rcu: Improve grace-period start logic
[deliverable/linux.git] / kernel / rcutree.c
... / ...
CommitLineData
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
38#include <linux/nmi.h>
39#include <linux/atomic.h>
40#include <linux/bitops.h>
41#include <linux/export.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
49#include <linux/kernel_stat.h>
50#include <linux/wait.h>
51#include <linux/kthread.h>
52#include <linux/prefetch.h>
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
55#include <linux/random.h>
56#include <linux/ftrace_event.h>
57#include <linux/suspend.h>
58
59#include "rcutree.h"
60#include <trace/events/rcu.h>
61
62#include "rcu.h"
63
64/*
65 * Strings used in tracepoints need to be exported via the
66 * tracing system such that tools like perf and trace-cmd can
67 * translate the string address pointers to actual text.
68 */
69#define TPS(x) tracepoint_string(x)
70
71/* Data structures. */
72
73static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
74static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
75
76/*
77 * In order to export the rcu_state name to the tracing tools, it
78 * needs to be added in the __tracepoint_string section.
79 * This requires defining a separate variable tp_<sname>_varname
80 * that points to the string being used, and this will allow
81 * the tracing userspace tools to be able to decipher the string
82 * address to the matching string.
83 */
84#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
85static char sname##_varname[] = #sname; \
86static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
87struct rcu_state sname##_state = { \
88 .level = { &sname##_state.node[0] }, \
89 .call = cr, \
90 .fqs_state = RCU_GP_IDLE, \
91 .gpnum = 0UL - 300UL, \
92 .completed = 0UL - 300UL, \
93 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
94 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
95 .orphan_donetail = &sname##_state.orphan_donelist, \
96 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
97 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
98 .name = sname##_varname, \
99 .abbr = sabbr, \
100}; \
101DEFINE_PER_CPU(struct rcu_data, sname##_data)
102
103RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
104RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
105
106static struct rcu_state *rcu_state;
107LIST_HEAD(rcu_struct_flavors);
108
109/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
110static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
111module_param(rcu_fanout_leaf, int, 0444);
112int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
113static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
114 NUM_RCU_LVL_0,
115 NUM_RCU_LVL_1,
116 NUM_RCU_LVL_2,
117 NUM_RCU_LVL_3,
118 NUM_RCU_LVL_4,
119};
120int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
121
122/*
123 * The rcu_scheduler_active variable transitions from zero to one just
124 * before the first task is spawned. So when this variable is zero, RCU
125 * can assume that there is but one task, allowing RCU to (for example)
126 * optimize synchronize_sched() to a simple barrier(). When this variable
127 * is one, RCU must actually do all the hard work required to detect real
128 * grace periods. This variable is also used to suppress boot-time false
129 * positives from lockdep-RCU error checking.
130 */
131int rcu_scheduler_active __read_mostly;
132EXPORT_SYMBOL_GPL(rcu_scheduler_active);
133
134/*
135 * The rcu_scheduler_fully_active variable transitions from zero to one
136 * during the early_initcall() processing, which is after the scheduler
137 * is capable of creating new tasks. So RCU processing (for example,
138 * creating tasks for RCU priority boosting) must be delayed until after
139 * rcu_scheduler_fully_active transitions from zero to one. We also
140 * currently delay invocation of any RCU callbacks until after this point.
141 *
142 * It might later prove better for people registering RCU callbacks during
143 * early boot to take responsibility for these callbacks, but one step at
144 * a time.
145 */
146static int rcu_scheduler_fully_active __read_mostly;
147
148#ifdef CONFIG_RCU_BOOST
149
150/*
151 * Control variables for per-CPU and per-rcu_node kthreads. These
152 * handle all flavors of RCU.
153 */
154static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
155DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
156DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
157DEFINE_PER_CPU(char, rcu_cpu_has_work);
158
159#endif /* #ifdef CONFIG_RCU_BOOST */
160
161static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
162static void invoke_rcu_core(void);
163static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
164
165/*
166 * Track the rcutorture test sequence number and the update version
167 * number within a given test. The rcutorture_testseq is incremented
168 * on every rcutorture module load and unload, so has an odd value
169 * when a test is running. The rcutorture_vernum is set to zero
170 * when rcutorture starts and is incremented on each rcutorture update.
171 * These variables enable correlating rcutorture output with the
172 * RCU tracing information.
173 */
174unsigned long rcutorture_testseq;
175unsigned long rcutorture_vernum;
176
177/*
178 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
179 * permit this function to be invoked without holding the root rcu_node
180 * structure's ->lock, but of course results can be subject to change.
181 */
182static int rcu_gp_in_progress(struct rcu_state *rsp)
183{
184 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
185}
186
187/*
188 * Note a quiescent state. Because we do not need to know
189 * how many quiescent states passed, just if there was at least
190 * one since the start of the grace period, this just sets a flag.
191 * The caller must have disabled preemption.
192 */
193void rcu_sched_qs(int cpu)
194{
195 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
196
197 if (rdp->passed_quiesce == 0)
198 trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
199 rdp->passed_quiesce = 1;
200}
201
202void rcu_bh_qs(int cpu)
203{
204 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
205
206 if (rdp->passed_quiesce == 0)
207 trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
208 rdp->passed_quiesce = 1;
209}
210
211/*
212 * Note a context switch. This is a quiescent state for RCU-sched,
213 * and requires special handling for preemptible RCU.
214 * The caller must have disabled preemption.
215 */
216void rcu_note_context_switch(int cpu)
217{
218 trace_rcu_utilization(TPS("Start context switch"));
219 rcu_sched_qs(cpu);
220 rcu_preempt_note_context_switch(cpu);
221 trace_rcu_utilization(TPS("End context switch"));
222}
223EXPORT_SYMBOL_GPL(rcu_note_context_switch);
224
225DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
226 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
227 .dynticks = ATOMIC_INIT(1),
228#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
229 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
230 .dynticks_idle = ATOMIC_INIT(1),
231#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
232};
233
234static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
235static long qhimark = 10000; /* If this many pending, ignore blimit. */
236static long qlowmark = 100; /* Once only this many pending, use blimit. */
237
238module_param(blimit, long, 0444);
239module_param(qhimark, long, 0444);
240module_param(qlowmark, long, 0444);
241
242static ulong jiffies_till_first_fqs = ULONG_MAX;
243static ulong jiffies_till_next_fqs = ULONG_MAX;
244
245module_param(jiffies_till_first_fqs, ulong, 0644);
246module_param(jiffies_till_next_fqs, ulong, 0644);
247
248static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
249 struct rcu_data *rdp);
250static void force_qs_rnp(struct rcu_state *rsp,
251 int (*f)(struct rcu_data *rsp, bool *isidle,
252 unsigned long *maxj),
253 bool *isidle, unsigned long *maxj);
254static void force_quiescent_state(struct rcu_state *rsp);
255static int rcu_pending(int cpu);
256
257/*
258 * Return the number of RCU-sched batches processed thus far for debug & stats.
259 */
260long rcu_batches_completed_sched(void)
261{
262 return rcu_sched_state.completed;
263}
264EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
265
266/*
267 * Return the number of RCU BH batches processed thus far for debug & stats.
268 */
269long rcu_batches_completed_bh(void)
270{
271 return rcu_bh_state.completed;
272}
273EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
274
275/*
276 * Force a quiescent state for RCU BH.
277 */
278void rcu_bh_force_quiescent_state(void)
279{
280 force_quiescent_state(&rcu_bh_state);
281}
282EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
283
284/*
285 * Record the number of times rcutorture tests have been initiated and
286 * terminated. This information allows the debugfs tracing stats to be
287 * correlated to the rcutorture messages, even when the rcutorture module
288 * is being repeatedly loaded and unloaded. In other words, we cannot
289 * store this state in rcutorture itself.
290 */
291void rcutorture_record_test_transition(void)
292{
293 rcutorture_testseq++;
294 rcutorture_vernum = 0;
295}
296EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
297
298/*
299 * Record the number of writer passes through the current rcutorture test.
300 * This is also used to correlate debugfs tracing stats with the rcutorture
301 * messages.
302 */
303void rcutorture_record_progress(unsigned long vernum)
304{
305 rcutorture_vernum++;
306}
307EXPORT_SYMBOL_GPL(rcutorture_record_progress);
308
309/*
310 * Force a quiescent state for RCU-sched.
311 */
312void rcu_sched_force_quiescent_state(void)
313{
314 force_quiescent_state(&rcu_sched_state);
315}
316EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
317
318/*
319 * Does the CPU have callbacks ready to be invoked?
320 */
321static int
322cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
323{
324 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
325 rdp->nxttail[RCU_DONE_TAIL] != NULL;
326}
327
328/*
329 * Does the current CPU require a not-yet-started grace period?
330 * The caller must have disabled interrupts to prevent races with
331 * normal callback registry.
332 */
333static int
334cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
335{
336 int i;
337
338 if (rcu_gp_in_progress(rsp))
339 return 0; /* No, a grace period is already in progress. */
340 if (rcu_nocb_needs_gp(rsp))
341 return 1; /* Yes, a no-CBs CPU needs one. */
342 if (!rdp->nxttail[RCU_NEXT_TAIL])
343 return 0; /* No, this is a no-CBs (or offline) CPU. */
344 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
345 return 1; /* Yes, this CPU has newly registered callbacks. */
346 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
347 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
348 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
349 rdp->nxtcompleted[i]))
350 return 1; /* Yes, CBs for future grace period. */
351 return 0; /* No grace period needed. */
352}
353
354/*
355 * Return the root node of the specified rcu_state structure.
356 */
357static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
358{
359 return &rsp->node[0];
360}
361
362/*
363 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
364 *
365 * If the new value of the ->dynticks_nesting counter now is zero,
366 * we really have entered idle, and must do the appropriate accounting.
367 * The caller must have disabled interrupts.
368 */
369static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
370 bool user)
371{
372 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
373 if (!user && !is_idle_task(current)) {
374 struct task_struct *idle = idle_task(smp_processor_id());
375
376 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
377 ftrace_dump(DUMP_ORIG);
378 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
379 current->pid, current->comm,
380 idle->pid, idle->comm); /* must be idle task! */
381 }
382 rcu_prepare_for_idle(smp_processor_id());
383 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
384 smp_mb__before_atomic_inc(); /* See above. */
385 atomic_inc(&rdtp->dynticks);
386 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
387 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
388
389 /*
390 * It is illegal to enter an extended quiescent state while
391 * in an RCU read-side critical section.
392 */
393 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
394 "Illegal idle entry in RCU read-side critical section.");
395 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
396 "Illegal idle entry in RCU-bh read-side critical section.");
397 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
398 "Illegal idle entry in RCU-sched read-side critical section.");
399}
400
401/*
402 * Enter an RCU extended quiescent state, which can be either the
403 * idle loop or adaptive-tickless usermode execution.
404 */
405static void rcu_eqs_enter(bool user)
406{
407 long long oldval;
408 struct rcu_dynticks *rdtp;
409
410 rdtp = &__get_cpu_var(rcu_dynticks);
411 oldval = rdtp->dynticks_nesting;
412 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
413 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
414 rdtp->dynticks_nesting = 0;
415 else
416 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
417 rcu_eqs_enter_common(rdtp, oldval, user);
418}
419
420/**
421 * rcu_idle_enter - inform RCU that current CPU is entering idle
422 *
423 * Enter idle mode, in other words, -leave- the mode in which RCU
424 * read-side critical sections can occur. (Though RCU read-side
425 * critical sections can occur in irq handlers in idle, a possibility
426 * handled by irq_enter() and irq_exit().)
427 *
428 * We crowbar the ->dynticks_nesting field to zero to allow for
429 * the possibility of usermode upcalls having messed up our count
430 * of interrupt nesting level during the prior busy period.
431 */
432void rcu_idle_enter(void)
433{
434 unsigned long flags;
435
436 local_irq_save(flags);
437 rcu_eqs_enter(false);
438 rcu_sysidle_enter(&__get_cpu_var(rcu_dynticks), 0);
439 local_irq_restore(flags);
440}
441EXPORT_SYMBOL_GPL(rcu_idle_enter);
442
443#ifdef CONFIG_RCU_USER_QS
444/**
445 * rcu_user_enter - inform RCU that we are resuming userspace.
446 *
447 * Enter RCU idle mode right before resuming userspace. No use of RCU
448 * is permitted between this call and rcu_user_exit(). This way the
449 * CPU doesn't need to maintain the tick for RCU maintenance purposes
450 * when the CPU runs in userspace.
451 */
452void rcu_user_enter(void)
453{
454 rcu_eqs_enter(1);
455}
456#endif /* CONFIG_RCU_USER_QS */
457
458/**
459 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
460 *
461 * Exit from an interrupt handler, which might possibly result in entering
462 * idle mode, in other words, leaving the mode in which read-side critical
463 * sections can occur.
464 *
465 * This code assumes that the idle loop never does anything that might
466 * result in unbalanced calls to irq_enter() and irq_exit(). If your
467 * architecture violates this assumption, RCU will give you what you
468 * deserve, good and hard. But very infrequently and irreproducibly.
469 *
470 * Use things like work queues to work around this limitation.
471 *
472 * You have been warned.
473 */
474void rcu_irq_exit(void)
475{
476 unsigned long flags;
477 long long oldval;
478 struct rcu_dynticks *rdtp;
479
480 local_irq_save(flags);
481 rdtp = &__get_cpu_var(rcu_dynticks);
482 oldval = rdtp->dynticks_nesting;
483 rdtp->dynticks_nesting--;
484 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
485 if (rdtp->dynticks_nesting)
486 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
487 else
488 rcu_eqs_enter_common(rdtp, oldval, true);
489 rcu_sysidle_enter(rdtp, 1);
490 local_irq_restore(flags);
491}
492
493/*
494 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
495 *
496 * If the new value of the ->dynticks_nesting counter was previously zero,
497 * we really have exited idle, and must do the appropriate accounting.
498 * The caller must have disabled interrupts.
499 */
500static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
501 int user)
502{
503 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
504 atomic_inc(&rdtp->dynticks);
505 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
506 smp_mb__after_atomic_inc(); /* See above. */
507 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
508 rcu_cleanup_after_idle(smp_processor_id());
509 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
510 if (!user && !is_idle_task(current)) {
511 struct task_struct *idle = idle_task(smp_processor_id());
512
513 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
514 oldval, rdtp->dynticks_nesting);
515 ftrace_dump(DUMP_ORIG);
516 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
517 current->pid, current->comm,
518 idle->pid, idle->comm); /* must be idle task! */
519 }
520}
521
522/*
523 * Exit an RCU extended quiescent state, which can be either the
524 * idle loop or adaptive-tickless usermode execution.
525 */
526static void rcu_eqs_exit(bool user)
527{
528 struct rcu_dynticks *rdtp;
529 long long oldval;
530
531 rdtp = &__get_cpu_var(rcu_dynticks);
532 oldval = rdtp->dynticks_nesting;
533 WARN_ON_ONCE(oldval < 0);
534 if (oldval & DYNTICK_TASK_NEST_MASK)
535 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
536 else
537 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
538 rcu_eqs_exit_common(rdtp, oldval, user);
539}
540
541/**
542 * rcu_idle_exit - inform RCU that current CPU is leaving idle
543 *
544 * Exit idle mode, in other words, -enter- the mode in which RCU
545 * read-side critical sections can occur.
546 *
547 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
548 * allow for the possibility of usermode upcalls messing up our count
549 * of interrupt nesting level during the busy period that is just
550 * now starting.
551 */
552void rcu_idle_exit(void)
553{
554 unsigned long flags;
555
556 local_irq_save(flags);
557 rcu_eqs_exit(false);
558 rcu_sysidle_exit(&__get_cpu_var(rcu_dynticks), 0);
559 local_irq_restore(flags);
560}
561EXPORT_SYMBOL_GPL(rcu_idle_exit);
562
563#ifdef CONFIG_RCU_USER_QS
564/**
565 * rcu_user_exit - inform RCU that we are exiting userspace.
566 *
567 * Exit RCU idle mode while entering the kernel because it can
568 * run a RCU read side critical section anytime.
569 */
570void rcu_user_exit(void)
571{
572 rcu_eqs_exit(1);
573}
574#endif /* CONFIG_RCU_USER_QS */
575
576/**
577 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
578 *
579 * Enter an interrupt handler, which might possibly result in exiting
580 * idle mode, in other words, entering the mode in which read-side critical
581 * sections can occur.
582 *
583 * Note that the Linux kernel is fully capable of entering an interrupt
584 * handler that it never exits, for example when doing upcalls to
585 * user mode! This code assumes that the idle loop never does upcalls to
586 * user mode. If your architecture does do upcalls from the idle loop (or
587 * does anything else that results in unbalanced calls to the irq_enter()
588 * and irq_exit() functions), RCU will give you what you deserve, good
589 * and hard. But very infrequently and irreproducibly.
590 *
591 * Use things like work queues to work around this limitation.
592 *
593 * You have been warned.
594 */
595void rcu_irq_enter(void)
596{
597 unsigned long flags;
598 struct rcu_dynticks *rdtp;
599 long long oldval;
600
601 local_irq_save(flags);
602 rdtp = &__get_cpu_var(rcu_dynticks);
603 oldval = rdtp->dynticks_nesting;
604 rdtp->dynticks_nesting++;
605 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
606 if (oldval)
607 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
608 else
609 rcu_eqs_exit_common(rdtp, oldval, true);
610 rcu_sysidle_exit(rdtp, 1);
611 local_irq_restore(flags);
612}
613
614/**
615 * rcu_nmi_enter - inform RCU of entry to NMI context
616 *
617 * If the CPU was idle with dynamic ticks active, and there is no
618 * irq handler running, this updates rdtp->dynticks_nmi to let the
619 * RCU grace-period handling know that the CPU is active.
620 */
621void rcu_nmi_enter(void)
622{
623 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
624
625 if (rdtp->dynticks_nmi_nesting == 0 &&
626 (atomic_read(&rdtp->dynticks) & 0x1))
627 return;
628 rdtp->dynticks_nmi_nesting++;
629 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
630 atomic_inc(&rdtp->dynticks);
631 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
632 smp_mb__after_atomic_inc(); /* See above. */
633 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
634}
635
636/**
637 * rcu_nmi_exit - inform RCU of exit from NMI context
638 *
639 * If the CPU was idle with dynamic ticks active, and there is no
640 * irq handler running, this updates rdtp->dynticks_nmi to let the
641 * RCU grace-period handling know that the CPU is no longer active.
642 */
643void rcu_nmi_exit(void)
644{
645 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
646
647 if (rdtp->dynticks_nmi_nesting == 0 ||
648 --rdtp->dynticks_nmi_nesting != 0)
649 return;
650 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
651 smp_mb__before_atomic_inc(); /* See above. */
652 atomic_inc(&rdtp->dynticks);
653 smp_mb__after_atomic_inc(); /* Force delay to next write. */
654 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
655}
656
657/**
658 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
659 *
660 * If the current CPU is in its idle loop and is neither in an interrupt
661 * or NMI handler, return true.
662 */
663int rcu_is_cpu_idle(void)
664{
665 int ret;
666
667 preempt_disable();
668 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
669 preempt_enable();
670 return ret;
671}
672EXPORT_SYMBOL(rcu_is_cpu_idle);
673
674#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
675
676/*
677 * Is the current CPU online? Disable preemption to avoid false positives
678 * that could otherwise happen due to the current CPU number being sampled,
679 * this task being preempted, its old CPU being taken offline, resuming
680 * on some other CPU, then determining that its old CPU is now offline.
681 * It is OK to use RCU on an offline processor during initial boot, hence
682 * the check for rcu_scheduler_fully_active. Note also that it is OK
683 * for a CPU coming online to use RCU for one jiffy prior to marking itself
684 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
685 * offline to continue to use RCU for one jiffy after marking itself
686 * offline in the cpu_online_mask. This leniency is necessary given the
687 * non-atomic nature of the online and offline processing, for example,
688 * the fact that a CPU enters the scheduler after completing the CPU_DYING
689 * notifiers.
690 *
691 * This is also why RCU internally marks CPUs online during the
692 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
693 *
694 * Disable checking if in an NMI handler because we cannot safely report
695 * errors from NMI handlers anyway.
696 */
697bool rcu_lockdep_current_cpu_online(void)
698{
699 struct rcu_data *rdp;
700 struct rcu_node *rnp;
701 bool ret;
702
703 if (in_nmi())
704 return 1;
705 preempt_disable();
706 rdp = &__get_cpu_var(rcu_sched_data);
707 rnp = rdp->mynode;
708 ret = (rdp->grpmask & rnp->qsmaskinit) ||
709 !rcu_scheduler_fully_active;
710 preempt_enable();
711 return ret;
712}
713EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
714
715#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
716
717/**
718 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
719 *
720 * If the current CPU is idle or running at a first-level (not nested)
721 * interrupt from idle, return true. The caller must have at least
722 * disabled preemption.
723 */
724static int rcu_is_cpu_rrupt_from_idle(void)
725{
726 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
727}
728
729/*
730 * Snapshot the specified CPU's dynticks counter so that we can later
731 * credit them with an implicit quiescent state. Return 1 if this CPU
732 * is in dynticks idle mode, which is an extended quiescent state.
733 */
734static int dyntick_save_progress_counter(struct rcu_data *rdp,
735 bool *isidle, unsigned long *maxj)
736{
737 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
738 rcu_sysidle_check_cpu(rdp, isidle, maxj);
739 return (rdp->dynticks_snap & 0x1) == 0;
740}
741
742/*
743 * Return true if the specified CPU has passed through a quiescent
744 * state by virtue of being in or having passed through an dynticks
745 * idle state since the last call to dyntick_save_progress_counter()
746 * for this same CPU, or by virtue of having been offline.
747 */
748static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
749 bool *isidle, unsigned long *maxj)
750{
751 unsigned int curr;
752 unsigned int snap;
753
754 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
755 snap = (unsigned int)rdp->dynticks_snap;
756
757 /*
758 * If the CPU passed through or entered a dynticks idle phase with
759 * no active irq/NMI handlers, then we can safely pretend that the CPU
760 * already acknowledged the request to pass through a quiescent
761 * state. Either way, that CPU cannot possibly be in an RCU
762 * read-side critical section that started before the beginning
763 * of the current RCU grace period.
764 */
765 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
766 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
767 rdp->dynticks_fqs++;
768 return 1;
769 }
770
771 /*
772 * Check for the CPU being offline, but only if the grace period
773 * is old enough. We don't need to worry about the CPU changing
774 * state: If we see it offline even once, it has been through a
775 * quiescent state.
776 *
777 * The reason for insisting that the grace period be at least
778 * one jiffy old is that CPUs that are not quite online and that
779 * have just gone offline can still execute RCU read-side critical
780 * sections.
781 */
782 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
783 return 0; /* Grace period is not old enough. */
784 barrier();
785 if (cpu_is_offline(rdp->cpu)) {
786 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
787 rdp->offline_fqs++;
788 return 1;
789 }
790
791 /*
792 * There is a possibility that a CPU in adaptive-ticks state
793 * might run in the kernel with the scheduling-clock tick disabled
794 * for an extended time period. Invoke rcu_kick_nohz_cpu() to
795 * force the CPU to restart the scheduling-clock tick in this
796 * CPU is in this state.
797 */
798 rcu_kick_nohz_cpu(rdp->cpu);
799
800 return 0;
801}
802
803static void record_gp_stall_check_time(struct rcu_state *rsp)
804{
805 rsp->gp_start = jiffies;
806 rsp->jiffies_stall = jiffies + rcu_jiffies_till_stall_check();
807}
808
809/*
810 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
811 * for architectures that do not implement trigger_all_cpu_backtrace().
812 * The NMI-triggered stack traces are more accurate because they are
813 * printed by the target CPU.
814 */
815static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
816{
817 int cpu;
818 unsigned long flags;
819 struct rcu_node *rnp;
820
821 rcu_for_each_leaf_node(rsp, rnp) {
822 raw_spin_lock_irqsave(&rnp->lock, flags);
823 if (rnp->qsmask != 0) {
824 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
825 if (rnp->qsmask & (1UL << cpu))
826 dump_cpu_task(rnp->grplo + cpu);
827 }
828 raw_spin_unlock_irqrestore(&rnp->lock, flags);
829 }
830}
831
832static void print_other_cpu_stall(struct rcu_state *rsp)
833{
834 int cpu;
835 long delta;
836 unsigned long flags;
837 int ndetected = 0;
838 struct rcu_node *rnp = rcu_get_root(rsp);
839 long totqlen = 0;
840
841 /* Only let one CPU complain about others per time interval. */
842
843 raw_spin_lock_irqsave(&rnp->lock, flags);
844 delta = jiffies - rsp->jiffies_stall;
845 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
846 raw_spin_unlock_irqrestore(&rnp->lock, flags);
847 return;
848 }
849 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
850 raw_spin_unlock_irqrestore(&rnp->lock, flags);
851
852 /*
853 * OK, time to rat on our buddy...
854 * See Documentation/RCU/stallwarn.txt for info on how to debug
855 * RCU CPU stall warnings.
856 */
857 pr_err("INFO: %s detected stalls on CPUs/tasks:",
858 rsp->name);
859 print_cpu_stall_info_begin();
860 rcu_for_each_leaf_node(rsp, rnp) {
861 raw_spin_lock_irqsave(&rnp->lock, flags);
862 ndetected += rcu_print_task_stall(rnp);
863 if (rnp->qsmask != 0) {
864 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
865 if (rnp->qsmask & (1UL << cpu)) {
866 print_cpu_stall_info(rsp,
867 rnp->grplo + cpu);
868 ndetected++;
869 }
870 }
871 raw_spin_unlock_irqrestore(&rnp->lock, flags);
872 }
873
874 /*
875 * Now rat on any tasks that got kicked up to the root rcu_node
876 * due to CPU offlining.
877 */
878 rnp = rcu_get_root(rsp);
879 raw_spin_lock_irqsave(&rnp->lock, flags);
880 ndetected += rcu_print_task_stall(rnp);
881 raw_spin_unlock_irqrestore(&rnp->lock, flags);
882
883 print_cpu_stall_info_end();
884 for_each_possible_cpu(cpu)
885 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
886 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
887 smp_processor_id(), (long)(jiffies - rsp->gp_start),
888 rsp->gpnum, rsp->completed, totqlen);
889 if (ndetected == 0)
890 pr_err("INFO: Stall ended before state dump start\n");
891 else if (!trigger_all_cpu_backtrace())
892 rcu_dump_cpu_stacks(rsp);
893
894 /* Complain about tasks blocking the grace period. */
895
896 rcu_print_detail_task_stall(rsp);
897
898 force_quiescent_state(rsp); /* Kick them all. */
899}
900
901static void print_cpu_stall(struct rcu_state *rsp)
902{
903 int cpu;
904 unsigned long flags;
905 struct rcu_node *rnp = rcu_get_root(rsp);
906 long totqlen = 0;
907
908 /*
909 * OK, time to rat on ourselves...
910 * See Documentation/RCU/stallwarn.txt for info on how to debug
911 * RCU CPU stall warnings.
912 */
913 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
914 print_cpu_stall_info_begin();
915 print_cpu_stall_info(rsp, smp_processor_id());
916 print_cpu_stall_info_end();
917 for_each_possible_cpu(cpu)
918 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
919 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
920 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
921 if (!trigger_all_cpu_backtrace())
922 dump_stack();
923
924 raw_spin_lock_irqsave(&rnp->lock, flags);
925 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
926 rsp->jiffies_stall = jiffies +
927 3 * rcu_jiffies_till_stall_check() + 3;
928 raw_spin_unlock_irqrestore(&rnp->lock, flags);
929
930 set_need_resched(); /* kick ourselves to get things going. */
931}
932
933static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
934{
935 unsigned long j;
936 unsigned long js;
937 struct rcu_node *rnp;
938
939 if (rcu_cpu_stall_suppress)
940 return;
941 j = ACCESS_ONCE(jiffies);
942 js = ACCESS_ONCE(rsp->jiffies_stall);
943 rnp = rdp->mynode;
944 if (rcu_gp_in_progress(rsp) &&
945 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
946
947 /* We haven't checked in, so go dump stack. */
948 print_cpu_stall(rsp);
949
950 } else if (rcu_gp_in_progress(rsp) &&
951 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
952
953 /* They had a few time units to dump stack, so complain. */
954 print_other_cpu_stall(rsp);
955 }
956}
957
958/**
959 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
960 *
961 * Set the stall-warning timeout way off into the future, thus preventing
962 * any RCU CPU stall-warning messages from appearing in the current set of
963 * RCU grace periods.
964 *
965 * The caller must disable hard irqs.
966 */
967void rcu_cpu_stall_reset(void)
968{
969 struct rcu_state *rsp;
970
971 for_each_rcu_flavor(rsp)
972 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
973}
974
975/*
976 * Initialize the specified rcu_data structure's callback list to empty.
977 */
978static void init_callback_list(struct rcu_data *rdp)
979{
980 int i;
981
982 if (init_nocb_callback_list(rdp))
983 return;
984 rdp->nxtlist = NULL;
985 for (i = 0; i < RCU_NEXT_SIZE; i++)
986 rdp->nxttail[i] = &rdp->nxtlist;
987}
988
989/*
990 * Determine the value that ->completed will have at the end of the
991 * next subsequent grace period. This is used to tag callbacks so that
992 * a CPU can invoke callbacks in a timely fashion even if that CPU has
993 * been dyntick-idle for an extended period with callbacks under the
994 * influence of RCU_FAST_NO_HZ.
995 *
996 * The caller must hold rnp->lock with interrupts disabled.
997 */
998static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
999 struct rcu_node *rnp)
1000{
1001 /*
1002 * If RCU is idle, we just wait for the next grace period.
1003 * But we can only be sure that RCU is idle if we are looking
1004 * at the root rcu_node structure -- otherwise, a new grace
1005 * period might have started, but just not yet gotten around
1006 * to initializing the current non-root rcu_node structure.
1007 */
1008 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1009 return rnp->completed + 1;
1010
1011 /*
1012 * Otherwise, wait for a possible partial grace period and
1013 * then the subsequent full grace period.
1014 */
1015 return rnp->completed + 2;
1016}
1017
1018/*
1019 * Trace-event helper function for rcu_start_future_gp() and
1020 * rcu_nocb_wait_gp().
1021 */
1022static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1023 unsigned long c, const char *s)
1024{
1025 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1026 rnp->completed, c, rnp->level,
1027 rnp->grplo, rnp->grphi, s);
1028}
1029
1030/*
1031 * Start some future grace period, as needed to handle newly arrived
1032 * callbacks. The required future grace periods are recorded in each
1033 * rcu_node structure's ->need_future_gp field.
1034 *
1035 * The caller must hold the specified rcu_node structure's ->lock.
1036 */
1037static unsigned long __maybe_unused
1038rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
1039{
1040 unsigned long c;
1041 int i;
1042 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1043
1044 /*
1045 * Pick up grace-period number for new callbacks. If this
1046 * grace period is already marked as needed, return to the caller.
1047 */
1048 c = rcu_cbs_completed(rdp->rsp, rnp);
1049 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1050 if (rnp->need_future_gp[c & 0x1]) {
1051 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1052 return c;
1053 }
1054
1055 /*
1056 * If either this rcu_node structure or the root rcu_node structure
1057 * believe that a grace period is in progress, then we must wait
1058 * for the one following, which is in "c". Because our request
1059 * will be noticed at the end of the current grace period, we don't
1060 * need to explicitly start one.
1061 */
1062 if (rnp->gpnum != rnp->completed ||
1063 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1064 rnp->need_future_gp[c & 0x1]++;
1065 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1066 return c;
1067 }
1068
1069 /*
1070 * There might be no grace period in progress. If we don't already
1071 * hold it, acquire the root rcu_node structure's lock in order to
1072 * start one (if needed).
1073 */
1074 if (rnp != rnp_root)
1075 raw_spin_lock(&rnp_root->lock);
1076
1077 /*
1078 * Get a new grace-period number. If there really is no grace
1079 * period in progress, it will be smaller than the one we obtained
1080 * earlier. Adjust callbacks as needed. Note that even no-CBs
1081 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1082 */
1083 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1084 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1085 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1086 rdp->nxtcompleted[i] = c;
1087
1088 /*
1089 * If the needed for the required grace period is already
1090 * recorded, trace and leave.
1091 */
1092 if (rnp_root->need_future_gp[c & 0x1]) {
1093 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1094 goto unlock_out;
1095 }
1096
1097 /* Record the need for the future grace period. */
1098 rnp_root->need_future_gp[c & 0x1]++;
1099
1100 /* If a grace period is not already in progress, start one. */
1101 if (rnp_root->gpnum != rnp_root->completed) {
1102 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1103 } else {
1104 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1105 rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1106 }
1107unlock_out:
1108 if (rnp != rnp_root)
1109 raw_spin_unlock(&rnp_root->lock);
1110 return c;
1111}
1112
1113/*
1114 * Clean up any old requests for the just-ended grace period. Also return
1115 * whether any additional grace periods have been requested. Also invoke
1116 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1117 * waiting for this grace period to complete.
1118 */
1119static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1120{
1121 int c = rnp->completed;
1122 int needmore;
1123 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1124
1125 rcu_nocb_gp_cleanup(rsp, rnp);
1126 rnp->need_future_gp[c & 0x1] = 0;
1127 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1128 trace_rcu_future_gp(rnp, rdp, c,
1129 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1130 return needmore;
1131}
1132
1133/*
1134 * If there is room, assign a ->completed number to any callbacks on
1135 * this CPU that have not already been assigned. Also accelerate any
1136 * callbacks that were previously assigned a ->completed number that has
1137 * since proven to be too conservative, which can happen if callbacks get
1138 * assigned a ->completed number while RCU is idle, but with reference to
1139 * a non-root rcu_node structure. This function is idempotent, so it does
1140 * not hurt to call it repeatedly.
1141 *
1142 * The caller must hold rnp->lock with interrupts disabled.
1143 */
1144static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1145 struct rcu_data *rdp)
1146{
1147 unsigned long c;
1148 int i;
1149
1150 /* If the CPU has no callbacks, nothing to do. */
1151 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1152 return;
1153
1154 /*
1155 * Starting from the sublist containing the callbacks most
1156 * recently assigned a ->completed number and working down, find the
1157 * first sublist that is not assignable to an upcoming grace period.
1158 * Such a sublist has something in it (first two tests) and has
1159 * a ->completed number assigned that will complete sooner than
1160 * the ->completed number for newly arrived callbacks (last test).
1161 *
1162 * The key point is that any later sublist can be assigned the
1163 * same ->completed number as the newly arrived callbacks, which
1164 * means that the callbacks in any of these later sublist can be
1165 * grouped into a single sublist, whether or not they have already
1166 * been assigned a ->completed number.
1167 */
1168 c = rcu_cbs_completed(rsp, rnp);
1169 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1170 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1171 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1172 break;
1173
1174 /*
1175 * If there are no sublist for unassigned callbacks, leave.
1176 * At the same time, advance "i" one sublist, so that "i" will
1177 * index into the sublist where all the remaining callbacks should
1178 * be grouped into.
1179 */
1180 if (++i >= RCU_NEXT_TAIL)
1181 return;
1182
1183 /*
1184 * Assign all subsequent callbacks' ->completed number to the next
1185 * full grace period and group them all in the sublist initially
1186 * indexed by "i".
1187 */
1188 for (; i <= RCU_NEXT_TAIL; i++) {
1189 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1190 rdp->nxtcompleted[i] = c;
1191 }
1192 /* Record any needed additional grace periods. */
1193 rcu_start_future_gp(rnp, rdp);
1194
1195 /* Trace depending on how much we were able to accelerate. */
1196 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1197 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1198 else
1199 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1200}
1201
1202/*
1203 * Move any callbacks whose grace period has completed to the
1204 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1205 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1206 * sublist. This function is idempotent, so it does not hurt to
1207 * invoke it repeatedly. As long as it is not invoked -too- often...
1208 *
1209 * The caller must hold rnp->lock with interrupts disabled.
1210 */
1211static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1212 struct rcu_data *rdp)
1213{
1214 int i, j;
1215
1216 /* If the CPU has no callbacks, nothing to do. */
1217 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1218 return;
1219
1220 /*
1221 * Find all callbacks whose ->completed numbers indicate that they
1222 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1223 */
1224 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1225 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1226 break;
1227 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1228 }
1229 /* Clean up any sublist tail pointers that were misordered above. */
1230 for (j = RCU_WAIT_TAIL; j < i; j++)
1231 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1232
1233 /* Copy down callbacks to fill in empty sublists. */
1234 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1235 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1236 break;
1237 rdp->nxttail[j] = rdp->nxttail[i];
1238 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1239 }
1240
1241 /* Classify any remaining callbacks. */
1242 rcu_accelerate_cbs(rsp, rnp, rdp);
1243}
1244
1245/*
1246 * Update CPU-local rcu_data state to record the beginnings and ends of
1247 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1248 * structure corresponding to the current CPU, and must have irqs disabled.
1249 */
1250static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1251{
1252 /* Handle the ends of any preceding grace periods first. */
1253 if (rdp->completed == rnp->completed) {
1254
1255 /* No grace period end, so just accelerate recent callbacks. */
1256 rcu_accelerate_cbs(rsp, rnp, rdp);
1257
1258 } else {
1259
1260 /* Advance callbacks. */
1261 rcu_advance_cbs(rsp, rnp, rdp);
1262
1263 /* Remember that we saw this grace-period completion. */
1264 rdp->completed = rnp->completed;
1265 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1266 }
1267
1268 if (rdp->gpnum != rnp->gpnum) {
1269 /*
1270 * If the current grace period is waiting for this CPU,
1271 * set up to detect a quiescent state, otherwise don't
1272 * go looking for one.
1273 */
1274 rdp->gpnum = rnp->gpnum;
1275 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1276 rdp->passed_quiesce = 0;
1277 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1278 zero_cpu_stall_ticks(rdp);
1279 }
1280}
1281
1282static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1283{
1284 unsigned long flags;
1285 struct rcu_node *rnp;
1286
1287 local_irq_save(flags);
1288 rnp = rdp->mynode;
1289 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1290 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
1291 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1292 local_irq_restore(flags);
1293 return;
1294 }
1295 __note_gp_changes(rsp, rnp, rdp);
1296 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1297}
1298
1299/*
1300 * Initialize a new grace period. Return 0 if no grace period required.
1301 */
1302static int rcu_gp_init(struct rcu_state *rsp)
1303{
1304 struct rcu_data *rdp;
1305 struct rcu_node *rnp = rcu_get_root(rsp);
1306
1307 rcu_bind_gp_kthread();
1308 raw_spin_lock_irq(&rnp->lock);
1309 if (rsp->gp_flags == 0) {
1310 /* Spurious wakeup, tell caller to go back to sleep. */
1311 raw_spin_unlock_irq(&rnp->lock);
1312 return 0;
1313 }
1314 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1315
1316 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1317 /*
1318 * Grace period already in progress, don't start another.
1319 * Not supposed to be able to happen.
1320 */
1321 raw_spin_unlock_irq(&rnp->lock);
1322 return 0;
1323 }
1324
1325 /* Advance to a new grace period and initialize state. */
1326 rsp->gpnum++;
1327 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1328 record_gp_stall_check_time(rsp);
1329 raw_spin_unlock_irq(&rnp->lock);
1330
1331 /* Exclude any concurrent CPU-hotplug operations. */
1332 mutex_lock(&rsp->onoff_mutex);
1333
1334 /*
1335 * Set the quiescent-state-needed bits in all the rcu_node
1336 * structures for all currently online CPUs in breadth-first order,
1337 * starting from the root rcu_node structure, relying on the layout
1338 * of the tree within the rsp->node[] array. Note that other CPUs
1339 * will access only the leaves of the hierarchy, thus seeing that no
1340 * grace period is in progress, at least until the corresponding
1341 * leaf node has been initialized. In addition, we have excluded
1342 * CPU-hotplug operations.
1343 *
1344 * The grace period cannot complete until the initialization
1345 * process finishes, because this kthread handles both.
1346 */
1347 rcu_for_each_node_breadth_first(rsp, rnp) {
1348 raw_spin_lock_irq(&rnp->lock);
1349 rdp = this_cpu_ptr(rsp->rda);
1350 rcu_preempt_check_blocked_tasks(rnp);
1351 rnp->qsmask = rnp->qsmaskinit;
1352 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1353 WARN_ON_ONCE(rnp->completed != rsp->completed);
1354 ACCESS_ONCE(rnp->completed) = rsp->completed;
1355 if (rnp == rdp->mynode)
1356 __note_gp_changes(rsp, rnp, rdp);
1357 rcu_preempt_boost_start_gp(rnp);
1358 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1359 rnp->level, rnp->grplo,
1360 rnp->grphi, rnp->qsmask);
1361 raw_spin_unlock_irq(&rnp->lock);
1362#ifdef CONFIG_PROVE_RCU_DELAY
1363 if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
1364 system_state == SYSTEM_RUNNING)
1365 udelay(200);
1366#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1367 cond_resched();
1368 }
1369
1370 mutex_unlock(&rsp->onoff_mutex);
1371 return 1;
1372}
1373
1374/*
1375 * Do one round of quiescent-state forcing.
1376 */
1377int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1378{
1379 int fqs_state = fqs_state_in;
1380 bool isidle = false;
1381 unsigned long maxj;
1382 struct rcu_node *rnp = rcu_get_root(rsp);
1383
1384 rsp->n_force_qs++;
1385 if (fqs_state == RCU_SAVE_DYNTICK) {
1386 /* Collect dyntick-idle snapshots. */
1387 if (is_sysidle_rcu_state(rsp)) {
1388 isidle = 1;
1389 maxj = jiffies - ULONG_MAX / 4;
1390 }
1391 force_qs_rnp(rsp, dyntick_save_progress_counter,
1392 &isidle, &maxj);
1393 rcu_sysidle_report_gp(rsp, isidle, maxj);
1394 fqs_state = RCU_FORCE_QS;
1395 } else {
1396 /* Handle dyntick-idle and offline CPUs. */
1397 isidle = 0;
1398 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1399 }
1400 /* Clear flag to prevent immediate re-entry. */
1401 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1402 raw_spin_lock_irq(&rnp->lock);
1403 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1404 raw_spin_unlock_irq(&rnp->lock);
1405 }
1406 return fqs_state;
1407}
1408
1409/*
1410 * Clean up after the old grace period.
1411 */
1412static void rcu_gp_cleanup(struct rcu_state *rsp)
1413{
1414 unsigned long gp_duration;
1415 int nocb = 0;
1416 struct rcu_data *rdp;
1417 struct rcu_node *rnp = rcu_get_root(rsp);
1418
1419 raw_spin_lock_irq(&rnp->lock);
1420 gp_duration = jiffies - rsp->gp_start;
1421 if (gp_duration > rsp->gp_max)
1422 rsp->gp_max = gp_duration;
1423
1424 /*
1425 * We know the grace period is complete, but to everyone else
1426 * it appears to still be ongoing. But it is also the case
1427 * that to everyone else it looks like there is nothing that
1428 * they can do to advance the grace period. It is therefore
1429 * safe for us to drop the lock in order to mark the grace
1430 * period as completed in all of the rcu_node structures.
1431 */
1432 raw_spin_unlock_irq(&rnp->lock);
1433
1434 /*
1435 * Propagate new ->completed value to rcu_node structures so
1436 * that other CPUs don't have to wait until the start of the next
1437 * grace period to process their callbacks. This also avoids
1438 * some nasty RCU grace-period initialization races by forcing
1439 * the end of the current grace period to be completely recorded in
1440 * all of the rcu_node structures before the beginning of the next
1441 * grace period is recorded in any of the rcu_node structures.
1442 */
1443 rcu_for_each_node_breadth_first(rsp, rnp) {
1444 raw_spin_lock_irq(&rnp->lock);
1445 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1446 rdp = this_cpu_ptr(rsp->rda);
1447 if (rnp == rdp->mynode)
1448 __note_gp_changes(rsp, rnp, rdp);
1449 nocb += rcu_future_gp_cleanup(rsp, rnp);
1450 raw_spin_unlock_irq(&rnp->lock);
1451 cond_resched();
1452 }
1453 rnp = rcu_get_root(rsp);
1454 raw_spin_lock_irq(&rnp->lock);
1455 rcu_nocb_gp_set(rnp, nocb);
1456
1457 rsp->completed = rsp->gpnum; /* Declare grace period done. */
1458 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1459 rsp->fqs_state = RCU_GP_IDLE;
1460 rdp = this_cpu_ptr(rsp->rda);
1461 rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */
1462 if (cpu_needs_another_gp(rsp, rdp))
1463 rsp->gp_flags = 1;
1464 raw_spin_unlock_irq(&rnp->lock);
1465}
1466
1467/*
1468 * Body of kthread that handles grace periods.
1469 */
1470static int __noreturn rcu_gp_kthread(void *arg)
1471{
1472 int fqs_state;
1473 unsigned long j;
1474 int ret;
1475 struct rcu_state *rsp = arg;
1476 struct rcu_node *rnp = rcu_get_root(rsp);
1477
1478 for (;;) {
1479
1480 /* Handle grace-period start. */
1481 for (;;) {
1482 wait_event_interruptible(rsp->gp_wq,
1483 rsp->gp_flags &
1484 RCU_GP_FLAG_INIT);
1485 if (rcu_gp_init(rsp))
1486 break;
1487 cond_resched();
1488 flush_signals(current);
1489 }
1490
1491 /* Handle quiescent-state forcing. */
1492 fqs_state = RCU_SAVE_DYNTICK;
1493 j = jiffies_till_first_fqs;
1494 if (j > HZ) {
1495 j = HZ;
1496 jiffies_till_first_fqs = HZ;
1497 }
1498 for (;;) {
1499 rsp->jiffies_force_qs = jiffies + j;
1500 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1501 (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1502 (!ACCESS_ONCE(rnp->qsmask) &&
1503 !rcu_preempt_blocked_readers_cgp(rnp)),
1504 j);
1505 /* If grace period done, leave loop. */
1506 if (!ACCESS_ONCE(rnp->qsmask) &&
1507 !rcu_preempt_blocked_readers_cgp(rnp))
1508 break;
1509 /* If time for quiescent-state forcing, do it. */
1510 if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1511 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1512 cond_resched();
1513 } else {
1514 /* Deal with stray signal. */
1515 cond_resched();
1516 flush_signals(current);
1517 }
1518 j = jiffies_till_next_fqs;
1519 if (j > HZ) {
1520 j = HZ;
1521 jiffies_till_next_fqs = HZ;
1522 } else if (j < 1) {
1523 j = 1;
1524 jiffies_till_next_fqs = 1;
1525 }
1526 }
1527
1528 /* Handle grace-period end. */
1529 rcu_gp_cleanup(rsp);
1530 }
1531}
1532
1533static void rsp_wakeup(struct irq_work *work)
1534{
1535 struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);
1536
1537 /* Wake up rcu_gp_kthread() to start the grace period. */
1538 wake_up(&rsp->gp_wq);
1539}
1540
1541/*
1542 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1543 * in preparation for detecting the next grace period. The caller must hold
1544 * the root node's ->lock and hard irqs must be disabled.
1545 *
1546 * Note that it is legal for a dying CPU (which is marked as offline) to
1547 * invoke this function. This can happen when the dying CPU reports its
1548 * quiescent state.
1549 */
1550static void
1551rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1552 struct rcu_data *rdp)
1553{
1554 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1555 /*
1556 * Either we have not yet spawned the grace-period
1557 * task, this CPU does not need another grace period,
1558 * or a grace period is already in progress.
1559 * Either way, don't start a new grace period.
1560 */
1561 return;
1562 }
1563 rsp->gp_flags = RCU_GP_FLAG_INIT;
1564
1565 /*
1566 * We can't do wakeups while holding the rnp->lock, as that
1567 * could cause possible deadlocks with the rq->lock. Defer
1568 * the wakeup to interrupt context. And don't bother waking
1569 * up the running kthread.
1570 */
1571 if (current != rsp->gp_kthread)
1572 irq_work_queue(&rsp->wakeup_work);
1573}
1574
1575/*
1576 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1577 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1578 * is invoked indirectly from rcu_advance_cbs(), which would result in
1579 * endless recursion -- or would do so if it wasn't for the self-deadlock
1580 * that is encountered beforehand.
1581 */
1582static void
1583rcu_start_gp(struct rcu_state *rsp)
1584{
1585 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1586 struct rcu_node *rnp = rcu_get_root(rsp);
1587
1588 /*
1589 * If there is no grace period in progress right now, any
1590 * callbacks we have up to this point will be satisfied by the
1591 * next grace period. Also, advancing the callbacks reduces the
1592 * probability of false positives from cpu_needs_another_gp()
1593 * resulting in pointless grace periods. So, advance callbacks
1594 * then start the grace period!
1595 */
1596 rcu_advance_cbs(rsp, rnp, rdp);
1597 rcu_start_gp_advanced(rsp, rnp, rdp);
1598}
1599
1600/*
1601 * Report a full set of quiescent states to the specified rcu_state
1602 * data structure. This involves cleaning up after the prior grace
1603 * period and letting rcu_start_gp() start up the next grace period
1604 * if one is needed. Note that the caller must hold rnp->lock, which
1605 * is released before return.
1606 */
1607static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1608 __releases(rcu_get_root(rsp)->lock)
1609{
1610 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1611 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1612 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1613}
1614
1615/*
1616 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1617 * Allows quiescent states for a group of CPUs to be reported at one go
1618 * to the specified rcu_node structure, though all the CPUs in the group
1619 * must be represented by the same rcu_node structure (which need not be
1620 * a leaf rcu_node structure, though it often will be). That structure's
1621 * lock must be held upon entry, and it is released before return.
1622 */
1623static void
1624rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1625 struct rcu_node *rnp, unsigned long flags)
1626 __releases(rnp->lock)
1627{
1628 struct rcu_node *rnp_c;
1629
1630 /* Walk up the rcu_node hierarchy. */
1631 for (;;) {
1632 if (!(rnp->qsmask & mask)) {
1633
1634 /* Our bit has already been cleared, so done. */
1635 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1636 return;
1637 }
1638 rnp->qsmask &= ~mask;
1639 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1640 mask, rnp->qsmask, rnp->level,
1641 rnp->grplo, rnp->grphi,
1642 !!rnp->gp_tasks);
1643 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1644
1645 /* Other bits still set at this level, so done. */
1646 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1647 return;
1648 }
1649 mask = rnp->grpmask;
1650 if (rnp->parent == NULL) {
1651
1652 /* No more levels. Exit loop holding root lock. */
1653
1654 break;
1655 }
1656 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1657 rnp_c = rnp;
1658 rnp = rnp->parent;
1659 raw_spin_lock_irqsave(&rnp->lock, flags);
1660 WARN_ON_ONCE(rnp_c->qsmask);
1661 }
1662
1663 /*
1664 * Get here if we are the last CPU to pass through a quiescent
1665 * state for this grace period. Invoke rcu_report_qs_rsp()
1666 * to clean up and start the next grace period if one is needed.
1667 */
1668 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1669}
1670
1671/*
1672 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1673 * structure. This must be either called from the specified CPU, or
1674 * called when the specified CPU is known to be offline (and when it is
1675 * also known that no other CPU is concurrently trying to help the offline
1676 * CPU). The lastcomp argument is used to make sure we are still in the
1677 * grace period of interest. We don't want to end the current grace period
1678 * based on quiescent states detected in an earlier grace period!
1679 */
1680static void
1681rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1682{
1683 unsigned long flags;
1684 unsigned long mask;
1685 struct rcu_node *rnp;
1686
1687 rnp = rdp->mynode;
1688 raw_spin_lock_irqsave(&rnp->lock, flags);
1689 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1690 rnp->completed == rnp->gpnum) {
1691
1692 /*
1693 * The grace period in which this quiescent state was
1694 * recorded has ended, so don't report it upwards.
1695 * We will instead need a new quiescent state that lies
1696 * within the current grace period.
1697 */
1698 rdp->passed_quiesce = 0; /* need qs for new gp. */
1699 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1700 return;
1701 }
1702 mask = rdp->grpmask;
1703 if ((rnp->qsmask & mask) == 0) {
1704 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1705 } else {
1706 rdp->qs_pending = 0;
1707
1708 /*
1709 * This GP can't end until cpu checks in, so all of our
1710 * callbacks can be processed during the next GP.
1711 */
1712 rcu_accelerate_cbs(rsp, rnp, rdp);
1713
1714 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1715 }
1716}
1717
1718/*
1719 * Check to see if there is a new grace period of which this CPU
1720 * is not yet aware, and if so, set up local rcu_data state for it.
1721 * Otherwise, see if this CPU has just passed through its first
1722 * quiescent state for this grace period, and record that fact if so.
1723 */
1724static void
1725rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1726{
1727 /* Check for grace-period ends and beginnings. */
1728 note_gp_changes(rsp, rdp);
1729
1730 /*
1731 * Does this CPU still need to do its part for current grace period?
1732 * If no, return and let the other CPUs do their part as well.
1733 */
1734 if (!rdp->qs_pending)
1735 return;
1736
1737 /*
1738 * Was there a quiescent state since the beginning of the grace
1739 * period? If no, then exit and wait for the next call.
1740 */
1741 if (!rdp->passed_quiesce)
1742 return;
1743
1744 /*
1745 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1746 * judge of that).
1747 */
1748 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1749}
1750
1751#ifdef CONFIG_HOTPLUG_CPU
1752
1753/*
1754 * Send the specified CPU's RCU callbacks to the orphanage. The
1755 * specified CPU must be offline, and the caller must hold the
1756 * ->orphan_lock.
1757 */
1758static void
1759rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1760 struct rcu_node *rnp, struct rcu_data *rdp)
1761{
1762 /* No-CBs CPUs do not have orphanable callbacks. */
1763 if (rcu_is_nocb_cpu(rdp->cpu))
1764 return;
1765
1766 /*
1767 * Orphan the callbacks. First adjust the counts. This is safe
1768 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1769 * cannot be running now. Thus no memory barrier is required.
1770 */
1771 if (rdp->nxtlist != NULL) {
1772 rsp->qlen_lazy += rdp->qlen_lazy;
1773 rsp->qlen += rdp->qlen;
1774 rdp->n_cbs_orphaned += rdp->qlen;
1775 rdp->qlen_lazy = 0;
1776 ACCESS_ONCE(rdp->qlen) = 0;
1777 }
1778
1779 /*
1780 * Next, move those callbacks still needing a grace period to
1781 * the orphanage, where some other CPU will pick them up.
1782 * Some of the callbacks might have gone partway through a grace
1783 * period, but that is too bad. They get to start over because we
1784 * cannot assume that grace periods are synchronized across CPUs.
1785 * We don't bother updating the ->nxttail[] array yet, instead
1786 * we just reset the whole thing later on.
1787 */
1788 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1789 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1790 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1791 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1792 }
1793
1794 /*
1795 * Then move the ready-to-invoke callbacks to the orphanage,
1796 * where some other CPU will pick them up. These will not be
1797 * required to pass though another grace period: They are done.
1798 */
1799 if (rdp->nxtlist != NULL) {
1800 *rsp->orphan_donetail = rdp->nxtlist;
1801 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1802 }
1803
1804 /* Finally, initialize the rcu_data structure's list to empty. */
1805 init_callback_list(rdp);
1806}
1807
1808/*
1809 * Adopt the RCU callbacks from the specified rcu_state structure's
1810 * orphanage. The caller must hold the ->orphan_lock.
1811 */
1812static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1813{
1814 int i;
1815 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1816
1817 /* No-CBs CPUs are handled specially. */
1818 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
1819 return;
1820
1821 /* Do the accounting first. */
1822 rdp->qlen_lazy += rsp->qlen_lazy;
1823 rdp->qlen += rsp->qlen;
1824 rdp->n_cbs_adopted += rsp->qlen;
1825 if (rsp->qlen_lazy != rsp->qlen)
1826 rcu_idle_count_callbacks_posted();
1827 rsp->qlen_lazy = 0;
1828 rsp->qlen = 0;
1829
1830 /*
1831 * We do not need a memory barrier here because the only way we
1832 * can get here if there is an rcu_barrier() in flight is if
1833 * we are the task doing the rcu_barrier().
1834 */
1835
1836 /* First adopt the ready-to-invoke callbacks. */
1837 if (rsp->orphan_donelist != NULL) {
1838 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1839 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1840 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1841 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1842 rdp->nxttail[i] = rsp->orphan_donetail;
1843 rsp->orphan_donelist = NULL;
1844 rsp->orphan_donetail = &rsp->orphan_donelist;
1845 }
1846
1847 /* And then adopt the callbacks that still need a grace period. */
1848 if (rsp->orphan_nxtlist != NULL) {
1849 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1850 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1851 rsp->orphan_nxtlist = NULL;
1852 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1853 }
1854}
1855
1856/*
1857 * Trace the fact that this CPU is going offline.
1858 */
1859static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1860{
1861 RCU_TRACE(unsigned long mask);
1862 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1863 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1864
1865 RCU_TRACE(mask = rdp->grpmask);
1866 trace_rcu_grace_period(rsp->name,
1867 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1868 TPS("cpuofl"));
1869}
1870
1871/*
1872 * The CPU has been completely removed, and some other CPU is reporting
1873 * this fact from process context. Do the remainder of the cleanup,
1874 * including orphaning the outgoing CPU's RCU callbacks, and also
1875 * adopting them. There can only be one CPU hotplug operation at a time,
1876 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
1877 */
1878static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1879{
1880 unsigned long flags;
1881 unsigned long mask;
1882 int need_report = 0;
1883 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1884 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
1885
1886 /* Adjust any no-longer-needed kthreads. */
1887 rcu_boost_kthread_setaffinity(rnp, -1);
1888
1889 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1890
1891 /* Exclude any attempts to start a new grace period. */
1892 mutex_lock(&rsp->onoff_mutex);
1893 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
1894
1895 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1896 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1897 rcu_adopt_orphan_cbs(rsp);
1898
1899 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1900 mask = rdp->grpmask; /* rnp->grplo is constant. */
1901 do {
1902 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1903 rnp->qsmaskinit &= ~mask;
1904 if (rnp->qsmaskinit != 0) {
1905 if (rnp != rdp->mynode)
1906 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1907 break;
1908 }
1909 if (rnp == rdp->mynode)
1910 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1911 else
1912 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1913 mask = rnp->grpmask;
1914 rnp = rnp->parent;
1915 } while (rnp != NULL);
1916
1917 /*
1918 * We still hold the leaf rcu_node structure lock here, and
1919 * irqs are still disabled. The reason for this subterfuge is
1920 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
1921 * held leads to deadlock.
1922 */
1923 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
1924 rnp = rdp->mynode;
1925 if (need_report & RCU_OFL_TASKS_NORM_GP)
1926 rcu_report_unblock_qs_rnp(rnp, flags);
1927 else
1928 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1929 if (need_report & RCU_OFL_TASKS_EXP_GP)
1930 rcu_report_exp_rnp(rsp, rnp, true);
1931 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1932 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1933 cpu, rdp->qlen, rdp->nxtlist);
1934 init_callback_list(rdp);
1935 /* Disallow further callbacks on this CPU. */
1936 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
1937 mutex_unlock(&rsp->onoff_mutex);
1938}
1939
1940#else /* #ifdef CONFIG_HOTPLUG_CPU */
1941
1942static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1943{
1944}
1945
1946static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1947{
1948}
1949
1950#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1951
1952/*
1953 * Invoke any RCU callbacks that have made it to the end of their grace
1954 * period. Thottle as specified by rdp->blimit.
1955 */
1956static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1957{
1958 unsigned long flags;
1959 struct rcu_head *next, *list, **tail;
1960 long bl, count, count_lazy;
1961 int i;
1962
1963 /* If no callbacks are ready, just return. */
1964 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1965 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1966 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1967 need_resched(), is_idle_task(current),
1968 rcu_is_callbacks_kthread());
1969 return;
1970 }
1971
1972 /*
1973 * Extract the list of ready callbacks, disabling to prevent
1974 * races with call_rcu() from interrupt handlers.
1975 */
1976 local_irq_save(flags);
1977 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1978 bl = rdp->blimit;
1979 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1980 list = rdp->nxtlist;
1981 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1982 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1983 tail = rdp->nxttail[RCU_DONE_TAIL];
1984 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1985 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1986 rdp->nxttail[i] = &rdp->nxtlist;
1987 local_irq_restore(flags);
1988
1989 /* Invoke callbacks. */
1990 count = count_lazy = 0;
1991 while (list) {
1992 next = list->next;
1993 prefetch(next);
1994 debug_rcu_head_unqueue(list);
1995 if (__rcu_reclaim(rsp->name, list))
1996 count_lazy++;
1997 list = next;
1998 /* Stop only if limit reached and CPU has something to do. */
1999 if (++count >= bl &&
2000 (need_resched() ||
2001 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2002 break;
2003 }
2004
2005 local_irq_save(flags);
2006 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2007 is_idle_task(current),
2008 rcu_is_callbacks_kthread());
2009
2010 /* Update count, and requeue any remaining callbacks. */
2011 if (list != NULL) {
2012 *tail = rdp->nxtlist;
2013 rdp->nxtlist = list;
2014 for (i = 0; i < RCU_NEXT_SIZE; i++)
2015 if (&rdp->nxtlist == rdp->nxttail[i])
2016 rdp->nxttail[i] = tail;
2017 else
2018 break;
2019 }
2020 smp_mb(); /* List handling before counting for rcu_barrier(). */
2021 rdp->qlen_lazy -= count_lazy;
2022 ACCESS_ONCE(rdp->qlen) -= count;
2023 rdp->n_cbs_invoked += count;
2024
2025 /* Reinstate batch limit if we have worked down the excess. */
2026 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2027 rdp->blimit = blimit;
2028
2029 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2030 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2031 rdp->qlen_last_fqs_check = 0;
2032 rdp->n_force_qs_snap = rsp->n_force_qs;
2033 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2034 rdp->qlen_last_fqs_check = rdp->qlen;
2035 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2036
2037 local_irq_restore(flags);
2038
2039 /* Re-invoke RCU core processing if there are callbacks remaining. */
2040 if (cpu_has_callbacks_ready_to_invoke(rdp))
2041 invoke_rcu_core();
2042}
2043
2044/*
2045 * Check to see if this CPU is in a non-context-switch quiescent state
2046 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2047 * Also schedule RCU core processing.
2048 *
2049 * This function must be called from hardirq context. It is normally
2050 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2051 * false, there is no point in invoking rcu_check_callbacks().
2052 */
2053void rcu_check_callbacks(int cpu, int user)
2054{
2055 trace_rcu_utilization(TPS("Start scheduler-tick"));
2056 increment_cpu_stall_ticks();
2057 if (user || rcu_is_cpu_rrupt_from_idle()) {
2058
2059 /*
2060 * Get here if this CPU took its interrupt from user
2061 * mode or from the idle loop, and if this is not a
2062 * nested interrupt. In this case, the CPU is in
2063 * a quiescent state, so note it.
2064 *
2065 * No memory barrier is required here because both
2066 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2067 * variables that other CPUs neither access nor modify,
2068 * at least not while the corresponding CPU is online.
2069 */
2070
2071 rcu_sched_qs(cpu);
2072 rcu_bh_qs(cpu);
2073
2074 } else if (!in_softirq()) {
2075
2076 /*
2077 * Get here if this CPU did not take its interrupt from
2078 * softirq, in other words, if it is not interrupting
2079 * a rcu_bh read-side critical section. This is an _bh
2080 * critical section, so note it.
2081 */
2082
2083 rcu_bh_qs(cpu);
2084 }
2085 rcu_preempt_check_callbacks(cpu);
2086 if (rcu_pending(cpu))
2087 invoke_rcu_core();
2088 trace_rcu_utilization(TPS("End scheduler-tick"));
2089}
2090
2091/*
2092 * Scan the leaf rcu_node structures, processing dyntick state for any that
2093 * have not yet encountered a quiescent state, using the function specified.
2094 * Also initiate boosting for any threads blocked on the root rcu_node.
2095 *
2096 * The caller must have suppressed start of new grace periods.
2097 */
2098static void force_qs_rnp(struct rcu_state *rsp,
2099 int (*f)(struct rcu_data *rsp, bool *isidle,
2100 unsigned long *maxj),
2101 bool *isidle, unsigned long *maxj)
2102{
2103 unsigned long bit;
2104 int cpu;
2105 unsigned long flags;
2106 unsigned long mask;
2107 struct rcu_node *rnp;
2108
2109 rcu_for_each_leaf_node(rsp, rnp) {
2110 cond_resched();
2111 mask = 0;
2112 raw_spin_lock_irqsave(&rnp->lock, flags);
2113 if (!rcu_gp_in_progress(rsp)) {
2114 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2115 return;
2116 }
2117 if (rnp->qsmask == 0) {
2118 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2119 continue;
2120 }
2121 cpu = rnp->grplo;
2122 bit = 1;
2123 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2124 if ((rnp->qsmask & bit) != 0) {
2125 if ((rnp->qsmaskinit & bit) != 0)
2126 *isidle = 0;
2127 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2128 mask |= bit;
2129 }
2130 }
2131 if (mask != 0) {
2132
2133 /* rcu_report_qs_rnp() releases rnp->lock. */
2134 rcu_report_qs_rnp(mask, rsp, rnp, flags);
2135 continue;
2136 }
2137 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2138 }
2139 rnp = rcu_get_root(rsp);
2140 if (rnp->qsmask == 0) {
2141 raw_spin_lock_irqsave(&rnp->lock, flags);
2142 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2143 }
2144}
2145
2146/*
2147 * Force quiescent states on reluctant CPUs, and also detect which
2148 * CPUs are in dyntick-idle mode.
2149 */
2150static void force_quiescent_state(struct rcu_state *rsp)
2151{
2152 unsigned long flags;
2153 bool ret;
2154 struct rcu_node *rnp;
2155 struct rcu_node *rnp_old = NULL;
2156
2157 /* Funnel through hierarchy to reduce memory contention. */
2158 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2159 for (; rnp != NULL; rnp = rnp->parent) {
2160 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2161 !raw_spin_trylock(&rnp->fqslock);
2162 if (rnp_old != NULL)
2163 raw_spin_unlock(&rnp_old->fqslock);
2164 if (ret) {
2165 rsp->n_force_qs_lh++;
2166 return;
2167 }
2168 rnp_old = rnp;
2169 }
2170 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2171
2172 /* Reached the root of the rcu_node tree, acquire lock. */
2173 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2174 raw_spin_unlock(&rnp_old->fqslock);
2175 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2176 rsp->n_force_qs_lh++;
2177 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2178 return; /* Someone beat us to it. */
2179 }
2180 rsp->gp_flags |= RCU_GP_FLAG_FQS;
2181 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2182 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
2183}
2184
2185/*
2186 * This does the RCU core processing work for the specified rcu_state
2187 * and rcu_data structures. This may be called only from the CPU to
2188 * whom the rdp belongs.
2189 */
2190static void
2191__rcu_process_callbacks(struct rcu_state *rsp)
2192{
2193 unsigned long flags;
2194 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2195
2196 WARN_ON_ONCE(rdp->beenonline == 0);
2197
2198 /* Update RCU state based on any recent quiescent states. */
2199 rcu_check_quiescent_state(rsp, rdp);
2200
2201 /* Does this CPU require a not-yet-started grace period? */
2202 local_irq_save(flags);
2203 if (cpu_needs_another_gp(rsp, rdp)) {
2204 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2205 rcu_start_gp(rsp);
2206 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2207 } else {
2208 local_irq_restore(flags);
2209 }
2210
2211 /* If there are callbacks ready, invoke them. */
2212 if (cpu_has_callbacks_ready_to_invoke(rdp))
2213 invoke_rcu_callbacks(rsp, rdp);
2214}
2215
2216/*
2217 * Do RCU core processing for the current CPU.
2218 */
2219static void rcu_process_callbacks(struct softirq_action *unused)
2220{
2221 struct rcu_state *rsp;
2222
2223 if (cpu_is_offline(smp_processor_id()))
2224 return;
2225 trace_rcu_utilization(TPS("Start RCU core"));
2226 for_each_rcu_flavor(rsp)
2227 __rcu_process_callbacks(rsp);
2228 trace_rcu_utilization(TPS("End RCU core"));
2229}
2230
2231/*
2232 * Schedule RCU callback invocation. If the specified type of RCU
2233 * does not support RCU priority boosting, just do a direct call,
2234 * otherwise wake up the per-CPU kernel kthread. Note that because we
2235 * are running on the current CPU with interrupts disabled, the
2236 * rcu_cpu_kthread_task cannot disappear out from under us.
2237 */
2238static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2239{
2240 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2241 return;
2242 if (likely(!rsp->boost)) {
2243 rcu_do_batch(rsp, rdp);
2244 return;
2245 }
2246 invoke_rcu_callbacks_kthread();
2247}
2248
2249static void invoke_rcu_core(void)
2250{
2251 if (cpu_online(smp_processor_id()))
2252 raise_softirq(RCU_SOFTIRQ);
2253}
2254
2255/*
2256 * Handle any core-RCU processing required by a call_rcu() invocation.
2257 */
2258static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2259 struct rcu_head *head, unsigned long flags)
2260{
2261 /*
2262 * If called from an extended quiescent state, invoke the RCU
2263 * core in order to force a re-evaluation of RCU's idleness.
2264 */
2265 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
2266 invoke_rcu_core();
2267
2268 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2269 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2270 return;
2271
2272 /*
2273 * Force the grace period if too many callbacks or too long waiting.
2274 * Enforce hysteresis, and don't invoke force_quiescent_state()
2275 * if some other CPU has recently done so. Also, don't bother
2276 * invoking force_quiescent_state() if the newly enqueued callback
2277 * is the only one waiting for a grace period to complete.
2278 */
2279 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2280
2281 /* Are we ignoring a completed grace period? */
2282 note_gp_changes(rsp, rdp);
2283
2284 /* Start a new grace period if one not already started. */
2285 if (!rcu_gp_in_progress(rsp)) {
2286 struct rcu_node *rnp_root = rcu_get_root(rsp);
2287
2288 raw_spin_lock(&rnp_root->lock);
2289 rcu_start_gp(rsp);
2290 raw_spin_unlock(&rnp_root->lock);
2291 } else {
2292 /* Give the grace period a kick. */
2293 rdp->blimit = LONG_MAX;
2294 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2295 *rdp->nxttail[RCU_DONE_TAIL] != head)
2296 force_quiescent_state(rsp);
2297 rdp->n_force_qs_snap = rsp->n_force_qs;
2298 rdp->qlen_last_fqs_check = rdp->qlen;
2299 }
2300 }
2301}
2302
2303/*
2304 * RCU callback function to leak a callback.
2305 */
2306static void rcu_leak_callback(struct rcu_head *rhp)
2307{
2308}
2309
2310/*
2311 * Helper function for call_rcu() and friends. The cpu argument will
2312 * normally be -1, indicating "currently running CPU". It may specify
2313 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2314 * is expected to specify a CPU.
2315 */
2316static void
2317__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2318 struct rcu_state *rsp, int cpu, bool lazy)
2319{
2320 unsigned long flags;
2321 struct rcu_data *rdp;
2322
2323 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2324 if (debug_rcu_head_queue(head)) {
2325 /* Probable double call_rcu(), so leak the callback. */
2326 ACCESS_ONCE(head->func) = rcu_leak_callback;
2327 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2328 return;
2329 }
2330 head->func = func;
2331 head->next = NULL;
2332
2333 /*
2334 * Opportunistically note grace-period endings and beginnings.
2335 * Note that we might see a beginning right after we see an
2336 * end, but never vice versa, since this CPU has to pass through
2337 * a quiescent state betweentimes.
2338 */
2339 local_irq_save(flags);
2340 rdp = this_cpu_ptr(rsp->rda);
2341
2342 /* Add the callback to our list. */
2343 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2344 int offline;
2345
2346 if (cpu != -1)
2347 rdp = per_cpu_ptr(rsp->rda, cpu);
2348 offline = !__call_rcu_nocb(rdp, head, lazy);
2349 WARN_ON_ONCE(offline);
2350 /* _call_rcu() is illegal on offline CPU; leak the callback. */
2351 local_irq_restore(flags);
2352 return;
2353 }
2354 ACCESS_ONCE(rdp->qlen)++;
2355 if (lazy)
2356 rdp->qlen_lazy++;
2357 else
2358 rcu_idle_count_callbacks_posted();
2359 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2360 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2361 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2362
2363 if (__is_kfree_rcu_offset((unsigned long)func))
2364 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2365 rdp->qlen_lazy, rdp->qlen);
2366 else
2367 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2368
2369 /* Go handle any RCU core processing required. */
2370 __call_rcu_core(rsp, rdp, head, flags);
2371 local_irq_restore(flags);
2372}
2373
2374/*
2375 * Queue an RCU-sched callback for invocation after a grace period.
2376 */
2377void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2378{
2379 __call_rcu(head, func, &rcu_sched_state, -1, 0);
2380}
2381EXPORT_SYMBOL_GPL(call_rcu_sched);
2382
2383/*
2384 * Queue an RCU callback for invocation after a quicker grace period.
2385 */
2386void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2387{
2388 __call_rcu(head, func, &rcu_bh_state, -1, 0);
2389}
2390EXPORT_SYMBOL_GPL(call_rcu_bh);
2391
2392/*
2393 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2394 * any blocking grace-period wait automatically implies a grace period
2395 * if there is only one CPU online at any point time during execution
2396 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2397 * occasionally incorrectly indicate that there are multiple CPUs online
2398 * when there was in fact only one the whole time, as this just adds
2399 * some overhead: RCU still operates correctly.
2400 */
2401static inline int rcu_blocking_is_gp(void)
2402{
2403 int ret;
2404
2405 might_sleep(); /* Check for RCU read-side critical section. */
2406 preempt_disable();
2407 ret = num_online_cpus() <= 1;
2408 preempt_enable();
2409 return ret;
2410}
2411
2412/**
2413 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2414 *
2415 * Control will return to the caller some time after a full rcu-sched
2416 * grace period has elapsed, in other words after all currently executing
2417 * rcu-sched read-side critical sections have completed. These read-side
2418 * critical sections are delimited by rcu_read_lock_sched() and
2419 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2420 * local_irq_disable(), and so on may be used in place of
2421 * rcu_read_lock_sched().
2422 *
2423 * This means that all preempt_disable code sequences, including NMI and
2424 * non-threaded hardware-interrupt handlers, in progress on entry will
2425 * have completed before this primitive returns. However, this does not
2426 * guarantee that softirq handlers will have completed, since in some
2427 * kernels, these handlers can run in process context, and can block.
2428 *
2429 * Note that this guarantee implies further memory-ordering guarantees.
2430 * On systems with more than one CPU, when synchronize_sched() returns,
2431 * each CPU is guaranteed to have executed a full memory barrier since the
2432 * end of its last RCU-sched read-side critical section whose beginning
2433 * preceded the call to synchronize_sched(). In addition, each CPU having
2434 * an RCU read-side critical section that extends beyond the return from
2435 * synchronize_sched() is guaranteed to have executed a full memory barrier
2436 * after the beginning of synchronize_sched() and before the beginning of
2437 * that RCU read-side critical section. Note that these guarantees include
2438 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2439 * that are executing in the kernel.
2440 *
2441 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2442 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2443 * to have executed a full memory barrier during the execution of
2444 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2445 * again only if the system has more than one CPU).
2446 *
2447 * This primitive provides the guarantees made by the (now removed)
2448 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2449 * guarantees that rcu_read_lock() sections will have completed.
2450 * In "classic RCU", these two guarantees happen to be one and
2451 * the same, but can differ in realtime RCU implementations.
2452 */
2453void synchronize_sched(void)
2454{
2455 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2456 !lock_is_held(&rcu_lock_map) &&
2457 !lock_is_held(&rcu_sched_lock_map),
2458 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2459 if (rcu_blocking_is_gp())
2460 return;
2461 if (rcu_expedited)
2462 synchronize_sched_expedited();
2463 else
2464 wait_rcu_gp(call_rcu_sched);
2465}
2466EXPORT_SYMBOL_GPL(synchronize_sched);
2467
2468/**
2469 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2470 *
2471 * Control will return to the caller some time after a full rcu_bh grace
2472 * period has elapsed, in other words after all currently executing rcu_bh
2473 * read-side critical sections have completed. RCU read-side critical
2474 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2475 * and may be nested.
2476 *
2477 * See the description of synchronize_sched() for more detailed information
2478 * on memory ordering guarantees.
2479 */
2480void synchronize_rcu_bh(void)
2481{
2482 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2483 !lock_is_held(&rcu_lock_map) &&
2484 !lock_is_held(&rcu_sched_lock_map),
2485 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2486 if (rcu_blocking_is_gp())
2487 return;
2488 if (rcu_expedited)
2489 synchronize_rcu_bh_expedited();
2490 else
2491 wait_rcu_gp(call_rcu_bh);
2492}
2493EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2494
2495static int synchronize_sched_expedited_cpu_stop(void *data)
2496{
2497 /*
2498 * There must be a full memory barrier on each affected CPU
2499 * between the time that try_stop_cpus() is called and the
2500 * time that it returns.
2501 *
2502 * In the current initial implementation of cpu_stop, the
2503 * above condition is already met when the control reaches
2504 * this point and the following smp_mb() is not strictly
2505 * necessary. Do smp_mb() anyway for documentation and
2506 * robustness against future implementation changes.
2507 */
2508 smp_mb(); /* See above comment block. */
2509 return 0;
2510}
2511
2512/**
2513 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2514 *
2515 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2516 * approach to force the grace period to end quickly. This consumes
2517 * significant time on all CPUs and is unfriendly to real-time workloads,
2518 * so is thus not recommended for any sort of common-case code. In fact,
2519 * if you are using synchronize_sched_expedited() in a loop, please
2520 * restructure your code to batch your updates, and then use a single
2521 * synchronize_sched() instead.
2522 *
2523 * Note that it is illegal to call this function while holding any lock
2524 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2525 * to call this function from a CPU-hotplug notifier. Failing to observe
2526 * these restriction will result in deadlock.
2527 *
2528 * This implementation can be thought of as an application of ticket
2529 * locking to RCU, with sync_sched_expedited_started and
2530 * sync_sched_expedited_done taking on the roles of the halves
2531 * of the ticket-lock word. Each task atomically increments
2532 * sync_sched_expedited_started upon entry, snapshotting the old value,
2533 * then attempts to stop all the CPUs. If this succeeds, then each
2534 * CPU will have executed a context switch, resulting in an RCU-sched
2535 * grace period. We are then done, so we use atomic_cmpxchg() to
2536 * update sync_sched_expedited_done to match our snapshot -- but
2537 * only if someone else has not already advanced past our snapshot.
2538 *
2539 * On the other hand, if try_stop_cpus() fails, we check the value
2540 * of sync_sched_expedited_done. If it has advanced past our
2541 * initial snapshot, then someone else must have forced a grace period
2542 * some time after we took our snapshot. In this case, our work is
2543 * done for us, and we can simply return. Otherwise, we try again,
2544 * but keep our initial snapshot for purposes of checking for someone
2545 * doing our work for us.
2546 *
2547 * If we fail too many times in a row, we fall back to synchronize_sched().
2548 */
2549void synchronize_sched_expedited(void)
2550{
2551 long firstsnap, s, snap;
2552 int trycount = 0;
2553 struct rcu_state *rsp = &rcu_sched_state;
2554
2555 /*
2556 * If we are in danger of counter wrap, just do synchronize_sched().
2557 * By allowing sync_sched_expedited_started to advance no more than
2558 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2559 * that more than 3.5 billion CPUs would be required to force a
2560 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2561 * course be required on a 64-bit system.
2562 */
2563 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2564 (ulong)atomic_long_read(&rsp->expedited_done) +
2565 ULONG_MAX / 8)) {
2566 synchronize_sched();
2567 atomic_long_inc(&rsp->expedited_wrap);
2568 return;
2569 }
2570
2571 /*
2572 * Take a ticket. Note that atomic_inc_return() implies a
2573 * full memory barrier.
2574 */
2575 snap = atomic_long_inc_return(&rsp->expedited_start);
2576 firstsnap = snap;
2577 get_online_cpus();
2578 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2579
2580 /*
2581 * Each pass through the following loop attempts to force a
2582 * context switch on each CPU.
2583 */
2584 while (try_stop_cpus(cpu_online_mask,
2585 synchronize_sched_expedited_cpu_stop,
2586 NULL) == -EAGAIN) {
2587 put_online_cpus();
2588 atomic_long_inc(&rsp->expedited_tryfail);
2589
2590 /* Check to see if someone else did our work for us. */
2591 s = atomic_long_read(&rsp->expedited_done);
2592 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2593 /* ensure test happens before caller kfree */
2594 smp_mb__before_atomic_inc(); /* ^^^ */
2595 atomic_long_inc(&rsp->expedited_workdone1);
2596 return;
2597 }
2598
2599 /* No joy, try again later. Or just synchronize_sched(). */
2600 if (trycount++ < 10) {
2601 udelay(trycount * num_online_cpus());
2602 } else {
2603 wait_rcu_gp(call_rcu_sched);
2604 atomic_long_inc(&rsp->expedited_normal);
2605 return;
2606 }
2607
2608 /* Recheck to see if someone else did our work for us. */
2609 s = atomic_long_read(&rsp->expedited_done);
2610 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2611 /* ensure test happens before caller kfree */
2612 smp_mb__before_atomic_inc(); /* ^^^ */
2613 atomic_long_inc(&rsp->expedited_workdone2);
2614 return;
2615 }
2616
2617 /*
2618 * Refetching sync_sched_expedited_started allows later
2619 * callers to piggyback on our grace period. We retry
2620 * after they started, so our grace period works for them,
2621 * and they started after our first try, so their grace
2622 * period works for us.
2623 */
2624 get_online_cpus();
2625 snap = atomic_long_read(&rsp->expedited_start);
2626 smp_mb(); /* ensure read is before try_stop_cpus(). */
2627 }
2628 atomic_long_inc(&rsp->expedited_stoppedcpus);
2629
2630 /*
2631 * Everyone up to our most recent fetch is covered by our grace
2632 * period. Update the counter, but only if our work is still
2633 * relevant -- which it won't be if someone who started later
2634 * than we did already did their update.
2635 */
2636 do {
2637 atomic_long_inc(&rsp->expedited_done_tries);
2638 s = atomic_long_read(&rsp->expedited_done);
2639 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
2640 /* ensure test happens before caller kfree */
2641 smp_mb__before_atomic_inc(); /* ^^^ */
2642 atomic_long_inc(&rsp->expedited_done_lost);
2643 break;
2644 }
2645 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
2646 atomic_long_inc(&rsp->expedited_done_exit);
2647
2648 put_online_cpus();
2649}
2650EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2651
2652/*
2653 * Check to see if there is any immediate RCU-related work to be done
2654 * by the current CPU, for the specified type of RCU, returning 1 if so.
2655 * The checks are in order of increasing expense: checks that can be
2656 * carried out against CPU-local state are performed first. However,
2657 * we must check for CPU stalls first, else we might not get a chance.
2658 */
2659static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2660{
2661 struct rcu_node *rnp = rdp->mynode;
2662
2663 rdp->n_rcu_pending++;
2664
2665 /* Check for CPU stalls, if enabled. */
2666 check_cpu_stall(rsp, rdp);
2667
2668 /* Is the RCU core waiting for a quiescent state from this CPU? */
2669 if (rcu_scheduler_fully_active &&
2670 rdp->qs_pending && !rdp->passed_quiesce) {
2671 rdp->n_rp_qs_pending++;
2672 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2673 rdp->n_rp_report_qs++;
2674 return 1;
2675 }
2676
2677 /* Does this CPU have callbacks ready to invoke? */
2678 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2679 rdp->n_rp_cb_ready++;
2680 return 1;
2681 }
2682
2683 /* Has RCU gone idle with this CPU needing another grace period? */
2684 if (cpu_needs_another_gp(rsp, rdp)) {
2685 rdp->n_rp_cpu_needs_gp++;
2686 return 1;
2687 }
2688
2689 /* Has another RCU grace period completed? */
2690 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2691 rdp->n_rp_gp_completed++;
2692 return 1;
2693 }
2694
2695 /* Has a new RCU grace period started? */
2696 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2697 rdp->n_rp_gp_started++;
2698 return 1;
2699 }
2700
2701 /* nothing to do */
2702 rdp->n_rp_need_nothing++;
2703 return 0;
2704}
2705
2706/*
2707 * Check to see if there is any immediate RCU-related work to be done
2708 * by the current CPU, returning 1 if so. This function is part of the
2709 * RCU implementation; it is -not- an exported member of the RCU API.
2710 */
2711static int rcu_pending(int cpu)
2712{
2713 struct rcu_state *rsp;
2714
2715 for_each_rcu_flavor(rsp)
2716 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2717 return 1;
2718 return 0;
2719}
2720
2721/*
2722 * Return true if the specified CPU has any callback. If all_lazy is
2723 * non-NULL, store an indication of whether all callbacks are lazy.
2724 * (If there are no callbacks, all of them are deemed to be lazy.)
2725 */
2726static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
2727{
2728 bool al = true;
2729 bool hc = false;
2730 struct rcu_data *rdp;
2731 struct rcu_state *rsp;
2732
2733 for_each_rcu_flavor(rsp) {
2734 rdp = per_cpu_ptr(rsp->rda, cpu);
2735 if (rdp->qlen != rdp->qlen_lazy)
2736 al = false;
2737 if (rdp->nxtlist)
2738 hc = true;
2739 }
2740 if (all_lazy)
2741 *all_lazy = al;
2742 return hc;
2743}
2744
2745/*
2746 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2747 * the compiler is expected to optimize this away.
2748 */
2749static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
2750 int cpu, unsigned long done)
2751{
2752 trace_rcu_barrier(rsp->name, s, cpu,
2753 atomic_read(&rsp->barrier_cpu_count), done);
2754}
2755
2756/*
2757 * RCU callback function for _rcu_barrier(). If we are last, wake
2758 * up the task executing _rcu_barrier().
2759 */
2760static void rcu_barrier_callback(struct rcu_head *rhp)
2761{
2762 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2763 struct rcu_state *rsp = rdp->rsp;
2764
2765 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2766 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2767 complete(&rsp->barrier_completion);
2768 } else {
2769 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2770 }
2771}
2772
2773/*
2774 * Called with preemption disabled, and from cross-cpu IRQ context.
2775 */
2776static void rcu_barrier_func(void *type)
2777{
2778 struct rcu_state *rsp = type;
2779 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2780
2781 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2782 atomic_inc(&rsp->barrier_cpu_count);
2783 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2784}
2785
2786/*
2787 * Orchestrate the specified type of RCU barrier, waiting for all
2788 * RCU callbacks of the specified type to complete.
2789 */
2790static void _rcu_barrier(struct rcu_state *rsp)
2791{
2792 int cpu;
2793 struct rcu_data *rdp;
2794 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2795 unsigned long snap_done;
2796
2797 _rcu_barrier_trace(rsp, "Begin", -1, snap);
2798
2799 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2800 mutex_lock(&rsp->barrier_mutex);
2801
2802 /*
2803 * Ensure that all prior references, including to ->n_barrier_done,
2804 * are ordered before the _rcu_barrier() machinery.
2805 */
2806 smp_mb(); /* See above block comment. */
2807
2808 /*
2809 * Recheck ->n_barrier_done to see if others did our work for us.
2810 * This means checking ->n_barrier_done for an even-to-odd-to-even
2811 * transition. The "if" expression below therefore rounds the old
2812 * value up to the next even number and adds two before comparing.
2813 */
2814 snap_done = rsp->n_barrier_done;
2815 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
2816
2817 /*
2818 * If the value in snap is odd, we needed to wait for the current
2819 * rcu_barrier() to complete, then wait for the next one, in other
2820 * words, we need the value of snap_done to be three larger than
2821 * the value of snap. On the other hand, if the value in snap is
2822 * even, we only had to wait for the next rcu_barrier() to complete,
2823 * in other words, we need the value of snap_done to be only two
2824 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
2825 * this for us (thank you, Linus!).
2826 */
2827 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
2828 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2829 smp_mb(); /* caller's subsequent code after above check. */
2830 mutex_unlock(&rsp->barrier_mutex);
2831 return;
2832 }
2833
2834 /*
2835 * Increment ->n_barrier_done to avoid duplicate work. Use
2836 * ACCESS_ONCE() to prevent the compiler from speculating
2837 * the increment to precede the early-exit check.
2838 */
2839 ACCESS_ONCE(rsp->n_barrier_done)++;
2840 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2841 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2842 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2843
2844 /*
2845 * Initialize the count to one rather than to zero in order to
2846 * avoid a too-soon return to zero in case of a short grace period
2847 * (or preemption of this task). Exclude CPU-hotplug operations
2848 * to ensure that no offline CPU has callbacks queued.
2849 */
2850 init_completion(&rsp->barrier_completion);
2851 atomic_set(&rsp->barrier_cpu_count, 1);
2852 get_online_cpus();
2853
2854 /*
2855 * Force each CPU with callbacks to register a new callback.
2856 * When that callback is invoked, we will know that all of the
2857 * corresponding CPU's preceding callbacks have been invoked.
2858 */
2859 for_each_possible_cpu(cpu) {
2860 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
2861 continue;
2862 rdp = per_cpu_ptr(rsp->rda, cpu);
2863 if (rcu_is_nocb_cpu(cpu)) {
2864 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
2865 rsp->n_barrier_done);
2866 atomic_inc(&rsp->barrier_cpu_count);
2867 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
2868 rsp, cpu, 0);
2869 } else if (ACCESS_ONCE(rdp->qlen)) {
2870 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2871 rsp->n_barrier_done);
2872 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2873 } else {
2874 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2875 rsp->n_barrier_done);
2876 }
2877 }
2878 put_online_cpus();
2879
2880 /*
2881 * Now that we have an rcu_barrier_callback() callback on each
2882 * CPU, and thus each counted, remove the initial count.
2883 */
2884 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2885 complete(&rsp->barrier_completion);
2886
2887 /* Increment ->n_barrier_done to prevent duplicate work. */
2888 smp_mb(); /* Keep increment after above mechanism. */
2889 ACCESS_ONCE(rsp->n_barrier_done)++;
2890 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2891 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2892 smp_mb(); /* Keep increment before caller's subsequent code. */
2893
2894 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2895 wait_for_completion(&rsp->barrier_completion);
2896
2897 /* Other rcu_barrier() invocations can now safely proceed. */
2898 mutex_unlock(&rsp->barrier_mutex);
2899}
2900
2901/**
2902 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2903 */
2904void rcu_barrier_bh(void)
2905{
2906 _rcu_barrier(&rcu_bh_state);
2907}
2908EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2909
2910/**
2911 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2912 */
2913void rcu_barrier_sched(void)
2914{
2915 _rcu_barrier(&rcu_sched_state);
2916}
2917EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2918
2919/*
2920 * Do boot-time initialization of a CPU's per-CPU RCU data.
2921 */
2922static void __init
2923rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2924{
2925 unsigned long flags;
2926 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2927 struct rcu_node *rnp = rcu_get_root(rsp);
2928
2929 /* Set up local state, ensuring consistent view of global state. */
2930 raw_spin_lock_irqsave(&rnp->lock, flags);
2931 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2932 init_callback_list(rdp);
2933 rdp->qlen_lazy = 0;
2934 ACCESS_ONCE(rdp->qlen) = 0;
2935 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2936 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2937 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2938 rdp->cpu = cpu;
2939 rdp->rsp = rsp;
2940 rcu_boot_init_nocb_percpu_data(rdp);
2941 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2942}
2943
2944/*
2945 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2946 * offline event can be happening at a given time. Note also that we
2947 * can accept some slop in the rsp->completed access due to the fact
2948 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2949 */
2950static void
2951rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2952{
2953 unsigned long flags;
2954 unsigned long mask;
2955 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2956 struct rcu_node *rnp = rcu_get_root(rsp);
2957
2958 /* Exclude new grace periods. */
2959 mutex_lock(&rsp->onoff_mutex);
2960
2961 /* Set up local state, ensuring consistent view of global state. */
2962 raw_spin_lock_irqsave(&rnp->lock, flags);
2963 rdp->beenonline = 1; /* We have now been online. */
2964 rdp->preemptible = preemptible;
2965 rdp->qlen_last_fqs_check = 0;
2966 rdp->n_force_qs_snap = rsp->n_force_qs;
2967 rdp->blimit = blimit;
2968 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
2969 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2970 rcu_sysidle_init_percpu_data(rdp->dynticks);
2971 atomic_set(&rdp->dynticks->dynticks,
2972 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2973 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2974
2975 /* Add CPU to rcu_node bitmasks. */
2976 rnp = rdp->mynode;
2977 mask = rdp->grpmask;
2978 do {
2979 /* Exclude any attempts to start a new GP on small systems. */
2980 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2981 rnp->qsmaskinit |= mask;
2982 mask = rnp->grpmask;
2983 if (rnp == rdp->mynode) {
2984 /*
2985 * If there is a grace period in progress, we will
2986 * set up to wait for it next time we run the
2987 * RCU core code.
2988 */
2989 rdp->gpnum = rnp->completed;
2990 rdp->completed = rnp->completed;
2991 rdp->passed_quiesce = 0;
2992 rdp->qs_pending = 0;
2993 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
2994 }
2995 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2996 rnp = rnp->parent;
2997 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2998 local_irq_restore(flags);
2999
3000 mutex_unlock(&rsp->onoff_mutex);
3001}
3002
3003static void rcu_prepare_cpu(int cpu)
3004{
3005 struct rcu_state *rsp;
3006
3007 for_each_rcu_flavor(rsp)
3008 rcu_init_percpu_data(cpu, rsp,
3009 strcmp(rsp->name, "rcu_preempt") == 0);
3010}
3011
3012/*
3013 * Handle CPU online/offline notification events.
3014 */
3015static int rcu_cpu_notify(struct notifier_block *self,
3016 unsigned long action, void *hcpu)
3017{
3018 long cpu = (long)hcpu;
3019 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
3020 struct rcu_node *rnp = rdp->mynode;
3021 struct rcu_state *rsp;
3022
3023 trace_rcu_utilization(TPS("Start CPU hotplug"));
3024 switch (action) {
3025 case CPU_UP_PREPARE:
3026 case CPU_UP_PREPARE_FROZEN:
3027 rcu_prepare_cpu(cpu);
3028 rcu_prepare_kthreads(cpu);
3029 break;
3030 case CPU_ONLINE:
3031 case CPU_DOWN_FAILED:
3032 rcu_boost_kthread_setaffinity(rnp, -1);
3033 break;
3034 case CPU_DOWN_PREPARE:
3035 rcu_boost_kthread_setaffinity(rnp, cpu);
3036 break;
3037 case CPU_DYING:
3038 case CPU_DYING_FROZEN:
3039 for_each_rcu_flavor(rsp)
3040 rcu_cleanup_dying_cpu(rsp);
3041 break;
3042 case CPU_DEAD:
3043 case CPU_DEAD_FROZEN:
3044 case CPU_UP_CANCELED:
3045 case CPU_UP_CANCELED_FROZEN:
3046 for_each_rcu_flavor(rsp)
3047 rcu_cleanup_dead_cpu(cpu, rsp);
3048 break;
3049 default:
3050 break;
3051 }
3052 trace_rcu_utilization(TPS("End CPU hotplug"));
3053 return NOTIFY_OK;
3054}
3055
3056static int rcu_pm_notify(struct notifier_block *self,
3057 unsigned long action, void *hcpu)
3058{
3059 switch (action) {
3060 case PM_HIBERNATION_PREPARE:
3061 case PM_SUSPEND_PREPARE:
3062 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3063 rcu_expedited = 1;
3064 break;
3065 case PM_POST_HIBERNATION:
3066 case PM_POST_SUSPEND:
3067 rcu_expedited = 0;
3068 break;
3069 default:
3070 break;
3071 }
3072 return NOTIFY_OK;
3073}
3074
3075/*
3076 * Spawn the kthread that handles this RCU flavor's grace periods.
3077 */
3078static int __init rcu_spawn_gp_kthread(void)
3079{
3080 unsigned long flags;
3081 struct rcu_node *rnp;
3082 struct rcu_state *rsp;
3083 struct task_struct *t;
3084
3085 for_each_rcu_flavor(rsp) {
3086 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
3087 BUG_ON(IS_ERR(t));
3088 rnp = rcu_get_root(rsp);
3089 raw_spin_lock_irqsave(&rnp->lock, flags);
3090 rsp->gp_kthread = t;
3091 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3092 rcu_spawn_nocb_kthreads(rsp);
3093 }
3094 return 0;
3095}
3096early_initcall(rcu_spawn_gp_kthread);
3097
3098/*
3099 * This function is invoked towards the end of the scheduler's initialization
3100 * process. Before this is called, the idle task might contain
3101 * RCU read-side critical sections (during which time, this idle
3102 * task is booting the system). After this function is called, the
3103 * idle tasks are prohibited from containing RCU read-side critical
3104 * sections. This function also enables RCU lockdep checking.
3105 */
3106void rcu_scheduler_starting(void)
3107{
3108 WARN_ON(num_online_cpus() != 1);
3109 WARN_ON(nr_context_switches() > 0);
3110 rcu_scheduler_active = 1;
3111}
3112
3113/*
3114 * Compute the per-level fanout, either using the exact fanout specified
3115 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3116 */
3117#ifdef CONFIG_RCU_FANOUT_EXACT
3118static void __init rcu_init_levelspread(struct rcu_state *rsp)
3119{
3120 int i;
3121
3122 for (i = rcu_num_lvls - 1; i > 0; i--)
3123 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3124 rsp->levelspread[0] = rcu_fanout_leaf;
3125}
3126#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3127static void __init rcu_init_levelspread(struct rcu_state *rsp)
3128{
3129 int ccur;
3130 int cprv;
3131 int i;
3132
3133 cprv = nr_cpu_ids;
3134 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3135 ccur = rsp->levelcnt[i];
3136 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3137 cprv = ccur;
3138 }
3139}
3140#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3141
3142/*
3143 * Helper function for rcu_init() that initializes one rcu_state structure.
3144 */
3145static void __init rcu_init_one(struct rcu_state *rsp,
3146 struct rcu_data __percpu *rda)
3147{
3148 static char *buf[] = { "rcu_node_0",
3149 "rcu_node_1",
3150 "rcu_node_2",
3151 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3152 static char *fqs[] = { "rcu_node_fqs_0",
3153 "rcu_node_fqs_1",
3154 "rcu_node_fqs_2",
3155 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
3156 int cpustride = 1;
3157 int i;
3158 int j;
3159 struct rcu_node *rnp;
3160
3161 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3162
3163 /* Silence gcc 4.8 warning about array index out of range. */
3164 if (rcu_num_lvls > RCU_NUM_LVLS)
3165 panic("rcu_init_one: rcu_num_lvls overflow");
3166
3167 /* Initialize the level-tracking arrays. */
3168
3169 for (i = 0; i < rcu_num_lvls; i++)
3170 rsp->levelcnt[i] = num_rcu_lvl[i];
3171 for (i = 1; i < rcu_num_lvls; i++)
3172 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3173 rcu_init_levelspread(rsp);
3174
3175 /* Initialize the elements themselves, starting from the leaves. */
3176
3177 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3178 cpustride *= rsp->levelspread[i];
3179 rnp = rsp->level[i];
3180 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
3181 raw_spin_lock_init(&rnp->lock);
3182 lockdep_set_class_and_name(&rnp->lock,
3183 &rcu_node_class[i], buf[i]);
3184 raw_spin_lock_init(&rnp->fqslock);
3185 lockdep_set_class_and_name(&rnp->fqslock,
3186 &rcu_fqs_class[i], fqs[i]);
3187 rnp->gpnum = rsp->gpnum;
3188 rnp->completed = rsp->completed;
3189 rnp->qsmask = 0;
3190 rnp->qsmaskinit = 0;
3191 rnp->grplo = j * cpustride;
3192 rnp->grphi = (j + 1) * cpustride - 1;
3193 if (rnp->grphi >= NR_CPUS)
3194 rnp->grphi = NR_CPUS - 1;
3195 if (i == 0) {
3196 rnp->grpnum = 0;
3197 rnp->grpmask = 0;
3198 rnp->parent = NULL;
3199 } else {
3200 rnp->grpnum = j % rsp->levelspread[i - 1];
3201 rnp->grpmask = 1UL << rnp->grpnum;
3202 rnp->parent = rsp->level[i - 1] +
3203 j / rsp->levelspread[i - 1];
3204 }
3205 rnp->level = i;
3206 INIT_LIST_HEAD(&rnp->blkd_tasks);
3207 rcu_init_one_nocb(rnp);
3208 }
3209 }
3210
3211 rsp->rda = rda;
3212 init_waitqueue_head(&rsp->gp_wq);
3213 init_irq_work(&rsp->wakeup_work, rsp_wakeup);
3214 rnp = rsp->level[rcu_num_lvls - 1];
3215 for_each_possible_cpu(i) {
3216 while (i > rnp->grphi)
3217 rnp++;
3218 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3219 rcu_boot_init_percpu_data(i, rsp);
3220 }
3221 list_add(&rsp->flavors, &rcu_struct_flavors);
3222}
3223
3224/*
3225 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3226 * replace the definitions in rcutree.h because those are needed to size
3227 * the ->node array in the rcu_state structure.
3228 */
3229static void __init rcu_init_geometry(void)
3230{
3231 ulong d;
3232 int i;
3233 int j;
3234 int n = nr_cpu_ids;
3235 int rcu_capacity[MAX_RCU_LVLS + 1];
3236
3237 /*
3238 * Initialize any unspecified boot parameters.
3239 * The default values of jiffies_till_first_fqs and
3240 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3241 * value, which is a function of HZ, then adding one for each
3242 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3243 */
3244 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3245 if (jiffies_till_first_fqs == ULONG_MAX)
3246 jiffies_till_first_fqs = d;
3247 if (jiffies_till_next_fqs == ULONG_MAX)
3248 jiffies_till_next_fqs = d;
3249
3250 /* If the compile-time values are accurate, just leave. */
3251 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3252 nr_cpu_ids == NR_CPUS)
3253 return;
3254
3255 /*
3256 * Compute number of nodes that can be handled an rcu_node tree
3257 * with the given number of levels. Setting rcu_capacity[0] makes
3258 * some of the arithmetic easier.
3259 */
3260 rcu_capacity[0] = 1;
3261 rcu_capacity[1] = rcu_fanout_leaf;
3262 for (i = 2; i <= MAX_RCU_LVLS; i++)
3263 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3264
3265 /*
3266 * The boot-time rcu_fanout_leaf parameter is only permitted
3267 * to increase the leaf-level fanout, not decrease it. Of course,
3268 * the leaf-level fanout cannot exceed the number of bits in
3269 * the rcu_node masks. Finally, the tree must be able to accommodate
3270 * the configured number of CPUs. Complain and fall back to the
3271 * compile-time values if these limits are exceeded.
3272 */
3273 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3274 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3275 n > rcu_capacity[MAX_RCU_LVLS]) {
3276 WARN_ON(1);
3277 return;
3278 }
3279
3280 /* Calculate the number of rcu_nodes at each level of the tree. */
3281 for (i = 1; i <= MAX_RCU_LVLS; i++)
3282 if (n <= rcu_capacity[i]) {
3283 for (j = 0; j <= i; j++)
3284 num_rcu_lvl[j] =
3285 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3286 rcu_num_lvls = i;
3287 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3288 num_rcu_lvl[j] = 0;
3289 break;
3290 }
3291
3292 /* Calculate the total number of rcu_node structures. */
3293 rcu_num_nodes = 0;
3294 for (i = 0; i <= MAX_RCU_LVLS; i++)
3295 rcu_num_nodes += num_rcu_lvl[i];
3296 rcu_num_nodes -= n;
3297}
3298
3299void __init rcu_init(void)
3300{
3301 int cpu;
3302
3303 rcu_bootup_announce();
3304 rcu_init_geometry();
3305 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3306 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3307 __rcu_init_preempt();
3308 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3309
3310 /*
3311 * We don't need protection against CPU-hotplug here because
3312 * this is called early in boot, before either interrupts
3313 * or the scheduler are operational.
3314 */
3315 cpu_notifier(rcu_cpu_notify, 0);
3316 pm_notifier(rcu_pm_notify, 0);
3317 for_each_online_cpu(cpu)
3318 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3319}
3320
3321#include "rcutree_plugin.h"
This page took 0.061994 seconds and 5 git commands to generate.