sched: Move code around
[deliverable/linux.git] / kernel / sched.c
... / ...
CommitLineData
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
38#include <linux/capability.h>
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
41#include <linux/debug_locks.h>
42#include <linux/perf_counter.h>
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
46#include <linux/freezer.h>
47#include <linux/vmalloc.h>
48#include <linux/blkdev.h>
49#include <linux/delay.h>
50#include <linux/pid_namespace.h>
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
59#include <linux/proc_fs.h>
60#include <linux/seq_file.h>
61#include <linux/sysctl.h>
62#include <linux/syscalls.h>
63#include <linux/times.h>
64#include <linux/tsacct_kern.h>
65#include <linux/kprobes.h>
66#include <linux/delayacct.h>
67#include <linux/unistd.h>
68#include <linux/pagemap.h>
69#include <linux/hrtimer.h>
70#include <linux/tick.h>
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
73#include <linux/ftrace.h>
74
75#include <asm/tlb.h>
76#include <asm/irq_regs.h>
77
78#include "sched_cpupri.h"
79
80#define CREATE_TRACE_POINTS
81#include <trace/events/sched.h>
82
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115#define DEF_TIMESLICE (100 * HZ / 1000)
116
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
122static inline int rt_policy(int policy)
123{
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
134/*
135 * This is the priority-queue data structure of the RT scheduling class:
136 */
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
142struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
186}
187
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
207
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
236#ifdef CONFIG_GROUP_SCHED
237
238#include <linux/cgroup.h>
239
240struct cfs_rq;
241
242static LIST_HEAD(task_groups);
243
244/* task group related information */
245struct task_group {
246#ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css;
248#endif
249
250#ifdef CONFIG_USER_SCHED
251 uid_t uid;
252#endif
253
254#ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
266 struct rt_bandwidth rt_bandwidth;
267#endif
268
269 struct rcu_head rcu;
270 struct list_head list;
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
275};
276
277#ifdef CONFIG_USER_SCHED
278
279/* Helper function to pass uid information to create_sched_user() */
280void set_tg_uid(struct user_struct *user)
281{
282 user->tg->uid = user->uid;
283}
284
285/*
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
289 */
290struct task_group root_task_group;
291
292#ifdef CONFIG_FAIR_GROUP_SCHED
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
296static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp;
297#endif /* CONFIG_FAIR_GROUP_SCHED */
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
302#endif /* CONFIG_RT_GROUP_SCHED */
303#else /* !CONFIG_USER_SCHED */
304#define root_task_group init_task_group
305#endif /* CONFIG_USER_SCHED */
306
307/* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
309 */
310static DEFINE_SPINLOCK(task_group_lock);
311
312#ifdef CONFIG_SMP
313static int root_task_group_empty(void)
314{
315 return list_empty(&root_task_group.children);
316}
317#endif
318
319#ifdef CONFIG_FAIR_GROUP_SCHED
320#ifdef CONFIG_USER_SCHED
321# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
322#else /* !CONFIG_USER_SCHED */
323# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
324#endif /* CONFIG_USER_SCHED */
325
326/*
327 * A weight of 0 or 1 can cause arithmetics problems.
328 * A weight of a cfs_rq is the sum of weights of which entities
329 * are queued on this cfs_rq, so a weight of a entity should not be
330 * too large, so as the shares value of a task group.
331 * (The default weight is 1024 - so there's no practical
332 * limitation from this.)
333 */
334#define MIN_SHARES 2
335#define MAX_SHARES (1UL << 18)
336
337static int init_task_group_load = INIT_TASK_GROUP_LOAD;
338#endif
339
340/* Default task group.
341 * Every task in system belong to this group at bootup.
342 */
343struct task_group init_task_group;
344
345/* return group to which a task belongs */
346static inline struct task_group *task_group(struct task_struct *p)
347{
348 struct task_group *tg;
349
350#ifdef CONFIG_USER_SCHED
351 rcu_read_lock();
352 tg = __task_cred(p)->user->tg;
353 rcu_read_unlock();
354#elif defined(CONFIG_CGROUP_SCHED)
355 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
356 struct task_group, css);
357#else
358 tg = &init_task_group;
359#endif
360 return tg;
361}
362
363/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
364static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
365{
366#ifdef CONFIG_FAIR_GROUP_SCHED
367 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
368 p->se.parent = task_group(p)->se[cpu];
369#endif
370
371#ifdef CONFIG_RT_GROUP_SCHED
372 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
373 p->rt.parent = task_group(p)->rt_se[cpu];
374#endif
375}
376
377#else
378
379#ifdef CONFIG_SMP
380static int root_task_group_empty(void)
381{
382 return 1;
383}
384#endif
385
386static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
387static inline struct task_group *task_group(struct task_struct *p)
388{
389 return NULL;
390}
391
392#endif /* CONFIG_GROUP_SCHED */
393
394/* CFS-related fields in a runqueue */
395struct cfs_rq {
396 struct load_weight load;
397 unsigned long nr_running;
398
399 u64 exec_clock;
400 u64 min_vruntime;
401
402 struct rb_root tasks_timeline;
403 struct rb_node *rb_leftmost;
404
405 struct list_head tasks;
406 struct list_head *balance_iterator;
407
408 /*
409 * 'curr' points to currently running entity on this cfs_rq.
410 * It is set to NULL otherwise (i.e when none are currently running).
411 */
412 struct sched_entity *curr, *next, *last;
413
414 unsigned int nr_spread_over;
415
416#ifdef CONFIG_FAIR_GROUP_SCHED
417 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
418
419 /*
420 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
421 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
422 * (like users, containers etc.)
423 *
424 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
425 * list is used during load balance.
426 */
427 struct list_head leaf_cfs_rq_list;
428 struct task_group *tg; /* group that "owns" this runqueue */
429
430#ifdef CONFIG_SMP
431 /*
432 * the part of load.weight contributed by tasks
433 */
434 unsigned long task_weight;
435
436 /*
437 * h_load = weight * f(tg)
438 *
439 * Where f(tg) is the recursive weight fraction assigned to
440 * this group.
441 */
442 unsigned long h_load;
443
444 /*
445 * this cpu's part of tg->shares
446 */
447 unsigned long shares;
448
449 /*
450 * load.weight at the time we set shares
451 */
452 unsigned long rq_weight;
453#endif
454#endif
455};
456
457/* Real-Time classes' related field in a runqueue: */
458struct rt_rq {
459 struct rt_prio_array active;
460 unsigned long rt_nr_running;
461#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
462 struct {
463 int curr; /* highest queued rt task prio */
464#ifdef CONFIG_SMP
465 int next; /* next highest */
466#endif
467 } highest_prio;
468#endif
469#ifdef CONFIG_SMP
470 unsigned long rt_nr_migratory;
471 unsigned long rt_nr_total;
472 int overloaded;
473 struct plist_head pushable_tasks;
474#endif
475 int rt_throttled;
476 u64 rt_time;
477 u64 rt_runtime;
478 /* Nests inside the rq lock: */
479 spinlock_t rt_runtime_lock;
480
481#ifdef CONFIG_RT_GROUP_SCHED
482 unsigned long rt_nr_boosted;
483
484 struct rq *rq;
485 struct list_head leaf_rt_rq_list;
486 struct task_group *tg;
487 struct sched_rt_entity *rt_se;
488#endif
489};
490
491#ifdef CONFIG_SMP
492
493/*
494 * We add the notion of a root-domain which will be used to define per-domain
495 * variables. Each exclusive cpuset essentially defines an island domain by
496 * fully partitioning the member cpus from any other cpuset. Whenever a new
497 * exclusive cpuset is created, we also create and attach a new root-domain
498 * object.
499 *
500 */
501struct root_domain {
502 atomic_t refcount;
503 cpumask_var_t span;
504 cpumask_var_t online;
505
506 /*
507 * The "RT overload" flag: it gets set if a CPU has more than
508 * one runnable RT task.
509 */
510 cpumask_var_t rto_mask;
511 atomic_t rto_count;
512#ifdef CONFIG_SMP
513 struct cpupri cpupri;
514#endif
515#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
516 /*
517 * Preferred wake up cpu nominated by sched_mc balance that will be
518 * used when most cpus are idle in the system indicating overall very
519 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
520 */
521 unsigned int sched_mc_preferred_wakeup_cpu;
522#endif
523};
524
525/*
526 * By default the system creates a single root-domain with all cpus as
527 * members (mimicking the global state we have today).
528 */
529static struct root_domain def_root_domain;
530
531#endif
532
533/*
534 * This is the main, per-CPU runqueue data structure.
535 *
536 * Locking rule: those places that want to lock multiple runqueues
537 * (such as the load balancing or the thread migration code), lock
538 * acquire operations must be ordered by ascending &runqueue.
539 */
540struct rq {
541 /* runqueue lock: */
542 spinlock_t lock;
543
544 /*
545 * nr_running and cpu_load should be in the same cacheline because
546 * remote CPUs use both these fields when doing load calculation.
547 */
548 unsigned long nr_running;
549 #define CPU_LOAD_IDX_MAX 5
550 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
551#ifdef CONFIG_NO_HZ
552 unsigned long last_tick_seen;
553 unsigned char in_nohz_recently;
554#endif
555 /* capture load from *all* tasks on this cpu: */
556 struct load_weight load;
557 unsigned long nr_load_updates;
558 u64 nr_switches;
559 u64 nr_migrations_in;
560
561 struct cfs_rq cfs;
562 struct rt_rq rt;
563
564#ifdef CONFIG_FAIR_GROUP_SCHED
565 /* list of leaf cfs_rq on this cpu: */
566 struct list_head leaf_cfs_rq_list;
567#endif
568#ifdef CONFIG_RT_GROUP_SCHED
569 struct list_head leaf_rt_rq_list;
570#endif
571
572 /*
573 * This is part of a global counter where only the total sum
574 * over all CPUs matters. A task can increase this counter on
575 * one CPU and if it got migrated afterwards it may decrease
576 * it on another CPU. Always updated under the runqueue lock:
577 */
578 unsigned long nr_uninterruptible;
579
580 struct task_struct *curr, *idle;
581 unsigned long next_balance;
582 struct mm_struct *prev_mm;
583
584 u64 clock;
585
586 atomic_t nr_iowait;
587
588#ifdef CONFIG_SMP
589 struct root_domain *rd;
590 struct sched_domain *sd;
591
592 unsigned char idle_at_tick;
593 /* For active balancing */
594 int post_schedule;
595 int active_balance;
596 int push_cpu;
597 /* cpu of this runqueue: */
598 int cpu;
599 int online;
600
601 unsigned long avg_load_per_task;
602
603 struct task_struct *migration_thread;
604 struct list_head migration_queue;
605
606 u64 rt_avg;
607 u64 age_stamp;
608#endif
609
610 /* calc_load related fields */
611 unsigned long calc_load_update;
612 long calc_load_active;
613
614#ifdef CONFIG_SCHED_HRTICK
615#ifdef CONFIG_SMP
616 int hrtick_csd_pending;
617 struct call_single_data hrtick_csd;
618#endif
619 struct hrtimer hrtick_timer;
620#endif
621
622#ifdef CONFIG_SCHEDSTATS
623 /* latency stats */
624 struct sched_info rq_sched_info;
625 unsigned long long rq_cpu_time;
626 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
627
628 /* sys_sched_yield() stats */
629 unsigned int yld_count;
630
631 /* schedule() stats */
632 unsigned int sched_switch;
633 unsigned int sched_count;
634 unsigned int sched_goidle;
635
636 /* try_to_wake_up() stats */
637 unsigned int ttwu_count;
638 unsigned int ttwu_local;
639
640 /* BKL stats */
641 unsigned int bkl_count;
642#endif
643};
644
645static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
646
647static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
648{
649 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
650}
651
652static inline int cpu_of(struct rq *rq)
653{
654#ifdef CONFIG_SMP
655 return rq->cpu;
656#else
657 return 0;
658#endif
659}
660
661/*
662 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
663 * See detach_destroy_domains: synchronize_sched for details.
664 *
665 * The domain tree of any CPU may only be accessed from within
666 * preempt-disabled sections.
667 */
668#define for_each_domain(cpu, __sd) \
669 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
670
671#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
672#define this_rq() (&__get_cpu_var(runqueues))
673#define task_rq(p) cpu_rq(task_cpu(p))
674#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
675#define raw_rq() (&__raw_get_cpu_var(runqueues))
676
677inline void update_rq_clock(struct rq *rq)
678{
679 rq->clock = sched_clock_cpu(cpu_of(rq));
680}
681
682/*
683 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
684 */
685#ifdef CONFIG_SCHED_DEBUG
686# define const_debug __read_mostly
687#else
688# define const_debug static const
689#endif
690
691/**
692 * runqueue_is_locked
693 *
694 * Returns true if the current cpu runqueue is locked.
695 * This interface allows printk to be called with the runqueue lock
696 * held and know whether or not it is OK to wake up the klogd.
697 */
698int runqueue_is_locked(void)
699{
700 int cpu = get_cpu();
701 struct rq *rq = cpu_rq(cpu);
702 int ret;
703
704 ret = spin_is_locked(&rq->lock);
705 put_cpu();
706 return ret;
707}
708
709/*
710 * Debugging: various feature bits
711 */
712
713#define SCHED_FEAT(name, enabled) \
714 __SCHED_FEAT_##name ,
715
716enum {
717#include "sched_features.h"
718};
719
720#undef SCHED_FEAT
721
722#define SCHED_FEAT(name, enabled) \
723 (1UL << __SCHED_FEAT_##name) * enabled |
724
725const_debug unsigned int sysctl_sched_features =
726#include "sched_features.h"
727 0;
728
729#undef SCHED_FEAT
730
731#ifdef CONFIG_SCHED_DEBUG
732#define SCHED_FEAT(name, enabled) \
733 #name ,
734
735static __read_mostly char *sched_feat_names[] = {
736#include "sched_features.h"
737 NULL
738};
739
740#undef SCHED_FEAT
741
742static int sched_feat_show(struct seq_file *m, void *v)
743{
744 int i;
745
746 for (i = 0; sched_feat_names[i]; i++) {
747 if (!(sysctl_sched_features & (1UL << i)))
748 seq_puts(m, "NO_");
749 seq_printf(m, "%s ", sched_feat_names[i]);
750 }
751 seq_puts(m, "\n");
752
753 return 0;
754}
755
756static ssize_t
757sched_feat_write(struct file *filp, const char __user *ubuf,
758 size_t cnt, loff_t *ppos)
759{
760 char buf[64];
761 char *cmp = buf;
762 int neg = 0;
763 int i;
764
765 if (cnt > 63)
766 cnt = 63;
767
768 if (copy_from_user(&buf, ubuf, cnt))
769 return -EFAULT;
770
771 buf[cnt] = 0;
772
773 if (strncmp(buf, "NO_", 3) == 0) {
774 neg = 1;
775 cmp += 3;
776 }
777
778 for (i = 0; sched_feat_names[i]; i++) {
779 int len = strlen(sched_feat_names[i]);
780
781 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
782 if (neg)
783 sysctl_sched_features &= ~(1UL << i);
784 else
785 sysctl_sched_features |= (1UL << i);
786 break;
787 }
788 }
789
790 if (!sched_feat_names[i])
791 return -EINVAL;
792
793 filp->f_pos += cnt;
794
795 return cnt;
796}
797
798static int sched_feat_open(struct inode *inode, struct file *filp)
799{
800 return single_open(filp, sched_feat_show, NULL);
801}
802
803static struct file_operations sched_feat_fops = {
804 .open = sched_feat_open,
805 .write = sched_feat_write,
806 .read = seq_read,
807 .llseek = seq_lseek,
808 .release = single_release,
809};
810
811static __init int sched_init_debug(void)
812{
813 debugfs_create_file("sched_features", 0644, NULL, NULL,
814 &sched_feat_fops);
815
816 return 0;
817}
818late_initcall(sched_init_debug);
819
820#endif
821
822#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
823
824/*
825 * Number of tasks to iterate in a single balance run.
826 * Limited because this is done with IRQs disabled.
827 */
828const_debug unsigned int sysctl_sched_nr_migrate = 32;
829
830/*
831 * ratelimit for updating the group shares.
832 * default: 0.25ms
833 */
834unsigned int sysctl_sched_shares_ratelimit = 250000;
835
836/*
837 * Inject some fuzzyness into changing the per-cpu group shares
838 * this avoids remote rq-locks at the expense of fairness.
839 * default: 4
840 */
841unsigned int sysctl_sched_shares_thresh = 4;
842
843/*
844 * period over which we average the RT time consumption, measured
845 * in ms.
846 *
847 * default: 1s
848 */
849const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
850
851/*
852 * period over which we measure -rt task cpu usage in us.
853 * default: 1s
854 */
855unsigned int sysctl_sched_rt_period = 1000000;
856
857static __read_mostly int scheduler_running;
858
859/*
860 * part of the period that we allow rt tasks to run in us.
861 * default: 0.95s
862 */
863int sysctl_sched_rt_runtime = 950000;
864
865static inline u64 global_rt_period(void)
866{
867 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
868}
869
870static inline u64 global_rt_runtime(void)
871{
872 if (sysctl_sched_rt_runtime < 0)
873 return RUNTIME_INF;
874
875 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
876}
877
878#ifndef prepare_arch_switch
879# define prepare_arch_switch(next) do { } while (0)
880#endif
881#ifndef finish_arch_switch
882# define finish_arch_switch(prev) do { } while (0)
883#endif
884
885static inline int task_current(struct rq *rq, struct task_struct *p)
886{
887 return rq->curr == p;
888}
889
890#ifndef __ARCH_WANT_UNLOCKED_CTXSW
891static inline int task_running(struct rq *rq, struct task_struct *p)
892{
893 return task_current(rq, p);
894}
895
896static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
897{
898}
899
900static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
901{
902#ifdef CONFIG_DEBUG_SPINLOCK
903 /* this is a valid case when another task releases the spinlock */
904 rq->lock.owner = current;
905#endif
906 /*
907 * If we are tracking spinlock dependencies then we have to
908 * fix up the runqueue lock - which gets 'carried over' from
909 * prev into current:
910 */
911 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
912
913 spin_unlock_irq(&rq->lock);
914}
915
916#else /* __ARCH_WANT_UNLOCKED_CTXSW */
917static inline int task_running(struct rq *rq, struct task_struct *p)
918{
919#ifdef CONFIG_SMP
920 return p->oncpu;
921#else
922 return task_current(rq, p);
923#endif
924}
925
926static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
927{
928#ifdef CONFIG_SMP
929 /*
930 * We can optimise this out completely for !SMP, because the
931 * SMP rebalancing from interrupt is the only thing that cares
932 * here.
933 */
934 next->oncpu = 1;
935#endif
936#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
937 spin_unlock_irq(&rq->lock);
938#else
939 spin_unlock(&rq->lock);
940#endif
941}
942
943static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
944{
945#ifdef CONFIG_SMP
946 /*
947 * After ->oncpu is cleared, the task can be moved to a different CPU.
948 * We must ensure this doesn't happen until the switch is completely
949 * finished.
950 */
951 smp_wmb();
952 prev->oncpu = 0;
953#endif
954#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
955 local_irq_enable();
956#endif
957}
958#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
959
960/*
961 * __task_rq_lock - lock the runqueue a given task resides on.
962 * Must be called interrupts disabled.
963 */
964static inline struct rq *__task_rq_lock(struct task_struct *p)
965 __acquires(rq->lock)
966{
967 for (;;) {
968 struct rq *rq = task_rq(p);
969 spin_lock(&rq->lock);
970 if (likely(rq == task_rq(p)))
971 return rq;
972 spin_unlock(&rq->lock);
973 }
974}
975
976/*
977 * task_rq_lock - lock the runqueue a given task resides on and disable
978 * interrupts. Note the ordering: we can safely lookup the task_rq without
979 * explicitly disabling preemption.
980 */
981static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
982 __acquires(rq->lock)
983{
984 struct rq *rq;
985
986 for (;;) {
987 local_irq_save(*flags);
988 rq = task_rq(p);
989 spin_lock(&rq->lock);
990 if (likely(rq == task_rq(p)))
991 return rq;
992 spin_unlock_irqrestore(&rq->lock, *flags);
993 }
994}
995
996void task_rq_unlock_wait(struct task_struct *p)
997{
998 struct rq *rq = task_rq(p);
999
1000 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1001 spin_unlock_wait(&rq->lock);
1002}
1003
1004static void __task_rq_unlock(struct rq *rq)
1005 __releases(rq->lock)
1006{
1007 spin_unlock(&rq->lock);
1008}
1009
1010static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1011 __releases(rq->lock)
1012{
1013 spin_unlock_irqrestore(&rq->lock, *flags);
1014}
1015
1016/*
1017 * this_rq_lock - lock this runqueue and disable interrupts.
1018 */
1019static struct rq *this_rq_lock(void)
1020 __acquires(rq->lock)
1021{
1022 struct rq *rq;
1023
1024 local_irq_disable();
1025 rq = this_rq();
1026 spin_lock(&rq->lock);
1027
1028 return rq;
1029}
1030
1031#ifdef CONFIG_SCHED_HRTICK
1032/*
1033 * Use HR-timers to deliver accurate preemption points.
1034 *
1035 * Its all a bit involved since we cannot program an hrt while holding the
1036 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1037 * reschedule event.
1038 *
1039 * When we get rescheduled we reprogram the hrtick_timer outside of the
1040 * rq->lock.
1041 */
1042
1043/*
1044 * Use hrtick when:
1045 * - enabled by features
1046 * - hrtimer is actually high res
1047 */
1048static inline int hrtick_enabled(struct rq *rq)
1049{
1050 if (!sched_feat(HRTICK))
1051 return 0;
1052 if (!cpu_active(cpu_of(rq)))
1053 return 0;
1054 return hrtimer_is_hres_active(&rq->hrtick_timer);
1055}
1056
1057static void hrtick_clear(struct rq *rq)
1058{
1059 if (hrtimer_active(&rq->hrtick_timer))
1060 hrtimer_cancel(&rq->hrtick_timer);
1061}
1062
1063/*
1064 * High-resolution timer tick.
1065 * Runs from hardirq context with interrupts disabled.
1066 */
1067static enum hrtimer_restart hrtick(struct hrtimer *timer)
1068{
1069 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1070
1071 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1072
1073 spin_lock(&rq->lock);
1074 update_rq_clock(rq);
1075 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1076 spin_unlock(&rq->lock);
1077
1078 return HRTIMER_NORESTART;
1079}
1080
1081#ifdef CONFIG_SMP
1082/*
1083 * called from hardirq (IPI) context
1084 */
1085static void __hrtick_start(void *arg)
1086{
1087 struct rq *rq = arg;
1088
1089 spin_lock(&rq->lock);
1090 hrtimer_restart(&rq->hrtick_timer);
1091 rq->hrtick_csd_pending = 0;
1092 spin_unlock(&rq->lock);
1093}
1094
1095/*
1096 * Called to set the hrtick timer state.
1097 *
1098 * called with rq->lock held and irqs disabled
1099 */
1100static void hrtick_start(struct rq *rq, u64 delay)
1101{
1102 struct hrtimer *timer = &rq->hrtick_timer;
1103 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1104
1105 hrtimer_set_expires(timer, time);
1106
1107 if (rq == this_rq()) {
1108 hrtimer_restart(timer);
1109 } else if (!rq->hrtick_csd_pending) {
1110 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1111 rq->hrtick_csd_pending = 1;
1112 }
1113}
1114
1115static int
1116hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1117{
1118 int cpu = (int)(long)hcpu;
1119
1120 switch (action) {
1121 case CPU_UP_CANCELED:
1122 case CPU_UP_CANCELED_FROZEN:
1123 case CPU_DOWN_PREPARE:
1124 case CPU_DOWN_PREPARE_FROZEN:
1125 case CPU_DEAD:
1126 case CPU_DEAD_FROZEN:
1127 hrtick_clear(cpu_rq(cpu));
1128 return NOTIFY_OK;
1129 }
1130
1131 return NOTIFY_DONE;
1132}
1133
1134static __init void init_hrtick(void)
1135{
1136 hotcpu_notifier(hotplug_hrtick, 0);
1137}
1138#else
1139/*
1140 * Called to set the hrtick timer state.
1141 *
1142 * called with rq->lock held and irqs disabled
1143 */
1144static void hrtick_start(struct rq *rq, u64 delay)
1145{
1146 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1147 HRTIMER_MODE_REL_PINNED, 0);
1148}
1149
1150static inline void init_hrtick(void)
1151{
1152}
1153#endif /* CONFIG_SMP */
1154
1155static void init_rq_hrtick(struct rq *rq)
1156{
1157#ifdef CONFIG_SMP
1158 rq->hrtick_csd_pending = 0;
1159
1160 rq->hrtick_csd.flags = 0;
1161 rq->hrtick_csd.func = __hrtick_start;
1162 rq->hrtick_csd.info = rq;
1163#endif
1164
1165 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1166 rq->hrtick_timer.function = hrtick;
1167}
1168#else /* CONFIG_SCHED_HRTICK */
1169static inline void hrtick_clear(struct rq *rq)
1170{
1171}
1172
1173static inline void init_rq_hrtick(struct rq *rq)
1174{
1175}
1176
1177static inline void init_hrtick(void)
1178{
1179}
1180#endif /* CONFIG_SCHED_HRTICK */
1181
1182/*
1183 * resched_task - mark a task 'to be rescheduled now'.
1184 *
1185 * On UP this means the setting of the need_resched flag, on SMP it
1186 * might also involve a cross-CPU call to trigger the scheduler on
1187 * the target CPU.
1188 */
1189#ifdef CONFIG_SMP
1190
1191#ifndef tsk_is_polling
1192#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1193#endif
1194
1195static void resched_task(struct task_struct *p)
1196{
1197 int cpu;
1198
1199 assert_spin_locked(&task_rq(p)->lock);
1200
1201 if (test_tsk_need_resched(p))
1202 return;
1203
1204 set_tsk_need_resched(p);
1205
1206 cpu = task_cpu(p);
1207 if (cpu == smp_processor_id())
1208 return;
1209
1210 /* NEED_RESCHED must be visible before we test polling */
1211 smp_mb();
1212 if (!tsk_is_polling(p))
1213 smp_send_reschedule(cpu);
1214}
1215
1216static void resched_cpu(int cpu)
1217{
1218 struct rq *rq = cpu_rq(cpu);
1219 unsigned long flags;
1220
1221 if (!spin_trylock_irqsave(&rq->lock, flags))
1222 return;
1223 resched_task(cpu_curr(cpu));
1224 spin_unlock_irqrestore(&rq->lock, flags);
1225}
1226
1227#ifdef CONFIG_NO_HZ
1228/*
1229 * When add_timer_on() enqueues a timer into the timer wheel of an
1230 * idle CPU then this timer might expire before the next timer event
1231 * which is scheduled to wake up that CPU. In case of a completely
1232 * idle system the next event might even be infinite time into the
1233 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1234 * leaves the inner idle loop so the newly added timer is taken into
1235 * account when the CPU goes back to idle and evaluates the timer
1236 * wheel for the next timer event.
1237 */
1238void wake_up_idle_cpu(int cpu)
1239{
1240 struct rq *rq = cpu_rq(cpu);
1241
1242 if (cpu == smp_processor_id())
1243 return;
1244
1245 /*
1246 * This is safe, as this function is called with the timer
1247 * wheel base lock of (cpu) held. When the CPU is on the way
1248 * to idle and has not yet set rq->curr to idle then it will
1249 * be serialized on the timer wheel base lock and take the new
1250 * timer into account automatically.
1251 */
1252 if (rq->curr != rq->idle)
1253 return;
1254
1255 /*
1256 * We can set TIF_RESCHED on the idle task of the other CPU
1257 * lockless. The worst case is that the other CPU runs the
1258 * idle task through an additional NOOP schedule()
1259 */
1260 set_tsk_need_resched(rq->idle);
1261
1262 /* NEED_RESCHED must be visible before we test polling */
1263 smp_mb();
1264 if (!tsk_is_polling(rq->idle))
1265 smp_send_reschedule(cpu);
1266}
1267#endif /* CONFIG_NO_HZ */
1268
1269static u64 sched_avg_period(void)
1270{
1271 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1272}
1273
1274static void sched_avg_update(struct rq *rq)
1275{
1276 s64 period = sched_avg_period();
1277
1278 while ((s64)(rq->clock - rq->age_stamp) > period) {
1279 rq->age_stamp += period;
1280 rq->rt_avg /= 2;
1281 }
1282}
1283
1284static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1285{
1286 rq->rt_avg += rt_delta;
1287 sched_avg_update(rq);
1288}
1289
1290#else /* !CONFIG_SMP */
1291static void resched_task(struct task_struct *p)
1292{
1293 assert_spin_locked(&task_rq(p)->lock);
1294 set_tsk_need_resched(p);
1295}
1296
1297static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1298{
1299}
1300#endif /* CONFIG_SMP */
1301
1302#if BITS_PER_LONG == 32
1303# define WMULT_CONST (~0UL)
1304#else
1305# define WMULT_CONST (1UL << 32)
1306#endif
1307
1308#define WMULT_SHIFT 32
1309
1310/*
1311 * Shift right and round:
1312 */
1313#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1314
1315/*
1316 * delta *= weight / lw
1317 */
1318static unsigned long
1319calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1320 struct load_weight *lw)
1321{
1322 u64 tmp;
1323
1324 if (!lw->inv_weight) {
1325 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1326 lw->inv_weight = 1;
1327 else
1328 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1329 / (lw->weight+1);
1330 }
1331
1332 tmp = (u64)delta_exec * weight;
1333 /*
1334 * Check whether we'd overflow the 64-bit multiplication:
1335 */
1336 if (unlikely(tmp > WMULT_CONST))
1337 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1338 WMULT_SHIFT/2);
1339 else
1340 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1341
1342 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1343}
1344
1345static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1346{
1347 lw->weight += inc;
1348 lw->inv_weight = 0;
1349}
1350
1351static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1352{
1353 lw->weight -= dec;
1354 lw->inv_weight = 0;
1355}
1356
1357/*
1358 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1359 * of tasks with abnormal "nice" values across CPUs the contribution that
1360 * each task makes to its run queue's load is weighted according to its
1361 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1362 * scaled version of the new time slice allocation that they receive on time
1363 * slice expiry etc.
1364 */
1365
1366#define WEIGHT_IDLEPRIO 3
1367#define WMULT_IDLEPRIO 1431655765
1368
1369/*
1370 * Nice levels are multiplicative, with a gentle 10% change for every
1371 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1372 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1373 * that remained on nice 0.
1374 *
1375 * The "10% effect" is relative and cumulative: from _any_ nice level,
1376 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1377 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1378 * If a task goes up by ~10% and another task goes down by ~10% then
1379 * the relative distance between them is ~25%.)
1380 */
1381static const int prio_to_weight[40] = {
1382 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1383 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1384 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1385 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1386 /* 0 */ 1024, 820, 655, 526, 423,
1387 /* 5 */ 335, 272, 215, 172, 137,
1388 /* 10 */ 110, 87, 70, 56, 45,
1389 /* 15 */ 36, 29, 23, 18, 15,
1390};
1391
1392/*
1393 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1394 *
1395 * In cases where the weight does not change often, we can use the
1396 * precalculated inverse to speed up arithmetics by turning divisions
1397 * into multiplications:
1398 */
1399static const u32 prio_to_wmult[40] = {
1400 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1401 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1402 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1403 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1404 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1405 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1406 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1407 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1408};
1409
1410static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1411
1412/*
1413 * runqueue iterator, to support SMP load-balancing between different
1414 * scheduling classes, without having to expose their internal data
1415 * structures to the load-balancing proper:
1416 */
1417struct rq_iterator {
1418 void *arg;
1419 struct task_struct *(*start)(void *);
1420 struct task_struct *(*next)(void *);
1421};
1422
1423#ifdef CONFIG_SMP
1424static unsigned long
1425balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1426 unsigned long max_load_move, struct sched_domain *sd,
1427 enum cpu_idle_type idle, int *all_pinned,
1428 int *this_best_prio, struct rq_iterator *iterator);
1429
1430static int
1431iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1432 struct sched_domain *sd, enum cpu_idle_type idle,
1433 struct rq_iterator *iterator);
1434#endif
1435
1436/* Time spent by the tasks of the cpu accounting group executing in ... */
1437enum cpuacct_stat_index {
1438 CPUACCT_STAT_USER, /* ... user mode */
1439 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1440
1441 CPUACCT_STAT_NSTATS,
1442};
1443
1444#ifdef CONFIG_CGROUP_CPUACCT
1445static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1446static void cpuacct_update_stats(struct task_struct *tsk,
1447 enum cpuacct_stat_index idx, cputime_t val);
1448#else
1449static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1450static inline void cpuacct_update_stats(struct task_struct *tsk,
1451 enum cpuacct_stat_index idx, cputime_t val) {}
1452#endif
1453
1454static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1455{
1456 update_load_add(&rq->load, load);
1457}
1458
1459static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1460{
1461 update_load_sub(&rq->load, load);
1462}
1463
1464#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1465typedef int (*tg_visitor)(struct task_group *, void *);
1466
1467/*
1468 * Iterate the full tree, calling @down when first entering a node and @up when
1469 * leaving it for the final time.
1470 */
1471static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1472{
1473 struct task_group *parent, *child;
1474 int ret;
1475
1476 rcu_read_lock();
1477 parent = &root_task_group;
1478down:
1479 ret = (*down)(parent, data);
1480 if (ret)
1481 goto out_unlock;
1482 list_for_each_entry_rcu(child, &parent->children, siblings) {
1483 parent = child;
1484 goto down;
1485
1486up:
1487 continue;
1488 }
1489 ret = (*up)(parent, data);
1490 if (ret)
1491 goto out_unlock;
1492
1493 child = parent;
1494 parent = parent->parent;
1495 if (parent)
1496 goto up;
1497out_unlock:
1498 rcu_read_unlock();
1499
1500 return ret;
1501}
1502
1503static int tg_nop(struct task_group *tg, void *data)
1504{
1505 return 0;
1506}
1507#endif
1508
1509#ifdef CONFIG_SMP
1510/* Used instead of source_load when we know the type == 0 */
1511static unsigned long weighted_cpuload(const int cpu)
1512{
1513 return cpu_rq(cpu)->load.weight;
1514}
1515
1516/*
1517 * Return a low guess at the load of a migration-source cpu weighted
1518 * according to the scheduling class and "nice" value.
1519 *
1520 * We want to under-estimate the load of migration sources, to
1521 * balance conservatively.
1522 */
1523static unsigned long source_load(int cpu, int type)
1524{
1525 struct rq *rq = cpu_rq(cpu);
1526 unsigned long total = weighted_cpuload(cpu);
1527
1528 if (type == 0 || !sched_feat(LB_BIAS))
1529 return total;
1530
1531 return min(rq->cpu_load[type-1], total);
1532}
1533
1534/*
1535 * Return a high guess at the load of a migration-target cpu weighted
1536 * according to the scheduling class and "nice" value.
1537 */
1538static unsigned long target_load(int cpu, int type)
1539{
1540 struct rq *rq = cpu_rq(cpu);
1541 unsigned long total = weighted_cpuload(cpu);
1542
1543 if (type == 0 || !sched_feat(LB_BIAS))
1544 return total;
1545
1546 return max(rq->cpu_load[type-1], total);
1547}
1548
1549static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1550
1551static unsigned long cpu_avg_load_per_task(int cpu)
1552{
1553 struct rq *rq = cpu_rq(cpu);
1554 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1555
1556 if (nr_running)
1557 rq->avg_load_per_task = rq->load.weight / nr_running;
1558 else
1559 rq->avg_load_per_task = 0;
1560
1561 return rq->avg_load_per_task;
1562}
1563
1564#ifdef CONFIG_FAIR_GROUP_SCHED
1565
1566struct update_shares_data {
1567 unsigned long rq_weight[NR_CPUS];
1568};
1569
1570static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1571
1572static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1573
1574/*
1575 * Calculate and set the cpu's group shares.
1576 */
1577static void update_group_shares_cpu(struct task_group *tg, int cpu,
1578 unsigned long sd_shares,
1579 unsigned long sd_rq_weight,
1580 struct update_shares_data *usd)
1581{
1582 unsigned long shares, rq_weight;
1583 int boost = 0;
1584
1585 rq_weight = usd->rq_weight[cpu];
1586 if (!rq_weight) {
1587 boost = 1;
1588 rq_weight = NICE_0_LOAD;
1589 }
1590
1591 /*
1592 * \Sum_j shares_j * rq_weight_i
1593 * shares_i = -----------------------------
1594 * \Sum_j rq_weight_j
1595 */
1596 shares = (sd_shares * rq_weight) / sd_rq_weight;
1597 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1598
1599 if (abs(shares - tg->se[cpu]->load.weight) >
1600 sysctl_sched_shares_thresh) {
1601 struct rq *rq = cpu_rq(cpu);
1602 unsigned long flags;
1603
1604 spin_lock_irqsave(&rq->lock, flags);
1605 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1606 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1607 __set_se_shares(tg->se[cpu], shares);
1608 spin_unlock_irqrestore(&rq->lock, flags);
1609 }
1610}
1611
1612/*
1613 * Re-compute the task group their per cpu shares over the given domain.
1614 * This needs to be done in a bottom-up fashion because the rq weight of a
1615 * parent group depends on the shares of its child groups.
1616 */
1617static int tg_shares_up(struct task_group *tg, void *data)
1618{
1619 unsigned long weight, rq_weight = 0, shares = 0;
1620 struct update_shares_data *usd;
1621 struct sched_domain *sd = data;
1622 unsigned long flags;
1623 int i;
1624
1625 if (!tg->se[0])
1626 return 0;
1627
1628 local_irq_save(flags);
1629 usd = &__get_cpu_var(update_shares_data);
1630
1631 for_each_cpu(i, sched_domain_span(sd)) {
1632 weight = tg->cfs_rq[i]->load.weight;
1633 usd->rq_weight[i] = weight;
1634
1635 /*
1636 * If there are currently no tasks on the cpu pretend there
1637 * is one of average load so that when a new task gets to
1638 * run here it will not get delayed by group starvation.
1639 */
1640 if (!weight)
1641 weight = NICE_0_LOAD;
1642
1643 rq_weight += weight;
1644 shares += tg->cfs_rq[i]->shares;
1645 }
1646
1647 if ((!shares && rq_weight) || shares > tg->shares)
1648 shares = tg->shares;
1649
1650 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1651 shares = tg->shares;
1652
1653 for_each_cpu(i, sched_domain_span(sd))
1654 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1655
1656 local_irq_restore(flags);
1657
1658 return 0;
1659}
1660
1661/*
1662 * Compute the cpu's hierarchical load factor for each task group.
1663 * This needs to be done in a top-down fashion because the load of a child
1664 * group is a fraction of its parents load.
1665 */
1666static int tg_load_down(struct task_group *tg, void *data)
1667{
1668 unsigned long load;
1669 long cpu = (long)data;
1670
1671 if (!tg->parent) {
1672 load = cpu_rq(cpu)->load.weight;
1673 } else {
1674 load = tg->parent->cfs_rq[cpu]->h_load;
1675 load *= tg->cfs_rq[cpu]->shares;
1676 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1677 }
1678
1679 tg->cfs_rq[cpu]->h_load = load;
1680
1681 return 0;
1682}
1683
1684static void update_shares(struct sched_domain *sd)
1685{
1686 s64 elapsed;
1687 u64 now;
1688
1689 if (root_task_group_empty())
1690 return;
1691
1692 now = cpu_clock(raw_smp_processor_id());
1693 elapsed = now - sd->last_update;
1694
1695 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1696 sd->last_update = now;
1697 walk_tg_tree(tg_nop, tg_shares_up, sd);
1698 }
1699}
1700
1701static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1702{
1703 if (root_task_group_empty())
1704 return;
1705
1706 spin_unlock(&rq->lock);
1707 update_shares(sd);
1708 spin_lock(&rq->lock);
1709}
1710
1711static void update_h_load(long cpu)
1712{
1713 if (root_task_group_empty())
1714 return;
1715
1716 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1717}
1718
1719#else
1720
1721static inline void update_shares(struct sched_domain *sd)
1722{
1723}
1724
1725static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1726{
1727}
1728
1729#endif
1730
1731#ifdef CONFIG_PREEMPT
1732
1733static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1734
1735/*
1736 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1737 * way at the expense of forcing extra atomic operations in all
1738 * invocations. This assures that the double_lock is acquired using the
1739 * same underlying policy as the spinlock_t on this architecture, which
1740 * reduces latency compared to the unfair variant below. However, it
1741 * also adds more overhead and therefore may reduce throughput.
1742 */
1743static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1744 __releases(this_rq->lock)
1745 __acquires(busiest->lock)
1746 __acquires(this_rq->lock)
1747{
1748 spin_unlock(&this_rq->lock);
1749 double_rq_lock(this_rq, busiest);
1750
1751 return 1;
1752}
1753
1754#else
1755/*
1756 * Unfair double_lock_balance: Optimizes throughput at the expense of
1757 * latency by eliminating extra atomic operations when the locks are
1758 * already in proper order on entry. This favors lower cpu-ids and will
1759 * grant the double lock to lower cpus over higher ids under contention,
1760 * regardless of entry order into the function.
1761 */
1762static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1763 __releases(this_rq->lock)
1764 __acquires(busiest->lock)
1765 __acquires(this_rq->lock)
1766{
1767 int ret = 0;
1768
1769 if (unlikely(!spin_trylock(&busiest->lock))) {
1770 if (busiest < this_rq) {
1771 spin_unlock(&this_rq->lock);
1772 spin_lock(&busiest->lock);
1773 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1774 ret = 1;
1775 } else
1776 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1777 }
1778 return ret;
1779}
1780
1781#endif /* CONFIG_PREEMPT */
1782
1783/*
1784 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1785 */
1786static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1787{
1788 if (unlikely(!irqs_disabled())) {
1789 /* printk() doesn't work good under rq->lock */
1790 spin_unlock(&this_rq->lock);
1791 BUG_ON(1);
1792 }
1793
1794 return _double_lock_balance(this_rq, busiest);
1795}
1796
1797static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1798 __releases(busiest->lock)
1799{
1800 spin_unlock(&busiest->lock);
1801 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1802}
1803#endif
1804
1805#ifdef CONFIG_FAIR_GROUP_SCHED
1806static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1807{
1808#ifdef CONFIG_SMP
1809 cfs_rq->shares = shares;
1810#endif
1811}
1812#endif
1813
1814static void calc_load_account_active(struct rq *this_rq);
1815
1816#include "sched_stats.h"
1817#include "sched_idletask.c"
1818#include "sched_fair.c"
1819#include "sched_rt.c"
1820#ifdef CONFIG_SCHED_DEBUG
1821# include "sched_debug.c"
1822#endif
1823
1824#define sched_class_highest (&rt_sched_class)
1825#define for_each_class(class) \
1826 for (class = sched_class_highest; class; class = class->next)
1827
1828static void inc_nr_running(struct rq *rq)
1829{
1830 rq->nr_running++;
1831}
1832
1833static void dec_nr_running(struct rq *rq)
1834{
1835 rq->nr_running--;
1836}
1837
1838static void set_load_weight(struct task_struct *p)
1839{
1840 if (task_has_rt_policy(p)) {
1841 p->se.load.weight = prio_to_weight[0] * 2;
1842 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1843 return;
1844 }
1845
1846 /*
1847 * SCHED_IDLE tasks get minimal weight:
1848 */
1849 if (p->policy == SCHED_IDLE) {
1850 p->se.load.weight = WEIGHT_IDLEPRIO;
1851 p->se.load.inv_weight = WMULT_IDLEPRIO;
1852 return;
1853 }
1854
1855 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1856 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1857}
1858
1859static void update_avg(u64 *avg, u64 sample)
1860{
1861 s64 diff = sample - *avg;
1862 *avg += diff >> 3;
1863}
1864
1865static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1866{
1867 if (wakeup)
1868 p->se.start_runtime = p->se.sum_exec_runtime;
1869
1870 sched_info_queued(p);
1871 p->sched_class->enqueue_task(rq, p, wakeup);
1872 p->se.on_rq = 1;
1873}
1874
1875static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1876{
1877 if (sleep) {
1878 if (p->se.last_wakeup) {
1879 update_avg(&p->se.avg_overlap,
1880 p->se.sum_exec_runtime - p->se.last_wakeup);
1881 p->se.last_wakeup = 0;
1882 } else {
1883 update_avg(&p->se.avg_wakeup,
1884 sysctl_sched_wakeup_granularity);
1885 }
1886 }
1887
1888 sched_info_dequeued(p);
1889 p->sched_class->dequeue_task(rq, p, sleep);
1890 p->se.on_rq = 0;
1891}
1892
1893/*
1894 * __normal_prio - return the priority that is based on the static prio
1895 */
1896static inline int __normal_prio(struct task_struct *p)
1897{
1898 return p->static_prio;
1899}
1900
1901/*
1902 * Calculate the expected normal priority: i.e. priority
1903 * without taking RT-inheritance into account. Might be
1904 * boosted by interactivity modifiers. Changes upon fork,
1905 * setprio syscalls, and whenever the interactivity
1906 * estimator recalculates.
1907 */
1908static inline int normal_prio(struct task_struct *p)
1909{
1910 int prio;
1911
1912 if (task_has_rt_policy(p))
1913 prio = MAX_RT_PRIO-1 - p->rt_priority;
1914 else
1915 prio = __normal_prio(p);
1916 return prio;
1917}
1918
1919/*
1920 * Calculate the current priority, i.e. the priority
1921 * taken into account by the scheduler. This value might
1922 * be boosted by RT tasks, or might be boosted by
1923 * interactivity modifiers. Will be RT if the task got
1924 * RT-boosted. If not then it returns p->normal_prio.
1925 */
1926static int effective_prio(struct task_struct *p)
1927{
1928 p->normal_prio = normal_prio(p);
1929 /*
1930 * If we are RT tasks or we were boosted to RT priority,
1931 * keep the priority unchanged. Otherwise, update priority
1932 * to the normal priority:
1933 */
1934 if (!rt_prio(p->prio))
1935 return p->normal_prio;
1936 return p->prio;
1937}
1938
1939/*
1940 * activate_task - move a task to the runqueue.
1941 */
1942static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1943{
1944 if (task_contributes_to_load(p))
1945 rq->nr_uninterruptible--;
1946
1947 enqueue_task(rq, p, wakeup);
1948 inc_nr_running(rq);
1949}
1950
1951/*
1952 * deactivate_task - remove a task from the runqueue.
1953 */
1954static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1955{
1956 if (task_contributes_to_load(p))
1957 rq->nr_uninterruptible++;
1958
1959 dequeue_task(rq, p, sleep);
1960 dec_nr_running(rq);
1961}
1962
1963/**
1964 * task_curr - is this task currently executing on a CPU?
1965 * @p: the task in question.
1966 */
1967inline int task_curr(const struct task_struct *p)
1968{
1969 return cpu_curr(task_cpu(p)) == p;
1970}
1971
1972static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1973{
1974 set_task_rq(p, cpu);
1975#ifdef CONFIG_SMP
1976 /*
1977 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1978 * successfuly executed on another CPU. We must ensure that updates of
1979 * per-task data have been completed by this moment.
1980 */
1981 smp_wmb();
1982 task_thread_info(p)->cpu = cpu;
1983#endif
1984}
1985
1986static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1987 const struct sched_class *prev_class,
1988 int oldprio, int running)
1989{
1990 if (prev_class != p->sched_class) {
1991 if (prev_class->switched_from)
1992 prev_class->switched_from(rq, p, running);
1993 p->sched_class->switched_to(rq, p, running);
1994 } else
1995 p->sched_class->prio_changed(rq, p, oldprio, running);
1996}
1997
1998#ifdef CONFIG_SMP
1999/*
2000 * Is this task likely cache-hot:
2001 */
2002static int
2003task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2004{
2005 s64 delta;
2006
2007 /*
2008 * Buddy candidates are cache hot:
2009 */
2010 if (sched_feat(CACHE_HOT_BUDDY) &&
2011 (&p->se == cfs_rq_of(&p->se)->next ||
2012 &p->se == cfs_rq_of(&p->se)->last))
2013 return 1;
2014
2015 if (p->sched_class != &fair_sched_class)
2016 return 0;
2017
2018 if (sysctl_sched_migration_cost == -1)
2019 return 1;
2020 if (sysctl_sched_migration_cost == 0)
2021 return 0;
2022
2023 delta = now - p->se.exec_start;
2024
2025 return delta < (s64)sysctl_sched_migration_cost;
2026}
2027
2028
2029void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2030{
2031 int old_cpu = task_cpu(p);
2032 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2033 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2034 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2035 u64 clock_offset;
2036
2037 clock_offset = old_rq->clock - new_rq->clock;
2038
2039 trace_sched_migrate_task(p, new_cpu);
2040
2041#ifdef CONFIG_SCHEDSTATS
2042 if (p->se.wait_start)
2043 p->se.wait_start -= clock_offset;
2044 if (p->se.sleep_start)
2045 p->se.sleep_start -= clock_offset;
2046 if (p->se.block_start)
2047 p->se.block_start -= clock_offset;
2048#endif
2049 if (old_cpu != new_cpu) {
2050 p->se.nr_migrations++;
2051 new_rq->nr_migrations_in++;
2052#ifdef CONFIG_SCHEDSTATS
2053 if (task_hot(p, old_rq->clock, NULL))
2054 schedstat_inc(p, se.nr_forced2_migrations);
2055#endif
2056 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2057 1, 1, NULL, 0);
2058 }
2059 p->se.vruntime -= old_cfsrq->min_vruntime -
2060 new_cfsrq->min_vruntime;
2061
2062 __set_task_cpu(p, new_cpu);
2063}
2064
2065struct migration_req {
2066 struct list_head list;
2067
2068 struct task_struct *task;
2069 int dest_cpu;
2070
2071 struct completion done;
2072};
2073
2074/*
2075 * The task's runqueue lock must be held.
2076 * Returns true if you have to wait for migration thread.
2077 */
2078static int
2079migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2080{
2081 struct rq *rq = task_rq(p);
2082
2083 /*
2084 * If the task is not on a runqueue (and not running), then
2085 * it is sufficient to simply update the task's cpu field.
2086 */
2087 if (!p->se.on_rq && !task_running(rq, p)) {
2088 set_task_cpu(p, dest_cpu);
2089 return 0;
2090 }
2091
2092 init_completion(&req->done);
2093 req->task = p;
2094 req->dest_cpu = dest_cpu;
2095 list_add(&req->list, &rq->migration_queue);
2096
2097 return 1;
2098}
2099
2100/*
2101 * wait_task_context_switch - wait for a thread to complete at least one
2102 * context switch.
2103 *
2104 * @p must not be current.
2105 */
2106void wait_task_context_switch(struct task_struct *p)
2107{
2108 unsigned long nvcsw, nivcsw, flags;
2109 int running;
2110 struct rq *rq;
2111
2112 nvcsw = p->nvcsw;
2113 nivcsw = p->nivcsw;
2114 for (;;) {
2115 /*
2116 * The runqueue is assigned before the actual context
2117 * switch. We need to take the runqueue lock.
2118 *
2119 * We could check initially without the lock but it is
2120 * very likely that we need to take the lock in every
2121 * iteration.
2122 */
2123 rq = task_rq_lock(p, &flags);
2124 running = task_running(rq, p);
2125 task_rq_unlock(rq, &flags);
2126
2127 if (likely(!running))
2128 break;
2129 /*
2130 * The switch count is incremented before the actual
2131 * context switch. We thus wait for two switches to be
2132 * sure at least one completed.
2133 */
2134 if ((p->nvcsw - nvcsw) > 1)
2135 break;
2136 if ((p->nivcsw - nivcsw) > 1)
2137 break;
2138
2139 cpu_relax();
2140 }
2141}
2142
2143/*
2144 * wait_task_inactive - wait for a thread to unschedule.
2145 *
2146 * If @match_state is nonzero, it's the @p->state value just checked and
2147 * not expected to change. If it changes, i.e. @p might have woken up,
2148 * then return zero. When we succeed in waiting for @p to be off its CPU,
2149 * we return a positive number (its total switch count). If a second call
2150 * a short while later returns the same number, the caller can be sure that
2151 * @p has remained unscheduled the whole time.
2152 *
2153 * The caller must ensure that the task *will* unschedule sometime soon,
2154 * else this function might spin for a *long* time. This function can't
2155 * be called with interrupts off, or it may introduce deadlock with
2156 * smp_call_function() if an IPI is sent by the same process we are
2157 * waiting to become inactive.
2158 */
2159unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2160{
2161 unsigned long flags;
2162 int running, on_rq;
2163 unsigned long ncsw;
2164 struct rq *rq;
2165
2166 for (;;) {
2167 /*
2168 * We do the initial early heuristics without holding
2169 * any task-queue locks at all. We'll only try to get
2170 * the runqueue lock when things look like they will
2171 * work out!
2172 */
2173 rq = task_rq(p);
2174
2175 /*
2176 * If the task is actively running on another CPU
2177 * still, just relax and busy-wait without holding
2178 * any locks.
2179 *
2180 * NOTE! Since we don't hold any locks, it's not
2181 * even sure that "rq" stays as the right runqueue!
2182 * But we don't care, since "task_running()" will
2183 * return false if the runqueue has changed and p
2184 * is actually now running somewhere else!
2185 */
2186 while (task_running(rq, p)) {
2187 if (match_state && unlikely(p->state != match_state))
2188 return 0;
2189 cpu_relax();
2190 }
2191
2192 /*
2193 * Ok, time to look more closely! We need the rq
2194 * lock now, to be *sure*. If we're wrong, we'll
2195 * just go back and repeat.
2196 */
2197 rq = task_rq_lock(p, &flags);
2198 trace_sched_wait_task(rq, p);
2199 running = task_running(rq, p);
2200 on_rq = p->se.on_rq;
2201 ncsw = 0;
2202 if (!match_state || p->state == match_state)
2203 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2204 task_rq_unlock(rq, &flags);
2205
2206 /*
2207 * If it changed from the expected state, bail out now.
2208 */
2209 if (unlikely(!ncsw))
2210 break;
2211
2212 /*
2213 * Was it really running after all now that we
2214 * checked with the proper locks actually held?
2215 *
2216 * Oops. Go back and try again..
2217 */
2218 if (unlikely(running)) {
2219 cpu_relax();
2220 continue;
2221 }
2222
2223 /*
2224 * It's not enough that it's not actively running,
2225 * it must be off the runqueue _entirely_, and not
2226 * preempted!
2227 *
2228 * So if it was still runnable (but just not actively
2229 * running right now), it's preempted, and we should
2230 * yield - it could be a while.
2231 */
2232 if (unlikely(on_rq)) {
2233 schedule_timeout_uninterruptible(1);
2234 continue;
2235 }
2236
2237 /*
2238 * Ahh, all good. It wasn't running, and it wasn't
2239 * runnable, which means that it will never become
2240 * running in the future either. We're all done!
2241 */
2242 break;
2243 }
2244
2245 return ncsw;
2246}
2247
2248/***
2249 * kick_process - kick a running thread to enter/exit the kernel
2250 * @p: the to-be-kicked thread
2251 *
2252 * Cause a process which is running on another CPU to enter
2253 * kernel-mode, without any delay. (to get signals handled.)
2254 *
2255 * NOTE: this function doesnt have to take the runqueue lock,
2256 * because all it wants to ensure is that the remote task enters
2257 * the kernel. If the IPI races and the task has been migrated
2258 * to another CPU then no harm is done and the purpose has been
2259 * achieved as well.
2260 */
2261void kick_process(struct task_struct *p)
2262{
2263 int cpu;
2264
2265 preempt_disable();
2266 cpu = task_cpu(p);
2267 if ((cpu != smp_processor_id()) && task_curr(p))
2268 smp_send_reschedule(cpu);
2269 preempt_enable();
2270}
2271EXPORT_SYMBOL_GPL(kick_process);
2272
2273/*
2274 * find_idlest_group finds and returns the least busy CPU group within the
2275 * domain.
2276 */
2277static struct sched_group *
2278find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2279{
2280 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2281 unsigned long min_load = ULONG_MAX, this_load = 0;
2282 int load_idx = sd->forkexec_idx;
2283 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2284
2285 do {
2286 unsigned long load, avg_load;
2287 int local_group;
2288 int i;
2289
2290 /* Skip over this group if it has no CPUs allowed */
2291 if (!cpumask_intersects(sched_group_cpus(group),
2292 &p->cpus_allowed))
2293 continue;
2294
2295 local_group = cpumask_test_cpu(this_cpu,
2296 sched_group_cpus(group));
2297
2298 /* Tally up the load of all CPUs in the group */
2299 avg_load = 0;
2300
2301 for_each_cpu(i, sched_group_cpus(group)) {
2302 /* Bias balancing toward cpus of our domain */
2303 if (local_group)
2304 load = source_load(i, load_idx);
2305 else
2306 load = target_load(i, load_idx);
2307
2308 avg_load += load;
2309 }
2310
2311 /* Adjust by relative CPU power of the group */
2312 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2313
2314 if (local_group) {
2315 this_load = avg_load;
2316 this = group;
2317 } else if (avg_load < min_load) {
2318 min_load = avg_load;
2319 idlest = group;
2320 }
2321 } while (group = group->next, group != sd->groups);
2322
2323 if (!idlest || 100*this_load < imbalance*min_load)
2324 return NULL;
2325 return idlest;
2326}
2327
2328/*
2329 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2330 */
2331static int
2332find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2333{
2334 unsigned long load, min_load = ULONG_MAX;
2335 int idlest = -1;
2336 int i;
2337
2338 /* Traverse only the allowed CPUs */
2339 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2340 load = weighted_cpuload(i);
2341
2342 if (load < min_load || (load == min_load && i == this_cpu)) {
2343 min_load = load;
2344 idlest = i;
2345 }
2346 }
2347
2348 return idlest;
2349}
2350
2351/*
2352 * sched_balance_self: balance the current task (running on cpu) in domains
2353 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2354 * SD_BALANCE_EXEC.
2355 *
2356 * Balance, ie. select the least loaded group.
2357 *
2358 * Returns the target CPU number, or the same CPU if no balancing is needed.
2359 *
2360 * preempt must be disabled.
2361 */
2362static int sched_balance_self(int cpu, int flag)
2363{
2364 struct task_struct *t = current;
2365 struct sched_domain *tmp, *sd = NULL;
2366
2367 for_each_domain(cpu, tmp) {
2368 /*
2369 * If power savings logic is enabled for a domain, stop there.
2370 */
2371 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2372 break;
2373 if (tmp->flags & flag)
2374 sd = tmp;
2375 }
2376
2377 if (sd)
2378 update_shares(sd);
2379
2380 while (sd) {
2381 struct sched_group *group;
2382 int new_cpu, weight;
2383
2384 if (!(sd->flags & flag)) {
2385 sd = sd->child;
2386 continue;
2387 }
2388
2389 group = find_idlest_group(sd, t, cpu);
2390 if (!group) {
2391 sd = sd->child;
2392 continue;
2393 }
2394
2395 new_cpu = find_idlest_cpu(group, t, cpu);
2396 if (new_cpu == -1 || new_cpu == cpu) {
2397 /* Now try balancing at a lower domain level of cpu */
2398 sd = sd->child;
2399 continue;
2400 }
2401
2402 /* Now try balancing at a lower domain level of new_cpu */
2403 cpu = new_cpu;
2404 weight = cpumask_weight(sched_domain_span(sd));
2405 sd = NULL;
2406 for_each_domain(cpu, tmp) {
2407 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2408 break;
2409 if (tmp->flags & flag)
2410 sd = tmp;
2411 }
2412 /* while loop will break here if sd == NULL */
2413 }
2414
2415 return cpu;
2416}
2417
2418#endif /* CONFIG_SMP */
2419
2420/**
2421 * task_oncpu_function_call - call a function on the cpu on which a task runs
2422 * @p: the task to evaluate
2423 * @func: the function to be called
2424 * @info: the function call argument
2425 *
2426 * Calls the function @func when the task is currently running. This might
2427 * be on the current CPU, which just calls the function directly
2428 */
2429void task_oncpu_function_call(struct task_struct *p,
2430 void (*func) (void *info), void *info)
2431{
2432 int cpu;
2433
2434 preempt_disable();
2435 cpu = task_cpu(p);
2436 if (task_curr(p))
2437 smp_call_function_single(cpu, func, info, 1);
2438 preempt_enable();
2439}
2440
2441/***
2442 * try_to_wake_up - wake up a thread
2443 * @p: the to-be-woken-up thread
2444 * @state: the mask of task states that can be woken
2445 * @sync: do a synchronous wakeup?
2446 *
2447 * Put it on the run-queue if it's not already there. The "current"
2448 * thread is always on the run-queue (except when the actual
2449 * re-schedule is in progress), and as such you're allowed to do
2450 * the simpler "current->state = TASK_RUNNING" to mark yourself
2451 * runnable without the overhead of this.
2452 *
2453 * returns failure only if the task is already active.
2454 */
2455static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2456{
2457 int cpu, orig_cpu, this_cpu, success = 0;
2458 unsigned long flags;
2459 long old_state;
2460 struct rq *rq;
2461
2462 if (!sched_feat(SYNC_WAKEUPS))
2463 sync = 0;
2464
2465#ifdef CONFIG_SMP
2466 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2467 struct sched_domain *sd;
2468
2469 this_cpu = raw_smp_processor_id();
2470 cpu = task_cpu(p);
2471
2472 for_each_domain(this_cpu, sd) {
2473 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2474 update_shares(sd);
2475 break;
2476 }
2477 }
2478 }
2479#endif
2480
2481 smp_wmb();
2482 rq = task_rq_lock(p, &flags);
2483 update_rq_clock(rq);
2484 old_state = p->state;
2485 if (!(old_state & state))
2486 goto out;
2487
2488 if (p->se.on_rq)
2489 goto out_running;
2490
2491 cpu = task_cpu(p);
2492 orig_cpu = cpu;
2493 this_cpu = smp_processor_id();
2494
2495#ifdef CONFIG_SMP
2496 if (unlikely(task_running(rq, p)))
2497 goto out_activate;
2498
2499 cpu = p->sched_class->select_task_rq(p, sync);
2500 if (cpu != orig_cpu) {
2501 set_task_cpu(p, cpu);
2502 task_rq_unlock(rq, &flags);
2503 /* might preempt at this point */
2504 rq = task_rq_lock(p, &flags);
2505 old_state = p->state;
2506 if (!(old_state & state))
2507 goto out;
2508 if (p->se.on_rq)
2509 goto out_running;
2510
2511 this_cpu = smp_processor_id();
2512 cpu = task_cpu(p);
2513 }
2514
2515#ifdef CONFIG_SCHEDSTATS
2516 schedstat_inc(rq, ttwu_count);
2517 if (cpu == this_cpu)
2518 schedstat_inc(rq, ttwu_local);
2519 else {
2520 struct sched_domain *sd;
2521 for_each_domain(this_cpu, sd) {
2522 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2523 schedstat_inc(sd, ttwu_wake_remote);
2524 break;
2525 }
2526 }
2527 }
2528#endif /* CONFIG_SCHEDSTATS */
2529
2530out_activate:
2531#endif /* CONFIG_SMP */
2532 schedstat_inc(p, se.nr_wakeups);
2533 if (sync)
2534 schedstat_inc(p, se.nr_wakeups_sync);
2535 if (orig_cpu != cpu)
2536 schedstat_inc(p, se.nr_wakeups_migrate);
2537 if (cpu == this_cpu)
2538 schedstat_inc(p, se.nr_wakeups_local);
2539 else
2540 schedstat_inc(p, se.nr_wakeups_remote);
2541 activate_task(rq, p, 1);
2542 success = 1;
2543
2544 /*
2545 * Only attribute actual wakeups done by this task.
2546 */
2547 if (!in_interrupt()) {
2548 struct sched_entity *se = &current->se;
2549 u64 sample = se->sum_exec_runtime;
2550
2551 if (se->last_wakeup)
2552 sample -= se->last_wakeup;
2553 else
2554 sample -= se->start_runtime;
2555 update_avg(&se->avg_wakeup, sample);
2556
2557 se->last_wakeup = se->sum_exec_runtime;
2558 }
2559
2560out_running:
2561 trace_sched_wakeup(rq, p, success);
2562 check_preempt_curr(rq, p, sync);
2563
2564 p->state = TASK_RUNNING;
2565#ifdef CONFIG_SMP
2566 if (p->sched_class->task_wake_up)
2567 p->sched_class->task_wake_up(rq, p);
2568#endif
2569out:
2570 task_rq_unlock(rq, &flags);
2571
2572 return success;
2573}
2574
2575/**
2576 * wake_up_process - Wake up a specific process
2577 * @p: The process to be woken up.
2578 *
2579 * Attempt to wake up the nominated process and move it to the set of runnable
2580 * processes. Returns 1 if the process was woken up, 0 if it was already
2581 * running.
2582 *
2583 * It may be assumed that this function implies a write memory barrier before
2584 * changing the task state if and only if any tasks are woken up.
2585 */
2586int wake_up_process(struct task_struct *p)
2587{
2588 return try_to_wake_up(p, TASK_ALL, 0);
2589}
2590EXPORT_SYMBOL(wake_up_process);
2591
2592int wake_up_state(struct task_struct *p, unsigned int state)
2593{
2594 return try_to_wake_up(p, state, 0);
2595}
2596
2597/*
2598 * Perform scheduler related setup for a newly forked process p.
2599 * p is forked by current.
2600 *
2601 * __sched_fork() is basic setup used by init_idle() too:
2602 */
2603static void __sched_fork(struct task_struct *p)
2604{
2605 p->se.exec_start = 0;
2606 p->se.sum_exec_runtime = 0;
2607 p->se.prev_sum_exec_runtime = 0;
2608 p->se.nr_migrations = 0;
2609 p->se.last_wakeup = 0;
2610 p->se.avg_overlap = 0;
2611 p->se.start_runtime = 0;
2612 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2613
2614#ifdef CONFIG_SCHEDSTATS
2615 p->se.wait_start = 0;
2616 p->se.wait_max = 0;
2617 p->se.wait_count = 0;
2618 p->se.wait_sum = 0;
2619
2620 p->se.sleep_start = 0;
2621 p->se.sleep_max = 0;
2622 p->se.sum_sleep_runtime = 0;
2623
2624 p->se.block_start = 0;
2625 p->se.block_max = 0;
2626 p->se.exec_max = 0;
2627 p->se.slice_max = 0;
2628
2629 p->se.nr_migrations_cold = 0;
2630 p->se.nr_failed_migrations_affine = 0;
2631 p->se.nr_failed_migrations_running = 0;
2632 p->se.nr_failed_migrations_hot = 0;
2633 p->se.nr_forced_migrations = 0;
2634 p->se.nr_forced2_migrations = 0;
2635
2636 p->se.nr_wakeups = 0;
2637 p->se.nr_wakeups_sync = 0;
2638 p->se.nr_wakeups_migrate = 0;
2639 p->se.nr_wakeups_local = 0;
2640 p->se.nr_wakeups_remote = 0;
2641 p->se.nr_wakeups_affine = 0;
2642 p->se.nr_wakeups_affine_attempts = 0;
2643 p->se.nr_wakeups_passive = 0;
2644 p->se.nr_wakeups_idle = 0;
2645
2646#endif
2647
2648 INIT_LIST_HEAD(&p->rt.run_list);
2649 p->se.on_rq = 0;
2650 INIT_LIST_HEAD(&p->se.group_node);
2651
2652#ifdef CONFIG_PREEMPT_NOTIFIERS
2653 INIT_HLIST_HEAD(&p->preempt_notifiers);
2654#endif
2655
2656 /*
2657 * We mark the process as running here, but have not actually
2658 * inserted it onto the runqueue yet. This guarantees that
2659 * nobody will actually run it, and a signal or other external
2660 * event cannot wake it up and insert it on the runqueue either.
2661 */
2662 p->state = TASK_RUNNING;
2663}
2664
2665/*
2666 * fork()/clone()-time setup:
2667 */
2668void sched_fork(struct task_struct *p, int clone_flags)
2669{
2670 int cpu = get_cpu();
2671
2672 __sched_fork(p);
2673
2674#ifdef CONFIG_SMP
2675 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2676#endif
2677 set_task_cpu(p, cpu);
2678
2679 /*
2680 * Make sure we do not leak PI boosting priority to the child.
2681 */
2682 p->prio = current->normal_prio;
2683
2684 /*
2685 * Revert to default priority/policy on fork if requested.
2686 */
2687 if (unlikely(p->sched_reset_on_fork)) {
2688 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2689 p->policy = SCHED_NORMAL;
2690
2691 if (p->normal_prio < DEFAULT_PRIO)
2692 p->prio = DEFAULT_PRIO;
2693
2694 if (PRIO_TO_NICE(p->static_prio) < 0) {
2695 p->static_prio = NICE_TO_PRIO(0);
2696 set_load_weight(p);
2697 }
2698
2699 /*
2700 * We don't need the reset flag anymore after the fork. It has
2701 * fulfilled its duty:
2702 */
2703 p->sched_reset_on_fork = 0;
2704 }
2705
2706 if (!rt_prio(p->prio))
2707 p->sched_class = &fair_sched_class;
2708
2709#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2710 if (likely(sched_info_on()))
2711 memset(&p->sched_info, 0, sizeof(p->sched_info));
2712#endif
2713#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2714 p->oncpu = 0;
2715#endif
2716#ifdef CONFIG_PREEMPT
2717 /* Want to start with kernel preemption disabled. */
2718 task_thread_info(p)->preempt_count = 1;
2719#endif
2720 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2721
2722 put_cpu();
2723}
2724
2725/*
2726 * wake_up_new_task - wake up a newly created task for the first time.
2727 *
2728 * This function will do some initial scheduler statistics housekeeping
2729 * that must be done for every newly created context, then puts the task
2730 * on the runqueue and wakes it.
2731 */
2732void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2733{
2734 unsigned long flags;
2735 struct rq *rq;
2736
2737 rq = task_rq_lock(p, &flags);
2738 BUG_ON(p->state != TASK_RUNNING);
2739 update_rq_clock(rq);
2740
2741 p->prio = effective_prio(p);
2742
2743 if (!p->sched_class->task_new || !current->se.on_rq) {
2744 activate_task(rq, p, 0);
2745 } else {
2746 /*
2747 * Let the scheduling class do new task startup
2748 * management (if any):
2749 */
2750 p->sched_class->task_new(rq, p);
2751 inc_nr_running(rq);
2752 }
2753 trace_sched_wakeup_new(rq, p, 1);
2754 check_preempt_curr(rq, p, 0);
2755#ifdef CONFIG_SMP
2756 if (p->sched_class->task_wake_up)
2757 p->sched_class->task_wake_up(rq, p);
2758#endif
2759 task_rq_unlock(rq, &flags);
2760}
2761
2762#ifdef CONFIG_PREEMPT_NOTIFIERS
2763
2764/**
2765 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2766 * @notifier: notifier struct to register
2767 */
2768void preempt_notifier_register(struct preempt_notifier *notifier)
2769{
2770 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2771}
2772EXPORT_SYMBOL_GPL(preempt_notifier_register);
2773
2774/**
2775 * preempt_notifier_unregister - no longer interested in preemption notifications
2776 * @notifier: notifier struct to unregister
2777 *
2778 * This is safe to call from within a preemption notifier.
2779 */
2780void preempt_notifier_unregister(struct preempt_notifier *notifier)
2781{
2782 hlist_del(&notifier->link);
2783}
2784EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2785
2786static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2787{
2788 struct preempt_notifier *notifier;
2789 struct hlist_node *node;
2790
2791 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2792 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2793}
2794
2795static void
2796fire_sched_out_preempt_notifiers(struct task_struct *curr,
2797 struct task_struct *next)
2798{
2799 struct preempt_notifier *notifier;
2800 struct hlist_node *node;
2801
2802 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2803 notifier->ops->sched_out(notifier, next);
2804}
2805
2806#else /* !CONFIG_PREEMPT_NOTIFIERS */
2807
2808static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2809{
2810}
2811
2812static void
2813fire_sched_out_preempt_notifiers(struct task_struct *curr,
2814 struct task_struct *next)
2815{
2816}
2817
2818#endif /* CONFIG_PREEMPT_NOTIFIERS */
2819
2820/**
2821 * prepare_task_switch - prepare to switch tasks
2822 * @rq: the runqueue preparing to switch
2823 * @prev: the current task that is being switched out
2824 * @next: the task we are going to switch to.
2825 *
2826 * This is called with the rq lock held and interrupts off. It must
2827 * be paired with a subsequent finish_task_switch after the context
2828 * switch.
2829 *
2830 * prepare_task_switch sets up locking and calls architecture specific
2831 * hooks.
2832 */
2833static inline void
2834prepare_task_switch(struct rq *rq, struct task_struct *prev,
2835 struct task_struct *next)
2836{
2837 fire_sched_out_preempt_notifiers(prev, next);
2838 prepare_lock_switch(rq, next);
2839 prepare_arch_switch(next);
2840}
2841
2842/**
2843 * finish_task_switch - clean up after a task-switch
2844 * @rq: runqueue associated with task-switch
2845 * @prev: the thread we just switched away from.
2846 *
2847 * finish_task_switch must be called after the context switch, paired
2848 * with a prepare_task_switch call before the context switch.
2849 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2850 * and do any other architecture-specific cleanup actions.
2851 *
2852 * Note that we may have delayed dropping an mm in context_switch(). If
2853 * so, we finish that here outside of the runqueue lock. (Doing it
2854 * with the lock held can cause deadlocks; see schedule() for
2855 * details.)
2856 */
2857static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2858 __releases(rq->lock)
2859{
2860 struct mm_struct *mm = rq->prev_mm;
2861 long prev_state;
2862
2863 rq->prev_mm = NULL;
2864
2865 /*
2866 * A task struct has one reference for the use as "current".
2867 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2868 * schedule one last time. The schedule call will never return, and
2869 * the scheduled task must drop that reference.
2870 * The test for TASK_DEAD must occur while the runqueue locks are
2871 * still held, otherwise prev could be scheduled on another cpu, die
2872 * there before we look at prev->state, and then the reference would
2873 * be dropped twice.
2874 * Manfred Spraul <manfred@colorfullife.com>
2875 */
2876 prev_state = prev->state;
2877 finish_arch_switch(prev);
2878 perf_counter_task_sched_in(current, cpu_of(rq));
2879 finish_lock_switch(rq, prev);
2880
2881 fire_sched_in_preempt_notifiers(current);
2882 if (mm)
2883 mmdrop(mm);
2884 if (unlikely(prev_state == TASK_DEAD)) {
2885 /*
2886 * Remove function-return probe instances associated with this
2887 * task and put them back on the free list.
2888 */
2889 kprobe_flush_task(prev);
2890 put_task_struct(prev);
2891 }
2892}
2893
2894#ifdef CONFIG_SMP
2895
2896/* assumes rq->lock is held */
2897static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2898{
2899 if (prev->sched_class->pre_schedule)
2900 prev->sched_class->pre_schedule(rq, prev);
2901}
2902
2903/* rq->lock is NOT held, but preemption is disabled */
2904static inline void post_schedule(struct rq *rq)
2905{
2906 if (rq->post_schedule) {
2907 unsigned long flags;
2908
2909 spin_lock_irqsave(&rq->lock, flags);
2910 if (rq->curr->sched_class->post_schedule)
2911 rq->curr->sched_class->post_schedule(rq);
2912 spin_unlock_irqrestore(&rq->lock, flags);
2913
2914 rq->post_schedule = 0;
2915 }
2916}
2917
2918#else
2919
2920static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2921{
2922}
2923
2924static inline void post_schedule(struct rq *rq)
2925{
2926}
2927
2928#endif
2929
2930/**
2931 * schedule_tail - first thing a freshly forked thread must call.
2932 * @prev: the thread we just switched away from.
2933 */
2934asmlinkage void schedule_tail(struct task_struct *prev)
2935 __releases(rq->lock)
2936{
2937 struct rq *rq = this_rq();
2938
2939 finish_task_switch(rq, prev);
2940
2941 /*
2942 * FIXME: do we need to worry about rq being invalidated by the
2943 * task_switch?
2944 */
2945 post_schedule(rq);
2946
2947#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2948 /* In this case, finish_task_switch does not reenable preemption */
2949 preempt_enable();
2950#endif
2951 if (current->set_child_tid)
2952 put_user(task_pid_vnr(current), current->set_child_tid);
2953}
2954
2955/*
2956 * context_switch - switch to the new MM and the new
2957 * thread's register state.
2958 */
2959static inline void
2960context_switch(struct rq *rq, struct task_struct *prev,
2961 struct task_struct *next)
2962{
2963 struct mm_struct *mm, *oldmm;
2964
2965 prepare_task_switch(rq, prev, next);
2966 trace_sched_switch(rq, prev, next);
2967 mm = next->mm;
2968 oldmm = prev->active_mm;
2969 /*
2970 * For paravirt, this is coupled with an exit in switch_to to
2971 * combine the page table reload and the switch backend into
2972 * one hypercall.
2973 */
2974 arch_start_context_switch(prev);
2975
2976 if (unlikely(!mm)) {
2977 next->active_mm = oldmm;
2978 atomic_inc(&oldmm->mm_count);
2979 enter_lazy_tlb(oldmm, next);
2980 } else
2981 switch_mm(oldmm, mm, next);
2982
2983 if (unlikely(!prev->mm)) {
2984 prev->active_mm = NULL;
2985 rq->prev_mm = oldmm;
2986 }
2987 /*
2988 * Since the runqueue lock will be released by the next
2989 * task (which is an invalid locking op but in the case
2990 * of the scheduler it's an obvious special-case), so we
2991 * do an early lockdep release here:
2992 */
2993#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2994 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2995#endif
2996
2997 /* Here we just switch the register state and the stack. */
2998 switch_to(prev, next, prev);
2999
3000 barrier();
3001 /*
3002 * this_rq must be evaluated again because prev may have moved
3003 * CPUs since it called schedule(), thus the 'rq' on its stack
3004 * frame will be invalid.
3005 */
3006 finish_task_switch(this_rq(), prev);
3007}
3008
3009/*
3010 * nr_running, nr_uninterruptible and nr_context_switches:
3011 *
3012 * externally visible scheduler statistics: current number of runnable
3013 * threads, current number of uninterruptible-sleeping threads, total
3014 * number of context switches performed since bootup.
3015 */
3016unsigned long nr_running(void)
3017{
3018 unsigned long i, sum = 0;
3019
3020 for_each_online_cpu(i)
3021 sum += cpu_rq(i)->nr_running;
3022
3023 return sum;
3024}
3025
3026unsigned long nr_uninterruptible(void)
3027{
3028 unsigned long i, sum = 0;
3029
3030 for_each_possible_cpu(i)
3031 sum += cpu_rq(i)->nr_uninterruptible;
3032
3033 /*
3034 * Since we read the counters lockless, it might be slightly
3035 * inaccurate. Do not allow it to go below zero though:
3036 */
3037 if (unlikely((long)sum < 0))
3038 sum = 0;
3039
3040 return sum;
3041}
3042
3043unsigned long long nr_context_switches(void)
3044{
3045 int i;
3046 unsigned long long sum = 0;
3047
3048 for_each_possible_cpu(i)
3049 sum += cpu_rq(i)->nr_switches;
3050
3051 return sum;
3052}
3053
3054unsigned long nr_iowait(void)
3055{
3056 unsigned long i, sum = 0;
3057
3058 for_each_possible_cpu(i)
3059 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3060
3061 return sum;
3062}
3063
3064/* Variables and functions for calc_load */
3065static atomic_long_t calc_load_tasks;
3066static unsigned long calc_load_update;
3067unsigned long avenrun[3];
3068EXPORT_SYMBOL(avenrun);
3069
3070/**
3071 * get_avenrun - get the load average array
3072 * @loads: pointer to dest load array
3073 * @offset: offset to add
3074 * @shift: shift count to shift the result left
3075 *
3076 * These values are estimates at best, so no need for locking.
3077 */
3078void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3079{
3080 loads[0] = (avenrun[0] + offset) << shift;
3081 loads[1] = (avenrun[1] + offset) << shift;
3082 loads[2] = (avenrun[2] + offset) << shift;
3083}
3084
3085static unsigned long
3086calc_load(unsigned long load, unsigned long exp, unsigned long active)
3087{
3088 load *= exp;
3089 load += active * (FIXED_1 - exp);
3090 return load >> FSHIFT;
3091}
3092
3093/*
3094 * calc_load - update the avenrun load estimates 10 ticks after the
3095 * CPUs have updated calc_load_tasks.
3096 */
3097void calc_global_load(void)
3098{
3099 unsigned long upd = calc_load_update + 10;
3100 long active;
3101
3102 if (time_before(jiffies, upd))
3103 return;
3104
3105 active = atomic_long_read(&calc_load_tasks);
3106 active = active > 0 ? active * FIXED_1 : 0;
3107
3108 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3109 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3110 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3111
3112 calc_load_update += LOAD_FREQ;
3113}
3114
3115/*
3116 * Either called from update_cpu_load() or from a cpu going idle
3117 */
3118static void calc_load_account_active(struct rq *this_rq)
3119{
3120 long nr_active, delta;
3121
3122 nr_active = this_rq->nr_running;
3123 nr_active += (long) this_rq->nr_uninterruptible;
3124
3125 if (nr_active != this_rq->calc_load_active) {
3126 delta = nr_active - this_rq->calc_load_active;
3127 this_rq->calc_load_active = nr_active;
3128 atomic_long_add(delta, &calc_load_tasks);
3129 }
3130}
3131
3132/*
3133 * Externally visible per-cpu scheduler statistics:
3134 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3135 */
3136u64 cpu_nr_migrations(int cpu)
3137{
3138 return cpu_rq(cpu)->nr_migrations_in;
3139}
3140
3141/*
3142 * Update rq->cpu_load[] statistics. This function is usually called every
3143 * scheduler tick (TICK_NSEC).
3144 */
3145static void update_cpu_load(struct rq *this_rq)
3146{
3147 unsigned long this_load = this_rq->load.weight;
3148 int i, scale;
3149
3150 this_rq->nr_load_updates++;
3151
3152 /* Update our load: */
3153 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3154 unsigned long old_load, new_load;
3155
3156 /* scale is effectively 1 << i now, and >> i divides by scale */
3157
3158 old_load = this_rq->cpu_load[i];
3159 new_load = this_load;
3160 /*
3161 * Round up the averaging division if load is increasing. This
3162 * prevents us from getting stuck on 9 if the load is 10, for
3163 * example.
3164 */
3165 if (new_load > old_load)
3166 new_load += scale-1;
3167 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3168 }
3169
3170 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3171 this_rq->calc_load_update += LOAD_FREQ;
3172 calc_load_account_active(this_rq);
3173 }
3174}
3175
3176#ifdef CONFIG_SMP
3177
3178/*
3179 * double_rq_lock - safely lock two runqueues
3180 *
3181 * Note this does not disable interrupts like task_rq_lock,
3182 * you need to do so manually before calling.
3183 */
3184static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3185 __acquires(rq1->lock)
3186 __acquires(rq2->lock)
3187{
3188 BUG_ON(!irqs_disabled());
3189 if (rq1 == rq2) {
3190 spin_lock(&rq1->lock);
3191 __acquire(rq2->lock); /* Fake it out ;) */
3192 } else {
3193 if (rq1 < rq2) {
3194 spin_lock(&rq1->lock);
3195 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3196 } else {
3197 spin_lock(&rq2->lock);
3198 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3199 }
3200 }
3201 update_rq_clock(rq1);
3202 update_rq_clock(rq2);
3203}
3204
3205/*
3206 * double_rq_unlock - safely unlock two runqueues
3207 *
3208 * Note this does not restore interrupts like task_rq_unlock,
3209 * you need to do so manually after calling.
3210 */
3211static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3212 __releases(rq1->lock)
3213 __releases(rq2->lock)
3214{
3215 spin_unlock(&rq1->lock);
3216 if (rq1 != rq2)
3217 spin_unlock(&rq2->lock);
3218 else
3219 __release(rq2->lock);
3220}
3221
3222/*
3223 * If dest_cpu is allowed for this process, migrate the task to it.
3224 * This is accomplished by forcing the cpu_allowed mask to only
3225 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3226 * the cpu_allowed mask is restored.
3227 */
3228static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3229{
3230 struct migration_req req;
3231 unsigned long flags;
3232 struct rq *rq;
3233
3234 rq = task_rq_lock(p, &flags);
3235 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3236 || unlikely(!cpu_active(dest_cpu)))
3237 goto out;
3238
3239 /* force the process onto the specified CPU */
3240 if (migrate_task(p, dest_cpu, &req)) {
3241 /* Need to wait for migration thread (might exit: take ref). */
3242 struct task_struct *mt = rq->migration_thread;
3243
3244 get_task_struct(mt);
3245 task_rq_unlock(rq, &flags);
3246 wake_up_process(mt);
3247 put_task_struct(mt);
3248 wait_for_completion(&req.done);
3249
3250 return;
3251 }
3252out:
3253 task_rq_unlock(rq, &flags);
3254}
3255
3256/*
3257 * sched_exec - execve() is a valuable balancing opportunity, because at
3258 * this point the task has the smallest effective memory and cache footprint.
3259 */
3260void sched_exec(void)
3261{
3262 int new_cpu, this_cpu = get_cpu();
3263 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
3264 put_cpu();
3265 if (new_cpu != this_cpu)
3266 sched_migrate_task(current, new_cpu);
3267}
3268
3269/*
3270 * pull_task - move a task from a remote runqueue to the local runqueue.
3271 * Both runqueues must be locked.
3272 */
3273static void pull_task(struct rq *src_rq, struct task_struct *p,
3274 struct rq *this_rq, int this_cpu)
3275{
3276 deactivate_task(src_rq, p, 0);
3277 set_task_cpu(p, this_cpu);
3278 activate_task(this_rq, p, 0);
3279 /*
3280 * Note that idle threads have a prio of MAX_PRIO, for this test
3281 * to be always true for them.
3282 */
3283 check_preempt_curr(this_rq, p, 0);
3284}
3285
3286/*
3287 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3288 */
3289static
3290int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3291 struct sched_domain *sd, enum cpu_idle_type idle,
3292 int *all_pinned)
3293{
3294 int tsk_cache_hot = 0;
3295 /*
3296 * We do not migrate tasks that are:
3297 * 1) running (obviously), or
3298 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3299 * 3) are cache-hot on their current CPU.
3300 */
3301 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3302 schedstat_inc(p, se.nr_failed_migrations_affine);
3303 return 0;
3304 }
3305 *all_pinned = 0;
3306
3307 if (task_running(rq, p)) {
3308 schedstat_inc(p, se.nr_failed_migrations_running);
3309 return 0;
3310 }
3311
3312 /*
3313 * Aggressive migration if:
3314 * 1) task is cache cold, or
3315 * 2) too many balance attempts have failed.
3316 */
3317
3318 tsk_cache_hot = task_hot(p, rq->clock, sd);
3319 if (!tsk_cache_hot ||
3320 sd->nr_balance_failed > sd->cache_nice_tries) {
3321#ifdef CONFIG_SCHEDSTATS
3322 if (tsk_cache_hot) {
3323 schedstat_inc(sd, lb_hot_gained[idle]);
3324 schedstat_inc(p, se.nr_forced_migrations);
3325 }
3326#endif
3327 return 1;
3328 }
3329
3330 if (tsk_cache_hot) {
3331 schedstat_inc(p, se.nr_failed_migrations_hot);
3332 return 0;
3333 }
3334 return 1;
3335}
3336
3337static unsigned long
3338balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3339 unsigned long max_load_move, struct sched_domain *sd,
3340 enum cpu_idle_type idle, int *all_pinned,
3341 int *this_best_prio, struct rq_iterator *iterator)
3342{
3343 int loops = 0, pulled = 0, pinned = 0;
3344 struct task_struct *p;
3345 long rem_load_move = max_load_move;
3346
3347 if (max_load_move == 0)
3348 goto out;
3349
3350 pinned = 1;
3351
3352 /*
3353 * Start the load-balancing iterator:
3354 */
3355 p = iterator->start(iterator->arg);
3356next:
3357 if (!p || loops++ > sysctl_sched_nr_migrate)
3358 goto out;
3359
3360 if ((p->se.load.weight >> 1) > rem_load_move ||
3361 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3362 p = iterator->next(iterator->arg);
3363 goto next;
3364 }
3365
3366 pull_task(busiest, p, this_rq, this_cpu);
3367 pulled++;
3368 rem_load_move -= p->se.load.weight;
3369
3370#ifdef CONFIG_PREEMPT
3371 /*
3372 * NEWIDLE balancing is a source of latency, so preemptible kernels
3373 * will stop after the first task is pulled to minimize the critical
3374 * section.
3375 */
3376 if (idle == CPU_NEWLY_IDLE)
3377 goto out;
3378#endif
3379
3380 /*
3381 * We only want to steal up to the prescribed amount of weighted load.
3382 */
3383 if (rem_load_move > 0) {
3384 if (p->prio < *this_best_prio)
3385 *this_best_prio = p->prio;
3386 p = iterator->next(iterator->arg);
3387 goto next;
3388 }
3389out:
3390 /*
3391 * Right now, this is one of only two places pull_task() is called,
3392 * so we can safely collect pull_task() stats here rather than
3393 * inside pull_task().
3394 */
3395 schedstat_add(sd, lb_gained[idle], pulled);
3396
3397 if (all_pinned)
3398 *all_pinned = pinned;
3399
3400 return max_load_move - rem_load_move;
3401}
3402
3403/*
3404 * move_tasks tries to move up to max_load_move weighted load from busiest to
3405 * this_rq, as part of a balancing operation within domain "sd".
3406 * Returns 1 if successful and 0 otherwise.
3407 *
3408 * Called with both runqueues locked.
3409 */
3410static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3411 unsigned long max_load_move,
3412 struct sched_domain *sd, enum cpu_idle_type idle,
3413 int *all_pinned)
3414{
3415 const struct sched_class *class = sched_class_highest;
3416 unsigned long total_load_moved = 0;
3417 int this_best_prio = this_rq->curr->prio;
3418
3419 do {
3420 total_load_moved +=
3421 class->load_balance(this_rq, this_cpu, busiest,
3422 max_load_move - total_load_moved,
3423 sd, idle, all_pinned, &this_best_prio);
3424 class = class->next;
3425
3426#ifdef CONFIG_PREEMPT
3427 /*
3428 * NEWIDLE balancing is a source of latency, so preemptible
3429 * kernels will stop after the first task is pulled to minimize
3430 * the critical section.
3431 */
3432 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3433 break;
3434#endif
3435 } while (class && max_load_move > total_load_moved);
3436
3437 return total_load_moved > 0;
3438}
3439
3440static int
3441iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3442 struct sched_domain *sd, enum cpu_idle_type idle,
3443 struct rq_iterator *iterator)
3444{
3445 struct task_struct *p = iterator->start(iterator->arg);
3446 int pinned = 0;
3447
3448 while (p) {
3449 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3450 pull_task(busiest, p, this_rq, this_cpu);
3451 /*
3452 * Right now, this is only the second place pull_task()
3453 * is called, so we can safely collect pull_task()
3454 * stats here rather than inside pull_task().
3455 */
3456 schedstat_inc(sd, lb_gained[idle]);
3457
3458 return 1;
3459 }
3460 p = iterator->next(iterator->arg);
3461 }
3462
3463 return 0;
3464}
3465
3466/*
3467 * move_one_task tries to move exactly one task from busiest to this_rq, as
3468 * part of active balancing operations within "domain".
3469 * Returns 1 if successful and 0 otherwise.
3470 *
3471 * Called with both runqueues locked.
3472 */
3473static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3474 struct sched_domain *sd, enum cpu_idle_type idle)
3475{
3476 const struct sched_class *class;
3477
3478 for_each_class(class) {
3479 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3480 return 1;
3481 }
3482
3483 return 0;
3484}
3485/********** Helpers for find_busiest_group ************************/
3486/*
3487 * sd_lb_stats - Structure to store the statistics of a sched_domain
3488 * during load balancing.
3489 */
3490struct sd_lb_stats {
3491 struct sched_group *busiest; /* Busiest group in this sd */
3492 struct sched_group *this; /* Local group in this sd */
3493 unsigned long total_load; /* Total load of all groups in sd */
3494 unsigned long total_pwr; /* Total power of all groups in sd */
3495 unsigned long avg_load; /* Average load across all groups in sd */
3496
3497 /** Statistics of this group */
3498 unsigned long this_load;
3499 unsigned long this_load_per_task;
3500 unsigned long this_nr_running;
3501
3502 /* Statistics of the busiest group */
3503 unsigned long max_load;
3504 unsigned long busiest_load_per_task;
3505 unsigned long busiest_nr_running;
3506
3507 int group_imb; /* Is there imbalance in this sd */
3508#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3509 int power_savings_balance; /* Is powersave balance needed for this sd */
3510 struct sched_group *group_min; /* Least loaded group in sd */
3511 struct sched_group *group_leader; /* Group which relieves group_min */
3512 unsigned long min_load_per_task; /* load_per_task in group_min */
3513 unsigned long leader_nr_running; /* Nr running of group_leader */
3514 unsigned long min_nr_running; /* Nr running of group_min */
3515#endif
3516};
3517
3518/*
3519 * sg_lb_stats - stats of a sched_group required for load_balancing
3520 */
3521struct sg_lb_stats {
3522 unsigned long avg_load; /*Avg load across the CPUs of the group */
3523 unsigned long group_load; /* Total load over the CPUs of the group */
3524 unsigned long sum_nr_running; /* Nr tasks running in the group */
3525 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3526 unsigned long group_capacity;
3527 int group_imb; /* Is there an imbalance in the group ? */
3528};
3529
3530/**
3531 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3532 * @group: The group whose first cpu is to be returned.
3533 */
3534static inline unsigned int group_first_cpu(struct sched_group *group)
3535{
3536 return cpumask_first(sched_group_cpus(group));
3537}
3538
3539/**
3540 * get_sd_load_idx - Obtain the load index for a given sched domain.
3541 * @sd: The sched_domain whose load_idx is to be obtained.
3542 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3543 */
3544static inline int get_sd_load_idx(struct sched_domain *sd,
3545 enum cpu_idle_type idle)
3546{
3547 int load_idx;
3548
3549 switch (idle) {
3550 case CPU_NOT_IDLE:
3551 load_idx = sd->busy_idx;
3552 break;
3553
3554 case CPU_NEWLY_IDLE:
3555 load_idx = sd->newidle_idx;
3556 break;
3557 default:
3558 load_idx = sd->idle_idx;
3559 break;
3560 }
3561
3562 return load_idx;
3563}
3564
3565
3566#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3567/**
3568 * init_sd_power_savings_stats - Initialize power savings statistics for
3569 * the given sched_domain, during load balancing.
3570 *
3571 * @sd: Sched domain whose power-savings statistics are to be initialized.
3572 * @sds: Variable containing the statistics for sd.
3573 * @idle: Idle status of the CPU at which we're performing load-balancing.
3574 */
3575static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3576 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3577{
3578 /*
3579 * Busy processors will not participate in power savings
3580 * balance.
3581 */
3582 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3583 sds->power_savings_balance = 0;
3584 else {
3585 sds->power_savings_balance = 1;
3586 sds->min_nr_running = ULONG_MAX;
3587 sds->leader_nr_running = 0;
3588 }
3589}
3590
3591/**
3592 * update_sd_power_savings_stats - Update the power saving stats for a
3593 * sched_domain while performing load balancing.
3594 *
3595 * @group: sched_group belonging to the sched_domain under consideration.
3596 * @sds: Variable containing the statistics of the sched_domain
3597 * @local_group: Does group contain the CPU for which we're performing
3598 * load balancing ?
3599 * @sgs: Variable containing the statistics of the group.
3600 */
3601static inline void update_sd_power_savings_stats(struct sched_group *group,
3602 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3603{
3604
3605 if (!sds->power_savings_balance)
3606 return;
3607
3608 /*
3609 * If the local group is idle or completely loaded
3610 * no need to do power savings balance at this domain
3611 */
3612 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3613 !sds->this_nr_running))
3614 sds->power_savings_balance = 0;
3615
3616 /*
3617 * If a group is already running at full capacity or idle,
3618 * don't include that group in power savings calculations
3619 */
3620 if (!sds->power_savings_balance ||
3621 sgs->sum_nr_running >= sgs->group_capacity ||
3622 !sgs->sum_nr_running)
3623 return;
3624
3625 /*
3626 * Calculate the group which has the least non-idle load.
3627 * This is the group from where we need to pick up the load
3628 * for saving power
3629 */
3630 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3631 (sgs->sum_nr_running == sds->min_nr_running &&
3632 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3633 sds->group_min = group;
3634 sds->min_nr_running = sgs->sum_nr_running;
3635 sds->min_load_per_task = sgs->sum_weighted_load /
3636 sgs->sum_nr_running;
3637 }
3638
3639 /*
3640 * Calculate the group which is almost near its
3641 * capacity but still has some space to pick up some load
3642 * from other group and save more power
3643 */
3644 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3645 return;
3646
3647 if (sgs->sum_nr_running > sds->leader_nr_running ||
3648 (sgs->sum_nr_running == sds->leader_nr_running &&
3649 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3650 sds->group_leader = group;
3651 sds->leader_nr_running = sgs->sum_nr_running;
3652 }
3653}
3654
3655/**
3656 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3657 * @sds: Variable containing the statistics of the sched_domain
3658 * under consideration.
3659 * @this_cpu: Cpu at which we're currently performing load-balancing.
3660 * @imbalance: Variable to store the imbalance.
3661 *
3662 * Description:
3663 * Check if we have potential to perform some power-savings balance.
3664 * If yes, set the busiest group to be the least loaded group in the
3665 * sched_domain, so that it's CPUs can be put to idle.
3666 *
3667 * Returns 1 if there is potential to perform power-savings balance.
3668 * Else returns 0.
3669 */
3670static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3671 int this_cpu, unsigned long *imbalance)
3672{
3673 if (!sds->power_savings_balance)
3674 return 0;
3675
3676 if (sds->this != sds->group_leader ||
3677 sds->group_leader == sds->group_min)
3678 return 0;
3679
3680 *imbalance = sds->min_load_per_task;
3681 sds->busiest = sds->group_min;
3682
3683 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3684 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3685 group_first_cpu(sds->group_leader);
3686 }
3687
3688 return 1;
3689
3690}
3691#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3692static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3693 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3694{
3695 return;
3696}
3697
3698static inline void update_sd_power_savings_stats(struct sched_group *group,
3699 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3700{
3701 return;
3702}
3703
3704static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3705 int this_cpu, unsigned long *imbalance)
3706{
3707 return 0;
3708}
3709#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3710
3711unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3712{
3713 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3714 unsigned long smt_gain = sd->smt_gain;
3715
3716 smt_gain /= weight;
3717
3718 return smt_gain;
3719}
3720
3721unsigned long scale_rt_power(int cpu)
3722{
3723 struct rq *rq = cpu_rq(cpu);
3724 u64 total, available;
3725
3726 sched_avg_update(rq);
3727
3728 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3729 available = total - rq->rt_avg;
3730
3731 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3732 total = SCHED_LOAD_SCALE;
3733
3734 total >>= SCHED_LOAD_SHIFT;
3735
3736 return div_u64(available, total);
3737}
3738
3739static void update_cpu_power(struct sched_domain *sd, int cpu)
3740{
3741 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3742 unsigned long power = SCHED_LOAD_SCALE;
3743 struct sched_group *sdg = sd->groups;
3744
3745 /* here we could scale based on cpufreq */
3746
3747 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3748 power *= arch_scale_smt_power(sd, cpu);
3749 power >>= SCHED_LOAD_SHIFT;
3750 }
3751
3752 power *= scale_rt_power(cpu);
3753 power >>= SCHED_LOAD_SHIFT;
3754
3755 if (!power)
3756 power = 1;
3757
3758 sdg->cpu_power = power;
3759}
3760
3761static void update_group_power(struct sched_domain *sd, int cpu)
3762{
3763 struct sched_domain *child = sd->child;
3764 struct sched_group *group, *sdg = sd->groups;
3765 unsigned long power;
3766
3767 if (!child) {
3768 update_cpu_power(sd, cpu);
3769 return;
3770 }
3771
3772 power = 0;
3773
3774 group = child->groups;
3775 do {
3776 power += group->cpu_power;
3777 group = group->next;
3778 } while (group != child->groups);
3779
3780 sdg->cpu_power = power;
3781}
3782
3783/**
3784 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3785 * @group: sched_group whose statistics are to be updated.
3786 * @this_cpu: Cpu for which load balance is currently performed.
3787 * @idle: Idle status of this_cpu
3788 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3789 * @sd_idle: Idle status of the sched_domain containing group.
3790 * @local_group: Does group contain this_cpu.
3791 * @cpus: Set of cpus considered for load balancing.
3792 * @balance: Should we balance.
3793 * @sgs: variable to hold the statistics for this group.
3794 */
3795static inline void update_sg_lb_stats(struct sched_domain *sd,
3796 struct sched_group *group, int this_cpu,
3797 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3798 int local_group, const struct cpumask *cpus,
3799 int *balance, struct sg_lb_stats *sgs)
3800{
3801 unsigned long load, max_cpu_load, min_cpu_load;
3802 int i;
3803 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3804 unsigned long sum_avg_load_per_task;
3805 unsigned long avg_load_per_task;
3806
3807 if (local_group) {
3808 balance_cpu = group_first_cpu(group);
3809 if (balance_cpu == this_cpu)
3810 update_group_power(sd, this_cpu);
3811 }
3812
3813 /* Tally up the load of all CPUs in the group */
3814 sum_avg_load_per_task = avg_load_per_task = 0;
3815 max_cpu_load = 0;
3816 min_cpu_load = ~0UL;
3817
3818 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3819 struct rq *rq = cpu_rq(i);
3820
3821 if (*sd_idle && rq->nr_running)
3822 *sd_idle = 0;
3823
3824 /* Bias balancing toward cpus of our domain */
3825 if (local_group) {
3826 if (idle_cpu(i) && !first_idle_cpu) {
3827 first_idle_cpu = 1;
3828 balance_cpu = i;
3829 }
3830
3831 load = target_load(i, load_idx);
3832 } else {
3833 load = source_load(i, load_idx);
3834 if (load > max_cpu_load)
3835 max_cpu_load = load;
3836 if (min_cpu_load > load)
3837 min_cpu_load = load;
3838 }
3839
3840 sgs->group_load += load;
3841 sgs->sum_nr_running += rq->nr_running;
3842 sgs->sum_weighted_load += weighted_cpuload(i);
3843
3844 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3845 }
3846
3847 /*
3848 * First idle cpu or the first cpu(busiest) in this sched group
3849 * is eligible for doing load balancing at this and above
3850 * domains. In the newly idle case, we will allow all the cpu's
3851 * to do the newly idle load balance.
3852 */
3853 if (idle != CPU_NEWLY_IDLE && local_group &&
3854 balance_cpu != this_cpu && balance) {
3855 *balance = 0;
3856 return;
3857 }
3858
3859 /* Adjust by relative CPU power of the group */
3860 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3861
3862
3863 /*
3864 * Consider the group unbalanced when the imbalance is larger
3865 * than the average weight of two tasks.
3866 *
3867 * APZ: with cgroup the avg task weight can vary wildly and
3868 * might not be a suitable number - should we keep a
3869 * normalized nr_running number somewhere that negates
3870 * the hierarchy?
3871 */
3872 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3873 group->cpu_power;
3874
3875 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3876 sgs->group_imb = 1;
3877
3878 sgs->group_capacity =
3879 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3880}
3881
3882/**
3883 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3884 * @sd: sched_domain whose statistics are to be updated.
3885 * @this_cpu: Cpu for which load balance is currently performed.
3886 * @idle: Idle status of this_cpu
3887 * @sd_idle: Idle status of the sched_domain containing group.
3888 * @cpus: Set of cpus considered for load balancing.
3889 * @balance: Should we balance.
3890 * @sds: variable to hold the statistics for this sched_domain.
3891 */
3892static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3893 enum cpu_idle_type idle, int *sd_idle,
3894 const struct cpumask *cpus, int *balance,
3895 struct sd_lb_stats *sds)
3896{
3897 struct sched_domain *child = sd->child;
3898 struct sched_group *group = sd->groups;
3899 struct sg_lb_stats sgs;
3900 int load_idx, prefer_sibling = 0;
3901
3902 if (child && child->flags & SD_PREFER_SIBLING)
3903 prefer_sibling = 1;
3904
3905 init_sd_power_savings_stats(sd, sds, idle);
3906 load_idx = get_sd_load_idx(sd, idle);
3907
3908 do {
3909 int local_group;
3910
3911 local_group = cpumask_test_cpu(this_cpu,
3912 sched_group_cpus(group));
3913 memset(&sgs, 0, sizeof(sgs));
3914 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3915 local_group, cpus, balance, &sgs);
3916
3917 if (local_group && balance && !(*balance))
3918 return;
3919
3920 sds->total_load += sgs.group_load;
3921 sds->total_pwr += group->cpu_power;
3922
3923 /*
3924 * In case the child domain prefers tasks go to siblings
3925 * first, lower the group capacity to one so that we'll try
3926 * and move all the excess tasks away.
3927 */
3928 if (prefer_sibling)
3929 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3930
3931 if (local_group) {
3932 sds->this_load = sgs.avg_load;
3933 sds->this = group;
3934 sds->this_nr_running = sgs.sum_nr_running;
3935 sds->this_load_per_task = sgs.sum_weighted_load;
3936 } else if (sgs.avg_load > sds->max_load &&
3937 (sgs.sum_nr_running > sgs.group_capacity ||
3938 sgs.group_imb)) {
3939 sds->max_load = sgs.avg_load;
3940 sds->busiest = group;
3941 sds->busiest_nr_running = sgs.sum_nr_running;
3942 sds->busiest_load_per_task = sgs.sum_weighted_load;
3943 sds->group_imb = sgs.group_imb;
3944 }
3945
3946 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3947 group = group->next;
3948 } while (group != sd->groups);
3949}
3950
3951/**
3952 * fix_small_imbalance - Calculate the minor imbalance that exists
3953 * amongst the groups of a sched_domain, during
3954 * load balancing.
3955 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3956 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3957 * @imbalance: Variable to store the imbalance.
3958 */
3959static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3960 int this_cpu, unsigned long *imbalance)
3961{
3962 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3963 unsigned int imbn = 2;
3964
3965 if (sds->this_nr_running) {
3966 sds->this_load_per_task /= sds->this_nr_running;
3967 if (sds->busiest_load_per_task >
3968 sds->this_load_per_task)
3969 imbn = 1;
3970 } else
3971 sds->this_load_per_task =
3972 cpu_avg_load_per_task(this_cpu);
3973
3974 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3975 sds->busiest_load_per_task * imbn) {
3976 *imbalance = sds->busiest_load_per_task;
3977 return;
3978 }
3979
3980 /*
3981 * OK, we don't have enough imbalance to justify moving tasks,
3982 * however we may be able to increase total CPU power used by
3983 * moving them.
3984 */
3985
3986 pwr_now += sds->busiest->cpu_power *
3987 min(sds->busiest_load_per_task, sds->max_load);
3988 pwr_now += sds->this->cpu_power *
3989 min(sds->this_load_per_task, sds->this_load);
3990 pwr_now /= SCHED_LOAD_SCALE;
3991
3992 /* Amount of load we'd subtract */
3993 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3994 sds->busiest->cpu_power;
3995 if (sds->max_load > tmp)
3996 pwr_move += sds->busiest->cpu_power *
3997 min(sds->busiest_load_per_task, sds->max_load - tmp);
3998
3999 /* Amount of load we'd add */
4000 if (sds->max_load * sds->busiest->cpu_power <
4001 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
4002 tmp = (sds->max_load * sds->busiest->cpu_power) /
4003 sds->this->cpu_power;
4004 else
4005 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
4006 sds->this->cpu_power;
4007 pwr_move += sds->this->cpu_power *
4008 min(sds->this_load_per_task, sds->this_load + tmp);
4009 pwr_move /= SCHED_LOAD_SCALE;
4010
4011 /* Move if we gain throughput */
4012 if (pwr_move > pwr_now)
4013 *imbalance = sds->busiest_load_per_task;
4014}
4015
4016/**
4017 * calculate_imbalance - Calculate the amount of imbalance present within the
4018 * groups of a given sched_domain during load balance.
4019 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4020 * @this_cpu: Cpu for which currently load balance is being performed.
4021 * @imbalance: The variable to store the imbalance.
4022 */
4023static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
4024 unsigned long *imbalance)
4025{
4026 unsigned long max_pull;
4027 /*
4028 * In the presence of smp nice balancing, certain scenarios can have
4029 * max load less than avg load(as we skip the groups at or below
4030 * its cpu_power, while calculating max_load..)
4031 */
4032 if (sds->max_load < sds->avg_load) {
4033 *imbalance = 0;
4034 return fix_small_imbalance(sds, this_cpu, imbalance);
4035 }
4036
4037 /* Don't want to pull so many tasks that a group would go idle */
4038 max_pull = min(sds->max_load - sds->avg_load,
4039 sds->max_load - sds->busiest_load_per_task);
4040
4041 /* How much load to actually move to equalise the imbalance */
4042 *imbalance = min(max_pull * sds->busiest->cpu_power,
4043 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
4044 / SCHED_LOAD_SCALE;
4045
4046 /*
4047 * if *imbalance is less than the average load per runnable task
4048 * there is no gaurantee that any tasks will be moved so we'll have
4049 * a think about bumping its value to force at least one task to be
4050 * moved
4051 */
4052 if (*imbalance < sds->busiest_load_per_task)
4053 return fix_small_imbalance(sds, this_cpu, imbalance);
4054
4055}
4056/******* find_busiest_group() helpers end here *********************/
4057
4058/**
4059 * find_busiest_group - Returns the busiest group within the sched_domain
4060 * if there is an imbalance. If there isn't an imbalance, and
4061 * the user has opted for power-savings, it returns a group whose
4062 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4063 * such a group exists.
4064 *
4065 * Also calculates the amount of weighted load which should be moved
4066 * to restore balance.
4067 *
4068 * @sd: The sched_domain whose busiest group is to be returned.
4069 * @this_cpu: The cpu for which load balancing is currently being performed.
4070 * @imbalance: Variable which stores amount of weighted load which should
4071 * be moved to restore balance/put a group to idle.
4072 * @idle: The idle status of this_cpu.
4073 * @sd_idle: The idleness of sd
4074 * @cpus: The set of CPUs under consideration for load-balancing.
4075 * @balance: Pointer to a variable indicating if this_cpu
4076 * is the appropriate cpu to perform load balancing at this_level.
4077 *
4078 * Returns: - the busiest group if imbalance exists.
4079 * - If no imbalance and user has opted for power-savings balance,
4080 * return the least loaded group whose CPUs can be
4081 * put to idle by rebalancing its tasks onto our group.
4082 */
4083static struct sched_group *
4084find_busiest_group(struct sched_domain *sd, int this_cpu,
4085 unsigned long *imbalance, enum cpu_idle_type idle,
4086 int *sd_idle, const struct cpumask *cpus, int *balance)
4087{
4088 struct sd_lb_stats sds;
4089
4090 memset(&sds, 0, sizeof(sds));
4091
4092 /*
4093 * Compute the various statistics relavent for load balancing at
4094 * this level.
4095 */
4096 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4097 balance, &sds);
4098
4099 /* Cases where imbalance does not exist from POV of this_cpu */
4100 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4101 * at this level.
4102 * 2) There is no busy sibling group to pull from.
4103 * 3) This group is the busiest group.
4104 * 4) This group is more busy than the avg busieness at this
4105 * sched_domain.
4106 * 5) The imbalance is within the specified limit.
4107 * 6) Any rebalance would lead to ping-pong
4108 */
4109 if (balance && !(*balance))
4110 goto ret;
4111
4112 if (!sds.busiest || sds.busiest_nr_running == 0)
4113 goto out_balanced;
4114
4115 if (sds.this_load >= sds.max_load)
4116 goto out_balanced;
4117
4118 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4119
4120 if (sds.this_load >= sds.avg_load)
4121 goto out_balanced;
4122
4123 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4124 goto out_balanced;
4125
4126 sds.busiest_load_per_task /= sds.busiest_nr_running;
4127 if (sds.group_imb)
4128 sds.busiest_load_per_task =
4129 min(sds.busiest_load_per_task, sds.avg_load);
4130
4131 /*
4132 * We're trying to get all the cpus to the average_load, so we don't
4133 * want to push ourselves above the average load, nor do we wish to
4134 * reduce the max loaded cpu below the average load, as either of these
4135 * actions would just result in more rebalancing later, and ping-pong
4136 * tasks around. Thus we look for the minimum possible imbalance.
4137 * Negative imbalances (*we* are more loaded than anyone else) will
4138 * be counted as no imbalance for these purposes -- we can't fix that
4139 * by pulling tasks to us. Be careful of negative numbers as they'll
4140 * appear as very large values with unsigned longs.
4141 */
4142 if (sds.max_load <= sds.busiest_load_per_task)
4143 goto out_balanced;
4144
4145 /* Looks like there is an imbalance. Compute it */
4146 calculate_imbalance(&sds, this_cpu, imbalance);
4147 return sds.busiest;
4148
4149out_balanced:
4150 /*
4151 * There is no obvious imbalance. But check if we can do some balancing
4152 * to save power.
4153 */
4154 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4155 return sds.busiest;
4156ret:
4157 *imbalance = 0;
4158 return NULL;
4159}
4160
4161static struct sched_group *group_of(int cpu)
4162{
4163 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
4164
4165 if (!sd)
4166 return NULL;
4167
4168 return sd->groups;
4169}
4170
4171static unsigned long power_of(int cpu)
4172{
4173 struct sched_group *group = group_of(cpu);
4174
4175 if (!group)
4176 return SCHED_LOAD_SCALE;
4177
4178 return group->cpu_power;
4179}
4180
4181/*
4182 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4183 */
4184static struct rq *
4185find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4186 unsigned long imbalance, const struct cpumask *cpus)
4187{
4188 struct rq *busiest = NULL, *rq;
4189 unsigned long max_load = 0;
4190 int i;
4191
4192 for_each_cpu(i, sched_group_cpus(group)) {
4193 unsigned long power = power_of(i);
4194 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4195 unsigned long wl;
4196
4197 if (!cpumask_test_cpu(i, cpus))
4198 continue;
4199
4200 rq = cpu_rq(i);
4201 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4202 wl /= power;
4203
4204 if (capacity && rq->nr_running == 1 && wl > imbalance)
4205 continue;
4206
4207 if (wl > max_load) {
4208 max_load = wl;
4209 busiest = rq;
4210 }
4211 }
4212
4213 return busiest;
4214}
4215
4216/*
4217 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4218 * so long as it is large enough.
4219 */
4220#define MAX_PINNED_INTERVAL 512
4221
4222/* Working cpumask for load_balance and load_balance_newidle. */
4223static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4224
4225/*
4226 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4227 * tasks if there is an imbalance.
4228 */
4229static int load_balance(int this_cpu, struct rq *this_rq,
4230 struct sched_domain *sd, enum cpu_idle_type idle,
4231 int *balance)
4232{
4233 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4234 struct sched_group *group;
4235 unsigned long imbalance;
4236 struct rq *busiest;
4237 unsigned long flags;
4238 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4239
4240 cpumask_setall(cpus);
4241
4242 /*
4243 * When power savings policy is enabled for the parent domain, idle
4244 * sibling can pick up load irrespective of busy siblings. In this case,
4245 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4246 * portraying it as CPU_NOT_IDLE.
4247 */
4248 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4249 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4250 sd_idle = 1;
4251
4252 schedstat_inc(sd, lb_count[idle]);
4253
4254redo:
4255 update_shares(sd);
4256 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4257 cpus, balance);
4258
4259 if (*balance == 0)
4260 goto out_balanced;
4261
4262 if (!group) {
4263 schedstat_inc(sd, lb_nobusyg[idle]);
4264 goto out_balanced;
4265 }
4266
4267 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4268 if (!busiest) {
4269 schedstat_inc(sd, lb_nobusyq[idle]);
4270 goto out_balanced;
4271 }
4272
4273 BUG_ON(busiest == this_rq);
4274
4275 schedstat_add(sd, lb_imbalance[idle], imbalance);
4276
4277 ld_moved = 0;
4278 if (busiest->nr_running > 1) {
4279 /*
4280 * Attempt to move tasks. If find_busiest_group has found
4281 * an imbalance but busiest->nr_running <= 1, the group is
4282 * still unbalanced. ld_moved simply stays zero, so it is
4283 * correctly treated as an imbalance.
4284 */
4285 local_irq_save(flags);
4286 double_rq_lock(this_rq, busiest);
4287 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4288 imbalance, sd, idle, &all_pinned);
4289 double_rq_unlock(this_rq, busiest);
4290 local_irq_restore(flags);
4291
4292 /*
4293 * some other cpu did the load balance for us.
4294 */
4295 if (ld_moved && this_cpu != smp_processor_id())
4296 resched_cpu(this_cpu);
4297
4298 /* All tasks on this runqueue were pinned by CPU affinity */
4299 if (unlikely(all_pinned)) {
4300 cpumask_clear_cpu(cpu_of(busiest), cpus);
4301 if (!cpumask_empty(cpus))
4302 goto redo;
4303 goto out_balanced;
4304 }
4305 }
4306
4307 if (!ld_moved) {
4308 schedstat_inc(sd, lb_failed[idle]);
4309 sd->nr_balance_failed++;
4310
4311 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4312
4313 spin_lock_irqsave(&busiest->lock, flags);
4314
4315 /* don't kick the migration_thread, if the curr
4316 * task on busiest cpu can't be moved to this_cpu
4317 */
4318 if (!cpumask_test_cpu(this_cpu,
4319 &busiest->curr->cpus_allowed)) {
4320 spin_unlock_irqrestore(&busiest->lock, flags);
4321 all_pinned = 1;
4322 goto out_one_pinned;
4323 }
4324
4325 if (!busiest->active_balance) {
4326 busiest->active_balance = 1;
4327 busiest->push_cpu = this_cpu;
4328 active_balance = 1;
4329 }
4330 spin_unlock_irqrestore(&busiest->lock, flags);
4331 if (active_balance)
4332 wake_up_process(busiest->migration_thread);
4333
4334 /*
4335 * We've kicked active balancing, reset the failure
4336 * counter.
4337 */
4338 sd->nr_balance_failed = sd->cache_nice_tries+1;
4339 }
4340 } else
4341 sd->nr_balance_failed = 0;
4342
4343 if (likely(!active_balance)) {
4344 /* We were unbalanced, so reset the balancing interval */
4345 sd->balance_interval = sd->min_interval;
4346 } else {
4347 /*
4348 * If we've begun active balancing, start to back off. This
4349 * case may not be covered by the all_pinned logic if there
4350 * is only 1 task on the busy runqueue (because we don't call
4351 * move_tasks).
4352 */
4353 if (sd->balance_interval < sd->max_interval)
4354 sd->balance_interval *= 2;
4355 }
4356
4357 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4358 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4359 ld_moved = -1;
4360
4361 goto out;
4362
4363out_balanced:
4364 schedstat_inc(sd, lb_balanced[idle]);
4365
4366 sd->nr_balance_failed = 0;
4367
4368out_one_pinned:
4369 /* tune up the balancing interval */
4370 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4371 (sd->balance_interval < sd->max_interval))
4372 sd->balance_interval *= 2;
4373
4374 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4375 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4376 ld_moved = -1;
4377 else
4378 ld_moved = 0;
4379out:
4380 if (ld_moved)
4381 update_shares(sd);
4382 return ld_moved;
4383}
4384
4385/*
4386 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4387 * tasks if there is an imbalance.
4388 *
4389 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4390 * this_rq is locked.
4391 */
4392static int
4393load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4394{
4395 struct sched_group *group;
4396 struct rq *busiest = NULL;
4397 unsigned long imbalance;
4398 int ld_moved = 0;
4399 int sd_idle = 0;
4400 int all_pinned = 0;
4401 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4402
4403 cpumask_setall(cpus);
4404
4405 /*
4406 * When power savings policy is enabled for the parent domain, idle
4407 * sibling can pick up load irrespective of busy siblings. In this case,
4408 * let the state of idle sibling percolate up as IDLE, instead of
4409 * portraying it as CPU_NOT_IDLE.
4410 */
4411 if (sd->flags & SD_SHARE_CPUPOWER &&
4412 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4413 sd_idle = 1;
4414
4415 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4416redo:
4417 update_shares_locked(this_rq, sd);
4418 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4419 &sd_idle, cpus, NULL);
4420 if (!group) {
4421 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4422 goto out_balanced;
4423 }
4424
4425 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4426 if (!busiest) {
4427 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4428 goto out_balanced;
4429 }
4430
4431 BUG_ON(busiest == this_rq);
4432
4433 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4434
4435 ld_moved = 0;
4436 if (busiest->nr_running > 1) {
4437 /* Attempt to move tasks */
4438 double_lock_balance(this_rq, busiest);
4439 /* this_rq->clock is already updated */
4440 update_rq_clock(busiest);
4441 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4442 imbalance, sd, CPU_NEWLY_IDLE,
4443 &all_pinned);
4444 double_unlock_balance(this_rq, busiest);
4445
4446 if (unlikely(all_pinned)) {
4447 cpumask_clear_cpu(cpu_of(busiest), cpus);
4448 if (!cpumask_empty(cpus))
4449 goto redo;
4450 }
4451 }
4452
4453 if (!ld_moved) {
4454 int active_balance = 0;
4455
4456 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4457 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4458 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4459 return -1;
4460
4461 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4462 return -1;
4463
4464 if (sd->nr_balance_failed++ < 2)
4465 return -1;
4466
4467 /*
4468 * The only task running in a non-idle cpu can be moved to this
4469 * cpu in an attempt to completely freeup the other CPU
4470 * package. The same method used to move task in load_balance()
4471 * have been extended for load_balance_newidle() to speedup
4472 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4473 *
4474 * The package power saving logic comes from
4475 * find_busiest_group(). If there are no imbalance, then
4476 * f_b_g() will return NULL. However when sched_mc={1,2} then
4477 * f_b_g() will select a group from which a running task may be
4478 * pulled to this cpu in order to make the other package idle.
4479 * If there is no opportunity to make a package idle and if
4480 * there are no imbalance, then f_b_g() will return NULL and no
4481 * action will be taken in load_balance_newidle().
4482 *
4483 * Under normal task pull operation due to imbalance, there
4484 * will be more than one task in the source run queue and
4485 * move_tasks() will succeed. ld_moved will be true and this
4486 * active balance code will not be triggered.
4487 */
4488
4489 /* Lock busiest in correct order while this_rq is held */
4490 double_lock_balance(this_rq, busiest);
4491
4492 /*
4493 * don't kick the migration_thread, if the curr
4494 * task on busiest cpu can't be moved to this_cpu
4495 */
4496 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4497 double_unlock_balance(this_rq, busiest);
4498 all_pinned = 1;
4499 return ld_moved;
4500 }
4501
4502 if (!busiest->active_balance) {
4503 busiest->active_balance = 1;
4504 busiest->push_cpu = this_cpu;
4505 active_balance = 1;
4506 }
4507
4508 double_unlock_balance(this_rq, busiest);
4509 /*
4510 * Should not call ttwu while holding a rq->lock
4511 */
4512 spin_unlock(&this_rq->lock);
4513 if (active_balance)
4514 wake_up_process(busiest->migration_thread);
4515 spin_lock(&this_rq->lock);
4516
4517 } else
4518 sd->nr_balance_failed = 0;
4519
4520 update_shares_locked(this_rq, sd);
4521 return ld_moved;
4522
4523out_balanced:
4524 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4525 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4526 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4527 return -1;
4528 sd->nr_balance_failed = 0;
4529
4530 return 0;
4531}
4532
4533/*
4534 * idle_balance is called by schedule() if this_cpu is about to become
4535 * idle. Attempts to pull tasks from other CPUs.
4536 */
4537static void idle_balance(int this_cpu, struct rq *this_rq)
4538{
4539 struct sched_domain *sd;
4540 int pulled_task = 0;
4541 unsigned long next_balance = jiffies + HZ;
4542
4543 for_each_domain(this_cpu, sd) {
4544 unsigned long interval;
4545
4546 if (!(sd->flags & SD_LOAD_BALANCE))
4547 continue;
4548
4549 if (sd->flags & SD_BALANCE_NEWIDLE)
4550 /* If we've pulled tasks over stop searching: */
4551 pulled_task = load_balance_newidle(this_cpu, this_rq,
4552 sd);
4553
4554 interval = msecs_to_jiffies(sd->balance_interval);
4555 if (time_after(next_balance, sd->last_balance + interval))
4556 next_balance = sd->last_balance + interval;
4557 if (pulled_task)
4558 break;
4559 }
4560 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4561 /*
4562 * We are going idle. next_balance may be set based on
4563 * a busy processor. So reset next_balance.
4564 */
4565 this_rq->next_balance = next_balance;
4566 }
4567}
4568
4569/*
4570 * active_load_balance is run by migration threads. It pushes running tasks
4571 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4572 * running on each physical CPU where possible, and avoids physical /
4573 * logical imbalances.
4574 *
4575 * Called with busiest_rq locked.
4576 */
4577static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4578{
4579 int target_cpu = busiest_rq->push_cpu;
4580 struct sched_domain *sd;
4581 struct rq *target_rq;
4582
4583 /* Is there any task to move? */
4584 if (busiest_rq->nr_running <= 1)
4585 return;
4586
4587 target_rq = cpu_rq(target_cpu);
4588
4589 /*
4590 * This condition is "impossible", if it occurs
4591 * we need to fix it. Originally reported by
4592 * Bjorn Helgaas on a 128-cpu setup.
4593 */
4594 BUG_ON(busiest_rq == target_rq);
4595
4596 /* move a task from busiest_rq to target_rq */
4597 double_lock_balance(busiest_rq, target_rq);
4598 update_rq_clock(busiest_rq);
4599 update_rq_clock(target_rq);
4600
4601 /* Search for an sd spanning us and the target CPU. */
4602 for_each_domain(target_cpu, sd) {
4603 if ((sd->flags & SD_LOAD_BALANCE) &&
4604 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4605 break;
4606 }
4607
4608 if (likely(sd)) {
4609 schedstat_inc(sd, alb_count);
4610
4611 if (move_one_task(target_rq, target_cpu, busiest_rq,
4612 sd, CPU_IDLE))
4613 schedstat_inc(sd, alb_pushed);
4614 else
4615 schedstat_inc(sd, alb_failed);
4616 }
4617 double_unlock_balance(busiest_rq, target_rq);
4618}
4619
4620#ifdef CONFIG_NO_HZ
4621static struct {
4622 atomic_t load_balancer;
4623 cpumask_var_t cpu_mask;
4624 cpumask_var_t ilb_grp_nohz_mask;
4625} nohz ____cacheline_aligned = {
4626 .load_balancer = ATOMIC_INIT(-1),
4627};
4628
4629int get_nohz_load_balancer(void)
4630{
4631 return atomic_read(&nohz.load_balancer);
4632}
4633
4634#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4635/**
4636 * lowest_flag_domain - Return lowest sched_domain containing flag.
4637 * @cpu: The cpu whose lowest level of sched domain is to
4638 * be returned.
4639 * @flag: The flag to check for the lowest sched_domain
4640 * for the given cpu.
4641 *
4642 * Returns the lowest sched_domain of a cpu which contains the given flag.
4643 */
4644static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4645{
4646 struct sched_domain *sd;
4647
4648 for_each_domain(cpu, sd)
4649 if (sd && (sd->flags & flag))
4650 break;
4651
4652 return sd;
4653}
4654
4655/**
4656 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4657 * @cpu: The cpu whose domains we're iterating over.
4658 * @sd: variable holding the value of the power_savings_sd
4659 * for cpu.
4660 * @flag: The flag to filter the sched_domains to be iterated.
4661 *
4662 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4663 * set, starting from the lowest sched_domain to the highest.
4664 */
4665#define for_each_flag_domain(cpu, sd, flag) \
4666 for (sd = lowest_flag_domain(cpu, flag); \
4667 (sd && (sd->flags & flag)); sd = sd->parent)
4668
4669/**
4670 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4671 * @ilb_group: group to be checked for semi-idleness
4672 *
4673 * Returns: 1 if the group is semi-idle. 0 otherwise.
4674 *
4675 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4676 * and atleast one non-idle CPU. This helper function checks if the given
4677 * sched_group is semi-idle or not.
4678 */
4679static inline int is_semi_idle_group(struct sched_group *ilb_group)
4680{
4681 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4682 sched_group_cpus(ilb_group));
4683
4684 /*
4685 * A sched_group is semi-idle when it has atleast one busy cpu
4686 * and atleast one idle cpu.
4687 */
4688 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4689 return 0;
4690
4691 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4692 return 0;
4693
4694 return 1;
4695}
4696/**
4697 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4698 * @cpu: The cpu which is nominating a new idle_load_balancer.
4699 *
4700 * Returns: Returns the id of the idle load balancer if it exists,
4701 * Else, returns >= nr_cpu_ids.
4702 *
4703 * This algorithm picks the idle load balancer such that it belongs to a
4704 * semi-idle powersavings sched_domain. The idea is to try and avoid
4705 * completely idle packages/cores just for the purpose of idle load balancing
4706 * when there are other idle cpu's which are better suited for that job.
4707 */
4708static int find_new_ilb(int cpu)
4709{
4710 struct sched_domain *sd;
4711 struct sched_group *ilb_group;
4712
4713 /*
4714 * Have idle load balancer selection from semi-idle packages only
4715 * when power-aware load balancing is enabled
4716 */
4717 if (!(sched_smt_power_savings || sched_mc_power_savings))
4718 goto out_done;
4719
4720 /*
4721 * Optimize for the case when we have no idle CPUs or only one
4722 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4723 */
4724 if (cpumask_weight(nohz.cpu_mask) < 2)
4725 goto out_done;
4726
4727 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4728 ilb_group = sd->groups;
4729
4730 do {
4731 if (is_semi_idle_group(ilb_group))
4732 return cpumask_first(nohz.ilb_grp_nohz_mask);
4733
4734 ilb_group = ilb_group->next;
4735
4736 } while (ilb_group != sd->groups);
4737 }
4738
4739out_done:
4740 return cpumask_first(nohz.cpu_mask);
4741}
4742#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4743static inline int find_new_ilb(int call_cpu)
4744{
4745 return cpumask_first(nohz.cpu_mask);
4746}
4747#endif
4748
4749/*
4750 * This routine will try to nominate the ilb (idle load balancing)
4751 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4752 * load balancing on behalf of all those cpus. If all the cpus in the system
4753 * go into this tickless mode, then there will be no ilb owner (as there is
4754 * no need for one) and all the cpus will sleep till the next wakeup event
4755 * arrives...
4756 *
4757 * For the ilb owner, tick is not stopped. And this tick will be used
4758 * for idle load balancing. ilb owner will still be part of
4759 * nohz.cpu_mask..
4760 *
4761 * While stopping the tick, this cpu will become the ilb owner if there
4762 * is no other owner. And will be the owner till that cpu becomes busy
4763 * or if all cpus in the system stop their ticks at which point
4764 * there is no need for ilb owner.
4765 *
4766 * When the ilb owner becomes busy, it nominates another owner, during the
4767 * next busy scheduler_tick()
4768 */
4769int select_nohz_load_balancer(int stop_tick)
4770{
4771 int cpu = smp_processor_id();
4772
4773 if (stop_tick) {
4774 cpu_rq(cpu)->in_nohz_recently = 1;
4775
4776 if (!cpu_active(cpu)) {
4777 if (atomic_read(&nohz.load_balancer) != cpu)
4778 return 0;
4779
4780 /*
4781 * If we are going offline and still the leader,
4782 * give up!
4783 */
4784 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4785 BUG();
4786
4787 return 0;
4788 }
4789
4790 cpumask_set_cpu(cpu, nohz.cpu_mask);
4791
4792 /* time for ilb owner also to sleep */
4793 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4794 if (atomic_read(&nohz.load_balancer) == cpu)
4795 atomic_set(&nohz.load_balancer, -1);
4796 return 0;
4797 }
4798
4799 if (atomic_read(&nohz.load_balancer) == -1) {
4800 /* make me the ilb owner */
4801 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4802 return 1;
4803 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4804 int new_ilb;
4805
4806 if (!(sched_smt_power_savings ||
4807 sched_mc_power_savings))
4808 return 1;
4809 /*
4810 * Check to see if there is a more power-efficient
4811 * ilb.
4812 */
4813 new_ilb = find_new_ilb(cpu);
4814 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4815 atomic_set(&nohz.load_balancer, -1);
4816 resched_cpu(new_ilb);
4817 return 0;
4818 }
4819 return 1;
4820 }
4821 } else {
4822 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4823 return 0;
4824
4825 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4826
4827 if (atomic_read(&nohz.load_balancer) == cpu)
4828 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4829 BUG();
4830 }
4831 return 0;
4832}
4833#endif
4834
4835static DEFINE_SPINLOCK(balancing);
4836
4837/*
4838 * It checks each scheduling domain to see if it is due to be balanced,
4839 * and initiates a balancing operation if so.
4840 *
4841 * Balancing parameters are set up in arch_init_sched_domains.
4842 */
4843static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4844{
4845 int balance = 1;
4846 struct rq *rq = cpu_rq(cpu);
4847 unsigned long interval;
4848 struct sched_domain *sd;
4849 /* Earliest time when we have to do rebalance again */
4850 unsigned long next_balance = jiffies + 60*HZ;
4851 int update_next_balance = 0;
4852 int need_serialize;
4853
4854 for_each_domain(cpu, sd) {
4855 if (!(sd->flags & SD_LOAD_BALANCE))
4856 continue;
4857
4858 interval = sd->balance_interval;
4859 if (idle != CPU_IDLE)
4860 interval *= sd->busy_factor;
4861
4862 /* scale ms to jiffies */
4863 interval = msecs_to_jiffies(interval);
4864 if (unlikely(!interval))
4865 interval = 1;
4866 if (interval > HZ*NR_CPUS/10)
4867 interval = HZ*NR_CPUS/10;
4868
4869 need_serialize = sd->flags & SD_SERIALIZE;
4870
4871 if (need_serialize) {
4872 if (!spin_trylock(&balancing))
4873 goto out;
4874 }
4875
4876 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4877 if (load_balance(cpu, rq, sd, idle, &balance)) {
4878 /*
4879 * We've pulled tasks over so either we're no
4880 * longer idle, or one of our SMT siblings is
4881 * not idle.
4882 */
4883 idle = CPU_NOT_IDLE;
4884 }
4885 sd->last_balance = jiffies;
4886 }
4887 if (need_serialize)
4888 spin_unlock(&balancing);
4889out:
4890 if (time_after(next_balance, sd->last_balance + interval)) {
4891 next_balance = sd->last_balance + interval;
4892 update_next_balance = 1;
4893 }
4894
4895 /*
4896 * Stop the load balance at this level. There is another
4897 * CPU in our sched group which is doing load balancing more
4898 * actively.
4899 */
4900 if (!balance)
4901 break;
4902 }
4903
4904 /*
4905 * next_balance will be updated only when there is a need.
4906 * When the cpu is attached to null domain for ex, it will not be
4907 * updated.
4908 */
4909 if (likely(update_next_balance))
4910 rq->next_balance = next_balance;
4911}
4912
4913/*
4914 * run_rebalance_domains is triggered when needed from the scheduler tick.
4915 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4916 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4917 */
4918static void run_rebalance_domains(struct softirq_action *h)
4919{
4920 int this_cpu = smp_processor_id();
4921 struct rq *this_rq = cpu_rq(this_cpu);
4922 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4923 CPU_IDLE : CPU_NOT_IDLE;
4924
4925 rebalance_domains(this_cpu, idle);
4926
4927#ifdef CONFIG_NO_HZ
4928 /*
4929 * If this cpu is the owner for idle load balancing, then do the
4930 * balancing on behalf of the other idle cpus whose ticks are
4931 * stopped.
4932 */
4933 if (this_rq->idle_at_tick &&
4934 atomic_read(&nohz.load_balancer) == this_cpu) {
4935 struct rq *rq;
4936 int balance_cpu;
4937
4938 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4939 if (balance_cpu == this_cpu)
4940 continue;
4941
4942 /*
4943 * If this cpu gets work to do, stop the load balancing
4944 * work being done for other cpus. Next load
4945 * balancing owner will pick it up.
4946 */
4947 if (need_resched())
4948 break;
4949
4950 rebalance_domains(balance_cpu, CPU_IDLE);
4951
4952 rq = cpu_rq(balance_cpu);
4953 if (time_after(this_rq->next_balance, rq->next_balance))
4954 this_rq->next_balance = rq->next_balance;
4955 }
4956 }
4957#endif
4958}
4959
4960static inline int on_null_domain(int cpu)
4961{
4962 return !rcu_dereference(cpu_rq(cpu)->sd);
4963}
4964
4965/*
4966 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4967 *
4968 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4969 * idle load balancing owner or decide to stop the periodic load balancing,
4970 * if the whole system is idle.
4971 */
4972static inline void trigger_load_balance(struct rq *rq, int cpu)
4973{
4974#ifdef CONFIG_NO_HZ
4975 /*
4976 * If we were in the nohz mode recently and busy at the current
4977 * scheduler tick, then check if we need to nominate new idle
4978 * load balancer.
4979 */
4980 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4981 rq->in_nohz_recently = 0;
4982
4983 if (atomic_read(&nohz.load_balancer) == cpu) {
4984 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4985 atomic_set(&nohz.load_balancer, -1);
4986 }
4987
4988 if (atomic_read(&nohz.load_balancer) == -1) {
4989 int ilb = find_new_ilb(cpu);
4990
4991 if (ilb < nr_cpu_ids)
4992 resched_cpu(ilb);
4993 }
4994 }
4995
4996 /*
4997 * If this cpu is idle and doing idle load balancing for all the
4998 * cpus with ticks stopped, is it time for that to stop?
4999 */
5000 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
5001 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
5002 resched_cpu(cpu);
5003 return;
5004 }
5005
5006 /*
5007 * If this cpu is idle and the idle load balancing is done by
5008 * someone else, then no need raise the SCHED_SOFTIRQ
5009 */
5010 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
5011 cpumask_test_cpu(cpu, nohz.cpu_mask))
5012 return;
5013#endif
5014 /* Don't need to rebalance while attached to NULL domain */
5015 if (time_after_eq(jiffies, rq->next_balance) &&
5016 likely(!on_null_domain(cpu)))
5017 raise_softirq(SCHED_SOFTIRQ);
5018}
5019
5020#else /* CONFIG_SMP */
5021
5022/*
5023 * on UP we do not need to balance between CPUs:
5024 */
5025static inline void idle_balance(int cpu, struct rq *rq)
5026{
5027}
5028
5029#endif
5030
5031DEFINE_PER_CPU(struct kernel_stat, kstat);
5032
5033EXPORT_PER_CPU_SYMBOL(kstat);
5034
5035/*
5036 * Return any ns on the sched_clock that have not yet been accounted in
5037 * @p in case that task is currently running.
5038 *
5039 * Called with task_rq_lock() held on @rq.
5040 */
5041static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
5042{
5043 u64 ns = 0;
5044
5045 if (task_current(rq, p)) {
5046 update_rq_clock(rq);
5047 ns = rq->clock - p->se.exec_start;
5048 if ((s64)ns < 0)
5049 ns = 0;
5050 }
5051
5052 return ns;
5053}
5054
5055unsigned long long task_delta_exec(struct task_struct *p)
5056{
5057 unsigned long flags;
5058 struct rq *rq;
5059 u64 ns = 0;
5060
5061 rq = task_rq_lock(p, &flags);
5062 ns = do_task_delta_exec(p, rq);
5063 task_rq_unlock(rq, &flags);
5064
5065 return ns;
5066}
5067
5068/*
5069 * Return accounted runtime for the task.
5070 * In case the task is currently running, return the runtime plus current's
5071 * pending runtime that have not been accounted yet.
5072 */
5073unsigned long long task_sched_runtime(struct task_struct *p)
5074{
5075 unsigned long flags;
5076 struct rq *rq;
5077 u64 ns = 0;
5078
5079 rq = task_rq_lock(p, &flags);
5080 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
5081 task_rq_unlock(rq, &flags);
5082
5083 return ns;
5084}
5085
5086/*
5087 * Return sum_exec_runtime for the thread group.
5088 * In case the task is currently running, return the sum plus current's
5089 * pending runtime that have not been accounted yet.
5090 *
5091 * Note that the thread group might have other running tasks as well,
5092 * so the return value not includes other pending runtime that other
5093 * running tasks might have.
5094 */
5095unsigned long long thread_group_sched_runtime(struct task_struct *p)
5096{
5097 struct task_cputime totals;
5098 unsigned long flags;
5099 struct rq *rq;
5100 u64 ns;
5101
5102 rq = task_rq_lock(p, &flags);
5103 thread_group_cputime(p, &totals);
5104 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
5105 task_rq_unlock(rq, &flags);
5106
5107 return ns;
5108}
5109
5110/*
5111 * Account user cpu time to a process.
5112 * @p: the process that the cpu time gets accounted to
5113 * @cputime: the cpu time spent in user space since the last update
5114 * @cputime_scaled: cputime scaled by cpu frequency
5115 */
5116void account_user_time(struct task_struct *p, cputime_t cputime,
5117 cputime_t cputime_scaled)
5118{
5119 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5120 cputime64_t tmp;
5121
5122 /* Add user time to process. */
5123 p->utime = cputime_add(p->utime, cputime);
5124 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5125 account_group_user_time(p, cputime);
5126
5127 /* Add user time to cpustat. */
5128 tmp = cputime_to_cputime64(cputime);
5129 if (TASK_NICE(p) > 0)
5130 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5131 else
5132 cpustat->user = cputime64_add(cpustat->user, tmp);
5133
5134 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5135 /* Account for user time used */
5136 acct_update_integrals(p);
5137}
5138
5139/*
5140 * Account guest cpu time to a process.
5141 * @p: the process that the cpu time gets accounted to
5142 * @cputime: the cpu time spent in virtual machine since the last update
5143 * @cputime_scaled: cputime scaled by cpu frequency
5144 */
5145static void account_guest_time(struct task_struct *p, cputime_t cputime,
5146 cputime_t cputime_scaled)
5147{
5148 cputime64_t tmp;
5149 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5150
5151 tmp = cputime_to_cputime64(cputime);
5152
5153 /* Add guest time to process. */
5154 p->utime = cputime_add(p->utime, cputime);
5155 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5156 account_group_user_time(p, cputime);
5157 p->gtime = cputime_add(p->gtime, cputime);
5158
5159 /* Add guest time to cpustat. */
5160 cpustat->user = cputime64_add(cpustat->user, tmp);
5161 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5162}
5163
5164/*
5165 * Account system cpu time to a process.
5166 * @p: the process that the cpu time gets accounted to
5167 * @hardirq_offset: the offset to subtract from hardirq_count()
5168 * @cputime: the cpu time spent in kernel space since the last update
5169 * @cputime_scaled: cputime scaled by cpu frequency
5170 */
5171void account_system_time(struct task_struct *p, int hardirq_offset,
5172 cputime_t cputime, cputime_t cputime_scaled)
5173{
5174 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5175 cputime64_t tmp;
5176
5177 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5178 account_guest_time(p, cputime, cputime_scaled);
5179 return;
5180 }
5181
5182 /* Add system time to process. */
5183 p->stime = cputime_add(p->stime, cputime);
5184 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5185 account_group_system_time(p, cputime);
5186
5187 /* Add system time to cpustat. */
5188 tmp = cputime_to_cputime64(cputime);
5189 if (hardirq_count() - hardirq_offset)
5190 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5191 else if (softirq_count())
5192 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5193 else
5194 cpustat->system = cputime64_add(cpustat->system, tmp);
5195
5196 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5197
5198 /* Account for system time used */
5199 acct_update_integrals(p);
5200}
5201
5202/*
5203 * Account for involuntary wait time.
5204 * @steal: the cpu time spent in involuntary wait
5205 */
5206void account_steal_time(cputime_t cputime)
5207{
5208 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5209 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5210
5211 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5212}
5213
5214/*
5215 * Account for idle time.
5216 * @cputime: the cpu time spent in idle wait
5217 */
5218void account_idle_time(cputime_t cputime)
5219{
5220 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5221 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5222 struct rq *rq = this_rq();
5223
5224 if (atomic_read(&rq->nr_iowait) > 0)
5225 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5226 else
5227 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5228}
5229
5230#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5231
5232/*
5233 * Account a single tick of cpu time.
5234 * @p: the process that the cpu time gets accounted to
5235 * @user_tick: indicates if the tick is a user or a system tick
5236 */
5237void account_process_tick(struct task_struct *p, int user_tick)
5238{
5239 cputime_t one_jiffy = jiffies_to_cputime(1);
5240 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5241 struct rq *rq = this_rq();
5242
5243 if (user_tick)
5244 account_user_time(p, one_jiffy, one_jiffy_scaled);
5245 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5246 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5247 one_jiffy_scaled);
5248 else
5249 account_idle_time(one_jiffy);
5250}
5251
5252/*
5253 * Account multiple ticks of steal time.
5254 * @p: the process from which the cpu time has been stolen
5255 * @ticks: number of stolen ticks
5256 */
5257void account_steal_ticks(unsigned long ticks)
5258{
5259 account_steal_time(jiffies_to_cputime(ticks));
5260}
5261
5262/*
5263 * Account multiple ticks of idle time.
5264 * @ticks: number of stolen ticks
5265 */
5266void account_idle_ticks(unsigned long ticks)
5267{
5268 account_idle_time(jiffies_to_cputime(ticks));
5269}
5270
5271#endif
5272
5273/*
5274 * Use precise platform statistics if available:
5275 */
5276#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5277cputime_t task_utime(struct task_struct *p)
5278{
5279 return p->utime;
5280}
5281
5282cputime_t task_stime(struct task_struct *p)
5283{
5284 return p->stime;
5285}
5286#else
5287cputime_t task_utime(struct task_struct *p)
5288{
5289 clock_t utime = cputime_to_clock_t(p->utime),
5290 total = utime + cputime_to_clock_t(p->stime);
5291 u64 temp;
5292
5293 /*
5294 * Use CFS's precise accounting:
5295 */
5296 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5297
5298 if (total) {
5299 temp *= utime;
5300 do_div(temp, total);
5301 }
5302 utime = (clock_t)temp;
5303
5304 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5305 return p->prev_utime;
5306}
5307
5308cputime_t task_stime(struct task_struct *p)
5309{
5310 clock_t stime;
5311
5312 /*
5313 * Use CFS's precise accounting. (we subtract utime from
5314 * the total, to make sure the total observed by userspace
5315 * grows monotonically - apps rely on that):
5316 */
5317 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5318 cputime_to_clock_t(task_utime(p));
5319
5320 if (stime >= 0)
5321 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5322
5323 return p->prev_stime;
5324}
5325#endif
5326
5327inline cputime_t task_gtime(struct task_struct *p)
5328{
5329 return p->gtime;
5330}
5331
5332/*
5333 * This function gets called by the timer code, with HZ frequency.
5334 * We call it with interrupts disabled.
5335 *
5336 * It also gets called by the fork code, when changing the parent's
5337 * timeslices.
5338 */
5339void scheduler_tick(void)
5340{
5341 int cpu = smp_processor_id();
5342 struct rq *rq = cpu_rq(cpu);
5343 struct task_struct *curr = rq->curr;
5344
5345 sched_clock_tick();
5346
5347 spin_lock(&rq->lock);
5348 update_rq_clock(rq);
5349 update_cpu_load(rq);
5350 curr->sched_class->task_tick(rq, curr, 0);
5351 spin_unlock(&rq->lock);
5352
5353 perf_counter_task_tick(curr, cpu);
5354
5355#ifdef CONFIG_SMP
5356 rq->idle_at_tick = idle_cpu(cpu);
5357 trigger_load_balance(rq, cpu);
5358#endif
5359}
5360
5361notrace unsigned long get_parent_ip(unsigned long addr)
5362{
5363 if (in_lock_functions(addr)) {
5364 addr = CALLER_ADDR2;
5365 if (in_lock_functions(addr))
5366 addr = CALLER_ADDR3;
5367 }
5368 return addr;
5369}
5370
5371#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5372 defined(CONFIG_PREEMPT_TRACER))
5373
5374void __kprobes add_preempt_count(int val)
5375{
5376#ifdef CONFIG_DEBUG_PREEMPT
5377 /*
5378 * Underflow?
5379 */
5380 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5381 return;
5382#endif
5383 preempt_count() += val;
5384#ifdef CONFIG_DEBUG_PREEMPT
5385 /*
5386 * Spinlock count overflowing soon?
5387 */
5388 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5389 PREEMPT_MASK - 10);
5390#endif
5391 if (preempt_count() == val)
5392 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5393}
5394EXPORT_SYMBOL(add_preempt_count);
5395
5396void __kprobes sub_preempt_count(int val)
5397{
5398#ifdef CONFIG_DEBUG_PREEMPT
5399 /*
5400 * Underflow?
5401 */
5402 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5403 return;
5404 /*
5405 * Is the spinlock portion underflowing?
5406 */
5407 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5408 !(preempt_count() & PREEMPT_MASK)))
5409 return;
5410#endif
5411
5412 if (preempt_count() == val)
5413 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5414 preempt_count() -= val;
5415}
5416EXPORT_SYMBOL(sub_preempt_count);
5417
5418#endif
5419
5420/*
5421 * Print scheduling while atomic bug:
5422 */
5423static noinline void __schedule_bug(struct task_struct *prev)
5424{
5425 struct pt_regs *regs = get_irq_regs();
5426
5427 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5428 prev->comm, prev->pid, preempt_count());
5429
5430 debug_show_held_locks(prev);
5431 print_modules();
5432 if (irqs_disabled())
5433 print_irqtrace_events(prev);
5434
5435 if (regs)
5436 show_regs(regs);
5437 else
5438 dump_stack();
5439}
5440
5441/*
5442 * Various schedule()-time debugging checks and statistics:
5443 */
5444static inline void schedule_debug(struct task_struct *prev)
5445{
5446 /*
5447 * Test if we are atomic. Since do_exit() needs to call into
5448 * schedule() atomically, we ignore that path for now.
5449 * Otherwise, whine if we are scheduling when we should not be.
5450 */
5451 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5452 __schedule_bug(prev);
5453
5454 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5455
5456 schedstat_inc(this_rq(), sched_count);
5457#ifdef CONFIG_SCHEDSTATS
5458 if (unlikely(prev->lock_depth >= 0)) {
5459 schedstat_inc(this_rq(), bkl_count);
5460 schedstat_inc(prev, sched_info.bkl_count);
5461 }
5462#endif
5463}
5464
5465static void put_prev_task(struct rq *rq, struct task_struct *prev)
5466{
5467 if (prev->state == TASK_RUNNING) {
5468 u64 runtime = prev->se.sum_exec_runtime;
5469
5470 runtime -= prev->se.prev_sum_exec_runtime;
5471 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5472
5473 /*
5474 * In order to avoid avg_overlap growing stale when we are
5475 * indeed overlapping and hence not getting put to sleep, grow
5476 * the avg_overlap on preemption.
5477 *
5478 * We use the average preemption runtime because that
5479 * correlates to the amount of cache footprint a task can
5480 * build up.
5481 */
5482 update_avg(&prev->se.avg_overlap, runtime);
5483 }
5484 prev->sched_class->put_prev_task(rq, prev);
5485}
5486
5487/*
5488 * Pick up the highest-prio task:
5489 */
5490static inline struct task_struct *
5491pick_next_task(struct rq *rq)
5492{
5493 const struct sched_class *class;
5494 struct task_struct *p;
5495
5496 /*
5497 * Optimization: we know that if all tasks are in
5498 * the fair class we can call that function directly:
5499 */
5500 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5501 p = fair_sched_class.pick_next_task(rq);
5502 if (likely(p))
5503 return p;
5504 }
5505
5506 class = sched_class_highest;
5507 for ( ; ; ) {
5508 p = class->pick_next_task(rq);
5509 if (p)
5510 return p;
5511 /*
5512 * Will never be NULL as the idle class always
5513 * returns a non-NULL p:
5514 */
5515 class = class->next;
5516 }
5517}
5518
5519/*
5520 * schedule() is the main scheduler function.
5521 */
5522asmlinkage void __sched schedule(void)
5523{
5524 struct task_struct *prev, *next;
5525 unsigned long *switch_count;
5526 struct rq *rq;
5527 int cpu;
5528
5529need_resched:
5530 preempt_disable();
5531 cpu = smp_processor_id();
5532 rq = cpu_rq(cpu);
5533 rcu_sched_qs(cpu);
5534 prev = rq->curr;
5535 switch_count = &prev->nivcsw;
5536
5537 release_kernel_lock(prev);
5538need_resched_nonpreemptible:
5539
5540 schedule_debug(prev);
5541
5542 if (sched_feat(HRTICK))
5543 hrtick_clear(rq);
5544
5545 spin_lock_irq(&rq->lock);
5546 update_rq_clock(rq);
5547 clear_tsk_need_resched(prev);
5548
5549 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5550 if (unlikely(signal_pending_state(prev->state, prev)))
5551 prev->state = TASK_RUNNING;
5552 else
5553 deactivate_task(rq, prev, 1);
5554 switch_count = &prev->nvcsw;
5555 }
5556
5557 pre_schedule(rq, prev);
5558
5559 if (unlikely(!rq->nr_running))
5560 idle_balance(cpu, rq);
5561
5562 put_prev_task(rq, prev);
5563 next = pick_next_task(rq);
5564
5565 if (likely(prev != next)) {
5566 sched_info_switch(prev, next);
5567 perf_counter_task_sched_out(prev, next, cpu);
5568
5569 rq->nr_switches++;
5570 rq->curr = next;
5571 ++*switch_count;
5572
5573 context_switch(rq, prev, next); /* unlocks the rq */
5574 /*
5575 * the context switch might have flipped the stack from under
5576 * us, hence refresh the local variables.
5577 */
5578 cpu = smp_processor_id();
5579 rq = cpu_rq(cpu);
5580 } else
5581 spin_unlock_irq(&rq->lock);
5582
5583 post_schedule(rq);
5584
5585 if (unlikely(reacquire_kernel_lock(current) < 0))
5586 goto need_resched_nonpreemptible;
5587
5588 preempt_enable_no_resched();
5589 if (need_resched())
5590 goto need_resched;
5591}
5592EXPORT_SYMBOL(schedule);
5593
5594#ifdef CONFIG_SMP
5595/*
5596 * Look out! "owner" is an entirely speculative pointer
5597 * access and not reliable.
5598 */
5599int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5600{
5601 unsigned int cpu;
5602 struct rq *rq;
5603
5604 if (!sched_feat(OWNER_SPIN))
5605 return 0;
5606
5607#ifdef CONFIG_DEBUG_PAGEALLOC
5608 /*
5609 * Need to access the cpu field knowing that
5610 * DEBUG_PAGEALLOC could have unmapped it if
5611 * the mutex owner just released it and exited.
5612 */
5613 if (probe_kernel_address(&owner->cpu, cpu))
5614 goto out;
5615#else
5616 cpu = owner->cpu;
5617#endif
5618
5619 /*
5620 * Even if the access succeeded (likely case),
5621 * the cpu field may no longer be valid.
5622 */
5623 if (cpu >= nr_cpumask_bits)
5624 goto out;
5625
5626 /*
5627 * We need to validate that we can do a
5628 * get_cpu() and that we have the percpu area.
5629 */
5630 if (!cpu_online(cpu))
5631 goto out;
5632
5633 rq = cpu_rq(cpu);
5634
5635 for (;;) {
5636 /*
5637 * Owner changed, break to re-assess state.
5638 */
5639 if (lock->owner != owner)
5640 break;
5641
5642 /*
5643 * Is that owner really running on that cpu?
5644 */
5645 if (task_thread_info(rq->curr) != owner || need_resched())
5646 return 0;
5647
5648 cpu_relax();
5649 }
5650out:
5651 return 1;
5652}
5653#endif
5654
5655#ifdef CONFIG_PREEMPT
5656/*
5657 * this is the entry point to schedule() from in-kernel preemption
5658 * off of preempt_enable. Kernel preemptions off return from interrupt
5659 * occur there and call schedule directly.
5660 */
5661asmlinkage void __sched preempt_schedule(void)
5662{
5663 struct thread_info *ti = current_thread_info();
5664
5665 /*
5666 * If there is a non-zero preempt_count or interrupts are disabled,
5667 * we do not want to preempt the current task. Just return..
5668 */
5669 if (likely(ti->preempt_count || irqs_disabled()))
5670 return;
5671
5672 do {
5673 add_preempt_count(PREEMPT_ACTIVE);
5674 schedule();
5675 sub_preempt_count(PREEMPT_ACTIVE);
5676
5677 /*
5678 * Check again in case we missed a preemption opportunity
5679 * between schedule and now.
5680 */
5681 barrier();
5682 } while (need_resched());
5683}
5684EXPORT_SYMBOL(preempt_schedule);
5685
5686/*
5687 * this is the entry point to schedule() from kernel preemption
5688 * off of irq context.
5689 * Note, that this is called and return with irqs disabled. This will
5690 * protect us against recursive calling from irq.
5691 */
5692asmlinkage void __sched preempt_schedule_irq(void)
5693{
5694 struct thread_info *ti = current_thread_info();
5695
5696 /* Catch callers which need to be fixed */
5697 BUG_ON(ti->preempt_count || !irqs_disabled());
5698
5699 do {
5700 add_preempt_count(PREEMPT_ACTIVE);
5701 local_irq_enable();
5702 schedule();
5703 local_irq_disable();
5704 sub_preempt_count(PREEMPT_ACTIVE);
5705
5706 /*
5707 * Check again in case we missed a preemption opportunity
5708 * between schedule and now.
5709 */
5710 barrier();
5711 } while (need_resched());
5712}
5713
5714#endif /* CONFIG_PREEMPT */
5715
5716int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5717 void *key)
5718{
5719 return try_to_wake_up(curr->private, mode, sync);
5720}
5721EXPORT_SYMBOL(default_wake_function);
5722
5723/*
5724 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5725 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5726 * number) then we wake all the non-exclusive tasks and one exclusive task.
5727 *
5728 * There are circumstances in which we can try to wake a task which has already
5729 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5730 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5731 */
5732static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5733 int nr_exclusive, int sync, void *key)
5734{
5735 wait_queue_t *curr, *next;
5736
5737 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5738 unsigned flags = curr->flags;
5739
5740 if (curr->func(curr, mode, sync, key) &&
5741 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5742 break;
5743 }
5744}
5745
5746/**
5747 * __wake_up - wake up threads blocked on a waitqueue.
5748 * @q: the waitqueue
5749 * @mode: which threads
5750 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5751 * @key: is directly passed to the wakeup function
5752 *
5753 * It may be assumed that this function implies a write memory barrier before
5754 * changing the task state if and only if any tasks are woken up.
5755 */
5756void __wake_up(wait_queue_head_t *q, unsigned int mode,
5757 int nr_exclusive, void *key)
5758{
5759 unsigned long flags;
5760
5761 spin_lock_irqsave(&q->lock, flags);
5762 __wake_up_common(q, mode, nr_exclusive, 0, key);
5763 spin_unlock_irqrestore(&q->lock, flags);
5764}
5765EXPORT_SYMBOL(__wake_up);
5766
5767/*
5768 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5769 */
5770void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5771{
5772 __wake_up_common(q, mode, 1, 0, NULL);
5773}
5774
5775void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5776{
5777 __wake_up_common(q, mode, 1, 0, key);
5778}
5779
5780/**
5781 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5782 * @q: the waitqueue
5783 * @mode: which threads
5784 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5785 * @key: opaque value to be passed to wakeup targets
5786 *
5787 * The sync wakeup differs that the waker knows that it will schedule
5788 * away soon, so while the target thread will be woken up, it will not
5789 * be migrated to another CPU - ie. the two threads are 'synchronized'
5790 * with each other. This can prevent needless bouncing between CPUs.
5791 *
5792 * On UP it can prevent extra preemption.
5793 *
5794 * It may be assumed that this function implies a write memory barrier before
5795 * changing the task state if and only if any tasks are woken up.
5796 */
5797void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5798 int nr_exclusive, void *key)
5799{
5800 unsigned long flags;
5801 int sync = 1;
5802
5803 if (unlikely(!q))
5804 return;
5805
5806 if (unlikely(!nr_exclusive))
5807 sync = 0;
5808
5809 spin_lock_irqsave(&q->lock, flags);
5810 __wake_up_common(q, mode, nr_exclusive, sync, key);
5811 spin_unlock_irqrestore(&q->lock, flags);
5812}
5813EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5814
5815/*
5816 * __wake_up_sync - see __wake_up_sync_key()
5817 */
5818void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5819{
5820 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5821}
5822EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5823
5824/**
5825 * complete: - signals a single thread waiting on this completion
5826 * @x: holds the state of this particular completion
5827 *
5828 * This will wake up a single thread waiting on this completion. Threads will be
5829 * awakened in the same order in which they were queued.
5830 *
5831 * See also complete_all(), wait_for_completion() and related routines.
5832 *
5833 * It may be assumed that this function implies a write memory barrier before
5834 * changing the task state if and only if any tasks are woken up.
5835 */
5836void complete(struct completion *x)
5837{
5838 unsigned long flags;
5839
5840 spin_lock_irqsave(&x->wait.lock, flags);
5841 x->done++;
5842 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5843 spin_unlock_irqrestore(&x->wait.lock, flags);
5844}
5845EXPORT_SYMBOL(complete);
5846
5847/**
5848 * complete_all: - signals all threads waiting on this completion
5849 * @x: holds the state of this particular completion
5850 *
5851 * This will wake up all threads waiting on this particular completion event.
5852 *
5853 * It may be assumed that this function implies a write memory barrier before
5854 * changing the task state if and only if any tasks are woken up.
5855 */
5856void complete_all(struct completion *x)
5857{
5858 unsigned long flags;
5859
5860 spin_lock_irqsave(&x->wait.lock, flags);
5861 x->done += UINT_MAX/2;
5862 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5863 spin_unlock_irqrestore(&x->wait.lock, flags);
5864}
5865EXPORT_SYMBOL(complete_all);
5866
5867static inline long __sched
5868do_wait_for_common(struct completion *x, long timeout, int state)
5869{
5870 if (!x->done) {
5871 DECLARE_WAITQUEUE(wait, current);
5872
5873 wait.flags |= WQ_FLAG_EXCLUSIVE;
5874 __add_wait_queue_tail(&x->wait, &wait);
5875 do {
5876 if (signal_pending_state(state, current)) {
5877 timeout = -ERESTARTSYS;
5878 break;
5879 }
5880 __set_current_state(state);
5881 spin_unlock_irq(&x->wait.lock);
5882 timeout = schedule_timeout(timeout);
5883 spin_lock_irq(&x->wait.lock);
5884 } while (!x->done && timeout);
5885 __remove_wait_queue(&x->wait, &wait);
5886 if (!x->done)
5887 return timeout;
5888 }
5889 x->done--;
5890 return timeout ?: 1;
5891}
5892
5893static long __sched
5894wait_for_common(struct completion *x, long timeout, int state)
5895{
5896 might_sleep();
5897
5898 spin_lock_irq(&x->wait.lock);
5899 timeout = do_wait_for_common(x, timeout, state);
5900 spin_unlock_irq(&x->wait.lock);
5901 return timeout;
5902}
5903
5904/**
5905 * wait_for_completion: - waits for completion of a task
5906 * @x: holds the state of this particular completion
5907 *
5908 * This waits to be signaled for completion of a specific task. It is NOT
5909 * interruptible and there is no timeout.
5910 *
5911 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5912 * and interrupt capability. Also see complete().
5913 */
5914void __sched wait_for_completion(struct completion *x)
5915{
5916 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5917}
5918EXPORT_SYMBOL(wait_for_completion);
5919
5920/**
5921 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5922 * @x: holds the state of this particular completion
5923 * @timeout: timeout value in jiffies
5924 *
5925 * This waits for either a completion of a specific task to be signaled or for a
5926 * specified timeout to expire. The timeout is in jiffies. It is not
5927 * interruptible.
5928 */
5929unsigned long __sched
5930wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5931{
5932 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5933}
5934EXPORT_SYMBOL(wait_for_completion_timeout);
5935
5936/**
5937 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5938 * @x: holds the state of this particular completion
5939 *
5940 * This waits for completion of a specific task to be signaled. It is
5941 * interruptible.
5942 */
5943int __sched wait_for_completion_interruptible(struct completion *x)
5944{
5945 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5946 if (t == -ERESTARTSYS)
5947 return t;
5948 return 0;
5949}
5950EXPORT_SYMBOL(wait_for_completion_interruptible);
5951
5952/**
5953 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5954 * @x: holds the state of this particular completion
5955 * @timeout: timeout value in jiffies
5956 *
5957 * This waits for either a completion of a specific task to be signaled or for a
5958 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5959 */
5960unsigned long __sched
5961wait_for_completion_interruptible_timeout(struct completion *x,
5962 unsigned long timeout)
5963{
5964 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5965}
5966EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5967
5968/**
5969 * wait_for_completion_killable: - waits for completion of a task (killable)
5970 * @x: holds the state of this particular completion
5971 *
5972 * This waits to be signaled for completion of a specific task. It can be
5973 * interrupted by a kill signal.
5974 */
5975int __sched wait_for_completion_killable(struct completion *x)
5976{
5977 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5978 if (t == -ERESTARTSYS)
5979 return t;
5980 return 0;
5981}
5982EXPORT_SYMBOL(wait_for_completion_killable);
5983
5984/**
5985 * try_wait_for_completion - try to decrement a completion without blocking
5986 * @x: completion structure
5987 *
5988 * Returns: 0 if a decrement cannot be done without blocking
5989 * 1 if a decrement succeeded.
5990 *
5991 * If a completion is being used as a counting completion,
5992 * attempt to decrement the counter without blocking. This
5993 * enables us to avoid waiting if the resource the completion
5994 * is protecting is not available.
5995 */
5996bool try_wait_for_completion(struct completion *x)
5997{
5998 int ret = 1;
5999
6000 spin_lock_irq(&x->wait.lock);
6001 if (!x->done)
6002 ret = 0;
6003 else
6004 x->done--;
6005 spin_unlock_irq(&x->wait.lock);
6006 return ret;
6007}
6008EXPORT_SYMBOL(try_wait_for_completion);
6009
6010/**
6011 * completion_done - Test to see if a completion has any waiters
6012 * @x: completion structure
6013 *
6014 * Returns: 0 if there are waiters (wait_for_completion() in progress)
6015 * 1 if there are no waiters.
6016 *
6017 */
6018bool completion_done(struct completion *x)
6019{
6020 int ret = 1;
6021
6022 spin_lock_irq(&x->wait.lock);
6023 if (!x->done)
6024 ret = 0;
6025 spin_unlock_irq(&x->wait.lock);
6026 return ret;
6027}
6028EXPORT_SYMBOL(completion_done);
6029
6030static long __sched
6031sleep_on_common(wait_queue_head_t *q, int state, long timeout)
6032{
6033 unsigned long flags;
6034 wait_queue_t wait;
6035
6036 init_waitqueue_entry(&wait, current);
6037
6038 __set_current_state(state);
6039
6040 spin_lock_irqsave(&q->lock, flags);
6041 __add_wait_queue(q, &wait);
6042 spin_unlock(&q->lock);
6043 timeout = schedule_timeout(timeout);
6044 spin_lock_irq(&q->lock);
6045 __remove_wait_queue(q, &wait);
6046 spin_unlock_irqrestore(&q->lock, flags);
6047
6048 return timeout;
6049}
6050
6051void __sched interruptible_sleep_on(wait_queue_head_t *q)
6052{
6053 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
6054}
6055EXPORT_SYMBOL(interruptible_sleep_on);
6056
6057long __sched
6058interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
6059{
6060 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
6061}
6062EXPORT_SYMBOL(interruptible_sleep_on_timeout);
6063
6064void __sched sleep_on(wait_queue_head_t *q)
6065{
6066 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
6067}
6068EXPORT_SYMBOL(sleep_on);
6069
6070long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
6071{
6072 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
6073}
6074EXPORT_SYMBOL(sleep_on_timeout);
6075
6076#ifdef CONFIG_RT_MUTEXES
6077
6078/*
6079 * rt_mutex_setprio - set the current priority of a task
6080 * @p: task
6081 * @prio: prio value (kernel-internal form)
6082 *
6083 * This function changes the 'effective' priority of a task. It does
6084 * not touch ->normal_prio like __setscheduler().
6085 *
6086 * Used by the rt_mutex code to implement priority inheritance logic.
6087 */
6088void rt_mutex_setprio(struct task_struct *p, int prio)
6089{
6090 unsigned long flags;
6091 int oldprio, on_rq, running;
6092 struct rq *rq;
6093 const struct sched_class *prev_class = p->sched_class;
6094
6095 BUG_ON(prio < 0 || prio > MAX_PRIO);
6096
6097 rq = task_rq_lock(p, &flags);
6098 update_rq_clock(rq);
6099
6100 oldprio = p->prio;
6101 on_rq = p->se.on_rq;
6102 running = task_current(rq, p);
6103 if (on_rq)
6104 dequeue_task(rq, p, 0);
6105 if (running)
6106 p->sched_class->put_prev_task(rq, p);
6107
6108 if (rt_prio(prio))
6109 p->sched_class = &rt_sched_class;
6110 else
6111 p->sched_class = &fair_sched_class;
6112
6113 p->prio = prio;
6114
6115 if (running)
6116 p->sched_class->set_curr_task(rq);
6117 if (on_rq) {
6118 enqueue_task(rq, p, 0);
6119
6120 check_class_changed(rq, p, prev_class, oldprio, running);
6121 }
6122 task_rq_unlock(rq, &flags);
6123}
6124
6125#endif
6126
6127void set_user_nice(struct task_struct *p, long nice)
6128{
6129 int old_prio, delta, on_rq;
6130 unsigned long flags;
6131 struct rq *rq;
6132
6133 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6134 return;
6135 /*
6136 * We have to be careful, if called from sys_setpriority(),
6137 * the task might be in the middle of scheduling on another CPU.
6138 */
6139 rq = task_rq_lock(p, &flags);
6140 update_rq_clock(rq);
6141 /*
6142 * The RT priorities are set via sched_setscheduler(), but we still
6143 * allow the 'normal' nice value to be set - but as expected
6144 * it wont have any effect on scheduling until the task is
6145 * SCHED_FIFO/SCHED_RR:
6146 */
6147 if (task_has_rt_policy(p)) {
6148 p->static_prio = NICE_TO_PRIO(nice);
6149 goto out_unlock;
6150 }
6151 on_rq = p->se.on_rq;
6152 if (on_rq)
6153 dequeue_task(rq, p, 0);
6154
6155 p->static_prio = NICE_TO_PRIO(nice);
6156 set_load_weight(p);
6157 old_prio = p->prio;
6158 p->prio = effective_prio(p);
6159 delta = p->prio - old_prio;
6160
6161 if (on_rq) {
6162 enqueue_task(rq, p, 0);
6163 /*
6164 * If the task increased its priority or is running and
6165 * lowered its priority, then reschedule its CPU:
6166 */
6167 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6168 resched_task(rq->curr);
6169 }
6170out_unlock:
6171 task_rq_unlock(rq, &flags);
6172}
6173EXPORT_SYMBOL(set_user_nice);
6174
6175/*
6176 * can_nice - check if a task can reduce its nice value
6177 * @p: task
6178 * @nice: nice value
6179 */
6180int can_nice(const struct task_struct *p, const int nice)
6181{
6182 /* convert nice value [19,-20] to rlimit style value [1,40] */
6183 int nice_rlim = 20 - nice;
6184
6185 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6186 capable(CAP_SYS_NICE));
6187}
6188
6189#ifdef __ARCH_WANT_SYS_NICE
6190
6191/*
6192 * sys_nice - change the priority of the current process.
6193 * @increment: priority increment
6194 *
6195 * sys_setpriority is a more generic, but much slower function that
6196 * does similar things.
6197 */
6198SYSCALL_DEFINE1(nice, int, increment)
6199{
6200 long nice, retval;
6201
6202 /*
6203 * Setpriority might change our priority at the same moment.
6204 * We don't have to worry. Conceptually one call occurs first
6205 * and we have a single winner.
6206 */
6207 if (increment < -40)
6208 increment = -40;
6209 if (increment > 40)
6210 increment = 40;
6211
6212 nice = TASK_NICE(current) + increment;
6213 if (nice < -20)
6214 nice = -20;
6215 if (nice > 19)
6216 nice = 19;
6217
6218 if (increment < 0 && !can_nice(current, nice))
6219 return -EPERM;
6220
6221 retval = security_task_setnice(current, nice);
6222 if (retval)
6223 return retval;
6224
6225 set_user_nice(current, nice);
6226 return 0;
6227}
6228
6229#endif
6230
6231/**
6232 * task_prio - return the priority value of a given task.
6233 * @p: the task in question.
6234 *
6235 * This is the priority value as seen by users in /proc.
6236 * RT tasks are offset by -200. Normal tasks are centered
6237 * around 0, value goes from -16 to +15.
6238 */
6239int task_prio(const struct task_struct *p)
6240{
6241 return p->prio - MAX_RT_PRIO;
6242}
6243
6244/**
6245 * task_nice - return the nice value of a given task.
6246 * @p: the task in question.
6247 */
6248int task_nice(const struct task_struct *p)
6249{
6250 return TASK_NICE(p);
6251}
6252EXPORT_SYMBOL(task_nice);
6253
6254/**
6255 * idle_cpu - is a given cpu idle currently?
6256 * @cpu: the processor in question.
6257 */
6258int idle_cpu(int cpu)
6259{
6260 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6261}
6262
6263/**
6264 * idle_task - return the idle task for a given cpu.
6265 * @cpu: the processor in question.
6266 */
6267struct task_struct *idle_task(int cpu)
6268{
6269 return cpu_rq(cpu)->idle;
6270}
6271
6272/**
6273 * find_process_by_pid - find a process with a matching PID value.
6274 * @pid: the pid in question.
6275 */
6276static struct task_struct *find_process_by_pid(pid_t pid)
6277{
6278 return pid ? find_task_by_vpid(pid) : current;
6279}
6280
6281/* Actually do priority change: must hold rq lock. */
6282static void
6283__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6284{
6285 BUG_ON(p->se.on_rq);
6286
6287 p->policy = policy;
6288 switch (p->policy) {
6289 case SCHED_NORMAL:
6290 case SCHED_BATCH:
6291 case SCHED_IDLE:
6292 p->sched_class = &fair_sched_class;
6293 break;
6294 case SCHED_FIFO:
6295 case SCHED_RR:
6296 p->sched_class = &rt_sched_class;
6297 break;
6298 }
6299
6300 p->rt_priority = prio;
6301 p->normal_prio = normal_prio(p);
6302 /* we are holding p->pi_lock already */
6303 p->prio = rt_mutex_getprio(p);
6304 set_load_weight(p);
6305}
6306
6307/*
6308 * check the target process has a UID that matches the current process's
6309 */
6310static bool check_same_owner(struct task_struct *p)
6311{
6312 const struct cred *cred = current_cred(), *pcred;
6313 bool match;
6314
6315 rcu_read_lock();
6316 pcred = __task_cred(p);
6317 match = (cred->euid == pcred->euid ||
6318 cred->euid == pcred->uid);
6319 rcu_read_unlock();
6320 return match;
6321}
6322
6323static int __sched_setscheduler(struct task_struct *p, int policy,
6324 struct sched_param *param, bool user)
6325{
6326 int retval, oldprio, oldpolicy = -1, on_rq, running;
6327 unsigned long flags;
6328 const struct sched_class *prev_class = p->sched_class;
6329 struct rq *rq;
6330 int reset_on_fork;
6331
6332 /* may grab non-irq protected spin_locks */
6333 BUG_ON(in_interrupt());
6334recheck:
6335 /* double check policy once rq lock held */
6336 if (policy < 0) {
6337 reset_on_fork = p->sched_reset_on_fork;
6338 policy = oldpolicy = p->policy;
6339 } else {
6340 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6341 policy &= ~SCHED_RESET_ON_FORK;
6342
6343 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6344 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6345 policy != SCHED_IDLE)
6346 return -EINVAL;
6347 }
6348
6349 /*
6350 * Valid priorities for SCHED_FIFO and SCHED_RR are
6351 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6352 * SCHED_BATCH and SCHED_IDLE is 0.
6353 */
6354 if (param->sched_priority < 0 ||
6355 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6356 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6357 return -EINVAL;
6358 if (rt_policy(policy) != (param->sched_priority != 0))
6359 return -EINVAL;
6360
6361 /*
6362 * Allow unprivileged RT tasks to decrease priority:
6363 */
6364 if (user && !capable(CAP_SYS_NICE)) {
6365 if (rt_policy(policy)) {
6366 unsigned long rlim_rtprio;
6367
6368 if (!lock_task_sighand(p, &flags))
6369 return -ESRCH;
6370 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6371 unlock_task_sighand(p, &flags);
6372
6373 /* can't set/change the rt policy */
6374 if (policy != p->policy && !rlim_rtprio)
6375 return -EPERM;
6376
6377 /* can't increase priority */
6378 if (param->sched_priority > p->rt_priority &&
6379 param->sched_priority > rlim_rtprio)
6380 return -EPERM;
6381 }
6382 /*
6383 * Like positive nice levels, dont allow tasks to
6384 * move out of SCHED_IDLE either:
6385 */
6386 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6387 return -EPERM;
6388
6389 /* can't change other user's priorities */
6390 if (!check_same_owner(p))
6391 return -EPERM;
6392
6393 /* Normal users shall not reset the sched_reset_on_fork flag */
6394 if (p->sched_reset_on_fork && !reset_on_fork)
6395 return -EPERM;
6396 }
6397
6398 if (user) {
6399#ifdef CONFIG_RT_GROUP_SCHED
6400 /*
6401 * Do not allow realtime tasks into groups that have no runtime
6402 * assigned.
6403 */
6404 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6405 task_group(p)->rt_bandwidth.rt_runtime == 0)
6406 return -EPERM;
6407#endif
6408
6409 retval = security_task_setscheduler(p, policy, param);
6410 if (retval)
6411 return retval;
6412 }
6413
6414 /*
6415 * make sure no PI-waiters arrive (or leave) while we are
6416 * changing the priority of the task:
6417 */
6418 spin_lock_irqsave(&p->pi_lock, flags);
6419 /*
6420 * To be able to change p->policy safely, the apropriate
6421 * runqueue lock must be held.
6422 */
6423 rq = __task_rq_lock(p);
6424 /* recheck policy now with rq lock held */
6425 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6426 policy = oldpolicy = -1;
6427 __task_rq_unlock(rq);
6428 spin_unlock_irqrestore(&p->pi_lock, flags);
6429 goto recheck;
6430 }
6431 update_rq_clock(rq);
6432 on_rq = p->se.on_rq;
6433 running = task_current(rq, p);
6434 if (on_rq)
6435 deactivate_task(rq, p, 0);
6436 if (running)
6437 p->sched_class->put_prev_task(rq, p);
6438
6439 p->sched_reset_on_fork = reset_on_fork;
6440
6441 oldprio = p->prio;
6442 __setscheduler(rq, p, policy, param->sched_priority);
6443
6444 if (running)
6445 p->sched_class->set_curr_task(rq);
6446 if (on_rq) {
6447 activate_task(rq, p, 0);
6448
6449 check_class_changed(rq, p, prev_class, oldprio, running);
6450 }
6451 __task_rq_unlock(rq);
6452 spin_unlock_irqrestore(&p->pi_lock, flags);
6453
6454 rt_mutex_adjust_pi(p);
6455
6456 return 0;
6457}
6458
6459/**
6460 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6461 * @p: the task in question.
6462 * @policy: new policy.
6463 * @param: structure containing the new RT priority.
6464 *
6465 * NOTE that the task may be already dead.
6466 */
6467int sched_setscheduler(struct task_struct *p, int policy,
6468 struct sched_param *param)
6469{
6470 return __sched_setscheduler(p, policy, param, true);
6471}
6472EXPORT_SYMBOL_GPL(sched_setscheduler);
6473
6474/**
6475 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6476 * @p: the task in question.
6477 * @policy: new policy.
6478 * @param: structure containing the new RT priority.
6479 *
6480 * Just like sched_setscheduler, only don't bother checking if the
6481 * current context has permission. For example, this is needed in
6482 * stop_machine(): we create temporary high priority worker threads,
6483 * but our caller might not have that capability.
6484 */
6485int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6486 struct sched_param *param)
6487{
6488 return __sched_setscheduler(p, policy, param, false);
6489}
6490
6491static int
6492do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6493{
6494 struct sched_param lparam;
6495 struct task_struct *p;
6496 int retval;
6497
6498 if (!param || pid < 0)
6499 return -EINVAL;
6500 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6501 return -EFAULT;
6502
6503 rcu_read_lock();
6504 retval = -ESRCH;
6505 p = find_process_by_pid(pid);
6506 if (p != NULL)
6507 retval = sched_setscheduler(p, policy, &lparam);
6508 rcu_read_unlock();
6509
6510 return retval;
6511}
6512
6513/**
6514 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6515 * @pid: the pid in question.
6516 * @policy: new policy.
6517 * @param: structure containing the new RT priority.
6518 */
6519SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6520 struct sched_param __user *, param)
6521{
6522 /* negative values for policy are not valid */
6523 if (policy < 0)
6524 return -EINVAL;
6525
6526 return do_sched_setscheduler(pid, policy, param);
6527}
6528
6529/**
6530 * sys_sched_setparam - set/change the RT priority of a thread
6531 * @pid: the pid in question.
6532 * @param: structure containing the new RT priority.
6533 */
6534SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6535{
6536 return do_sched_setscheduler(pid, -1, param);
6537}
6538
6539/**
6540 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6541 * @pid: the pid in question.
6542 */
6543SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6544{
6545 struct task_struct *p;
6546 int retval;
6547
6548 if (pid < 0)
6549 return -EINVAL;
6550
6551 retval = -ESRCH;
6552 read_lock(&tasklist_lock);
6553 p = find_process_by_pid(pid);
6554 if (p) {
6555 retval = security_task_getscheduler(p);
6556 if (!retval)
6557 retval = p->policy
6558 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6559 }
6560 read_unlock(&tasklist_lock);
6561 return retval;
6562}
6563
6564/**
6565 * sys_sched_getparam - get the RT priority of a thread
6566 * @pid: the pid in question.
6567 * @param: structure containing the RT priority.
6568 */
6569SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6570{
6571 struct sched_param lp;
6572 struct task_struct *p;
6573 int retval;
6574
6575 if (!param || pid < 0)
6576 return -EINVAL;
6577
6578 read_lock(&tasklist_lock);
6579 p = find_process_by_pid(pid);
6580 retval = -ESRCH;
6581 if (!p)
6582 goto out_unlock;
6583
6584 retval = security_task_getscheduler(p);
6585 if (retval)
6586 goto out_unlock;
6587
6588 lp.sched_priority = p->rt_priority;
6589 read_unlock(&tasklist_lock);
6590
6591 /*
6592 * This one might sleep, we cannot do it with a spinlock held ...
6593 */
6594 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6595
6596 return retval;
6597
6598out_unlock:
6599 read_unlock(&tasklist_lock);
6600 return retval;
6601}
6602
6603long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6604{
6605 cpumask_var_t cpus_allowed, new_mask;
6606 struct task_struct *p;
6607 int retval;
6608
6609 get_online_cpus();
6610 read_lock(&tasklist_lock);
6611
6612 p = find_process_by_pid(pid);
6613 if (!p) {
6614 read_unlock(&tasklist_lock);
6615 put_online_cpus();
6616 return -ESRCH;
6617 }
6618
6619 /*
6620 * It is not safe to call set_cpus_allowed with the
6621 * tasklist_lock held. We will bump the task_struct's
6622 * usage count and then drop tasklist_lock.
6623 */
6624 get_task_struct(p);
6625 read_unlock(&tasklist_lock);
6626
6627 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6628 retval = -ENOMEM;
6629 goto out_put_task;
6630 }
6631 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6632 retval = -ENOMEM;
6633 goto out_free_cpus_allowed;
6634 }
6635 retval = -EPERM;
6636 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6637 goto out_unlock;
6638
6639 retval = security_task_setscheduler(p, 0, NULL);
6640 if (retval)
6641 goto out_unlock;
6642
6643 cpuset_cpus_allowed(p, cpus_allowed);
6644 cpumask_and(new_mask, in_mask, cpus_allowed);
6645 again:
6646 retval = set_cpus_allowed_ptr(p, new_mask);
6647
6648 if (!retval) {
6649 cpuset_cpus_allowed(p, cpus_allowed);
6650 if (!cpumask_subset(new_mask, cpus_allowed)) {
6651 /*
6652 * We must have raced with a concurrent cpuset
6653 * update. Just reset the cpus_allowed to the
6654 * cpuset's cpus_allowed
6655 */
6656 cpumask_copy(new_mask, cpus_allowed);
6657 goto again;
6658 }
6659 }
6660out_unlock:
6661 free_cpumask_var(new_mask);
6662out_free_cpus_allowed:
6663 free_cpumask_var(cpus_allowed);
6664out_put_task:
6665 put_task_struct(p);
6666 put_online_cpus();
6667 return retval;
6668}
6669
6670static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6671 struct cpumask *new_mask)
6672{
6673 if (len < cpumask_size())
6674 cpumask_clear(new_mask);
6675 else if (len > cpumask_size())
6676 len = cpumask_size();
6677
6678 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6679}
6680
6681/**
6682 * sys_sched_setaffinity - set the cpu affinity of a process
6683 * @pid: pid of the process
6684 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6685 * @user_mask_ptr: user-space pointer to the new cpu mask
6686 */
6687SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6688 unsigned long __user *, user_mask_ptr)
6689{
6690 cpumask_var_t new_mask;
6691 int retval;
6692
6693 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6694 return -ENOMEM;
6695
6696 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6697 if (retval == 0)
6698 retval = sched_setaffinity(pid, new_mask);
6699 free_cpumask_var(new_mask);
6700 return retval;
6701}
6702
6703long sched_getaffinity(pid_t pid, struct cpumask *mask)
6704{
6705 struct task_struct *p;
6706 int retval;
6707
6708 get_online_cpus();
6709 read_lock(&tasklist_lock);
6710
6711 retval = -ESRCH;
6712 p = find_process_by_pid(pid);
6713 if (!p)
6714 goto out_unlock;
6715
6716 retval = security_task_getscheduler(p);
6717 if (retval)
6718 goto out_unlock;
6719
6720 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6721
6722out_unlock:
6723 read_unlock(&tasklist_lock);
6724 put_online_cpus();
6725
6726 return retval;
6727}
6728
6729/**
6730 * sys_sched_getaffinity - get the cpu affinity of a process
6731 * @pid: pid of the process
6732 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6733 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6734 */
6735SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6736 unsigned long __user *, user_mask_ptr)
6737{
6738 int ret;
6739 cpumask_var_t mask;
6740
6741 if (len < cpumask_size())
6742 return -EINVAL;
6743
6744 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6745 return -ENOMEM;
6746
6747 ret = sched_getaffinity(pid, mask);
6748 if (ret == 0) {
6749 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6750 ret = -EFAULT;
6751 else
6752 ret = cpumask_size();
6753 }
6754 free_cpumask_var(mask);
6755
6756 return ret;
6757}
6758
6759/**
6760 * sys_sched_yield - yield the current processor to other threads.
6761 *
6762 * This function yields the current CPU to other tasks. If there are no
6763 * other threads running on this CPU then this function will return.
6764 */
6765SYSCALL_DEFINE0(sched_yield)
6766{
6767 struct rq *rq = this_rq_lock();
6768
6769 schedstat_inc(rq, yld_count);
6770 current->sched_class->yield_task(rq);
6771
6772 /*
6773 * Since we are going to call schedule() anyway, there's
6774 * no need to preempt or enable interrupts:
6775 */
6776 __release(rq->lock);
6777 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6778 _raw_spin_unlock(&rq->lock);
6779 preempt_enable_no_resched();
6780
6781 schedule();
6782
6783 return 0;
6784}
6785
6786static inline int should_resched(void)
6787{
6788 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6789}
6790
6791static void __cond_resched(void)
6792{
6793 add_preempt_count(PREEMPT_ACTIVE);
6794 schedule();
6795 sub_preempt_count(PREEMPT_ACTIVE);
6796}
6797
6798int __sched _cond_resched(void)
6799{
6800 if (should_resched()) {
6801 __cond_resched();
6802 return 1;
6803 }
6804 return 0;
6805}
6806EXPORT_SYMBOL(_cond_resched);
6807
6808/*
6809 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6810 * call schedule, and on return reacquire the lock.
6811 *
6812 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6813 * operations here to prevent schedule() from being called twice (once via
6814 * spin_unlock(), once by hand).
6815 */
6816int __cond_resched_lock(spinlock_t *lock)
6817{
6818 int resched = should_resched();
6819 int ret = 0;
6820
6821 lockdep_assert_held(lock);
6822
6823 if (spin_needbreak(lock) || resched) {
6824 spin_unlock(lock);
6825 if (resched)
6826 __cond_resched();
6827 else
6828 cpu_relax();
6829 ret = 1;
6830 spin_lock(lock);
6831 }
6832 return ret;
6833}
6834EXPORT_SYMBOL(__cond_resched_lock);
6835
6836int __sched __cond_resched_softirq(void)
6837{
6838 BUG_ON(!in_softirq());
6839
6840 if (should_resched()) {
6841 local_bh_enable();
6842 __cond_resched();
6843 local_bh_disable();
6844 return 1;
6845 }
6846 return 0;
6847}
6848EXPORT_SYMBOL(__cond_resched_softirq);
6849
6850/**
6851 * yield - yield the current processor to other threads.
6852 *
6853 * This is a shortcut for kernel-space yielding - it marks the
6854 * thread runnable and calls sys_sched_yield().
6855 */
6856void __sched yield(void)
6857{
6858 set_current_state(TASK_RUNNING);
6859 sys_sched_yield();
6860}
6861EXPORT_SYMBOL(yield);
6862
6863/*
6864 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6865 * that process accounting knows that this is a task in IO wait state.
6866 *
6867 * But don't do that if it is a deliberate, throttling IO wait (this task
6868 * has set its backing_dev_info: the queue against which it should throttle)
6869 */
6870void __sched io_schedule(void)
6871{
6872 struct rq *rq = raw_rq();
6873
6874 delayacct_blkio_start();
6875 atomic_inc(&rq->nr_iowait);
6876 current->in_iowait = 1;
6877 schedule();
6878 current->in_iowait = 0;
6879 atomic_dec(&rq->nr_iowait);
6880 delayacct_blkio_end();
6881}
6882EXPORT_SYMBOL(io_schedule);
6883
6884long __sched io_schedule_timeout(long timeout)
6885{
6886 struct rq *rq = raw_rq();
6887 long ret;
6888
6889 delayacct_blkio_start();
6890 atomic_inc(&rq->nr_iowait);
6891 current->in_iowait = 1;
6892 ret = schedule_timeout(timeout);
6893 current->in_iowait = 0;
6894 atomic_dec(&rq->nr_iowait);
6895 delayacct_blkio_end();
6896 return ret;
6897}
6898
6899/**
6900 * sys_sched_get_priority_max - return maximum RT priority.
6901 * @policy: scheduling class.
6902 *
6903 * this syscall returns the maximum rt_priority that can be used
6904 * by a given scheduling class.
6905 */
6906SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6907{
6908 int ret = -EINVAL;
6909
6910 switch (policy) {
6911 case SCHED_FIFO:
6912 case SCHED_RR:
6913 ret = MAX_USER_RT_PRIO-1;
6914 break;
6915 case SCHED_NORMAL:
6916 case SCHED_BATCH:
6917 case SCHED_IDLE:
6918 ret = 0;
6919 break;
6920 }
6921 return ret;
6922}
6923
6924/**
6925 * sys_sched_get_priority_min - return minimum RT priority.
6926 * @policy: scheduling class.
6927 *
6928 * this syscall returns the minimum rt_priority that can be used
6929 * by a given scheduling class.
6930 */
6931SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6932{
6933 int ret = -EINVAL;
6934
6935 switch (policy) {
6936 case SCHED_FIFO:
6937 case SCHED_RR:
6938 ret = 1;
6939 break;
6940 case SCHED_NORMAL:
6941 case SCHED_BATCH:
6942 case SCHED_IDLE:
6943 ret = 0;
6944 }
6945 return ret;
6946}
6947
6948/**
6949 * sys_sched_rr_get_interval - return the default timeslice of a process.
6950 * @pid: pid of the process.
6951 * @interval: userspace pointer to the timeslice value.
6952 *
6953 * this syscall writes the default timeslice value of a given process
6954 * into the user-space timespec buffer. A value of '0' means infinity.
6955 */
6956SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6957 struct timespec __user *, interval)
6958{
6959 struct task_struct *p;
6960 unsigned int time_slice;
6961 int retval;
6962 struct timespec t;
6963
6964 if (pid < 0)
6965 return -EINVAL;
6966
6967 retval = -ESRCH;
6968 read_lock(&tasklist_lock);
6969 p = find_process_by_pid(pid);
6970 if (!p)
6971 goto out_unlock;
6972
6973 retval = security_task_getscheduler(p);
6974 if (retval)
6975 goto out_unlock;
6976
6977 /*
6978 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6979 * tasks that are on an otherwise idle runqueue:
6980 */
6981 time_slice = 0;
6982 if (p->policy == SCHED_RR) {
6983 time_slice = DEF_TIMESLICE;
6984 } else if (p->policy != SCHED_FIFO) {
6985 struct sched_entity *se = &p->se;
6986 unsigned long flags;
6987 struct rq *rq;
6988
6989 rq = task_rq_lock(p, &flags);
6990 if (rq->cfs.load.weight)
6991 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6992 task_rq_unlock(rq, &flags);
6993 }
6994 read_unlock(&tasklist_lock);
6995 jiffies_to_timespec(time_slice, &t);
6996 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6997 return retval;
6998
6999out_unlock:
7000 read_unlock(&tasklist_lock);
7001 return retval;
7002}
7003
7004static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
7005
7006void sched_show_task(struct task_struct *p)
7007{
7008 unsigned long free = 0;
7009 unsigned state;
7010
7011 state = p->state ? __ffs(p->state) + 1 : 0;
7012 printk(KERN_INFO "%-13.13s %c", p->comm,
7013 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
7014#if BITS_PER_LONG == 32
7015 if (state == TASK_RUNNING)
7016 printk(KERN_CONT " running ");
7017 else
7018 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
7019#else
7020 if (state == TASK_RUNNING)
7021 printk(KERN_CONT " running task ");
7022 else
7023 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
7024#endif
7025#ifdef CONFIG_DEBUG_STACK_USAGE
7026 free = stack_not_used(p);
7027#endif
7028 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
7029 task_pid_nr(p), task_pid_nr(p->real_parent),
7030 (unsigned long)task_thread_info(p)->flags);
7031
7032 show_stack(p, NULL);
7033}
7034
7035void show_state_filter(unsigned long state_filter)
7036{
7037 struct task_struct *g, *p;
7038
7039#if BITS_PER_LONG == 32
7040 printk(KERN_INFO
7041 " task PC stack pid father\n");
7042#else
7043 printk(KERN_INFO
7044 " task PC stack pid father\n");
7045#endif
7046 read_lock(&tasklist_lock);
7047 do_each_thread(g, p) {
7048 /*
7049 * reset the NMI-timeout, listing all files on a slow
7050 * console might take alot of time:
7051 */
7052 touch_nmi_watchdog();
7053 if (!state_filter || (p->state & state_filter))
7054 sched_show_task(p);
7055 } while_each_thread(g, p);
7056
7057 touch_all_softlockup_watchdogs();
7058
7059#ifdef CONFIG_SCHED_DEBUG
7060 sysrq_sched_debug_show();
7061#endif
7062 read_unlock(&tasklist_lock);
7063 /*
7064 * Only show locks if all tasks are dumped:
7065 */
7066 if (state_filter == -1)
7067 debug_show_all_locks();
7068}
7069
7070void __cpuinit init_idle_bootup_task(struct task_struct *idle)
7071{
7072 idle->sched_class = &idle_sched_class;
7073}
7074
7075/**
7076 * init_idle - set up an idle thread for a given CPU
7077 * @idle: task in question
7078 * @cpu: cpu the idle task belongs to
7079 *
7080 * NOTE: this function does not set the idle thread's NEED_RESCHED
7081 * flag, to make booting more robust.
7082 */
7083void __cpuinit init_idle(struct task_struct *idle, int cpu)
7084{
7085 struct rq *rq = cpu_rq(cpu);
7086 unsigned long flags;
7087
7088 spin_lock_irqsave(&rq->lock, flags);
7089
7090 __sched_fork(idle);
7091 idle->se.exec_start = sched_clock();
7092
7093 idle->prio = idle->normal_prio = MAX_PRIO;
7094 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
7095 __set_task_cpu(idle, cpu);
7096
7097 rq->curr = rq->idle = idle;
7098#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7099 idle->oncpu = 1;
7100#endif
7101 spin_unlock_irqrestore(&rq->lock, flags);
7102
7103 /* Set the preempt count _outside_ the spinlocks! */
7104#if defined(CONFIG_PREEMPT)
7105 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7106#else
7107 task_thread_info(idle)->preempt_count = 0;
7108#endif
7109 /*
7110 * The idle tasks have their own, simple scheduling class:
7111 */
7112 idle->sched_class = &idle_sched_class;
7113 ftrace_graph_init_task(idle);
7114}
7115
7116/*
7117 * In a system that switches off the HZ timer nohz_cpu_mask
7118 * indicates which cpus entered this state. This is used
7119 * in the rcu update to wait only for active cpus. For system
7120 * which do not switch off the HZ timer nohz_cpu_mask should
7121 * always be CPU_BITS_NONE.
7122 */
7123cpumask_var_t nohz_cpu_mask;
7124
7125/*
7126 * Increase the granularity value when there are more CPUs,
7127 * because with more CPUs the 'effective latency' as visible
7128 * to users decreases. But the relationship is not linear,
7129 * so pick a second-best guess by going with the log2 of the
7130 * number of CPUs.
7131 *
7132 * This idea comes from the SD scheduler of Con Kolivas:
7133 */
7134static inline void sched_init_granularity(void)
7135{
7136 unsigned int factor = 1 + ilog2(num_online_cpus());
7137 const unsigned long limit = 200000000;
7138
7139 sysctl_sched_min_granularity *= factor;
7140 if (sysctl_sched_min_granularity > limit)
7141 sysctl_sched_min_granularity = limit;
7142
7143 sysctl_sched_latency *= factor;
7144 if (sysctl_sched_latency > limit)
7145 sysctl_sched_latency = limit;
7146
7147 sysctl_sched_wakeup_granularity *= factor;
7148
7149 sysctl_sched_shares_ratelimit *= factor;
7150}
7151
7152#ifdef CONFIG_SMP
7153/*
7154 * This is how migration works:
7155 *
7156 * 1) we queue a struct migration_req structure in the source CPU's
7157 * runqueue and wake up that CPU's migration thread.
7158 * 2) we down() the locked semaphore => thread blocks.
7159 * 3) migration thread wakes up (implicitly it forces the migrated
7160 * thread off the CPU)
7161 * 4) it gets the migration request and checks whether the migrated
7162 * task is still in the wrong runqueue.
7163 * 5) if it's in the wrong runqueue then the migration thread removes
7164 * it and puts it into the right queue.
7165 * 6) migration thread up()s the semaphore.
7166 * 7) we wake up and the migration is done.
7167 */
7168
7169/*
7170 * Change a given task's CPU affinity. Migrate the thread to a
7171 * proper CPU and schedule it away if the CPU it's executing on
7172 * is removed from the allowed bitmask.
7173 *
7174 * NOTE: the caller must have a valid reference to the task, the
7175 * task must not exit() & deallocate itself prematurely. The
7176 * call is not atomic; no spinlocks may be held.
7177 */
7178int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7179{
7180 struct migration_req req;
7181 unsigned long flags;
7182 struct rq *rq;
7183 int ret = 0;
7184
7185 rq = task_rq_lock(p, &flags);
7186 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
7187 ret = -EINVAL;
7188 goto out;
7189 }
7190
7191 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7192 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7193 ret = -EINVAL;
7194 goto out;
7195 }
7196
7197 if (p->sched_class->set_cpus_allowed)
7198 p->sched_class->set_cpus_allowed(p, new_mask);
7199 else {
7200 cpumask_copy(&p->cpus_allowed, new_mask);
7201 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7202 }
7203
7204 /* Can the task run on the task's current CPU? If so, we're done */
7205 if (cpumask_test_cpu(task_cpu(p), new_mask))
7206 goto out;
7207
7208 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
7209 /* Need help from migration thread: drop lock and wait. */
7210 struct task_struct *mt = rq->migration_thread;
7211
7212 get_task_struct(mt);
7213 task_rq_unlock(rq, &flags);
7214 wake_up_process(rq->migration_thread);
7215 put_task_struct(mt);
7216 wait_for_completion(&req.done);
7217 tlb_migrate_finish(p->mm);
7218 return 0;
7219 }
7220out:
7221 task_rq_unlock(rq, &flags);
7222
7223 return ret;
7224}
7225EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7226
7227/*
7228 * Move (not current) task off this cpu, onto dest cpu. We're doing
7229 * this because either it can't run here any more (set_cpus_allowed()
7230 * away from this CPU, or CPU going down), or because we're
7231 * attempting to rebalance this task on exec (sched_exec).
7232 *
7233 * So we race with normal scheduler movements, but that's OK, as long
7234 * as the task is no longer on this CPU.
7235 *
7236 * Returns non-zero if task was successfully migrated.
7237 */
7238static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7239{
7240 struct rq *rq_dest, *rq_src;
7241 int ret = 0, on_rq;
7242
7243 if (unlikely(!cpu_active(dest_cpu)))
7244 return ret;
7245
7246 rq_src = cpu_rq(src_cpu);
7247 rq_dest = cpu_rq(dest_cpu);
7248
7249 double_rq_lock(rq_src, rq_dest);
7250 /* Already moved. */
7251 if (task_cpu(p) != src_cpu)
7252 goto done;
7253 /* Affinity changed (again). */
7254 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7255 goto fail;
7256
7257 on_rq = p->se.on_rq;
7258 if (on_rq)
7259 deactivate_task(rq_src, p, 0);
7260
7261 set_task_cpu(p, dest_cpu);
7262 if (on_rq) {
7263 activate_task(rq_dest, p, 0);
7264 check_preempt_curr(rq_dest, p, 0);
7265 }
7266done:
7267 ret = 1;
7268fail:
7269 double_rq_unlock(rq_src, rq_dest);
7270 return ret;
7271}
7272
7273#define RCU_MIGRATION_IDLE 0
7274#define RCU_MIGRATION_NEED_QS 1
7275#define RCU_MIGRATION_GOT_QS 2
7276#define RCU_MIGRATION_MUST_SYNC 3
7277
7278/*
7279 * migration_thread - this is a highprio system thread that performs
7280 * thread migration by bumping thread off CPU then 'pushing' onto
7281 * another runqueue.
7282 */
7283static int migration_thread(void *data)
7284{
7285 int badcpu;
7286 int cpu = (long)data;
7287 struct rq *rq;
7288
7289 rq = cpu_rq(cpu);
7290 BUG_ON(rq->migration_thread != current);
7291
7292 set_current_state(TASK_INTERRUPTIBLE);
7293 while (!kthread_should_stop()) {
7294 struct migration_req *req;
7295 struct list_head *head;
7296
7297 spin_lock_irq(&rq->lock);
7298
7299 if (cpu_is_offline(cpu)) {
7300 spin_unlock_irq(&rq->lock);
7301 break;
7302 }
7303
7304 if (rq->active_balance) {
7305 active_load_balance(rq, cpu);
7306 rq->active_balance = 0;
7307 }
7308
7309 head = &rq->migration_queue;
7310
7311 if (list_empty(head)) {
7312 spin_unlock_irq(&rq->lock);
7313 schedule();
7314 set_current_state(TASK_INTERRUPTIBLE);
7315 continue;
7316 }
7317 req = list_entry(head->next, struct migration_req, list);
7318 list_del_init(head->next);
7319
7320 if (req->task != NULL) {
7321 spin_unlock(&rq->lock);
7322 __migrate_task(req->task, cpu, req->dest_cpu);
7323 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7324 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7325 spin_unlock(&rq->lock);
7326 } else {
7327 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7328 spin_unlock(&rq->lock);
7329 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7330 }
7331 local_irq_enable();
7332
7333 complete(&req->done);
7334 }
7335 __set_current_state(TASK_RUNNING);
7336
7337 return 0;
7338}
7339
7340#ifdef CONFIG_HOTPLUG_CPU
7341
7342static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7343{
7344 int ret;
7345
7346 local_irq_disable();
7347 ret = __migrate_task(p, src_cpu, dest_cpu);
7348 local_irq_enable();
7349 return ret;
7350}
7351
7352/*
7353 * Figure out where task on dead CPU should go, use force if necessary.
7354 */
7355static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7356{
7357 int dest_cpu;
7358 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7359
7360again:
7361 /* Look for allowed, online CPU in same node. */
7362 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7363 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7364 goto move;
7365
7366 /* Any allowed, online CPU? */
7367 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7368 if (dest_cpu < nr_cpu_ids)
7369 goto move;
7370
7371 /* No more Mr. Nice Guy. */
7372 if (dest_cpu >= nr_cpu_ids) {
7373 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7374 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7375
7376 /*
7377 * Don't tell them about moving exiting tasks or
7378 * kernel threads (both mm NULL), since they never
7379 * leave kernel.
7380 */
7381 if (p->mm && printk_ratelimit()) {
7382 printk(KERN_INFO "process %d (%s) no "
7383 "longer affine to cpu%d\n",
7384 task_pid_nr(p), p->comm, dead_cpu);
7385 }
7386 }
7387
7388move:
7389 /* It can have affinity changed while we were choosing. */
7390 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7391 goto again;
7392}
7393
7394/*
7395 * While a dead CPU has no uninterruptible tasks queued at this point,
7396 * it might still have a nonzero ->nr_uninterruptible counter, because
7397 * for performance reasons the counter is not stricly tracking tasks to
7398 * their home CPUs. So we just add the counter to another CPU's counter,
7399 * to keep the global sum constant after CPU-down:
7400 */
7401static void migrate_nr_uninterruptible(struct rq *rq_src)
7402{
7403 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7404 unsigned long flags;
7405
7406 local_irq_save(flags);
7407 double_rq_lock(rq_src, rq_dest);
7408 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7409 rq_src->nr_uninterruptible = 0;
7410 double_rq_unlock(rq_src, rq_dest);
7411 local_irq_restore(flags);
7412}
7413
7414/* Run through task list and migrate tasks from the dead cpu. */
7415static void migrate_live_tasks(int src_cpu)
7416{
7417 struct task_struct *p, *t;
7418
7419 read_lock(&tasklist_lock);
7420
7421 do_each_thread(t, p) {
7422 if (p == current)
7423 continue;
7424
7425 if (task_cpu(p) == src_cpu)
7426 move_task_off_dead_cpu(src_cpu, p);
7427 } while_each_thread(t, p);
7428
7429 read_unlock(&tasklist_lock);
7430}
7431
7432/*
7433 * Schedules idle task to be the next runnable task on current CPU.
7434 * It does so by boosting its priority to highest possible.
7435 * Used by CPU offline code.
7436 */
7437void sched_idle_next(void)
7438{
7439 int this_cpu = smp_processor_id();
7440 struct rq *rq = cpu_rq(this_cpu);
7441 struct task_struct *p = rq->idle;
7442 unsigned long flags;
7443
7444 /* cpu has to be offline */
7445 BUG_ON(cpu_online(this_cpu));
7446
7447 /*
7448 * Strictly not necessary since rest of the CPUs are stopped by now
7449 * and interrupts disabled on the current cpu.
7450 */
7451 spin_lock_irqsave(&rq->lock, flags);
7452
7453 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7454
7455 update_rq_clock(rq);
7456 activate_task(rq, p, 0);
7457
7458 spin_unlock_irqrestore(&rq->lock, flags);
7459}
7460
7461/*
7462 * Ensures that the idle task is using init_mm right before its cpu goes
7463 * offline.
7464 */
7465void idle_task_exit(void)
7466{
7467 struct mm_struct *mm = current->active_mm;
7468
7469 BUG_ON(cpu_online(smp_processor_id()));
7470
7471 if (mm != &init_mm)
7472 switch_mm(mm, &init_mm, current);
7473 mmdrop(mm);
7474}
7475
7476/* called under rq->lock with disabled interrupts */
7477static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7478{
7479 struct rq *rq = cpu_rq(dead_cpu);
7480
7481 /* Must be exiting, otherwise would be on tasklist. */
7482 BUG_ON(!p->exit_state);
7483
7484 /* Cannot have done final schedule yet: would have vanished. */
7485 BUG_ON(p->state == TASK_DEAD);
7486
7487 get_task_struct(p);
7488
7489 /*
7490 * Drop lock around migration; if someone else moves it,
7491 * that's OK. No task can be added to this CPU, so iteration is
7492 * fine.
7493 */
7494 spin_unlock_irq(&rq->lock);
7495 move_task_off_dead_cpu(dead_cpu, p);
7496 spin_lock_irq(&rq->lock);
7497
7498 put_task_struct(p);
7499}
7500
7501/* release_task() removes task from tasklist, so we won't find dead tasks. */
7502static void migrate_dead_tasks(unsigned int dead_cpu)
7503{
7504 struct rq *rq = cpu_rq(dead_cpu);
7505 struct task_struct *next;
7506
7507 for ( ; ; ) {
7508 if (!rq->nr_running)
7509 break;
7510 update_rq_clock(rq);
7511 next = pick_next_task(rq);
7512 if (!next)
7513 break;
7514 next->sched_class->put_prev_task(rq, next);
7515 migrate_dead(dead_cpu, next);
7516
7517 }
7518}
7519
7520/*
7521 * remove the tasks which were accounted by rq from calc_load_tasks.
7522 */
7523static void calc_global_load_remove(struct rq *rq)
7524{
7525 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7526 rq->calc_load_active = 0;
7527}
7528#endif /* CONFIG_HOTPLUG_CPU */
7529
7530#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7531
7532static struct ctl_table sd_ctl_dir[] = {
7533 {
7534 .procname = "sched_domain",
7535 .mode = 0555,
7536 },
7537 {0, },
7538};
7539
7540static struct ctl_table sd_ctl_root[] = {
7541 {
7542 .ctl_name = CTL_KERN,
7543 .procname = "kernel",
7544 .mode = 0555,
7545 .child = sd_ctl_dir,
7546 },
7547 {0, },
7548};
7549
7550static struct ctl_table *sd_alloc_ctl_entry(int n)
7551{
7552 struct ctl_table *entry =
7553 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7554
7555 return entry;
7556}
7557
7558static void sd_free_ctl_entry(struct ctl_table **tablep)
7559{
7560 struct ctl_table *entry;
7561
7562 /*
7563 * In the intermediate directories, both the child directory and
7564 * procname are dynamically allocated and could fail but the mode
7565 * will always be set. In the lowest directory the names are
7566 * static strings and all have proc handlers.
7567 */
7568 for (entry = *tablep; entry->mode; entry++) {
7569 if (entry->child)
7570 sd_free_ctl_entry(&entry->child);
7571 if (entry->proc_handler == NULL)
7572 kfree(entry->procname);
7573 }
7574
7575 kfree(*tablep);
7576 *tablep = NULL;
7577}
7578
7579static void
7580set_table_entry(struct ctl_table *entry,
7581 const char *procname, void *data, int maxlen,
7582 mode_t mode, proc_handler *proc_handler)
7583{
7584 entry->procname = procname;
7585 entry->data = data;
7586 entry->maxlen = maxlen;
7587 entry->mode = mode;
7588 entry->proc_handler = proc_handler;
7589}
7590
7591static struct ctl_table *
7592sd_alloc_ctl_domain_table(struct sched_domain *sd)
7593{
7594 struct ctl_table *table = sd_alloc_ctl_entry(13);
7595
7596 if (table == NULL)
7597 return NULL;
7598
7599 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7600 sizeof(long), 0644, proc_doulongvec_minmax);
7601 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7602 sizeof(long), 0644, proc_doulongvec_minmax);
7603 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7604 sizeof(int), 0644, proc_dointvec_minmax);
7605 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7606 sizeof(int), 0644, proc_dointvec_minmax);
7607 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7608 sizeof(int), 0644, proc_dointvec_minmax);
7609 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7610 sizeof(int), 0644, proc_dointvec_minmax);
7611 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7612 sizeof(int), 0644, proc_dointvec_minmax);
7613 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7614 sizeof(int), 0644, proc_dointvec_minmax);
7615 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7616 sizeof(int), 0644, proc_dointvec_minmax);
7617 set_table_entry(&table[9], "cache_nice_tries",
7618 &sd->cache_nice_tries,
7619 sizeof(int), 0644, proc_dointvec_minmax);
7620 set_table_entry(&table[10], "flags", &sd->flags,
7621 sizeof(int), 0644, proc_dointvec_minmax);
7622 set_table_entry(&table[11], "name", sd->name,
7623 CORENAME_MAX_SIZE, 0444, proc_dostring);
7624 /* &table[12] is terminator */
7625
7626 return table;
7627}
7628
7629static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7630{
7631 struct ctl_table *entry, *table;
7632 struct sched_domain *sd;
7633 int domain_num = 0, i;
7634 char buf[32];
7635
7636 for_each_domain(cpu, sd)
7637 domain_num++;
7638 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7639 if (table == NULL)
7640 return NULL;
7641
7642 i = 0;
7643 for_each_domain(cpu, sd) {
7644 snprintf(buf, 32, "domain%d", i);
7645 entry->procname = kstrdup(buf, GFP_KERNEL);
7646 entry->mode = 0555;
7647 entry->child = sd_alloc_ctl_domain_table(sd);
7648 entry++;
7649 i++;
7650 }
7651 return table;
7652}
7653
7654static struct ctl_table_header *sd_sysctl_header;
7655static void register_sched_domain_sysctl(void)
7656{
7657 int i, cpu_num = num_online_cpus();
7658 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7659 char buf[32];
7660
7661 WARN_ON(sd_ctl_dir[0].child);
7662 sd_ctl_dir[0].child = entry;
7663
7664 if (entry == NULL)
7665 return;
7666
7667 for_each_online_cpu(i) {
7668 snprintf(buf, 32, "cpu%d", i);
7669 entry->procname = kstrdup(buf, GFP_KERNEL);
7670 entry->mode = 0555;
7671 entry->child = sd_alloc_ctl_cpu_table(i);
7672 entry++;
7673 }
7674
7675 WARN_ON(sd_sysctl_header);
7676 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7677}
7678
7679/* may be called multiple times per register */
7680static void unregister_sched_domain_sysctl(void)
7681{
7682 if (sd_sysctl_header)
7683 unregister_sysctl_table(sd_sysctl_header);
7684 sd_sysctl_header = NULL;
7685 if (sd_ctl_dir[0].child)
7686 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7687}
7688#else
7689static void register_sched_domain_sysctl(void)
7690{
7691}
7692static void unregister_sched_domain_sysctl(void)
7693{
7694}
7695#endif
7696
7697static void set_rq_online(struct rq *rq)
7698{
7699 if (!rq->online) {
7700 const struct sched_class *class;
7701
7702 cpumask_set_cpu(rq->cpu, rq->rd->online);
7703 rq->online = 1;
7704
7705 for_each_class(class) {
7706 if (class->rq_online)
7707 class->rq_online(rq);
7708 }
7709 }
7710}
7711
7712static void set_rq_offline(struct rq *rq)
7713{
7714 if (rq->online) {
7715 const struct sched_class *class;
7716
7717 for_each_class(class) {
7718 if (class->rq_offline)
7719 class->rq_offline(rq);
7720 }
7721
7722 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7723 rq->online = 0;
7724 }
7725}
7726
7727/*
7728 * migration_call - callback that gets triggered when a CPU is added.
7729 * Here we can start up the necessary migration thread for the new CPU.
7730 */
7731static int __cpuinit
7732migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7733{
7734 struct task_struct *p;
7735 int cpu = (long)hcpu;
7736 unsigned long flags;
7737 struct rq *rq;
7738
7739 switch (action) {
7740
7741 case CPU_UP_PREPARE:
7742 case CPU_UP_PREPARE_FROZEN:
7743 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7744 if (IS_ERR(p))
7745 return NOTIFY_BAD;
7746 kthread_bind(p, cpu);
7747 /* Must be high prio: stop_machine expects to yield to it. */
7748 rq = task_rq_lock(p, &flags);
7749 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7750 task_rq_unlock(rq, &flags);
7751 get_task_struct(p);
7752 cpu_rq(cpu)->migration_thread = p;
7753 rq->calc_load_update = calc_load_update;
7754 break;
7755
7756 case CPU_ONLINE:
7757 case CPU_ONLINE_FROZEN:
7758 /* Strictly unnecessary, as first user will wake it. */
7759 wake_up_process(cpu_rq(cpu)->migration_thread);
7760
7761 /* Update our root-domain */
7762 rq = cpu_rq(cpu);
7763 spin_lock_irqsave(&rq->lock, flags);
7764 if (rq->rd) {
7765 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7766
7767 set_rq_online(rq);
7768 }
7769 spin_unlock_irqrestore(&rq->lock, flags);
7770 break;
7771
7772#ifdef CONFIG_HOTPLUG_CPU
7773 case CPU_UP_CANCELED:
7774 case CPU_UP_CANCELED_FROZEN:
7775 if (!cpu_rq(cpu)->migration_thread)
7776 break;
7777 /* Unbind it from offline cpu so it can run. Fall thru. */
7778 kthread_bind(cpu_rq(cpu)->migration_thread,
7779 cpumask_any(cpu_online_mask));
7780 kthread_stop(cpu_rq(cpu)->migration_thread);
7781 put_task_struct(cpu_rq(cpu)->migration_thread);
7782 cpu_rq(cpu)->migration_thread = NULL;
7783 break;
7784
7785 case CPU_DEAD:
7786 case CPU_DEAD_FROZEN:
7787 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7788 migrate_live_tasks(cpu);
7789 rq = cpu_rq(cpu);
7790 kthread_stop(rq->migration_thread);
7791 put_task_struct(rq->migration_thread);
7792 rq->migration_thread = NULL;
7793 /* Idle task back to normal (off runqueue, low prio) */
7794 spin_lock_irq(&rq->lock);
7795 update_rq_clock(rq);
7796 deactivate_task(rq, rq->idle, 0);
7797 rq->idle->static_prio = MAX_PRIO;
7798 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7799 rq->idle->sched_class = &idle_sched_class;
7800 migrate_dead_tasks(cpu);
7801 spin_unlock_irq(&rq->lock);
7802 cpuset_unlock();
7803 migrate_nr_uninterruptible(rq);
7804 BUG_ON(rq->nr_running != 0);
7805 calc_global_load_remove(rq);
7806 /*
7807 * No need to migrate the tasks: it was best-effort if
7808 * they didn't take sched_hotcpu_mutex. Just wake up
7809 * the requestors.
7810 */
7811 spin_lock_irq(&rq->lock);
7812 while (!list_empty(&rq->migration_queue)) {
7813 struct migration_req *req;
7814
7815 req = list_entry(rq->migration_queue.next,
7816 struct migration_req, list);
7817 list_del_init(&req->list);
7818 spin_unlock_irq(&rq->lock);
7819 complete(&req->done);
7820 spin_lock_irq(&rq->lock);
7821 }
7822 spin_unlock_irq(&rq->lock);
7823 break;
7824
7825 case CPU_DYING:
7826 case CPU_DYING_FROZEN:
7827 /* Update our root-domain */
7828 rq = cpu_rq(cpu);
7829 spin_lock_irqsave(&rq->lock, flags);
7830 if (rq->rd) {
7831 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7832 set_rq_offline(rq);
7833 }
7834 spin_unlock_irqrestore(&rq->lock, flags);
7835 break;
7836#endif
7837 }
7838 return NOTIFY_OK;
7839}
7840
7841/*
7842 * Register at high priority so that task migration (migrate_all_tasks)
7843 * happens before everything else. This has to be lower priority than
7844 * the notifier in the perf_counter subsystem, though.
7845 */
7846static struct notifier_block __cpuinitdata migration_notifier = {
7847 .notifier_call = migration_call,
7848 .priority = 10
7849};
7850
7851static int __init migration_init(void)
7852{
7853 void *cpu = (void *)(long)smp_processor_id();
7854 int err;
7855
7856 /* Start one for the boot CPU: */
7857 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7858 BUG_ON(err == NOTIFY_BAD);
7859 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7860 register_cpu_notifier(&migration_notifier);
7861
7862 return 0;
7863}
7864early_initcall(migration_init);
7865#endif
7866
7867#ifdef CONFIG_SMP
7868
7869#ifdef CONFIG_SCHED_DEBUG
7870
7871static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7872 struct cpumask *groupmask)
7873{
7874 struct sched_group *group = sd->groups;
7875 char str[256];
7876
7877 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7878 cpumask_clear(groupmask);
7879
7880 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7881
7882 if (!(sd->flags & SD_LOAD_BALANCE)) {
7883 printk("does not load-balance\n");
7884 if (sd->parent)
7885 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7886 " has parent");
7887 return -1;
7888 }
7889
7890 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7891
7892 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7893 printk(KERN_ERR "ERROR: domain->span does not contain "
7894 "CPU%d\n", cpu);
7895 }
7896 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7897 printk(KERN_ERR "ERROR: domain->groups does not contain"
7898 " CPU%d\n", cpu);
7899 }
7900
7901 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7902 do {
7903 if (!group) {
7904 printk("\n");
7905 printk(KERN_ERR "ERROR: group is NULL\n");
7906 break;
7907 }
7908
7909 if (!group->cpu_power) {
7910 printk(KERN_CONT "\n");
7911 printk(KERN_ERR "ERROR: domain->cpu_power not "
7912 "set\n");
7913 break;
7914 }
7915
7916 if (!cpumask_weight(sched_group_cpus(group))) {
7917 printk(KERN_CONT "\n");
7918 printk(KERN_ERR "ERROR: empty group\n");
7919 break;
7920 }
7921
7922 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7923 printk(KERN_CONT "\n");
7924 printk(KERN_ERR "ERROR: repeated CPUs\n");
7925 break;
7926 }
7927
7928 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7929
7930 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7931
7932 printk(KERN_CONT " %s", str);
7933 if (group->cpu_power != SCHED_LOAD_SCALE) {
7934 printk(KERN_CONT " (cpu_power = %d)",
7935 group->cpu_power);
7936 }
7937
7938 group = group->next;
7939 } while (group != sd->groups);
7940 printk(KERN_CONT "\n");
7941
7942 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7943 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7944
7945 if (sd->parent &&
7946 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7947 printk(KERN_ERR "ERROR: parent span is not a superset "
7948 "of domain->span\n");
7949 return 0;
7950}
7951
7952static void sched_domain_debug(struct sched_domain *sd, int cpu)
7953{
7954 cpumask_var_t groupmask;
7955 int level = 0;
7956
7957 if (!sd) {
7958 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7959 return;
7960 }
7961
7962 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7963
7964 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7965 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7966 return;
7967 }
7968
7969 for (;;) {
7970 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7971 break;
7972 level++;
7973 sd = sd->parent;
7974 if (!sd)
7975 break;
7976 }
7977 free_cpumask_var(groupmask);
7978}
7979#else /* !CONFIG_SCHED_DEBUG */
7980# define sched_domain_debug(sd, cpu) do { } while (0)
7981#endif /* CONFIG_SCHED_DEBUG */
7982
7983static int sd_degenerate(struct sched_domain *sd)
7984{
7985 if (cpumask_weight(sched_domain_span(sd)) == 1)
7986 return 1;
7987
7988 /* Following flags need at least 2 groups */
7989 if (sd->flags & (SD_LOAD_BALANCE |
7990 SD_BALANCE_NEWIDLE |
7991 SD_BALANCE_FORK |
7992 SD_BALANCE_EXEC |
7993 SD_SHARE_CPUPOWER |
7994 SD_SHARE_PKG_RESOURCES)) {
7995 if (sd->groups != sd->groups->next)
7996 return 0;
7997 }
7998
7999 /* Following flags don't use groups */
8000 if (sd->flags & (SD_WAKE_IDLE |
8001 SD_WAKE_AFFINE |
8002 SD_WAKE_BALANCE))
8003 return 0;
8004
8005 return 1;
8006}
8007
8008static int
8009sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
8010{
8011 unsigned long cflags = sd->flags, pflags = parent->flags;
8012
8013 if (sd_degenerate(parent))
8014 return 1;
8015
8016 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
8017 return 0;
8018
8019 /* Does parent contain flags not in child? */
8020 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
8021 if (cflags & SD_WAKE_AFFINE)
8022 pflags &= ~SD_WAKE_BALANCE;
8023 /* Flags needing groups don't count if only 1 group in parent */
8024 if (parent->groups == parent->groups->next) {
8025 pflags &= ~(SD_LOAD_BALANCE |
8026 SD_BALANCE_NEWIDLE |
8027 SD_BALANCE_FORK |
8028 SD_BALANCE_EXEC |
8029 SD_SHARE_CPUPOWER |
8030 SD_SHARE_PKG_RESOURCES);
8031 if (nr_node_ids == 1)
8032 pflags &= ~SD_SERIALIZE;
8033 }
8034 if (~cflags & pflags)
8035 return 0;
8036
8037 return 1;
8038}
8039
8040static void free_rootdomain(struct root_domain *rd)
8041{
8042 cpupri_cleanup(&rd->cpupri);
8043
8044 free_cpumask_var(rd->rto_mask);
8045 free_cpumask_var(rd->online);
8046 free_cpumask_var(rd->span);
8047 kfree(rd);
8048}
8049
8050static void rq_attach_root(struct rq *rq, struct root_domain *rd)
8051{
8052 struct root_domain *old_rd = NULL;
8053 unsigned long flags;
8054
8055 spin_lock_irqsave(&rq->lock, flags);
8056
8057 if (rq->rd) {
8058 old_rd = rq->rd;
8059
8060 if (cpumask_test_cpu(rq->cpu, old_rd->online))
8061 set_rq_offline(rq);
8062
8063 cpumask_clear_cpu(rq->cpu, old_rd->span);
8064
8065 /*
8066 * If we dont want to free the old_rt yet then
8067 * set old_rd to NULL to skip the freeing later
8068 * in this function:
8069 */
8070 if (!atomic_dec_and_test(&old_rd->refcount))
8071 old_rd = NULL;
8072 }
8073
8074 atomic_inc(&rd->refcount);
8075 rq->rd = rd;
8076
8077 cpumask_set_cpu(rq->cpu, rd->span);
8078 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
8079 set_rq_online(rq);
8080
8081 spin_unlock_irqrestore(&rq->lock, flags);
8082
8083 if (old_rd)
8084 free_rootdomain(old_rd);
8085}
8086
8087static int init_rootdomain(struct root_domain *rd, bool bootmem)
8088{
8089 gfp_t gfp = GFP_KERNEL;
8090
8091 memset(rd, 0, sizeof(*rd));
8092
8093 if (bootmem)
8094 gfp = GFP_NOWAIT;
8095
8096 if (!alloc_cpumask_var(&rd->span, gfp))
8097 goto out;
8098 if (!alloc_cpumask_var(&rd->online, gfp))
8099 goto free_span;
8100 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8101 goto free_online;
8102
8103 if (cpupri_init(&rd->cpupri, bootmem) != 0)
8104 goto free_rto_mask;
8105 return 0;
8106
8107free_rto_mask:
8108 free_cpumask_var(rd->rto_mask);
8109free_online:
8110 free_cpumask_var(rd->online);
8111free_span:
8112 free_cpumask_var(rd->span);
8113out:
8114 return -ENOMEM;
8115}
8116
8117static void init_defrootdomain(void)
8118{
8119 init_rootdomain(&def_root_domain, true);
8120
8121 atomic_set(&def_root_domain.refcount, 1);
8122}
8123
8124static struct root_domain *alloc_rootdomain(void)
8125{
8126 struct root_domain *rd;
8127
8128 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8129 if (!rd)
8130 return NULL;
8131
8132 if (init_rootdomain(rd, false) != 0) {
8133 kfree(rd);
8134 return NULL;
8135 }
8136
8137 return rd;
8138}
8139
8140/*
8141 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8142 * hold the hotplug lock.
8143 */
8144static void
8145cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
8146{
8147 struct rq *rq = cpu_rq(cpu);
8148 struct sched_domain *tmp;
8149
8150 /* Remove the sched domains which do not contribute to scheduling. */
8151 for (tmp = sd; tmp; ) {
8152 struct sched_domain *parent = tmp->parent;
8153 if (!parent)
8154 break;
8155
8156 if (sd_parent_degenerate(tmp, parent)) {
8157 tmp->parent = parent->parent;
8158 if (parent->parent)
8159 parent->parent->child = tmp;
8160 } else
8161 tmp = tmp->parent;
8162 }
8163
8164 if (sd && sd_degenerate(sd)) {
8165 sd = sd->parent;
8166 if (sd)
8167 sd->child = NULL;
8168 }
8169
8170 sched_domain_debug(sd, cpu);
8171
8172 rq_attach_root(rq, rd);
8173 rcu_assign_pointer(rq->sd, sd);
8174}
8175
8176/* cpus with isolated domains */
8177static cpumask_var_t cpu_isolated_map;
8178
8179/* Setup the mask of cpus configured for isolated domains */
8180static int __init isolated_cpu_setup(char *str)
8181{
8182 cpulist_parse(str, cpu_isolated_map);
8183 return 1;
8184}
8185
8186__setup("isolcpus=", isolated_cpu_setup);
8187
8188/*
8189 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8190 * to a function which identifies what group(along with sched group) a CPU
8191 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8192 * (due to the fact that we keep track of groups covered with a struct cpumask).
8193 *
8194 * init_sched_build_groups will build a circular linked list of the groups
8195 * covered by the given span, and will set each group's ->cpumask correctly,
8196 * and ->cpu_power to 0.
8197 */
8198static void
8199init_sched_build_groups(const struct cpumask *span,
8200 const struct cpumask *cpu_map,
8201 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8202 struct sched_group **sg,
8203 struct cpumask *tmpmask),
8204 struct cpumask *covered, struct cpumask *tmpmask)
8205{
8206 struct sched_group *first = NULL, *last = NULL;
8207 int i;
8208
8209 cpumask_clear(covered);
8210
8211 for_each_cpu(i, span) {
8212 struct sched_group *sg;
8213 int group = group_fn(i, cpu_map, &sg, tmpmask);
8214 int j;
8215
8216 if (cpumask_test_cpu(i, covered))
8217 continue;
8218
8219 cpumask_clear(sched_group_cpus(sg));
8220 sg->cpu_power = 0;
8221
8222 for_each_cpu(j, span) {
8223 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8224 continue;
8225
8226 cpumask_set_cpu(j, covered);
8227 cpumask_set_cpu(j, sched_group_cpus(sg));
8228 }
8229 if (!first)
8230 first = sg;
8231 if (last)
8232 last->next = sg;
8233 last = sg;
8234 }
8235 last->next = first;
8236}
8237
8238#define SD_NODES_PER_DOMAIN 16
8239
8240#ifdef CONFIG_NUMA
8241
8242/**
8243 * find_next_best_node - find the next node to include in a sched_domain
8244 * @node: node whose sched_domain we're building
8245 * @used_nodes: nodes already in the sched_domain
8246 *
8247 * Find the next node to include in a given scheduling domain. Simply
8248 * finds the closest node not already in the @used_nodes map.
8249 *
8250 * Should use nodemask_t.
8251 */
8252static int find_next_best_node(int node, nodemask_t *used_nodes)
8253{
8254 int i, n, val, min_val, best_node = 0;
8255
8256 min_val = INT_MAX;
8257
8258 for (i = 0; i < nr_node_ids; i++) {
8259 /* Start at @node */
8260 n = (node + i) % nr_node_ids;
8261
8262 if (!nr_cpus_node(n))
8263 continue;
8264
8265 /* Skip already used nodes */
8266 if (node_isset(n, *used_nodes))
8267 continue;
8268
8269 /* Simple min distance search */
8270 val = node_distance(node, n);
8271
8272 if (val < min_val) {
8273 min_val = val;
8274 best_node = n;
8275 }
8276 }
8277
8278 node_set(best_node, *used_nodes);
8279 return best_node;
8280}
8281
8282/**
8283 * sched_domain_node_span - get a cpumask for a node's sched_domain
8284 * @node: node whose cpumask we're constructing
8285 * @span: resulting cpumask
8286 *
8287 * Given a node, construct a good cpumask for its sched_domain to span. It
8288 * should be one that prevents unnecessary balancing, but also spreads tasks
8289 * out optimally.
8290 */
8291static void sched_domain_node_span(int node, struct cpumask *span)
8292{
8293 nodemask_t used_nodes;
8294 int i;
8295
8296 cpumask_clear(span);
8297 nodes_clear(used_nodes);
8298
8299 cpumask_or(span, span, cpumask_of_node(node));
8300 node_set(node, used_nodes);
8301
8302 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8303 int next_node = find_next_best_node(node, &used_nodes);
8304
8305 cpumask_or(span, span, cpumask_of_node(next_node));
8306 }
8307}
8308#endif /* CONFIG_NUMA */
8309
8310int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8311
8312/*
8313 * The cpus mask in sched_group and sched_domain hangs off the end.
8314 *
8315 * ( See the the comments in include/linux/sched.h:struct sched_group
8316 * and struct sched_domain. )
8317 */
8318struct static_sched_group {
8319 struct sched_group sg;
8320 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8321};
8322
8323struct static_sched_domain {
8324 struct sched_domain sd;
8325 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8326};
8327
8328struct s_data {
8329#ifdef CONFIG_NUMA
8330 int sd_allnodes;
8331 cpumask_var_t domainspan;
8332 cpumask_var_t covered;
8333 cpumask_var_t notcovered;
8334#endif
8335 cpumask_var_t nodemask;
8336 cpumask_var_t this_sibling_map;
8337 cpumask_var_t this_core_map;
8338 cpumask_var_t send_covered;
8339 cpumask_var_t tmpmask;
8340 struct sched_group **sched_group_nodes;
8341 struct root_domain *rd;
8342};
8343
8344enum s_alloc {
8345 sa_sched_groups = 0,
8346 sa_rootdomain,
8347 sa_tmpmask,
8348 sa_send_covered,
8349 sa_this_core_map,
8350 sa_this_sibling_map,
8351 sa_nodemask,
8352 sa_sched_group_nodes,
8353#ifdef CONFIG_NUMA
8354 sa_notcovered,
8355 sa_covered,
8356 sa_domainspan,
8357#endif
8358 sa_none,
8359};
8360
8361/*
8362 * SMT sched-domains:
8363 */
8364#ifdef CONFIG_SCHED_SMT
8365static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8366static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8367
8368static int
8369cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8370 struct sched_group **sg, struct cpumask *unused)
8371{
8372 if (sg)
8373 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8374 return cpu;
8375}
8376#endif /* CONFIG_SCHED_SMT */
8377
8378/*
8379 * multi-core sched-domains:
8380 */
8381#ifdef CONFIG_SCHED_MC
8382static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8383static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8384#endif /* CONFIG_SCHED_MC */
8385
8386#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8387static int
8388cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8389 struct sched_group **sg, struct cpumask *mask)
8390{
8391 int group;
8392
8393 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8394 group = cpumask_first(mask);
8395 if (sg)
8396 *sg = &per_cpu(sched_group_core, group).sg;
8397 return group;
8398}
8399#elif defined(CONFIG_SCHED_MC)
8400static int
8401cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8402 struct sched_group **sg, struct cpumask *unused)
8403{
8404 if (sg)
8405 *sg = &per_cpu(sched_group_core, cpu).sg;
8406 return cpu;
8407}
8408#endif
8409
8410static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8411static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8412
8413static int
8414cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8415 struct sched_group **sg, struct cpumask *mask)
8416{
8417 int group;
8418#ifdef CONFIG_SCHED_MC
8419 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8420 group = cpumask_first(mask);
8421#elif defined(CONFIG_SCHED_SMT)
8422 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8423 group = cpumask_first(mask);
8424#else
8425 group = cpu;
8426#endif
8427 if (sg)
8428 *sg = &per_cpu(sched_group_phys, group).sg;
8429 return group;
8430}
8431
8432#ifdef CONFIG_NUMA
8433/*
8434 * The init_sched_build_groups can't handle what we want to do with node
8435 * groups, so roll our own. Now each node has its own list of groups which
8436 * gets dynamically allocated.
8437 */
8438static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8439static struct sched_group ***sched_group_nodes_bycpu;
8440
8441static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8442static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8443
8444static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8445 struct sched_group **sg,
8446 struct cpumask *nodemask)
8447{
8448 int group;
8449
8450 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8451 group = cpumask_first(nodemask);
8452
8453 if (sg)
8454 *sg = &per_cpu(sched_group_allnodes, group).sg;
8455 return group;
8456}
8457
8458static void init_numa_sched_groups_power(struct sched_group *group_head)
8459{
8460 struct sched_group *sg = group_head;
8461 int j;
8462
8463 if (!sg)
8464 return;
8465 do {
8466 for_each_cpu(j, sched_group_cpus(sg)) {
8467 struct sched_domain *sd;
8468
8469 sd = &per_cpu(phys_domains, j).sd;
8470 if (j != group_first_cpu(sd->groups)) {
8471 /*
8472 * Only add "power" once for each
8473 * physical package.
8474 */
8475 continue;
8476 }
8477
8478 sg->cpu_power += sd->groups->cpu_power;
8479 }
8480 sg = sg->next;
8481 } while (sg != group_head);
8482}
8483
8484static int build_numa_sched_groups(struct s_data *d,
8485 const struct cpumask *cpu_map, int num)
8486{
8487 struct sched_domain *sd;
8488 struct sched_group *sg, *prev;
8489 int n, j;
8490
8491 cpumask_clear(d->covered);
8492 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8493 if (cpumask_empty(d->nodemask)) {
8494 d->sched_group_nodes[num] = NULL;
8495 goto out;
8496 }
8497
8498 sched_domain_node_span(num, d->domainspan);
8499 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8500
8501 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8502 GFP_KERNEL, num);
8503 if (!sg) {
8504 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8505 num);
8506 return -ENOMEM;
8507 }
8508 d->sched_group_nodes[num] = sg;
8509
8510 for_each_cpu(j, d->nodemask) {
8511 sd = &per_cpu(node_domains, j).sd;
8512 sd->groups = sg;
8513 }
8514
8515 sg->cpu_power = 0;
8516 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8517 sg->next = sg;
8518 cpumask_or(d->covered, d->covered, d->nodemask);
8519
8520 prev = sg;
8521 for (j = 0; j < nr_node_ids; j++) {
8522 n = (num + j) % nr_node_ids;
8523 cpumask_complement(d->notcovered, d->covered);
8524 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8525 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8526 if (cpumask_empty(d->tmpmask))
8527 break;
8528 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8529 if (cpumask_empty(d->tmpmask))
8530 continue;
8531 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8532 GFP_KERNEL, num);
8533 if (!sg) {
8534 printk(KERN_WARNING
8535 "Can not alloc domain group for node %d\n", j);
8536 return -ENOMEM;
8537 }
8538 sg->cpu_power = 0;
8539 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8540 sg->next = prev->next;
8541 cpumask_or(d->covered, d->covered, d->tmpmask);
8542 prev->next = sg;
8543 prev = sg;
8544 }
8545out:
8546 return 0;
8547}
8548#endif /* CONFIG_NUMA */
8549
8550#ifdef CONFIG_NUMA
8551/* Free memory allocated for various sched_group structures */
8552static void free_sched_groups(const struct cpumask *cpu_map,
8553 struct cpumask *nodemask)
8554{
8555 int cpu, i;
8556
8557 for_each_cpu(cpu, cpu_map) {
8558 struct sched_group **sched_group_nodes
8559 = sched_group_nodes_bycpu[cpu];
8560
8561 if (!sched_group_nodes)
8562 continue;
8563
8564 for (i = 0; i < nr_node_ids; i++) {
8565 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8566
8567 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8568 if (cpumask_empty(nodemask))
8569 continue;
8570
8571 if (sg == NULL)
8572 continue;
8573 sg = sg->next;
8574next_sg:
8575 oldsg = sg;
8576 sg = sg->next;
8577 kfree(oldsg);
8578 if (oldsg != sched_group_nodes[i])
8579 goto next_sg;
8580 }
8581 kfree(sched_group_nodes);
8582 sched_group_nodes_bycpu[cpu] = NULL;
8583 }
8584}
8585#else /* !CONFIG_NUMA */
8586static void free_sched_groups(const struct cpumask *cpu_map,
8587 struct cpumask *nodemask)
8588{
8589}
8590#endif /* CONFIG_NUMA */
8591
8592/*
8593 * Initialize sched groups cpu_power.
8594 *
8595 * cpu_power indicates the capacity of sched group, which is used while
8596 * distributing the load between different sched groups in a sched domain.
8597 * Typically cpu_power for all the groups in a sched domain will be same unless
8598 * there are asymmetries in the topology. If there are asymmetries, group
8599 * having more cpu_power will pickup more load compared to the group having
8600 * less cpu_power.
8601 */
8602static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8603{
8604 struct sched_domain *child;
8605 struct sched_group *group;
8606 long power;
8607 int weight;
8608
8609 WARN_ON(!sd || !sd->groups);
8610
8611 if (cpu != group_first_cpu(sd->groups))
8612 return;
8613
8614 child = sd->child;
8615
8616 sd->groups->cpu_power = 0;
8617
8618 if (!child) {
8619 power = SCHED_LOAD_SCALE;
8620 weight = cpumask_weight(sched_domain_span(sd));
8621 /*
8622 * SMT siblings share the power of a single core.
8623 * Usually multiple threads get a better yield out of
8624 * that one core than a single thread would have,
8625 * reflect that in sd->smt_gain.
8626 */
8627 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8628 power *= sd->smt_gain;
8629 power /= weight;
8630 power >>= SCHED_LOAD_SHIFT;
8631 }
8632 sd->groups->cpu_power += power;
8633 return;
8634 }
8635
8636 /*
8637 * Add cpu_power of each child group to this groups cpu_power.
8638 */
8639 group = child->groups;
8640 do {
8641 sd->groups->cpu_power += group->cpu_power;
8642 group = group->next;
8643 } while (group != child->groups);
8644}
8645
8646/*
8647 * Initializers for schedule domains
8648 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8649 */
8650
8651#ifdef CONFIG_SCHED_DEBUG
8652# define SD_INIT_NAME(sd, type) sd->name = #type
8653#else
8654# define SD_INIT_NAME(sd, type) do { } while (0)
8655#endif
8656
8657#define SD_INIT(sd, type) sd_init_##type(sd)
8658
8659#define SD_INIT_FUNC(type) \
8660static noinline void sd_init_##type(struct sched_domain *sd) \
8661{ \
8662 memset(sd, 0, sizeof(*sd)); \
8663 *sd = SD_##type##_INIT; \
8664 sd->level = SD_LV_##type; \
8665 SD_INIT_NAME(sd, type); \
8666}
8667
8668SD_INIT_FUNC(CPU)
8669#ifdef CONFIG_NUMA
8670 SD_INIT_FUNC(ALLNODES)
8671 SD_INIT_FUNC(NODE)
8672#endif
8673#ifdef CONFIG_SCHED_SMT
8674 SD_INIT_FUNC(SIBLING)
8675#endif
8676#ifdef CONFIG_SCHED_MC
8677 SD_INIT_FUNC(MC)
8678#endif
8679
8680static int default_relax_domain_level = -1;
8681
8682static int __init setup_relax_domain_level(char *str)
8683{
8684 unsigned long val;
8685
8686 val = simple_strtoul(str, NULL, 0);
8687 if (val < SD_LV_MAX)
8688 default_relax_domain_level = val;
8689
8690 return 1;
8691}
8692__setup("relax_domain_level=", setup_relax_domain_level);
8693
8694static void set_domain_attribute(struct sched_domain *sd,
8695 struct sched_domain_attr *attr)
8696{
8697 int request;
8698
8699 if (!attr || attr->relax_domain_level < 0) {
8700 if (default_relax_domain_level < 0)
8701 return;
8702 else
8703 request = default_relax_domain_level;
8704 } else
8705 request = attr->relax_domain_level;
8706 if (request < sd->level) {
8707 /* turn off idle balance on this domain */
8708 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8709 } else {
8710 /* turn on idle balance on this domain */
8711 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8712 }
8713}
8714
8715static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8716 const struct cpumask *cpu_map)
8717{
8718 switch (what) {
8719 case sa_sched_groups:
8720 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8721 d->sched_group_nodes = NULL;
8722 case sa_rootdomain:
8723 free_rootdomain(d->rd); /* fall through */
8724 case sa_tmpmask:
8725 free_cpumask_var(d->tmpmask); /* fall through */
8726 case sa_send_covered:
8727 free_cpumask_var(d->send_covered); /* fall through */
8728 case sa_this_core_map:
8729 free_cpumask_var(d->this_core_map); /* fall through */
8730 case sa_this_sibling_map:
8731 free_cpumask_var(d->this_sibling_map); /* fall through */
8732 case sa_nodemask:
8733 free_cpumask_var(d->nodemask); /* fall through */
8734 case sa_sched_group_nodes:
8735#ifdef CONFIG_NUMA
8736 kfree(d->sched_group_nodes); /* fall through */
8737 case sa_notcovered:
8738 free_cpumask_var(d->notcovered); /* fall through */
8739 case sa_covered:
8740 free_cpumask_var(d->covered); /* fall through */
8741 case sa_domainspan:
8742 free_cpumask_var(d->domainspan); /* fall through */
8743#endif
8744 case sa_none:
8745 break;
8746 }
8747}
8748
8749static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8750 const struct cpumask *cpu_map)
8751{
8752#ifdef CONFIG_NUMA
8753 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8754 return sa_none;
8755 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8756 return sa_domainspan;
8757 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8758 return sa_covered;
8759 /* Allocate the per-node list of sched groups */
8760 d->sched_group_nodes = kcalloc(nr_node_ids,
8761 sizeof(struct sched_group *), GFP_KERNEL);
8762 if (!d->sched_group_nodes) {
8763 printk(KERN_WARNING "Can not alloc sched group node list\n");
8764 return sa_notcovered;
8765 }
8766 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8767#endif
8768 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8769 return sa_sched_group_nodes;
8770 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8771 return sa_nodemask;
8772 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8773 return sa_this_sibling_map;
8774 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8775 return sa_this_core_map;
8776 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8777 return sa_send_covered;
8778 d->rd = alloc_rootdomain();
8779 if (!d->rd) {
8780 printk(KERN_WARNING "Cannot alloc root domain\n");
8781 return sa_tmpmask;
8782 }
8783 return sa_rootdomain;
8784}
8785
8786static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8787 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8788{
8789 struct sched_domain *sd = NULL;
8790#ifdef CONFIG_NUMA
8791 struct sched_domain *parent;
8792
8793 d->sd_allnodes = 0;
8794 if (cpumask_weight(cpu_map) >
8795 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8796 sd = &per_cpu(allnodes_domains, i).sd;
8797 SD_INIT(sd, ALLNODES);
8798 set_domain_attribute(sd, attr);
8799 cpumask_copy(sched_domain_span(sd), cpu_map);
8800 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8801 d->sd_allnodes = 1;
8802 }
8803 parent = sd;
8804
8805 sd = &per_cpu(node_domains, i).sd;
8806 SD_INIT(sd, NODE);
8807 set_domain_attribute(sd, attr);
8808 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8809 sd->parent = parent;
8810 if (parent)
8811 parent->child = sd;
8812 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8813#endif
8814 return sd;
8815}
8816
8817static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8818 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8819 struct sched_domain *parent, int i)
8820{
8821 struct sched_domain *sd;
8822 sd = &per_cpu(phys_domains, i).sd;
8823 SD_INIT(sd, CPU);
8824 set_domain_attribute(sd, attr);
8825 cpumask_copy(sched_domain_span(sd), d->nodemask);
8826 sd->parent = parent;
8827 if (parent)
8828 parent->child = sd;
8829 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8830 return sd;
8831}
8832
8833static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8834 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8835 struct sched_domain *parent, int i)
8836{
8837 struct sched_domain *sd = parent;
8838#ifdef CONFIG_SCHED_MC
8839 sd = &per_cpu(core_domains, i).sd;
8840 SD_INIT(sd, MC);
8841 set_domain_attribute(sd, attr);
8842 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8843 sd->parent = parent;
8844 parent->child = sd;
8845 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8846#endif
8847 return sd;
8848}
8849
8850static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8851 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8852 struct sched_domain *parent, int i)
8853{
8854 struct sched_domain *sd = parent;
8855#ifdef CONFIG_SCHED_SMT
8856 sd = &per_cpu(cpu_domains, i).sd;
8857 SD_INIT(sd, SIBLING);
8858 set_domain_attribute(sd, attr);
8859 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8860 sd->parent = parent;
8861 parent->child = sd;
8862 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8863#endif
8864 return sd;
8865}
8866
8867static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8868 const struct cpumask *cpu_map, int cpu)
8869{
8870 switch (l) {
8871#ifdef CONFIG_SCHED_SMT
8872 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8873 cpumask_and(d->this_sibling_map, cpu_map,
8874 topology_thread_cpumask(cpu));
8875 if (cpu == cpumask_first(d->this_sibling_map))
8876 init_sched_build_groups(d->this_sibling_map, cpu_map,
8877 &cpu_to_cpu_group,
8878 d->send_covered, d->tmpmask);
8879 break;
8880#endif
8881#ifdef CONFIG_SCHED_MC
8882 case SD_LV_MC: /* set up multi-core groups */
8883 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8884 if (cpu == cpumask_first(d->this_core_map))
8885 init_sched_build_groups(d->this_core_map, cpu_map,
8886 &cpu_to_core_group,
8887 d->send_covered, d->tmpmask);
8888 break;
8889#endif
8890 case SD_LV_CPU: /* set up physical groups */
8891 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8892 if (!cpumask_empty(d->nodemask))
8893 init_sched_build_groups(d->nodemask, cpu_map,
8894 &cpu_to_phys_group,
8895 d->send_covered, d->tmpmask);
8896 break;
8897#ifdef CONFIG_NUMA
8898 case SD_LV_ALLNODES:
8899 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8900 d->send_covered, d->tmpmask);
8901 break;
8902#endif
8903 default:
8904 break;
8905 }
8906}
8907
8908/*
8909 * Build sched domains for a given set of cpus and attach the sched domains
8910 * to the individual cpus
8911 */
8912static int __build_sched_domains(const struct cpumask *cpu_map,
8913 struct sched_domain_attr *attr)
8914{
8915 enum s_alloc alloc_state = sa_none;
8916 struct s_data d;
8917 struct sched_domain *sd;
8918 int i;
8919#ifdef CONFIG_NUMA
8920 d.sd_allnodes = 0;
8921#endif
8922
8923 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8924 if (alloc_state != sa_rootdomain)
8925 goto error;
8926 alloc_state = sa_sched_groups;
8927
8928 /*
8929 * Set up domains for cpus specified by the cpu_map.
8930 */
8931 for_each_cpu(i, cpu_map) {
8932 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8933 cpu_map);
8934
8935 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8936 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8937 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8938 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8939 }
8940
8941 for_each_cpu(i, cpu_map) {
8942 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8943 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8944 }
8945
8946 /* Set up physical groups */
8947 for (i = 0; i < nr_node_ids; i++)
8948 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8949
8950#ifdef CONFIG_NUMA
8951 /* Set up node groups */
8952 if (d.sd_allnodes)
8953 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8954
8955 for (i = 0; i < nr_node_ids; i++)
8956 if (build_numa_sched_groups(&d, cpu_map, i))
8957 goto error;
8958#endif
8959
8960 /* Calculate CPU power for physical packages and nodes */
8961#ifdef CONFIG_SCHED_SMT
8962 for_each_cpu(i, cpu_map) {
8963 sd = &per_cpu(cpu_domains, i).sd;
8964 init_sched_groups_power(i, sd);
8965 }
8966#endif
8967#ifdef CONFIG_SCHED_MC
8968 for_each_cpu(i, cpu_map) {
8969 sd = &per_cpu(core_domains, i).sd;
8970 init_sched_groups_power(i, sd);
8971 }
8972#endif
8973
8974 for_each_cpu(i, cpu_map) {
8975 sd = &per_cpu(phys_domains, i).sd;
8976 init_sched_groups_power(i, sd);
8977 }
8978
8979#ifdef CONFIG_NUMA
8980 for (i = 0; i < nr_node_ids; i++)
8981 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8982
8983 if (d.sd_allnodes) {
8984 struct sched_group *sg;
8985
8986 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8987 d.tmpmask);
8988 init_numa_sched_groups_power(sg);
8989 }
8990#endif
8991
8992 /* Attach the domains */
8993 for_each_cpu(i, cpu_map) {
8994#ifdef CONFIG_SCHED_SMT
8995 sd = &per_cpu(cpu_domains, i).sd;
8996#elif defined(CONFIG_SCHED_MC)
8997 sd = &per_cpu(core_domains, i).sd;
8998#else
8999 sd = &per_cpu(phys_domains, i).sd;
9000#endif
9001 cpu_attach_domain(sd, d.rd, i);
9002 }
9003
9004 d.sched_group_nodes = NULL; /* don't free this we still need it */
9005 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
9006 return 0;
9007
9008error:
9009 __free_domain_allocs(&d, alloc_state, cpu_map);
9010 return -ENOMEM;
9011}
9012
9013static int build_sched_domains(const struct cpumask *cpu_map)
9014{
9015 return __build_sched_domains(cpu_map, NULL);
9016}
9017
9018static struct cpumask *doms_cur; /* current sched domains */
9019static int ndoms_cur; /* number of sched domains in 'doms_cur' */
9020static struct sched_domain_attr *dattr_cur;
9021 /* attribues of custom domains in 'doms_cur' */
9022
9023/*
9024 * Special case: If a kmalloc of a doms_cur partition (array of
9025 * cpumask) fails, then fallback to a single sched domain,
9026 * as determined by the single cpumask fallback_doms.
9027 */
9028static cpumask_var_t fallback_doms;
9029
9030/*
9031 * arch_update_cpu_topology lets virtualized architectures update the
9032 * cpu core maps. It is supposed to return 1 if the topology changed
9033 * or 0 if it stayed the same.
9034 */
9035int __attribute__((weak)) arch_update_cpu_topology(void)
9036{
9037 return 0;
9038}
9039
9040/*
9041 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
9042 * For now this just excludes isolated cpus, but could be used to
9043 * exclude other special cases in the future.
9044 */
9045static int arch_init_sched_domains(const struct cpumask *cpu_map)
9046{
9047 int err;
9048
9049 arch_update_cpu_topology();
9050 ndoms_cur = 1;
9051 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
9052 if (!doms_cur)
9053 doms_cur = fallback_doms;
9054 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
9055 dattr_cur = NULL;
9056 err = build_sched_domains(doms_cur);
9057 register_sched_domain_sysctl();
9058
9059 return err;
9060}
9061
9062static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9063 struct cpumask *tmpmask)
9064{
9065 free_sched_groups(cpu_map, tmpmask);
9066}
9067
9068/*
9069 * Detach sched domains from a group of cpus specified in cpu_map
9070 * These cpus will now be attached to the NULL domain
9071 */
9072static void detach_destroy_domains(const struct cpumask *cpu_map)
9073{
9074 /* Save because hotplug lock held. */
9075 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9076 int i;
9077
9078 for_each_cpu(i, cpu_map)
9079 cpu_attach_domain(NULL, &def_root_domain, i);
9080 synchronize_sched();
9081 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9082}
9083
9084/* handle null as "default" */
9085static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9086 struct sched_domain_attr *new, int idx_new)
9087{
9088 struct sched_domain_attr tmp;
9089
9090 /* fast path */
9091 if (!new && !cur)
9092 return 1;
9093
9094 tmp = SD_ATTR_INIT;
9095 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9096 new ? (new + idx_new) : &tmp,
9097 sizeof(struct sched_domain_attr));
9098}
9099
9100/*
9101 * Partition sched domains as specified by the 'ndoms_new'
9102 * cpumasks in the array doms_new[] of cpumasks. This compares
9103 * doms_new[] to the current sched domain partitioning, doms_cur[].
9104 * It destroys each deleted domain and builds each new domain.
9105 *
9106 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
9107 * The masks don't intersect (don't overlap.) We should setup one
9108 * sched domain for each mask. CPUs not in any of the cpumasks will
9109 * not be load balanced. If the same cpumask appears both in the
9110 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9111 * it as it is.
9112 *
9113 * The passed in 'doms_new' should be kmalloc'd. This routine takes
9114 * ownership of it and will kfree it when done with it. If the caller
9115 * failed the kmalloc call, then it can pass in doms_new == NULL &&
9116 * ndoms_new == 1, and partition_sched_domains() will fallback to
9117 * the single partition 'fallback_doms', it also forces the domains
9118 * to be rebuilt.
9119 *
9120 * If doms_new == NULL it will be replaced with cpu_online_mask.
9121 * ndoms_new == 0 is a special case for destroying existing domains,
9122 * and it will not create the default domain.
9123 *
9124 * Call with hotplug lock held
9125 */
9126/* FIXME: Change to struct cpumask *doms_new[] */
9127void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
9128 struct sched_domain_attr *dattr_new)
9129{
9130 int i, j, n;
9131 int new_topology;
9132
9133 mutex_lock(&sched_domains_mutex);
9134
9135 /* always unregister in case we don't destroy any domains */
9136 unregister_sched_domain_sysctl();
9137
9138 /* Let architecture update cpu core mappings. */
9139 new_topology = arch_update_cpu_topology();
9140
9141 n = doms_new ? ndoms_new : 0;
9142
9143 /* Destroy deleted domains */
9144 for (i = 0; i < ndoms_cur; i++) {
9145 for (j = 0; j < n && !new_topology; j++) {
9146 if (cpumask_equal(&doms_cur[i], &doms_new[j])
9147 && dattrs_equal(dattr_cur, i, dattr_new, j))
9148 goto match1;
9149 }
9150 /* no match - a current sched domain not in new doms_new[] */
9151 detach_destroy_domains(doms_cur + i);
9152match1:
9153 ;
9154 }
9155
9156 if (doms_new == NULL) {
9157 ndoms_cur = 0;
9158 doms_new = fallback_doms;
9159 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
9160 WARN_ON_ONCE(dattr_new);
9161 }
9162
9163 /* Build new domains */
9164 for (i = 0; i < ndoms_new; i++) {
9165 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9166 if (cpumask_equal(&doms_new[i], &doms_cur[j])
9167 && dattrs_equal(dattr_new, i, dattr_cur, j))
9168 goto match2;
9169 }
9170 /* no match - add a new doms_new */
9171 __build_sched_domains(doms_new + i,
9172 dattr_new ? dattr_new + i : NULL);
9173match2:
9174 ;
9175 }
9176
9177 /* Remember the new sched domains */
9178 if (doms_cur != fallback_doms)
9179 kfree(doms_cur);
9180 kfree(dattr_cur); /* kfree(NULL) is safe */
9181 doms_cur = doms_new;
9182 dattr_cur = dattr_new;
9183 ndoms_cur = ndoms_new;
9184
9185 register_sched_domain_sysctl();
9186
9187 mutex_unlock(&sched_domains_mutex);
9188}
9189
9190#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9191static void arch_reinit_sched_domains(void)
9192{
9193 get_online_cpus();
9194
9195 /* Destroy domains first to force the rebuild */
9196 partition_sched_domains(0, NULL, NULL);
9197
9198 rebuild_sched_domains();
9199 put_online_cpus();
9200}
9201
9202static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9203{
9204 unsigned int level = 0;
9205
9206 if (sscanf(buf, "%u", &level) != 1)
9207 return -EINVAL;
9208
9209 /*
9210 * level is always be positive so don't check for
9211 * level < POWERSAVINGS_BALANCE_NONE which is 0
9212 * What happens on 0 or 1 byte write,
9213 * need to check for count as well?
9214 */
9215
9216 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9217 return -EINVAL;
9218
9219 if (smt)
9220 sched_smt_power_savings = level;
9221 else
9222 sched_mc_power_savings = level;
9223
9224 arch_reinit_sched_domains();
9225
9226 return count;
9227}
9228
9229#ifdef CONFIG_SCHED_MC
9230static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9231 char *page)
9232{
9233 return sprintf(page, "%u\n", sched_mc_power_savings);
9234}
9235static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9236 const char *buf, size_t count)
9237{
9238 return sched_power_savings_store(buf, count, 0);
9239}
9240static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9241 sched_mc_power_savings_show,
9242 sched_mc_power_savings_store);
9243#endif
9244
9245#ifdef CONFIG_SCHED_SMT
9246static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9247 char *page)
9248{
9249 return sprintf(page, "%u\n", sched_smt_power_savings);
9250}
9251static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9252 const char *buf, size_t count)
9253{
9254 return sched_power_savings_store(buf, count, 1);
9255}
9256static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9257 sched_smt_power_savings_show,
9258 sched_smt_power_savings_store);
9259#endif
9260
9261int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9262{
9263 int err = 0;
9264
9265#ifdef CONFIG_SCHED_SMT
9266 if (smt_capable())
9267 err = sysfs_create_file(&cls->kset.kobj,
9268 &attr_sched_smt_power_savings.attr);
9269#endif
9270#ifdef CONFIG_SCHED_MC
9271 if (!err && mc_capable())
9272 err = sysfs_create_file(&cls->kset.kobj,
9273 &attr_sched_mc_power_savings.attr);
9274#endif
9275 return err;
9276}
9277#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9278
9279#ifndef CONFIG_CPUSETS
9280/*
9281 * Add online and remove offline CPUs from the scheduler domains.
9282 * When cpusets are enabled they take over this function.
9283 */
9284static int update_sched_domains(struct notifier_block *nfb,
9285 unsigned long action, void *hcpu)
9286{
9287 switch (action) {
9288 case CPU_ONLINE:
9289 case CPU_ONLINE_FROZEN:
9290 case CPU_DEAD:
9291 case CPU_DEAD_FROZEN:
9292 partition_sched_domains(1, NULL, NULL);
9293 return NOTIFY_OK;
9294
9295 default:
9296 return NOTIFY_DONE;
9297 }
9298}
9299#endif
9300
9301static int update_runtime(struct notifier_block *nfb,
9302 unsigned long action, void *hcpu)
9303{
9304 int cpu = (int)(long)hcpu;
9305
9306 switch (action) {
9307 case CPU_DOWN_PREPARE:
9308 case CPU_DOWN_PREPARE_FROZEN:
9309 disable_runtime(cpu_rq(cpu));
9310 return NOTIFY_OK;
9311
9312 case CPU_DOWN_FAILED:
9313 case CPU_DOWN_FAILED_FROZEN:
9314 case CPU_ONLINE:
9315 case CPU_ONLINE_FROZEN:
9316 enable_runtime(cpu_rq(cpu));
9317 return NOTIFY_OK;
9318
9319 default:
9320 return NOTIFY_DONE;
9321 }
9322}
9323
9324void __init sched_init_smp(void)
9325{
9326 cpumask_var_t non_isolated_cpus;
9327
9328 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9329
9330#if defined(CONFIG_NUMA)
9331 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9332 GFP_KERNEL);
9333 BUG_ON(sched_group_nodes_bycpu == NULL);
9334#endif
9335 get_online_cpus();
9336 mutex_lock(&sched_domains_mutex);
9337 arch_init_sched_domains(cpu_online_mask);
9338 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9339 if (cpumask_empty(non_isolated_cpus))
9340 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9341 mutex_unlock(&sched_domains_mutex);
9342 put_online_cpus();
9343
9344#ifndef CONFIG_CPUSETS
9345 /* XXX: Theoretical race here - CPU may be hotplugged now */
9346 hotcpu_notifier(update_sched_domains, 0);
9347#endif
9348
9349 /* RT runtime code needs to handle some hotplug events */
9350 hotcpu_notifier(update_runtime, 0);
9351
9352 init_hrtick();
9353
9354 /* Move init over to a non-isolated CPU */
9355 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9356 BUG();
9357 sched_init_granularity();
9358 free_cpumask_var(non_isolated_cpus);
9359
9360 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9361 init_sched_rt_class();
9362}
9363#else
9364void __init sched_init_smp(void)
9365{
9366 sched_init_granularity();
9367}
9368#endif /* CONFIG_SMP */
9369
9370const_debug unsigned int sysctl_timer_migration = 1;
9371
9372int in_sched_functions(unsigned long addr)
9373{
9374 return in_lock_functions(addr) ||
9375 (addr >= (unsigned long)__sched_text_start
9376 && addr < (unsigned long)__sched_text_end);
9377}
9378
9379static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9380{
9381 cfs_rq->tasks_timeline = RB_ROOT;
9382 INIT_LIST_HEAD(&cfs_rq->tasks);
9383#ifdef CONFIG_FAIR_GROUP_SCHED
9384 cfs_rq->rq = rq;
9385#endif
9386 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9387}
9388
9389static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9390{
9391 struct rt_prio_array *array;
9392 int i;
9393
9394 array = &rt_rq->active;
9395 for (i = 0; i < MAX_RT_PRIO; i++) {
9396 INIT_LIST_HEAD(array->queue + i);
9397 __clear_bit(i, array->bitmap);
9398 }
9399 /* delimiter for bitsearch: */
9400 __set_bit(MAX_RT_PRIO, array->bitmap);
9401
9402#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9403 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9404#ifdef CONFIG_SMP
9405 rt_rq->highest_prio.next = MAX_RT_PRIO;
9406#endif
9407#endif
9408#ifdef CONFIG_SMP
9409 rt_rq->rt_nr_migratory = 0;
9410 rt_rq->overloaded = 0;
9411 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9412#endif
9413
9414 rt_rq->rt_time = 0;
9415 rt_rq->rt_throttled = 0;
9416 rt_rq->rt_runtime = 0;
9417 spin_lock_init(&rt_rq->rt_runtime_lock);
9418
9419#ifdef CONFIG_RT_GROUP_SCHED
9420 rt_rq->rt_nr_boosted = 0;
9421 rt_rq->rq = rq;
9422#endif
9423}
9424
9425#ifdef CONFIG_FAIR_GROUP_SCHED
9426static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9427 struct sched_entity *se, int cpu, int add,
9428 struct sched_entity *parent)
9429{
9430 struct rq *rq = cpu_rq(cpu);
9431 tg->cfs_rq[cpu] = cfs_rq;
9432 init_cfs_rq(cfs_rq, rq);
9433 cfs_rq->tg = tg;
9434 if (add)
9435 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9436
9437 tg->se[cpu] = se;
9438 /* se could be NULL for init_task_group */
9439 if (!se)
9440 return;
9441
9442 if (!parent)
9443 se->cfs_rq = &rq->cfs;
9444 else
9445 se->cfs_rq = parent->my_q;
9446
9447 se->my_q = cfs_rq;
9448 se->load.weight = tg->shares;
9449 se->load.inv_weight = 0;
9450 se->parent = parent;
9451}
9452#endif
9453
9454#ifdef CONFIG_RT_GROUP_SCHED
9455static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9456 struct sched_rt_entity *rt_se, int cpu, int add,
9457 struct sched_rt_entity *parent)
9458{
9459 struct rq *rq = cpu_rq(cpu);
9460
9461 tg->rt_rq[cpu] = rt_rq;
9462 init_rt_rq(rt_rq, rq);
9463 rt_rq->tg = tg;
9464 rt_rq->rt_se = rt_se;
9465 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9466 if (add)
9467 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9468
9469 tg->rt_se[cpu] = rt_se;
9470 if (!rt_se)
9471 return;
9472
9473 if (!parent)
9474 rt_se->rt_rq = &rq->rt;
9475 else
9476 rt_se->rt_rq = parent->my_q;
9477
9478 rt_se->my_q = rt_rq;
9479 rt_se->parent = parent;
9480 INIT_LIST_HEAD(&rt_se->run_list);
9481}
9482#endif
9483
9484void __init sched_init(void)
9485{
9486 int i, j;
9487 unsigned long alloc_size = 0, ptr;
9488
9489#ifdef CONFIG_FAIR_GROUP_SCHED
9490 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9491#endif
9492#ifdef CONFIG_RT_GROUP_SCHED
9493 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9494#endif
9495#ifdef CONFIG_USER_SCHED
9496 alloc_size *= 2;
9497#endif
9498#ifdef CONFIG_CPUMASK_OFFSTACK
9499 alloc_size += num_possible_cpus() * cpumask_size();
9500#endif
9501 /*
9502 * As sched_init() is called before page_alloc is setup,
9503 * we use alloc_bootmem().
9504 */
9505 if (alloc_size) {
9506 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9507
9508#ifdef CONFIG_FAIR_GROUP_SCHED
9509 init_task_group.se = (struct sched_entity **)ptr;
9510 ptr += nr_cpu_ids * sizeof(void **);
9511
9512 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9513 ptr += nr_cpu_ids * sizeof(void **);
9514
9515#ifdef CONFIG_USER_SCHED
9516 root_task_group.se = (struct sched_entity **)ptr;
9517 ptr += nr_cpu_ids * sizeof(void **);
9518
9519 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9520 ptr += nr_cpu_ids * sizeof(void **);
9521#endif /* CONFIG_USER_SCHED */
9522#endif /* CONFIG_FAIR_GROUP_SCHED */
9523#ifdef CONFIG_RT_GROUP_SCHED
9524 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9525 ptr += nr_cpu_ids * sizeof(void **);
9526
9527 init_task_group.rt_rq = (struct rt_rq **)ptr;
9528 ptr += nr_cpu_ids * sizeof(void **);
9529
9530#ifdef CONFIG_USER_SCHED
9531 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9532 ptr += nr_cpu_ids * sizeof(void **);
9533
9534 root_task_group.rt_rq = (struct rt_rq **)ptr;
9535 ptr += nr_cpu_ids * sizeof(void **);
9536#endif /* CONFIG_USER_SCHED */
9537#endif /* CONFIG_RT_GROUP_SCHED */
9538#ifdef CONFIG_CPUMASK_OFFSTACK
9539 for_each_possible_cpu(i) {
9540 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9541 ptr += cpumask_size();
9542 }
9543#endif /* CONFIG_CPUMASK_OFFSTACK */
9544 }
9545
9546#ifdef CONFIG_SMP
9547 init_defrootdomain();
9548#endif
9549
9550 init_rt_bandwidth(&def_rt_bandwidth,
9551 global_rt_period(), global_rt_runtime());
9552
9553#ifdef CONFIG_RT_GROUP_SCHED
9554 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9555 global_rt_period(), global_rt_runtime());
9556#ifdef CONFIG_USER_SCHED
9557 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9558 global_rt_period(), RUNTIME_INF);
9559#endif /* CONFIG_USER_SCHED */
9560#endif /* CONFIG_RT_GROUP_SCHED */
9561
9562#ifdef CONFIG_GROUP_SCHED
9563 list_add(&init_task_group.list, &task_groups);
9564 INIT_LIST_HEAD(&init_task_group.children);
9565
9566#ifdef CONFIG_USER_SCHED
9567 INIT_LIST_HEAD(&root_task_group.children);
9568 init_task_group.parent = &root_task_group;
9569 list_add(&init_task_group.siblings, &root_task_group.children);
9570#endif /* CONFIG_USER_SCHED */
9571#endif /* CONFIG_GROUP_SCHED */
9572
9573 for_each_possible_cpu(i) {
9574 struct rq *rq;
9575
9576 rq = cpu_rq(i);
9577 spin_lock_init(&rq->lock);
9578 rq->nr_running = 0;
9579 rq->calc_load_active = 0;
9580 rq->calc_load_update = jiffies + LOAD_FREQ;
9581 init_cfs_rq(&rq->cfs, rq);
9582 init_rt_rq(&rq->rt, rq);
9583#ifdef CONFIG_FAIR_GROUP_SCHED
9584 init_task_group.shares = init_task_group_load;
9585 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9586#ifdef CONFIG_CGROUP_SCHED
9587 /*
9588 * How much cpu bandwidth does init_task_group get?
9589 *
9590 * In case of task-groups formed thr' the cgroup filesystem, it
9591 * gets 100% of the cpu resources in the system. This overall
9592 * system cpu resource is divided among the tasks of
9593 * init_task_group and its child task-groups in a fair manner,
9594 * based on each entity's (task or task-group's) weight
9595 * (se->load.weight).
9596 *
9597 * In other words, if init_task_group has 10 tasks of weight
9598 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9599 * then A0's share of the cpu resource is:
9600 *
9601 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9602 *
9603 * We achieve this by letting init_task_group's tasks sit
9604 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9605 */
9606 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9607#elif defined CONFIG_USER_SCHED
9608 root_task_group.shares = NICE_0_LOAD;
9609 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9610 /*
9611 * In case of task-groups formed thr' the user id of tasks,
9612 * init_task_group represents tasks belonging to root user.
9613 * Hence it forms a sibling of all subsequent groups formed.
9614 * In this case, init_task_group gets only a fraction of overall
9615 * system cpu resource, based on the weight assigned to root
9616 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9617 * by letting tasks of init_task_group sit in a separate cfs_rq
9618 * (init_tg_cfs_rq) and having one entity represent this group of
9619 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9620 */
9621 init_tg_cfs_entry(&init_task_group,
9622 &per_cpu(init_tg_cfs_rq, i),
9623 &per_cpu(init_sched_entity, i), i, 1,
9624 root_task_group.se[i]);
9625
9626#endif
9627#endif /* CONFIG_FAIR_GROUP_SCHED */
9628
9629 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9630#ifdef CONFIG_RT_GROUP_SCHED
9631 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9632#ifdef CONFIG_CGROUP_SCHED
9633 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9634#elif defined CONFIG_USER_SCHED
9635 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9636 init_tg_rt_entry(&init_task_group,
9637 &per_cpu(init_rt_rq, i),
9638 &per_cpu(init_sched_rt_entity, i), i, 1,
9639 root_task_group.rt_se[i]);
9640#endif
9641#endif
9642
9643 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9644 rq->cpu_load[j] = 0;
9645#ifdef CONFIG_SMP
9646 rq->sd = NULL;
9647 rq->rd = NULL;
9648 rq->post_schedule = 0;
9649 rq->active_balance = 0;
9650 rq->next_balance = jiffies;
9651 rq->push_cpu = 0;
9652 rq->cpu = i;
9653 rq->online = 0;
9654 rq->migration_thread = NULL;
9655 INIT_LIST_HEAD(&rq->migration_queue);
9656 rq_attach_root(rq, &def_root_domain);
9657#endif
9658 init_rq_hrtick(rq);
9659 atomic_set(&rq->nr_iowait, 0);
9660 }
9661
9662 set_load_weight(&init_task);
9663
9664#ifdef CONFIG_PREEMPT_NOTIFIERS
9665 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9666#endif
9667
9668#ifdef CONFIG_SMP
9669 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9670#endif
9671
9672#ifdef CONFIG_RT_MUTEXES
9673 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9674#endif
9675
9676 /*
9677 * The boot idle thread does lazy MMU switching as well:
9678 */
9679 atomic_inc(&init_mm.mm_count);
9680 enter_lazy_tlb(&init_mm, current);
9681
9682 /*
9683 * Make us the idle thread. Technically, schedule() should not be
9684 * called from this thread, however somewhere below it might be,
9685 * but because we are the idle thread, we just pick up running again
9686 * when this runqueue becomes "idle".
9687 */
9688 init_idle(current, smp_processor_id());
9689
9690 calc_load_update = jiffies + LOAD_FREQ;
9691
9692 /*
9693 * During early bootup we pretend to be a normal task:
9694 */
9695 current->sched_class = &fair_sched_class;
9696
9697 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9698 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9699#ifdef CONFIG_SMP
9700#ifdef CONFIG_NO_HZ
9701 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9702 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9703#endif
9704 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9705#endif /* SMP */
9706
9707 perf_counter_init();
9708
9709 scheduler_running = 1;
9710}
9711
9712#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9713static inline int preempt_count_equals(int preempt_offset)
9714{
9715 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9716
9717 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9718}
9719
9720void __might_sleep(char *file, int line, int preempt_offset)
9721{
9722#ifdef in_atomic
9723 static unsigned long prev_jiffy; /* ratelimiting */
9724
9725 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9726 system_state != SYSTEM_RUNNING || oops_in_progress)
9727 return;
9728 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9729 return;
9730 prev_jiffy = jiffies;
9731
9732 printk(KERN_ERR
9733 "BUG: sleeping function called from invalid context at %s:%d\n",
9734 file, line);
9735 printk(KERN_ERR
9736 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9737 in_atomic(), irqs_disabled(),
9738 current->pid, current->comm);
9739
9740 debug_show_held_locks(current);
9741 if (irqs_disabled())
9742 print_irqtrace_events(current);
9743 dump_stack();
9744#endif
9745}
9746EXPORT_SYMBOL(__might_sleep);
9747#endif
9748
9749#ifdef CONFIG_MAGIC_SYSRQ
9750static void normalize_task(struct rq *rq, struct task_struct *p)
9751{
9752 int on_rq;
9753
9754 update_rq_clock(rq);
9755 on_rq = p->se.on_rq;
9756 if (on_rq)
9757 deactivate_task(rq, p, 0);
9758 __setscheduler(rq, p, SCHED_NORMAL, 0);
9759 if (on_rq) {
9760 activate_task(rq, p, 0);
9761 resched_task(rq->curr);
9762 }
9763}
9764
9765void normalize_rt_tasks(void)
9766{
9767 struct task_struct *g, *p;
9768 unsigned long flags;
9769 struct rq *rq;
9770
9771 read_lock_irqsave(&tasklist_lock, flags);
9772 do_each_thread(g, p) {
9773 /*
9774 * Only normalize user tasks:
9775 */
9776 if (!p->mm)
9777 continue;
9778
9779 p->se.exec_start = 0;
9780#ifdef CONFIG_SCHEDSTATS
9781 p->se.wait_start = 0;
9782 p->se.sleep_start = 0;
9783 p->se.block_start = 0;
9784#endif
9785
9786 if (!rt_task(p)) {
9787 /*
9788 * Renice negative nice level userspace
9789 * tasks back to 0:
9790 */
9791 if (TASK_NICE(p) < 0 && p->mm)
9792 set_user_nice(p, 0);
9793 continue;
9794 }
9795
9796 spin_lock(&p->pi_lock);
9797 rq = __task_rq_lock(p);
9798
9799 normalize_task(rq, p);
9800
9801 __task_rq_unlock(rq);
9802 spin_unlock(&p->pi_lock);
9803 } while_each_thread(g, p);
9804
9805 read_unlock_irqrestore(&tasklist_lock, flags);
9806}
9807
9808#endif /* CONFIG_MAGIC_SYSRQ */
9809
9810#ifdef CONFIG_IA64
9811/*
9812 * These functions are only useful for the IA64 MCA handling.
9813 *
9814 * They can only be called when the whole system has been
9815 * stopped - every CPU needs to be quiescent, and no scheduling
9816 * activity can take place. Using them for anything else would
9817 * be a serious bug, and as a result, they aren't even visible
9818 * under any other configuration.
9819 */
9820
9821/**
9822 * curr_task - return the current task for a given cpu.
9823 * @cpu: the processor in question.
9824 *
9825 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9826 */
9827struct task_struct *curr_task(int cpu)
9828{
9829 return cpu_curr(cpu);
9830}
9831
9832/**
9833 * set_curr_task - set the current task for a given cpu.
9834 * @cpu: the processor in question.
9835 * @p: the task pointer to set.
9836 *
9837 * Description: This function must only be used when non-maskable interrupts
9838 * are serviced on a separate stack. It allows the architecture to switch the
9839 * notion of the current task on a cpu in a non-blocking manner. This function
9840 * must be called with all CPU's synchronized, and interrupts disabled, the
9841 * and caller must save the original value of the current task (see
9842 * curr_task() above) and restore that value before reenabling interrupts and
9843 * re-starting the system.
9844 *
9845 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9846 */
9847void set_curr_task(int cpu, struct task_struct *p)
9848{
9849 cpu_curr(cpu) = p;
9850}
9851
9852#endif
9853
9854#ifdef CONFIG_FAIR_GROUP_SCHED
9855static void free_fair_sched_group(struct task_group *tg)
9856{
9857 int i;
9858
9859 for_each_possible_cpu(i) {
9860 if (tg->cfs_rq)
9861 kfree(tg->cfs_rq[i]);
9862 if (tg->se)
9863 kfree(tg->se[i]);
9864 }
9865
9866 kfree(tg->cfs_rq);
9867 kfree(tg->se);
9868}
9869
9870static
9871int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9872{
9873 struct cfs_rq *cfs_rq;
9874 struct sched_entity *se;
9875 struct rq *rq;
9876 int i;
9877
9878 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9879 if (!tg->cfs_rq)
9880 goto err;
9881 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9882 if (!tg->se)
9883 goto err;
9884
9885 tg->shares = NICE_0_LOAD;
9886
9887 for_each_possible_cpu(i) {
9888 rq = cpu_rq(i);
9889
9890 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9891 GFP_KERNEL, cpu_to_node(i));
9892 if (!cfs_rq)
9893 goto err;
9894
9895 se = kzalloc_node(sizeof(struct sched_entity),
9896 GFP_KERNEL, cpu_to_node(i));
9897 if (!se)
9898 goto err;
9899
9900 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9901 }
9902
9903 return 1;
9904
9905 err:
9906 return 0;
9907}
9908
9909static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9910{
9911 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9912 &cpu_rq(cpu)->leaf_cfs_rq_list);
9913}
9914
9915static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9916{
9917 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9918}
9919#else /* !CONFG_FAIR_GROUP_SCHED */
9920static inline void free_fair_sched_group(struct task_group *tg)
9921{
9922}
9923
9924static inline
9925int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9926{
9927 return 1;
9928}
9929
9930static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9931{
9932}
9933
9934static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9935{
9936}
9937#endif /* CONFIG_FAIR_GROUP_SCHED */
9938
9939#ifdef CONFIG_RT_GROUP_SCHED
9940static void free_rt_sched_group(struct task_group *tg)
9941{
9942 int i;
9943
9944 destroy_rt_bandwidth(&tg->rt_bandwidth);
9945
9946 for_each_possible_cpu(i) {
9947 if (tg->rt_rq)
9948 kfree(tg->rt_rq[i]);
9949 if (tg->rt_se)
9950 kfree(tg->rt_se[i]);
9951 }
9952
9953 kfree(tg->rt_rq);
9954 kfree(tg->rt_se);
9955}
9956
9957static
9958int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9959{
9960 struct rt_rq *rt_rq;
9961 struct sched_rt_entity *rt_se;
9962 struct rq *rq;
9963 int i;
9964
9965 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9966 if (!tg->rt_rq)
9967 goto err;
9968 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9969 if (!tg->rt_se)
9970 goto err;
9971
9972 init_rt_bandwidth(&tg->rt_bandwidth,
9973 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9974
9975 for_each_possible_cpu(i) {
9976 rq = cpu_rq(i);
9977
9978 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9979 GFP_KERNEL, cpu_to_node(i));
9980 if (!rt_rq)
9981 goto err;
9982
9983 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9984 GFP_KERNEL, cpu_to_node(i));
9985 if (!rt_se)
9986 goto err;
9987
9988 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9989 }
9990
9991 return 1;
9992
9993 err:
9994 return 0;
9995}
9996
9997static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9998{
9999 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
10000 &cpu_rq(cpu)->leaf_rt_rq_list);
10001}
10002
10003static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10004{
10005 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
10006}
10007#else /* !CONFIG_RT_GROUP_SCHED */
10008static inline void free_rt_sched_group(struct task_group *tg)
10009{
10010}
10011
10012static inline
10013int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
10014{
10015 return 1;
10016}
10017
10018static inline void register_rt_sched_group(struct task_group *tg, int cpu)
10019{
10020}
10021
10022static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10023{
10024}
10025#endif /* CONFIG_RT_GROUP_SCHED */
10026
10027#ifdef CONFIG_GROUP_SCHED
10028static void free_sched_group(struct task_group *tg)
10029{
10030 free_fair_sched_group(tg);
10031 free_rt_sched_group(tg);
10032 kfree(tg);
10033}
10034
10035/* allocate runqueue etc for a new task group */
10036struct task_group *sched_create_group(struct task_group *parent)
10037{
10038 struct task_group *tg;
10039 unsigned long flags;
10040 int i;
10041
10042 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
10043 if (!tg)
10044 return ERR_PTR(-ENOMEM);
10045
10046 if (!alloc_fair_sched_group(tg, parent))
10047 goto err;
10048
10049 if (!alloc_rt_sched_group(tg, parent))
10050 goto err;
10051
10052 spin_lock_irqsave(&task_group_lock, flags);
10053 for_each_possible_cpu(i) {
10054 register_fair_sched_group(tg, i);
10055 register_rt_sched_group(tg, i);
10056 }
10057 list_add_rcu(&tg->list, &task_groups);
10058
10059 WARN_ON(!parent); /* root should already exist */
10060
10061 tg->parent = parent;
10062 INIT_LIST_HEAD(&tg->children);
10063 list_add_rcu(&tg->siblings, &parent->children);
10064 spin_unlock_irqrestore(&task_group_lock, flags);
10065
10066 return tg;
10067
10068err:
10069 free_sched_group(tg);
10070 return ERR_PTR(-ENOMEM);
10071}
10072
10073/* rcu callback to free various structures associated with a task group */
10074static void free_sched_group_rcu(struct rcu_head *rhp)
10075{
10076 /* now it should be safe to free those cfs_rqs */
10077 free_sched_group(container_of(rhp, struct task_group, rcu));
10078}
10079
10080/* Destroy runqueue etc associated with a task group */
10081void sched_destroy_group(struct task_group *tg)
10082{
10083 unsigned long flags;
10084 int i;
10085
10086 spin_lock_irqsave(&task_group_lock, flags);
10087 for_each_possible_cpu(i) {
10088 unregister_fair_sched_group(tg, i);
10089 unregister_rt_sched_group(tg, i);
10090 }
10091 list_del_rcu(&tg->list);
10092 list_del_rcu(&tg->siblings);
10093 spin_unlock_irqrestore(&task_group_lock, flags);
10094
10095 /* wait for possible concurrent references to cfs_rqs complete */
10096 call_rcu(&tg->rcu, free_sched_group_rcu);
10097}
10098
10099/* change task's runqueue when it moves between groups.
10100 * The caller of this function should have put the task in its new group
10101 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10102 * reflect its new group.
10103 */
10104void sched_move_task(struct task_struct *tsk)
10105{
10106 int on_rq, running;
10107 unsigned long flags;
10108 struct rq *rq;
10109
10110 rq = task_rq_lock(tsk, &flags);
10111
10112 update_rq_clock(rq);
10113
10114 running = task_current(rq, tsk);
10115 on_rq = tsk->se.on_rq;
10116
10117 if (on_rq)
10118 dequeue_task(rq, tsk, 0);
10119 if (unlikely(running))
10120 tsk->sched_class->put_prev_task(rq, tsk);
10121
10122 set_task_rq(tsk, task_cpu(tsk));
10123
10124#ifdef CONFIG_FAIR_GROUP_SCHED
10125 if (tsk->sched_class->moved_group)
10126 tsk->sched_class->moved_group(tsk);
10127#endif
10128
10129 if (unlikely(running))
10130 tsk->sched_class->set_curr_task(rq);
10131 if (on_rq)
10132 enqueue_task(rq, tsk, 0);
10133
10134 task_rq_unlock(rq, &flags);
10135}
10136#endif /* CONFIG_GROUP_SCHED */
10137
10138#ifdef CONFIG_FAIR_GROUP_SCHED
10139static void __set_se_shares(struct sched_entity *se, unsigned long shares)
10140{
10141 struct cfs_rq *cfs_rq = se->cfs_rq;
10142 int on_rq;
10143
10144 on_rq = se->on_rq;
10145 if (on_rq)
10146 dequeue_entity(cfs_rq, se, 0);
10147
10148 se->load.weight = shares;
10149 se->load.inv_weight = 0;
10150
10151 if (on_rq)
10152 enqueue_entity(cfs_rq, se, 0);
10153}
10154
10155static void set_se_shares(struct sched_entity *se, unsigned long shares)
10156{
10157 struct cfs_rq *cfs_rq = se->cfs_rq;
10158 struct rq *rq = cfs_rq->rq;
10159 unsigned long flags;
10160
10161 spin_lock_irqsave(&rq->lock, flags);
10162 __set_se_shares(se, shares);
10163 spin_unlock_irqrestore(&rq->lock, flags);
10164}
10165
10166static DEFINE_MUTEX(shares_mutex);
10167
10168int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10169{
10170 int i;
10171 unsigned long flags;
10172
10173 /*
10174 * We can't change the weight of the root cgroup.
10175 */
10176 if (!tg->se[0])
10177 return -EINVAL;
10178
10179 if (shares < MIN_SHARES)
10180 shares = MIN_SHARES;
10181 else if (shares > MAX_SHARES)
10182 shares = MAX_SHARES;
10183
10184 mutex_lock(&shares_mutex);
10185 if (tg->shares == shares)
10186 goto done;
10187
10188 spin_lock_irqsave(&task_group_lock, flags);
10189 for_each_possible_cpu(i)
10190 unregister_fair_sched_group(tg, i);
10191 list_del_rcu(&tg->siblings);
10192 spin_unlock_irqrestore(&task_group_lock, flags);
10193
10194 /* wait for any ongoing reference to this group to finish */
10195 synchronize_sched();
10196
10197 /*
10198 * Now we are free to modify the group's share on each cpu
10199 * w/o tripping rebalance_share or load_balance_fair.
10200 */
10201 tg->shares = shares;
10202 for_each_possible_cpu(i) {
10203 /*
10204 * force a rebalance
10205 */
10206 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10207 set_se_shares(tg->se[i], shares);
10208 }
10209
10210 /*
10211 * Enable load balance activity on this group, by inserting it back on
10212 * each cpu's rq->leaf_cfs_rq_list.
10213 */
10214 spin_lock_irqsave(&task_group_lock, flags);
10215 for_each_possible_cpu(i)
10216 register_fair_sched_group(tg, i);
10217 list_add_rcu(&tg->siblings, &tg->parent->children);
10218 spin_unlock_irqrestore(&task_group_lock, flags);
10219done:
10220 mutex_unlock(&shares_mutex);
10221 return 0;
10222}
10223
10224unsigned long sched_group_shares(struct task_group *tg)
10225{
10226 return tg->shares;
10227}
10228#endif
10229
10230#ifdef CONFIG_RT_GROUP_SCHED
10231/*
10232 * Ensure that the real time constraints are schedulable.
10233 */
10234static DEFINE_MUTEX(rt_constraints_mutex);
10235
10236static unsigned long to_ratio(u64 period, u64 runtime)
10237{
10238 if (runtime == RUNTIME_INF)
10239 return 1ULL << 20;
10240
10241 return div64_u64(runtime << 20, period);
10242}
10243
10244/* Must be called with tasklist_lock held */
10245static inline int tg_has_rt_tasks(struct task_group *tg)
10246{
10247 struct task_struct *g, *p;
10248
10249 do_each_thread(g, p) {
10250 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10251 return 1;
10252 } while_each_thread(g, p);
10253
10254 return 0;
10255}
10256
10257struct rt_schedulable_data {
10258 struct task_group *tg;
10259 u64 rt_period;
10260 u64 rt_runtime;
10261};
10262
10263static int tg_schedulable(struct task_group *tg, void *data)
10264{
10265 struct rt_schedulable_data *d = data;
10266 struct task_group *child;
10267 unsigned long total, sum = 0;
10268 u64 period, runtime;
10269
10270 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10271 runtime = tg->rt_bandwidth.rt_runtime;
10272
10273 if (tg == d->tg) {
10274 period = d->rt_period;
10275 runtime = d->rt_runtime;
10276 }
10277
10278#ifdef CONFIG_USER_SCHED
10279 if (tg == &root_task_group) {
10280 period = global_rt_period();
10281 runtime = global_rt_runtime();
10282 }
10283#endif
10284
10285 /*
10286 * Cannot have more runtime than the period.
10287 */
10288 if (runtime > period && runtime != RUNTIME_INF)
10289 return -EINVAL;
10290
10291 /*
10292 * Ensure we don't starve existing RT tasks.
10293 */
10294 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10295 return -EBUSY;
10296
10297 total = to_ratio(period, runtime);
10298
10299 /*
10300 * Nobody can have more than the global setting allows.
10301 */
10302 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10303 return -EINVAL;
10304
10305 /*
10306 * The sum of our children's runtime should not exceed our own.
10307 */
10308 list_for_each_entry_rcu(child, &tg->children, siblings) {
10309 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10310 runtime = child->rt_bandwidth.rt_runtime;
10311
10312 if (child == d->tg) {
10313 period = d->rt_period;
10314 runtime = d->rt_runtime;
10315 }
10316
10317 sum += to_ratio(period, runtime);
10318 }
10319
10320 if (sum > total)
10321 return -EINVAL;
10322
10323 return 0;
10324}
10325
10326static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10327{
10328 struct rt_schedulable_data data = {
10329 .tg = tg,
10330 .rt_period = period,
10331 .rt_runtime = runtime,
10332 };
10333
10334 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10335}
10336
10337static int tg_set_bandwidth(struct task_group *tg,
10338 u64 rt_period, u64 rt_runtime)
10339{
10340 int i, err = 0;
10341
10342 mutex_lock(&rt_constraints_mutex);
10343 read_lock(&tasklist_lock);
10344 err = __rt_schedulable(tg, rt_period, rt_runtime);
10345 if (err)
10346 goto unlock;
10347
10348 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10349 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10350 tg->rt_bandwidth.rt_runtime = rt_runtime;
10351
10352 for_each_possible_cpu(i) {
10353 struct rt_rq *rt_rq = tg->rt_rq[i];
10354
10355 spin_lock(&rt_rq->rt_runtime_lock);
10356 rt_rq->rt_runtime = rt_runtime;
10357 spin_unlock(&rt_rq->rt_runtime_lock);
10358 }
10359 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10360 unlock:
10361 read_unlock(&tasklist_lock);
10362 mutex_unlock(&rt_constraints_mutex);
10363
10364 return err;
10365}
10366
10367int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10368{
10369 u64 rt_runtime, rt_period;
10370
10371 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10372 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10373 if (rt_runtime_us < 0)
10374 rt_runtime = RUNTIME_INF;
10375
10376 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10377}
10378
10379long sched_group_rt_runtime(struct task_group *tg)
10380{
10381 u64 rt_runtime_us;
10382
10383 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10384 return -1;
10385
10386 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10387 do_div(rt_runtime_us, NSEC_PER_USEC);
10388 return rt_runtime_us;
10389}
10390
10391int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10392{
10393 u64 rt_runtime, rt_period;
10394
10395 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10396 rt_runtime = tg->rt_bandwidth.rt_runtime;
10397
10398 if (rt_period == 0)
10399 return -EINVAL;
10400
10401 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10402}
10403
10404long sched_group_rt_period(struct task_group *tg)
10405{
10406 u64 rt_period_us;
10407
10408 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10409 do_div(rt_period_us, NSEC_PER_USEC);
10410 return rt_period_us;
10411}
10412
10413static int sched_rt_global_constraints(void)
10414{
10415 u64 runtime, period;
10416 int ret = 0;
10417
10418 if (sysctl_sched_rt_period <= 0)
10419 return -EINVAL;
10420
10421 runtime = global_rt_runtime();
10422 period = global_rt_period();
10423
10424 /*
10425 * Sanity check on the sysctl variables.
10426 */
10427 if (runtime > period && runtime != RUNTIME_INF)
10428 return -EINVAL;
10429
10430 mutex_lock(&rt_constraints_mutex);
10431 read_lock(&tasklist_lock);
10432 ret = __rt_schedulable(NULL, 0, 0);
10433 read_unlock(&tasklist_lock);
10434 mutex_unlock(&rt_constraints_mutex);
10435
10436 return ret;
10437}
10438
10439int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10440{
10441 /* Don't accept realtime tasks when there is no way for them to run */
10442 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10443 return 0;
10444
10445 return 1;
10446}
10447
10448#else /* !CONFIG_RT_GROUP_SCHED */
10449static int sched_rt_global_constraints(void)
10450{
10451 unsigned long flags;
10452 int i;
10453
10454 if (sysctl_sched_rt_period <= 0)
10455 return -EINVAL;
10456
10457 /*
10458 * There's always some RT tasks in the root group
10459 * -- migration, kstopmachine etc..
10460 */
10461 if (sysctl_sched_rt_runtime == 0)
10462 return -EBUSY;
10463
10464 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10465 for_each_possible_cpu(i) {
10466 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10467
10468 spin_lock(&rt_rq->rt_runtime_lock);
10469 rt_rq->rt_runtime = global_rt_runtime();
10470 spin_unlock(&rt_rq->rt_runtime_lock);
10471 }
10472 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10473
10474 return 0;
10475}
10476#endif /* CONFIG_RT_GROUP_SCHED */
10477
10478int sched_rt_handler(struct ctl_table *table, int write,
10479 struct file *filp, void __user *buffer, size_t *lenp,
10480 loff_t *ppos)
10481{
10482 int ret;
10483 int old_period, old_runtime;
10484 static DEFINE_MUTEX(mutex);
10485
10486 mutex_lock(&mutex);
10487 old_period = sysctl_sched_rt_period;
10488 old_runtime = sysctl_sched_rt_runtime;
10489
10490 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10491
10492 if (!ret && write) {
10493 ret = sched_rt_global_constraints();
10494 if (ret) {
10495 sysctl_sched_rt_period = old_period;
10496 sysctl_sched_rt_runtime = old_runtime;
10497 } else {
10498 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10499 def_rt_bandwidth.rt_period =
10500 ns_to_ktime(global_rt_period());
10501 }
10502 }
10503 mutex_unlock(&mutex);
10504
10505 return ret;
10506}
10507
10508#ifdef CONFIG_CGROUP_SCHED
10509
10510/* return corresponding task_group object of a cgroup */
10511static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10512{
10513 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10514 struct task_group, css);
10515}
10516
10517static struct cgroup_subsys_state *
10518cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10519{
10520 struct task_group *tg, *parent;
10521
10522 if (!cgrp->parent) {
10523 /* This is early initialization for the top cgroup */
10524 return &init_task_group.css;
10525 }
10526
10527 parent = cgroup_tg(cgrp->parent);
10528 tg = sched_create_group(parent);
10529 if (IS_ERR(tg))
10530 return ERR_PTR(-ENOMEM);
10531
10532 return &tg->css;
10533}
10534
10535static void
10536cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10537{
10538 struct task_group *tg = cgroup_tg(cgrp);
10539
10540 sched_destroy_group(tg);
10541}
10542
10543static int
10544cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10545 struct task_struct *tsk)
10546{
10547#ifdef CONFIG_RT_GROUP_SCHED
10548 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10549 return -EINVAL;
10550#else
10551 /* We don't support RT-tasks being in separate groups */
10552 if (tsk->sched_class != &fair_sched_class)
10553 return -EINVAL;
10554#endif
10555
10556 return 0;
10557}
10558
10559static void
10560cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10561 struct cgroup *old_cont, struct task_struct *tsk)
10562{
10563 sched_move_task(tsk);
10564}
10565
10566#ifdef CONFIG_FAIR_GROUP_SCHED
10567static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10568 u64 shareval)
10569{
10570 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10571}
10572
10573static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10574{
10575 struct task_group *tg = cgroup_tg(cgrp);
10576
10577 return (u64) tg->shares;
10578}
10579#endif /* CONFIG_FAIR_GROUP_SCHED */
10580
10581#ifdef CONFIG_RT_GROUP_SCHED
10582static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10583 s64 val)
10584{
10585 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10586}
10587
10588static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10589{
10590 return sched_group_rt_runtime(cgroup_tg(cgrp));
10591}
10592
10593static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10594 u64 rt_period_us)
10595{
10596 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10597}
10598
10599static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10600{
10601 return sched_group_rt_period(cgroup_tg(cgrp));
10602}
10603#endif /* CONFIG_RT_GROUP_SCHED */
10604
10605static struct cftype cpu_files[] = {
10606#ifdef CONFIG_FAIR_GROUP_SCHED
10607 {
10608 .name = "shares",
10609 .read_u64 = cpu_shares_read_u64,
10610 .write_u64 = cpu_shares_write_u64,
10611 },
10612#endif
10613#ifdef CONFIG_RT_GROUP_SCHED
10614 {
10615 .name = "rt_runtime_us",
10616 .read_s64 = cpu_rt_runtime_read,
10617 .write_s64 = cpu_rt_runtime_write,
10618 },
10619 {
10620 .name = "rt_period_us",
10621 .read_u64 = cpu_rt_period_read_uint,
10622 .write_u64 = cpu_rt_period_write_uint,
10623 },
10624#endif
10625};
10626
10627static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10628{
10629 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10630}
10631
10632struct cgroup_subsys cpu_cgroup_subsys = {
10633 .name = "cpu",
10634 .create = cpu_cgroup_create,
10635 .destroy = cpu_cgroup_destroy,
10636 .can_attach = cpu_cgroup_can_attach,
10637 .attach = cpu_cgroup_attach,
10638 .populate = cpu_cgroup_populate,
10639 .subsys_id = cpu_cgroup_subsys_id,
10640 .early_init = 1,
10641};
10642
10643#endif /* CONFIG_CGROUP_SCHED */
10644
10645#ifdef CONFIG_CGROUP_CPUACCT
10646
10647/*
10648 * CPU accounting code for task groups.
10649 *
10650 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10651 * (balbir@in.ibm.com).
10652 */
10653
10654/* track cpu usage of a group of tasks and its child groups */
10655struct cpuacct {
10656 struct cgroup_subsys_state css;
10657 /* cpuusage holds pointer to a u64-type object on every cpu */
10658 u64 *cpuusage;
10659 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10660 struct cpuacct *parent;
10661};
10662
10663struct cgroup_subsys cpuacct_subsys;
10664
10665/* return cpu accounting group corresponding to this container */
10666static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10667{
10668 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10669 struct cpuacct, css);
10670}
10671
10672/* return cpu accounting group to which this task belongs */
10673static inline struct cpuacct *task_ca(struct task_struct *tsk)
10674{
10675 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10676 struct cpuacct, css);
10677}
10678
10679/* create a new cpu accounting group */
10680static struct cgroup_subsys_state *cpuacct_create(
10681 struct cgroup_subsys *ss, struct cgroup *cgrp)
10682{
10683 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10684 int i;
10685
10686 if (!ca)
10687 goto out;
10688
10689 ca->cpuusage = alloc_percpu(u64);
10690 if (!ca->cpuusage)
10691 goto out_free_ca;
10692
10693 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10694 if (percpu_counter_init(&ca->cpustat[i], 0))
10695 goto out_free_counters;
10696
10697 if (cgrp->parent)
10698 ca->parent = cgroup_ca(cgrp->parent);
10699
10700 return &ca->css;
10701
10702out_free_counters:
10703 while (--i >= 0)
10704 percpu_counter_destroy(&ca->cpustat[i]);
10705 free_percpu(ca->cpuusage);
10706out_free_ca:
10707 kfree(ca);
10708out:
10709 return ERR_PTR(-ENOMEM);
10710}
10711
10712/* destroy an existing cpu accounting group */
10713static void
10714cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10715{
10716 struct cpuacct *ca = cgroup_ca(cgrp);
10717 int i;
10718
10719 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10720 percpu_counter_destroy(&ca->cpustat[i]);
10721 free_percpu(ca->cpuusage);
10722 kfree(ca);
10723}
10724
10725static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10726{
10727 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10728 u64 data;
10729
10730#ifndef CONFIG_64BIT
10731 /*
10732 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10733 */
10734 spin_lock_irq(&cpu_rq(cpu)->lock);
10735 data = *cpuusage;
10736 spin_unlock_irq(&cpu_rq(cpu)->lock);
10737#else
10738 data = *cpuusage;
10739#endif
10740
10741 return data;
10742}
10743
10744static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10745{
10746 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10747
10748#ifndef CONFIG_64BIT
10749 /*
10750 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10751 */
10752 spin_lock_irq(&cpu_rq(cpu)->lock);
10753 *cpuusage = val;
10754 spin_unlock_irq(&cpu_rq(cpu)->lock);
10755#else
10756 *cpuusage = val;
10757#endif
10758}
10759
10760/* return total cpu usage (in nanoseconds) of a group */
10761static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10762{
10763 struct cpuacct *ca = cgroup_ca(cgrp);
10764 u64 totalcpuusage = 0;
10765 int i;
10766
10767 for_each_present_cpu(i)
10768 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10769
10770 return totalcpuusage;
10771}
10772
10773static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10774 u64 reset)
10775{
10776 struct cpuacct *ca = cgroup_ca(cgrp);
10777 int err = 0;
10778 int i;
10779
10780 if (reset) {
10781 err = -EINVAL;
10782 goto out;
10783 }
10784
10785 for_each_present_cpu(i)
10786 cpuacct_cpuusage_write(ca, i, 0);
10787
10788out:
10789 return err;
10790}
10791
10792static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10793 struct seq_file *m)
10794{
10795 struct cpuacct *ca = cgroup_ca(cgroup);
10796 u64 percpu;
10797 int i;
10798
10799 for_each_present_cpu(i) {
10800 percpu = cpuacct_cpuusage_read(ca, i);
10801 seq_printf(m, "%llu ", (unsigned long long) percpu);
10802 }
10803 seq_printf(m, "\n");
10804 return 0;
10805}
10806
10807static const char *cpuacct_stat_desc[] = {
10808 [CPUACCT_STAT_USER] = "user",
10809 [CPUACCT_STAT_SYSTEM] = "system",
10810};
10811
10812static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10813 struct cgroup_map_cb *cb)
10814{
10815 struct cpuacct *ca = cgroup_ca(cgrp);
10816 int i;
10817
10818 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10819 s64 val = percpu_counter_read(&ca->cpustat[i]);
10820 val = cputime64_to_clock_t(val);
10821 cb->fill(cb, cpuacct_stat_desc[i], val);
10822 }
10823 return 0;
10824}
10825
10826static struct cftype files[] = {
10827 {
10828 .name = "usage",
10829 .read_u64 = cpuusage_read,
10830 .write_u64 = cpuusage_write,
10831 },
10832 {
10833 .name = "usage_percpu",
10834 .read_seq_string = cpuacct_percpu_seq_read,
10835 },
10836 {
10837 .name = "stat",
10838 .read_map = cpuacct_stats_show,
10839 },
10840};
10841
10842static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10843{
10844 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10845}
10846
10847/*
10848 * charge this task's execution time to its accounting group.
10849 *
10850 * called with rq->lock held.
10851 */
10852static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10853{
10854 struct cpuacct *ca;
10855 int cpu;
10856
10857 if (unlikely(!cpuacct_subsys.active))
10858 return;
10859
10860 cpu = task_cpu(tsk);
10861
10862 rcu_read_lock();
10863
10864 ca = task_ca(tsk);
10865
10866 for (; ca; ca = ca->parent) {
10867 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10868 *cpuusage += cputime;
10869 }
10870
10871 rcu_read_unlock();
10872}
10873
10874/*
10875 * Charge the system/user time to the task's accounting group.
10876 */
10877static void cpuacct_update_stats(struct task_struct *tsk,
10878 enum cpuacct_stat_index idx, cputime_t val)
10879{
10880 struct cpuacct *ca;
10881
10882 if (unlikely(!cpuacct_subsys.active))
10883 return;
10884
10885 rcu_read_lock();
10886 ca = task_ca(tsk);
10887
10888 do {
10889 percpu_counter_add(&ca->cpustat[idx], val);
10890 ca = ca->parent;
10891 } while (ca);
10892 rcu_read_unlock();
10893}
10894
10895struct cgroup_subsys cpuacct_subsys = {
10896 .name = "cpuacct",
10897 .create = cpuacct_create,
10898 .destroy = cpuacct_destroy,
10899 .populate = cpuacct_populate,
10900 .subsys_id = cpuacct_subsys_id,
10901};
10902#endif /* CONFIG_CGROUP_CPUACCT */
10903
10904#ifndef CONFIG_SMP
10905
10906int rcu_expedited_torture_stats(char *page)
10907{
10908 return 0;
10909}
10910EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10911
10912void synchronize_sched_expedited(void)
10913{
10914}
10915EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10916
10917#else /* #ifndef CONFIG_SMP */
10918
10919static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10920static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10921
10922#define RCU_EXPEDITED_STATE_POST -2
10923#define RCU_EXPEDITED_STATE_IDLE -1
10924
10925static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10926
10927int rcu_expedited_torture_stats(char *page)
10928{
10929 int cnt = 0;
10930 int cpu;
10931
10932 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10933 for_each_online_cpu(cpu) {
10934 cnt += sprintf(&page[cnt], " %d:%d",
10935 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10936 }
10937 cnt += sprintf(&page[cnt], "\n");
10938 return cnt;
10939}
10940EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10941
10942static long synchronize_sched_expedited_count;
10943
10944/*
10945 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10946 * approach to force grace period to end quickly. This consumes
10947 * significant time on all CPUs, and is thus not recommended for
10948 * any sort of common-case code.
10949 *
10950 * Note that it is illegal to call this function while holding any
10951 * lock that is acquired by a CPU-hotplug notifier. Failing to
10952 * observe this restriction will result in deadlock.
10953 */
10954void synchronize_sched_expedited(void)
10955{
10956 int cpu;
10957 unsigned long flags;
10958 bool need_full_sync = 0;
10959 struct rq *rq;
10960 struct migration_req *req;
10961 long snap;
10962 int trycount = 0;
10963
10964 smp_mb(); /* ensure prior mod happens before capturing snap. */
10965 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10966 get_online_cpus();
10967 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10968 put_online_cpus();
10969 if (trycount++ < 10)
10970 udelay(trycount * num_online_cpus());
10971 else {
10972 synchronize_sched();
10973 return;
10974 }
10975 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10976 smp_mb(); /* ensure test happens before caller kfree */
10977 return;
10978 }
10979 get_online_cpus();
10980 }
10981 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10982 for_each_online_cpu(cpu) {
10983 rq = cpu_rq(cpu);
10984 req = &per_cpu(rcu_migration_req, cpu);
10985 init_completion(&req->done);
10986 req->task = NULL;
10987 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10988 spin_lock_irqsave(&rq->lock, flags);
10989 list_add(&req->list, &rq->migration_queue);
10990 spin_unlock_irqrestore(&rq->lock, flags);
10991 wake_up_process(rq->migration_thread);
10992 }
10993 for_each_online_cpu(cpu) {
10994 rcu_expedited_state = cpu;
10995 req = &per_cpu(rcu_migration_req, cpu);
10996 rq = cpu_rq(cpu);
10997 wait_for_completion(&req->done);
10998 spin_lock_irqsave(&rq->lock, flags);
10999 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
11000 need_full_sync = 1;
11001 req->dest_cpu = RCU_MIGRATION_IDLE;
11002 spin_unlock_irqrestore(&rq->lock, flags);
11003 }
11004 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
11005 mutex_unlock(&rcu_sched_expedited_mutex);
11006 put_online_cpus();
11007 if (need_full_sync)
11008 synchronize_sched();
11009}
11010EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
11011
11012#endif /* #else #ifndef CONFIG_SMP */
This page took 0.060755 seconds and 5 git commands to generate.