smp: Rename __smp_call_function_single() to smp_call_function_single_async()
[deliverable/linux.git] / kernel / sched / core.c
... / ...
CommitLineData
1/*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_internal.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94 unsigned long delta;
95 ktime_t soft, hard, now;
96
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
103
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119 s64 delta;
120
121 if (rq->skip_clock_update > 0)
122 return;
123
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154 int i;
155
156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
160 }
161 seq_puts(m, "\n");
162
163 return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198 int i;
199 int neg = 0;
200
201 if (strncmp(cmp, "NO_", 3) == 0) {
202 neg = 1;
203 cmp += 3;
204 }
205
206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 if (neg) {
209 sysctl_sched_features &= ~(1UL << i);
210 sched_feat_disable(i);
211 } else {
212 sysctl_sched_features |= (1UL << i);
213 sched_feat_enable(i);
214 }
215 break;
216 }
217 }
218
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
240 if (i == __SCHED_FEAT_NR)
241 return -EINVAL;
242
243 *ppos += cnt;
244
245 return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299/*
300 * __task_rq_lock - lock the rq @p resides on.
301 */
302static inline struct rq *__task_rq_lock(struct task_struct *p)
303 __acquires(rq->lock)
304{
305 struct rq *rq;
306
307 lockdep_assert_held(&p->pi_lock);
308
309 for (;;) {
310 rq = task_rq(p);
311 raw_spin_lock(&rq->lock);
312 if (likely(rq == task_rq(p)))
313 return rq;
314 raw_spin_unlock(&rq->lock);
315 }
316}
317
318/*
319 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
320 */
321static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
322 __acquires(p->pi_lock)
323 __acquires(rq->lock)
324{
325 struct rq *rq;
326
327 for (;;) {
328 raw_spin_lock_irqsave(&p->pi_lock, *flags);
329 rq = task_rq(p);
330 raw_spin_lock(&rq->lock);
331 if (likely(rq == task_rq(p)))
332 return rq;
333 raw_spin_unlock(&rq->lock);
334 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
335 }
336}
337
338static void __task_rq_unlock(struct rq *rq)
339 __releases(rq->lock)
340{
341 raw_spin_unlock(&rq->lock);
342}
343
344static inline void
345task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
346 __releases(rq->lock)
347 __releases(p->pi_lock)
348{
349 raw_spin_unlock(&rq->lock);
350 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
351}
352
353/*
354 * this_rq_lock - lock this runqueue and disable interrupts.
355 */
356static struct rq *this_rq_lock(void)
357 __acquires(rq->lock)
358{
359 struct rq *rq;
360
361 local_irq_disable();
362 rq = this_rq();
363 raw_spin_lock(&rq->lock);
364
365 return rq;
366}
367
368#ifdef CONFIG_SCHED_HRTICK
369/*
370 * Use HR-timers to deliver accurate preemption points.
371 */
372
373static void hrtick_clear(struct rq *rq)
374{
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
377}
378
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
389 raw_spin_lock(&rq->lock);
390 update_rq_clock(rq);
391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392 raw_spin_unlock(&rq->lock);
393
394 return HRTIMER_NORESTART;
395}
396
397#ifdef CONFIG_SMP
398
399static int __hrtick_restart(struct rq *rq)
400{
401 struct hrtimer *timer = &rq->hrtick_timer;
402 ktime_t time = hrtimer_get_softexpires(timer);
403
404 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
405}
406
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
411{
412 struct rq *rq = arg;
413
414 raw_spin_lock(&rq->lock);
415 __hrtick_restart(rq);
416 rq->hrtick_csd_pending = 0;
417 raw_spin_unlock(&rq->lock);
418}
419
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425void hrtick_start(struct rq *rq, u64 delay)
426{
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430 hrtimer_set_expires(timer, time);
431
432 if (rq == this_rq()) {
433 __hrtick_restart(rq);
434 } else if (!rq->hrtick_csd_pending) {
435 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
436 rq->hrtick_csd_pending = 1;
437 }
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
452 hrtick_clear(cpu_rq(cpu));
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457}
458
459static __init void init_hrtick(void)
460{
461 hotcpu_notifier(hotplug_hrtick, 0);
462}
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469void hrtick_start(struct rq *rq, u64 delay)
470{
471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472 HRTIMER_MODE_REL_PINNED, 0);
473}
474
475static inline void init_hrtick(void)
476{
477}
478#endif /* CONFIG_SMP */
479
480static void init_rq_hrtick(struct rq *rq)
481{
482#ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
484
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488#endif
489
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
492}
493#else /* CONFIG_SCHED_HRTICK */
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
502static inline void init_hrtick(void)
503{
504}
505#endif /* CONFIG_SCHED_HRTICK */
506
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514void resched_task(struct task_struct *p)
515{
516 int cpu;
517
518 lockdep_assert_held(&task_rq(p)->lock);
519
520 if (test_tsk_need_resched(p))
521 return;
522
523 set_tsk_need_resched(p);
524
525 cpu = task_cpu(p);
526 if (cpu == smp_processor_id()) {
527 set_preempt_need_resched();
528 return;
529 }
530
531 /* NEED_RESCHED must be visible before we test polling */
532 smp_mb();
533 if (!tsk_is_polling(p))
534 smp_send_reschedule(cpu);
535}
536
537void resched_cpu(int cpu)
538{
539 struct rq *rq = cpu_rq(cpu);
540 unsigned long flags;
541
542 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
543 return;
544 resched_task(cpu_curr(cpu));
545 raw_spin_unlock_irqrestore(&rq->lock, flags);
546}
547
548#ifdef CONFIG_SMP
549#ifdef CONFIG_NO_HZ_COMMON
550/*
551 * In the semi idle case, use the nearest busy cpu for migrating timers
552 * from an idle cpu. This is good for power-savings.
553 *
554 * We don't do similar optimization for completely idle system, as
555 * selecting an idle cpu will add more delays to the timers than intended
556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557 */
558int get_nohz_timer_target(void)
559{
560 int cpu = smp_processor_id();
561 int i;
562 struct sched_domain *sd;
563
564 rcu_read_lock();
565 for_each_domain(cpu, sd) {
566 for_each_cpu(i, sched_domain_span(sd)) {
567 if (!idle_cpu(i)) {
568 cpu = i;
569 goto unlock;
570 }
571 }
572 }
573unlock:
574 rcu_read_unlock();
575 return cpu;
576}
577/*
578 * When add_timer_on() enqueues a timer into the timer wheel of an
579 * idle CPU then this timer might expire before the next timer event
580 * which is scheduled to wake up that CPU. In case of a completely
581 * idle system the next event might even be infinite time into the
582 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
583 * leaves the inner idle loop so the newly added timer is taken into
584 * account when the CPU goes back to idle and evaluates the timer
585 * wheel for the next timer event.
586 */
587static void wake_up_idle_cpu(int cpu)
588{
589 struct rq *rq = cpu_rq(cpu);
590
591 if (cpu == smp_processor_id())
592 return;
593
594 /*
595 * This is safe, as this function is called with the timer
596 * wheel base lock of (cpu) held. When the CPU is on the way
597 * to idle and has not yet set rq->curr to idle then it will
598 * be serialized on the timer wheel base lock and take the new
599 * timer into account automatically.
600 */
601 if (rq->curr != rq->idle)
602 return;
603
604 /*
605 * We can set TIF_RESCHED on the idle task of the other CPU
606 * lockless. The worst case is that the other CPU runs the
607 * idle task through an additional NOOP schedule()
608 */
609 set_tsk_need_resched(rq->idle);
610
611 /* NEED_RESCHED must be visible before we test polling */
612 smp_mb();
613 if (!tsk_is_polling(rq->idle))
614 smp_send_reschedule(cpu);
615}
616
617static bool wake_up_full_nohz_cpu(int cpu)
618{
619 if (tick_nohz_full_cpu(cpu)) {
620 if (cpu != smp_processor_id() ||
621 tick_nohz_tick_stopped())
622 smp_send_reschedule(cpu);
623 return true;
624 }
625
626 return false;
627}
628
629void wake_up_nohz_cpu(int cpu)
630{
631 if (!wake_up_full_nohz_cpu(cpu))
632 wake_up_idle_cpu(cpu);
633}
634
635static inline bool got_nohz_idle_kick(void)
636{
637 int cpu = smp_processor_id();
638
639 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
640 return false;
641
642 if (idle_cpu(cpu) && !need_resched())
643 return true;
644
645 /*
646 * We can't run Idle Load Balance on this CPU for this time so we
647 * cancel it and clear NOHZ_BALANCE_KICK
648 */
649 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
650 return false;
651}
652
653#else /* CONFIG_NO_HZ_COMMON */
654
655static inline bool got_nohz_idle_kick(void)
656{
657 return false;
658}
659
660#endif /* CONFIG_NO_HZ_COMMON */
661
662#ifdef CONFIG_NO_HZ_FULL
663bool sched_can_stop_tick(void)
664{
665 struct rq *rq;
666
667 rq = this_rq();
668
669 /* Make sure rq->nr_running update is visible after the IPI */
670 smp_rmb();
671
672 /* More than one running task need preemption */
673 if (rq->nr_running > 1)
674 return false;
675
676 return true;
677}
678#endif /* CONFIG_NO_HZ_FULL */
679
680void sched_avg_update(struct rq *rq)
681{
682 s64 period = sched_avg_period();
683
684 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
685 /*
686 * Inline assembly required to prevent the compiler
687 * optimising this loop into a divmod call.
688 * See __iter_div_u64_rem() for another example of this.
689 */
690 asm("" : "+rm" (rq->age_stamp));
691 rq->age_stamp += period;
692 rq->rt_avg /= 2;
693 }
694}
695
696#endif /* CONFIG_SMP */
697
698#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
699 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
700/*
701 * Iterate task_group tree rooted at *from, calling @down when first entering a
702 * node and @up when leaving it for the final time.
703 *
704 * Caller must hold rcu_lock or sufficient equivalent.
705 */
706int walk_tg_tree_from(struct task_group *from,
707 tg_visitor down, tg_visitor up, void *data)
708{
709 struct task_group *parent, *child;
710 int ret;
711
712 parent = from;
713
714down:
715 ret = (*down)(parent, data);
716 if (ret)
717 goto out;
718 list_for_each_entry_rcu(child, &parent->children, siblings) {
719 parent = child;
720 goto down;
721
722up:
723 continue;
724 }
725 ret = (*up)(parent, data);
726 if (ret || parent == from)
727 goto out;
728
729 child = parent;
730 parent = parent->parent;
731 if (parent)
732 goto up;
733out:
734 return ret;
735}
736
737int tg_nop(struct task_group *tg, void *data)
738{
739 return 0;
740}
741#endif
742
743static void set_load_weight(struct task_struct *p)
744{
745 int prio = p->static_prio - MAX_RT_PRIO;
746 struct load_weight *load = &p->se.load;
747
748 /*
749 * SCHED_IDLE tasks get minimal weight:
750 */
751 if (p->policy == SCHED_IDLE) {
752 load->weight = scale_load(WEIGHT_IDLEPRIO);
753 load->inv_weight = WMULT_IDLEPRIO;
754 return;
755 }
756
757 load->weight = scale_load(prio_to_weight[prio]);
758 load->inv_weight = prio_to_wmult[prio];
759}
760
761static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
762{
763 update_rq_clock(rq);
764 sched_info_queued(rq, p);
765 p->sched_class->enqueue_task(rq, p, flags);
766}
767
768static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
769{
770 update_rq_clock(rq);
771 sched_info_dequeued(rq, p);
772 p->sched_class->dequeue_task(rq, p, flags);
773}
774
775void activate_task(struct rq *rq, struct task_struct *p, int flags)
776{
777 if (task_contributes_to_load(p))
778 rq->nr_uninterruptible--;
779
780 enqueue_task(rq, p, flags);
781}
782
783void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
784{
785 if (task_contributes_to_load(p))
786 rq->nr_uninterruptible++;
787
788 dequeue_task(rq, p, flags);
789}
790
791static void update_rq_clock_task(struct rq *rq, s64 delta)
792{
793/*
794 * In theory, the compile should just see 0 here, and optimize out the call
795 * to sched_rt_avg_update. But I don't trust it...
796 */
797#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798 s64 steal = 0, irq_delta = 0;
799#endif
800#ifdef CONFIG_IRQ_TIME_ACCOUNTING
801 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
802
803 /*
804 * Since irq_time is only updated on {soft,}irq_exit, we might run into
805 * this case when a previous update_rq_clock() happened inside a
806 * {soft,}irq region.
807 *
808 * When this happens, we stop ->clock_task and only update the
809 * prev_irq_time stamp to account for the part that fit, so that a next
810 * update will consume the rest. This ensures ->clock_task is
811 * monotonic.
812 *
813 * It does however cause some slight miss-attribution of {soft,}irq
814 * time, a more accurate solution would be to update the irq_time using
815 * the current rq->clock timestamp, except that would require using
816 * atomic ops.
817 */
818 if (irq_delta > delta)
819 irq_delta = delta;
820
821 rq->prev_irq_time += irq_delta;
822 delta -= irq_delta;
823#endif
824#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
825 if (static_key_false((&paravirt_steal_rq_enabled))) {
826 u64 st;
827
828 steal = paravirt_steal_clock(cpu_of(rq));
829 steal -= rq->prev_steal_time_rq;
830
831 if (unlikely(steal > delta))
832 steal = delta;
833
834 st = steal_ticks(steal);
835 steal = st * TICK_NSEC;
836
837 rq->prev_steal_time_rq += steal;
838
839 delta -= steal;
840 }
841#endif
842
843 rq->clock_task += delta;
844
845#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
846 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
847 sched_rt_avg_update(rq, irq_delta + steal);
848#endif
849}
850
851void sched_set_stop_task(int cpu, struct task_struct *stop)
852{
853 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
854 struct task_struct *old_stop = cpu_rq(cpu)->stop;
855
856 if (stop) {
857 /*
858 * Make it appear like a SCHED_FIFO task, its something
859 * userspace knows about and won't get confused about.
860 *
861 * Also, it will make PI more or less work without too
862 * much confusion -- but then, stop work should not
863 * rely on PI working anyway.
864 */
865 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
866
867 stop->sched_class = &stop_sched_class;
868 }
869
870 cpu_rq(cpu)->stop = stop;
871
872 if (old_stop) {
873 /*
874 * Reset it back to a normal scheduling class so that
875 * it can die in pieces.
876 */
877 old_stop->sched_class = &rt_sched_class;
878 }
879}
880
881/*
882 * __normal_prio - return the priority that is based on the static prio
883 */
884static inline int __normal_prio(struct task_struct *p)
885{
886 return p->static_prio;
887}
888
889/*
890 * Calculate the expected normal priority: i.e. priority
891 * without taking RT-inheritance into account. Might be
892 * boosted by interactivity modifiers. Changes upon fork,
893 * setprio syscalls, and whenever the interactivity
894 * estimator recalculates.
895 */
896static inline int normal_prio(struct task_struct *p)
897{
898 int prio;
899
900 if (task_has_dl_policy(p))
901 prio = MAX_DL_PRIO-1;
902 else if (task_has_rt_policy(p))
903 prio = MAX_RT_PRIO-1 - p->rt_priority;
904 else
905 prio = __normal_prio(p);
906 return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
916static int effective_prio(struct task_struct *p)
917{
918 p->normal_prio = normal_prio(p);
919 /*
920 * If we are RT tasks or we were boosted to RT priority,
921 * keep the priority unchanged. Otherwise, update priority
922 * to the normal priority:
923 */
924 if (!rt_prio(p->prio))
925 return p->normal_prio;
926 return p->prio;
927}
928
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
934 */
935inline int task_curr(const struct task_struct *p)
936{
937 return cpu_curr(task_cpu(p)) == p;
938}
939
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
942 int oldprio)
943{
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
946 prev_class->switched_from(rq, p);
947 p->sched_class->switched_to(rq, p);
948 } else if (oldprio != p->prio || dl_task(p))
949 p->sched_class->prio_changed(rq, p, oldprio);
950}
951
952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953{
954 const struct sched_class *class;
955
956 if (p->sched_class == rq->curr->sched_class) {
957 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 } else {
959 for_each_class(class) {
960 if (class == rq->curr->sched_class)
961 break;
962 if (class == p->sched_class) {
963 resched_task(rq->curr);
964 break;
965 }
966 }
967 }
968
969 /*
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
972 */
973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974 rq->skip_clock_update = 1;
975}
976
977#ifdef CONFIG_SMP
978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
979{
980#ifdef CONFIG_SCHED_DEBUG
981 /*
982 * We should never call set_task_cpu() on a blocked task,
983 * ttwu() will sort out the placement.
984 */
985 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
986 !(task_preempt_count(p) & PREEMPT_ACTIVE));
987
988#ifdef CONFIG_LOCKDEP
989 /*
990 * The caller should hold either p->pi_lock or rq->lock, when changing
991 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992 *
993 * sched_move_task() holds both and thus holding either pins the cgroup,
994 * see task_group().
995 *
996 * Furthermore, all task_rq users should acquire both locks, see
997 * task_rq_lock().
998 */
999 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000 lockdep_is_held(&task_rq(p)->lock)));
1001#endif
1002#endif
1003
1004 trace_sched_migrate_task(p, new_cpu);
1005
1006 if (task_cpu(p) != new_cpu) {
1007 if (p->sched_class->migrate_task_rq)
1008 p->sched_class->migrate_task_rq(p, new_cpu);
1009 p->se.nr_migrations++;
1010 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1011 }
1012
1013 __set_task_cpu(p, new_cpu);
1014}
1015
1016static void __migrate_swap_task(struct task_struct *p, int cpu)
1017{
1018 if (p->on_rq) {
1019 struct rq *src_rq, *dst_rq;
1020
1021 src_rq = task_rq(p);
1022 dst_rq = cpu_rq(cpu);
1023
1024 deactivate_task(src_rq, p, 0);
1025 set_task_cpu(p, cpu);
1026 activate_task(dst_rq, p, 0);
1027 check_preempt_curr(dst_rq, p, 0);
1028 } else {
1029 /*
1030 * Task isn't running anymore; make it appear like we migrated
1031 * it before it went to sleep. This means on wakeup we make the
1032 * previous cpu our targer instead of where it really is.
1033 */
1034 p->wake_cpu = cpu;
1035 }
1036}
1037
1038struct migration_swap_arg {
1039 struct task_struct *src_task, *dst_task;
1040 int src_cpu, dst_cpu;
1041};
1042
1043static int migrate_swap_stop(void *data)
1044{
1045 struct migration_swap_arg *arg = data;
1046 struct rq *src_rq, *dst_rq;
1047 int ret = -EAGAIN;
1048
1049 src_rq = cpu_rq(arg->src_cpu);
1050 dst_rq = cpu_rq(arg->dst_cpu);
1051
1052 double_raw_lock(&arg->src_task->pi_lock,
1053 &arg->dst_task->pi_lock);
1054 double_rq_lock(src_rq, dst_rq);
1055 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1056 goto unlock;
1057
1058 if (task_cpu(arg->src_task) != arg->src_cpu)
1059 goto unlock;
1060
1061 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1062 goto unlock;
1063
1064 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1065 goto unlock;
1066
1067 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1068 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1069
1070 ret = 0;
1071
1072unlock:
1073 double_rq_unlock(src_rq, dst_rq);
1074 raw_spin_unlock(&arg->dst_task->pi_lock);
1075 raw_spin_unlock(&arg->src_task->pi_lock);
1076
1077 return ret;
1078}
1079
1080/*
1081 * Cross migrate two tasks
1082 */
1083int migrate_swap(struct task_struct *cur, struct task_struct *p)
1084{
1085 struct migration_swap_arg arg;
1086 int ret = -EINVAL;
1087
1088 arg = (struct migration_swap_arg){
1089 .src_task = cur,
1090 .src_cpu = task_cpu(cur),
1091 .dst_task = p,
1092 .dst_cpu = task_cpu(p),
1093 };
1094
1095 if (arg.src_cpu == arg.dst_cpu)
1096 goto out;
1097
1098 /*
1099 * These three tests are all lockless; this is OK since all of them
1100 * will be re-checked with proper locks held further down the line.
1101 */
1102 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1103 goto out;
1104
1105 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1106 goto out;
1107
1108 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1109 goto out;
1110
1111 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1112 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1113
1114out:
1115 return ret;
1116}
1117
1118struct migration_arg {
1119 struct task_struct *task;
1120 int dest_cpu;
1121};
1122
1123static int migration_cpu_stop(void *data);
1124
1125/*
1126 * wait_task_inactive - wait for a thread to unschedule.
1127 *
1128 * If @match_state is nonzero, it's the @p->state value just checked and
1129 * not expected to change. If it changes, i.e. @p might have woken up,
1130 * then return zero. When we succeed in waiting for @p to be off its CPU,
1131 * we return a positive number (its total switch count). If a second call
1132 * a short while later returns the same number, the caller can be sure that
1133 * @p has remained unscheduled the whole time.
1134 *
1135 * The caller must ensure that the task *will* unschedule sometime soon,
1136 * else this function might spin for a *long* time. This function can't
1137 * be called with interrupts off, or it may introduce deadlock with
1138 * smp_call_function() if an IPI is sent by the same process we are
1139 * waiting to become inactive.
1140 */
1141unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1142{
1143 unsigned long flags;
1144 int running, on_rq;
1145 unsigned long ncsw;
1146 struct rq *rq;
1147
1148 for (;;) {
1149 /*
1150 * We do the initial early heuristics without holding
1151 * any task-queue locks at all. We'll only try to get
1152 * the runqueue lock when things look like they will
1153 * work out!
1154 */
1155 rq = task_rq(p);
1156
1157 /*
1158 * If the task is actively running on another CPU
1159 * still, just relax and busy-wait without holding
1160 * any locks.
1161 *
1162 * NOTE! Since we don't hold any locks, it's not
1163 * even sure that "rq" stays as the right runqueue!
1164 * But we don't care, since "task_running()" will
1165 * return false if the runqueue has changed and p
1166 * is actually now running somewhere else!
1167 */
1168 while (task_running(rq, p)) {
1169 if (match_state && unlikely(p->state != match_state))
1170 return 0;
1171 cpu_relax();
1172 }
1173
1174 /*
1175 * Ok, time to look more closely! We need the rq
1176 * lock now, to be *sure*. If we're wrong, we'll
1177 * just go back and repeat.
1178 */
1179 rq = task_rq_lock(p, &flags);
1180 trace_sched_wait_task(p);
1181 running = task_running(rq, p);
1182 on_rq = p->on_rq;
1183 ncsw = 0;
1184 if (!match_state || p->state == match_state)
1185 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1186 task_rq_unlock(rq, p, &flags);
1187
1188 /*
1189 * If it changed from the expected state, bail out now.
1190 */
1191 if (unlikely(!ncsw))
1192 break;
1193
1194 /*
1195 * Was it really running after all now that we
1196 * checked with the proper locks actually held?
1197 *
1198 * Oops. Go back and try again..
1199 */
1200 if (unlikely(running)) {
1201 cpu_relax();
1202 continue;
1203 }
1204
1205 /*
1206 * It's not enough that it's not actively running,
1207 * it must be off the runqueue _entirely_, and not
1208 * preempted!
1209 *
1210 * So if it was still runnable (but just not actively
1211 * running right now), it's preempted, and we should
1212 * yield - it could be a while.
1213 */
1214 if (unlikely(on_rq)) {
1215 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1216
1217 set_current_state(TASK_UNINTERRUPTIBLE);
1218 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1219 continue;
1220 }
1221
1222 /*
1223 * Ahh, all good. It wasn't running, and it wasn't
1224 * runnable, which means that it will never become
1225 * running in the future either. We're all done!
1226 */
1227 break;
1228 }
1229
1230 return ncsw;
1231}
1232
1233/***
1234 * kick_process - kick a running thread to enter/exit the kernel
1235 * @p: the to-be-kicked thread
1236 *
1237 * Cause a process which is running on another CPU to enter
1238 * kernel-mode, without any delay. (to get signals handled.)
1239 *
1240 * NOTE: this function doesn't have to take the runqueue lock,
1241 * because all it wants to ensure is that the remote task enters
1242 * the kernel. If the IPI races and the task has been migrated
1243 * to another CPU then no harm is done and the purpose has been
1244 * achieved as well.
1245 */
1246void kick_process(struct task_struct *p)
1247{
1248 int cpu;
1249
1250 preempt_disable();
1251 cpu = task_cpu(p);
1252 if ((cpu != smp_processor_id()) && task_curr(p))
1253 smp_send_reschedule(cpu);
1254 preempt_enable();
1255}
1256EXPORT_SYMBOL_GPL(kick_process);
1257#endif /* CONFIG_SMP */
1258
1259#ifdef CONFIG_SMP
1260/*
1261 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1262 */
1263static int select_fallback_rq(int cpu, struct task_struct *p)
1264{
1265 int nid = cpu_to_node(cpu);
1266 const struct cpumask *nodemask = NULL;
1267 enum { cpuset, possible, fail } state = cpuset;
1268 int dest_cpu;
1269
1270 /*
1271 * If the node that the cpu is on has been offlined, cpu_to_node()
1272 * will return -1. There is no cpu on the node, and we should
1273 * select the cpu on the other node.
1274 */
1275 if (nid != -1) {
1276 nodemask = cpumask_of_node(nid);
1277
1278 /* Look for allowed, online CPU in same node. */
1279 for_each_cpu(dest_cpu, nodemask) {
1280 if (!cpu_online(dest_cpu))
1281 continue;
1282 if (!cpu_active(dest_cpu))
1283 continue;
1284 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1285 return dest_cpu;
1286 }
1287 }
1288
1289 for (;;) {
1290 /* Any allowed, online CPU? */
1291 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1292 if (!cpu_online(dest_cpu))
1293 continue;
1294 if (!cpu_active(dest_cpu))
1295 continue;
1296 goto out;
1297 }
1298
1299 switch (state) {
1300 case cpuset:
1301 /* No more Mr. Nice Guy. */
1302 cpuset_cpus_allowed_fallback(p);
1303 state = possible;
1304 break;
1305
1306 case possible:
1307 do_set_cpus_allowed(p, cpu_possible_mask);
1308 state = fail;
1309 break;
1310
1311 case fail:
1312 BUG();
1313 break;
1314 }
1315 }
1316
1317out:
1318 if (state != cpuset) {
1319 /*
1320 * Don't tell them about moving exiting tasks or
1321 * kernel threads (both mm NULL), since they never
1322 * leave kernel.
1323 */
1324 if (p->mm && printk_ratelimit()) {
1325 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1326 task_pid_nr(p), p->comm, cpu);
1327 }
1328 }
1329
1330 return dest_cpu;
1331}
1332
1333/*
1334 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1335 */
1336static inline
1337int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1338{
1339 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1340
1341 /*
1342 * In order not to call set_task_cpu() on a blocking task we need
1343 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1344 * cpu.
1345 *
1346 * Since this is common to all placement strategies, this lives here.
1347 *
1348 * [ this allows ->select_task() to simply return task_cpu(p) and
1349 * not worry about this generic constraint ]
1350 */
1351 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1352 !cpu_online(cpu)))
1353 cpu = select_fallback_rq(task_cpu(p), p);
1354
1355 return cpu;
1356}
1357
1358static void update_avg(u64 *avg, u64 sample)
1359{
1360 s64 diff = sample - *avg;
1361 *avg += diff >> 3;
1362}
1363#endif
1364
1365static void
1366ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1367{
1368#ifdef CONFIG_SCHEDSTATS
1369 struct rq *rq = this_rq();
1370
1371#ifdef CONFIG_SMP
1372 int this_cpu = smp_processor_id();
1373
1374 if (cpu == this_cpu) {
1375 schedstat_inc(rq, ttwu_local);
1376 schedstat_inc(p, se.statistics.nr_wakeups_local);
1377 } else {
1378 struct sched_domain *sd;
1379
1380 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1381 rcu_read_lock();
1382 for_each_domain(this_cpu, sd) {
1383 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1384 schedstat_inc(sd, ttwu_wake_remote);
1385 break;
1386 }
1387 }
1388 rcu_read_unlock();
1389 }
1390
1391 if (wake_flags & WF_MIGRATED)
1392 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1393
1394#endif /* CONFIG_SMP */
1395
1396 schedstat_inc(rq, ttwu_count);
1397 schedstat_inc(p, se.statistics.nr_wakeups);
1398
1399 if (wake_flags & WF_SYNC)
1400 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1401
1402#endif /* CONFIG_SCHEDSTATS */
1403}
1404
1405static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1406{
1407 activate_task(rq, p, en_flags);
1408 p->on_rq = 1;
1409
1410 /* if a worker is waking up, notify workqueue */
1411 if (p->flags & PF_WQ_WORKER)
1412 wq_worker_waking_up(p, cpu_of(rq));
1413}
1414
1415/*
1416 * Mark the task runnable and perform wakeup-preemption.
1417 */
1418static void
1419ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1420{
1421 check_preempt_curr(rq, p, wake_flags);
1422 trace_sched_wakeup(p, true);
1423
1424 p->state = TASK_RUNNING;
1425#ifdef CONFIG_SMP
1426 if (p->sched_class->task_woken)
1427 p->sched_class->task_woken(rq, p);
1428
1429 if (rq->idle_stamp) {
1430 u64 delta = rq_clock(rq) - rq->idle_stamp;
1431 u64 max = 2*rq->max_idle_balance_cost;
1432
1433 update_avg(&rq->avg_idle, delta);
1434
1435 if (rq->avg_idle > max)
1436 rq->avg_idle = max;
1437
1438 rq->idle_stamp = 0;
1439 }
1440#endif
1441}
1442
1443static void
1444ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1445{
1446#ifdef CONFIG_SMP
1447 if (p->sched_contributes_to_load)
1448 rq->nr_uninterruptible--;
1449#endif
1450
1451 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1452 ttwu_do_wakeup(rq, p, wake_flags);
1453}
1454
1455/*
1456 * Called in case the task @p isn't fully descheduled from its runqueue,
1457 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1458 * since all we need to do is flip p->state to TASK_RUNNING, since
1459 * the task is still ->on_rq.
1460 */
1461static int ttwu_remote(struct task_struct *p, int wake_flags)
1462{
1463 struct rq *rq;
1464 int ret = 0;
1465
1466 rq = __task_rq_lock(p);
1467 if (p->on_rq) {
1468 /* check_preempt_curr() may use rq clock */
1469 update_rq_clock(rq);
1470 ttwu_do_wakeup(rq, p, wake_flags);
1471 ret = 1;
1472 }
1473 __task_rq_unlock(rq);
1474
1475 return ret;
1476}
1477
1478#ifdef CONFIG_SMP
1479static void sched_ttwu_pending(void)
1480{
1481 struct rq *rq = this_rq();
1482 struct llist_node *llist = llist_del_all(&rq->wake_list);
1483 struct task_struct *p;
1484
1485 raw_spin_lock(&rq->lock);
1486
1487 while (llist) {
1488 p = llist_entry(llist, struct task_struct, wake_entry);
1489 llist = llist_next(llist);
1490 ttwu_do_activate(rq, p, 0);
1491 }
1492
1493 raw_spin_unlock(&rq->lock);
1494}
1495
1496void scheduler_ipi(void)
1497{
1498 /*
1499 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1500 * TIF_NEED_RESCHED remotely (for the first time) will also send
1501 * this IPI.
1502 */
1503 preempt_fold_need_resched();
1504
1505 if (llist_empty(&this_rq()->wake_list)
1506 && !tick_nohz_full_cpu(smp_processor_id())
1507 && !got_nohz_idle_kick())
1508 return;
1509
1510 /*
1511 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1512 * traditionally all their work was done from the interrupt return
1513 * path. Now that we actually do some work, we need to make sure
1514 * we do call them.
1515 *
1516 * Some archs already do call them, luckily irq_enter/exit nest
1517 * properly.
1518 *
1519 * Arguably we should visit all archs and update all handlers,
1520 * however a fair share of IPIs are still resched only so this would
1521 * somewhat pessimize the simple resched case.
1522 */
1523 irq_enter();
1524 tick_nohz_full_check();
1525 sched_ttwu_pending();
1526
1527 /*
1528 * Check if someone kicked us for doing the nohz idle load balance.
1529 */
1530 if (unlikely(got_nohz_idle_kick())) {
1531 this_rq()->idle_balance = 1;
1532 raise_softirq_irqoff(SCHED_SOFTIRQ);
1533 }
1534 irq_exit();
1535}
1536
1537static void ttwu_queue_remote(struct task_struct *p, int cpu)
1538{
1539 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1540 smp_send_reschedule(cpu);
1541}
1542
1543bool cpus_share_cache(int this_cpu, int that_cpu)
1544{
1545 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1546}
1547#endif /* CONFIG_SMP */
1548
1549static void ttwu_queue(struct task_struct *p, int cpu)
1550{
1551 struct rq *rq = cpu_rq(cpu);
1552
1553#if defined(CONFIG_SMP)
1554 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1555 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1556 ttwu_queue_remote(p, cpu);
1557 return;
1558 }
1559#endif
1560
1561 raw_spin_lock(&rq->lock);
1562 ttwu_do_activate(rq, p, 0);
1563 raw_spin_unlock(&rq->lock);
1564}
1565
1566/**
1567 * try_to_wake_up - wake up a thread
1568 * @p: the thread to be awakened
1569 * @state: the mask of task states that can be woken
1570 * @wake_flags: wake modifier flags (WF_*)
1571 *
1572 * Put it on the run-queue if it's not already there. The "current"
1573 * thread is always on the run-queue (except when the actual
1574 * re-schedule is in progress), and as such you're allowed to do
1575 * the simpler "current->state = TASK_RUNNING" to mark yourself
1576 * runnable without the overhead of this.
1577 *
1578 * Return: %true if @p was woken up, %false if it was already running.
1579 * or @state didn't match @p's state.
1580 */
1581static int
1582try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1583{
1584 unsigned long flags;
1585 int cpu, success = 0;
1586
1587 /*
1588 * If we are going to wake up a thread waiting for CONDITION we
1589 * need to ensure that CONDITION=1 done by the caller can not be
1590 * reordered with p->state check below. This pairs with mb() in
1591 * set_current_state() the waiting thread does.
1592 */
1593 smp_mb__before_spinlock();
1594 raw_spin_lock_irqsave(&p->pi_lock, flags);
1595 if (!(p->state & state))
1596 goto out;
1597
1598 success = 1; /* we're going to change ->state */
1599 cpu = task_cpu(p);
1600
1601 if (p->on_rq && ttwu_remote(p, wake_flags))
1602 goto stat;
1603
1604#ifdef CONFIG_SMP
1605 /*
1606 * If the owning (remote) cpu is still in the middle of schedule() with
1607 * this task as prev, wait until its done referencing the task.
1608 */
1609 while (p->on_cpu)
1610 cpu_relax();
1611 /*
1612 * Pairs with the smp_wmb() in finish_lock_switch().
1613 */
1614 smp_rmb();
1615
1616 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1617 p->state = TASK_WAKING;
1618
1619 if (p->sched_class->task_waking)
1620 p->sched_class->task_waking(p);
1621
1622 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1623 if (task_cpu(p) != cpu) {
1624 wake_flags |= WF_MIGRATED;
1625 set_task_cpu(p, cpu);
1626 }
1627#endif /* CONFIG_SMP */
1628
1629 ttwu_queue(p, cpu);
1630stat:
1631 ttwu_stat(p, cpu, wake_flags);
1632out:
1633 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1634
1635 return success;
1636}
1637
1638/**
1639 * try_to_wake_up_local - try to wake up a local task with rq lock held
1640 * @p: the thread to be awakened
1641 *
1642 * Put @p on the run-queue if it's not already there. The caller must
1643 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1644 * the current task.
1645 */
1646static void try_to_wake_up_local(struct task_struct *p)
1647{
1648 struct rq *rq = task_rq(p);
1649
1650 if (WARN_ON_ONCE(rq != this_rq()) ||
1651 WARN_ON_ONCE(p == current))
1652 return;
1653
1654 lockdep_assert_held(&rq->lock);
1655
1656 if (!raw_spin_trylock(&p->pi_lock)) {
1657 raw_spin_unlock(&rq->lock);
1658 raw_spin_lock(&p->pi_lock);
1659 raw_spin_lock(&rq->lock);
1660 }
1661
1662 if (!(p->state & TASK_NORMAL))
1663 goto out;
1664
1665 if (!p->on_rq)
1666 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1667
1668 ttwu_do_wakeup(rq, p, 0);
1669 ttwu_stat(p, smp_processor_id(), 0);
1670out:
1671 raw_spin_unlock(&p->pi_lock);
1672}
1673
1674/**
1675 * wake_up_process - Wake up a specific process
1676 * @p: The process to be woken up.
1677 *
1678 * Attempt to wake up the nominated process and move it to the set of runnable
1679 * processes.
1680 *
1681 * Return: 1 if the process was woken up, 0 if it was already running.
1682 *
1683 * It may be assumed that this function implies a write memory barrier before
1684 * changing the task state if and only if any tasks are woken up.
1685 */
1686int wake_up_process(struct task_struct *p)
1687{
1688 WARN_ON(task_is_stopped_or_traced(p));
1689 return try_to_wake_up(p, TASK_NORMAL, 0);
1690}
1691EXPORT_SYMBOL(wake_up_process);
1692
1693int wake_up_state(struct task_struct *p, unsigned int state)
1694{
1695 return try_to_wake_up(p, state, 0);
1696}
1697
1698/*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
1704static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1705{
1706 p->on_rq = 0;
1707
1708 p->se.on_rq = 0;
1709 p->se.exec_start = 0;
1710 p->se.sum_exec_runtime = 0;
1711 p->se.prev_sum_exec_runtime = 0;
1712 p->se.nr_migrations = 0;
1713 p->se.vruntime = 0;
1714 INIT_LIST_HEAD(&p->se.group_node);
1715
1716#ifdef CONFIG_SCHEDSTATS
1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1718#endif
1719
1720 RB_CLEAR_NODE(&p->dl.rb_node);
1721 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1722 p->dl.dl_runtime = p->dl.runtime = 0;
1723 p->dl.dl_deadline = p->dl.deadline = 0;
1724 p->dl.dl_period = 0;
1725 p->dl.flags = 0;
1726
1727 INIT_LIST_HEAD(&p->rt.run_list);
1728
1729#ifdef CONFIG_PREEMPT_NOTIFIERS
1730 INIT_HLIST_HEAD(&p->preempt_notifiers);
1731#endif
1732
1733#ifdef CONFIG_NUMA_BALANCING
1734 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1735 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1736 p->mm->numa_scan_seq = 0;
1737 }
1738
1739 if (clone_flags & CLONE_VM)
1740 p->numa_preferred_nid = current->numa_preferred_nid;
1741 else
1742 p->numa_preferred_nid = -1;
1743
1744 p->node_stamp = 0ULL;
1745 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1746 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1747 p->numa_work.next = &p->numa_work;
1748 p->numa_faults = NULL;
1749 p->numa_faults_buffer = NULL;
1750
1751 INIT_LIST_HEAD(&p->numa_entry);
1752 p->numa_group = NULL;
1753#endif /* CONFIG_NUMA_BALANCING */
1754}
1755
1756#ifdef CONFIG_NUMA_BALANCING
1757#ifdef CONFIG_SCHED_DEBUG
1758void set_numabalancing_state(bool enabled)
1759{
1760 if (enabled)
1761 sched_feat_set("NUMA");
1762 else
1763 sched_feat_set("NO_NUMA");
1764}
1765#else
1766__read_mostly bool numabalancing_enabled;
1767
1768void set_numabalancing_state(bool enabled)
1769{
1770 numabalancing_enabled = enabled;
1771}
1772#endif /* CONFIG_SCHED_DEBUG */
1773
1774#ifdef CONFIG_PROC_SYSCTL
1775int sysctl_numa_balancing(struct ctl_table *table, int write,
1776 void __user *buffer, size_t *lenp, loff_t *ppos)
1777{
1778 struct ctl_table t;
1779 int err;
1780 int state = numabalancing_enabled;
1781
1782 if (write && !capable(CAP_SYS_ADMIN))
1783 return -EPERM;
1784
1785 t = *table;
1786 t.data = &state;
1787 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1788 if (err < 0)
1789 return err;
1790 if (write)
1791 set_numabalancing_state(state);
1792 return err;
1793}
1794#endif
1795#endif
1796
1797/*
1798 * fork()/clone()-time setup:
1799 */
1800int sched_fork(unsigned long clone_flags, struct task_struct *p)
1801{
1802 unsigned long flags;
1803 int cpu = get_cpu();
1804
1805 __sched_fork(clone_flags, p);
1806 /*
1807 * We mark the process as running here. This guarantees that
1808 * nobody will actually run it, and a signal or other external
1809 * event cannot wake it up and insert it on the runqueue either.
1810 */
1811 p->state = TASK_RUNNING;
1812
1813 /*
1814 * Make sure we do not leak PI boosting priority to the child.
1815 */
1816 p->prio = current->normal_prio;
1817
1818 /*
1819 * Revert to default priority/policy on fork if requested.
1820 */
1821 if (unlikely(p->sched_reset_on_fork)) {
1822 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1823 p->policy = SCHED_NORMAL;
1824 p->static_prio = NICE_TO_PRIO(0);
1825 p->rt_priority = 0;
1826 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1827 p->static_prio = NICE_TO_PRIO(0);
1828
1829 p->prio = p->normal_prio = __normal_prio(p);
1830 set_load_weight(p);
1831
1832 /*
1833 * We don't need the reset flag anymore after the fork. It has
1834 * fulfilled its duty:
1835 */
1836 p->sched_reset_on_fork = 0;
1837 }
1838
1839 if (dl_prio(p->prio)) {
1840 put_cpu();
1841 return -EAGAIN;
1842 } else if (rt_prio(p->prio)) {
1843 p->sched_class = &rt_sched_class;
1844 } else {
1845 p->sched_class = &fair_sched_class;
1846 }
1847
1848 if (p->sched_class->task_fork)
1849 p->sched_class->task_fork(p);
1850
1851 /*
1852 * The child is not yet in the pid-hash so no cgroup attach races,
1853 * and the cgroup is pinned to this child due to cgroup_fork()
1854 * is ran before sched_fork().
1855 *
1856 * Silence PROVE_RCU.
1857 */
1858 raw_spin_lock_irqsave(&p->pi_lock, flags);
1859 set_task_cpu(p, cpu);
1860 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1861
1862#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1863 if (likely(sched_info_on()))
1864 memset(&p->sched_info, 0, sizeof(p->sched_info));
1865#endif
1866#if defined(CONFIG_SMP)
1867 p->on_cpu = 0;
1868#endif
1869 init_task_preempt_count(p);
1870#ifdef CONFIG_SMP
1871 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1872 RB_CLEAR_NODE(&p->pushable_dl_tasks);
1873#endif
1874
1875 put_cpu();
1876 return 0;
1877}
1878
1879unsigned long to_ratio(u64 period, u64 runtime)
1880{
1881 if (runtime == RUNTIME_INF)
1882 return 1ULL << 20;
1883
1884 /*
1885 * Doing this here saves a lot of checks in all
1886 * the calling paths, and returning zero seems
1887 * safe for them anyway.
1888 */
1889 if (period == 0)
1890 return 0;
1891
1892 return div64_u64(runtime << 20, period);
1893}
1894
1895#ifdef CONFIG_SMP
1896inline struct dl_bw *dl_bw_of(int i)
1897{
1898 return &cpu_rq(i)->rd->dl_bw;
1899}
1900
1901static inline int dl_bw_cpus(int i)
1902{
1903 struct root_domain *rd = cpu_rq(i)->rd;
1904 int cpus = 0;
1905
1906 for_each_cpu_and(i, rd->span, cpu_active_mask)
1907 cpus++;
1908
1909 return cpus;
1910}
1911#else
1912inline struct dl_bw *dl_bw_of(int i)
1913{
1914 return &cpu_rq(i)->dl.dl_bw;
1915}
1916
1917static inline int dl_bw_cpus(int i)
1918{
1919 return 1;
1920}
1921#endif
1922
1923static inline
1924void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1925{
1926 dl_b->total_bw -= tsk_bw;
1927}
1928
1929static inline
1930void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1931{
1932 dl_b->total_bw += tsk_bw;
1933}
1934
1935static inline
1936bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1937{
1938 return dl_b->bw != -1 &&
1939 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1940}
1941
1942/*
1943 * We must be sure that accepting a new task (or allowing changing the
1944 * parameters of an existing one) is consistent with the bandwidth
1945 * constraints. If yes, this function also accordingly updates the currently
1946 * allocated bandwidth to reflect the new situation.
1947 *
1948 * This function is called while holding p's rq->lock.
1949 */
1950static int dl_overflow(struct task_struct *p, int policy,
1951 const struct sched_attr *attr)
1952{
1953
1954 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1955 u64 period = attr->sched_period;
1956 u64 runtime = attr->sched_runtime;
1957 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1958 int cpus, err = -1;
1959
1960 if (new_bw == p->dl.dl_bw)
1961 return 0;
1962
1963 /*
1964 * Either if a task, enters, leave, or stays -deadline but changes
1965 * its parameters, we may need to update accordingly the total
1966 * allocated bandwidth of the container.
1967 */
1968 raw_spin_lock(&dl_b->lock);
1969 cpus = dl_bw_cpus(task_cpu(p));
1970 if (dl_policy(policy) && !task_has_dl_policy(p) &&
1971 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1972 __dl_add(dl_b, new_bw);
1973 err = 0;
1974 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
1975 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1976 __dl_clear(dl_b, p->dl.dl_bw);
1977 __dl_add(dl_b, new_bw);
1978 err = 0;
1979 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1980 __dl_clear(dl_b, p->dl.dl_bw);
1981 err = 0;
1982 }
1983 raw_spin_unlock(&dl_b->lock);
1984
1985 return err;
1986}
1987
1988extern void init_dl_bw(struct dl_bw *dl_b);
1989
1990/*
1991 * wake_up_new_task - wake up a newly created task for the first time.
1992 *
1993 * This function will do some initial scheduler statistics housekeeping
1994 * that must be done for every newly created context, then puts the task
1995 * on the runqueue and wakes it.
1996 */
1997void wake_up_new_task(struct task_struct *p)
1998{
1999 unsigned long flags;
2000 struct rq *rq;
2001
2002 raw_spin_lock_irqsave(&p->pi_lock, flags);
2003#ifdef CONFIG_SMP
2004 /*
2005 * Fork balancing, do it here and not earlier because:
2006 * - cpus_allowed can change in the fork path
2007 * - any previously selected cpu might disappear through hotplug
2008 */
2009 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2010#endif
2011
2012 /* Initialize new task's runnable average */
2013 init_task_runnable_average(p);
2014 rq = __task_rq_lock(p);
2015 activate_task(rq, p, 0);
2016 p->on_rq = 1;
2017 trace_sched_wakeup_new(p, true);
2018 check_preempt_curr(rq, p, WF_FORK);
2019#ifdef CONFIG_SMP
2020 if (p->sched_class->task_woken)
2021 p->sched_class->task_woken(rq, p);
2022#endif
2023 task_rq_unlock(rq, p, &flags);
2024}
2025
2026#ifdef CONFIG_PREEMPT_NOTIFIERS
2027
2028/**
2029 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2030 * @notifier: notifier struct to register
2031 */
2032void preempt_notifier_register(struct preempt_notifier *notifier)
2033{
2034 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2035}
2036EXPORT_SYMBOL_GPL(preempt_notifier_register);
2037
2038/**
2039 * preempt_notifier_unregister - no longer interested in preemption notifications
2040 * @notifier: notifier struct to unregister
2041 *
2042 * This is safe to call from within a preemption notifier.
2043 */
2044void preempt_notifier_unregister(struct preempt_notifier *notifier)
2045{
2046 hlist_del(&notifier->link);
2047}
2048EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2049
2050static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2051{
2052 struct preempt_notifier *notifier;
2053
2054 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2055 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2056}
2057
2058static void
2059fire_sched_out_preempt_notifiers(struct task_struct *curr,
2060 struct task_struct *next)
2061{
2062 struct preempt_notifier *notifier;
2063
2064 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2065 notifier->ops->sched_out(notifier, next);
2066}
2067
2068#else /* !CONFIG_PREEMPT_NOTIFIERS */
2069
2070static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2071{
2072}
2073
2074static void
2075fire_sched_out_preempt_notifiers(struct task_struct *curr,
2076 struct task_struct *next)
2077{
2078}
2079
2080#endif /* CONFIG_PREEMPT_NOTIFIERS */
2081
2082/**
2083 * prepare_task_switch - prepare to switch tasks
2084 * @rq: the runqueue preparing to switch
2085 * @prev: the current task that is being switched out
2086 * @next: the task we are going to switch to.
2087 *
2088 * This is called with the rq lock held and interrupts off. It must
2089 * be paired with a subsequent finish_task_switch after the context
2090 * switch.
2091 *
2092 * prepare_task_switch sets up locking and calls architecture specific
2093 * hooks.
2094 */
2095static inline void
2096prepare_task_switch(struct rq *rq, struct task_struct *prev,
2097 struct task_struct *next)
2098{
2099 trace_sched_switch(prev, next);
2100 sched_info_switch(rq, prev, next);
2101 perf_event_task_sched_out(prev, next);
2102 fire_sched_out_preempt_notifiers(prev, next);
2103 prepare_lock_switch(rq, next);
2104 prepare_arch_switch(next);
2105}
2106
2107/**
2108 * finish_task_switch - clean up after a task-switch
2109 * @rq: runqueue associated with task-switch
2110 * @prev: the thread we just switched away from.
2111 *
2112 * finish_task_switch must be called after the context switch, paired
2113 * with a prepare_task_switch call before the context switch.
2114 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2115 * and do any other architecture-specific cleanup actions.
2116 *
2117 * Note that we may have delayed dropping an mm in context_switch(). If
2118 * so, we finish that here outside of the runqueue lock. (Doing it
2119 * with the lock held can cause deadlocks; see schedule() for
2120 * details.)
2121 */
2122static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2123 __releases(rq->lock)
2124{
2125 struct mm_struct *mm = rq->prev_mm;
2126 long prev_state;
2127
2128 rq->prev_mm = NULL;
2129
2130 /*
2131 * A task struct has one reference for the use as "current".
2132 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2133 * schedule one last time. The schedule call will never return, and
2134 * the scheduled task must drop that reference.
2135 * The test for TASK_DEAD must occur while the runqueue locks are
2136 * still held, otherwise prev could be scheduled on another cpu, die
2137 * there before we look at prev->state, and then the reference would
2138 * be dropped twice.
2139 * Manfred Spraul <manfred@colorfullife.com>
2140 */
2141 prev_state = prev->state;
2142 vtime_task_switch(prev);
2143 finish_arch_switch(prev);
2144 perf_event_task_sched_in(prev, current);
2145 finish_lock_switch(rq, prev);
2146 finish_arch_post_lock_switch();
2147
2148 fire_sched_in_preempt_notifiers(current);
2149 if (mm)
2150 mmdrop(mm);
2151 if (unlikely(prev_state == TASK_DEAD)) {
2152 task_numa_free(prev);
2153
2154 if (prev->sched_class->task_dead)
2155 prev->sched_class->task_dead(prev);
2156
2157 /*
2158 * Remove function-return probe instances associated with this
2159 * task and put them back on the free list.
2160 */
2161 kprobe_flush_task(prev);
2162 put_task_struct(prev);
2163 }
2164
2165 tick_nohz_task_switch(current);
2166}
2167
2168#ifdef CONFIG_SMP
2169
2170/* assumes rq->lock is held */
2171static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2172{
2173 if (prev->sched_class->pre_schedule)
2174 prev->sched_class->pre_schedule(rq, prev);
2175}
2176
2177/* rq->lock is NOT held, but preemption is disabled */
2178static inline void post_schedule(struct rq *rq)
2179{
2180 if (rq->post_schedule) {
2181 unsigned long flags;
2182
2183 raw_spin_lock_irqsave(&rq->lock, flags);
2184 if (rq->curr->sched_class->post_schedule)
2185 rq->curr->sched_class->post_schedule(rq);
2186 raw_spin_unlock_irqrestore(&rq->lock, flags);
2187
2188 rq->post_schedule = 0;
2189 }
2190}
2191
2192#else
2193
2194static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2195{
2196}
2197
2198static inline void post_schedule(struct rq *rq)
2199{
2200}
2201
2202#endif
2203
2204/**
2205 * schedule_tail - first thing a freshly forked thread must call.
2206 * @prev: the thread we just switched away from.
2207 */
2208asmlinkage void schedule_tail(struct task_struct *prev)
2209 __releases(rq->lock)
2210{
2211 struct rq *rq = this_rq();
2212
2213 finish_task_switch(rq, prev);
2214
2215 /*
2216 * FIXME: do we need to worry about rq being invalidated by the
2217 * task_switch?
2218 */
2219 post_schedule(rq);
2220
2221#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2222 /* In this case, finish_task_switch does not reenable preemption */
2223 preempt_enable();
2224#endif
2225 if (current->set_child_tid)
2226 put_user(task_pid_vnr(current), current->set_child_tid);
2227}
2228
2229/*
2230 * context_switch - switch to the new MM and the new
2231 * thread's register state.
2232 */
2233static inline void
2234context_switch(struct rq *rq, struct task_struct *prev,
2235 struct task_struct *next)
2236{
2237 struct mm_struct *mm, *oldmm;
2238
2239 prepare_task_switch(rq, prev, next);
2240
2241 mm = next->mm;
2242 oldmm = prev->active_mm;
2243 /*
2244 * For paravirt, this is coupled with an exit in switch_to to
2245 * combine the page table reload and the switch backend into
2246 * one hypercall.
2247 */
2248 arch_start_context_switch(prev);
2249
2250 if (!mm) {
2251 next->active_mm = oldmm;
2252 atomic_inc(&oldmm->mm_count);
2253 enter_lazy_tlb(oldmm, next);
2254 } else
2255 switch_mm(oldmm, mm, next);
2256
2257 if (!prev->mm) {
2258 prev->active_mm = NULL;
2259 rq->prev_mm = oldmm;
2260 }
2261 /*
2262 * Since the runqueue lock will be released by the next
2263 * task (which is an invalid locking op but in the case
2264 * of the scheduler it's an obvious special-case), so we
2265 * do an early lockdep release here:
2266 */
2267#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2268 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2269#endif
2270
2271 context_tracking_task_switch(prev, next);
2272 /* Here we just switch the register state and the stack. */
2273 switch_to(prev, next, prev);
2274
2275 barrier();
2276 /*
2277 * this_rq must be evaluated again because prev may have moved
2278 * CPUs since it called schedule(), thus the 'rq' on its stack
2279 * frame will be invalid.
2280 */
2281 finish_task_switch(this_rq(), prev);
2282}
2283
2284/*
2285 * nr_running and nr_context_switches:
2286 *
2287 * externally visible scheduler statistics: current number of runnable
2288 * threads, total number of context switches performed since bootup.
2289 */
2290unsigned long nr_running(void)
2291{
2292 unsigned long i, sum = 0;
2293
2294 for_each_online_cpu(i)
2295 sum += cpu_rq(i)->nr_running;
2296
2297 return sum;
2298}
2299
2300unsigned long long nr_context_switches(void)
2301{
2302 int i;
2303 unsigned long long sum = 0;
2304
2305 for_each_possible_cpu(i)
2306 sum += cpu_rq(i)->nr_switches;
2307
2308 return sum;
2309}
2310
2311unsigned long nr_iowait(void)
2312{
2313 unsigned long i, sum = 0;
2314
2315 for_each_possible_cpu(i)
2316 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2317
2318 return sum;
2319}
2320
2321unsigned long nr_iowait_cpu(int cpu)
2322{
2323 struct rq *this = cpu_rq(cpu);
2324 return atomic_read(&this->nr_iowait);
2325}
2326
2327#ifdef CONFIG_SMP
2328
2329/*
2330 * sched_exec - execve() is a valuable balancing opportunity, because at
2331 * this point the task has the smallest effective memory and cache footprint.
2332 */
2333void sched_exec(void)
2334{
2335 struct task_struct *p = current;
2336 unsigned long flags;
2337 int dest_cpu;
2338
2339 raw_spin_lock_irqsave(&p->pi_lock, flags);
2340 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2341 if (dest_cpu == smp_processor_id())
2342 goto unlock;
2343
2344 if (likely(cpu_active(dest_cpu))) {
2345 struct migration_arg arg = { p, dest_cpu };
2346
2347 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2348 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2349 return;
2350 }
2351unlock:
2352 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2353}
2354
2355#endif
2356
2357DEFINE_PER_CPU(struct kernel_stat, kstat);
2358DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2359
2360EXPORT_PER_CPU_SYMBOL(kstat);
2361EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2362
2363/*
2364 * Return any ns on the sched_clock that have not yet been accounted in
2365 * @p in case that task is currently running.
2366 *
2367 * Called with task_rq_lock() held on @rq.
2368 */
2369static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2370{
2371 u64 ns = 0;
2372
2373 if (task_current(rq, p)) {
2374 update_rq_clock(rq);
2375 ns = rq_clock_task(rq) - p->se.exec_start;
2376 if ((s64)ns < 0)
2377 ns = 0;
2378 }
2379
2380 return ns;
2381}
2382
2383unsigned long long task_delta_exec(struct task_struct *p)
2384{
2385 unsigned long flags;
2386 struct rq *rq;
2387 u64 ns = 0;
2388
2389 rq = task_rq_lock(p, &flags);
2390 ns = do_task_delta_exec(p, rq);
2391 task_rq_unlock(rq, p, &flags);
2392
2393 return ns;
2394}
2395
2396/*
2397 * Return accounted runtime for the task.
2398 * In case the task is currently running, return the runtime plus current's
2399 * pending runtime that have not been accounted yet.
2400 */
2401unsigned long long task_sched_runtime(struct task_struct *p)
2402{
2403 unsigned long flags;
2404 struct rq *rq;
2405 u64 ns = 0;
2406
2407#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2408 /*
2409 * 64-bit doesn't need locks to atomically read a 64bit value.
2410 * So we have a optimization chance when the task's delta_exec is 0.
2411 * Reading ->on_cpu is racy, but this is ok.
2412 *
2413 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2414 * If we race with it entering cpu, unaccounted time is 0. This is
2415 * indistinguishable from the read occurring a few cycles earlier.
2416 */
2417 if (!p->on_cpu)
2418 return p->se.sum_exec_runtime;
2419#endif
2420
2421 rq = task_rq_lock(p, &flags);
2422 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2423 task_rq_unlock(rq, p, &flags);
2424
2425 return ns;
2426}
2427
2428/*
2429 * This function gets called by the timer code, with HZ frequency.
2430 * We call it with interrupts disabled.
2431 */
2432void scheduler_tick(void)
2433{
2434 int cpu = smp_processor_id();
2435 struct rq *rq = cpu_rq(cpu);
2436 struct task_struct *curr = rq->curr;
2437
2438 sched_clock_tick();
2439
2440 raw_spin_lock(&rq->lock);
2441 update_rq_clock(rq);
2442 curr->sched_class->task_tick(rq, curr, 0);
2443 update_cpu_load_active(rq);
2444 raw_spin_unlock(&rq->lock);
2445
2446 perf_event_task_tick();
2447
2448#ifdef CONFIG_SMP
2449 rq->idle_balance = idle_cpu(cpu);
2450 trigger_load_balance(rq);
2451#endif
2452 rq_last_tick_reset(rq);
2453}
2454
2455#ifdef CONFIG_NO_HZ_FULL
2456/**
2457 * scheduler_tick_max_deferment
2458 *
2459 * Keep at least one tick per second when a single
2460 * active task is running because the scheduler doesn't
2461 * yet completely support full dynticks environment.
2462 *
2463 * This makes sure that uptime, CFS vruntime, load
2464 * balancing, etc... continue to move forward, even
2465 * with a very low granularity.
2466 *
2467 * Return: Maximum deferment in nanoseconds.
2468 */
2469u64 scheduler_tick_max_deferment(void)
2470{
2471 struct rq *rq = this_rq();
2472 unsigned long next, now = ACCESS_ONCE(jiffies);
2473
2474 next = rq->last_sched_tick + HZ;
2475
2476 if (time_before_eq(next, now))
2477 return 0;
2478
2479 return jiffies_to_nsecs(next - now);
2480}
2481#endif
2482
2483notrace unsigned long get_parent_ip(unsigned long addr)
2484{
2485 if (in_lock_functions(addr)) {
2486 addr = CALLER_ADDR2;
2487 if (in_lock_functions(addr))
2488 addr = CALLER_ADDR3;
2489 }
2490 return addr;
2491}
2492
2493#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2494 defined(CONFIG_PREEMPT_TRACER))
2495
2496void __kprobes preempt_count_add(int val)
2497{
2498#ifdef CONFIG_DEBUG_PREEMPT
2499 /*
2500 * Underflow?
2501 */
2502 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2503 return;
2504#endif
2505 __preempt_count_add(val);
2506#ifdef CONFIG_DEBUG_PREEMPT
2507 /*
2508 * Spinlock count overflowing soon?
2509 */
2510 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2511 PREEMPT_MASK - 10);
2512#endif
2513 if (preempt_count() == val)
2514 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2515}
2516EXPORT_SYMBOL(preempt_count_add);
2517
2518void __kprobes preempt_count_sub(int val)
2519{
2520#ifdef CONFIG_DEBUG_PREEMPT
2521 /*
2522 * Underflow?
2523 */
2524 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2525 return;
2526 /*
2527 * Is the spinlock portion underflowing?
2528 */
2529 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2530 !(preempt_count() & PREEMPT_MASK)))
2531 return;
2532#endif
2533
2534 if (preempt_count() == val)
2535 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2536 __preempt_count_sub(val);
2537}
2538EXPORT_SYMBOL(preempt_count_sub);
2539
2540#endif
2541
2542/*
2543 * Print scheduling while atomic bug:
2544 */
2545static noinline void __schedule_bug(struct task_struct *prev)
2546{
2547 if (oops_in_progress)
2548 return;
2549
2550 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2551 prev->comm, prev->pid, preempt_count());
2552
2553 debug_show_held_locks(prev);
2554 print_modules();
2555 if (irqs_disabled())
2556 print_irqtrace_events(prev);
2557 dump_stack();
2558 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2559}
2560
2561/*
2562 * Various schedule()-time debugging checks and statistics:
2563 */
2564static inline void schedule_debug(struct task_struct *prev)
2565{
2566 /*
2567 * Test if we are atomic. Since do_exit() needs to call into
2568 * schedule() atomically, we ignore that path. Otherwise whine
2569 * if we are scheduling when we should not.
2570 */
2571 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2572 __schedule_bug(prev);
2573 rcu_sleep_check();
2574
2575 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2576
2577 schedstat_inc(this_rq(), sched_count);
2578}
2579
2580static void put_prev_task(struct rq *rq, struct task_struct *prev)
2581{
2582 if (prev->on_rq || rq->skip_clock_update < 0)
2583 update_rq_clock(rq);
2584 prev->sched_class->put_prev_task(rq, prev);
2585}
2586
2587/*
2588 * Pick up the highest-prio task:
2589 */
2590static inline struct task_struct *
2591pick_next_task(struct rq *rq)
2592{
2593 const struct sched_class *class;
2594 struct task_struct *p;
2595
2596 /*
2597 * Optimization: we know that if all tasks are in
2598 * the fair class we can call that function directly:
2599 */
2600 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2601 p = fair_sched_class.pick_next_task(rq);
2602 if (likely(p))
2603 return p;
2604 }
2605
2606 for_each_class(class) {
2607 p = class->pick_next_task(rq);
2608 if (p)
2609 return p;
2610 }
2611
2612 BUG(); /* the idle class will always have a runnable task */
2613}
2614
2615/*
2616 * __schedule() is the main scheduler function.
2617 *
2618 * The main means of driving the scheduler and thus entering this function are:
2619 *
2620 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2621 *
2622 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2623 * paths. For example, see arch/x86/entry_64.S.
2624 *
2625 * To drive preemption between tasks, the scheduler sets the flag in timer
2626 * interrupt handler scheduler_tick().
2627 *
2628 * 3. Wakeups don't really cause entry into schedule(). They add a
2629 * task to the run-queue and that's it.
2630 *
2631 * Now, if the new task added to the run-queue preempts the current
2632 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2633 * called on the nearest possible occasion:
2634 *
2635 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2636 *
2637 * - in syscall or exception context, at the next outmost
2638 * preempt_enable(). (this might be as soon as the wake_up()'s
2639 * spin_unlock()!)
2640 *
2641 * - in IRQ context, return from interrupt-handler to
2642 * preemptible context
2643 *
2644 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2645 * then at the next:
2646 *
2647 * - cond_resched() call
2648 * - explicit schedule() call
2649 * - return from syscall or exception to user-space
2650 * - return from interrupt-handler to user-space
2651 */
2652static void __sched __schedule(void)
2653{
2654 struct task_struct *prev, *next;
2655 unsigned long *switch_count;
2656 struct rq *rq;
2657 int cpu;
2658
2659need_resched:
2660 preempt_disable();
2661 cpu = smp_processor_id();
2662 rq = cpu_rq(cpu);
2663 rcu_note_context_switch(cpu);
2664 prev = rq->curr;
2665
2666 schedule_debug(prev);
2667
2668 if (sched_feat(HRTICK))
2669 hrtick_clear(rq);
2670
2671 /*
2672 * Make sure that signal_pending_state()->signal_pending() below
2673 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2674 * done by the caller to avoid the race with signal_wake_up().
2675 */
2676 smp_mb__before_spinlock();
2677 raw_spin_lock_irq(&rq->lock);
2678
2679 switch_count = &prev->nivcsw;
2680 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2681 if (unlikely(signal_pending_state(prev->state, prev))) {
2682 prev->state = TASK_RUNNING;
2683 } else {
2684 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2685 prev->on_rq = 0;
2686
2687 /*
2688 * If a worker went to sleep, notify and ask workqueue
2689 * whether it wants to wake up a task to maintain
2690 * concurrency.
2691 */
2692 if (prev->flags & PF_WQ_WORKER) {
2693 struct task_struct *to_wakeup;
2694
2695 to_wakeup = wq_worker_sleeping(prev, cpu);
2696 if (to_wakeup)
2697 try_to_wake_up_local(to_wakeup);
2698 }
2699 }
2700 switch_count = &prev->nvcsw;
2701 }
2702
2703 pre_schedule(rq, prev);
2704
2705 if (unlikely(!rq->nr_running))
2706 idle_balance(cpu, rq);
2707
2708 put_prev_task(rq, prev);
2709 next = pick_next_task(rq);
2710 clear_tsk_need_resched(prev);
2711 clear_preempt_need_resched();
2712 rq->skip_clock_update = 0;
2713
2714 if (likely(prev != next)) {
2715 rq->nr_switches++;
2716 rq->curr = next;
2717 ++*switch_count;
2718
2719 context_switch(rq, prev, next); /* unlocks the rq */
2720 /*
2721 * The context switch have flipped the stack from under us
2722 * and restored the local variables which were saved when
2723 * this task called schedule() in the past. prev == current
2724 * is still correct, but it can be moved to another cpu/rq.
2725 */
2726 cpu = smp_processor_id();
2727 rq = cpu_rq(cpu);
2728 } else
2729 raw_spin_unlock_irq(&rq->lock);
2730
2731 post_schedule(rq);
2732
2733 sched_preempt_enable_no_resched();
2734 if (need_resched())
2735 goto need_resched;
2736}
2737
2738static inline void sched_submit_work(struct task_struct *tsk)
2739{
2740 if (!tsk->state || tsk_is_pi_blocked(tsk))
2741 return;
2742 /*
2743 * If we are going to sleep and we have plugged IO queued,
2744 * make sure to submit it to avoid deadlocks.
2745 */
2746 if (blk_needs_flush_plug(tsk))
2747 blk_schedule_flush_plug(tsk);
2748}
2749
2750asmlinkage void __sched schedule(void)
2751{
2752 struct task_struct *tsk = current;
2753
2754 sched_submit_work(tsk);
2755 __schedule();
2756}
2757EXPORT_SYMBOL(schedule);
2758
2759#ifdef CONFIG_CONTEXT_TRACKING
2760asmlinkage void __sched schedule_user(void)
2761{
2762 /*
2763 * If we come here after a random call to set_need_resched(),
2764 * or we have been woken up remotely but the IPI has not yet arrived,
2765 * we haven't yet exited the RCU idle mode. Do it here manually until
2766 * we find a better solution.
2767 */
2768 user_exit();
2769 schedule();
2770 user_enter();
2771}
2772#endif
2773
2774/**
2775 * schedule_preempt_disabled - called with preemption disabled
2776 *
2777 * Returns with preemption disabled. Note: preempt_count must be 1
2778 */
2779void __sched schedule_preempt_disabled(void)
2780{
2781 sched_preempt_enable_no_resched();
2782 schedule();
2783 preempt_disable();
2784}
2785
2786#ifdef CONFIG_PREEMPT
2787/*
2788 * this is the entry point to schedule() from in-kernel preemption
2789 * off of preempt_enable. Kernel preemptions off return from interrupt
2790 * occur there and call schedule directly.
2791 */
2792asmlinkage void __sched notrace preempt_schedule(void)
2793{
2794 /*
2795 * If there is a non-zero preempt_count or interrupts are disabled,
2796 * we do not want to preempt the current task. Just return..
2797 */
2798 if (likely(!preemptible()))
2799 return;
2800
2801 do {
2802 __preempt_count_add(PREEMPT_ACTIVE);
2803 __schedule();
2804 __preempt_count_sub(PREEMPT_ACTIVE);
2805
2806 /*
2807 * Check again in case we missed a preemption opportunity
2808 * between schedule and now.
2809 */
2810 barrier();
2811 } while (need_resched());
2812}
2813EXPORT_SYMBOL(preempt_schedule);
2814#endif /* CONFIG_PREEMPT */
2815
2816/*
2817 * this is the entry point to schedule() from kernel preemption
2818 * off of irq context.
2819 * Note, that this is called and return with irqs disabled. This will
2820 * protect us against recursive calling from irq.
2821 */
2822asmlinkage void __sched preempt_schedule_irq(void)
2823{
2824 enum ctx_state prev_state;
2825
2826 /* Catch callers which need to be fixed */
2827 BUG_ON(preempt_count() || !irqs_disabled());
2828
2829 prev_state = exception_enter();
2830
2831 do {
2832 __preempt_count_add(PREEMPT_ACTIVE);
2833 local_irq_enable();
2834 __schedule();
2835 local_irq_disable();
2836 __preempt_count_sub(PREEMPT_ACTIVE);
2837
2838 /*
2839 * Check again in case we missed a preemption opportunity
2840 * between schedule and now.
2841 */
2842 barrier();
2843 } while (need_resched());
2844
2845 exception_exit(prev_state);
2846}
2847
2848int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2849 void *key)
2850{
2851 return try_to_wake_up(curr->private, mode, wake_flags);
2852}
2853EXPORT_SYMBOL(default_wake_function);
2854
2855static long __sched
2856sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2857{
2858 unsigned long flags;
2859 wait_queue_t wait;
2860
2861 init_waitqueue_entry(&wait, current);
2862
2863 __set_current_state(state);
2864
2865 spin_lock_irqsave(&q->lock, flags);
2866 __add_wait_queue(q, &wait);
2867 spin_unlock(&q->lock);
2868 timeout = schedule_timeout(timeout);
2869 spin_lock_irq(&q->lock);
2870 __remove_wait_queue(q, &wait);
2871 spin_unlock_irqrestore(&q->lock, flags);
2872
2873 return timeout;
2874}
2875
2876void __sched interruptible_sleep_on(wait_queue_head_t *q)
2877{
2878 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2879}
2880EXPORT_SYMBOL(interruptible_sleep_on);
2881
2882long __sched
2883interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2884{
2885 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2886}
2887EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2888
2889void __sched sleep_on(wait_queue_head_t *q)
2890{
2891 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2892}
2893EXPORT_SYMBOL(sleep_on);
2894
2895long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
2896{
2897 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
2898}
2899EXPORT_SYMBOL(sleep_on_timeout);
2900
2901#ifdef CONFIG_RT_MUTEXES
2902
2903/*
2904 * rt_mutex_setprio - set the current priority of a task
2905 * @p: task
2906 * @prio: prio value (kernel-internal form)
2907 *
2908 * This function changes the 'effective' priority of a task. It does
2909 * not touch ->normal_prio like __setscheduler().
2910 *
2911 * Used by the rt_mutex code to implement priority inheritance logic.
2912 */
2913void rt_mutex_setprio(struct task_struct *p, int prio)
2914{
2915 int oldprio, on_rq, running, enqueue_flag = 0;
2916 struct rq *rq;
2917 const struct sched_class *prev_class;
2918
2919 BUG_ON(prio > MAX_PRIO);
2920
2921 rq = __task_rq_lock(p);
2922
2923 /*
2924 * Idle task boosting is a nono in general. There is one
2925 * exception, when PREEMPT_RT and NOHZ is active:
2926 *
2927 * The idle task calls get_next_timer_interrupt() and holds
2928 * the timer wheel base->lock on the CPU and another CPU wants
2929 * to access the timer (probably to cancel it). We can safely
2930 * ignore the boosting request, as the idle CPU runs this code
2931 * with interrupts disabled and will complete the lock
2932 * protected section without being interrupted. So there is no
2933 * real need to boost.
2934 */
2935 if (unlikely(p == rq->idle)) {
2936 WARN_ON(p != rq->curr);
2937 WARN_ON(p->pi_blocked_on);
2938 goto out_unlock;
2939 }
2940
2941 trace_sched_pi_setprio(p, prio);
2942 p->pi_top_task = rt_mutex_get_top_task(p);
2943 oldprio = p->prio;
2944 prev_class = p->sched_class;
2945 on_rq = p->on_rq;
2946 running = task_current(rq, p);
2947 if (on_rq)
2948 dequeue_task(rq, p, 0);
2949 if (running)
2950 p->sched_class->put_prev_task(rq, p);
2951
2952 /*
2953 * Boosting condition are:
2954 * 1. -rt task is running and holds mutex A
2955 * --> -dl task blocks on mutex A
2956 *
2957 * 2. -dl task is running and holds mutex A
2958 * --> -dl task blocks on mutex A and could preempt the
2959 * running task
2960 */
2961 if (dl_prio(prio)) {
2962 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2963 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2964 p->dl.dl_boosted = 1;
2965 p->dl.dl_throttled = 0;
2966 enqueue_flag = ENQUEUE_REPLENISH;
2967 } else
2968 p->dl.dl_boosted = 0;
2969 p->sched_class = &dl_sched_class;
2970 } else if (rt_prio(prio)) {
2971 if (dl_prio(oldprio))
2972 p->dl.dl_boosted = 0;
2973 if (oldprio < prio)
2974 enqueue_flag = ENQUEUE_HEAD;
2975 p->sched_class = &rt_sched_class;
2976 } else {
2977 if (dl_prio(oldprio))
2978 p->dl.dl_boosted = 0;
2979 p->sched_class = &fair_sched_class;
2980 }
2981
2982 p->prio = prio;
2983
2984 if (running)
2985 p->sched_class->set_curr_task(rq);
2986 if (on_rq)
2987 enqueue_task(rq, p, enqueue_flag);
2988
2989 check_class_changed(rq, p, prev_class, oldprio);
2990out_unlock:
2991 __task_rq_unlock(rq);
2992}
2993#endif
2994
2995void set_user_nice(struct task_struct *p, long nice)
2996{
2997 int old_prio, delta, on_rq;
2998 unsigned long flags;
2999 struct rq *rq;
3000
3001 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3002 return;
3003 /*
3004 * We have to be careful, if called from sys_setpriority(),
3005 * the task might be in the middle of scheduling on another CPU.
3006 */
3007 rq = task_rq_lock(p, &flags);
3008 /*
3009 * The RT priorities are set via sched_setscheduler(), but we still
3010 * allow the 'normal' nice value to be set - but as expected
3011 * it wont have any effect on scheduling until the task is
3012 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3013 */
3014 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3015 p->static_prio = NICE_TO_PRIO(nice);
3016 goto out_unlock;
3017 }
3018 on_rq = p->on_rq;
3019 if (on_rq)
3020 dequeue_task(rq, p, 0);
3021
3022 p->static_prio = NICE_TO_PRIO(nice);
3023 set_load_weight(p);
3024 old_prio = p->prio;
3025 p->prio = effective_prio(p);
3026 delta = p->prio - old_prio;
3027
3028 if (on_rq) {
3029 enqueue_task(rq, p, 0);
3030 /*
3031 * If the task increased its priority or is running and
3032 * lowered its priority, then reschedule its CPU:
3033 */
3034 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3035 resched_task(rq->curr);
3036 }
3037out_unlock:
3038 task_rq_unlock(rq, p, &flags);
3039}
3040EXPORT_SYMBOL(set_user_nice);
3041
3042/*
3043 * can_nice - check if a task can reduce its nice value
3044 * @p: task
3045 * @nice: nice value
3046 */
3047int can_nice(const struct task_struct *p, const int nice)
3048{
3049 /* convert nice value [19,-20] to rlimit style value [1,40] */
3050 int nice_rlim = 20 - nice;
3051
3052 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3053 capable(CAP_SYS_NICE));
3054}
3055
3056#ifdef __ARCH_WANT_SYS_NICE
3057
3058/*
3059 * sys_nice - change the priority of the current process.
3060 * @increment: priority increment
3061 *
3062 * sys_setpriority is a more generic, but much slower function that
3063 * does similar things.
3064 */
3065SYSCALL_DEFINE1(nice, int, increment)
3066{
3067 long nice, retval;
3068
3069 /*
3070 * Setpriority might change our priority at the same moment.
3071 * We don't have to worry. Conceptually one call occurs first
3072 * and we have a single winner.
3073 */
3074 if (increment < -40)
3075 increment = -40;
3076 if (increment > 40)
3077 increment = 40;
3078
3079 nice = TASK_NICE(current) + increment;
3080 if (nice < -20)
3081 nice = -20;
3082 if (nice > 19)
3083 nice = 19;
3084
3085 if (increment < 0 && !can_nice(current, nice))
3086 return -EPERM;
3087
3088 retval = security_task_setnice(current, nice);
3089 if (retval)
3090 return retval;
3091
3092 set_user_nice(current, nice);
3093 return 0;
3094}
3095
3096#endif
3097
3098/**
3099 * task_prio - return the priority value of a given task.
3100 * @p: the task in question.
3101 *
3102 * Return: The priority value as seen by users in /proc.
3103 * RT tasks are offset by -200. Normal tasks are centered
3104 * around 0, value goes from -16 to +15.
3105 */
3106int task_prio(const struct task_struct *p)
3107{
3108 return p->prio - MAX_RT_PRIO;
3109}
3110
3111/**
3112 * task_nice - return the nice value of a given task.
3113 * @p: the task in question.
3114 *
3115 * Return: The nice value [ -20 ... 0 ... 19 ].
3116 */
3117int task_nice(const struct task_struct *p)
3118{
3119 return TASK_NICE(p);
3120}
3121EXPORT_SYMBOL(task_nice);
3122
3123/**
3124 * idle_cpu - is a given cpu idle currently?
3125 * @cpu: the processor in question.
3126 *
3127 * Return: 1 if the CPU is currently idle. 0 otherwise.
3128 */
3129int idle_cpu(int cpu)
3130{
3131 struct rq *rq = cpu_rq(cpu);
3132
3133 if (rq->curr != rq->idle)
3134 return 0;
3135
3136 if (rq->nr_running)
3137 return 0;
3138
3139#ifdef CONFIG_SMP
3140 if (!llist_empty(&rq->wake_list))
3141 return 0;
3142#endif
3143
3144 return 1;
3145}
3146
3147/**
3148 * idle_task - return the idle task for a given cpu.
3149 * @cpu: the processor in question.
3150 *
3151 * Return: The idle task for the cpu @cpu.
3152 */
3153struct task_struct *idle_task(int cpu)
3154{
3155 return cpu_rq(cpu)->idle;
3156}
3157
3158/**
3159 * find_process_by_pid - find a process with a matching PID value.
3160 * @pid: the pid in question.
3161 *
3162 * The task of @pid, if found. %NULL otherwise.
3163 */
3164static struct task_struct *find_process_by_pid(pid_t pid)
3165{
3166 return pid ? find_task_by_vpid(pid) : current;
3167}
3168
3169/*
3170 * This function initializes the sched_dl_entity of a newly becoming
3171 * SCHED_DEADLINE task.
3172 *
3173 * Only the static values are considered here, the actual runtime and the
3174 * absolute deadline will be properly calculated when the task is enqueued
3175 * for the first time with its new policy.
3176 */
3177static void
3178__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3179{
3180 struct sched_dl_entity *dl_se = &p->dl;
3181
3182 init_dl_task_timer(dl_se);
3183 dl_se->dl_runtime = attr->sched_runtime;
3184 dl_se->dl_deadline = attr->sched_deadline;
3185 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3186 dl_se->flags = attr->sched_flags;
3187 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3188 dl_se->dl_throttled = 0;
3189 dl_se->dl_new = 1;
3190}
3191
3192/* Actually do priority change: must hold pi & rq lock. */
3193static void __setscheduler(struct rq *rq, struct task_struct *p,
3194 const struct sched_attr *attr)
3195{
3196 int policy = attr->sched_policy;
3197
3198 if (policy == -1) /* setparam */
3199 policy = p->policy;
3200
3201 p->policy = policy;
3202
3203 if (dl_policy(policy))
3204 __setparam_dl(p, attr);
3205 else if (fair_policy(policy))
3206 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3207
3208 /*
3209 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3210 * !rt_policy. Always setting this ensures that things like
3211 * getparam()/getattr() don't report silly values for !rt tasks.
3212 */
3213 p->rt_priority = attr->sched_priority;
3214
3215 p->normal_prio = normal_prio(p);
3216 p->prio = rt_mutex_getprio(p);
3217
3218 if (dl_prio(p->prio))
3219 p->sched_class = &dl_sched_class;
3220 else if (rt_prio(p->prio))
3221 p->sched_class = &rt_sched_class;
3222 else
3223 p->sched_class = &fair_sched_class;
3224
3225 set_load_weight(p);
3226}
3227
3228static void
3229__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3230{
3231 struct sched_dl_entity *dl_se = &p->dl;
3232
3233 attr->sched_priority = p->rt_priority;
3234 attr->sched_runtime = dl_se->dl_runtime;
3235 attr->sched_deadline = dl_se->dl_deadline;
3236 attr->sched_period = dl_se->dl_period;
3237 attr->sched_flags = dl_se->flags;
3238}
3239
3240/*
3241 * This function validates the new parameters of a -deadline task.
3242 * We ask for the deadline not being zero, and greater or equal
3243 * than the runtime, as well as the period of being zero or
3244 * greater than deadline. Furthermore, we have to be sure that
3245 * user parameters are above the internal resolution (1us); we
3246 * check sched_runtime only since it is always the smaller one.
3247 */
3248static bool
3249__checkparam_dl(const struct sched_attr *attr)
3250{
3251 return attr && attr->sched_deadline != 0 &&
3252 (attr->sched_period == 0 ||
3253 (s64)(attr->sched_period - attr->sched_deadline) >= 0) &&
3254 (s64)(attr->sched_deadline - attr->sched_runtime ) >= 0 &&
3255 attr->sched_runtime >= (2 << (DL_SCALE - 1));
3256}
3257
3258/*
3259 * check the target process has a UID that matches the current process's
3260 */
3261static bool check_same_owner(struct task_struct *p)
3262{
3263 const struct cred *cred = current_cred(), *pcred;
3264 bool match;
3265
3266 rcu_read_lock();
3267 pcred = __task_cred(p);
3268 match = (uid_eq(cred->euid, pcred->euid) ||
3269 uid_eq(cred->euid, pcred->uid));
3270 rcu_read_unlock();
3271 return match;
3272}
3273
3274static int __sched_setscheduler(struct task_struct *p,
3275 const struct sched_attr *attr,
3276 bool user)
3277{
3278 int retval, oldprio, oldpolicy = -1, on_rq, running;
3279 int policy = attr->sched_policy;
3280 unsigned long flags;
3281 const struct sched_class *prev_class;
3282 struct rq *rq;
3283 int reset_on_fork;
3284
3285 /* may grab non-irq protected spin_locks */
3286 BUG_ON(in_interrupt());
3287recheck:
3288 /* double check policy once rq lock held */
3289 if (policy < 0) {
3290 reset_on_fork = p->sched_reset_on_fork;
3291 policy = oldpolicy = p->policy;
3292 } else {
3293 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3294
3295 if (policy != SCHED_DEADLINE &&
3296 policy != SCHED_FIFO && policy != SCHED_RR &&
3297 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3298 policy != SCHED_IDLE)
3299 return -EINVAL;
3300 }
3301
3302 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3303 return -EINVAL;
3304
3305 /*
3306 * Valid priorities for SCHED_FIFO and SCHED_RR are
3307 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3308 * SCHED_BATCH and SCHED_IDLE is 0.
3309 */
3310 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3311 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3312 return -EINVAL;
3313 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3314 (rt_policy(policy) != (attr->sched_priority != 0)))
3315 return -EINVAL;
3316
3317 /*
3318 * Allow unprivileged RT tasks to decrease priority:
3319 */
3320 if (user && !capable(CAP_SYS_NICE)) {
3321 if (fair_policy(policy)) {
3322 if (attr->sched_nice < TASK_NICE(p) &&
3323 !can_nice(p, attr->sched_nice))
3324 return -EPERM;
3325 }
3326
3327 if (rt_policy(policy)) {
3328 unsigned long rlim_rtprio =
3329 task_rlimit(p, RLIMIT_RTPRIO);
3330
3331 /* can't set/change the rt policy */
3332 if (policy != p->policy && !rlim_rtprio)
3333 return -EPERM;
3334
3335 /* can't increase priority */
3336 if (attr->sched_priority > p->rt_priority &&
3337 attr->sched_priority > rlim_rtprio)
3338 return -EPERM;
3339 }
3340
3341 /*
3342 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3343 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3344 */
3345 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3346 if (!can_nice(p, TASK_NICE(p)))
3347 return -EPERM;
3348 }
3349
3350 /* can't change other user's priorities */
3351 if (!check_same_owner(p))
3352 return -EPERM;
3353
3354 /* Normal users shall not reset the sched_reset_on_fork flag */
3355 if (p->sched_reset_on_fork && !reset_on_fork)
3356 return -EPERM;
3357 }
3358
3359 if (user) {
3360 retval = security_task_setscheduler(p);
3361 if (retval)
3362 return retval;
3363 }
3364
3365 /*
3366 * make sure no PI-waiters arrive (or leave) while we are
3367 * changing the priority of the task:
3368 *
3369 * To be able to change p->policy safely, the appropriate
3370 * runqueue lock must be held.
3371 */
3372 rq = task_rq_lock(p, &flags);
3373
3374 /*
3375 * Changing the policy of the stop threads its a very bad idea
3376 */
3377 if (p == rq->stop) {
3378 task_rq_unlock(rq, p, &flags);
3379 return -EINVAL;
3380 }
3381
3382 /*
3383 * If not changing anything there's no need to proceed further:
3384 */
3385 if (unlikely(policy == p->policy)) {
3386 if (fair_policy(policy) && attr->sched_nice != TASK_NICE(p))
3387 goto change;
3388 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3389 goto change;
3390 if (dl_policy(policy))
3391 goto change;
3392
3393 task_rq_unlock(rq, p, &flags);
3394 return 0;
3395 }
3396change:
3397
3398 if (user) {
3399#ifdef CONFIG_RT_GROUP_SCHED
3400 /*
3401 * Do not allow realtime tasks into groups that have no runtime
3402 * assigned.
3403 */
3404 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3405 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3406 !task_group_is_autogroup(task_group(p))) {
3407 task_rq_unlock(rq, p, &flags);
3408 return -EPERM;
3409 }
3410#endif
3411#ifdef CONFIG_SMP
3412 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3413 cpumask_t *span = rq->rd->span;
3414
3415 /*
3416 * Don't allow tasks with an affinity mask smaller than
3417 * the entire root_domain to become SCHED_DEADLINE. We
3418 * will also fail if there's no bandwidth available.
3419 */
3420 if (!cpumask_subset(span, &p->cpus_allowed) ||
3421 rq->rd->dl_bw.bw == 0) {
3422 task_rq_unlock(rq, p, &flags);
3423 return -EPERM;
3424 }
3425 }
3426#endif
3427 }
3428
3429 /* recheck policy now with rq lock held */
3430 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3431 policy = oldpolicy = -1;
3432 task_rq_unlock(rq, p, &flags);
3433 goto recheck;
3434 }
3435
3436 /*
3437 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3438 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3439 * is available.
3440 */
3441 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3442 task_rq_unlock(rq, p, &flags);
3443 return -EBUSY;
3444 }
3445
3446 on_rq = p->on_rq;
3447 running = task_current(rq, p);
3448 if (on_rq)
3449 dequeue_task(rq, p, 0);
3450 if (running)
3451 p->sched_class->put_prev_task(rq, p);
3452
3453 p->sched_reset_on_fork = reset_on_fork;
3454
3455 oldprio = p->prio;
3456 prev_class = p->sched_class;
3457 __setscheduler(rq, p, attr);
3458
3459 if (running)
3460 p->sched_class->set_curr_task(rq);
3461 if (on_rq)
3462 enqueue_task(rq, p, 0);
3463
3464 check_class_changed(rq, p, prev_class, oldprio);
3465 task_rq_unlock(rq, p, &flags);
3466
3467 rt_mutex_adjust_pi(p);
3468
3469 return 0;
3470}
3471
3472static int _sched_setscheduler(struct task_struct *p, int policy,
3473 const struct sched_param *param, bool check)
3474{
3475 struct sched_attr attr = {
3476 .sched_policy = policy,
3477 .sched_priority = param->sched_priority,
3478 .sched_nice = PRIO_TO_NICE(p->static_prio),
3479 };
3480
3481 /*
3482 * Fixup the legacy SCHED_RESET_ON_FORK hack
3483 */
3484 if (policy & SCHED_RESET_ON_FORK) {
3485 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3486 policy &= ~SCHED_RESET_ON_FORK;
3487 attr.sched_policy = policy;
3488 }
3489
3490 return __sched_setscheduler(p, &attr, check);
3491}
3492/**
3493 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3494 * @p: the task in question.
3495 * @policy: new policy.
3496 * @param: structure containing the new RT priority.
3497 *
3498 * Return: 0 on success. An error code otherwise.
3499 *
3500 * NOTE that the task may be already dead.
3501 */
3502int sched_setscheduler(struct task_struct *p, int policy,
3503 const struct sched_param *param)
3504{
3505 return _sched_setscheduler(p, policy, param, true);
3506}
3507EXPORT_SYMBOL_GPL(sched_setscheduler);
3508
3509int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3510{
3511 return __sched_setscheduler(p, attr, true);
3512}
3513EXPORT_SYMBOL_GPL(sched_setattr);
3514
3515/**
3516 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3517 * @p: the task in question.
3518 * @policy: new policy.
3519 * @param: structure containing the new RT priority.
3520 *
3521 * Just like sched_setscheduler, only don't bother checking if the
3522 * current context has permission. For example, this is needed in
3523 * stop_machine(): we create temporary high priority worker threads,
3524 * but our caller might not have that capability.
3525 *
3526 * Return: 0 on success. An error code otherwise.
3527 */
3528int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3529 const struct sched_param *param)
3530{
3531 return _sched_setscheduler(p, policy, param, false);
3532}
3533
3534static int
3535do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3536{
3537 struct sched_param lparam;
3538 struct task_struct *p;
3539 int retval;
3540
3541 if (!param || pid < 0)
3542 return -EINVAL;
3543 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3544 return -EFAULT;
3545
3546 rcu_read_lock();
3547 retval = -ESRCH;
3548 p = find_process_by_pid(pid);
3549 if (p != NULL)
3550 retval = sched_setscheduler(p, policy, &lparam);
3551 rcu_read_unlock();
3552
3553 return retval;
3554}
3555
3556/*
3557 * Mimics kernel/events/core.c perf_copy_attr().
3558 */
3559static int sched_copy_attr(struct sched_attr __user *uattr,
3560 struct sched_attr *attr)
3561{
3562 u32 size;
3563 int ret;
3564
3565 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3566 return -EFAULT;
3567
3568 /*
3569 * zero the full structure, so that a short copy will be nice.
3570 */
3571 memset(attr, 0, sizeof(*attr));
3572
3573 ret = get_user(size, &uattr->size);
3574 if (ret)
3575 return ret;
3576
3577 if (size > PAGE_SIZE) /* silly large */
3578 goto err_size;
3579
3580 if (!size) /* abi compat */
3581 size = SCHED_ATTR_SIZE_VER0;
3582
3583 if (size < SCHED_ATTR_SIZE_VER0)
3584 goto err_size;
3585
3586 /*
3587 * If we're handed a bigger struct than we know of,
3588 * ensure all the unknown bits are 0 - i.e. new
3589 * user-space does not rely on any kernel feature
3590 * extensions we dont know about yet.
3591 */
3592 if (size > sizeof(*attr)) {
3593 unsigned char __user *addr;
3594 unsigned char __user *end;
3595 unsigned char val;
3596
3597 addr = (void __user *)uattr + sizeof(*attr);
3598 end = (void __user *)uattr + size;
3599
3600 for (; addr < end; addr++) {
3601 ret = get_user(val, addr);
3602 if (ret)
3603 return ret;
3604 if (val)
3605 goto err_size;
3606 }
3607 size = sizeof(*attr);
3608 }
3609
3610 ret = copy_from_user(attr, uattr, size);
3611 if (ret)
3612 return -EFAULT;
3613
3614 /*
3615 * XXX: do we want to be lenient like existing syscalls; or do we want
3616 * to be strict and return an error on out-of-bounds values?
3617 */
3618 attr->sched_nice = clamp(attr->sched_nice, -20, 19);
3619
3620out:
3621 return ret;
3622
3623err_size:
3624 put_user(sizeof(*attr), &uattr->size);
3625 ret = -E2BIG;
3626 goto out;
3627}
3628
3629/**
3630 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3631 * @pid: the pid in question.
3632 * @policy: new policy.
3633 * @param: structure containing the new RT priority.
3634 *
3635 * Return: 0 on success. An error code otherwise.
3636 */
3637SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3638 struct sched_param __user *, param)
3639{
3640 /* negative values for policy are not valid */
3641 if (policy < 0)
3642 return -EINVAL;
3643
3644 return do_sched_setscheduler(pid, policy, param);
3645}
3646
3647/**
3648 * sys_sched_setparam - set/change the RT priority of a thread
3649 * @pid: the pid in question.
3650 * @param: structure containing the new RT priority.
3651 *
3652 * Return: 0 on success. An error code otherwise.
3653 */
3654SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3655{
3656 return do_sched_setscheduler(pid, -1, param);
3657}
3658
3659/**
3660 * sys_sched_setattr - same as above, but with extended sched_attr
3661 * @pid: the pid in question.
3662 * @uattr: structure containing the extended parameters.
3663 */
3664SYSCALL_DEFINE2(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr)
3665{
3666 struct sched_attr attr;
3667 struct task_struct *p;
3668 int retval;
3669
3670 if (!uattr || pid < 0)
3671 return -EINVAL;
3672
3673 if (sched_copy_attr(uattr, &attr))
3674 return -EFAULT;
3675
3676 rcu_read_lock();
3677 retval = -ESRCH;
3678 p = find_process_by_pid(pid);
3679 if (p != NULL)
3680 retval = sched_setattr(p, &attr);
3681 rcu_read_unlock();
3682
3683 return retval;
3684}
3685
3686/**
3687 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3688 * @pid: the pid in question.
3689 *
3690 * Return: On success, the policy of the thread. Otherwise, a negative error
3691 * code.
3692 */
3693SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3694{
3695 struct task_struct *p;
3696 int retval;
3697
3698 if (pid < 0)
3699 return -EINVAL;
3700
3701 retval = -ESRCH;
3702 rcu_read_lock();
3703 p = find_process_by_pid(pid);
3704 if (p) {
3705 retval = security_task_getscheduler(p);
3706 if (!retval)
3707 retval = p->policy
3708 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3709 }
3710 rcu_read_unlock();
3711 return retval;
3712}
3713
3714/**
3715 * sys_sched_getparam - get the RT priority of a thread
3716 * @pid: the pid in question.
3717 * @param: structure containing the RT priority.
3718 *
3719 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3720 * code.
3721 */
3722SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3723{
3724 struct sched_param lp;
3725 struct task_struct *p;
3726 int retval;
3727
3728 if (!param || pid < 0)
3729 return -EINVAL;
3730
3731 rcu_read_lock();
3732 p = find_process_by_pid(pid);
3733 retval = -ESRCH;
3734 if (!p)
3735 goto out_unlock;
3736
3737 retval = security_task_getscheduler(p);
3738 if (retval)
3739 goto out_unlock;
3740
3741 if (task_has_dl_policy(p)) {
3742 retval = -EINVAL;
3743 goto out_unlock;
3744 }
3745 lp.sched_priority = p->rt_priority;
3746 rcu_read_unlock();
3747
3748 /*
3749 * This one might sleep, we cannot do it with a spinlock held ...
3750 */
3751 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3752
3753 return retval;
3754
3755out_unlock:
3756 rcu_read_unlock();
3757 return retval;
3758}
3759
3760static int sched_read_attr(struct sched_attr __user *uattr,
3761 struct sched_attr *attr,
3762 unsigned int usize)
3763{
3764 int ret;
3765
3766 if (!access_ok(VERIFY_WRITE, uattr, usize))
3767 return -EFAULT;
3768
3769 /*
3770 * If we're handed a smaller struct than we know of,
3771 * ensure all the unknown bits are 0 - i.e. old
3772 * user-space does not get uncomplete information.
3773 */
3774 if (usize < sizeof(*attr)) {
3775 unsigned char *addr;
3776 unsigned char *end;
3777
3778 addr = (void *)attr + usize;
3779 end = (void *)attr + sizeof(*attr);
3780
3781 for (; addr < end; addr++) {
3782 if (*addr)
3783 goto err_size;
3784 }
3785
3786 attr->size = usize;
3787 }
3788
3789 ret = copy_to_user(uattr, attr, usize);
3790 if (ret)
3791 return -EFAULT;
3792
3793out:
3794 return ret;
3795
3796err_size:
3797 ret = -E2BIG;
3798 goto out;
3799}
3800
3801/**
3802 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3803 * @pid: the pid in question.
3804 * @uattr: structure containing the extended parameters.
3805 * @size: sizeof(attr) for fwd/bwd comp.
3806 */
3807SYSCALL_DEFINE3(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3808 unsigned int, size)
3809{
3810 struct sched_attr attr = {
3811 .size = sizeof(struct sched_attr),
3812 };
3813 struct task_struct *p;
3814 int retval;
3815
3816 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3817 size < SCHED_ATTR_SIZE_VER0)
3818 return -EINVAL;
3819
3820 rcu_read_lock();
3821 p = find_process_by_pid(pid);
3822 retval = -ESRCH;
3823 if (!p)
3824 goto out_unlock;
3825
3826 retval = security_task_getscheduler(p);
3827 if (retval)
3828 goto out_unlock;
3829
3830 attr.sched_policy = p->policy;
3831 if (p->sched_reset_on_fork)
3832 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3833 if (task_has_dl_policy(p))
3834 __getparam_dl(p, &attr);
3835 else if (task_has_rt_policy(p))
3836 attr.sched_priority = p->rt_priority;
3837 else
3838 attr.sched_nice = TASK_NICE(p);
3839
3840 rcu_read_unlock();
3841
3842 retval = sched_read_attr(uattr, &attr, size);
3843 return retval;
3844
3845out_unlock:
3846 rcu_read_unlock();
3847 return retval;
3848}
3849
3850long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3851{
3852 cpumask_var_t cpus_allowed, new_mask;
3853 struct task_struct *p;
3854 int retval;
3855
3856 rcu_read_lock();
3857
3858 p = find_process_by_pid(pid);
3859 if (!p) {
3860 rcu_read_unlock();
3861 return -ESRCH;
3862 }
3863
3864 /* Prevent p going away */
3865 get_task_struct(p);
3866 rcu_read_unlock();
3867
3868 if (p->flags & PF_NO_SETAFFINITY) {
3869 retval = -EINVAL;
3870 goto out_put_task;
3871 }
3872 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3873 retval = -ENOMEM;
3874 goto out_put_task;
3875 }
3876 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3877 retval = -ENOMEM;
3878 goto out_free_cpus_allowed;
3879 }
3880 retval = -EPERM;
3881 if (!check_same_owner(p)) {
3882 rcu_read_lock();
3883 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3884 rcu_read_unlock();
3885 goto out_unlock;
3886 }
3887 rcu_read_unlock();
3888 }
3889
3890 retval = security_task_setscheduler(p);
3891 if (retval)
3892 goto out_unlock;
3893
3894
3895 cpuset_cpus_allowed(p, cpus_allowed);
3896 cpumask_and(new_mask, in_mask, cpus_allowed);
3897
3898 /*
3899 * Since bandwidth control happens on root_domain basis,
3900 * if admission test is enabled, we only admit -deadline
3901 * tasks allowed to run on all the CPUs in the task's
3902 * root_domain.
3903 */
3904#ifdef CONFIG_SMP
3905 if (task_has_dl_policy(p)) {
3906 const struct cpumask *span = task_rq(p)->rd->span;
3907
3908 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3909 retval = -EBUSY;
3910 goto out_unlock;
3911 }
3912 }
3913#endif
3914again:
3915 retval = set_cpus_allowed_ptr(p, new_mask);
3916
3917 if (!retval) {
3918 cpuset_cpus_allowed(p, cpus_allowed);
3919 if (!cpumask_subset(new_mask, cpus_allowed)) {
3920 /*
3921 * We must have raced with a concurrent cpuset
3922 * update. Just reset the cpus_allowed to the
3923 * cpuset's cpus_allowed
3924 */
3925 cpumask_copy(new_mask, cpus_allowed);
3926 goto again;
3927 }
3928 }
3929out_unlock:
3930 free_cpumask_var(new_mask);
3931out_free_cpus_allowed:
3932 free_cpumask_var(cpus_allowed);
3933out_put_task:
3934 put_task_struct(p);
3935 return retval;
3936}
3937
3938static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3939 struct cpumask *new_mask)
3940{
3941 if (len < cpumask_size())
3942 cpumask_clear(new_mask);
3943 else if (len > cpumask_size())
3944 len = cpumask_size();
3945
3946 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3947}
3948
3949/**
3950 * sys_sched_setaffinity - set the cpu affinity of a process
3951 * @pid: pid of the process
3952 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3953 * @user_mask_ptr: user-space pointer to the new cpu mask
3954 *
3955 * Return: 0 on success. An error code otherwise.
3956 */
3957SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3958 unsigned long __user *, user_mask_ptr)
3959{
3960 cpumask_var_t new_mask;
3961 int retval;
3962
3963 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3964 return -ENOMEM;
3965
3966 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3967 if (retval == 0)
3968 retval = sched_setaffinity(pid, new_mask);
3969 free_cpumask_var(new_mask);
3970 return retval;
3971}
3972
3973long sched_getaffinity(pid_t pid, struct cpumask *mask)
3974{
3975 struct task_struct *p;
3976 unsigned long flags;
3977 int retval;
3978
3979 rcu_read_lock();
3980
3981 retval = -ESRCH;
3982 p = find_process_by_pid(pid);
3983 if (!p)
3984 goto out_unlock;
3985
3986 retval = security_task_getscheduler(p);
3987 if (retval)
3988 goto out_unlock;
3989
3990 raw_spin_lock_irqsave(&p->pi_lock, flags);
3991 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
3992 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3993
3994out_unlock:
3995 rcu_read_unlock();
3996
3997 return retval;
3998}
3999
4000/**
4001 * sys_sched_getaffinity - get the cpu affinity of a process
4002 * @pid: pid of the process
4003 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4004 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4005 *
4006 * Return: 0 on success. An error code otherwise.
4007 */
4008SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4009 unsigned long __user *, user_mask_ptr)
4010{
4011 int ret;
4012 cpumask_var_t mask;
4013
4014 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4015 return -EINVAL;
4016 if (len & (sizeof(unsigned long)-1))
4017 return -EINVAL;
4018
4019 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4020 return -ENOMEM;
4021
4022 ret = sched_getaffinity(pid, mask);
4023 if (ret == 0) {
4024 size_t retlen = min_t(size_t, len, cpumask_size());
4025
4026 if (copy_to_user(user_mask_ptr, mask, retlen))
4027 ret = -EFAULT;
4028 else
4029 ret = retlen;
4030 }
4031 free_cpumask_var(mask);
4032
4033 return ret;
4034}
4035
4036/**
4037 * sys_sched_yield - yield the current processor to other threads.
4038 *
4039 * This function yields the current CPU to other tasks. If there are no
4040 * other threads running on this CPU then this function will return.
4041 *
4042 * Return: 0.
4043 */
4044SYSCALL_DEFINE0(sched_yield)
4045{
4046 struct rq *rq = this_rq_lock();
4047
4048 schedstat_inc(rq, yld_count);
4049 current->sched_class->yield_task(rq);
4050
4051 /*
4052 * Since we are going to call schedule() anyway, there's
4053 * no need to preempt or enable interrupts:
4054 */
4055 __release(rq->lock);
4056 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4057 do_raw_spin_unlock(&rq->lock);
4058 sched_preempt_enable_no_resched();
4059
4060 schedule();
4061
4062 return 0;
4063}
4064
4065static void __cond_resched(void)
4066{
4067 __preempt_count_add(PREEMPT_ACTIVE);
4068 __schedule();
4069 __preempt_count_sub(PREEMPT_ACTIVE);
4070}
4071
4072int __sched _cond_resched(void)
4073{
4074 if (should_resched()) {
4075 __cond_resched();
4076 return 1;
4077 }
4078 return 0;
4079}
4080EXPORT_SYMBOL(_cond_resched);
4081
4082/*
4083 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4084 * call schedule, and on return reacquire the lock.
4085 *
4086 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4087 * operations here to prevent schedule() from being called twice (once via
4088 * spin_unlock(), once by hand).
4089 */
4090int __cond_resched_lock(spinlock_t *lock)
4091{
4092 int resched = should_resched();
4093 int ret = 0;
4094
4095 lockdep_assert_held(lock);
4096
4097 if (spin_needbreak(lock) || resched) {
4098 spin_unlock(lock);
4099 if (resched)
4100 __cond_resched();
4101 else
4102 cpu_relax();
4103 ret = 1;
4104 spin_lock(lock);
4105 }
4106 return ret;
4107}
4108EXPORT_SYMBOL(__cond_resched_lock);
4109
4110int __sched __cond_resched_softirq(void)
4111{
4112 BUG_ON(!in_softirq());
4113
4114 if (should_resched()) {
4115 local_bh_enable();
4116 __cond_resched();
4117 local_bh_disable();
4118 return 1;
4119 }
4120 return 0;
4121}
4122EXPORT_SYMBOL(__cond_resched_softirq);
4123
4124/**
4125 * yield - yield the current processor to other threads.
4126 *
4127 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4128 *
4129 * The scheduler is at all times free to pick the calling task as the most
4130 * eligible task to run, if removing the yield() call from your code breaks
4131 * it, its already broken.
4132 *
4133 * Typical broken usage is:
4134 *
4135 * while (!event)
4136 * yield();
4137 *
4138 * where one assumes that yield() will let 'the other' process run that will
4139 * make event true. If the current task is a SCHED_FIFO task that will never
4140 * happen. Never use yield() as a progress guarantee!!
4141 *
4142 * If you want to use yield() to wait for something, use wait_event().
4143 * If you want to use yield() to be 'nice' for others, use cond_resched().
4144 * If you still want to use yield(), do not!
4145 */
4146void __sched yield(void)
4147{
4148 set_current_state(TASK_RUNNING);
4149 sys_sched_yield();
4150}
4151EXPORT_SYMBOL(yield);
4152
4153/**
4154 * yield_to - yield the current processor to another thread in
4155 * your thread group, or accelerate that thread toward the
4156 * processor it's on.
4157 * @p: target task
4158 * @preempt: whether task preemption is allowed or not
4159 *
4160 * It's the caller's job to ensure that the target task struct
4161 * can't go away on us before we can do any checks.
4162 *
4163 * Return:
4164 * true (>0) if we indeed boosted the target task.
4165 * false (0) if we failed to boost the target.
4166 * -ESRCH if there's no task to yield to.
4167 */
4168bool __sched yield_to(struct task_struct *p, bool preempt)
4169{
4170 struct task_struct *curr = current;
4171 struct rq *rq, *p_rq;
4172 unsigned long flags;
4173 int yielded = 0;
4174
4175 local_irq_save(flags);
4176 rq = this_rq();
4177
4178again:
4179 p_rq = task_rq(p);
4180 /*
4181 * If we're the only runnable task on the rq and target rq also
4182 * has only one task, there's absolutely no point in yielding.
4183 */
4184 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4185 yielded = -ESRCH;
4186 goto out_irq;
4187 }
4188
4189 double_rq_lock(rq, p_rq);
4190 if (task_rq(p) != p_rq) {
4191 double_rq_unlock(rq, p_rq);
4192 goto again;
4193 }
4194
4195 if (!curr->sched_class->yield_to_task)
4196 goto out_unlock;
4197
4198 if (curr->sched_class != p->sched_class)
4199 goto out_unlock;
4200
4201 if (task_running(p_rq, p) || p->state)
4202 goto out_unlock;
4203
4204 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4205 if (yielded) {
4206 schedstat_inc(rq, yld_count);
4207 /*
4208 * Make p's CPU reschedule; pick_next_entity takes care of
4209 * fairness.
4210 */
4211 if (preempt && rq != p_rq)
4212 resched_task(p_rq->curr);
4213 }
4214
4215out_unlock:
4216 double_rq_unlock(rq, p_rq);
4217out_irq:
4218 local_irq_restore(flags);
4219
4220 if (yielded > 0)
4221 schedule();
4222
4223 return yielded;
4224}
4225EXPORT_SYMBOL_GPL(yield_to);
4226
4227/*
4228 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4229 * that process accounting knows that this is a task in IO wait state.
4230 */
4231void __sched io_schedule(void)
4232{
4233 struct rq *rq = raw_rq();
4234
4235 delayacct_blkio_start();
4236 atomic_inc(&rq->nr_iowait);
4237 blk_flush_plug(current);
4238 current->in_iowait = 1;
4239 schedule();
4240 current->in_iowait = 0;
4241 atomic_dec(&rq->nr_iowait);
4242 delayacct_blkio_end();
4243}
4244EXPORT_SYMBOL(io_schedule);
4245
4246long __sched io_schedule_timeout(long timeout)
4247{
4248 struct rq *rq = raw_rq();
4249 long ret;
4250
4251 delayacct_blkio_start();
4252 atomic_inc(&rq->nr_iowait);
4253 blk_flush_plug(current);
4254 current->in_iowait = 1;
4255 ret = schedule_timeout(timeout);
4256 current->in_iowait = 0;
4257 atomic_dec(&rq->nr_iowait);
4258 delayacct_blkio_end();
4259 return ret;
4260}
4261
4262/**
4263 * sys_sched_get_priority_max - return maximum RT priority.
4264 * @policy: scheduling class.
4265 *
4266 * Return: On success, this syscall returns the maximum
4267 * rt_priority that can be used by a given scheduling class.
4268 * On failure, a negative error code is returned.
4269 */
4270SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4271{
4272 int ret = -EINVAL;
4273
4274 switch (policy) {
4275 case SCHED_FIFO:
4276 case SCHED_RR:
4277 ret = MAX_USER_RT_PRIO-1;
4278 break;
4279 case SCHED_DEADLINE:
4280 case SCHED_NORMAL:
4281 case SCHED_BATCH:
4282 case SCHED_IDLE:
4283 ret = 0;
4284 break;
4285 }
4286 return ret;
4287}
4288
4289/**
4290 * sys_sched_get_priority_min - return minimum RT priority.
4291 * @policy: scheduling class.
4292 *
4293 * Return: On success, this syscall returns the minimum
4294 * rt_priority that can be used by a given scheduling class.
4295 * On failure, a negative error code is returned.
4296 */
4297SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4298{
4299 int ret = -EINVAL;
4300
4301 switch (policy) {
4302 case SCHED_FIFO:
4303 case SCHED_RR:
4304 ret = 1;
4305 break;
4306 case SCHED_DEADLINE:
4307 case SCHED_NORMAL:
4308 case SCHED_BATCH:
4309 case SCHED_IDLE:
4310 ret = 0;
4311 }
4312 return ret;
4313}
4314
4315/**
4316 * sys_sched_rr_get_interval - return the default timeslice of a process.
4317 * @pid: pid of the process.
4318 * @interval: userspace pointer to the timeslice value.
4319 *
4320 * this syscall writes the default timeslice value of a given process
4321 * into the user-space timespec buffer. A value of '0' means infinity.
4322 *
4323 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4324 * an error code.
4325 */
4326SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4327 struct timespec __user *, interval)
4328{
4329 struct task_struct *p;
4330 unsigned int time_slice;
4331 unsigned long flags;
4332 struct rq *rq;
4333 int retval;
4334 struct timespec t;
4335
4336 if (pid < 0)
4337 return -EINVAL;
4338
4339 retval = -ESRCH;
4340 rcu_read_lock();
4341 p = find_process_by_pid(pid);
4342 if (!p)
4343 goto out_unlock;
4344
4345 retval = security_task_getscheduler(p);
4346 if (retval)
4347 goto out_unlock;
4348
4349 rq = task_rq_lock(p, &flags);
4350 time_slice = 0;
4351 if (p->sched_class->get_rr_interval)
4352 time_slice = p->sched_class->get_rr_interval(rq, p);
4353 task_rq_unlock(rq, p, &flags);
4354
4355 rcu_read_unlock();
4356 jiffies_to_timespec(time_slice, &t);
4357 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4358 return retval;
4359
4360out_unlock:
4361 rcu_read_unlock();
4362 return retval;
4363}
4364
4365static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4366
4367void sched_show_task(struct task_struct *p)
4368{
4369 unsigned long free = 0;
4370 int ppid;
4371 unsigned state;
4372
4373 state = p->state ? __ffs(p->state) + 1 : 0;
4374 printk(KERN_INFO "%-15.15s %c", p->comm,
4375 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4376#if BITS_PER_LONG == 32
4377 if (state == TASK_RUNNING)
4378 printk(KERN_CONT " running ");
4379 else
4380 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4381#else
4382 if (state == TASK_RUNNING)
4383 printk(KERN_CONT " running task ");
4384 else
4385 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4386#endif
4387#ifdef CONFIG_DEBUG_STACK_USAGE
4388 free = stack_not_used(p);
4389#endif
4390 rcu_read_lock();
4391 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4392 rcu_read_unlock();
4393 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4394 task_pid_nr(p), ppid,
4395 (unsigned long)task_thread_info(p)->flags);
4396
4397 print_worker_info(KERN_INFO, p);
4398 show_stack(p, NULL);
4399}
4400
4401void show_state_filter(unsigned long state_filter)
4402{
4403 struct task_struct *g, *p;
4404
4405#if BITS_PER_LONG == 32
4406 printk(KERN_INFO
4407 " task PC stack pid father\n");
4408#else
4409 printk(KERN_INFO
4410 " task PC stack pid father\n");
4411#endif
4412 rcu_read_lock();
4413 do_each_thread(g, p) {
4414 /*
4415 * reset the NMI-timeout, listing all files on a slow
4416 * console might take a lot of time:
4417 */
4418 touch_nmi_watchdog();
4419 if (!state_filter || (p->state & state_filter))
4420 sched_show_task(p);
4421 } while_each_thread(g, p);
4422
4423 touch_all_softlockup_watchdogs();
4424
4425#ifdef CONFIG_SCHED_DEBUG
4426 sysrq_sched_debug_show();
4427#endif
4428 rcu_read_unlock();
4429 /*
4430 * Only show locks if all tasks are dumped:
4431 */
4432 if (!state_filter)
4433 debug_show_all_locks();
4434}
4435
4436void init_idle_bootup_task(struct task_struct *idle)
4437{
4438 idle->sched_class = &idle_sched_class;
4439}
4440
4441/**
4442 * init_idle - set up an idle thread for a given CPU
4443 * @idle: task in question
4444 * @cpu: cpu the idle task belongs to
4445 *
4446 * NOTE: this function does not set the idle thread's NEED_RESCHED
4447 * flag, to make booting more robust.
4448 */
4449void init_idle(struct task_struct *idle, int cpu)
4450{
4451 struct rq *rq = cpu_rq(cpu);
4452 unsigned long flags;
4453
4454 raw_spin_lock_irqsave(&rq->lock, flags);
4455
4456 __sched_fork(0, idle);
4457 idle->state = TASK_RUNNING;
4458 idle->se.exec_start = sched_clock();
4459
4460 do_set_cpus_allowed(idle, cpumask_of(cpu));
4461 /*
4462 * We're having a chicken and egg problem, even though we are
4463 * holding rq->lock, the cpu isn't yet set to this cpu so the
4464 * lockdep check in task_group() will fail.
4465 *
4466 * Similar case to sched_fork(). / Alternatively we could
4467 * use task_rq_lock() here and obtain the other rq->lock.
4468 *
4469 * Silence PROVE_RCU
4470 */
4471 rcu_read_lock();
4472 __set_task_cpu(idle, cpu);
4473 rcu_read_unlock();
4474
4475 rq->curr = rq->idle = idle;
4476#if defined(CONFIG_SMP)
4477 idle->on_cpu = 1;
4478#endif
4479 raw_spin_unlock_irqrestore(&rq->lock, flags);
4480
4481 /* Set the preempt count _outside_ the spinlocks! */
4482 init_idle_preempt_count(idle, cpu);
4483
4484 /*
4485 * The idle tasks have their own, simple scheduling class:
4486 */
4487 idle->sched_class = &idle_sched_class;
4488 ftrace_graph_init_idle_task(idle, cpu);
4489 vtime_init_idle(idle, cpu);
4490#if defined(CONFIG_SMP)
4491 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4492#endif
4493}
4494
4495#ifdef CONFIG_SMP
4496void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4497{
4498 if (p->sched_class && p->sched_class->set_cpus_allowed)
4499 p->sched_class->set_cpus_allowed(p, new_mask);
4500
4501 cpumask_copy(&p->cpus_allowed, new_mask);
4502 p->nr_cpus_allowed = cpumask_weight(new_mask);
4503}
4504
4505/*
4506 * This is how migration works:
4507 *
4508 * 1) we invoke migration_cpu_stop() on the target CPU using
4509 * stop_one_cpu().
4510 * 2) stopper starts to run (implicitly forcing the migrated thread
4511 * off the CPU)
4512 * 3) it checks whether the migrated task is still in the wrong runqueue.
4513 * 4) if it's in the wrong runqueue then the migration thread removes
4514 * it and puts it into the right queue.
4515 * 5) stopper completes and stop_one_cpu() returns and the migration
4516 * is done.
4517 */
4518
4519/*
4520 * Change a given task's CPU affinity. Migrate the thread to a
4521 * proper CPU and schedule it away if the CPU it's executing on
4522 * is removed from the allowed bitmask.
4523 *
4524 * NOTE: the caller must have a valid reference to the task, the
4525 * task must not exit() & deallocate itself prematurely. The
4526 * call is not atomic; no spinlocks may be held.
4527 */
4528int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4529{
4530 unsigned long flags;
4531 struct rq *rq;
4532 unsigned int dest_cpu;
4533 int ret = 0;
4534
4535 rq = task_rq_lock(p, &flags);
4536
4537 if (cpumask_equal(&p->cpus_allowed, new_mask))
4538 goto out;
4539
4540 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4541 ret = -EINVAL;
4542 goto out;
4543 }
4544
4545 do_set_cpus_allowed(p, new_mask);
4546
4547 /* Can the task run on the task's current CPU? If so, we're done */
4548 if (cpumask_test_cpu(task_cpu(p), new_mask))
4549 goto out;
4550
4551 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4552 if (p->on_rq) {
4553 struct migration_arg arg = { p, dest_cpu };
4554 /* Need help from migration thread: drop lock and wait. */
4555 task_rq_unlock(rq, p, &flags);
4556 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4557 tlb_migrate_finish(p->mm);
4558 return 0;
4559 }
4560out:
4561 task_rq_unlock(rq, p, &flags);
4562
4563 return ret;
4564}
4565EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4566
4567/*
4568 * Move (not current) task off this cpu, onto dest cpu. We're doing
4569 * this because either it can't run here any more (set_cpus_allowed()
4570 * away from this CPU, or CPU going down), or because we're
4571 * attempting to rebalance this task on exec (sched_exec).
4572 *
4573 * So we race with normal scheduler movements, but that's OK, as long
4574 * as the task is no longer on this CPU.
4575 *
4576 * Returns non-zero if task was successfully migrated.
4577 */
4578static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4579{
4580 struct rq *rq_dest, *rq_src;
4581 int ret = 0;
4582
4583 if (unlikely(!cpu_active(dest_cpu)))
4584 return ret;
4585
4586 rq_src = cpu_rq(src_cpu);
4587 rq_dest = cpu_rq(dest_cpu);
4588
4589 raw_spin_lock(&p->pi_lock);
4590 double_rq_lock(rq_src, rq_dest);
4591 /* Already moved. */
4592 if (task_cpu(p) != src_cpu)
4593 goto done;
4594 /* Affinity changed (again). */
4595 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4596 goto fail;
4597
4598 /*
4599 * If we're not on a rq, the next wake-up will ensure we're
4600 * placed properly.
4601 */
4602 if (p->on_rq) {
4603 dequeue_task(rq_src, p, 0);
4604 set_task_cpu(p, dest_cpu);
4605 enqueue_task(rq_dest, p, 0);
4606 check_preempt_curr(rq_dest, p, 0);
4607 }
4608done:
4609 ret = 1;
4610fail:
4611 double_rq_unlock(rq_src, rq_dest);
4612 raw_spin_unlock(&p->pi_lock);
4613 return ret;
4614}
4615
4616#ifdef CONFIG_NUMA_BALANCING
4617/* Migrate current task p to target_cpu */
4618int migrate_task_to(struct task_struct *p, int target_cpu)
4619{
4620 struct migration_arg arg = { p, target_cpu };
4621 int curr_cpu = task_cpu(p);
4622
4623 if (curr_cpu == target_cpu)
4624 return 0;
4625
4626 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4627 return -EINVAL;
4628
4629 /* TODO: This is not properly updating schedstats */
4630
4631 trace_sched_move_numa(p, curr_cpu, target_cpu);
4632 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4633}
4634
4635/*
4636 * Requeue a task on a given node and accurately track the number of NUMA
4637 * tasks on the runqueues
4638 */
4639void sched_setnuma(struct task_struct *p, int nid)
4640{
4641 struct rq *rq;
4642 unsigned long flags;
4643 bool on_rq, running;
4644
4645 rq = task_rq_lock(p, &flags);
4646 on_rq = p->on_rq;
4647 running = task_current(rq, p);
4648
4649 if (on_rq)
4650 dequeue_task(rq, p, 0);
4651 if (running)
4652 p->sched_class->put_prev_task(rq, p);
4653
4654 p->numa_preferred_nid = nid;
4655
4656 if (running)
4657 p->sched_class->set_curr_task(rq);
4658 if (on_rq)
4659 enqueue_task(rq, p, 0);
4660 task_rq_unlock(rq, p, &flags);
4661}
4662#endif
4663
4664/*
4665 * migration_cpu_stop - this will be executed by a highprio stopper thread
4666 * and performs thread migration by bumping thread off CPU then
4667 * 'pushing' onto another runqueue.
4668 */
4669static int migration_cpu_stop(void *data)
4670{
4671 struct migration_arg *arg = data;
4672
4673 /*
4674 * The original target cpu might have gone down and we might
4675 * be on another cpu but it doesn't matter.
4676 */
4677 local_irq_disable();
4678 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4679 local_irq_enable();
4680 return 0;
4681}
4682
4683#ifdef CONFIG_HOTPLUG_CPU
4684
4685/*
4686 * Ensures that the idle task is using init_mm right before its cpu goes
4687 * offline.
4688 */
4689void idle_task_exit(void)
4690{
4691 struct mm_struct *mm = current->active_mm;
4692
4693 BUG_ON(cpu_online(smp_processor_id()));
4694
4695 if (mm != &init_mm)
4696 switch_mm(mm, &init_mm, current);
4697 mmdrop(mm);
4698}
4699
4700/*
4701 * Since this CPU is going 'away' for a while, fold any nr_active delta
4702 * we might have. Assumes we're called after migrate_tasks() so that the
4703 * nr_active count is stable.
4704 *
4705 * Also see the comment "Global load-average calculations".
4706 */
4707static void calc_load_migrate(struct rq *rq)
4708{
4709 long delta = calc_load_fold_active(rq);
4710 if (delta)
4711 atomic_long_add(delta, &calc_load_tasks);
4712}
4713
4714/*
4715 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4716 * try_to_wake_up()->select_task_rq().
4717 *
4718 * Called with rq->lock held even though we'er in stop_machine() and
4719 * there's no concurrency possible, we hold the required locks anyway
4720 * because of lock validation efforts.
4721 */
4722static void migrate_tasks(unsigned int dead_cpu)
4723{
4724 struct rq *rq = cpu_rq(dead_cpu);
4725 struct task_struct *next, *stop = rq->stop;
4726 int dest_cpu;
4727
4728 /*
4729 * Fudge the rq selection such that the below task selection loop
4730 * doesn't get stuck on the currently eligible stop task.
4731 *
4732 * We're currently inside stop_machine() and the rq is either stuck
4733 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4734 * either way we should never end up calling schedule() until we're
4735 * done here.
4736 */
4737 rq->stop = NULL;
4738
4739 /*
4740 * put_prev_task() and pick_next_task() sched
4741 * class method both need to have an up-to-date
4742 * value of rq->clock[_task]
4743 */
4744 update_rq_clock(rq);
4745
4746 for ( ; ; ) {
4747 /*
4748 * There's this thread running, bail when that's the only
4749 * remaining thread.
4750 */
4751 if (rq->nr_running == 1)
4752 break;
4753
4754 next = pick_next_task(rq);
4755 BUG_ON(!next);
4756 next->sched_class->put_prev_task(rq, next);
4757
4758 /* Find suitable destination for @next, with force if needed. */
4759 dest_cpu = select_fallback_rq(dead_cpu, next);
4760 raw_spin_unlock(&rq->lock);
4761
4762 __migrate_task(next, dead_cpu, dest_cpu);
4763
4764 raw_spin_lock(&rq->lock);
4765 }
4766
4767 rq->stop = stop;
4768}
4769
4770#endif /* CONFIG_HOTPLUG_CPU */
4771
4772#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4773
4774static struct ctl_table sd_ctl_dir[] = {
4775 {
4776 .procname = "sched_domain",
4777 .mode = 0555,
4778 },
4779 {}
4780};
4781
4782static struct ctl_table sd_ctl_root[] = {
4783 {
4784 .procname = "kernel",
4785 .mode = 0555,
4786 .child = sd_ctl_dir,
4787 },
4788 {}
4789};
4790
4791static struct ctl_table *sd_alloc_ctl_entry(int n)
4792{
4793 struct ctl_table *entry =
4794 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4795
4796 return entry;
4797}
4798
4799static void sd_free_ctl_entry(struct ctl_table **tablep)
4800{
4801 struct ctl_table *entry;
4802
4803 /*
4804 * In the intermediate directories, both the child directory and
4805 * procname are dynamically allocated and could fail but the mode
4806 * will always be set. In the lowest directory the names are
4807 * static strings and all have proc handlers.
4808 */
4809 for (entry = *tablep; entry->mode; entry++) {
4810 if (entry->child)
4811 sd_free_ctl_entry(&entry->child);
4812 if (entry->proc_handler == NULL)
4813 kfree(entry->procname);
4814 }
4815
4816 kfree(*tablep);
4817 *tablep = NULL;
4818}
4819
4820static int min_load_idx = 0;
4821static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4822
4823static void
4824set_table_entry(struct ctl_table *entry,
4825 const char *procname, void *data, int maxlen,
4826 umode_t mode, proc_handler *proc_handler,
4827 bool load_idx)
4828{
4829 entry->procname = procname;
4830 entry->data = data;
4831 entry->maxlen = maxlen;
4832 entry->mode = mode;
4833 entry->proc_handler = proc_handler;
4834
4835 if (load_idx) {
4836 entry->extra1 = &min_load_idx;
4837 entry->extra2 = &max_load_idx;
4838 }
4839}
4840
4841static struct ctl_table *
4842sd_alloc_ctl_domain_table(struct sched_domain *sd)
4843{
4844 struct ctl_table *table = sd_alloc_ctl_entry(13);
4845
4846 if (table == NULL)
4847 return NULL;
4848
4849 set_table_entry(&table[0], "min_interval", &sd->min_interval,
4850 sizeof(long), 0644, proc_doulongvec_minmax, false);
4851 set_table_entry(&table[1], "max_interval", &sd->max_interval,
4852 sizeof(long), 0644, proc_doulongvec_minmax, false);
4853 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4854 sizeof(int), 0644, proc_dointvec_minmax, true);
4855 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4856 sizeof(int), 0644, proc_dointvec_minmax, true);
4857 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4858 sizeof(int), 0644, proc_dointvec_minmax, true);
4859 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4860 sizeof(int), 0644, proc_dointvec_minmax, true);
4861 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4862 sizeof(int), 0644, proc_dointvec_minmax, true);
4863 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4864 sizeof(int), 0644, proc_dointvec_minmax, false);
4865 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4866 sizeof(int), 0644, proc_dointvec_minmax, false);
4867 set_table_entry(&table[9], "cache_nice_tries",
4868 &sd->cache_nice_tries,
4869 sizeof(int), 0644, proc_dointvec_minmax, false);
4870 set_table_entry(&table[10], "flags", &sd->flags,
4871 sizeof(int), 0644, proc_dointvec_minmax, false);
4872 set_table_entry(&table[11], "name", sd->name,
4873 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4874 /* &table[12] is terminator */
4875
4876 return table;
4877}
4878
4879static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4880{
4881 struct ctl_table *entry, *table;
4882 struct sched_domain *sd;
4883 int domain_num = 0, i;
4884 char buf[32];
4885
4886 for_each_domain(cpu, sd)
4887 domain_num++;
4888 entry = table = sd_alloc_ctl_entry(domain_num + 1);
4889 if (table == NULL)
4890 return NULL;
4891
4892 i = 0;
4893 for_each_domain(cpu, sd) {
4894 snprintf(buf, 32, "domain%d", i);
4895 entry->procname = kstrdup(buf, GFP_KERNEL);
4896 entry->mode = 0555;
4897 entry->child = sd_alloc_ctl_domain_table(sd);
4898 entry++;
4899 i++;
4900 }
4901 return table;
4902}
4903
4904static struct ctl_table_header *sd_sysctl_header;
4905static void register_sched_domain_sysctl(void)
4906{
4907 int i, cpu_num = num_possible_cpus();
4908 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4909 char buf[32];
4910
4911 WARN_ON(sd_ctl_dir[0].child);
4912 sd_ctl_dir[0].child = entry;
4913
4914 if (entry == NULL)
4915 return;
4916
4917 for_each_possible_cpu(i) {
4918 snprintf(buf, 32, "cpu%d", i);
4919 entry->procname = kstrdup(buf, GFP_KERNEL);
4920 entry->mode = 0555;
4921 entry->child = sd_alloc_ctl_cpu_table(i);
4922 entry++;
4923 }
4924
4925 WARN_ON(sd_sysctl_header);
4926 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4927}
4928
4929/* may be called multiple times per register */
4930static void unregister_sched_domain_sysctl(void)
4931{
4932 if (sd_sysctl_header)
4933 unregister_sysctl_table(sd_sysctl_header);
4934 sd_sysctl_header = NULL;
4935 if (sd_ctl_dir[0].child)
4936 sd_free_ctl_entry(&sd_ctl_dir[0].child);
4937}
4938#else
4939static void register_sched_domain_sysctl(void)
4940{
4941}
4942static void unregister_sched_domain_sysctl(void)
4943{
4944}
4945#endif
4946
4947static void set_rq_online(struct rq *rq)
4948{
4949 if (!rq->online) {
4950 const struct sched_class *class;
4951
4952 cpumask_set_cpu(rq->cpu, rq->rd->online);
4953 rq->online = 1;
4954
4955 for_each_class(class) {
4956 if (class->rq_online)
4957 class->rq_online(rq);
4958 }
4959 }
4960}
4961
4962static void set_rq_offline(struct rq *rq)
4963{
4964 if (rq->online) {
4965 const struct sched_class *class;
4966
4967 for_each_class(class) {
4968 if (class->rq_offline)
4969 class->rq_offline(rq);
4970 }
4971
4972 cpumask_clear_cpu(rq->cpu, rq->rd->online);
4973 rq->online = 0;
4974 }
4975}
4976
4977/*
4978 * migration_call - callback that gets triggered when a CPU is added.
4979 * Here we can start up the necessary migration thread for the new CPU.
4980 */
4981static int
4982migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4983{
4984 int cpu = (long)hcpu;
4985 unsigned long flags;
4986 struct rq *rq = cpu_rq(cpu);
4987
4988 switch (action & ~CPU_TASKS_FROZEN) {
4989
4990 case CPU_UP_PREPARE:
4991 rq->calc_load_update = calc_load_update;
4992 break;
4993
4994 case CPU_ONLINE:
4995 /* Update our root-domain */
4996 raw_spin_lock_irqsave(&rq->lock, flags);
4997 if (rq->rd) {
4998 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4999
5000 set_rq_online(rq);
5001 }
5002 raw_spin_unlock_irqrestore(&rq->lock, flags);
5003 break;
5004
5005#ifdef CONFIG_HOTPLUG_CPU
5006 case CPU_DYING:
5007 sched_ttwu_pending();
5008 /* Update our root-domain */
5009 raw_spin_lock_irqsave(&rq->lock, flags);
5010 if (rq->rd) {
5011 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5012 set_rq_offline(rq);
5013 }
5014 migrate_tasks(cpu);
5015 BUG_ON(rq->nr_running != 1); /* the migration thread */
5016 raw_spin_unlock_irqrestore(&rq->lock, flags);
5017 break;
5018
5019 case CPU_DEAD:
5020 calc_load_migrate(rq);
5021 break;
5022#endif
5023 }
5024
5025 update_max_interval();
5026
5027 return NOTIFY_OK;
5028}
5029
5030/*
5031 * Register at high priority so that task migration (migrate_all_tasks)
5032 * happens before everything else. This has to be lower priority than
5033 * the notifier in the perf_event subsystem, though.
5034 */
5035static struct notifier_block migration_notifier = {
5036 .notifier_call = migration_call,
5037 .priority = CPU_PRI_MIGRATION,
5038};
5039
5040static int sched_cpu_active(struct notifier_block *nfb,
5041 unsigned long action, void *hcpu)
5042{
5043 switch (action & ~CPU_TASKS_FROZEN) {
5044 case CPU_STARTING:
5045 case CPU_DOWN_FAILED:
5046 set_cpu_active((long)hcpu, true);
5047 return NOTIFY_OK;
5048 default:
5049 return NOTIFY_DONE;
5050 }
5051}
5052
5053static int sched_cpu_inactive(struct notifier_block *nfb,
5054 unsigned long action, void *hcpu)
5055{
5056 unsigned long flags;
5057 long cpu = (long)hcpu;
5058
5059 switch (action & ~CPU_TASKS_FROZEN) {
5060 case CPU_DOWN_PREPARE:
5061 set_cpu_active(cpu, false);
5062
5063 /* explicitly allow suspend */
5064 if (!(action & CPU_TASKS_FROZEN)) {
5065 struct dl_bw *dl_b = dl_bw_of(cpu);
5066 bool overflow;
5067 int cpus;
5068
5069 raw_spin_lock_irqsave(&dl_b->lock, flags);
5070 cpus = dl_bw_cpus(cpu);
5071 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5072 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5073
5074 if (overflow)
5075 return notifier_from_errno(-EBUSY);
5076 }
5077 return NOTIFY_OK;
5078 }
5079
5080 return NOTIFY_DONE;
5081}
5082
5083static int __init migration_init(void)
5084{
5085 void *cpu = (void *)(long)smp_processor_id();
5086 int err;
5087
5088 /* Initialize migration for the boot CPU */
5089 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5090 BUG_ON(err == NOTIFY_BAD);
5091 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5092 register_cpu_notifier(&migration_notifier);
5093
5094 /* Register cpu active notifiers */
5095 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5096 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5097
5098 return 0;
5099}
5100early_initcall(migration_init);
5101#endif
5102
5103#ifdef CONFIG_SMP
5104
5105static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5106
5107#ifdef CONFIG_SCHED_DEBUG
5108
5109static __read_mostly int sched_debug_enabled;
5110
5111static int __init sched_debug_setup(char *str)
5112{
5113 sched_debug_enabled = 1;
5114
5115 return 0;
5116}
5117early_param("sched_debug", sched_debug_setup);
5118
5119static inline bool sched_debug(void)
5120{
5121 return sched_debug_enabled;
5122}
5123
5124static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5125 struct cpumask *groupmask)
5126{
5127 struct sched_group *group = sd->groups;
5128 char str[256];
5129
5130 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5131 cpumask_clear(groupmask);
5132
5133 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5134
5135 if (!(sd->flags & SD_LOAD_BALANCE)) {
5136 printk("does not load-balance\n");
5137 if (sd->parent)
5138 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5139 " has parent");
5140 return -1;
5141 }
5142
5143 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5144
5145 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5146 printk(KERN_ERR "ERROR: domain->span does not contain "
5147 "CPU%d\n", cpu);
5148 }
5149 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5150 printk(KERN_ERR "ERROR: domain->groups does not contain"
5151 " CPU%d\n", cpu);
5152 }
5153
5154 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5155 do {
5156 if (!group) {
5157 printk("\n");
5158 printk(KERN_ERR "ERROR: group is NULL\n");
5159 break;
5160 }
5161
5162 /*
5163 * Even though we initialize ->power to something semi-sane,
5164 * we leave power_orig unset. This allows us to detect if
5165 * domain iteration is still funny without causing /0 traps.
5166 */
5167 if (!group->sgp->power_orig) {
5168 printk(KERN_CONT "\n");
5169 printk(KERN_ERR "ERROR: domain->cpu_power not "
5170 "set\n");
5171 break;
5172 }
5173
5174 if (!cpumask_weight(sched_group_cpus(group))) {
5175 printk(KERN_CONT "\n");
5176 printk(KERN_ERR "ERROR: empty group\n");
5177 break;
5178 }
5179
5180 if (!(sd->flags & SD_OVERLAP) &&
5181 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5182 printk(KERN_CONT "\n");
5183 printk(KERN_ERR "ERROR: repeated CPUs\n");
5184 break;
5185 }
5186
5187 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5188
5189 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5190
5191 printk(KERN_CONT " %s", str);
5192 if (group->sgp->power != SCHED_POWER_SCALE) {
5193 printk(KERN_CONT " (cpu_power = %d)",
5194 group->sgp->power);
5195 }
5196
5197 group = group->next;
5198 } while (group != sd->groups);
5199 printk(KERN_CONT "\n");
5200
5201 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5202 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5203
5204 if (sd->parent &&
5205 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5206 printk(KERN_ERR "ERROR: parent span is not a superset "
5207 "of domain->span\n");
5208 return 0;
5209}
5210
5211static void sched_domain_debug(struct sched_domain *sd, int cpu)
5212{
5213 int level = 0;
5214
5215 if (!sched_debug_enabled)
5216 return;
5217
5218 if (!sd) {
5219 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5220 return;
5221 }
5222
5223 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5224
5225 for (;;) {
5226 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5227 break;
5228 level++;
5229 sd = sd->parent;
5230 if (!sd)
5231 break;
5232 }
5233}
5234#else /* !CONFIG_SCHED_DEBUG */
5235# define sched_domain_debug(sd, cpu) do { } while (0)
5236static inline bool sched_debug(void)
5237{
5238 return false;
5239}
5240#endif /* CONFIG_SCHED_DEBUG */
5241
5242static int sd_degenerate(struct sched_domain *sd)
5243{
5244 if (cpumask_weight(sched_domain_span(sd)) == 1)
5245 return 1;
5246
5247 /* Following flags need at least 2 groups */
5248 if (sd->flags & (SD_LOAD_BALANCE |
5249 SD_BALANCE_NEWIDLE |
5250 SD_BALANCE_FORK |
5251 SD_BALANCE_EXEC |
5252 SD_SHARE_CPUPOWER |
5253 SD_SHARE_PKG_RESOURCES)) {
5254 if (sd->groups != sd->groups->next)
5255 return 0;
5256 }
5257
5258 /* Following flags don't use groups */
5259 if (sd->flags & (SD_WAKE_AFFINE))
5260 return 0;
5261
5262 return 1;
5263}
5264
5265static int
5266sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5267{
5268 unsigned long cflags = sd->flags, pflags = parent->flags;
5269
5270 if (sd_degenerate(parent))
5271 return 1;
5272
5273 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5274 return 0;
5275
5276 /* Flags needing groups don't count if only 1 group in parent */
5277 if (parent->groups == parent->groups->next) {
5278 pflags &= ~(SD_LOAD_BALANCE |
5279 SD_BALANCE_NEWIDLE |
5280 SD_BALANCE_FORK |
5281 SD_BALANCE_EXEC |
5282 SD_SHARE_CPUPOWER |
5283 SD_SHARE_PKG_RESOURCES |
5284 SD_PREFER_SIBLING);
5285 if (nr_node_ids == 1)
5286 pflags &= ~SD_SERIALIZE;
5287 }
5288 if (~cflags & pflags)
5289 return 0;
5290
5291 return 1;
5292}
5293
5294static void free_rootdomain(struct rcu_head *rcu)
5295{
5296 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5297
5298 cpupri_cleanup(&rd->cpupri);
5299 cpudl_cleanup(&rd->cpudl);
5300 free_cpumask_var(rd->dlo_mask);
5301 free_cpumask_var(rd->rto_mask);
5302 free_cpumask_var(rd->online);
5303 free_cpumask_var(rd->span);
5304 kfree(rd);
5305}
5306
5307static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5308{
5309 struct root_domain *old_rd = NULL;
5310 unsigned long flags;
5311
5312 raw_spin_lock_irqsave(&rq->lock, flags);
5313
5314 if (rq->rd) {
5315 old_rd = rq->rd;
5316
5317 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5318 set_rq_offline(rq);
5319
5320 cpumask_clear_cpu(rq->cpu, old_rd->span);
5321
5322 /*
5323 * If we dont want to free the old_rd yet then
5324 * set old_rd to NULL to skip the freeing later
5325 * in this function:
5326 */
5327 if (!atomic_dec_and_test(&old_rd->refcount))
5328 old_rd = NULL;
5329 }
5330
5331 atomic_inc(&rd->refcount);
5332 rq->rd = rd;
5333
5334 cpumask_set_cpu(rq->cpu, rd->span);
5335 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5336 set_rq_online(rq);
5337
5338 raw_spin_unlock_irqrestore(&rq->lock, flags);
5339
5340 if (old_rd)
5341 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5342}
5343
5344static int init_rootdomain(struct root_domain *rd)
5345{
5346 memset(rd, 0, sizeof(*rd));
5347
5348 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5349 goto out;
5350 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5351 goto free_span;
5352 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5353 goto free_online;
5354 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5355 goto free_dlo_mask;
5356
5357 init_dl_bw(&rd->dl_bw);
5358 if (cpudl_init(&rd->cpudl) != 0)
5359 goto free_dlo_mask;
5360
5361 if (cpupri_init(&rd->cpupri) != 0)
5362 goto free_rto_mask;
5363 return 0;
5364
5365free_rto_mask:
5366 free_cpumask_var(rd->rto_mask);
5367free_dlo_mask:
5368 free_cpumask_var(rd->dlo_mask);
5369free_online:
5370 free_cpumask_var(rd->online);
5371free_span:
5372 free_cpumask_var(rd->span);
5373out:
5374 return -ENOMEM;
5375}
5376
5377/*
5378 * By default the system creates a single root-domain with all cpus as
5379 * members (mimicking the global state we have today).
5380 */
5381struct root_domain def_root_domain;
5382
5383static void init_defrootdomain(void)
5384{
5385 init_rootdomain(&def_root_domain);
5386
5387 atomic_set(&def_root_domain.refcount, 1);
5388}
5389
5390static struct root_domain *alloc_rootdomain(void)
5391{
5392 struct root_domain *rd;
5393
5394 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5395 if (!rd)
5396 return NULL;
5397
5398 if (init_rootdomain(rd) != 0) {
5399 kfree(rd);
5400 return NULL;
5401 }
5402
5403 return rd;
5404}
5405
5406static void free_sched_groups(struct sched_group *sg, int free_sgp)
5407{
5408 struct sched_group *tmp, *first;
5409
5410 if (!sg)
5411 return;
5412
5413 first = sg;
5414 do {
5415 tmp = sg->next;
5416
5417 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5418 kfree(sg->sgp);
5419
5420 kfree(sg);
5421 sg = tmp;
5422 } while (sg != first);
5423}
5424
5425static void free_sched_domain(struct rcu_head *rcu)
5426{
5427 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5428
5429 /*
5430 * If its an overlapping domain it has private groups, iterate and
5431 * nuke them all.
5432 */
5433 if (sd->flags & SD_OVERLAP) {
5434 free_sched_groups(sd->groups, 1);
5435 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5436 kfree(sd->groups->sgp);
5437 kfree(sd->groups);
5438 }
5439 kfree(sd);
5440}
5441
5442static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5443{
5444 call_rcu(&sd->rcu, free_sched_domain);
5445}
5446
5447static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5448{
5449 for (; sd; sd = sd->parent)
5450 destroy_sched_domain(sd, cpu);
5451}
5452
5453/*
5454 * Keep a special pointer to the highest sched_domain that has
5455 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5456 * allows us to avoid some pointer chasing select_idle_sibling().
5457 *
5458 * Also keep a unique ID per domain (we use the first cpu number in
5459 * the cpumask of the domain), this allows us to quickly tell if
5460 * two cpus are in the same cache domain, see cpus_share_cache().
5461 */
5462DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5463DEFINE_PER_CPU(int, sd_llc_size);
5464DEFINE_PER_CPU(int, sd_llc_id);
5465DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5466DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5467DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5468
5469static void update_top_cache_domain(int cpu)
5470{
5471 struct sched_domain *sd;
5472 struct sched_domain *busy_sd = NULL;
5473 int id = cpu;
5474 int size = 1;
5475
5476 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5477 if (sd) {
5478 id = cpumask_first(sched_domain_span(sd));
5479 size = cpumask_weight(sched_domain_span(sd));
5480 busy_sd = sd->parent; /* sd_busy */
5481 }
5482 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5483
5484 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5485 per_cpu(sd_llc_size, cpu) = size;
5486 per_cpu(sd_llc_id, cpu) = id;
5487
5488 sd = lowest_flag_domain(cpu, SD_NUMA);
5489 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5490
5491 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5492 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5493}
5494
5495/*
5496 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5497 * hold the hotplug lock.
5498 */
5499static void
5500cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5501{
5502 struct rq *rq = cpu_rq(cpu);
5503 struct sched_domain *tmp;
5504
5505 /* Remove the sched domains which do not contribute to scheduling. */
5506 for (tmp = sd; tmp; ) {
5507 struct sched_domain *parent = tmp->parent;
5508 if (!parent)
5509 break;
5510
5511 if (sd_parent_degenerate(tmp, parent)) {
5512 tmp->parent = parent->parent;
5513 if (parent->parent)
5514 parent->parent->child = tmp;
5515 /*
5516 * Transfer SD_PREFER_SIBLING down in case of a
5517 * degenerate parent; the spans match for this
5518 * so the property transfers.
5519 */
5520 if (parent->flags & SD_PREFER_SIBLING)
5521 tmp->flags |= SD_PREFER_SIBLING;
5522 destroy_sched_domain(parent, cpu);
5523 } else
5524 tmp = tmp->parent;
5525 }
5526
5527 if (sd && sd_degenerate(sd)) {
5528 tmp = sd;
5529 sd = sd->parent;
5530 destroy_sched_domain(tmp, cpu);
5531 if (sd)
5532 sd->child = NULL;
5533 }
5534
5535 sched_domain_debug(sd, cpu);
5536
5537 rq_attach_root(rq, rd);
5538 tmp = rq->sd;
5539 rcu_assign_pointer(rq->sd, sd);
5540 destroy_sched_domains(tmp, cpu);
5541
5542 update_top_cache_domain(cpu);
5543}
5544
5545/* cpus with isolated domains */
5546static cpumask_var_t cpu_isolated_map;
5547
5548/* Setup the mask of cpus configured for isolated domains */
5549static int __init isolated_cpu_setup(char *str)
5550{
5551 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5552 cpulist_parse(str, cpu_isolated_map);
5553 return 1;
5554}
5555
5556__setup("isolcpus=", isolated_cpu_setup);
5557
5558static const struct cpumask *cpu_cpu_mask(int cpu)
5559{
5560 return cpumask_of_node(cpu_to_node(cpu));
5561}
5562
5563struct sd_data {
5564 struct sched_domain **__percpu sd;
5565 struct sched_group **__percpu sg;
5566 struct sched_group_power **__percpu sgp;
5567};
5568
5569struct s_data {
5570 struct sched_domain ** __percpu sd;
5571 struct root_domain *rd;
5572};
5573
5574enum s_alloc {
5575 sa_rootdomain,
5576 sa_sd,
5577 sa_sd_storage,
5578 sa_none,
5579};
5580
5581struct sched_domain_topology_level;
5582
5583typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5584typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5585
5586#define SDTL_OVERLAP 0x01
5587
5588struct sched_domain_topology_level {
5589 sched_domain_init_f init;
5590 sched_domain_mask_f mask;
5591 int flags;
5592 int numa_level;
5593 struct sd_data data;
5594};
5595
5596/*
5597 * Build an iteration mask that can exclude certain CPUs from the upwards
5598 * domain traversal.
5599 *
5600 * Asymmetric node setups can result in situations where the domain tree is of
5601 * unequal depth, make sure to skip domains that already cover the entire
5602 * range.
5603 *
5604 * In that case build_sched_domains() will have terminated the iteration early
5605 * and our sibling sd spans will be empty. Domains should always include the
5606 * cpu they're built on, so check that.
5607 *
5608 */
5609static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5610{
5611 const struct cpumask *span = sched_domain_span(sd);
5612 struct sd_data *sdd = sd->private;
5613 struct sched_domain *sibling;
5614 int i;
5615
5616 for_each_cpu(i, span) {
5617 sibling = *per_cpu_ptr(sdd->sd, i);
5618 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5619 continue;
5620
5621 cpumask_set_cpu(i, sched_group_mask(sg));
5622 }
5623}
5624
5625/*
5626 * Return the canonical balance cpu for this group, this is the first cpu
5627 * of this group that's also in the iteration mask.
5628 */
5629int group_balance_cpu(struct sched_group *sg)
5630{
5631 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5632}
5633
5634static int
5635build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5636{
5637 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5638 const struct cpumask *span = sched_domain_span(sd);
5639 struct cpumask *covered = sched_domains_tmpmask;
5640 struct sd_data *sdd = sd->private;
5641 struct sched_domain *child;
5642 int i;
5643
5644 cpumask_clear(covered);
5645
5646 for_each_cpu(i, span) {
5647 struct cpumask *sg_span;
5648
5649 if (cpumask_test_cpu(i, covered))
5650 continue;
5651
5652 child = *per_cpu_ptr(sdd->sd, i);
5653
5654 /* See the comment near build_group_mask(). */
5655 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5656 continue;
5657
5658 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5659 GFP_KERNEL, cpu_to_node(cpu));
5660
5661 if (!sg)
5662 goto fail;
5663
5664 sg_span = sched_group_cpus(sg);
5665 if (child->child) {
5666 child = child->child;
5667 cpumask_copy(sg_span, sched_domain_span(child));
5668 } else
5669 cpumask_set_cpu(i, sg_span);
5670
5671 cpumask_or(covered, covered, sg_span);
5672
5673 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5674 if (atomic_inc_return(&sg->sgp->ref) == 1)
5675 build_group_mask(sd, sg);
5676
5677 /*
5678 * Initialize sgp->power such that even if we mess up the
5679 * domains and no possible iteration will get us here, we won't
5680 * die on a /0 trap.
5681 */
5682 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5683 sg->sgp->power_orig = sg->sgp->power;
5684
5685 /*
5686 * Make sure the first group of this domain contains the
5687 * canonical balance cpu. Otherwise the sched_domain iteration
5688 * breaks. See update_sg_lb_stats().
5689 */
5690 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5691 group_balance_cpu(sg) == cpu)
5692 groups = sg;
5693
5694 if (!first)
5695 first = sg;
5696 if (last)
5697 last->next = sg;
5698 last = sg;
5699 last->next = first;
5700 }
5701 sd->groups = groups;
5702
5703 return 0;
5704
5705fail:
5706 free_sched_groups(first, 0);
5707
5708 return -ENOMEM;
5709}
5710
5711static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5712{
5713 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5714 struct sched_domain *child = sd->child;
5715
5716 if (child)
5717 cpu = cpumask_first(sched_domain_span(child));
5718
5719 if (sg) {
5720 *sg = *per_cpu_ptr(sdd->sg, cpu);
5721 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5722 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5723 }
5724
5725 return cpu;
5726}
5727
5728/*
5729 * build_sched_groups will build a circular linked list of the groups
5730 * covered by the given span, and will set each group's ->cpumask correctly,
5731 * and ->cpu_power to 0.
5732 *
5733 * Assumes the sched_domain tree is fully constructed
5734 */
5735static int
5736build_sched_groups(struct sched_domain *sd, int cpu)
5737{
5738 struct sched_group *first = NULL, *last = NULL;
5739 struct sd_data *sdd = sd->private;
5740 const struct cpumask *span = sched_domain_span(sd);
5741 struct cpumask *covered;
5742 int i;
5743
5744 get_group(cpu, sdd, &sd->groups);
5745 atomic_inc(&sd->groups->ref);
5746
5747 if (cpu != cpumask_first(span))
5748 return 0;
5749
5750 lockdep_assert_held(&sched_domains_mutex);
5751 covered = sched_domains_tmpmask;
5752
5753 cpumask_clear(covered);
5754
5755 for_each_cpu(i, span) {
5756 struct sched_group *sg;
5757 int group, j;
5758
5759 if (cpumask_test_cpu(i, covered))
5760 continue;
5761
5762 group = get_group(i, sdd, &sg);
5763 cpumask_clear(sched_group_cpus(sg));
5764 sg->sgp->power = 0;
5765 cpumask_setall(sched_group_mask(sg));
5766
5767 for_each_cpu(j, span) {
5768 if (get_group(j, sdd, NULL) != group)
5769 continue;
5770
5771 cpumask_set_cpu(j, covered);
5772 cpumask_set_cpu(j, sched_group_cpus(sg));
5773 }
5774
5775 if (!first)
5776 first = sg;
5777 if (last)
5778 last->next = sg;
5779 last = sg;
5780 }
5781 last->next = first;
5782
5783 return 0;
5784}
5785
5786/*
5787 * Initialize sched groups cpu_power.
5788 *
5789 * cpu_power indicates the capacity of sched group, which is used while
5790 * distributing the load between different sched groups in a sched domain.
5791 * Typically cpu_power for all the groups in a sched domain will be same unless
5792 * there are asymmetries in the topology. If there are asymmetries, group
5793 * having more cpu_power will pickup more load compared to the group having
5794 * less cpu_power.
5795 */
5796static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5797{
5798 struct sched_group *sg = sd->groups;
5799
5800 WARN_ON(!sg);
5801
5802 do {
5803 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5804 sg = sg->next;
5805 } while (sg != sd->groups);
5806
5807 if (cpu != group_balance_cpu(sg))
5808 return;
5809
5810 update_group_power(sd, cpu);
5811 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5812}
5813
5814int __weak arch_sd_sibling_asym_packing(void)
5815{
5816 return 0*SD_ASYM_PACKING;
5817}
5818
5819/*
5820 * Initializers for schedule domains
5821 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5822 */
5823
5824#ifdef CONFIG_SCHED_DEBUG
5825# define SD_INIT_NAME(sd, type) sd->name = #type
5826#else
5827# define SD_INIT_NAME(sd, type) do { } while (0)
5828#endif
5829
5830#define SD_INIT_FUNC(type) \
5831static noinline struct sched_domain * \
5832sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5833{ \
5834 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5835 *sd = SD_##type##_INIT; \
5836 SD_INIT_NAME(sd, type); \
5837 sd->private = &tl->data; \
5838 return sd; \
5839}
5840
5841SD_INIT_FUNC(CPU)
5842#ifdef CONFIG_SCHED_SMT
5843 SD_INIT_FUNC(SIBLING)
5844#endif
5845#ifdef CONFIG_SCHED_MC
5846 SD_INIT_FUNC(MC)
5847#endif
5848#ifdef CONFIG_SCHED_BOOK
5849 SD_INIT_FUNC(BOOK)
5850#endif
5851
5852static int default_relax_domain_level = -1;
5853int sched_domain_level_max;
5854
5855static int __init setup_relax_domain_level(char *str)
5856{
5857 if (kstrtoint(str, 0, &default_relax_domain_level))
5858 pr_warn("Unable to set relax_domain_level\n");
5859
5860 return 1;
5861}
5862__setup("relax_domain_level=", setup_relax_domain_level);
5863
5864static void set_domain_attribute(struct sched_domain *sd,
5865 struct sched_domain_attr *attr)
5866{
5867 int request;
5868
5869 if (!attr || attr->relax_domain_level < 0) {
5870 if (default_relax_domain_level < 0)
5871 return;
5872 else
5873 request = default_relax_domain_level;
5874 } else
5875 request = attr->relax_domain_level;
5876 if (request < sd->level) {
5877 /* turn off idle balance on this domain */
5878 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5879 } else {
5880 /* turn on idle balance on this domain */
5881 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5882 }
5883}
5884
5885static void __sdt_free(const struct cpumask *cpu_map);
5886static int __sdt_alloc(const struct cpumask *cpu_map);
5887
5888static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5889 const struct cpumask *cpu_map)
5890{
5891 switch (what) {
5892 case sa_rootdomain:
5893 if (!atomic_read(&d->rd->refcount))
5894 free_rootdomain(&d->rd->rcu); /* fall through */
5895 case sa_sd:
5896 free_percpu(d->sd); /* fall through */
5897 case sa_sd_storage:
5898 __sdt_free(cpu_map); /* fall through */
5899 case sa_none:
5900 break;
5901 }
5902}
5903
5904static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5905 const struct cpumask *cpu_map)
5906{
5907 memset(d, 0, sizeof(*d));
5908
5909 if (__sdt_alloc(cpu_map))
5910 return sa_sd_storage;
5911 d->sd = alloc_percpu(struct sched_domain *);
5912 if (!d->sd)
5913 return sa_sd_storage;
5914 d->rd = alloc_rootdomain();
5915 if (!d->rd)
5916 return sa_sd;
5917 return sa_rootdomain;
5918}
5919
5920/*
5921 * NULL the sd_data elements we've used to build the sched_domain and
5922 * sched_group structure so that the subsequent __free_domain_allocs()
5923 * will not free the data we're using.
5924 */
5925static void claim_allocations(int cpu, struct sched_domain *sd)
5926{
5927 struct sd_data *sdd = sd->private;
5928
5929 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5930 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5931
5932 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5933 *per_cpu_ptr(sdd->sg, cpu) = NULL;
5934
5935 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5936 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
5937}
5938
5939#ifdef CONFIG_SCHED_SMT
5940static const struct cpumask *cpu_smt_mask(int cpu)
5941{
5942 return topology_thread_cpumask(cpu);
5943}
5944#endif
5945
5946/*
5947 * Topology list, bottom-up.
5948 */
5949static struct sched_domain_topology_level default_topology[] = {
5950#ifdef CONFIG_SCHED_SMT
5951 { sd_init_SIBLING, cpu_smt_mask, },
5952#endif
5953#ifdef CONFIG_SCHED_MC
5954 { sd_init_MC, cpu_coregroup_mask, },
5955#endif
5956#ifdef CONFIG_SCHED_BOOK
5957 { sd_init_BOOK, cpu_book_mask, },
5958#endif
5959 { sd_init_CPU, cpu_cpu_mask, },
5960 { NULL, },
5961};
5962
5963static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5964
5965#define for_each_sd_topology(tl) \
5966 for (tl = sched_domain_topology; tl->init; tl++)
5967
5968#ifdef CONFIG_NUMA
5969
5970static int sched_domains_numa_levels;
5971static int *sched_domains_numa_distance;
5972static struct cpumask ***sched_domains_numa_masks;
5973static int sched_domains_curr_level;
5974
5975static inline int sd_local_flags(int level)
5976{
5977 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5978 return 0;
5979
5980 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5981}
5982
5983static struct sched_domain *
5984sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5985{
5986 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5987 int level = tl->numa_level;
5988 int sd_weight = cpumask_weight(
5989 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5990
5991 *sd = (struct sched_domain){
5992 .min_interval = sd_weight,
5993 .max_interval = 2*sd_weight,
5994 .busy_factor = 32,
5995 .imbalance_pct = 125,
5996 .cache_nice_tries = 2,
5997 .busy_idx = 3,
5998 .idle_idx = 2,
5999 .newidle_idx = 0,
6000 .wake_idx = 0,
6001 .forkexec_idx = 0,
6002
6003 .flags = 1*SD_LOAD_BALANCE
6004 | 1*SD_BALANCE_NEWIDLE
6005 | 0*SD_BALANCE_EXEC
6006 | 0*SD_BALANCE_FORK
6007 | 0*SD_BALANCE_WAKE
6008 | 0*SD_WAKE_AFFINE
6009 | 0*SD_SHARE_CPUPOWER
6010 | 0*SD_SHARE_PKG_RESOURCES
6011 | 1*SD_SERIALIZE
6012 | 0*SD_PREFER_SIBLING
6013 | 1*SD_NUMA
6014 | sd_local_flags(level)
6015 ,
6016 .last_balance = jiffies,
6017 .balance_interval = sd_weight,
6018 };
6019 SD_INIT_NAME(sd, NUMA);
6020 sd->private = &tl->data;
6021
6022 /*
6023 * Ugly hack to pass state to sd_numa_mask()...
6024 */
6025 sched_domains_curr_level = tl->numa_level;
6026
6027 return sd;
6028}
6029
6030static const struct cpumask *sd_numa_mask(int cpu)
6031{
6032 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6033}
6034
6035static void sched_numa_warn(const char *str)
6036{
6037 static int done = false;
6038 int i,j;
6039
6040 if (done)
6041 return;
6042
6043 done = true;
6044
6045 printk(KERN_WARNING "ERROR: %s\n\n", str);
6046
6047 for (i = 0; i < nr_node_ids; i++) {
6048 printk(KERN_WARNING " ");
6049 for (j = 0; j < nr_node_ids; j++)
6050 printk(KERN_CONT "%02d ", node_distance(i,j));
6051 printk(KERN_CONT "\n");
6052 }
6053 printk(KERN_WARNING "\n");
6054}
6055
6056static bool find_numa_distance(int distance)
6057{
6058 int i;
6059
6060 if (distance == node_distance(0, 0))
6061 return true;
6062
6063 for (i = 0; i < sched_domains_numa_levels; i++) {
6064 if (sched_domains_numa_distance[i] == distance)
6065 return true;
6066 }
6067
6068 return false;
6069}
6070
6071static void sched_init_numa(void)
6072{
6073 int next_distance, curr_distance = node_distance(0, 0);
6074 struct sched_domain_topology_level *tl;
6075 int level = 0;
6076 int i, j, k;
6077
6078 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6079 if (!sched_domains_numa_distance)
6080 return;
6081
6082 /*
6083 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6084 * unique distances in the node_distance() table.
6085 *
6086 * Assumes node_distance(0,j) includes all distances in
6087 * node_distance(i,j) in order to avoid cubic time.
6088 */
6089 next_distance = curr_distance;
6090 for (i = 0; i < nr_node_ids; i++) {
6091 for (j = 0; j < nr_node_ids; j++) {
6092 for (k = 0; k < nr_node_ids; k++) {
6093 int distance = node_distance(i, k);
6094
6095 if (distance > curr_distance &&
6096 (distance < next_distance ||
6097 next_distance == curr_distance))
6098 next_distance = distance;
6099
6100 /*
6101 * While not a strong assumption it would be nice to know
6102 * about cases where if node A is connected to B, B is not
6103 * equally connected to A.
6104 */
6105 if (sched_debug() && node_distance(k, i) != distance)
6106 sched_numa_warn("Node-distance not symmetric");
6107
6108 if (sched_debug() && i && !find_numa_distance(distance))
6109 sched_numa_warn("Node-0 not representative");
6110 }
6111 if (next_distance != curr_distance) {
6112 sched_domains_numa_distance[level++] = next_distance;
6113 sched_domains_numa_levels = level;
6114 curr_distance = next_distance;
6115 } else break;
6116 }
6117
6118 /*
6119 * In case of sched_debug() we verify the above assumption.
6120 */
6121 if (!sched_debug())
6122 break;
6123 }
6124 /*
6125 * 'level' contains the number of unique distances, excluding the
6126 * identity distance node_distance(i,i).
6127 *
6128 * The sched_domains_numa_distance[] array includes the actual distance
6129 * numbers.
6130 */
6131
6132 /*
6133 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6134 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6135 * the array will contain less then 'level' members. This could be
6136 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6137 * in other functions.
6138 *
6139 * We reset it to 'level' at the end of this function.
6140 */
6141 sched_domains_numa_levels = 0;
6142
6143 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6144 if (!sched_domains_numa_masks)
6145 return;
6146
6147 /*
6148 * Now for each level, construct a mask per node which contains all
6149 * cpus of nodes that are that many hops away from us.
6150 */
6151 for (i = 0; i < level; i++) {
6152 sched_domains_numa_masks[i] =
6153 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6154 if (!sched_domains_numa_masks[i])
6155 return;
6156
6157 for (j = 0; j < nr_node_ids; j++) {
6158 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6159 if (!mask)
6160 return;
6161
6162 sched_domains_numa_masks[i][j] = mask;
6163
6164 for (k = 0; k < nr_node_ids; k++) {
6165 if (node_distance(j, k) > sched_domains_numa_distance[i])
6166 continue;
6167
6168 cpumask_or(mask, mask, cpumask_of_node(k));
6169 }
6170 }
6171 }
6172
6173 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6174 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6175 if (!tl)
6176 return;
6177
6178 /*
6179 * Copy the default topology bits..
6180 */
6181 for (i = 0; default_topology[i].init; i++)
6182 tl[i] = default_topology[i];
6183
6184 /*
6185 * .. and append 'j' levels of NUMA goodness.
6186 */
6187 for (j = 0; j < level; i++, j++) {
6188 tl[i] = (struct sched_domain_topology_level){
6189 .init = sd_numa_init,
6190 .mask = sd_numa_mask,
6191 .flags = SDTL_OVERLAP,
6192 .numa_level = j,
6193 };
6194 }
6195
6196 sched_domain_topology = tl;
6197
6198 sched_domains_numa_levels = level;
6199}
6200
6201static void sched_domains_numa_masks_set(int cpu)
6202{
6203 int i, j;
6204 int node = cpu_to_node(cpu);
6205
6206 for (i = 0; i < sched_domains_numa_levels; i++) {
6207 for (j = 0; j < nr_node_ids; j++) {
6208 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6209 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6210 }
6211 }
6212}
6213
6214static void sched_domains_numa_masks_clear(int cpu)
6215{
6216 int i, j;
6217 for (i = 0; i < sched_domains_numa_levels; i++) {
6218 for (j = 0; j < nr_node_ids; j++)
6219 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6220 }
6221}
6222
6223/*
6224 * Update sched_domains_numa_masks[level][node] array when new cpus
6225 * are onlined.
6226 */
6227static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6228 unsigned long action,
6229 void *hcpu)
6230{
6231 int cpu = (long)hcpu;
6232
6233 switch (action & ~CPU_TASKS_FROZEN) {
6234 case CPU_ONLINE:
6235 sched_domains_numa_masks_set(cpu);
6236 break;
6237
6238 case CPU_DEAD:
6239 sched_domains_numa_masks_clear(cpu);
6240 break;
6241
6242 default:
6243 return NOTIFY_DONE;
6244 }
6245
6246 return NOTIFY_OK;
6247}
6248#else
6249static inline void sched_init_numa(void)
6250{
6251}
6252
6253static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6254 unsigned long action,
6255 void *hcpu)
6256{
6257 return 0;
6258}
6259#endif /* CONFIG_NUMA */
6260
6261static int __sdt_alloc(const struct cpumask *cpu_map)
6262{
6263 struct sched_domain_topology_level *tl;
6264 int j;
6265
6266 for_each_sd_topology(tl) {
6267 struct sd_data *sdd = &tl->data;
6268
6269 sdd->sd = alloc_percpu(struct sched_domain *);
6270 if (!sdd->sd)
6271 return -ENOMEM;
6272
6273 sdd->sg = alloc_percpu(struct sched_group *);
6274 if (!sdd->sg)
6275 return -ENOMEM;
6276
6277 sdd->sgp = alloc_percpu(struct sched_group_power *);
6278 if (!sdd->sgp)
6279 return -ENOMEM;
6280
6281 for_each_cpu(j, cpu_map) {
6282 struct sched_domain *sd;
6283 struct sched_group *sg;
6284 struct sched_group_power *sgp;
6285
6286 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6287 GFP_KERNEL, cpu_to_node(j));
6288 if (!sd)
6289 return -ENOMEM;
6290
6291 *per_cpu_ptr(sdd->sd, j) = sd;
6292
6293 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6294 GFP_KERNEL, cpu_to_node(j));
6295 if (!sg)
6296 return -ENOMEM;
6297
6298 sg->next = sg;
6299
6300 *per_cpu_ptr(sdd->sg, j) = sg;
6301
6302 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6303 GFP_KERNEL, cpu_to_node(j));
6304 if (!sgp)
6305 return -ENOMEM;
6306
6307 *per_cpu_ptr(sdd->sgp, j) = sgp;
6308 }
6309 }
6310
6311 return 0;
6312}
6313
6314static void __sdt_free(const struct cpumask *cpu_map)
6315{
6316 struct sched_domain_topology_level *tl;
6317 int j;
6318
6319 for_each_sd_topology(tl) {
6320 struct sd_data *sdd = &tl->data;
6321
6322 for_each_cpu(j, cpu_map) {
6323 struct sched_domain *sd;
6324
6325 if (sdd->sd) {
6326 sd = *per_cpu_ptr(sdd->sd, j);
6327 if (sd && (sd->flags & SD_OVERLAP))
6328 free_sched_groups(sd->groups, 0);
6329 kfree(*per_cpu_ptr(sdd->sd, j));
6330 }
6331
6332 if (sdd->sg)
6333 kfree(*per_cpu_ptr(sdd->sg, j));
6334 if (sdd->sgp)
6335 kfree(*per_cpu_ptr(sdd->sgp, j));
6336 }
6337 free_percpu(sdd->sd);
6338 sdd->sd = NULL;
6339 free_percpu(sdd->sg);
6340 sdd->sg = NULL;
6341 free_percpu(sdd->sgp);
6342 sdd->sgp = NULL;
6343 }
6344}
6345
6346struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6347 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6348 struct sched_domain *child, int cpu)
6349{
6350 struct sched_domain *sd = tl->init(tl, cpu);
6351 if (!sd)
6352 return child;
6353
6354 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6355 if (child) {
6356 sd->level = child->level + 1;
6357 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6358 child->parent = sd;
6359 sd->child = child;
6360 }
6361 set_domain_attribute(sd, attr);
6362
6363 return sd;
6364}
6365
6366/*
6367 * Build sched domains for a given set of cpus and attach the sched domains
6368 * to the individual cpus
6369 */
6370static int build_sched_domains(const struct cpumask *cpu_map,
6371 struct sched_domain_attr *attr)
6372{
6373 enum s_alloc alloc_state;
6374 struct sched_domain *sd;
6375 struct s_data d;
6376 int i, ret = -ENOMEM;
6377
6378 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6379 if (alloc_state != sa_rootdomain)
6380 goto error;
6381
6382 /* Set up domains for cpus specified by the cpu_map. */
6383 for_each_cpu(i, cpu_map) {
6384 struct sched_domain_topology_level *tl;
6385
6386 sd = NULL;
6387 for_each_sd_topology(tl) {
6388 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6389 if (tl == sched_domain_topology)
6390 *per_cpu_ptr(d.sd, i) = sd;
6391 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6392 sd->flags |= SD_OVERLAP;
6393 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6394 break;
6395 }
6396 }
6397
6398 /* Build the groups for the domains */
6399 for_each_cpu(i, cpu_map) {
6400 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6401 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6402 if (sd->flags & SD_OVERLAP) {
6403 if (build_overlap_sched_groups(sd, i))
6404 goto error;
6405 } else {
6406 if (build_sched_groups(sd, i))
6407 goto error;
6408 }
6409 }
6410 }
6411
6412 /* Calculate CPU power for physical packages and nodes */
6413 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6414 if (!cpumask_test_cpu(i, cpu_map))
6415 continue;
6416
6417 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6418 claim_allocations(i, sd);
6419 init_sched_groups_power(i, sd);
6420 }
6421 }
6422
6423 /* Attach the domains */
6424 rcu_read_lock();
6425 for_each_cpu(i, cpu_map) {
6426 sd = *per_cpu_ptr(d.sd, i);
6427 cpu_attach_domain(sd, d.rd, i);
6428 }
6429 rcu_read_unlock();
6430
6431 ret = 0;
6432error:
6433 __free_domain_allocs(&d, alloc_state, cpu_map);
6434 return ret;
6435}
6436
6437static cpumask_var_t *doms_cur; /* current sched domains */
6438static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6439static struct sched_domain_attr *dattr_cur;
6440 /* attribues of custom domains in 'doms_cur' */
6441
6442/*
6443 * Special case: If a kmalloc of a doms_cur partition (array of
6444 * cpumask) fails, then fallback to a single sched domain,
6445 * as determined by the single cpumask fallback_doms.
6446 */
6447static cpumask_var_t fallback_doms;
6448
6449/*
6450 * arch_update_cpu_topology lets virtualized architectures update the
6451 * cpu core maps. It is supposed to return 1 if the topology changed
6452 * or 0 if it stayed the same.
6453 */
6454int __attribute__((weak)) arch_update_cpu_topology(void)
6455{
6456 return 0;
6457}
6458
6459cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6460{
6461 int i;
6462 cpumask_var_t *doms;
6463
6464 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6465 if (!doms)
6466 return NULL;
6467 for (i = 0; i < ndoms; i++) {
6468 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6469 free_sched_domains(doms, i);
6470 return NULL;
6471 }
6472 }
6473 return doms;
6474}
6475
6476void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6477{
6478 unsigned int i;
6479 for (i = 0; i < ndoms; i++)
6480 free_cpumask_var(doms[i]);
6481 kfree(doms);
6482}
6483
6484/*
6485 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6486 * For now this just excludes isolated cpus, but could be used to
6487 * exclude other special cases in the future.
6488 */
6489static int init_sched_domains(const struct cpumask *cpu_map)
6490{
6491 int err;
6492
6493 arch_update_cpu_topology();
6494 ndoms_cur = 1;
6495 doms_cur = alloc_sched_domains(ndoms_cur);
6496 if (!doms_cur)
6497 doms_cur = &fallback_doms;
6498 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6499 err = build_sched_domains(doms_cur[0], NULL);
6500 register_sched_domain_sysctl();
6501
6502 return err;
6503}
6504
6505/*
6506 * Detach sched domains from a group of cpus specified in cpu_map
6507 * These cpus will now be attached to the NULL domain
6508 */
6509static void detach_destroy_domains(const struct cpumask *cpu_map)
6510{
6511 int i;
6512
6513 rcu_read_lock();
6514 for_each_cpu(i, cpu_map)
6515 cpu_attach_domain(NULL, &def_root_domain, i);
6516 rcu_read_unlock();
6517}
6518
6519/* handle null as "default" */
6520static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6521 struct sched_domain_attr *new, int idx_new)
6522{
6523 struct sched_domain_attr tmp;
6524
6525 /* fast path */
6526 if (!new && !cur)
6527 return 1;
6528
6529 tmp = SD_ATTR_INIT;
6530 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6531 new ? (new + idx_new) : &tmp,
6532 sizeof(struct sched_domain_attr));
6533}
6534
6535/*
6536 * Partition sched domains as specified by the 'ndoms_new'
6537 * cpumasks in the array doms_new[] of cpumasks. This compares
6538 * doms_new[] to the current sched domain partitioning, doms_cur[].
6539 * It destroys each deleted domain and builds each new domain.
6540 *
6541 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6542 * The masks don't intersect (don't overlap.) We should setup one
6543 * sched domain for each mask. CPUs not in any of the cpumasks will
6544 * not be load balanced. If the same cpumask appears both in the
6545 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6546 * it as it is.
6547 *
6548 * The passed in 'doms_new' should be allocated using
6549 * alloc_sched_domains. This routine takes ownership of it and will
6550 * free_sched_domains it when done with it. If the caller failed the
6551 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6552 * and partition_sched_domains() will fallback to the single partition
6553 * 'fallback_doms', it also forces the domains to be rebuilt.
6554 *
6555 * If doms_new == NULL it will be replaced with cpu_online_mask.
6556 * ndoms_new == 0 is a special case for destroying existing domains,
6557 * and it will not create the default domain.
6558 *
6559 * Call with hotplug lock held
6560 */
6561void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6562 struct sched_domain_attr *dattr_new)
6563{
6564 int i, j, n;
6565 int new_topology;
6566
6567 mutex_lock(&sched_domains_mutex);
6568
6569 /* always unregister in case we don't destroy any domains */
6570 unregister_sched_domain_sysctl();
6571
6572 /* Let architecture update cpu core mappings. */
6573 new_topology = arch_update_cpu_topology();
6574
6575 n = doms_new ? ndoms_new : 0;
6576
6577 /* Destroy deleted domains */
6578 for (i = 0; i < ndoms_cur; i++) {
6579 for (j = 0; j < n && !new_topology; j++) {
6580 if (cpumask_equal(doms_cur[i], doms_new[j])
6581 && dattrs_equal(dattr_cur, i, dattr_new, j))
6582 goto match1;
6583 }
6584 /* no match - a current sched domain not in new doms_new[] */
6585 detach_destroy_domains(doms_cur[i]);
6586match1:
6587 ;
6588 }
6589
6590 n = ndoms_cur;
6591 if (doms_new == NULL) {
6592 n = 0;
6593 doms_new = &fallback_doms;
6594 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6595 WARN_ON_ONCE(dattr_new);
6596 }
6597
6598 /* Build new domains */
6599 for (i = 0; i < ndoms_new; i++) {
6600 for (j = 0; j < n && !new_topology; j++) {
6601 if (cpumask_equal(doms_new[i], doms_cur[j])
6602 && dattrs_equal(dattr_new, i, dattr_cur, j))
6603 goto match2;
6604 }
6605 /* no match - add a new doms_new */
6606 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6607match2:
6608 ;
6609 }
6610
6611 /* Remember the new sched domains */
6612 if (doms_cur != &fallback_doms)
6613 free_sched_domains(doms_cur, ndoms_cur);
6614 kfree(dattr_cur); /* kfree(NULL) is safe */
6615 doms_cur = doms_new;
6616 dattr_cur = dattr_new;
6617 ndoms_cur = ndoms_new;
6618
6619 register_sched_domain_sysctl();
6620
6621 mutex_unlock(&sched_domains_mutex);
6622}
6623
6624static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6625
6626/*
6627 * Update cpusets according to cpu_active mask. If cpusets are
6628 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6629 * around partition_sched_domains().
6630 *
6631 * If we come here as part of a suspend/resume, don't touch cpusets because we
6632 * want to restore it back to its original state upon resume anyway.
6633 */
6634static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6635 void *hcpu)
6636{
6637 switch (action) {
6638 case CPU_ONLINE_FROZEN:
6639 case CPU_DOWN_FAILED_FROZEN:
6640
6641 /*
6642 * num_cpus_frozen tracks how many CPUs are involved in suspend
6643 * resume sequence. As long as this is not the last online
6644 * operation in the resume sequence, just build a single sched
6645 * domain, ignoring cpusets.
6646 */
6647 num_cpus_frozen--;
6648 if (likely(num_cpus_frozen)) {
6649 partition_sched_domains(1, NULL, NULL);
6650 break;
6651 }
6652
6653 /*
6654 * This is the last CPU online operation. So fall through and
6655 * restore the original sched domains by considering the
6656 * cpuset configurations.
6657 */
6658
6659 case CPU_ONLINE:
6660 case CPU_DOWN_FAILED:
6661 cpuset_update_active_cpus(true);
6662 break;
6663 default:
6664 return NOTIFY_DONE;
6665 }
6666 return NOTIFY_OK;
6667}
6668
6669static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6670 void *hcpu)
6671{
6672 switch (action) {
6673 case CPU_DOWN_PREPARE:
6674 cpuset_update_active_cpus(false);
6675 break;
6676 case CPU_DOWN_PREPARE_FROZEN:
6677 num_cpus_frozen++;
6678 partition_sched_domains(1, NULL, NULL);
6679 break;
6680 default:
6681 return NOTIFY_DONE;
6682 }
6683 return NOTIFY_OK;
6684}
6685
6686void __init sched_init_smp(void)
6687{
6688 cpumask_var_t non_isolated_cpus;
6689
6690 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6691 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6692
6693 sched_init_numa();
6694
6695 /*
6696 * There's no userspace yet to cause hotplug operations; hence all the
6697 * cpu masks are stable and all blatant races in the below code cannot
6698 * happen.
6699 */
6700 mutex_lock(&sched_domains_mutex);
6701 init_sched_domains(cpu_active_mask);
6702 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6703 if (cpumask_empty(non_isolated_cpus))
6704 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6705 mutex_unlock(&sched_domains_mutex);
6706
6707 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6708 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6709 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6710
6711 init_hrtick();
6712
6713 /* Move init over to a non-isolated CPU */
6714 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6715 BUG();
6716 sched_init_granularity();
6717 free_cpumask_var(non_isolated_cpus);
6718
6719 init_sched_rt_class();
6720 init_sched_dl_class();
6721}
6722#else
6723void __init sched_init_smp(void)
6724{
6725 sched_init_granularity();
6726}
6727#endif /* CONFIG_SMP */
6728
6729const_debug unsigned int sysctl_timer_migration = 1;
6730
6731int in_sched_functions(unsigned long addr)
6732{
6733 return in_lock_functions(addr) ||
6734 (addr >= (unsigned long)__sched_text_start
6735 && addr < (unsigned long)__sched_text_end);
6736}
6737
6738#ifdef CONFIG_CGROUP_SCHED
6739/*
6740 * Default task group.
6741 * Every task in system belongs to this group at bootup.
6742 */
6743struct task_group root_task_group;
6744LIST_HEAD(task_groups);
6745#endif
6746
6747DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6748
6749void __init sched_init(void)
6750{
6751 int i, j;
6752 unsigned long alloc_size = 0, ptr;
6753
6754#ifdef CONFIG_FAIR_GROUP_SCHED
6755 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6756#endif
6757#ifdef CONFIG_RT_GROUP_SCHED
6758 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6759#endif
6760#ifdef CONFIG_CPUMASK_OFFSTACK
6761 alloc_size += num_possible_cpus() * cpumask_size();
6762#endif
6763 if (alloc_size) {
6764 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6765
6766#ifdef CONFIG_FAIR_GROUP_SCHED
6767 root_task_group.se = (struct sched_entity **)ptr;
6768 ptr += nr_cpu_ids * sizeof(void **);
6769
6770 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6771 ptr += nr_cpu_ids * sizeof(void **);
6772
6773#endif /* CONFIG_FAIR_GROUP_SCHED */
6774#ifdef CONFIG_RT_GROUP_SCHED
6775 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6776 ptr += nr_cpu_ids * sizeof(void **);
6777
6778 root_task_group.rt_rq = (struct rt_rq **)ptr;
6779 ptr += nr_cpu_ids * sizeof(void **);
6780
6781#endif /* CONFIG_RT_GROUP_SCHED */
6782#ifdef CONFIG_CPUMASK_OFFSTACK
6783 for_each_possible_cpu(i) {
6784 per_cpu(load_balance_mask, i) = (void *)ptr;
6785 ptr += cpumask_size();
6786 }
6787#endif /* CONFIG_CPUMASK_OFFSTACK */
6788 }
6789
6790 init_rt_bandwidth(&def_rt_bandwidth,
6791 global_rt_period(), global_rt_runtime());
6792 init_dl_bandwidth(&def_dl_bandwidth,
6793 global_rt_period(), global_rt_runtime());
6794
6795#ifdef CONFIG_SMP
6796 init_defrootdomain();
6797#endif
6798
6799#ifdef CONFIG_RT_GROUP_SCHED
6800 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6801 global_rt_period(), global_rt_runtime());
6802#endif /* CONFIG_RT_GROUP_SCHED */
6803
6804#ifdef CONFIG_CGROUP_SCHED
6805 list_add(&root_task_group.list, &task_groups);
6806 INIT_LIST_HEAD(&root_task_group.children);
6807 INIT_LIST_HEAD(&root_task_group.siblings);
6808 autogroup_init(&init_task);
6809
6810#endif /* CONFIG_CGROUP_SCHED */
6811
6812 for_each_possible_cpu(i) {
6813 struct rq *rq;
6814
6815 rq = cpu_rq(i);
6816 raw_spin_lock_init(&rq->lock);
6817 rq->nr_running = 0;
6818 rq->calc_load_active = 0;
6819 rq->calc_load_update = jiffies + LOAD_FREQ;
6820 init_cfs_rq(&rq->cfs);
6821 init_rt_rq(&rq->rt, rq);
6822 init_dl_rq(&rq->dl, rq);
6823#ifdef CONFIG_FAIR_GROUP_SCHED
6824 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6825 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6826 /*
6827 * How much cpu bandwidth does root_task_group get?
6828 *
6829 * In case of task-groups formed thr' the cgroup filesystem, it
6830 * gets 100% of the cpu resources in the system. This overall
6831 * system cpu resource is divided among the tasks of
6832 * root_task_group and its child task-groups in a fair manner,
6833 * based on each entity's (task or task-group's) weight
6834 * (se->load.weight).
6835 *
6836 * In other words, if root_task_group has 10 tasks of weight
6837 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6838 * then A0's share of the cpu resource is:
6839 *
6840 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6841 *
6842 * We achieve this by letting root_task_group's tasks sit
6843 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6844 */
6845 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6846 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6847#endif /* CONFIG_FAIR_GROUP_SCHED */
6848
6849 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6850#ifdef CONFIG_RT_GROUP_SCHED
6851 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6852 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6853#endif
6854
6855 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6856 rq->cpu_load[j] = 0;
6857
6858 rq->last_load_update_tick = jiffies;
6859
6860#ifdef CONFIG_SMP
6861 rq->sd = NULL;
6862 rq->rd = NULL;
6863 rq->cpu_power = SCHED_POWER_SCALE;
6864 rq->post_schedule = 0;
6865 rq->active_balance = 0;
6866 rq->next_balance = jiffies;
6867 rq->push_cpu = 0;
6868 rq->cpu = i;
6869 rq->online = 0;
6870 rq->idle_stamp = 0;
6871 rq->avg_idle = 2*sysctl_sched_migration_cost;
6872 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6873
6874 INIT_LIST_HEAD(&rq->cfs_tasks);
6875
6876 rq_attach_root(rq, &def_root_domain);
6877#ifdef CONFIG_NO_HZ_COMMON
6878 rq->nohz_flags = 0;
6879#endif
6880#ifdef CONFIG_NO_HZ_FULL
6881 rq->last_sched_tick = 0;
6882#endif
6883#endif
6884 init_rq_hrtick(rq);
6885 atomic_set(&rq->nr_iowait, 0);
6886 }
6887
6888 set_load_weight(&init_task);
6889
6890#ifdef CONFIG_PREEMPT_NOTIFIERS
6891 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6892#endif
6893
6894 /*
6895 * The boot idle thread does lazy MMU switching as well:
6896 */
6897 atomic_inc(&init_mm.mm_count);
6898 enter_lazy_tlb(&init_mm, current);
6899
6900 /*
6901 * Make us the idle thread. Technically, schedule() should not be
6902 * called from this thread, however somewhere below it might be,
6903 * but because we are the idle thread, we just pick up running again
6904 * when this runqueue becomes "idle".
6905 */
6906 init_idle(current, smp_processor_id());
6907
6908 calc_load_update = jiffies + LOAD_FREQ;
6909
6910 /*
6911 * During early bootup we pretend to be a normal task:
6912 */
6913 current->sched_class = &fair_sched_class;
6914
6915#ifdef CONFIG_SMP
6916 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6917 /* May be allocated at isolcpus cmdline parse time */
6918 if (cpu_isolated_map == NULL)
6919 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6920 idle_thread_set_boot_cpu();
6921#endif
6922 init_sched_fair_class();
6923
6924 scheduler_running = 1;
6925}
6926
6927#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6928static inline int preempt_count_equals(int preempt_offset)
6929{
6930 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6931
6932 return (nested == preempt_offset);
6933}
6934
6935void __might_sleep(const char *file, int line, int preempt_offset)
6936{
6937 static unsigned long prev_jiffy; /* ratelimiting */
6938
6939 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6940 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6941 system_state != SYSTEM_RUNNING || oops_in_progress)
6942 return;
6943 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6944 return;
6945 prev_jiffy = jiffies;
6946
6947 printk(KERN_ERR
6948 "BUG: sleeping function called from invalid context at %s:%d\n",
6949 file, line);
6950 printk(KERN_ERR
6951 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6952 in_atomic(), irqs_disabled(),
6953 current->pid, current->comm);
6954
6955 debug_show_held_locks(current);
6956 if (irqs_disabled())
6957 print_irqtrace_events(current);
6958 dump_stack();
6959}
6960EXPORT_SYMBOL(__might_sleep);
6961#endif
6962
6963#ifdef CONFIG_MAGIC_SYSRQ
6964static void normalize_task(struct rq *rq, struct task_struct *p)
6965{
6966 const struct sched_class *prev_class = p->sched_class;
6967 struct sched_attr attr = {
6968 .sched_policy = SCHED_NORMAL,
6969 };
6970 int old_prio = p->prio;
6971 int on_rq;
6972
6973 on_rq = p->on_rq;
6974 if (on_rq)
6975 dequeue_task(rq, p, 0);
6976 __setscheduler(rq, p, &attr);
6977 if (on_rq) {
6978 enqueue_task(rq, p, 0);
6979 resched_task(rq->curr);
6980 }
6981
6982 check_class_changed(rq, p, prev_class, old_prio);
6983}
6984
6985void normalize_rt_tasks(void)
6986{
6987 struct task_struct *g, *p;
6988 unsigned long flags;
6989 struct rq *rq;
6990
6991 read_lock_irqsave(&tasklist_lock, flags);
6992 do_each_thread(g, p) {
6993 /*
6994 * Only normalize user tasks:
6995 */
6996 if (!p->mm)
6997 continue;
6998
6999 p->se.exec_start = 0;
7000#ifdef CONFIG_SCHEDSTATS
7001 p->se.statistics.wait_start = 0;
7002 p->se.statistics.sleep_start = 0;
7003 p->se.statistics.block_start = 0;
7004#endif
7005
7006 if (!dl_task(p) && !rt_task(p)) {
7007 /*
7008 * Renice negative nice level userspace
7009 * tasks back to 0:
7010 */
7011 if (TASK_NICE(p) < 0 && p->mm)
7012 set_user_nice(p, 0);
7013 continue;
7014 }
7015
7016 raw_spin_lock(&p->pi_lock);
7017 rq = __task_rq_lock(p);
7018
7019 normalize_task(rq, p);
7020
7021 __task_rq_unlock(rq);
7022 raw_spin_unlock(&p->pi_lock);
7023 } while_each_thread(g, p);
7024
7025 read_unlock_irqrestore(&tasklist_lock, flags);
7026}
7027
7028#endif /* CONFIG_MAGIC_SYSRQ */
7029
7030#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7031/*
7032 * These functions are only useful for the IA64 MCA handling, or kdb.
7033 *
7034 * They can only be called when the whole system has been
7035 * stopped - every CPU needs to be quiescent, and no scheduling
7036 * activity can take place. Using them for anything else would
7037 * be a serious bug, and as a result, they aren't even visible
7038 * under any other configuration.
7039 */
7040
7041/**
7042 * curr_task - return the current task for a given cpu.
7043 * @cpu: the processor in question.
7044 *
7045 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7046 *
7047 * Return: The current task for @cpu.
7048 */
7049struct task_struct *curr_task(int cpu)
7050{
7051 return cpu_curr(cpu);
7052}
7053
7054#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7055
7056#ifdef CONFIG_IA64
7057/**
7058 * set_curr_task - set the current task for a given cpu.
7059 * @cpu: the processor in question.
7060 * @p: the task pointer to set.
7061 *
7062 * Description: This function must only be used when non-maskable interrupts
7063 * are serviced on a separate stack. It allows the architecture to switch the
7064 * notion of the current task on a cpu in a non-blocking manner. This function
7065 * must be called with all CPU's synchronized, and interrupts disabled, the
7066 * and caller must save the original value of the current task (see
7067 * curr_task() above) and restore that value before reenabling interrupts and
7068 * re-starting the system.
7069 *
7070 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7071 */
7072void set_curr_task(int cpu, struct task_struct *p)
7073{
7074 cpu_curr(cpu) = p;
7075}
7076
7077#endif
7078
7079#ifdef CONFIG_CGROUP_SCHED
7080/* task_group_lock serializes the addition/removal of task groups */
7081static DEFINE_SPINLOCK(task_group_lock);
7082
7083static void free_sched_group(struct task_group *tg)
7084{
7085 free_fair_sched_group(tg);
7086 free_rt_sched_group(tg);
7087 autogroup_free(tg);
7088 kfree(tg);
7089}
7090
7091/* allocate runqueue etc for a new task group */
7092struct task_group *sched_create_group(struct task_group *parent)
7093{
7094 struct task_group *tg;
7095
7096 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7097 if (!tg)
7098 return ERR_PTR(-ENOMEM);
7099
7100 if (!alloc_fair_sched_group(tg, parent))
7101 goto err;
7102
7103 if (!alloc_rt_sched_group(tg, parent))
7104 goto err;
7105
7106 return tg;
7107
7108err:
7109 free_sched_group(tg);
7110 return ERR_PTR(-ENOMEM);
7111}
7112
7113void sched_online_group(struct task_group *tg, struct task_group *parent)
7114{
7115 unsigned long flags;
7116
7117 spin_lock_irqsave(&task_group_lock, flags);
7118 list_add_rcu(&tg->list, &task_groups);
7119
7120 WARN_ON(!parent); /* root should already exist */
7121
7122 tg->parent = parent;
7123 INIT_LIST_HEAD(&tg->children);
7124 list_add_rcu(&tg->siblings, &parent->children);
7125 spin_unlock_irqrestore(&task_group_lock, flags);
7126}
7127
7128/* rcu callback to free various structures associated with a task group */
7129static void free_sched_group_rcu(struct rcu_head *rhp)
7130{
7131 /* now it should be safe to free those cfs_rqs */
7132 free_sched_group(container_of(rhp, struct task_group, rcu));
7133}
7134
7135/* Destroy runqueue etc associated with a task group */
7136void sched_destroy_group(struct task_group *tg)
7137{
7138 /* wait for possible concurrent references to cfs_rqs complete */
7139 call_rcu(&tg->rcu, free_sched_group_rcu);
7140}
7141
7142void sched_offline_group(struct task_group *tg)
7143{
7144 unsigned long flags;
7145 int i;
7146
7147 /* end participation in shares distribution */
7148 for_each_possible_cpu(i)
7149 unregister_fair_sched_group(tg, i);
7150
7151 spin_lock_irqsave(&task_group_lock, flags);
7152 list_del_rcu(&tg->list);
7153 list_del_rcu(&tg->siblings);
7154 spin_unlock_irqrestore(&task_group_lock, flags);
7155}
7156
7157/* change task's runqueue when it moves between groups.
7158 * The caller of this function should have put the task in its new group
7159 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7160 * reflect its new group.
7161 */
7162void sched_move_task(struct task_struct *tsk)
7163{
7164 struct task_group *tg;
7165 int on_rq, running;
7166 unsigned long flags;
7167 struct rq *rq;
7168
7169 rq = task_rq_lock(tsk, &flags);
7170
7171 running = task_current(rq, tsk);
7172 on_rq = tsk->on_rq;
7173
7174 if (on_rq)
7175 dequeue_task(rq, tsk, 0);
7176 if (unlikely(running))
7177 tsk->sched_class->put_prev_task(rq, tsk);
7178
7179 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
7180 lockdep_is_held(&tsk->sighand->siglock)),
7181 struct task_group, css);
7182 tg = autogroup_task_group(tsk, tg);
7183 tsk->sched_task_group = tg;
7184
7185#ifdef CONFIG_FAIR_GROUP_SCHED
7186 if (tsk->sched_class->task_move_group)
7187 tsk->sched_class->task_move_group(tsk, on_rq);
7188 else
7189#endif
7190 set_task_rq(tsk, task_cpu(tsk));
7191
7192 if (unlikely(running))
7193 tsk->sched_class->set_curr_task(rq);
7194 if (on_rq)
7195 enqueue_task(rq, tsk, 0);
7196
7197 task_rq_unlock(rq, tsk, &flags);
7198}
7199#endif /* CONFIG_CGROUP_SCHED */
7200
7201#ifdef CONFIG_RT_GROUP_SCHED
7202/*
7203 * Ensure that the real time constraints are schedulable.
7204 */
7205static DEFINE_MUTEX(rt_constraints_mutex);
7206
7207/* Must be called with tasklist_lock held */
7208static inline int tg_has_rt_tasks(struct task_group *tg)
7209{
7210 struct task_struct *g, *p;
7211
7212 do_each_thread(g, p) {
7213 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7214 return 1;
7215 } while_each_thread(g, p);
7216
7217 return 0;
7218}
7219
7220struct rt_schedulable_data {
7221 struct task_group *tg;
7222 u64 rt_period;
7223 u64 rt_runtime;
7224};
7225
7226static int tg_rt_schedulable(struct task_group *tg, void *data)
7227{
7228 struct rt_schedulable_data *d = data;
7229 struct task_group *child;
7230 unsigned long total, sum = 0;
7231 u64 period, runtime;
7232
7233 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7234 runtime = tg->rt_bandwidth.rt_runtime;
7235
7236 if (tg == d->tg) {
7237 period = d->rt_period;
7238 runtime = d->rt_runtime;
7239 }
7240
7241 /*
7242 * Cannot have more runtime than the period.
7243 */
7244 if (runtime > period && runtime != RUNTIME_INF)
7245 return -EINVAL;
7246
7247 /*
7248 * Ensure we don't starve existing RT tasks.
7249 */
7250 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7251 return -EBUSY;
7252
7253 total = to_ratio(period, runtime);
7254
7255 /*
7256 * Nobody can have more than the global setting allows.
7257 */
7258 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7259 return -EINVAL;
7260
7261 /*
7262 * The sum of our children's runtime should not exceed our own.
7263 */
7264 list_for_each_entry_rcu(child, &tg->children, siblings) {
7265 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7266 runtime = child->rt_bandwidth.rt_runtime;
7267
7268 if (child == d->tg) {
7269 period = d->rt_period;
7270 runtime = d->rt_runtime;
7271 }
7272
7273 sum += to_ratio(period, runtime);
7274 }
7275
7276 if (sum > total)
7277 return -EINVAL;
7278
7279 return 0;
7280}
7281
7282static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7283{
7284 int ret;
7285
7286 struct rt_schedulable_data data = {
7287 .tg = tg,
7288 .rt_period = period,
7289 .rt_runtime = runtime,
7290 };
7291
7292 rcu_read_lock();
7293 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7294 rcu_read_unlock();
7295
7296 return ret;
7297}
7298
7299static int tg_set_rt_bandwidth(struct task_group *tg,
7300 u64 rt_period, u64 rt_runtime)
7301{
7302 int i, err = 0;
7303
7304 mutex_lock(&rt_constraints_mutex);
7305 read_lock(&tasklist_lock);
7306 err = __rt_schedulable(tg, rt_period, rt_runtime);
7307 if (err)
7308 goto unlock;
7309
7310 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7311 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7312 tg->rt_bandwidth.rt_runtime = rt_runtime;
7313
7314 for_each_possible_cpu(i) {
7315 struct rt_rq *rt_rq = tg->rt_rq[i];
7316
7317 raw_spin_lock(&rt_rq->rt_runtime_lock);
7318 rt_rq->rt_runtime = rt_runtime;
7319 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7320 }
7321 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7322unlock:
7323 read_unlock(&tasklist_lock);
7324 mutex_unlock(&rt_constraints_mutex);
7325
7326 return err;
7327}
7328
7329static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7330{
7331 u64 rt_runtime, rt_period;
7332
7333 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7334 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7335 if (rt_runtime_us < 0)
7336 rt_runtime = RUNTIME_INF;
7337
7338 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7339}
7340
7341static long sched_group_rt_runtime(struct task_group *tg)
7342{
7343 u64 rt_runtime_us;
7344
7345 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7346 return -1;
7347
7348 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7349 do_div(rt_runtime_us, NSEC_PER_USEC);
7350 return rt_runtime_us;
7351}
7352
7353static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7354{
7355 u64 rt_runtime, rt_period;
7356
7357 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7358 rt_runtime = tg->rt_bandwidth.rt_runtime;
7359
7360 if (rt_period == 0)
7361 return -EINVAL;
7362
7363 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7364}
7365
7366static long sched_group_rt_period(struct task_group *tg)
7367{
7368 u64 rt_period_us;
7369
7370 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7371 do_div(rt_period_us, NSEC_PER_USEC);
7372 return rt_period_us;
7373}
7374#endif /* CONFIG_RT_GROUP_SCHED */
7375
7376#ifdef CONFIG_RT_GROUP_SCHED
7377static int sched_rt_global_constraints(void)
7378{
7379 int ret = 0;
7380
7381 mutex_lock(&rt_constraints_mutex);
7382 read_lock(&tasklist_lock);
7383 ret = __rt_schedulable(NULL, 0, 0);
7384 read_unlock(&tasklist_lock);
7385 mutex_unlock(&rt_constraints_mutex);
7386
7387 return ret;
7388}
7389
7390static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7391{
7392 /* Don't accept realtime tasks when there is no way for them to run */
7393 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7394 return 0;
7395
7396 return 1;
7397}
7398
7399#else /* !CONFIG_RT_GROUP_SCHED */
7400static int sched_rt_global_constraints(void)
7401{
7402 unsigned long flags;
7403 int i, ret = 0;
7404
7405 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7406 for_each_possible_cpu(i) {
7407 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7408
7409 raw_spin_lock(&rt_rq->rt_runtime_lock);
7410 rt_rq->rt_runtime = global_rt_runtime();
7411 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7412 }
7413 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7414
7415 return ret;
7416}
7417#endif /* CONFIG_RT_GROUP_SCHED */
7418
7419static int sched_dl_global_constraints(void)
7420{
7421 u64 runtime = global_rt_runtime();
7422 u64 period = global_rt_period();
7423 u64 new_bw = to_ratio(period, runtime);
7424 int cpu, ret = 0;
7425
7426 /*
7427 * Here we want to check the bandwidth not being set to some
7428 * value smaller than the currently allocated bandwidth in
7429 * any of the root_domains.
7430 *
7431 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7432 * cycling on root_domains... Discussion on different/better
7433 * solutions is welcome!
7434 */
7435 for_each_possible_cpu(cpu) {
7436 struct dl_bw *dl_b = dl_bw_of(cpu);
7437
7438 raw_spin_lock(&dl_b->lock);
7439 if (new_bw < dl_b->total_bw)
7440 ret = -EBUSY;
7441 raw_spin_unlock(&dl_b->lock);
7442
7443 if (ret)
7444 break;
7445 }
7446
7447 return ret;
7448}
7449
7450static void sched_dl_do_global(void)
7451{
7452 u64 new_bw = -1;
7453 int cpu;
7454
7455 def_dl_bandwidth.dl_period = global_rt_period();
7456 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7457
7458 if (global_rt_runtime() != RUNTIME_INF)
7459 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7460
7461 /*
7462 * FIXME: As above...
7463 */
7464 for_each_possible_cpu(cpu) {
7465 struct dl_bw *dl_b = dl_bw_of(cpu);
7466
7467 raw_spin_lock(&dl_b->lock);
7468 dl_b->bw = new_bw;
7469 raw_spin_unlock(&dl_b->lock);
7470 }
7471}
7472
7473static int sched_rt_global_validate(void)
7474{
7475 if (sysctl_sched_rt_period <= 0)
7476 return -EINVAL;
7477
7478 if (sysctl_sched_rt_runtime > sysctl_sched_rt_period)
7479 return -EINVAL;
7480
7481 return 0;
7482}
7483
7484static void sched_rt_do_global(void)
7485{
7486 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7487 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7488}
7489
7490int sched_rt_handler(struct ctl_table *table, int write,
7491 void __user *buffer, size_t *lenp,
7492 loff_t *ppos)
7493{
7494 int old_period, old_runtime;
7495 static DEFINE_MUTEX(mutex);
7496 int ret;
7497
7498 mutex_lock(&mutex);
7499 old_period = sysctl_sched_rt_period;
7500 old_runtime = sysctl_sched_rt_runtime;
7501
7502 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7503
7504 if (!ret && write) {
7505 ret = sched_rt_global_validate();
7506 if (ret)
7507 goto undo;
7508
7509 ret = sched_rt_global_constraints();
7510 if (ret)
7511 goto undo;
7512
7513 ret = sched_dl_global_constraints();
7514 if (ret)
7515 goto undo;
7516
7517 sched_rt_do_global();
7518 sched_dl_do_global();
7519 }
7520 if (0) {
7521undo:
7522 sysctl_sched_rt_period = old_period;
7523 sysctl_sched_rt_runtime = old_runtime;
7524 }
7525 mutex_unlock(&mutex);
7526
7527 return ret;
7528}
7529
7530int sched_rr_handler(struct ctl_table *table, int write,
7531 void __user *buffer, size_t *lenp,
7532 loff_t *ppos)
7533{
7534 int ret;
7535 static DEFINE_MUTEX(mutex);
7536
7537 mutex_lock(&mutex);
7538 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7539 /* make sure that internally we keep jiffies */
7540 /* also, writing zero resets timeslice to default */
7541 if (!ret && write) {
7542 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7543 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7544 }
7545 mutex_unlock(&mutex);
7546 return ret;
7547}
7548
7549#ifdef CONFIG_CGROUP_SCHED
7550
7551static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7552{
7553 return css ? container_of(css, struct task_group, css) : NULL;
7554}
7555
7556static struct cgroup_subsys_state *
7557cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7558{
7559 struct task_group *parent = css_tg(parent_css);
7560 struct task_group *tg;
7561
7562 if (!parent) {
7563 /* This is early initialization for the top cgroup */
7564 return &root_task_group.css;
7565 }
7566
7567 tg = sched_create_group(parent);
7568 if (IS_ERR(tg))
7569 return ERR_PTR(-ENOMEM);
7570
7571 return &tg->css;
7572}
7573
7574static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7575{
7576 struct task_group *tg = css_tg(css);
7577 struct task_group *parent = css_tg(css_parent(css));
7578
7579 if (parent)
7580 sched_online_group(tg, parent);
7581 return 0;
7582}
7583
7584static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7585{
7586 struct task_group *tg = css_tg(css);
7587
7588 sched_destroy_group(tg);
7589}
7590
7591static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7592{
7593 struct task_group *tg = css_tg(css);
7594
7595 sched_offline_group(tg);
7596}
7597
7598static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7599 struct cgroup_taskset *tset)
7600{
7601 struct task_struct *task;
7602
7603 cgroup_taskset_for_each(task, css, tset) {
7604#ifdef CONFIG_RT_GROUP_SCHED
7605 if (!sched_rt_can_attach(css_tg(css), task))
7606 return -EINVAL;
7607#else
7608 /* We don't support RT-tasks being in separate groups */
7609 if (task->sched_class != &fair_sched_class)
7610 return -EINVAL;
7611#endif
7612 }
7613 return 0;
7614}
7615
7616static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7617 struct cgroup_taskset *tset)
7618{
7619 struct task_struct *task;
7620
7621 cgroup_taskset_for_each(task, css, tset)
7622 sched_move_task(task);
7623}
7624
7625static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7626 struct cgroup_subsys_state *old_css,
7627 struct task_struct *task)
7628{
7629 /*
7630 * cgroup_exit() is called in the copy_process() failure path.
7631 * Ignore this case since the task hasn't ran yet, this avoids
7632 * trying to poke a half freed task state from generic code.
7633 */
7634 if (!(task->flags & PF_EXITING))
7635 return;
7636
7637 sched_move_task(task);
7638}
7639
7640#ifdef CONFIG_FAIR_GROUP_SCHED
7641static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7642 struct cftype *cftype, u64 shareval)
7643{
7644 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7645}
7646
7647static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7648 struct cftype *cft)
7649{
7650 struct task_group *tg = css_tg(css);
7651
7652 return (u64) scale_load_down(tg->shares);
7653}
7654
7655#ifdef CONFIG_CFS_BANDWIDTH
7656static DEFINE_MUTEX(cfs_constraints_mutex);
7657
7658const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7659const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7660
7661static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7662
7663static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7664{
7665 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7666 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7667
7668 if (tg == &root_task_group)
7669 return -EINVAL;
7670
7671 /*
7672 * Ensure we have at some amount of bandwidth every period. This is
7673 * to prevent reaching a state of large arrears when throttled via
7674 * entity_tick() resulting in prolonged exit starvation.
7675 */
7676 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7677 return -EINVAL;
7678
7679 /*
7680 * Likewise, bound things on the otherside by preventing insane quota
7681 * periods. This also allows us to normalize in computing quota
7682 * feasibility.
7683 */
7684 if (period > max_cfs_quota_period)
7685 return -EINVAL;
7686
7687 mutex_lock(&cfs_constraints_mutex);
7688 ret = __cfs_schedulable(tg, period, quota);
7689 if (ret)
7690 goto out_unlock;
7691
7692 runtime_enabled = quota != RUNTIME_INF;
7693 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7694 /*
7695 * If we need to toggle cfs_bandwidth_used, off->on must occur
7696 * before making related changes, and on->off must occur afterwards
7697 */
7698 if (runtime_enabled && !runtime_was_enabled)
7699 cfs_bandwidth_usage_inc();
7700 raw_spin_lock_irq(&cfs_b->lock);
7701 cfs_b->period = ns_to_ktime(period);
7702 cfs_b->quota = quota;
7703
7704 __refill_cfs_bandwidth_runtime(cfs_b);
7705 /* restart the period timer (if active) to handle new period expiry */
7706 if (runtime_enabled && cfs_b->timer_active) {
7707 /* force a reprogram */
7708 cfs_b->timer_active = 0;
7709 __start_cfs_bandwidth(cfs_b);
7710 }
7711 raw_spin_unlock_irq(&cfs_b->lock);
7712
7713 for_each_possible_cpu(i) {
7714 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7715 struct rq *rq = cfs_rq->rq;
7716
7717 raw_spin_lock_irq(&rq->lock);
7718 cfs_rq->runtime_enabled = runtime_enabled;
7719 cfs_rq->runtime_remaining = 0;
7720
7721 if (cfs_rq->throttled)
7722 unthrottle_cfs_rq(cfs_rq);
7723 raw_spin_unlock_irq(&rq->lock);
7724 }
7725 if (runtime_was_enabled && !runtime_enabled)
7726 cfs_bandwidth_usage_dec();
7727out_unlock:
7728 mutex_unlock(&cfs_constraints_mutex);
7729
7730 return ret;
7731}
7732
7733int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7734{
7735 u64 quota, period;
7736
7737 period = ktime_to_ns(tg->cfs_bandwidth.period);
7738 if (cfs_quota_us < 0)
7739 quota = RUNTIME_INF;
7740 else
7741 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7742
7743 return tg_set_cfs_bandwidth(tg, period, quota);
7744}
7745
7746long tg_get_cfs_quota(struct task_group *tg)
7747{
7748 u64 quota_us;
7749
7750 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7751 return -1;
7752
7753 quota_us = tg->cfs_bandwidth.quota;
7754 do_div(quota_us, NSEC_PER_USEC);
7755
7756 return quota_us;
7757}
7758
7759int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7760{
7761 u64 quota, period;
7762
7763 period = (u64)cfs_period_us * NSEC_PER_USEC;
7764 quota = tg->cfs_bandwidth.quota;
7765
7766 return tg_set_cfs_bandwidth(tg, period, quota);
7767}
7768
7769long tg_get_cfs_period(struct task_group *tg)
7770{
7771 u64 cfs_period_us;
7772
7773 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7774 do_div(cfs_period_us, NSEC_PER_USEC);
7775
7776 return cfs_period_us;
7777}
7778
7779static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7780 struct cftype *cft)
7781{
7782 return tg_get_cfs_quota(css_tg(css));
7783}
7784
7785static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7786 struct cftype *cftype, s64 cfs_quota_us)
7787{
7788 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7789}
7790
7791static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7792 struct cftype *cft)
7793{
7794 return tg_get_cfs_period(css_tg(css));
7795}
7796
7797static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7798 struct cftype *cftype, u64 cfs_period_us)
7799{
7800 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7801}
7802
7803struct cfs_schedulable_data {
7804 struct task_group *tg;
7805 u64 period, quota;
7806};
7807
7808/*
7809 * normalize group quota/period to be quota/max_period
7810 * note: units are usecs
7811 */
7812static u64 normalize_cfs_quota(struct task_group *tg,
7813 struct cfs_schedulable_data *d)
7814{
7815 u64 quota, period;
7816
7817 if (tg == d->tg) {
7818 period = d->period;
7819 quota = d->quota;
7820 } else {
7821 period = tg_get_cfs_period(tg);
7822 quota = tg_get_cfs_quota(tg);
7823 }
7824
7825 /* note: these should typically be equivalent */
7826 if (quota == RUNTIME_INF || quota == -1)
7827 return RUNTIME_INF;
7828
7829 return to_ratio(period, quota);
7830}
7831
7832static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7833{
7834 struct cfs_schedulable_data *d = data;
7835 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7836 s64 quota = 0, parent_quota = -1;
7837
7838 if (!tg->parent) {
7839 quota = RUNTIME_INF;
7840 } else {
7841 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7842
7843 quota = normalize_cfs_quota(tg, d);
7844 parent_quota = parent_b->hierarchal_quota;
7845
7846 /*
7847 * ensure max(child_quota) <= parent_quota, inherit when no
7848 * limit is set
7849 */
7850 if (quota == RUNTIME_INF)
7851 quota = parent_quota;
7852 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7853 return -EINVAL;
7854 }
7855 cfs_b->hierarchal_quota = quota;
7856
7857 return 0;
7858}
7859
7860static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7861{
7862 int ret;
7863 struct cfs_schedulable_data data = {
7864 .tg = tg,
7865 .period = period,
7866 .quota = quota,
7867 };
7868
7869 if (quota != RUNTIME_INF) {
7870 do_div(data.period, NSEC_PER_USEC);
7871 do_div(data.quota, NSEC_PER_USEC);
7872 }
7873
7874 rcu_read_lock();
7875 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7876 rcu_read_unlock();
7877
7878 return ret;
7879}
7880
7881static int cpu_stats_show(struct seq_file *sf, void *v)
7882{
7883 struct task_group *tg = css_tg(seq_css(sf));
7884 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7885
7886 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7887 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7888 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7889
7890 return 0;
7891}
7892#endif /* CONFIG_CFS_BANDWIDTH */
7893#endif /* CONFIG_FAIR_GROUP_SCHED */
7894
7895#ifdef CONFIG_RT_GROUP_SCHED
7896static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7897 struct cftype *cft, s64 val)
7898{
7899 return sched_group_set_rt_runtime(css_tg(css), val);
7900}
7901
7902static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7903 struct cftype *cft)
7904{
7905 return sched_group_rt_runtime(css_tg(css));
7906}
7907
7908static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7909 struct cftype *cftype, u64 rt_period_us)
7910{
7911 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7912}
7913
7914static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7915 struct cftype *cft)
7916{
7917 return sched_group_rt_period(css_tg(css));
7918}
7919#endif /* CONFIG_RT_GROUP_SCHED */
7920
7921static struct cftype cpu_files[] = {
7922#ifdef CONFIG_FAIR_GROUP_SCHED
7923 {
7924 .name = "shares",
7925 .read_u64 = cpu_shares_read_u64,
7926 .write_u64 = cpu_shares_write_u64,
7927 },
7928#endif
7929#ifdef CONFIG_CFS_BANDWIDTH
7930 {
7931 .name = "cfs_quota_us",
7932 .read_s64 = cpu_cfs_quota_read_s64,
7933 .write_s64 = cpu_cfs_quota_write_s64,
7934 },
7935 {
7936 .name = "cfs_period_us",
7937 .read_u64 = cpu_cfs_period_read_u64,
7938 .write_u64 = cpu_cfs_period_write_u64,
7939 },
7940 {
7941 .name = "stat",
7942 .seq_show = cpu_stats_show,
7943 },
7944#endif
7945#ifdef CONFIG_RT_GROUP_SCHED
7946 {
7947 .name = "rt_runtime_us",
7948 .read_s64 = cpu_rt_runtime_read,
7949 .write_s64 = cpu_rt_runtime_write,
7950 },
7951 {
7952 .name = "rt_period_us",
7953 .read_u64 = cpu_rt_period_read_uint,
7954 .write_u64 = cpu_rt_period_write_uint,
7955 },
7956#endif
7957 { } /* terminate */
7958};
7959
7960struct cgroup_subsys cpu_cgroup_subsys = {
7961 .name = "cpu",
7962 .css_alloc = cpu_cgroup_css_alloc,
7963 .css_free = cpu_cgroup_css_free,
7964 .css_online = cpu_cgroup_css_online,
7965 .css_offline = cpu_cgroup_css_offline,
7966 .can_attach = cpu_cgroup_can_attach,
7967 .attach = cpu_cgroup_attach,
7968 .exit = cpu_cgroup_exit,
7969 .subsys_id = cpu_cgroup_subsys_id,
7970 .base_cftypes = cpu_files,
7971 .early_init = 1,
7972};
7973
7974#endif /* CONFIG_CGROUP_SCHED */
7975
7976void dump_cpu_task(int cpu)
7977{
7978 pr_info("Task dump for CPU %d:\n", cpu);
7979 sched_show_task(cpu_curr(cpu));
7980}
This page took 0.054813 seconds and 5 git commands to generate.