable();
727 return ret;
728}
729EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
730
731#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
732
733/**
734 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
735 *
736 * If the current CPU is idle or running at a first-level (not nested)
737 * interrupt from idle, return true. The caller must have at least
738 * disabled preemption.
739 */
740int rcu_is_cpu_rrupt_from_idle(void)
741{
742 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
743}
744
745/*
746 * Snapshot the specified CPU's dynticks counter so that we can later
747 * credit them with an implicit quiescent state. Return 1 if this CPU
748 * is in dynticks idle mode, which is an extended quiescent state.
749 */
750static int dyntick_save_progress_counter(struct rcu_data *rdp)
751{
752 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
753 return (rdp->dynticks_snap & 0x1) == 0;
754}
755
756/*
757 * Return true if the specified CPU has passed through a quiescent
758 * state by virtue of being in or having passed through an dynticks
759 * idle state since the last call to dyntick_save_progress_counter()
760 * for this same CPU, or by virtue of having been offline.
761 */
762static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
763{
764 unsigned int curr;
765 unsigned int snap;
766
767 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
768 snap = (unsigned int)rdp->dynticks_snap;
769
770 /*
771 * If the CPU passed through or entered a dynticks idle phase with
772 * no active irq/NMI handlers, then we can safely pretend that the CPU
773 * already acknowledged the request to pass through a quiescent
774 * state. Either way, that CPU cannot possibly be in an RCU
775 * read-side critical section that started before the beginning
776 * of the current RCU grace period.
777 */
778 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
779 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
780 rdp->dynticks_fqs++;
781 return 1;
782 }
783
784 /*
785 * Check for the CPU being offline, but only if the grace period
786 * is old enough. We don't need to worry about the CPU changing
787 * state: If we see it offline even once, it has been through a
788 * quiescent state.
789 *
790 * The reason for insisting that the grace period be at least
791 * one jiffy old is that CPUs that are not quite online and that
792 * have just gone offline can still execute RCU read-side critical
793 * sections.
794 */
795 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
796 return 0; /* Grace period is not old enough. */
797 barrier();
798 if (cpu_is_offline(rdp->cpu)) {
799 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
800 rdp->offline_fqs++;
801 return 1;
802 }
803 return 0;
804}
805
806static int jiffies_till_stall_check(void)
807{
808 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
809
810 /*
811 * Limit check must be consistent with the Kconfig limits
812 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
813 */
814 if (till_stall_check < 3) {
815 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
816 till_stall_check = 3;
817 } else if (till_stall_check > 300) {
818 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
819 till_stall_check = 300;
820 }
821 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
822}
823
824static void record_gp_stall_check_time(struct rcu_state *rsp)
825{
826 rsp->gp_start = jiffies;
827 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
828}
829
830/*
831 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
832 * for architectures that do not implement trigger_all_cpu_backtrace().
833 * The NMI-triggered stack traces are more accurate because they are
834 * printed by the target CPU.
835 */
836static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
837{
838 int cpu;
839 unsigned long flags;
840 struct rcu_node *rnp;
841
842 rcu_for_each_leaf_node(rsp, rnp) {
843 raw_spin_lock_irqsave(&rnp->lock, flags);
844 if (rnp->qsmask != 0) {
845 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
846 if (rnp->qsmask & (1UL << cpu))
847 dump_cpu_task(rnp->grplo + cpu);
848 }
849 raw_spin_unlock_irqrestore(&rnp->lock, flags);
850 }
851}
852
853static void print_other_cpu_stall(struct rcu_state *rsp)
854{
855 int cpu;
856 long delta;
857 unsigned long flags;
858 int ndetected = 0;
859 struct rcu_node *rnp = rcu_get_root(rsp);
860 long totqlen = 0;
861
862 /* Only let one CPU complain about others per time interval. */
863
864 raw_spin_lock_irqsave(&rnp->lock, flags);
865 delta = jiffies - rsp->jiffies_stall;
866 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
867 raw_spin_unlock_irqrestore(&rnp->lock, flags);
868 return;
869 }
870 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
871 raw_spin_unlock_irqrestore(&rnp->lock, flags);
872
873 /*
874 * OK, time to rat on our buddy...
875 * See Documentation/RCU/stallwarn.txt for info on how to debug
876 * RCU CPU stall warnings.
877 */
878 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
879 rsp->name);
880 print_cpu_stall_info_begin();
881 rcu_for_each_leaf_node(rsp, rnp) {
882 raw_spin_lock_irqsave(&rnp->lock, flags);
883 ndetected += rcu_print_task_stall(rnp);
884 if (rnp->qsmask != 0) {
885 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
886 if (rnp->qsmask & (1UL << cpu)) {
887 print_cpu_stall_info(rsp,
888 rnp->grplo + cpu);
889 ndetected++;
890 }
891 }
892 raw_spin_unlock_irqrestore(&rnp->lock, flags);
893 }
894
895 /*
896 * Now rat on any tasks that got kicked up to the root rcu_node
897 * due to CPU offlining.
898 */
899 rnp = rcu_get_root(rsp);
900 raw_spin_lock_irqsave(&rnp->lock, flags);
901 ndetected += rcu_print_task_stall(rnp);
902 raw_spin_unlock_irqrestore(&rnp->lock, flags);
903
904 print_cpu_stall_info_end();
905 for_each_possible_cpu(cpu)
906 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
907 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
908 smp_processor_id(), (long)(jiffies - rsp->gp_start),
909 rsp->gpnum, rsp->completed, totqlen);
910 if (ndetected == 0)
911 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
912 else if (!trigger_all_cpu_backtrace())
913 rcu_dump_cpu_stacks(rsp);
914
915 /* Complain about tasks blocking the grace period. */
916
917 rcu_print_detail_task_stall(rsp);
918
919 force_quiescent_state(rsp); /* Kick them all. */
920}
921
922static void print_cpu_stall(struct rcu_state *rsp)
923{
924 int cpu;
925 unsigned long flags;
926 struct rcu_node *rnp = rcu_get_root(rsp);
927 long totqlen = 0;
928
929 /*
930 * OK, time to rat on ourselves...
931 * See Documentation/RCU/stallwarn.txt for info on how to debug
932 * RCU CPU stall warnings.
933 */
934 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
935 print_cpu_stall_info_begin();
936 print_cpu_stall_info(rsp, smp_processor_id());
937 print_cpu_stall_info_end();
938 for_each_possible_cpu(cpu)
939 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
940 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
941 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
942 if (!trigger_all_cpu_backtrace())
943 dump_stack();
944
945 raw_spin_lock_irqsave(&rnp->lock, flags);
946 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
947 rsp->jiffies_stall = jiffies +
948 3 * jiffies_till_stall_check() + 3;
949 raw_spin_unlock_irqrestore(&rnp->lock, flags);
950
951 set_need_resched(); /* kick ourselves to get things going. */
952}
953
954static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
955{
956 unsigned long j;
957 unsigned long js;
958 struct rcu_node *rnp;
959
960 if (rcu_cpu_stall_suppress)
961 return;
962 j = ACCESS_ONCE(jiffies);
963 js = ACCESS_ONCE(rsp->jiffies_stall);
964 rnp = rdp->mynode;
965 if (rcu_gp_in_progress(rsp) &&
966 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
967
968 /* We haven't checked in, so go dump stack. */
969 print_cpu_stall(rsp);
970
971 } else if (rcu_gp_in_progress(rsp) &&
972 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
973
974 /* They had a few time units to dump stack, so complain. */
975 print_other_cpu_stall(rsp);
976 }
977}
978
979static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
980{
981 rcu_cpu_stall_suppress = 1;
982 return NOTIFY_DONE;
983}
984
985/**
986 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
987 *
988 * Set the stall-warning timeout way off into the future, thus preventing
989 * any RCU CPU stall-warning messages from appearing in the current set of
990 * RCU grace periods.
991 *
992 * The caller must disable hard irqs.
993 */
994void rcu_cpu_stall_reset(void)
995{
996 struct rcu_state *rsp;
997
998 for_each_rcu_flavor(rsp)
999 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
1000}
1001
1002static struct notifier_block rcu_panic_block = {
1003 .notifier_call = rcu_panic,
1004};
1005
1006static void __init check_cpu_stall_init(void)
1007{
1008 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
1009}
1010
1011/*
1012 * Update CPU-local rcu_data state to record the newly noticed grace period.
1013 * This is used both when we started the grace period and when we notice
1014 * that someone else started the grace period. The caller must hold the
1015 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
1016 * and must have irqs disabled.
1017 */
1018static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1019{
1020 if (rdp->gpnum != rnp->gpnum) {
1021 /*
1022 * If the current grace period is waiting for this CPU,
1023 * set up to detect a quiescent state, otherwise don't
1024 * go looking for one.
1025 */
1026 rdp->gpnum = rnp->gpnum;
1027 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
1028 rdp->passed_quiesce = 0;
1029 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1030 zero_cpu_stall_ticks(rdp);
1031 }
1032}
1033
1034static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
1035{
1036 unsigned long flags;
1037 struct rcu_node *rnp;
1038
1039 local_irq_save(flags);
1040 rnp = rdp->mynode;
1041 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1042 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1043 local_irq_restore(flags);
1044 return;
1045 }
1046 __note_new_gpnum(rsp, rnp, rdp);
1047 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1048}
1049
1050/*
1051 * Did someone else start a new RCU grace period start since we last
1052 * checked? Update local state appropriately if so. Must be called
1053 * on the CPU corresponding to rdp.
1054 */
1055static int
1056check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
1057{
1058 unsigned long flags;
1059 int ret = 0;
1060
1061 local_irq_save(flags);
1062 if (rdp->gpnum != rsp->gpnum) {
1063 note_new_gpnum(rsp, rdp);
1064 ret = 1;
1065 }
1066 local_irq_restore(flags);
1067 return ret;
1068}
1069
1070/*
1071 * Initialize the specified rcu_data structure's callback list to empty.
1072 */
1073static void init_callback_list(struct rcu_data *rdp)
1074{
1075 int i;
1076
1077 rdp->nxtlist = NULL;
1078 for (i = 0; i < RCU_NEXT_SIZE; i++)
1079 rdp->nxttail[i] = &rdp->nxtlist;
1080 init_nocb_callback_list(rdp);
1081}
1082
1083/*
1084 * Determine the value that ->completed will have at the end of the
1085 * next subsequent grace period. This is used to tag callbacks so that
1086 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1087 * been dyntick-idle for an extended period with callbacks under the
1088 * influence of RCU_FAST_NO_HZ.
1089 *
1090 * The caller must hold rnp->lock with interrupts disabled.
1091 */
1092static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1093 struct rcu_node *rnp)
1094{
1095 /*
1096 * If RCU is idle, we just wait for the next grace period.
1097 * But we can only be sure that RCU is idle if we are looking
1098 * at the root rcu_node structure -- otherwise, a new grace
1099 * period might have started, but just not yet gotten around
1100 * to initializing the current non-root rcu_node structure.
1101 */
1102 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1103 return rnp->completed + 1;
1104
1105 /*
1106 * Otherwise, wait for a possible partial grace period and
1107 * then the subsequent full grace period.
1108 */
1109 return rnp->completed + 2;
1110}
1111
1112/*
1113 * If there is room, assign a ->completed number to any callbacks on
1114 * this CPU that have not already been assigned. Also accelerate any
1115 * callbacks that were previously assigned a ->completed number that has
1116 * since proven to be too conservative, which can happen if callbacks get
1117 * assigned a ->completed number while RCU is idle, but with reference to
1118 * a non-root rcu_node structure. This function is idempotent, so it does
1119 * not hurt to call it repeatedly.
1120 *
1121 * The caller must hold rnp->lock with interrupts disabled.
1122 */
1123static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1124 struct rcu_data *rdp)
1125{
1126 unsigned long c;
1127 int i;
1128
1129 /* If the CPU has no callbacks, nothing to do. */
1130 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1131 return;
1132
1133 /*
1134 * Starting from the sublist containing the callbacks most
1135 * recently assigned a ->completed number and working down, find the
1136 * first sublist that is not assignable to an upcoming grace period.
1137 * Such a sublist has something in it (first two tests) and has
1138 * a ->completed number assigned that will complete sooner than
1139 * the ->completed number for newly arrived callbacks (last test).
1140 *
1141 * The key point is that any later sublist can be assigned the
1142 * same ->completed number as the newly arrived callbacks, which
1143 * means that the callbacks in any of these later sublist can be
1144 * grouped into a single sublist, whether or not they have already
1145 * been assigned a ->completed number.
1146 */
1147 c = rcu_cbs_completed(rsp, rnp);
1148 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1149 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1150 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1151 break;
1152
1153 /*
1154 * If there are no sublist for unassigned callbacks, leave.
1155 * At the same time, advance "i" one sublist, so that "i" will
1156 * index into the sublist where all the remaining callbacks should
1157 * be grouped into.
1158 */
1159 if (++i >= RCU_NEXT_TAIL)
1160 return;
1161
1162 /*
1163 * Assign all subsequent callbacks' ->completed number to the next
1164 * full grace period and group them all in the sublist initially
1165 * indexed by "i".
1166 */
1167 for (; i <= RCU_NEXT_TAIL; i++) {
1168 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1169 rdp->nxtcompleted[i] = c;
1170 }
1171}
1172
1173/*
1174 * Move any callbacks whose grace period has completed to the
1175 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1176 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1177 * sublist. This function is idempotent, so it does not hurt to
1178 * invoke it repeatedly. As long as it is not invoked -too- often...
1179 *
1180 * The caller must hold rnp->lock with interrupts disabled.
1181 */
1182static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1183 struct rcu_data *rdp)
1184{
1185 int i, j;
1186
1187 /* If the CPU has no callbacks, nothing to do. */
1188 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1189 return;
1190
1191 /*
1192 * Find all callbacks whose ->completed numbers indicate that they
1193 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1194 */
1195 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1196 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1197 break;
1198 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1199 }
1200 /* Clean up any sublist tail pointers that were misordered above. */
1201 for (j = RCU_WAIT_TAIL; j < i; j++)
1202 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1203
1204 /* Copy down callbacks to fill in empty sublists. */
1205 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1206 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1207 break;
1208 rdp->nxttail[j] = rdp->nxttail[i];
1209 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1210 }
1211
1212 /* Classify any remaining callbacks. */
1213 rcu_accelerate_cbs(rsp, rnp, rdp);
1214}
1215
1216/*
1217 * Advance this CPU's callbacks, but only if the current grace period
1218 * has ended. This may be called only from the CPU to whom the rdp
1219 * belongs. In addition, the corresponding leaf rcu_node structure's
1220 * ->lock must be held by the caller, with irqs disabled.
1221 */
1222static void
1223__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1224{
1225 /* Did another grace period end? */
1226 if (rdp->completed == rnp->completed) {
1227
1228 /* No, so just accelerate recent callbacks. */
1229 rcu_accelerate_cbs(rsp, rnp, rdp);
1230
1231 } else {
1232
1233 /* Advance callbacks. */
1234 rcu_advance_cbs(rsp, rnp, rdp);
1235
1236 /* Remember that we saw this grace-period completion. */
1237 rdp->completed = rnp->completed;
1238 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
1239
1240 /*
1241 * If we were in an extended quiescent state, we may have
1242 * missed some grace periods that others CPUs handled on
1243 * our behalf. Catch up with this state to avoid noting
1244 * spurious new grace periods. If another grace period
1245 * has started, then rnp->gpnum will have advanced, so
1246 * we will detect this later on. Of course, any quiescent
1247 * states we found for the old GP are now invalid.
1248 */
1249 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed)) {
1250 rdp->gpnum = rdp->completed;
1251 rdp->passed_quiesce = 0;
1252 }
1253
1254 /*
1255 * If RCU does not need a quiescent state from this CPU,
1256 * then make sure that this CPU doesn't go looking for one.
1257 */
1258 if ((rnp->qsmask & rdp->grpmask) == 0)
1259 rdp->qs_pending = 0;
1260 }
1261}
1262
1263/*
1264 * Advance this CPU's callbacks, but only if the current grace period
1265 * has ended. This may be called only from the CPU to whom the rdp
1266 * belongs.
1267 */
1268static void
1269rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
1270{
1271 unsigned long flags;
1272 struct rcu_node *rnp;
1273
1274 local_irq_save(flags);
1275 rnp = rdp->mynode;
1276 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1277 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1278 local_irq_restore(flags);
1279 return;
1280 }
1281 __rcu_process_gp_end(rsp, rnp, rdp);
1282 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1283}
1284
1285/*
1286 * Do per-CPU grace-period initialization for running CPU. The caller
1287 * must hold the lock of the leaf rcu_node structure corresponding to
1288 * this CPU.
1289 */
1290static void
1291rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1292{
1293 /* Prior grace period ended, so advance callbacks for current CPU. */
1294 __rcu_process_gp_end(rsp, rnp, rdp);
1295
1296 /* Set state so that this CPU will detect the next quiescent state. */
1297 __note_new_gpnum(rsp, rnp, rdp);
1298}
1299
1300/*
1301 * Initialize a new grace period.
1302 */
1303static int rcu_gp_init(struct rcu_state *rsp)
1304{
1305 struct rcu_data *rdp;
1306 struct rcu_node *rnp = rcu_get_root(rsp);
1307
1308 raw_spin_lock_irq(&rnp->lock);
1309 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1310
1311 if (rcu_gp_in_progress(rsp)) {
1312 /* Grace period already in progress, don't start another. */
1313 raw_spin_unlock_irq(&rnp->lock);
1314 return 0;
1315 }
1316
1317 /* Advance to a new grace period and initialize state. */
1318 rsp->gpnum++;
1319 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1320 record_gp_stall_check_time(rsp);
1321 raw_spin_unlock_irq(&rnp->lock);
1322
1323 /* Exclude any concurrent CPU-hotplug operations. */
1324 mutex_lock(&rsp->onoff_mutex);
1325
1326 /*
1327 * Set the quiescent-state-needed bits in all the rcu_node
1328 * structures for all currently online CPUs in breadth-first order,
1329 * starting from the root rcu_node structure, relying on the layout
1330 * of the tree within the rsp->node[] array. Note that other CPUs
1331 * will access only the leaves of the hierarchy, thus seeing that no
1332 * grace period is in progress, at least until the corresponding
1333 * leaf node has been initialized. In addition, we have excluded
1334 * CPU-hotplug operations.
1335 *
1336 * The grace period cannot complete until the initialization
1337 * process finishes, because this kthread handles both.
1338 */
1339 rcu_for_each_node_breadth_first(rsp, rnp) {
1340 raw_spin_lock_irq(&rnp->lock);
1341 rdp = this_cpu_ptr(rsp->rda);
1342 rcu_preempt_check_blocked_tasks(rnp);
1343 rnp->qsmask = rnp->qsmaskinit;
1344 rnp->gpnum = rsp->gpnum;
1345 WARN_ON_ONCE(rnp->completed != rsp->completed);
1346 rnp->completed = rsp->completed;
1347 if (rnp == rdp->mynode)
1348 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1349 rcu_preempt_boost_start_gp(rnp);
1350 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1351 rnp->level, rnp->grplo,
1352 rnp->grphi, rnp->qsmask);
1353 raw_spin_unlock_irq(&rnp->lock);
1354#ifdef CONFIG_PROVE_RCU_DELAY
1355 if ((random32() % (rcu_num_nodes * 8)) == 0)
1356 schedule_timeout_uninterruptible(2);
1357#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1358 cond_resched();
1359 }
1360
1361 mutex_unlock(&rsp->onoff_mutex);
1362 return 1;
1363}
1364
1365/*
1366 * Do one round of quiescent-state forcing.
1367 */
1368int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1369{
1370 int fqs_state = fqs_state_in;
1371 struct rcu_node *rnp = rcu_get_root(rsp);
1372
1373 rsp->n_force_qs++;
1374 if (fqs_state == RCU_SAVE_DYNTICK) {
1375 /* Collect dyntick-idle snapshots. */
1376 force_qs_rnp(rsp, dyntick_save_progress_counter);
1377 fqs_state = RCU_FORCE_QS;
1378 } else {
1379 /* Handle dyntick-idle and offline CPUs. */
1380 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1381 }
1382 /* Clear flag to prevent immediate re-entry. */
1383 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1384 raw_spin_lock_irq(&rnp->lock);
1385 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1386 raw_spin_unlock_irq(&rnp->lock);
1387 }
1388 return fqs_state;
1389}
1390
1391/*
1392 * Clean up after the old grace period.
1393 */
1394static void rcu_gp_cleanup(struct rcu_state *rsp)
1395{
1396 unsigned long gp_duration;
1397 struct rcu_data *rdp;
1398 struct rcu_node *rnp = rcu_get_root(rsp);
1399
1400 raw_spin_lock_irq(&rnp->lock);
1401 gp_duration = jiffies - rsp->gp_start;
1402 if (gp_duration > rsp->gp_max)
1403 rsp->gp_max = gp_duration;
1404
1405 /*
1406 * We know the grace period is complete, but to everyone else
1407 * it appears to still be ongoing. But it is also the case
1408 * that to everyone else it looks like there is nothing that
1409 * they can do to advance the grace period. It is therefore
1410 * safe for us to drop the lock in order to mark the grace
1411 * period as completed in all of the rcu_node structures.
1412 */
1413 raw_spin_unlock_irq(&rnp->lock);
1414
1415 /*
1416 * Propagate new ->completed value to rcu_node structures so
1417 * that other CPUs don't have to wait until the start of the next
1418 * grace period to process their callbacks. This also avoids
1419 * some nasty RCU grace-period initialization races by forcing
1420 * the end of the current grace period to be completely recorded in
1421 * all of the rcu_node structures before the beginning of the next
1422 * grace period is recorded in any of the rcu_node structures.
1423 */
1424 rcu_for_each_node_breadth_first(rsp, rnp) {
1425 raw_spin_lock_irq(&rnp->lock);
1426 rnp->completed = rsp->gpnum;
1427 raw_spin_unlock_irq(&rnp->lock);
1428 cond_resched();
1429 }
1430 rnp = rcu_get_root(rsp);
1431 raw_spin_lock_irq(&rnp->lock);
1432
1433 rsp->completed = rsp->gpnum; /* Declare grace period done. */
1434 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1435 rsp->fqs_state = RCU_GP_IDLE;
1436 rdp = this_cpu_ptr(rsp->rda);
1437 if (cpu_needs_another_gp(rsp, rdp))
1438 rsp->gp_flags = 1;
1439 raw_spin_unlock_irq(&rnp->lock);
1440}
1441
1442/*
1443 * Body of kthread that handles grace periods.
1444 */
1445static int __noreturn rcu_gp_kthread(void *arg)
1446{
1447 int fqs_state;
1448 unsigned long j;
1449 int ret;
1450 struct rcu_state *rsp = arg;
1451 struct rcu_node *rnp = rcu_get_root(rsp);
1452
1453 for (;;) {
1454
1455 /* Handle grace-period start. */
1456 for (;;) {
1457 wait_event_interruptible(rsp->gp_wq,
1458 rsp->gp_flags &
1459 RCU_GP_FLAG_INIT);
1460 if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
1461 rcu_gp_init(rsp))
1462 break;
1463 cond_resched();
1464 flush_signals(current);
1465 }
1466
1467 /* Handle quiescent-state forcing. */
1468 fqs_state = RCU_SAVE_DYNTICK;
1469 j = jiffies_till_first_fqs;
1470 if (j > HZ) {
1471 j = HZ;
1472 jiffies_till_first_fqs = HZ;
1473 }
1474 for (;;) {
1475 rsp->jiffies_force_qs = jiffies + j;
1476 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1477 (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1478 (!ACCESS_ONCE(rnp->qsmask) &&
1479 !rcu_preempt_blocked_readers_cgp(rnp)),
1480 j);
1481 /* If grace period done, leave loop. */
1482 if (!ACCESS_ONCE(rnp->qsmask) &&
1483 !rcu_preempt_blocked_readers_cgp(rnp))
1484 break;
1485 /* If time for quiescent-state forcing, do it. */
1486 if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1487 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1488 cond_resched();
1489 } else {
1490 /* Deal with stray signal. */
1491 cond_resched();
1492 flush_signals(current);
1493 }
1494 j = jiffies_till_next_fqs;
1495 if (j > HZ) {
1496 j = HZ;
1497 jiffies_till_next_fqs = HZ;
1498 } else if (j < 1) {
1499 j = 1;
1500 jiffies_till_next_fqs = 1;
1501 }
1502 }
1503
1504 /* Handle grace-period end. */
1505 rcu_gp_cleanup(rsp);
1506 }
1507}
1508
1509/*
1510 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1511 * in preparation for detecting the next grace period. The caller must hold
1512 * the root node's ->lock, which is released before return. Hard irqs must
1513 * be disabled.
1514 *
1515 * Note that it is legal for a dying CPU (which is marked as offline) to
1516 * invoke this function. This can happen when the dying CPU reports its
1517 * quiescent state.
1518 */
1519static void
1520rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1521 __releases(rcu_get_root(rsp)->lock)
1522{
1523 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1524 struct rcu_node *rnp = rcu_get_root(rsp);
1525
1526 if (!rsp->gp_kthread ||
1527 !cpu_needs_another_gp(rsp, rdp)) {
1528 /*
1529 * Either we have not yet spawned the grace-period
1530 * task, this CPU does not need another grace period,
1531 * or a grace period is already in progress.
1532 * Either way, don't start a new grace period.
1533 */
1534 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1535 return;
1536 }
1537
1538 /*
1539 * Because there is no grace period in progress right now,
1540 * any callbacks we have up to this point will be satisfied
1541 * by the next grace period. So this is a good place to
1542 * assign a grace period number to recently posted callbacks.
1543 */
1544 rcu_accelerate_cbs(rsp, rnp, rdp);
1545
1546 rsp->gp_flags = RCU_GP_FLAG_INIT;
1547 raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
1548
1549 /* Ensure that CPU is aware of completion of last grace period. */
1550 rcu_process_gp_end(rsp, rdp);
1551 local_irq_restore(flags);
1552
1553 /* Wake up rcu_gp_kthread() to start the grace period. */
1554 wake_up(&rsp->gp_wq);
1555}
1556
1557/*
1558 * Report a full set of quiescent states to the specified rcu_state
1559 * data structure. This involves cleaning up after the prior grace
1560 * period and letting rcu_start_gp() start up the next grace period
1561 * if one is needed. Note that the caller must hold rnp->lock, as
1562 * required by rcu_start_gp(), which will release it.
1563 */
1564static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1565 __releases(rcu_get_root(rsp)->lock)
1566{
1567 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1568 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1569 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1570}
1571
1572/*
1573 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1574 * Allows quiescent states for a group of CPUs to be reported at one go
1575 * to the specified rcu_node structure, though all the CPUs in the group
1576 * must be represented by the same rcu_node structure (which need not be
1577 * a leaf rcu_node structure, though it often will be). That structure's
1578 * lock must be held upon entry, and it is released before return.
1579 */
1580static void
1581rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1582 struct rcu_node *rnp, unsigned long flags)
1583 __releases(rnp->lock)
1584{
1585 struct rcu_node *rnp_c;
1586
1587 /* Walk up the rcu_node hierarchy. */
1588 for (;;) {
1589 if (!(rnp->qsmask & mask)) {
1590
1591 /* Our bit has already been cleared, so done. */
1592 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1593 return;
1594 }
1595 rnp->qsmask &= ~mask;
1596 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1597 mask, rnp->qsmask, rnp->level,
1598 rnp->grplo, rnp->grphi,
1599 !!rnp->gp_tasks);
1600 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1601
1602 /* Other bits still set at this level, so done. */
1603 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1604 return;
1605 }
1606 mask = rnp->grpmask;
1607 if (rnp->parent == NULL) {
1608
1609 /* No more levels. Exit loop holding root lock. */
1610
1611 break;
1612 }
1613 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1614 rnp_c = rnp;
1615 rnp = rnp->parent;
1616 raw_spin_lock_irqsave(&rnp->lock, flags);
1617 WARN_ON_ONCE(rnp_c->qsmask);
1618 }
1619
1620 /*
1621 * Get here if we are the last CPU to pass through a quiescent
1622 * state for this grace period. Invoke rcu_report_qs_rsp()
1623 * to clean up and start the next grace period if one is needed.
1624 */
1625 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1626}
1627
1628/*
1629 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1630 * structure. This must be either called from the specified CPU, or
1631 * called when the specified CPU is known to be offline (and when it is
1632 * also known that no other CPU is concurrently trying to help the offline
1633 * CPU). The lastcomp argument is used to make sure we are still in the
1634 * grace period of interest. We don't want to end the current grace period
1635 * based on quiescent states detected in an earlier grace period!
1636 */
1637static void
1638rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1639{
1640 unsigned long flags;
1641 unsigned long mask;
1642 struct rcu_node *rnp;
1643
1644 rnp = rdp->mynode;
1645 raw_spin_lock_irqsave(&rnp->lock, flags);
1646 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1647 rnp->completed == rnp->gpnum) {
1648
1649 /*
1650 * The grace period in which this quiescent state was
1651 * recorded has ended, so don't report it upwards.
1652 * We will instead need a new quiescent state that lies
1653 * within the current grace period.
1654 */
1655 rdp->passed_quiesce = 0; /* need qs for new gp. */
1656 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1657 return;
1658 }
1659 mask = rdp->grpmask;
1660 if ((rnp->qsmask & mask) == 0) {
1661 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1662 } else {
1663 rdp->qs_pending = 0;
1664
1665 /*
1666 * This GP can't end until cpu checks in, so all of our
1667 * callbacks can be processed during the next GP.
1668 */
1669 rcu_accelerate_cbs(rsp, rnp, rdp);
1670
1671 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1672 }
1673}
1674
1675/*
1676 * Check to see if there is a new grace period of which this CPU
1677 * is not yet aware, and if so, set up local rcu_data state for it.
1678 * Otherwise, see if this CPU has just passed through its first
1679 * quiescent state for this grace period, and record that fact if so.
1680 */
1681static void
1682rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1683{
1684 /* If there is now a new grace period, record and return. */
1685 if (check_for_new_grace_period(rsp, rdp))
1686 return;
1687
1688 /*
1689 * Does this CPU still need to do its part for current grace period?
1690 * If no, return and let the other CPUs do their part as well.
1691 */
1692 if (!rdp->qs_pending)
1693 return;
1694
1695 /*
1696 * Was there a quiescent state since the beginning of the grace
1697 * period? If no, then exit and wait for the next call.
1698 */
1699 if (!rdp->passed_quiesce)
1700 return;
1701
1702 /*
1703 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1704 * judge of that).
1705 */
1706 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1707}
1708
1709#ifdef CONFIG_HOTPLUG_CPU
1710
1711/*
1712 * Send the specified CPU's RCU callbacks to the orphanage. The
1713 * specified CPU must be offline, and the caller must hold the
1714 * ->orphan_lock.
1715 */
1716static void
1717rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1718 struct rcu_node *rnp, struct rcu_data *rdp)
1719{
1720 /* No-CBs CPUs do not have orphanable callbacks. */
1721 if (is_nocb_cpu(rdp->cpu))
1722 return;
1723
1724 /*
1725 * Orphan the callbacks. First adjust the counts. This is safe
1726 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1727 * cannot be running now. Thus no memory barrier is required.
1728 */
1729 if (rdp->nxtlist != NULL) {
1730 rsp->qlen_lazy += rdp->qlen_lazy;
1731 rsp->qlen += rdp->qlen;
1732 rdp->n_cbs_orphaned += rdp->qlen;
1733 rdp->qlen_lazy = 0;
1734 ACCESS_ONCE(rdp->qlen) = 0;
1735 }
1736
1737 /*
1738 * Next, move those callbacks still needing a grace period to
1739 * the orphanage, where some other CPU will pick them up.
1740 * Some of the callbacks might have gone partway through a grace
1741 * period, but that is too bad. They get to start over because we
1742 * cannot assume that grace periods are synchronized across CPUs.
1743 * We don't bother updating the ->nxttail[] array yet, instead
1744 * we just reset the whole thing later on.
1745 */
1746 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1747 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1748 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1749 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1750 }
1751
1752 /*
1753 * Then move the ready-to-invoke callbacks to the orphanage,
1754 * where some other CPU will pick them up. These will not be
1755 * required to pass though another grace period: They are done.
1756 */
1757 if (rdp->nxtlist != NULL) {
1758 *rsp->orphan_donetail = rdp->nxtlist;
1759 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1760 }
1761
1762 /* Finally, initialize the rcu_data structure's list to empty. */
1763 init_callback_list(rdp);
1764}
1765
1766/*
1767 * Adopt the RCU callbacks from the specified rcu_state structure's
1768 * orphanage. The caller must hold the ->orphan_lock.
1769 */
1770static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1771{
1772 int i;
1773 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1774
1775 /* No-CBs CPUs are handled specially. */
1776 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
1777 return;
1778
1779 /* Do the accounting first. */
1780 rdp->qlen_lazy += rsp->qlen_lazy;
1781 rdp->qlen += rsp->qlen;
1782 rdp->n_cbs_adopted += rsp->qlen;
1783 if (rsp->qlen_lazy != rsp->qlen)
1784 rcu_idle_count_callbacks_posted();
1785 rsp->qlen_lazy = 0;
1786 rsp->qlen = 0;
1787
1788 /*
1789 * We do not need a memory barrier here because the only way we
1790 * can get here if there is an rcu_barrier() in flight is if
1791 * we are the task doing the rcu_barrier().
1792 */
1793
1794 /* First adopt the ready-to-invoke callbacks. */
1795 if (rsp->orphan_donelist != NULL) {
1796 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1797 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1798 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1799 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1800 rdp->nxttail[i] = rsp->orphan_donetail;
1801 rsp->orphan_donelist = NULL;
1802 rsp->orphan_donetail = &rsp->orphan_donelist;
1803 }
1804
1805 /* And then adopt the callbacks that still need a grace period. */
1806 if (rsp->orphan_nxtlist != NULL) {
1807 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1808 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1809 rsp->orphan_nxtlist = NULL;
1810 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1811 }
1812}
1813
1814/*
1815 * Trace the fact that this CPU is going offline.
1816 */
1817static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1818{
1819 RCU_TRACE(unsigned long mask);
1820 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1821 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1822
1823 RCU_TRACE(mask = rdp->grpmask);
1824 trace_rcu_grace_period(rsp->name,
1825 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1826 "cpuofl");
1827}
1828
1829/*
1830 * The CPU has been completely removed, and some other CPU is reporting
1831 * this fact from process context. Do the remainder of the cleanup,
1832 * including orphaning the outgoing CPU's RCU callbacks, and also
1833 * adopting them. There can only be one CPU hotplug operation at a time,
1834 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
1835 */
1836static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1837{
1838 unsigned long flags;
1839 unsigned long mask;
1840 int need_report = 0;
1841 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1842 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
1843
1844 /* Adjust any no-longer-needed kthreads. */
1845 rcu_boost_kthread_setaffinity(rnp, -1);
1846
1847 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1848
1849 /* Exclude any attempts to start a new grace period. */
1850 mutex_lock(&rsp->onoff_mutex);
1851 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
1852
1853 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1854 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1855 rcu_adopt_orphan_cbs(rsp);
1856
1857 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1858 mask = rdp->grpmask; /* rnp->grplo is constant. */
1859 do {
1860 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1861 rnp->qsmaskinit &= ~mask;
1862 if (rnp->qsmaskinit != 0) {
1863 if (rnp != rdp->mynode)
1864 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1865 break;
1866 }
1867 if (rnp == rdp->mynode)
1868 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1869 else
1870 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1871 mask = rnp->grpmask;
1872 rnp = rnp->parent;
1873 } while (rnp != NULL);
1874
1875 /*
1876 * We still hold the leaf rcu_node structure lock here, and
1877 * irqs are still disabled. The reason for this subterfuge is
1878 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
1879 * held leads to deadlock.
1880 */
1881 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
1882 rnp = rdp->mynode;
1883 if (need_report & RCU_OFL_TASKS_NORM_GP)
1884 rcu_report_unblock_qs_rnp(rnp, flags);
1885 else
1886 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1887 if (need_report & RCU_OFL_TASKS_EXP_GP)
1888 rcu_report_exp_rnp(rsp, rnp, true);
1889 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1890 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1891 cpu, rdp->qlen, rdp->nxtlist);
1892 init_callback_list(rdp);
1893 /* Disallow further callbacks on this CPU. */
1894 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
1895 mutex_unlock(&rsp->onoff_mutex);
1896}
1897
1898#else /* #ifdef CONFIG_HOTPLUG_CPU */
1899
1900static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1901{
1902}
1903
1904static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1905{
1906}
1907
1908#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1909
1910/*
1911 * Invoke any RCU callbacks that have made it to the end of their grace
1912 * period. Thottle as specified by rdp->blimit.
1913 */
1914static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1915{
1916 unsigned long flags;
1917 struct rcu_head *next, *list, **tail;
1918 long bl, count, count_lazy;
1919 int i;
1920
1921 /* If no callbacks are ready, just return. */
1922 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1923 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1924 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1925 need_resched(), is_idle_task(current),
1926 rcu_is_callbacks_kthread());
1927 return;
1928 }
1929
1930 /*
1931 * Extract the list of ready callbacks, disabling to prevent
1932 * races with call_rcu() from interrupt handlers.
1933 */
1934 local_irq_save(flags);
1935 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1936 bl = rdp->blimit;
1937 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1938 list = rdp->nxtlist;
1939 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1940 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1941 tail = rdp->nxttail[RCU_DONE_TAIL];
1942 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1943 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1944 rdp->nxttail[i] = &rdp->nxtlist;
1945 local_irq_restore(flags);
1946
1947 /* Invoke callbacks. */
1948 count = count_lazy = 0;
1949 while (list) {
1950 next = list->next;
1951 prefetch(next);
1952 debug_rcu_head_unqueue(list);
1953 if (__rcu_reclaim(rsp->name, list))
1954 count_lazy++;
1955 list = next;
1956 /* Stop only if limit reached and CPU has something to do. */
1957 if (++count >= bl &&
1958 (need_resched() ||
1959 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1960 break;
1961 }
1962
1963 local_irq_save(flags);
1964 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1965 is_idle_task(current),
1966 rcu_is_callbacks_kthread());
1967
1968 /* Update count, and requeue any remaining callbacks. */
1969 if (list != NULL) {
1970 *tail = rdp->nxtlist;
1971 rdp->nxtlist = list;
1972 for (i = 0; i < RCU_NEXT_SIZE; i++)
1973 if (&rdp->nxtlist == rdp->nxttail[i])
1974 rdp->nxttail[i] = tail;
1975 else
1976 break;
1977 }
1978 smp_mb(); /* List handling before counting for rcu_barrier(). */
1979 rdp->qlen_lazy -= count_lazy;
1980 ACCESS_ONCE(rdp->qlen) -= count;
1981 rdp->n_cbs_invoked += count;
1982
1983 /* Reinstate batch limit if we have worked down the excess. */
1984 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1985 rdp->blimit = blimit;
1986
1987 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1988 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1989 rdp->qlen_last_fqs_check = 0;
1990 rdp->n_force_qs_snap = rsp->n_force_qs;
1991 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1992 rdp->qlen_last_fqs_check = rdp->qlen;
1993 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
1994
1995 local_irq_restore(flags);
1996
1997 /* Re-invoke RCU core processing if there are callbacks remaining. */
1998 if (cpu_has_callbacks_ready_to_invoke(rdp))
1999 invoke_rcu_core();
2000}
2001
2002/*
2003 * Check to see if this CPU is in a non-context-switch quiescent state
2004 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2005 * Also schedule RCU core processing.
2006 *
2007 * This function must be called from hardirq context. It is normally
2008 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2009 * false, there is no point in invoking rcu_check_callbacks().
2010 */
2011void rcu_check_callbacks(int cpu, int user)
2012{
2013 trace_rcu_utilization("Start scheduler-tick");
2014 increment_cpu_stall_ticks();
2015 if (user || rcu_is_cpu_rrupt_from_idle()) {
2016
2017 /*
2018 * Get here if this CPU took its interrupt from user
2019 * mode or from the idle loop, and if this is not a
2020 * nested interrupt. In this case, the CPU is in
2021 * a quiescent state, so note it.
2022 *
2023 * No memory barrier is required here because both
2024 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2025 * variables that other CPUs neither access nor modify,
2026 * at least not while the corresponding CPU is online.
2027 */
2028
2029 rcu_sched_qs(cpu);
2030 rcu_bh_qs(cpu);
2031
2032 } else if (!in_softirq()) {
2033
2034 /*
2035 * Get here if this CPU did not take its interrupt from
2036 * softirq, in other words, if it is not interrupting
2037 * a rcu_bh read-side critical section. This is an _bh
2038 * critical section, so note it.
2039 */
2040
2041 rcu_bh_qs(cpu);
2042 }
2043 rcu_preempt_check_callbacks(cpu);
2044 if (rcu_pending(cpu))
2045 invoke_rcu_core();
2046 trace_rcu_utilization("End scheduler-tick");
2047}
2048
2049/*
2050 * Scan the leaf rcu_node structures, processing dyntick state for any that
2051 * have not yet encountered a quiescent state, using the function specified.
2052 * Also initiate boosting for any threads blocked on the root rcu_node.
2053 *
2054 * The caller must have suppressed start of new grace periods.
2055 */
2056static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
2057{
2058 unsigned long bit;
2059 int cpu;
2060 unsigned long flags;
2061 unsigned long mask;
2062 struct rcu_node *rnp;
2063
2064 rcu_for_each_leaf_node(rsp, rnp) {
2065 cond_resched();
2066 mask = 0;
2067 raw_spin_lock_irqsave(&rnp->lock, flags);
2068 if (!rcu_gp_in_progress(rsp)) {
2069 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2070 return;
2071 }
2072 if (rnp->qsmask == 0) {
2073 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2074 continue;
2075 }
2076 cpu = rnp->grplo;
2077 bit = 1;
2078 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2079 if ((rnp->qsmask & bit) != 0 &&
2080 f(per_cpu_ptr(rsp->rda, cpu)))
2081 mask |= bit;
2082 }
2083 if (mask != 0) {
2084
2085 /* rcu_report_qs_rnp() releases rnp->lock. */
2086 rcu_report_qs_rnp(mask, rsp, rnp, flags);
2087 continue;
2088 }
2089 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2090 }
2091 rnp = rcu_get_root(rsp);
2092 if (rnp->qsmask == 0) {
2093 raw_spin_lock_irqsave(&rnp->lock, flags);
2094 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2095 }
2096}
2097
2098/*
2099 * Force quiescent states on reluctant CPUs, and also detect which
2100 * CPUs are in dyntick-idle mode.
2101 */
2102static void force_quiescent_state(struct rcu_state *rsp)
2103{
2104 unsigned long flags;
2105 bool ret;
2106 struct rcu_node *rnp;
2107 struct rcu_node *rnp_old = NULL;
2108
2109 /* Funnel through hierarchy to reduce memory contention. */
2110 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2111 for (; rnp != NULL; rnp = rnp->parent) {
2112 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2113 !raw_spin_trylock(&rnp->fqslock);
2114 if (rnp_old != NULL)
2115 raw_spin_unlock(&rnp_old->fqslock);
2116 if (ret) {
2117 rsp->n_force_qs_lh++;
2118 return;
2119 }
2120 rnp_old = rnp;
2121 }
2122 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2123
2124 /* Reached the root of the rcu_node tree, acquire lock. */
2125 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2126 raw_spin_unlock(&rnp_old->fqslock);
2127 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2128 rsp->n_force_qs_lh++;
2129 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2130 return; /* Someone beat us to it. */
2131 }
2132 rsp->gp_flags |= RCU_GP_FLAG_FQS;
2133 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2134 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
2135}
2136
2137/*
2138 * This does the RCU core processing work for the specified rcu_state
2139 * and rcu_data structures. This may be called only from the CPU to
2140 * whom the rdp belongs.
2141 */
2142static void
2143__rcu_process_callbacks(struct rcu_state *rsp)
2144{
2145 unsigned long flags;
2146 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2147
2148 WARN_ON_ONCE(rdp->beenonline == 0);
2149
2150 /* Handle the end of a grace period that some other CPU ended. */
2151 rcu_process_gp_end(rsp, rdp);
2152
2153 /* Update RCU state based on any recent quiescent states. */
2154 rcu_check_quiescent_state(rsp, rdp);
2155
2156 /* Does this CPU require a not-yet-started grace period? */
2157 local_irq_save(flags);
2158 if (cpu_needs_another_gp(rsp, rdp)) {
2159 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2160 rcu_start_gp(rsp, flags); /* releases above lock */
2161 } else {
2162 local_irq_restore(flags);
2163 }
2164
2165 /* If there are callbacks ready, invoke them. */
2166 if (cpu_has_callbacks_ready_to_invoke(rdp))
2167 invoke_rcu_callbacks(rsp, rdp);
2168}
2169
2170/*
2171 * Do RCU core processing for the current CPU.
2172 */
2173static void rcu_process_callbacks(struct softirq_action *unused)
2174{
2175 struct rcu_state *rsp;
2176
2177 if (cpu_is_offline(smp_processor_id()))
2178 return;
2179 trace_rcu_utilization("Start RCU core");
2180 for_each_rcu_flavor(rsp)
2181 __rcu_process_callbacks(rsp);
2182 trace_rcu_utilization("End RCU core");
2183}
2184
2185/*
2186 * Schedule RCU callback invocation. If the specified type of RCU
2187 * does not support RCU priority boosting, just do a direct call,
2188 * otherwise wake up the per-CPU kernel kthread. Note that because we
2189 * are running on the current CPU with interrupts disabled, the
2190 * rcu_cpu_kthread_task cannot disappear out from under us.
2191 */
2192static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2193{
2194 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2195 return;
2196 if (likely(!rsp->boost)) {
2197 rcu_do_batch(rsp, rdp);
2198 return;
2199 }
2200 invoke_rcu_callbacks_kthread();
2201}
2202
2203static void invoke_rcu_core(void)
2204{
2205 raise_softirq(RCU_SOFTIRQ);
2206}
2207
2208/*
2209 * Handle any core-RCU processing required by a call_rcu() invocation.
2210 */
2211static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2212 struct rcu_head *head, unsigned long flags)
2213{
2214 /*
2215 * If called from an extended quiescent state, invoke the RCU
2216 * core in order to force a re-evaluation of RCU's idleness.
2217 */
2218 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
2219 invoke_rcu_core();
2220
2221 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2222 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2223 return;
2224
2225 /*
2226 * Force the grace period if too many callbacks or too long waiting.
2227 * Enforce hysteresis, and don't invoke force_quiescent_state()
2228 * if some other CPU has recently done so. Also, don't bother
2229 * invoking force_quiescent_state() if the newly enqueued callback
2230 * is the only one waiting for a grace period to complete.
2231 */
2232 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2233
2234 /* Are we ignoring a completed grace period? */
2235 rcu_process_gp_end(rsp, rdp);
2236 check_for_new_grace_period(rsp, rdp);
2237
2238 /* Start a new grace period if one not already started. */
2239 if (!rcu_gp_in_progress(rsp)) {
2240 unsigned long nestflag;
2241 struct rcu_node *rnp_root = rcu_get_root(rsp);
2242
2243 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
2244 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
2245 } else {
2246 /* Give the grace period a kick. */
2247 rdp->blimit = LONG_MAX;
2248 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2249 *rdp->nxttail[RCU_DONE_TAIL] != head)
2250 force_quiescent_state(rsp);
2251 rdp->n_force_qs_snap = rsp->n_force_qs;
2252 rdp->qlen_last_fqs_check = rdp->qlen;
2253 }
2254 }
2255}
2256
2257/*
2258 * Helper function for call_rcu() and friends. The cpu argument will
2259 * normally be -1, indicating "currently running CPU". It may specify
2260 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2261 * is expected to specify a CPU.
2262 */
2263static void
2264__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2265 struct rcu_state *rsp, int cpu, bool lazy)
2266{
2267 unsigned long flags;
2268 struct rcu_data *rdp;
2269
2270 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2271 debug_rcu_head_queue(head);
2272 head->func = func;
2273 head->next = NULL;
2274
2275 /*
2276 * Opportunistically note grace-period endings and beginnings.
2277 * Note that we might see a beginning right after we see an
2278 * end, but never vice versa, since this CPU has to pass through
2279 * a quiescent state betweentimes.
2280 */
2281 local_irq_save(flags);
2282 rdp = this_cpu_ptr(rsp->rda);
2283
2284 /* Add the callback to our list. */
2285 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2286 int offline;
2287
2288 if (cpu != -1)
2289 rdp = per_cpu_ptr(rsp->rda, cpu);
2290 offline = !__call_rcu_nocb(rdp, head, lazy);
2291 WARN_ON_ONCE(offline);
2292 /* _call_rcu() is illegal on offline CPU; leak the callback. */
2293 local_irq_restore(flags);
2294 return;
2295 }
2296 ACCESS_ONCE(rdp->qlen)++;
2297 if (lazy)
2298 rdp->qlen_lazy++;
2299 else
2300 rcu_idle_count_callbacks_posted();
2301 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2302 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2303 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2304
2305 if (__is_kfree_rcu_offset((unsigned long)func))
2306 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2307 rdp->qlen_lazy, rdp->qlen);
2308 else
2309 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2310
2311 /* Go handle any RCU core processing required. */
2312 __call_rcu_core(rsp, rdp, head, flags);
2313 local_irq_restore(flags);
2314}
2315
2316/*
2317 * Queue an RCU-sched callback for invocation after a grace period.
2318 */
2319void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2320{
2321 __call_rcu(head, func, &rcu_sched_state, -1, 0);
2322}
2323EXPORT_SYMBOL_GPL(call_rcu_sched);
2324
2325/*
2326 * Queue an RCU callback for invocation after a quicker grace period.
2327 */
2328void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2329{
2330 __call_rcu(head, func, &rcu_bh_state, -1, 0);
2331}
2332EXPORT_SYMBOL_GPL(call_rcu_bh);
2333
2334/*
2335 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2336 * any blocking grace-period wait automatically implies a grace period
2337 * if there is only one CPU online at any point time during execution
2338 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2339 * occasionally incorrectly indicate that there are multiple CPUs online
2340 * when there was in fact only one the whole time, as this just adds
2341 * some overhead: RCU still operates correctly.
2342 */
2343static inline int rcu_blocking_is_gp(void)
2344{
2345 int ret;
2346
2347 might_sleep(); /* Check for RCU read-side critical section. */
2348 preempt_disable();
2349 ret = num_online_cpus() <= 1;
2350 preempt_enable();
2351 return ret;
2352}
2353
2354/**
2355 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2356 *
2357 * Control will return to the caller some time after a full rcu-sched
2358 * grace period has elapsed, in other words after all currently executing
2359 * rcu-sched read-side critical sections have completed. These read-side
2360 * critical sections are delimited by rcu_read_lock_sched() and
2361 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2362 * local_irq_disable(), and so on may be used in place of
2363 * rcu_read_lock_sched().
2364 *
2365 * This means that all preempt_disable code sequences, including NMI and
2366 * non-threaded hardware-interrupt handlers, in progress on entry will
2367 * have completed before this primitive returns. However, this does not
2368 * guarantee that softirq handlers will have completed, since in some
2369 * kernels, these handlers can run in process context, and can block.
2370 *
2371 * Note that this guarantee implies further memory-ordering guarantees.
2372 * On systems with more than one CPU, when synchronize_sched() returns,
2373 * each CPU is guaranteed to have executed a full memory barrier since the
2374 * end of its last RCU-sched read-side critical section whose beginning
2375 * preceded the call to synchronize_sched(). In addition, each CPU having
2376 * an RCU read-side critical section that extends beyond the return from
2377 * synchronize_sched() is guaranteed to have executed a full memory barrier
2378 * after the beginning of synchronize_sched() and before the beginning of
2379 * that RCU read-side critical section. Note that these guarantees include
2380 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2381 * that are executing in the kernel.
2382 *
2383 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2384 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2385 * to have executed a full memory barrier during the execution of
2386 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2387 * again only if the system has more than one CPU).
2388 *
2389 * This primitive provides the guarantees made by the (now removed)
2390 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2391 * guarantees that rcu_read_lock() sections will have completed.
2392 * In "classic RCU", these two guarantees happen to be one and
2393 * the same, but can differ in realtime RCU implementations.
2394 */
2395void synchronize_sched(void)
2396{
2397 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2398 !lock_is_held(&rcu_lock_map) &&
2399 !lock_is_held(&rcu_sched_lock_map),
2400 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2401 if (rcu_blocking_is_gp())
2402 return;
2403 if (rcu_expedited)
2404 synchronize_sched_expedited();
2405 else
2406 wait_rcu_gp(call_rcu_sched);
2407}
2408EXPORT_SYMBOL_GPL(synchronize_sched);
2409
2410/**
2411 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2412 *
2413 * Control will return to the caller some time after a full rcu_bh grace
2414 * period has elapsed, in other words after all currently executing rcu_bh
2415 * read-side critical sections have completed. RCU read-side critical
2416 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2417 * and may be nested.
2418 *
2419 * See the description of synchronize_sched() for more detailed information
2420 * on memory ordering guarantees.
2421 */
2422void synchronize_rcu_bh(void)
2423{
2424 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2425 !lock_is_held(&rcu_lock_map) &&
2426 !lock_is_held(&rcu_sched_lock_map),
2427 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2428 if (rcu_blocking_is_gp())
2429 return;
2430 if (rcu_expedited)
2431 synchronize_rcu_bh_expedited();
2432 else
2433 wait_rcu_gp(call_rcu_bh);
2434}
2435EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2436
2437static int synchronize_sched_expedited_cpu_stop(void *data)
2438{
2439 /*
2440 * There must be a full memory barrier on each affected CPU
2441 * between the time that try_stop_cpus() is called and the
2442 * time that it returns.
2443 *
2444 * In the current initial implementation of cpu_stop, the
2445 * above condition is already met when the control reaches
2446 * this point and the following smp_mb() is not strictly
2447 * necessary. Do smp_mb() anyway for documentation and
2448 * robustness against future implementation changes.
2449 */
2450 smp_mb(); /* See above comment block. */
2451 return 0;
2452}
2453
2454/**
2455 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2456 *
2457 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2458 * approach to force the grace period to end quickly. This consumes
2459 * significant time on all CPUs and is unfriendly to real-time workloads,
2460 * so is thus not recommended for any sort of common-case code. In fact,
2461 * if you are using synchronize_sched_expedited() in a loop, please
2462 * restructure your code to batch your updates, and then use a single
2463 * synchronize_sched() instead.
2464 *
2465 * Note that it is illegal to call this function while holding any lock
2466 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2467 * to call this function from a CPU-hotplug notifier. Failing to observe
2468 * these restriction will result in deadlock.
2469 *
2470 * This implementation can be thought of as an application of ticket
2471 * locking to RCU, with sync_sched_expedited_started and
2472 * sync_sched_expedited_done taking on the roles of the halves
2473 * of the ticket-lock word. Each task atomically increments
2474 * sync_sched_expedited_started upon entry, snapshotting the old value,
2475 * then attempts to stop all the CPUs. If this succeeds, then each
2476 * CPU will have executed a context switch, resulting in an RCU-sched
2477 * grace period. We are then done, so we use atomic_cmpxchg() to
2478 * update sync_sched_expedited_done to match our snapshot -- but
2479 * only if someone else has not already advanced past our snapshot.
2480 *
2481 * On the other hand, if try_stop_cpus() fails, we check the value
2482 * of sync_sched_expedited_done. If it has advanced past our
2483 * initial snapshot, then someone else must have forced a grace period
2484 * some time after we took our snapshot. In this case, our work is
2485 * done for us, and we can simply return. Otherwise, we try again,
2486 * but keep our initial snapshot for purposes of checking for someone
2487 * doing our work for us.
2488 *
2489 * If we fail too many times in a row, we fall back to synchronize_sched().
2490 */
2491void synchronize_sched_expedited(void)
2492{
2493 long firstsnap, s, snap;
2494 int trycount = 0;
2495 struct rcu_state *rsp = &rcu_sched_state;
2496
2497 /*
2498 * If we are in danger of counter wrap, just do synchronize_sched().
2499 * By allowing sync_sched_expedited_started to advance no more than
2500 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2501 * that more than 3.5 billion CPUs would be required to force a
2502 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2503 * course be required on a 64-bit system.
2504 */
2505 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2506 (ulong)atomic_long_read(&rsp->expedited_done) +
2507 ULONG_MAX / 8)) {
2508 synchronize_sched();
2509 atomic_long_inc(&rsp->expedited_wrap);
2510 return;
2511 }
2512
2513 /*
2514 * Take a ticket. Note that atomic_inc_return() implies a
2515 * full memory barrier.
2516 */
2517 snap = atomic_long_inc_return(&rsp->expedited_start);
2518 firstsnap = snap;
2519 get_online_cpus();
2520 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2521
2522 /*
2523 * Each pass through the following loop attempts to force a
2524 * context switch on each CPU.
2525 */
2526 while (try_stop_cpus(cpu_online_mask,
2527 synchronize_sched_expedited_cpu_stop,
2528 NULL) == -EAGAIN) {
2529 put_online_cpus();
2530 atomic_long_inc(&rsp->expedited_tryfail);
2531
2532 /* Check to see if someone else did our work for us. */
2533 s = atomic_long_read(&rsp->expedited_done);
2534 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2535 /* ensure test happens before caller kfree */
2536 smp_mb__before_atomic_inc(); /* ^^^ */
2537 atomic_long_inc(&rsp->expedited_workdone1);
2538 return;
2539 }
2540
2541 /* No joy, try again later. Or just synchronize_sched(). */
2542 if (trycount++ < 10) {
2543 udelay(trycount * num_online_cpus());
2544 } else {
2545 wait_rcu_gp(call_rcu_sched);
2546 atomic_long_inc(&rsp->expedited_normal);
2547 return;
2548 }
2549
2550 /* Recheck to see if someone else did our work for us. */
2551 s = atomic_long_read(&rsp->expedited_done);
2552 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2553 /* ensure test happens before caller kfree */
2554 smp_mb__before_atomic_inc(); /* ^^^ */
2555 atomic_long_inc(&rsp->expedited_workdone2);
2556 return;
2557 }
2558
2559 /*
2560 * Refetching sync_sched_expedited_started allows later
2561 * callers to piggyback on our grace period. We retry
2562 * after they started, so our grace period works for them,
2563 * and they started after our first try, so their grace
2564 * period works for us.
2565 */
2566 get_online_cpus();
2567 snap = atomic_long_read(&rsp->expedited_start);
2568 smp_mb(); /* ensure read is before try_stop_cpus(). */
2569 }
2570 atomic_long_inc(&rsp->expedited_stoppedcpus);
2571
2572 /*
2573 * Everyone up to our most recent fetch is covered by our grace
2574 * period. Update the counter, but only if our work is still
2575 * relevant -- which it won't be if someone who started later
2576 * than we did already did their update.
2577 */
2578 do {
2579 atomic_long_inc(&rsp->expedited_done_tries);
2580 s = atomic_long_read(&rsp->expedited_done);
2581 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
2582 /* ensure test happens before caller kfree */
2583 smp_mb__before_atomic_inc(); /* ^^^ */
2584 atomic_long_inc(&rsp->expedited_done_lost);
2585 break;
2586 }
2587 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
2588 atomic_long_inc(&rsp->expedited_done_exit);
2589
2590 put_online_cpus();
2591}
2592EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2593
2594/*
2595 * Check to see if there is any immediate RCU-related work to be done
2596 * by the current CPU, for the specified type of RCU, returning 1 if so.
2597 * The checks are in order of increasing expense: checks that can be
2598 * carried out against CPU-local state are performed first. However,
2599 * we must check for CPU stalls first, else we might not get a chance.
2600 */
2601static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2602{
2603 struct rcu_node *rnp = rdp->mynode;
2604
2605 rdp->n_rcu_pending++;
2606
2607 /* Check for CPU stalls, if enabled. */
2608 check_cpu_stall(rsp, rdp);
2609
2610 /* Is the RCU core waiting for a quiescent state from this CPU? */
2611 if (rcu_scheduler_fully_active &&
2612 rdp->qs_pending && !rdp->passed_quiesce) {
2613 rdp->n_rp_qs_pending++;
2614 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2615 rdp->n_rp_report_qs++;
2616 return 1;
2617 }
2618
2619 /* Does this CPU have callbacks ready to invoke? */
2620 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2621 rdp->n_rp_cb_ready++;
2622 return 1;
2623 }
2624
2625 /* Has RCU gone idle with this CPU needing another grace period? */
2626 if (cpu_needs_another_gp(rsp, rdp)) {
2627 rdp->n_rp_cpu_needs_gp++;
2628 return 1;
2629 }
2630
2631 /* Has another RCU grace period completed? */
2632 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2633 rdp->n_rp_gp_completed++;
2634 return 1;
2635 }
2636
2637 /* Has a new RCU grace period started? */
2638 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2639 rdp->n_rp_gp_started++;
2640 return 1;
2641 }
2642
2643 /* nothing to do */
2644 rdp->n_rp_need_nothing++;
2645 return 0;
2646}
2647
2648/*
2649 * Check to see if there is any immediate RCU-related work to be done
2650 * by the current CPU, returning 1 if so. This function is part of the
2651 * RCU implementation; it is -not- an exported member of the RCU API.
2652 */
2653static int rcu_pending(int cpu)
2654{
2655 struct rcu_state *rsp;
2656
2657 for_each_rcu_flavor(rsp)
2658 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2659 return 1;
2660 return 0;
2661}
2662
2663/*
2664 * Check to see if any future RCU-related work will need to be done
2665 * by the current CPU, even if none need be done immediately, returning
2666 * 1 if so.
2667 */
2668static int rcu_cpu_has_callbacks(int cpu)
2669{
2670 struct rcu_state *rsp;
2671
2672 /* RCU callbacks either ready or pending? */
2673 for_each_rcu_flavor(rsp)
2674 if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
2675 return 1;
2676 return 0;
2677}
2678
2679/*
2680 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2681 * the compiler is expected to optimize this away.
2682 */
2683static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2684 int cpu, unsigned long done)
2685{
2686 trace_rcu_barrier(rsp->name, s, cpu,
2687 atomic_read(&rsp->barrier_cpu_count), done);
2688}
2689
2690/*
2691 * RCU callback function for _rcu_barrier(). If we are last, wake
2692 * up the task executing _rcu_barrier().
2693 */
2694static void rcu_barrier_callback(struct rcu_head *rhp)
2695{
2696 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2697 struct rcu_state *rsp = rdp->rsp;
2698
2699 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2700 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2701 complete(&rsp->barrier_completion);
2702 } else {
2703 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2704 }
2705}
2706
2707/*
2708 * Called with preemption disabled, and from cross-cpu IRQ context.
2709 */
2710static void rcu_barrier_func(void *type)
2711{
2712 struct rcu_state *rsp = type;
2713 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2714
2715 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2716 atomic_inc(&rsp->barrier_cpu_count);
2717 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2718}
2719
2720/*
2721 * Orchestrate the specified type of RCU barrier, waiting for all
2722 * RCU callbacks of the specified type to complete.
2723 */
2724static void _rcu_barrier(struct rcu_state *rsp)
2725{
2726 int cpu;
2727 struct rcu_data *rdp;
2728 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2729 unsigned long snap_done;
2730
2731 _rcu_barrier_trace(rsp, "Begin", -1, snap);
2732
2733 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2734 mutex_lock(&rsp->barrier_mutex);
2735
2736 /*
2737 * Ensure that all prior references, including to ->n_barrier_done,
2738 * are ordered before the _rcu_barrier() machinery.
2739 */
2740 smp_mb(); /* See above block comment. */
2741
2742 /*
2743 * Recheck ->n_barrier_done to see if others did our work for us.
2744 * This means checking ->n_barrier_done for an even-to-odd-to-even
2745 * transition. The "if" expression below therefore rounds the old
2746 * value up to the next even number and adds two before comparing.
2747 */
2748 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
2749 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
2750 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
2751 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2752 smp_mb(); /* caller's subsequent code after above check. */
2753 mutex_unlock(&rsp->barrier_mutex);
2754 return;
2755 }
2756
2757 /*
2758 * Increment ->n_barrier_done to avoid duplicate work. Use
2759 * ACCESS_ONCE() to prevent the compiler from speculating
2760 * the increment to precede the early-exit check.
2761 */
2762 ACCESS_ONCE(rsp->n_barrier_done)++;
2763 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2764 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2765 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2766
2767 /*
2768 * Initialize the count to one rather than to zero in order to
2769 * avoid a too-soon return to zero in case of a short grace period
2770 * (or preemption of this task). Exclude CPU-hotplug operations
2771 * to ensure that no offline CPU has callbacks queued.
2772 */
2773 init_completion(&rsp->barrier_completion);
2774 atomic_set(&rsp->barrier_cpu_count, 1);
2775 get_online_cpus();
2776
2777 /*
2778 * Force each CPU with callbacks to register a new callback.
2779 * When that callback is invoked, we will know that all of the
2780 * corresponding CPU's preceding callbacks have been invoked.
2781 */
2782 for_each_possible_cpu(cpu) {
2783 if (!cpu_online(cpu) && !is_nocb_cpu(cpu))
2784 continue;
2785 rdp = per_cpu_ptr(rsp->rda, cpu);
2786 if (is_nocb_cpu(cpu)) {
2787 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
2788 rsp->n_barrier_done);
2789 atomic_inc(&rsp->barrier_cpu_count);
2790 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
2791 rsp, cpu, 0);
2792 } else if (ACCESS_ONCE(rdp->qlen)) {
2793 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2794 rsp->n_barrier_done);
2795 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2796 } else {
2797 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2798 rsp->n_barrier_done);
2799 }
2800 }
2801 put_online_cpus();
2802
2803 /*
2804 * Now that we have an rcu_barrier_callback() callback on each
2805 * CPU, and thus each counted, remove the initial count.
2806 */
2807 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2808 complete(&rsp->barrier_completion);
2809
2810 /* Increment ->n_barrier_done to prevent duplicate work. */
2811 smp_mb(); /* Keep increment after above mechanism. */
2812 ACCESS_ONCE(rsp->n_barrier_done)++;
2813 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2814 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2815 smp_mb(); /* Keep increment before caller's subsequent code. */
2816
2817 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2818 wait_for_completion(&rsp->barrier_completion);
2819
2820 /* Other rcu_barrier() invocations can now safely proceed. */
2821 mutex_unlock(&rsp->barrier_mutex);
2822}
2823
2824/**
2825 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2826 */
2827void rcu_barrier_bh(void)
2828{
2829 _rcu_barrier(&rcu_bh_state);
2830}
2831EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2832
2833/**
2834 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2835 */
2836void rcu_barrier_sched(void)
2837{
2838 _rcu_barrier(&rcu_sched_state);
2839}
2840EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2841
2842/*
2843 * Do boot-time initialization of a CPU's per-CPU RCU data.
2844 */
2845static void __init
2846rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2847{
2848 unsigned long flags;
2849 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2850 struct rcu_node *rnp = rcu_get_root(rsp);
2851
2852 /* Set up local state, ensuring consistent view of global state. */
2853 raw_spin_lock_irqsave(&rnp->lock, flags);
2854 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2855 init_callback_list(rdp);
2856 rdp->qlen_lazy = 0;
2857 ACCESS_ONCE(rdp->qlen) = 0;
2858 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2859 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2860 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2861#ifdef CONFIG_RCU_USER_QS
2862 WARN_ON_ONCE(rdp->dynticks->in_user);
2863#endif
2864 rdp->cpu = cpu;
2865 rdp->rsp = rsp;
2866 rcu_boot_init_nocb_percpu_data(rdp);
2867 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2868}
2869
2870/*
2871 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2872 * offline event can be happening at a given time. Note also that we
2873 * can accept some slop in the rsp->completed access due to the fact
2874 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2875 */
2876static void __cpuinit
2877rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2878{
2879 unsigned long flags;
2880 unsigned long mask;
2881 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2882 struct rcu_node *rnp = rcu_get_root(rsp);
2883
2884 /* Exclude new grace periods. */
2885 mutex_lock(&rsp->onoff_mutex);
2886
2887 /* Set up local state, ensuring consistent view of global state. */
2888 raw_spin_lock_irqsave(&rnp->lock, flags);
2889 rdp->beenonline = 1; /* We have now been online. */
2890 rdp->preemptible = preemptible;
2891 rdp->qlen_last_fqs_check = 0;
2892 rdp->n_force_qs_snap = rsp->n_force_qs;
2893 rdp->blimit = blimit;
2894 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
2895 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2896 atomic_set(&rdp->dynticks->dynticks,
2897 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2898 rcu_prepare_for_idle_init(cpu);
2899 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2900
2901 /* Add CPU to rcu_node bitmasks. */
2902 rnp = rdp->mynode;
2903 mask = rdp->grpmask;
2904 do {
2905 /* Exclude any attempts to start a new GP on small systems. */
2906 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2907 rnp->qsmaskinit |= mask;
2908 mask = rnp->grpmask;
2909 if (rnp == rdp->mynode) {
2910 /*
2911 * If there is a grace period in progress, we will
2912 * set up to wait for it next time we run the
2913 * RCU core code.
2914 */
2915 rdp->gpnum = rnp->completed;
2916 rdp->completed = rnp->completed;
2917 rdp->passed_quiesce = 0;
2918 rdp->qs_pending = 0;
2919 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2920 }
2921 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2922 rnp = rnp->parent;
2923 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2924 local_irq_restore(flags);
2925
2926 mutex_unlock(&rsp->onoff_mutex);
2927}
2928
2929static void __cpuinit rcu_prepare_cpu(int cpu)
2930{
2931 struct rcu_state *rsp;
2932
2933 for_each_rcu_flavor(rsp)
2934 rcu_init_percpu_data(cpu, rsp,
2935 strcmp(rsp->name, "rcu_preempt") == 0);
2936}
2937
2938/*
2939 * Handle CPU online/offline notification events.
2940 */
2941static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2942 unsigned long action, void *hcpu)
2943{
2944 long cpu = (long)hcpu;
2945 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2946 struct rcu_node *rnp = rdp->mynode;
2947 struct rcu_state *rsp;
2948 int ret = NOTIFY_OK;
2949
2950 trace_rcu_utilization("Start CPU hotplug");
2951 switch (action) {
2952 case CPU_UP_PREPARE:
2953 case CPU_UP_PREPARE_FROZEN:
2954 rcu_prepare_cpu(cpu);
2955 rcu_prepare_kthreads(cpu);
2956 break;
2957 case CPU_ONLINE:
2958 case CPU_DOWN_FAILED:
2959 rcu_boost_kthread_setaffinity(rnp, -1);
2960 break;
2961 case CPU_DOWN_PREPARE:
2962 if (nocb_cpu_expendable(cpu))
2963 rcu_boost_kthread_setaffinity(rnp, cpu);
2964 else
2965 ret = NOTIFY_BAD;
2966 break;
2967 case CPU_DYING:
2968 case CPU_DYING_FROZEN:
2969 /*
2970 * The whole machine is "stopped" except this CPU, so we can
2971 * touch any data without introducing corruption. We send the
2972 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2973 */
2974 for_each_rcu_flavor(rsp)
2975 rcu_cleanup_dying_cpu(rsp);
2976 rcu_cleanup_after_idle(cpu);
2977 break;
2978 case CPU_DEAD:
2979 case CPU_DEAD_FROZEN:
2980 case CPU_UP_CANCELED:
2981 case CPU_UP_CANCELED_FROZEN:
2982 for_each_rcu_flavor(rsp)
2983 rcu_cleanup_dead_cpu(cpu, rsp);
2984 break;
2985 default:
2986 break;
2987 }
2988 trace_rcu_utilization("End CPU hotplug");
2989 return ret;
2990}
2991
2992/*
2993 * Spawn the kthread that handles this RCU flavor's grace periods.
2994 */
2995static int __init rcu_spawn_gp_kthread(void)
2996{
2997 unsigned long flags;
2998 struct rcu_node *rnp;
2999 struct rcu_state *rsp;
3000 struct task_struct *t;
3001
3002 for_each_rcu_flavor(rsp) {
3003 t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
3004 BUG_ON(IS_ERR(t));
3005 rnp = rcu_get_root(rsp);
3006 raw_spin_lock_irqsave(&rnp->lock, flags);
3007 rsp->gp_kthread = t;
3008 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3009 rcu_spawn_nocb_kthreads(rsp);
3010 }
3011 return 0;
3012}
3013early_initcall(rcu_spawn_gp_kthread);
3014
3015/*
3016 * This function is invoked towards the end of the scheduler's initialization
3017 * process. Before this is called, the idle task might contain
3018 * RCU read-side critical sections (during which time, this idle
3019 * task is booting the system). After this function is called, the
3020 * idle tasks are prohibited from containing RCU read-side critical
3021 * sections. This function also enables RCU lockdep checking.
3022 */
3023void rcu_scheduler_starting(void)
3024{
3025 WARN_ON(num_online_cpus() != 1);
3026 WARN_ON(nr_context_switches() > 0);
3027 rcu_scheduler_active = 1;
3028}
3029
3030/*
3031 * Compute the per-level fanout, either using the exact fanout specified
3032 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3033 */
3034#ifdef CONFIG_RCU_FANOUT_EXACT
3035static void __init rcu_init_levelspread(struct rcu_state *rsp)
3036{
3037 int i;
3038
3039 for (i = rcu_num_lvls - 1; i > 0; i--)
3040 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3041 rsp->levelspread[0] = rcu_fanout_leaf;
3042}
3043#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3044static void __init rcu_init_levelspread(struct rcu_state *rsp)
3045{
3046 int ccur;
3047 int cprv;
3048 int i;
3049
3050 cprv = nr_cpu_ids;
3051 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3052 ccur = rsp->levelcnt[i];
3053 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3054 cprv = ccur;
3055 }
3056}
3057#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3058
3059/*
3060 * Helper function for rcu_init() that initializes one rcu_state structure.
3061 */
3062static void __init rcu_init_one(struct rcu_state *rsp,
3063 struct rcu_data __percpu *rda)
3064{
3065 static char *buf[] = { "rcu_node_0",
3066 "rcu_node_1",
3067 "rcu_node_2",
3068 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3069 static char *fqs[] = { "rcu_node_fqs_0",
3070 "rcu_node_fqs_1",
3071 "rcu_node_fqs_2",
3072 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
3073 int cpustride = 1;
3074 int i;
3075 int j;
3076 struct rcu_node *rnp;
3077
3078 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3079
3080 /* Initialize the level-tracking arrays. */
3081
3082 for (i = 0; i < rcu_num_lvls; i++)
3083 rsp->levelcnt[i] = num_rcu_lvl[i];
3084 for (i = 1; i < rcu_num_lvls; i++)
3085 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3086 rcu_init_levelspread(rsp);
3087
3088 /* Initialize the elements themselves, starting from the leaves. */
3089
3090 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3091 cpustride *= rsp->levelspread[i];
3092 rnp = rsp->level[i];
3093 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
3094 raw_spin_lock_init(&rnp->lock);
3095 lockdep_set_class_and_name(&rnp->lock,
3096 &rcu_node_class[i], buf[i]);
3097 raw_spin_lock_init(&rnp->fqslock);
3098 lockdep_set_class_and_name(&rnp->fqslock,
3099 &rcu_fqs_class[i], fqs[i]);
3100 rnp->gpnum = rsp->gpnum;
3101 rnp->completed = rsp->completed;
3102 rnp->qsmask = 0;
3103 rnp->qsmaskinit = 0;
3104 rnp->grplo = j * cpustride;
3105 rnp->grphi = (j + 1) * cpustride - 1;
3106 if (rnp->grphi >= NR_CPUS)
3107 rnp->grphi = NR_CPUS - 1;
3108 if (i == 0) {
3109 rnp->grpnum = 0;
3110 rnp->grpmask = 0;
3111 rnp->parent = NULL;
3112 } else {
3113 rnp->grpnum = j % rsp->levelspread[i - 1];
3114 rnp->grpmask = 1UL << rnp->grpnum;
3115 rnp->parent = rsp->level[i - 1] +
3116 j / rsp->levelspread[i - 1];
3117 }
3118 rnp->level = i;
3119 INIT_LIST_HEAD(&rnp->blkd_tasks);
3120 }
3121 }
3122
3123 rsp->rda = rda;
3124 init_waitqueue_head(&rsp->gp_wq);
3125 rnp = rsp->level[rcu_num_lvls - 1];
3126 for_each_possible_cpu(i) {
3127 while (i > rnp->grphi)
3128 rnp++;
3129 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3130 rcu_boot_init_percpu_data(i, rsp);
3131 }
3132 list_add(&rsp->flavors, &rcu_struct_flavors);
3133}
3134
3135/*
3136 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3137 * replace the definitions in rcutree.h because those are needed to size
3138 * the ->node array in the rcu_state structure.
3139 */
3140static void __init rcu_init_geometry(void)
3141{
3142 int i;
3143 int j;
3144 int n = nr_cpu_ids;
3145 int rcu_capacity[MAX_RCU_LVLS + 1];
3146
3147 /* If the compile-time values are accurate, just leave. */
3148 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3149 nr_cpu_ids == NR_CPUS)
3150 return;
3151
3152 /*
3153 * Compute number of nodes that can be handled an rcu_node tree
3154 * with the given number of levels. Setting rcu_capacity[0] makes
3155 * some of the arithmetic easier.
3156 */
3157 rcu_capacity[0] = 1;
3158 rcu_capacity[1] = rcu_fanout_leaf;
3159 for (i = 2; i <= MAX_RCU_LVLS; i++)
3160 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3161
3162 /*
3163 * The boot-time rcu_fanout_leaf parameter is only permitted
3164 * to increase the leaf-level fanout, not decrease it. Of course,
3165 * the leaf-level fanout cannot exceed the number of bits in
3166 * the rcu_node masks. Finally, the tree must be able to accommodate
3167 * the configured number of CPUs. Complain and fall back to the
3168 * compile-time values if these limits are exceeded.
3169 */
3170 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3171 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3172 n > rcu_capacity[MAX_RCU_LVLS]) {
3173 WARN_ON(1);
3174 return;
3175 }
3176
3177 /* Calculate the number of rcu_nodes at each level of the tree. */
3178 for (i = 1; i <= MAX_RCU_LVLS; i++)
3179 if (n <= rcu_capacity[i]) {
3180 for (j = 0; j <= i; j++)
3181 num_rcu_lvl[j] =
3182 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3183 rcu_num_lvls = i;
3184 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3185 num_rcu_lvl[j] = 0;
3186 break;
3187 }
3188
3189 /* Calculate the total number of rcu_node structures. */
3190 rcu_num_nodes = 0;
3191 for (i = 0; i <= MAX_RCU_LVLS; i++)
3192 rcu_num_nodes += num_rcu_lvl[i];
3193 rcu_num_nodes -= n;
3194}
3195
3196void __init rcu_init(void)
3197{
3198 int cpu;
3199
3200 rcu_bootup_announce();
3201 rcu_init_geometry();
3202 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3203 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3204 __rcu_init_preempt();
3205 rcu_init_nocb();
3206 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3207
3208 /*
3209 * We don't need protection against CPU-hotplug here because
3210 * this is called early in boot, before either interrupts
3211 * or the scheduler are operational.
3212 */
3213 cpu_notifier(rcu_cpu_notify, 0);
3214 for_each_online_cpu(cpu)
3215 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3216 check_cpu_stall_init();
3217}
3218
3219#include "rcutree_plugin.h"
This page took 0.040049 seconds and 5 git commands to generate.