signals: join send_sigqueue() with send_group_sigqueue()
[deliverable/linux.git] / kernel / signal.c
... / ...
CommitLineData
1/*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13#include <linux/slab.h>
14#include <linux/module.h>
15#include <linux/init.h>
16#include <linux/sched.h>
17#include <linux/fs.h>
18#include <linux/tty.h>
19#include <linux/binfmts.h>
20#include <linux/security.h>
21#include <linux/syscalls.h>
22#include <linux/ptrace.h>
23#include <linux/signal.h>
24#include <linux/signalfd.h>
25#include <linux/capability.h>
26#include <linux/freezer.h>
27#include <linux/pid_namespace.h>
28#include <linux/nsproxy.h>
29
30#include <asm/param.h>
31#include <asm/uaccess.h>
32#include <asm/unistd.h>
33#include <asm/siginfo.h>
34#include "audit.h" /* audit_signal_info() */
35
36/*
37 * SLAB caches for signal bits.
38 */
39
40static struct kmem_cache *sigqueue_cachep;
41
42static int __sig_ignored(struct task_struct *t, int sig)
43{
44 void __user *handler;
45
46 /* Is it explicitly or implicitly ignored? */
47
48 handler = t->sighand->action[sig - 1].sa.sa_handler;
49 return handler == SIG_IGN ||
50 (handler == SIG_DFL && sig_kernel_ignore(sig));
51}
52
53static int sig_ignored(struct task_struct *t, int sig)
54{
55 /*
56 * Tracers always want to know about signals..
57 */
58 if (t->ptrace & PT_PTRACED)
59 return 0;
60
61 /*
62 * Blocked signals are never ignored, since the
63 * signal handler may change by the time it is
64 * unblocked.
65 */
66 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
67 return 0;
68
69 return __sig_ignored(t, sig);
70}
71
72/*
73 * Re-calculate pending state from the set of locally pending
74 * signals, globally pending signals, and blocked signals.
75 */
76static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
77{
78 unsigned long ready;
79 long i;
80
81 switch (_NSIG_WORDS) {
82 default:
83 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
84 ready |= signal->sig[i] &~ blocked->sig[i];
85 break;
86
87 case 4: ready = signal->sig[3] &~ blocked->sig[3];
88 ready |= signal->sig[2] &~ blocked->sig[2];
89 ready |= signal->sig[1] &~ blocked->sig[1];
90 ready |= signal->sig[0] &~ blocked->sig[0];
91 break;
92
93 case 2: ready = signal->sig[1] &~ blocked->sig[1];
94 ready |= signal->sig[0] &~ blocked->sig[0];
95 break;
96
97 case 1: ready = signal->sig[0] &~ blocked->sig[0];
98 }
99 return ready != 0;
100}
101
102#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
103
104static int recalc_sigpending_tsk(struct task_struct *t)
105{
106 if (t->signal->group_stop_count > 0 ||
107 PENDING(&t->pending, &t->blocked) ||
108 PENDING(&t->signal->shared_pending, &t->blocked)) {
109 set_tsk_thread_flag(t, TIF_SIGPENDING);
110 return 1;
111 }
112 /*
113 * We must never clear the flag in another thread, or in current
114 * when it's possible the current syscall is returning -ERESTART*.
115 * So we don't clear it here, and only callers who know they should do.
116 */
117 return 0;
118}
119
120/*
121 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
122 * This is superfluous when called on current, the wakeup is a harmless no-op.
123 */
124void recalc_sigpending_and_wake(struct task_struct *t)
125{
126 if (recalc_sigpending_tsk(t))
127 signal_wake_up(t, 0);
128}
129
130void recalc_sigpending(void)
131{
132 if (!recalc_sigpending_tsk(current) && !freezing(current))
133 clear_thread_flag(TIF_SIGPENDING);
134
135}
136
137/* Given the mask, find the first available signal that should be serviced. */
138
139int next_signal(struct sigpending *pending, sigset_t *mask)
140{
141 unsigned long i, *s, *m, x;
142 int sig = 0;
143
144 s = pending->signal.sig;
145 m = mask->sig;
146 switch (_NSIG_WORDS) {
147 default:
148 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
149 if ((x = *s &~ *m) != 0) {
150 sig = ffz(~x) + i*_NSIG_BPW + 1;
151 break;
152 }
153 break;
154
155 case 2: if ((x = s[0] &~ m[0]) != 0)
156 sig = 1;
157 else if ((x = s[1] &~ m[1]) != 0)
158 sig = _NSIG_BPW + 1;
159 else
160 break;
161 sig += ffz(~x);
162 break;
163
164 case 1: if ((x = *s &~ *m) != 0)
165 sig = ffz(~x) + 1;
166 break;
167 }
168
169 return sig;
170}
171
172static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
173 int override_rlimit)
174{
175 struct sigqueue *q = NULL;
176 struct user_struct *user;
177
178 /*
179 * In order to avoid problems with "switch_user()", we want to make
180 * sure that the compiler doesn't re-load "t->user"
181 */
182 user = t->user;
183 barrier();
184 atomic_inc(&user->sigpending);
185 if (override_rlimit ||
186 atomic_read(&user->sigpending) <=
187 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
188 q = kmem_cache_alloc(sigqueue_cachep, flags);
189 if (unlikely(q == NULL)) {
190 atomic_dec(&user->sigpending);
191 } else {
192 INIT_LIST_HEAD(&q->list);
193 q->flags = 0;
194 q->user = get_uid(user);
195 }
196 return(q);
197}
198
199static void __sigqueue_free(struct sigqueue *q)
200{
201 if (q->flags & SIGQUEUE_PREALLOC)
202 return;
203 atomic_dec(&q->user->sigpending);
204 free_uid(q->user);
205 kmem_cache_free(sigqueue_cachep, q);
206}
207
208void flush_sigqueue(struct sigpending *queue)
209{
210 struct sigqueue *q;
211
212 sigemptyset(&queue->signal);
213 while (!list_empty(&queue->list)) {
214 q = list_entry(queue->list.next, struct sigqueue , list);
215 list_del_init(&q->list);
216 __sigqueue_free(q);
217 }
218}
219
220/*
221 * Flush all pending signals for a task.
222 */
223void flush_signals(struct task_struct *t)
224{
225 unsigned long flags;
226
227 spin_lock_irqsave(&t->sighand->siglock, flags);
228 clear_tsk_thread_flag(t, TIF_SIGPENDING);
229 flush_sigqueue(&t->pending);
230 flush_sigqueue(&t->signal->shared_pending);
231 spin_unlock_irqrestore(&t->sighand->siglock, flags);
232}
233
234void ignore_signals(struct task_struct *t)
235{
236 int i;
237
238 for (i = 0; i < _NSIG; ++i)
239 t->sighand->action[i].sa.sa_handler = SIG_IGN;
240
241 flush_signals(t);
242}
243
244/*
245 * Flush all handlers for a task.
246 */
247
248void
249flush_signal_handlers(struct task_struct *t, int force_default)
250{
251 int i;
252 struct k_sigaction *ka = &t->sighand->action[0];
253 for (i = _NSIG ; i != 0 ; i--) {
254 if (force_default || ka->sa.sa_handler != SIG_IGN)
255 ka->sa.sa_handler = SIG_DFL;
256 ka->sa.sa_flags = 0;
257 sigemptyset(&ka->sa.sa_mask);
258 ka++;
259 }
260}
261
262int unhandled_signal(struct task_struct *tsk, int sig)
263{
264 if (is_global_init(tsk))
265 return 1;
266 if (tsk->ptrace & PT_PTRACED)
267 return 0;
268 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
269 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
270}
271
272
273/* Notify the system that a driver wants to block all signals for this
274 * process, and wants to be notified if any signals at all were to be
275 * sent/acted upon. If the notifier routine returns non-zero, then the
276 * signal will be acted upon after all. If the notifier routine returns 0,
277 * then then signal will be blocked. Only one block per process is
278 * allowed. priv is a pointer to private data that the notifier routine
279 * can use to determine if the signal should be blocked or not. */
280
281void
282block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
283{
284 unsigned long flags;
285
286 spin_lock_irqsave(&current->sighand->siglock, flags);
287 current->notifier_mask = mask;
288 current->notifier_data = priv;
289 current->notifier = notifier;
290 spin_unlock_irqrestore(&current->sighand->siglock, flags);
291}
292
293/* Notify the system that blocking has ended. */
294
295void
296unblock_all_signals(void)
297{
298 unsigned long flags;
299
300 spin_lock_irqsave(&current->sighand->siglock, flags);
301 current->notifier = NULL;
302 current->notifier_data = NULL;
303 recalc_sigpending();
304 spin_unlock_irqrestore(&current->sighand->siglock, flags);
305}
306
307static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
308{
309 struct sigqueue *q, *first = NULL;
310 int still_pending = 0;
311
312 if (unlikely(!sigismember(&list->signal, sig)))
313 return 0;
314
315 /*
316 * Collect the siginfo appropriate to this signal. Check if
317 * there is another siginfo for the same signal.
318 */
319 list_for_each_entry(q, &list->list, list) {
320 if (q->info.si_signo == sig) {
321 if (first) {
322 still_pending = 1;
323 break;
324 }
325 first = q;
326 }
327 }
328 if (first) {
329 list_del_init(&first->list);
330 copy_siginfo(info, &first->info);
331 __sigqueue_free(first);
332 if (!still_pending)
333 sigdelset(&list->signal, sig);
334 } else {
335
336 /* Ok, it wasn't in the queue. This must be
337 a fast-pathed signal or we must have been
338 out of queue space. So zero out the info.
339 */
340 sigdelset(&list->signal, sig);
341 info->si_signo = sig;
342 info->si_errno = 0;
343 info->si_code = 0;
344 info->si_pid = 0;
345 info->si_uid = 0;
346 }
347 return 1;
348}
349
350static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
351 siginfo_t *info)
352{
353 int sig = next_signal(pending, mask);
354
355 if (sig) {
356 if (current->notifier) {
357 if (sigismember(current->notifier_mask, sig)) {
358 if (!(current->notifier)(current->notifier_data)) {
359 clear_thread_flag(TIF_SIGPENDING);
360 return 0;
361 }
362 }
363 }
364
365 if (!collect_signal(sig, pending, info))
366 sig = 0;
367 }
368
369 return sig;
370}
371
372/*
373 * Dequeue a signal and return the element to the caller, which is
374 * expected to free it.
375 *
376 * All callers have to hold the siglock.
377 */
378int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
379{
380 int signr;
381
382 /* We only dequeue private signals from ourselves, we don't let
383 * signalfd steal them
384 */
385 signr = __dequeue_signal(&tsk->pending, mask, info);
386 if (!signr) {
387 signr = __dequeue_signal(&tsk->signal->shared_pending,
388 mask, info);
389 /*
390 * itimer signal ?
391 *
392 * itimers are process shared and we restart periodic
393 * itimers in the signal delivery path to prevent DoS
394 * attacks in the high resolution timer case. This is
395 * compliant with the old way of self restarting
396 * itimers, as the SIGALRM is a legacy signal and only
397 * queued once. Changing the restart behaviour to
398 * restart the timer in the signal dequeue path is
399 * reducing the timer noise on heavy loaded !highres
400 * systems too.
401 */
402 if (unlikely(signr == SIGALRM)) {
403 struct hrtimer *tmr = &tsk->signal->real_timer;
404
405 if (!hrtimer_is_queued(tmr) &&
406 tsk->signal->it_real_incr.tv64 != 0) {
407 hrtimer_forward(tmr, tmr->base->get_time(),
408 tsk->signal->it_real_incr);
409 hrtimer_restart(tmr);
410 }
411 }
412 }
413
414 recalc_sigpending();
415 if (!signr)
416 return 0;
417
418 if (unlikely(sig_kernel_stop(signr))) {
419 /*
420 * Set a marker that we have dequeued a stop signal. Our
421 * caller might release the siglock and then the pending
422 * stop signal it is about to process is no longer in the
423 * pending bitmasks, but must still be cleared by a SIGCONT
424 * (and overruled by a SIGKILL). So those cases clear this
425 * shared flag after we've set it. Note that this flag may
426 * remain set after the signal we return is ignored or
427 * handled. That doesn't matter because its only purpose
428 * is to alert stop-signal processing code when another
429 * processor has come along and cleared the flag.
430 */
431 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
432 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
433 }
434 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
435 /*
436 * Release the siglock to ensure proper locking order
437 * of timer locks outside of siglocks. Note, we leave
438 * irqs disabled here, since the posix-timers code is
439 * about to disable them again anyway.
440 */
441 spin_unlock(&tsk->sighand->siglock);
442 do_schedule_next_timer(info);
443 spin_lock(&tsk->sighand->siglock);
444 }
445 return signr;
446}
447
448/*
449 * Tell a process that it has a new active signal..
450 *
451 * NOTE! we rely on the previous spin_lock to
452 * lock interrupts for us! We can only be called with
453 * "siglock" held, and the local interrupt must
454 * have been disabled when that got acquired!
455 *
456 * No need to set need_resched since signal event passing
457 * goes through ->blocked
458 */
459void signal_wake_up(struct task_struct *t, int resume)
460{
461 unsigned int mask;
462
463 set_tsk_thread_flag(t, TIF_SIGPENDING);
464
465 /*
466 * For SIGKILL, we want to wake it up in the stopped/traced/killable
467 * case. We don't check t->state here because there is a race with it
468 * executing another processor and just now entering stopped state.
469 * By using wake_up_state, we ensure the process will wake up and
470 * handle its death signal.
471 */
472 mask = TASK_INTERRUPTIBLE;
473 if (resume)
474 mask |= TASK_WAKEKILL;
475 if (!wake_up_state(t, mask))
476 kick_process(t);
477}
478
479/*
480 * Remove signals in mask from the pending set and queue.
481 * Returns 1 if any signals were found.
482 *
483 * All callers must be holding the siglock.
484 *
485 * This version takes a sigset mask and looks at all signals,
486 * not just those in the first mask word.
487 */
488static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
489{
490 struct sigqueue *q, *n;
491 sigset_t m;
492
493 sigandsets(&m, mask, &s->signal);
494 if (sigisemptyset(&m))
495 return 0;
496
497 signandsets(&s->signal, &s->signal, mask);
498 list_for_each_entry_safe(q, n, &s->list, list) {
499 if (sigismember(mask, q->info.si_signo)) {
500 list_del_init(&q->list);
501 __sigqueue_free(q);
502 }
503 }
504 return 1;
505}
506/*
507 * Remove signals in mask from the pending set and queue.
508 * Returns 1 if any signals were found.
509 *
510 * All callers must be holding the siglock.
511 */
512static int rm_from_queue(unsigned long mask, struct sigpending *s)
513{
514 struct sigqueue *q, *n;
515
516 if (!sigtestsetmask(&s->signal, mask))
517 return 0;
518
519 sigdelsetmask(&s->signal, mask);
520 list_for_each_entry_safe(q, n, &s->list, list) {
521 if (q->info.si_signo < SIGRTMIN &&
522 (mask & sigmask(q->info.si_signo))) {
523 list_del_init(&q->list);
524 __sigqueue_free(q);
525 }
526 }
527 return 1;
528}
529
530/*
531 * Bad permissions for sending the signal
532 */
533static int check_kill_permission(int sig, struct siginfo *info,
534 struct task_struct *t)
535{
536 int error;
537
538 if (!valid_signal(sig))
539 return -EINVAL;
540
541 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
542 return 0;
543
544 error = audit_signal_info(sig, t); /* Let audit system see the signal */
545 if (error)
546 return error;
547
548 if (((sig != SIGCONT) || (task_session_nr(current) != task_session_nr(t)))
549 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
550 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
551 && !capable(CAP_KILL))
552 return -EPERM;
553
554 return security_task_kill(t, info, sig, 0);
555}
556
557/* forward decl */
558static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
559
560/*
561 * Handle magic process-wide effects of stop/continue signals.
562 * Unlike the signal actions, these happen immediately at signal-generation
563 * time regardless of blocking, ignoring, or handling. This does the
564 * actual continuing for SIGCONT, but not the actual stopping for stop
565 * signals. The process stop is done as a signal action for SIG_DFL.
566 */
567static void handle_stop_signal(int sig, struct task_struct *p)
568{
569 struct signal_struct *signal = p->signal;
570 struct task_struct *t;
571
572 if (signal->flags & SIGNAL_GROUP_EXIT)
573 /*
574 * The process is in the middle of dying already.
575 */
576 return;
577
578 if (sig_kernel_stop(sig)) {
579 /*
580 * This is a stop signal. Remove SIGCONT from all queues.
581 */
582 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
583 t = p;
584 do {
585 rm_from_queue(sigmask(SIGCONT), &t->pending);
586 } while_each_thread(p, t);
587 } else if (sig == SIGCONT) {
588 unsigned int why;
589 /*
590 * Remove all stop signals from all queues,
591 * and wake all threads.
592 */
593 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
594 t = p;
595 do {
596 unsigned int state;
597 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
598 /*
599 * If there is a handler for SIGCONT, we must make
600 * sure that no thread returns to user mode before
601 * we post the signal, in case it was the only
602 * thread eligible to run the signal handler--then
603 * it must not do anything between resuming and
604 * running the handler. With the TIF_SIGPENDING
605 * flag set, the thread will pause and acquire the
606 * siglock that we hold now and until we've queued
607 * the pending signal.
608 *
609 * Wake up the stopped thread _after_ setting
610 * TIF_SIGPENDING
611 */
612 state = __TASK_STOPPED;
613 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
614 set_tsk_thread_flag(t, TIF_SIGPENDING);
615 state |= TASK_INTERRUPTIBLE;
616 }
617 wake_up_state(t, state);
618 } while_each_thread(p, t);
619
620 /*
621 * Notify the parent with CLD_CONTINUED if we were stopped.
622 *
623 * If we were in the middle of a group stop, we pretend it
624 * was already finished, and then continued. Since SIGCHLD
625 * doesn't queue we report only CLD_STOPPED, as if the next
626 * CLD_CONTINUED was dropped.
627 */
628 why = 0;
629 if (signal->flags & SIGNAL_STOP_STOPPED)
630 why |= SIGNAL_CLD_CONTINUED;
631 else if (signal->group_stop_count)
632 why |= SIGNAL_CLD_STOPPED;
633
634 if (why) {
635 signal->flags = why | SIGNAL_STOP_CONTINUED;
636 signal->group_stop_count = 0;
637 signal->group_exit_code = 0;
638 } else {
639 /*
640 * We are not stopped, but there could be a stop
641 * signal in the middle of being processed after
642 * being removed from the queue. Clear that too.
643 */
644 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
645 }
646 } else if (sig == SIGKILL) {
647 /*
648 * Make sure that any pending stop signal already dequeued
649 * is undone by the wakeup for SIGKILL.
650 */
651 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
652 }
653}
654
655/*
656 * Test if P wants to take SIG. After we've checked all threads with this,
657 * it's equivalent to finding no threads not blocking SIG. Any threads not
658 * blocking SIG were ruled out because they are not running and already
659 * have pending signals. Such threads will dequeue from the shared queue
660 * as soon as they're available, so putting the signal on the shared queue
661 * will be equivalent to sending it to one such thread.
662 */
663static inline int wants_signal(int sig, struct task_struct *p)
664{
665 if (sigismember(&p->blocked, sig))
666 return 0;
667 if (p->flags & PF_EXITING)
668 return 0;
669 if (sig == SIGKILL)
670 return 1;
671 if (task_is_stopped_or_traced(p))
672 return 0;
673 return task_curr(p) || !signal_pending(p);
674}
675
676static void complete_signal(int sig, struct task_struct *p, int group)
677{
678 struct signal_struct *signal = p->signal;
679 struct task_struct *t;
680
681 /*
682 * Now find a thread we can wake up to take the signal off the queue.
683 *
684 * If the main thread wants the signal, it gets first crack.
685 * Probably the least surprising to the average bear.
686 */
687 if (wants_signal(sig, p))
688 t = p;
689 else if (!group || thread_group_empty(p))
690 /*
691 * There is just one thread and it does not need to be woken.
692 * It will dequeue unblocked signals before it runs again.
693 */
694 return;
695 else {
696 /*
697 * Otherwise try to find a suitable thread.
698 */
699 t = signal->curr_target;
700 while (!wants_signal(sig, t)) {
701 t = next_thread(t);
702 if (t == signal->curr_target)
703 /*
704 * No thread needs to be woken.
705 * Any eligible threads will see
706 * the signal in the queue soon.
707 */
708 return;
709 }
710 signal->curr_target = t;
711 }
712
713 /*
714 * Found a killable thread. If the signal will be fatal,
715 * then start taking the whole group down immediately.
716 */
717 if (sig_fatal(p, sig) && !(signal->flags & SIGNAL_GROUP_EXIT) &&
718 !sigismember(&t->real_blocked, sig) &&
719 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
720 /*
721 * This signal will be fatal to the whole group.
722 */
723 if (!sig_kernel_coredump(sig)) {
724 /*
725 * Start a group exit and wake everybody up.
726 * This way we don't have other threads
727 * running and doing things after a slower
728 * thread has the fatal signal pending.
729 */
730 signal->flags = SIGNAL_GROUP_EXIT;
731 signal->group_exit_code = sig;
732 signal->group_stop_count = 0;
733 t = p;
734 do {
735 sigaddset(&t->pending.signal, SIGKILL);
736 signal_wake_up(t, 1);
737 } while_each_thread(p, t);
738 return;
739 }
740 }
741
742 /*
743 * The signal is already in the shared-pending queue.
744 * Tell the chosen thread to wake up and dequeue it.
745 */
746 signal_wake_up(t, sig == SIGKILL);
747 return;
748}
749
750static inline int legacy_queue(struct sigpending *signals, int sig)
751{
752 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
753}
754
755static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
756 int group)
757{
758 struct sigpending *pending;
759 struct sigqueue *q;
760
761 assert_spin_locked(&t->sighand->siglock);
762 handle_stop_signal(sig, t);
763
764 pending = group ? &t->signal->shared_pending : &t->pending;
765 /*
766 * Short-circuit ignored signals and support queuing
767 * exactly one non-rt signal, so that we can get more
768 * detailed information about the cause of the signal.
769 */
770 if (sig_ignored(t, sig) || legacy_queue(pending, sig))
771 return 0;
772
773 /*
774 * Deliver the signal to listening signalfds. This must be called
775 * with the sighand lock held.
776 */
777 signalfd_notify(t, sig);
778
779 /*
780 * fast-pathed signals for kernel-internal things like SIGSTOP
781 * or SIGKILL.
782 */
783 if (info == SEND_SIG_FORCED)
784 goto out_set;
785
786 /* Real-time signals must be queued if sent by sigqueue, or
787 some other real-time mechanism. It is implementation
788 defined whether kill() does so. We attempt to do so, on
789 the principle of least surprise, but since kill is not
790 allowed to fail with EAGAIN when low on memory we just
791 make sure at least one signal gets delivered and don't
792 pass on the info struct. */
793
794 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
795 (is_si_special(info) ||
796 info->si_code >= 0)));
797 if (q) {
798 list_add_tail(&q->list, &pending->list);
799 switch ((unsigned long) info) {
800 case (unsigned long) SEND_SIG_NOINFO:
801 q->info.si_signo = sig;
802 q->info.si_errno = 0;
803 q->info.si_code = SI_USER;
804 q->info.si_pid = task_pid_vnr(current);
805 q->info.si_uid = current->uid;
806 break;
807 case (unsigned long) SEND_SIG_PRIV:
808 q->info.si_signo = sig;
809 q->info.si_errno = 0;
810 q->info.si_code = SI_KERNEL;
811 q->info.si_pid = 0;
812 q->info.si_uid = 0;
813 break;
814 default:
815 copy_siginfo(&q->info, info);
816 break;
817 }
818 } else if (!is_si_special(info)) {
819 if (sig >= SIGRTMIN && info->si_code != SI_USER)
820 /*
821 * Queue overflow, abort. We may abort if the signal was rt
822 * and sent by user using something other than kill().
823 */
824 return -EAGAIN;
825 }
826
827out_set:
828 sigaddset(&pending->signal, sig);
829 complete_signal(sig, t, group);
830 return 0;
831}
832
833int print_fatal_signals;
834
835static void print_fatal_signal(struct pt_regs *regs, int signr)
836{
837 printk("%s/%d: potentially unexpected fatal signal %d.\n",
838 current->comm, task_pid_nr(current), signr);
839
840#if defined(__i386__) && !defined(__arch_um__)
841 printk("code at %08lx: ", regs->ip);
842 {
843 int i;
844 for (i = 0; i < 16; i++) {
845 unsigned char insn;
846
847 __get_user(insn, (unsigned char *)(regs->ip + i));
848 printk("%02x ", insn);
849 }
850 }
851#endif
852 printk("\n");
853 show_regs(regs);
854}
855
856static int __init setup_print_fatal_signals(char *str)
857{
858 get_option (&str, &print_fatal_signals);
859
860 return 1;
861}
862
863__setup("print-fatal-signals=", setup_print_fatal_signals);
864
865int
866__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
867{
868 return send_signal(sig, info, p, 1);
869}
870
871static int
872specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
873{
874 return send_signal(sig, info, t, 0);
875}
876
877/*
878 * Force a signal that the process can't ignore: if necessary
879 * we unblock the signal and change any SIG_IGN to SIG_DFL.
880 *
881 * Note: If we unblock the signal, we always reset it to SIG_DFL,
882 * since we do not want to have a signal handler that was blocked
883 * be invoked when user space had explicitly blocked it.
884 *
885 * We don't want to have recursive SIGSEGV's etc, for example.
886 */
887int
888force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
889{
890 unsigned long int flags;
891 int ret, blocked, ignored;
892 struct k_sigaction *action;
893
894 spin_lock_irqsave(&t->sighand->siglock, flags);
895 action = &t->sighand->action[sig-1];
896 ignored = action->sa.sa_handler == SIG_IGN;
897 blocked = sigismember(&t->blocked, sig);
898 if (blocked || ignored) {
899 action->sa.sa_handler = SIG_DFL;
900 if (blocked) {
901 sigdelset(&t->blocked, sig);
902 recalc_sigpending_and_wake(t);
903 }
904 }
905 ret = specific_send_sig_info(sig, info, t);
906 spin_unlock_irqrestore(&t->sighand->siglock, flags);
907
908 return ret;
909}
910
911void
912force_sig_specific(int sig, struct task_struct *t)
913{
914 force_sig_info(sig, SEND_SIG_FORCED, t);
915}
916
917/*
918 * Nuke all other threads in the group.
919 */
920void zap_other_threads(struct task_struct *p)
921{
922 struct task_struct *t;
923
924 p->signal->group_stop_count = 0;
925
926 for (t = next_thread(p); t != p; t = next_thread(t)) {
927 /*
928 * Don't bother with already dead threads
929 */
930 if (t->exit_state)
931 continue;
932
933 /* SIGKILL will be handled before any pending SIGSTOP */
934 sigaddset(&t->pending.signal, SIGKILL);
935 signal_wake_up(t, 1);
936 }
937}
938
939int __fatal_signal_pending(struct task_struct *tsk)
940{
941 return sigismember(&tsk->pending.signal, SIGKILL);
942}
943EXPORT_SYMBOL(__fatal_signal_pending);
944
945struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
946{
947 struct sighand_struct *sighand;
948
949 rcu_read_lock();
950 for (;;) {
951 sighand = rcu_dereference(tsk->sighand);
952 if (unlikely(sighand == NULL))
953 break;
954
955 spin_lock_irqsave(&sighand->siglock, *flags);
956 if (likely(sighand == tsk->sighand))
957 break;
958 spin_unlock_irqrestore(&sighand->siglock, *flags);
959 }
960 rcu_read_unlock();
961
962 return sighand;
963}
964
965int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
966{
967 unsigned long flags;
968 int ret;
969
970 ret = check_kill_permission(sig, info, p);
971
972 if (!ret && sig) {
973 ret = -ESRCH;
974 if (lock_task_sighand(p, &flags)) {
975 ret = __group_send_sig_info(sig, info, p);
976 unlock_task_sighand(p, &flags);
977 }
978 }
979
980 return ret;
981}
982
983/*
984 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
985 * control characters do (^C, ^Z etc)
986 */
987
988int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
989{
990 struct task_struct *p = NULL;
991 int retval, success;
992
993 success = 0;
994 retval = -ESRCH;
995 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
996 int err = group_send_sig_info(sig, info, p);
997 success |= !err;
998 retval = err;
999 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1000 return success ? 0 : retval;
1001}
1002
1003int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1004{
1005 int error = -ESRCH;
1006 struct task_struct *p;
1007
1008 rcu_read_lock();
1009retry:
1010 p = pid_task(pid, PIDTYPE_PID);
1011 if (p) {
1012 error = group_send_sig_info(sig, info, p);
1013 if (unlikely(error == -ESRCH))
1014 /*
1015 * The task was unhashed in between, try again.
1016 * If it is dead, pid_task() will return NULL,
1017 * if we race with de_thread() it will find the
1018 * new leader.
1019 */
1020 goto retry;
1021 }
1022 rcu_read_unlock();
1023
1024 return error;
1025}
1026
1027int
1028kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1029{
1030 int error;
1031 rcu_read_lock();
1032 error = kill_pid_info(sig, info, find_vpid(pid));
1033 rcu_read_unlock();
1034 return error;
1035}
1036
1037/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1038int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1039 uid_t uid, uid_t euid, u32 secid)
1040{
1041 int ret = -EINVAL;
1042 struct task_struct *p;
1043
1044 if (!valid_signal(sig))
1045 return ret;
1046
1047 read_lock(&tasklist_lock);
1048 p = pid_task(pid, PIDTYPE_PID);
1049 if (!p) {
1050 ret = -ESRCH;
1051 goto out_unlock;
1052 }
1053 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1054 && (euid != p->suid) && (euid != p->uid)
1055 && (uid != p->suid) && (uid != p->uid)) {
1056 ret = -EPERM;
1057 goto out_unlock;
1058 }
1059 ret = security_task_kill(p, info, sig, secid);
1060 if (ret)
1061 goto out_unlock;
1062 if (sig && p->sighand) {
1063 unsigned long flags;
1064 spin_lock_irqsave(&p->sighand->siglock, flags);
1065 ret = __group_send_sig_info(sig, info, p);
1066 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1067 }
1068out_unlock:
1069 read_unlock(&tasklist_lock);
1070 return ret;
1071}
1072EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1073
1074/*
1075 * kill_something_info() interprets pid in interesting ways just like kill(2).
1076 *
1077 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1078 * is probably wrong. Should make it like BSD or SYSV.
1079 */
1080
1081static int kill_something_info(int sig, struct siginfo *info, int pid)
1082{
1083 int ret;
1084
1085 if (pid > 0) {
1086 rcu_read_lock();
1087 ret = kill_pid_info(sig, info, find_vpid(pid));
1088 rcu_read_unlock();
1089 return ret;
1090 }
1091
1092 read_lock(&tasklist_lock);
1093 if (pid != -1) {
1094 ret = __kill_pgrp_info(sig, info,
1095 pid ? find_vpid(-pid) : task_pgrp(current));
1096 } else {
1097 int retval = 0, count = 0;
1098 struct task_struct * p;
1099
1100 for_each_process(p) {
1101 if (p->pid > 1 && !same_thread_group(p, current)) {
1102 int err = group_send_sig_info(sig, info, p);
1103 ++count;
1104 if (err != -EPERM)
1105 retval = err;
1106 }
1107 }
1108 ret = count ? retval : -ESRCH;
1109 }
1110 read_unlock(&tasklist_lock);
1111
1112 return ret;
1113}
1114
1115/*
1116 * These are for backward compatibility with the rest of the kernel source.
1117 */
1118
1119/*
1120 * The caller must ensure the task can't exit.
1121 */
1122int
1123send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1124{
1125 int ret;
1126 unsigned long flags;
1127
1128 /*
1129 * Make sure legacy kernel users don't send in bad values
1130 * (normal paths check this in check_kill_permission).
1131 */
1132 if (!valid_signal(sig))
1133 return -EINVAL;
1134
1135 spin_lock_irqsave(&p->sighand->siglock, flags);
1136 ret = specific_send_sig_info(sig, info, p);
1137 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1138 return ret;
1139}
1140
1141#define __si_special(priv) \
1142 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1143
1144int
1145send_sig(int sig, struct task_struct *p, int priv)
1146{
1147 return send_sig_info(sig, __si_special(priv), p);
1148}
1149
1150void
1151force_sig(int sig, struct task_struct *p)
1152{
1153 force_sig_info(sig, SEND_SIG_PRIV, p);
1154}
1155
1156/*
1157 * When things go south during signal handling, we
1158 * will force a SIGSEGV. And if the signal that caused
1159 * the problem was already a SIGSEGV, we'll want to
1160 * make sure we don't even try to deliver the signal..
1161 */
1162int
1163force_sigsegv(int sig, struct task_struct *p)
1164{
1165 if (sig == SIGSEGV) {
1166 unsigned long flags;
1167 spin_lock_irqsave(&p->sighand->siglock, flags);
1168 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1169 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1170 }
1171 force_sig(SIGSEGV, p);
1172 return 0;
1173}
1174
1175int kill_pgrp(struct pid *pid, int sig, int priv)
1176{
1177 int ret;
1178
1179 read_lock(&tasklist_lock);
1180 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1181 read_unlock(&tasklist_lock);
1182
1183 return ret;
1184}
1185EXPORT_SYMBOL(kill_pgrp);
1186
1187int kill_pid(struct pid *pid, int sig, int priv)
1188{
1189 return kill_pid_info(sig, __si_special(priv), pid);
1190}
1191EXPORT_SYMBOL(kill_pid);
1192
1193int
1194kill_proc(pid_t pid, int sig, int priv)
1195{
1196 int ret;
1197
1198 rcu_read_lock();
1199 ret = kill_pid_info(sig, __si_special(priv), find_pid(pid));
1200 rcu_read_unlock();
1201 return ret;
1202}
1203
1204/*
1205 * These functions support sending signals using preallocated sigqueue
1206 * structures. This is needed "because realtime applications cannot
1207 * afford to lose notifications of asynchronous events, like timer
1208 * expirations or I/O completions". In the case of Posix Timers
1209 * we allocate the sigqueue structure from the timer_create. If this
1210 * allocation fails we are able to report the failure to the application
1211 * with an EAGAIN error.
1212 */
1213
1214struct sigqueue *sigqueue_alloc(void)
1215{
1216 struct sigqueue *q;
1217
1218 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1219 q->flags |= SIGQUEUE_PREALLOC;
1220 return(q);
1221}
1222
1223void sigqueue_free(struct sigqueue *q)
1224{
1225 unsigned long flags;
1226 spinlock_t *lock = &current->sighand->siglock;
1227
1228 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1229 /*
1230 * If the signal is still pending remove it from the
1231 * pending queue. We must hold ->siglock while testing
1232 * q->list to serialize with collect_signal().
1233 */
1234 spin_lock_irqsave(lock, flags);
1235 if (!list_empty(&q->list))
1236 list_del_init(&q->list);
1237 spin_unlock_irqrestore(lock, flags);
1238
1239 q->flags &= ~SIGQUEUE_PREALLOC;
1240 __sigqueue_free(q);
1241}
1242
1243int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1244{
1245 int sig = q->info.si_signo;
1246 struct sigpending *pending;
1247 unsigned long flags;
1248 int ret;
1249
1250 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1251
1252 ret = -1;
1253 if (!likely(lock_task_sighand(t, &flags)))
1254 goto ret;
1255
1256 handle_stop_signal(sig, t);
1257
1258 ret = 1;
1259 if (sig_ignored(t, sig))
1260 goto out;
1261
1262 ret = 0;
1263 if (unlikely(!list_empty(&q->list))) {
1264 /*
1265 * If an SI_TIMER entry is already queue just increment
1266 * the overrun count.
1267 */
1268 BUG_ON(q->info.si_code != SI_TIMER);
1269 q->info.si_overrun++;
1270 goto out;
1271 }
1272
1273 signalfd_notify(t, sig);
1274 pending = group ? &t->signal->shared_pending : &t->pending;
1275 list_add_tail(&q->list, &pending->list);
1276 sigaddset(&pending->signal, sig);
1277 complete_signal(sig, t, group);
1278out:
1279 unlock_task_sighand(t, &flags);
1280ret:
1281 return ret;
1282}
1283
1284/*
1285 * Wake up any threads in the parent blocked in wait* syscalls.
1286 */
1287static inline void __wake_up_parent(struct task_struct *p,
1288 struct task_struct *parent)
1289{
1290 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1291}
1292
1293/*
1294 * Let a parent know about the death of a child.
1295 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1296 */
1297
1298void do_notify_parent(struct task_struct *tsk, int sig)
1299{
1300 struct siginfo info;
1301 unsigned long flags;
1302 struct sighand_struct *psig;
1303
1304 BUG_ON(sig == -1);
1305
1306 /* do_notify_parent_cldstop should have been called instead. */
1307 BUG_ON(task_is_stopped_or_traced(tsk));
1308
1309 BUG_ON(!tsk->ptrace &&
1310 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1311
1312 info.si_signo = sig;
1313 info.si_errno = 0;
1314 /*
1315 * we are under tasklist_lock here so our parent is tied to
1316 * us and cannot exit and release its namespace.
1317 *
1318 * the only it can is to switch its nsproxy with sys_unshare,
1319 * bu uncharing pid namespaces is not allowed, so we'll always
1320 * see relevant namespace
1321 *
1322 * write_lock() currently calls preempt_disable() which is the
1323 * same as rcu_read_lock(), but according to Oleg, this is not
1324 * correct to rely on this
1325 */
1326 rcu_read_lock();
1327 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1328 rcu_read_unlock();
1329
1330 info.si_uid = tsk->uid;
1331
1332 /* FIXME: find out whether or not this is supposed to be c*time. */
1333 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1334 tsk->signal->utime));
1335 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1336 tsk->signal->stime));
1337
1338 info.si_status = tsk->exit_code & 0x7f;
1339 if (tsk->exit_code & 0x80)
1340 info.si_code = CLD_DUMPED;
1341 else if (tsk->exit_code & 0x7f)
1342 info.si_code = CLD_KILLED;
1343 else {
1344 info.si_code = CLD_EXITED;
1345 info.si_status = tsk->exit_code >> 8;
1346 }
1347
1348 psig = tsk->parent->sighand;
1349 spin_lock_irqsave(&psig->siglock, flags);
1350 if (!tsk->ptrace && sig == SIGCHLD &&
1351 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1352 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1353 /*
1354 * We are exiting and our parent doesn't care. POSIX.1
1355 * defines special semantics for setting SIGCHLD to SIG_IGN
1356 * or setting the SA_NOCLDWAIT flag: we should be reaped
1357 * automatically and not left for our parent's wait4 call.
1358 * Rather than having the parent do it as a magic kind of
1359 * signal handler, we just set this to tell do_exit that we
1360 * can be cleaned up without becoming a zombie. Note that
1361 * we still call __wake_up_parent in this case, because a
1362 * blocked sys_wait4 might now return -ECHILD.
1363 *
1364 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1365 * is implementation-defined: we do (if you don't want
1366 * it, just use SIG_IGN instead).
1367 */
1368 tsk->exit_signal = -1;
1369 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1370 sig = 0;
1371 }
1372 if (valid_signal(sig) && sig > 0)
1373 __group_send_sig_info(sig, &info, tsk->parent);
1374 __wake_up_parent(tsk, tsk->parent);
1375 spin_unlock_irqrestore(&psig->siglock, flags);
1376}
1377
1378static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1379{
1380 struct siginfo info;
1381 unsigned long flags;
1382 struct task_struct *parent;
1383 struct sighand_struct *sighand;
1384
1385 if (tsk->ptrace & PT_PTRACED)
1386 parent = tsk->parent;
1387 else {
1388 tsk = tsk->group_leader;
1389 parent = tsk->real_parent;
1390 }
1391
1392 info.si_signo = SIGCHLD;
1393 info.si_errno = 0;
1394 /*
1395 * see comment in do_notify_parent() abot the following 3 lines
1396 */
1397 rcu_read_lock();
1398 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1399 rcu_read_unlock();
1400
1401 info.si_uid = tsk->uid;
1402
1403 /* FIXME: find out whether or not this is supposed to be c*time. */
1404 info.si_utime = cputime_to_jiffies(tsk->utime);
1405 info.si_stime = cputime_to_jiffies(tsk->stime);
1406
1407 info.si_code = why;
1408 switch (why) {
1409 case CLD_CONTINUED:
1410 info.si_status = SIGCONT;
1411 break;
1412 case CLD_STOPPED:
1413 info.si_status = tsk->signal->group_exit_code & 0x7f;
1414 break;
1415 case CLD_TRAPPED:
1416 info.si_status = tsk->exit_code & 0x7f;
1417 break;
1418 default:
1419 BUG();
1420 }
1421
1422 sighand = parent->sighand;
1423 spin_lock_irqsave(&sighand->siglock, flags);
1424 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1425 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1426 __group_send_sig_info(SIGCHLD, &info, parent);
1427 /*
1428 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1429 */
1430 __wake_up_parent(tsk, parent);
1431 spin_unlock_irqrestore(&sighand->siglock, flags);
1432}
1433
1434static inline int may_ptrace_stop(void)
1435{
1436 if (!likely(current->ptrace & PT_PTRACED))
1437 return 0;
1438 /*
1439 * Are we in the middle of do_coredump?
1440 * If so and our tracer is also part of the coredump stopping
1441 * is a deadlock situation, and pointless because our tracer
1442 * is dead so don't allow us to stop.
1443 * If SIGKILL was already sent before the caller unlocked
1444 * ->siglock we must see ->core_waiters != 0. Otherwise it
1445 * is safe to enter schedule().
1446 */
1447 if (unlikely(current->mm->core_waiters) &&
1448 unlikely(current->mm == current->parent->mm))
1449 return 0;
1450
1451 return 1;
1452}
1453
1454/*
1455 * Return nonzero if there is a SIGKILL that should be waking us up.
1456 * Called with the siglock held.
1457 */
1458static int sigkill_pending(struct task_struct *tsk)
1459{
1460 return ((sigismember(&tsk->pending.signal, SIGKILL) ||
1461 sigismember(&tsk->signal->shared_pending.signal, SIGKILL)) &&
1462 !unlikely(sigismember(&tsk->blocked, SIGKILL)));
1463}
1464
1465/*
1466 * This must be called with current->sighand->siglock held.
1467 *
1468 * This should be the path for all ptrace stops.
1469 * We always set current->last_siginfo while stopped here.
1470 * That makes it a way to test a stopped process for
1471 * being ptrace-stopped vs being job-control-stopped.
1472 *
1473 * If we actually decide not to stop at all because the tracer
1474 * is gone, we keep current->exit_code unless clear_code.
1475 */
1476static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1477{
1478 int killed = 0;
1479
1480 if (arch_ptrace_stop_needed(exit_code, info)) {
1481 /*
1482 * The arch code has something special to do before a
1483 * ptrace stop. This is allowed to block, e.g. for faults
1484 * on user stack pages. We can't keep the siglock while
1485 * calling arch_ptrace_stop, so we must release it now.
1486 * To preserve proper semantics, we must do this before
1487 * any signal bookkeeping like checking group_stop_count.
1488 * Meanwhile, a SIGKILL could come in before we retake the
1489 * siglock. That must prevent us from sleeping in TASK_TRACED.
1490 * So after regaining the lock, we must check for SIGKILL.
1491 */
1492 spin_unlock_irq(&current->sighand->siglock);
1493 arch_ptrace_stop(exit_code, info);
1494 spin_lock_irq(&current->sighand->siglock);
1495 killed = sigkill_pending(current);
1496 }
1497
1498 /*
1499 * If there is a group stop in progress,
1500 * we must participate in the bookkeeping.
1501 */
1502 if (current->signal->group_stop_count > 0)
1503 --current->signal->group_stop_count;
1504
1505 current->last_siginfo = info;
1506 current->exit_code = exit_code;
1507
1508 /* Let the debugger run. */
1509 __set_current_state(TASK_TRACED);
1510 spin_unlock_irq(&current->sighand->siglock);
1511 read_lock(&tasklist_lock);
1512 if (!unlikely(killed) && may_ptrace_stop()) {
1513 do_notify_parent_cldstop(current, CLD_TRAPPED);
1514 read_unlock(&tasklist_lock);
1515 schedule();
1516 } else {
1517 /*
1518 * By the time we got the lock, our tracer went away.
1519 * Don't drop the lock yet, another tracer may come.
1520 */
1521 __set_current_state(TASK_RUNNING);
1522 if (clear_code)
1523 current->exit_code = 0;
1524 read_unlock(&tasklist_lock);
1525 }
1526
1527 /*
1528 * While in TASK_TRACED, we were considered "frozen enough".
1529 * Now that we woke up, it's crucial if we're supposed to be
1530 * frozen that we freeze now before running anything substantial.
1531 */
1532 try_to_freeze();
1533
1534 /*
1535 * We are back. Now reacquire the siglock before touching
1536 * last_siginfo, so that we are sure to have synchronized with
1537 * any signal-sending on another CPU that wants to examine it.
1538 */
1539 spin_lock_irq(&current->sighand->siglock);
1540 current->last_siginfo = NULL;
1541
1542 /*
1543 * Queued signals ignored us while we were stopped for tracing.
1544 * So check for any that we should take before resuming user mode.
1545 * This sets TIF_SIGPENDING, but never clears it.
1546 */
1547 recalc_sigpending_tsk(current);
1548}
1549
1550void ptrace_notify(int exit_code)
1551{
1552 siginfo_t info;
1553
1554 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1555
1556 memset(&info, 0, sizeof info);
1557 info.si_signo = SIGTRAP;
1558 info.si_code = exit_code;
1559 info.si_pid = task_pid_vnr(current);
1560 info.si_uid = current->uid;
1561
1562 /* Let the debugger run. */
1563 spin_lock_irq(&current->sighand->siglock);
1564 ptrace_stop(exit_code, 1, &info);
1565 spin_unlock_irq(&current->sighand->siglock);
1566}
1567
1568static void
1569finish_stop(int stop_count)
1570{
1571 /*
1572 * If there are no other threads in the group, or if there is
1573 * a group stop in progress and we are the last to stop,
1574 * report to the parent. When ptraced, every thread reports itself.
1575 */
1576 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1577 read_lock(&tasklist_lock);
1578 do_notify_parent_cldstop(current, CLD_STOPPED);
1579 read_unlock(&tasklist_lock);
1580 }
1581
1582 do {
1583 schedule();
1584 } while (try_to_freeze());
1585 /*
1586 * Now we don't run again until continued.
1587 */
1588 current->exit_code = 0;
1589}
1590
1591/*
1592 * This performs the stopping for SIGSTOP and other stop signals.
1593 * We have to stop all threads in the thread group.
1594 * Returns nonzero if we've actually stopped and released the siglock.
1595 * Returns zero if we didn't stop and still hold the siglock.
1596 */
1597static int do_signal_stop(int signr)
1598{
1599 struct signal_struct *sig = current->signal;
1600 int stop_count;
1601
1602 if (sig->group_stop_count > 0) {
1603 /*
1604 * There is a group stop in progress. We don't need to
1605 * start another one.
1606 */
1607 stop_count = --sig->group_stop_count;
1608 } else {
1609 struct task_struct *t;
1610
1611 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1612 unlikely(signal_group_exit(sig)))
1613 return 0;
1614 /*
1615 * There is no group stop already in progress.
1616 * We must initiate one now.
1617 */
1618 sig->group_exit_code = signr;
1619
1620 stop_count = 0;
1621 for (t = next_thread(current); t != current; t = next_thread(t))
1622 /*
1623 * Setting state to TASK_STOPPED for a group
1624 * stop is always done with the siglock held,
1625 * so this check has no races.
1626 */
1627 if (!(t->flags & PF_EXITING) &&
1628 !task_is_stopped_or_traced(t)) {
1629 stop_count++;
1630 signal_wake_up(t, 0);
1631 }
1632 sig->group_stop_count = stop_count;
1633 }
1634
1635 if (stop_count == 0)
1636 sig->flags = SIGNAL_STOP_STOPPED;
1637 current->exit_code = sig->group_exit_code;
1638 __set_current_state(TASK_STOPPED);
1639
1640 spin_unlock_irq(&current->sighand->siglock);
1641 finish_stop(stop_count);
1642 return 1;
1643}
1644
1645static int ptrace_signal(int signr, siginfo_t *info,
1646 struct pt_regs *regs, void *cookie)
1647{
1648 if (!(current->ptrace & PT_PTRACED))
1649 return signr;
1650
1651 ptrace_signal_deliver(regs, cookie);
1652
1653 /* Let the debugger run. */
1654 ptrace_stop(signr, 0, info);
1655
1656 /* We're back. Did the debugger cancel the sig? */
1657 signr = current->exit_code;
1658 if (signr == 0)
1659 return signr;
1660
1661 current->exit_code = 0;
1662
1663 /* Update the siginfo structure if the signal has
1664 changed. If the debugger wanted something
1665 specific in the siginfo structure then it should
1666 have updated *info via PTRACE_SETSIGINFO. */
1667 if (signr != info->si_signo) {
1668 info->si_signo = signr;
1669 info->si_errno = 0;
1670 info->si_code = SI_USER;
1671 info->si_pid = task_pid_vnr(current->parent);
1672 info->si_uid = current->parent->uid;
1673 }
1674
1675 /* If the (new) signal is now blocked, requeue it. */
1676 if (sigismember(&current->blocked, signr)) {
1677 specific_send_sig_info(signr, info, current);
1678 signr = 0;
1679 }
1680
1681 return signr;
1682}
1683
1684int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1685 struct pt_regs *regs, void *cookie)
1686{
1687 struct sighand_struct *sighand = current->sighand;
1688 struct signal_struct *signal = current->signal;
1689 int signr;
1690
1691relock:
1692 /*
1693 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1694 * While in TASK_STOPPED, we were considered "frozen enough".
1695 * Now that we woke up, it's crucial if we're supposed to be
1696 * frozen that we freeze now before running anything substantial.
1697 */
1698 try_to_freeze();
1699
1700 spin_lock_irq(&sighand->siglock);
1701
1702 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1703 int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1704 ? CLD_CONTINUED : CLD_STOPPED;
1705 signal->flags &= ~SIGNAL_CLD_MASK;
1706 spin_unlock_irq(&sighand->siglock);
1707
1708 read_lock(&tasklist_lock);
1709 do_notify_parent_cldstop(current->group_leader, why);
1710 read_unlock(&tasklist_lock);
1711 goto relock;
1712 }
1713
1714 for (;;) {
1715 struct k_sigaction *ka;
1716
1717 if (unlikely(signal->group_stop_count > 0) &&
1718 do_signal_stop(0))
1719 goto relock;
1720
1721 signr = dequeue_signal(current, &current->blocked, info);
1722 if (!signr)
1723 break; /* will return 0 */
1724
1725 if (signr != SIGKILL) {
1726 signr = ptrace_signal(signr, info, regs, cookie);
1727 if (!signr)
1728 continue;
1729 }
1730
1731 ka = &sighand->action[signr-1];
1732 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1733 continue;
1734 if (ka->sa.sa_handler != SIG_DFL) {
1735 /* Run the handler. */
1736 *return_ka = *ka;
1737
1738 if (ka->sa.sa_flags & SA_ONESHOT)
1739 ka->sa.sa_handler = SIG_DFL;
1740
1741 break; /* will return non-zero "signr" value */
1742 }
1743
1744 /*
1745 * Now we are doing the default action for this signal.
1746 */
1747 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1748 continue;
1749
1750 /*
1751 * Global init gets no signals it doesn't want.
1752 */
1753 if (is_global_init(current))
1754 continue;
1755
1756 if (sig_kernel_stop(signr)) {
1757 /*
1758 * The default action is to stop all threads in
1759 * the thread group. The job control signals
1760 * do nothing in an orphaned pgrp, but SIGSTOP
1761 * always works. Note that siglock needs to be
1762 * dropped during the call to is_orphaned_pgrp()
1763 * because of lock ordering with tasklist_lock.
1764 * This allows an intervening SIGCONT to be posted.
1765 * We need to check for that and bail out if necessary.
1766 */
1767 if (signr != SIGSTOP) {
1768 spin_unlock_irq(&sighand->siglock);
1769
1770 /* signals can be posted during this window */
1771
1772 if (is_current_pgrp_orphaned())
1773 goto relock;
1774
1775 spin_lock_irq(&sighand->siglock);
1776 }
1777
1778 if (likely(do_signal_stop(signr))) {
1779 /* It released the siglock. */
1780 goto relock;
1781 }
1782
1783 /*
1784 * We didn't actually stop, due to a race
1785 * with SIGCONT or something like that.
1786 */
1787 continue;
1788 }
1789
1790 spin_unlock_irq(&sighand->siglock);
1791
1792 /*
1793 * Anything else is fatal, maybe with a core dump.
1794 */
1795 current->flags |= PF_SIGNALED;
1796 if ((signr != SIGKILL) && print_fatal_signals)
1797 print_fatal_signal(regs, signr);
1798 if (sig_kernel_coredump(signr)) {
1799 /*
1800 * If it was able to dump core, this kills all
1801 * other threads in the group and synchronizes with
1802 * their demise. If we lost the race with another
1803 * thread getting here, it set group_exit_code
1804 * first and our do_group_exit call below will use
1805 * that value and ignore the one we pass it.
1806 */
1807 do_coredump((long)signr, signr, regs);
1808 }
1809
1810 /*
1811 * Death signals, no core dump.
1812 */
1813 do_group_exit(signr);
1814 /* NOTREACHED */
1815 }
1816 spin_unlock_irq(&sighand->siglock);
1817 return signr;
1818}
1819
1820void exit_signals(struct task_struct *tsk)
1821{
1822 int group_stop = 0;
1823 struct task_struct *t;
1824
1825 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1826 tsk->flags |= PF_EXITING;
1827 return;
1828 }
1829
1830 spin_lock_irq(&tsk->sighand->siglock);
1831 /*
1832 * From now this task is not visible for group-wide signals,
1833 * see wants_signal(), do_signal_stop().
1834 */
1835 tsk->flags |= PF_EXITING;
1836 if (!signal_pending(tsk))
1837 goto out;
1838
1839 /* It could be that __group_complete_signal() choose us to
1840 * notify about group-wide signal. Another thread should be
1841 * woken now to take the signal since we will not.
1842 */
1843 for (t = tsk; (t = next_thread(t)) != tsk; )
1844 if (!signal_pending(t) && !(t->flags & PF_EXITING))
1845 recalc_sigpending_and_wake(t);
1846
1847 if (unlikely(tsk->signal->group_stop_count) &&
1848 !--tsk->signal->group_stop_count) {
1849 tsk->signal->flags = SIGNAL_STOP_STOPPED;
1850 group_stop = 1;
1851 }
1852out:
1853 spin_unlock_irq(&tsk->sighand->siglock);
1854
1855 if (unlikely(group_stop)) {
1856 read_lock(&tasklist_lock);
1857 do_notify_parent_cldstop(tsk, CLD_STOPPED);
1858 read_unlock(&tasklist_lock);
1859 }
1860}
1861
1862EXPORT_SYMBOL(recalc_sigpending);
1863EXPORT_SYMBOL_GPL(dequeue_signal);
1864EXPORT_SYMBOL(flush_signals);
1865EXPORT_SYMBOL(force_sig);
1866EXPORT_SYMBOL(kill_proc);
1867EXPORT_SYMBOL(ptrace_notify);
1868EXPORT_SYMBOL(send_sig);
1869EXPORT_SYMBOL(send_sig_info);
1870EXPORT_SYMBOL(sigprocmask);
1871EXPORT_SYMBOL(block_all_signals);
1872EXPORT_SYMBOL(unblock_all_signals);
1873
1874
1875/*
1876 * System call entry points.
1877 */
1878
1879asmlinkage long sys_restart_syscall(void)
1880{
1881 struct restart_block *restart = &current_thread_info()->restart_block;
1882 return restart->fn(restart);
1883}
1884
1885long do_no_restart_syscall(struct restart_block *param)
1886{
1887 return -EINTR;
1888}
1889
1890/*
1891 * We don't need to get the kernel lock - this is all local to this
1892 * particular thread.. (and that's good, because this is _heavily_
1893 * used by various programs)
1894 */
1895
1896/*
1897 * This is also useful for kernel threads that want to temporarily
1898 * (or permanently) block certain signals.
1899 *
1900 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1901 * interface happily blocks "unblockable" signals like SIGKILL
1902 * and friends.
1903 */
1904int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1905{
1906 int error;
1907
1908 spin_lock_irq(&current->sighand->siglock);
1909 if (oldset)
1910 *oldset = current->blocked;
1911
1912 error = 0;
1913 switch (how) {
1914 case SIG_BLOCK:
1915 sigorsets(&current->blocked, &current->blocked, set);
1916 break;
1917 case SIG_UNBLOCK:
1918 signandsets(&current->blocked, &current->blocked, set);
1919 break;
1920 case SIG_SETMASK:
1921 current->blocked = *set;
1922 break;
1923 default:
1924 error = -EINVAL;
1925 }
1926 recalc_sigpending();
1927 spin_unlock_irq(&current->sighand->siglock);
1928
1929 return error;
1930}
1931
1932asmlinkage long
1933sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1934{
1935 int error = -EINVAL;
1936 sigset_t old_set, new_set;
1937
1938 /* XXX: Don't preclude handling different sized sigset_t's. */
1939 if (sigsetsize != sizeof(sigset_t))
1940 goto out;
1941
1942 if (set) {
1943 error = -EFAULT;
1944 if (copy_from_user(&new_set, set, sizeof(*set)))
1945 goto out;
1946 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
1947
1948 error = sigprocmask(how, &new_set, &old_set);
1949 if (error)
1950 goto out;
1951 if (oset)
1952 goto set_old;
1953 } else if (oset) {
1954 spin_lock_irq(&current->sighand->siglock);
1955 old_set = current->blocked;
1956 spin_unlock_irq(&current->sighand->siglock);
1957
1958 set_old:
1959 error = -EFAULT;
1960 if (copy_to_user(oset, &old_set, sizeof(*oset)))
1961 goto out;
1962 }
1963 error = 0;
1964out:
1965 return error;
1966}
1967
1968long do_sigpending(void __user *set, unsigned long sigsetsize)
1969{
1970 long error = -EINVAL;
1971 sigset_t pending;
1972
1973 if (sigsetsize > sizeof(sigset_t))
1974 goto out;
1975
1976 spin_lock_irq(&current->sighand->siglock);
1977 sigorsets(&pending, &current->pending.signal,
1978 &current->signal->shared_pending.signal);
1979 spin_unlock_irq(&current->sighand->siglock);
1980
1981 /* Outside the lock because only this thread touches it. */
1982 sigandsets(&pending, &current->blocked, &pending);
1983
1984 error = -EFAULT;
1985 if (!copy_to_user(set, &pending, sigsetsize))
1986 error = 0;
1987
1988out:
1989 return error;
1990}
1991
1992asmlinkage long
1993sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
1994{
1995 return do_sigpending(set, sigsetsize);
1996}
1997
1998#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
1999
2000int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2001{
2002 int err;
2003
2004 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2005 return -EFAULT;
2006 if (from->si_code < 0)
2007 return __copy_to_user(to, from, sizeof(siginfo_t))
2008 ? -EFAULT : 0;
2009 /*
2010 * If you change siginfo_t structure, please be sure
2011 * this code is fixed accordingly.
2012 * Please remember to update the signalfd_copyinfo() function
2013 * inside fs/signalfd.c too, in case siginfo_t changes.
2014 * It should never copy any pad contained in the structure
2015 * to avoid security leaks, but must copy the generic
2016 * 3 ints plus the relevant union member.
2017 */
2018 err = __put_user(from->si_signo, &to->si_signo);
2019 err |= __put_user(from->si_errno, &to->si_errno);
2020 err |= __put_user((short)from->si_code, &to->si_code);
2021 switch (from->si_code & __SI_MASK) {
2022 case __SI_KILL:
2023 err |= __put_user(from->si_pid, &to->si_pid);
2024 err |= __put_user(from->si_uid, &to->si_uid);
2025 break;
2026 case __SI_TIMER:
2027 err |= __put_user(from->si_tid, &to->si_tid);
2028 err |= __put_user(from->si_overrun, &to->si_overrun);
2029 err |= __put_user(from->si_ptr, &to->si_ptr);
2030 break;
2031 case __SI_POLL:
2032 err |= __put_user(from->si_band, &to->si_band);
2033 err |= __put_user(from->si_fd, &to->si_fd);
2034 break;
2035 case __SI_FAULT:
2036 err |= __put_user(from->si_addr, &to->si_addr);
2037#ifdef __ARCH_SI_TRAPNO
2038 err |= __put_user(from->si_trapno, &to->si_trapno);
2039#endif
2040 break;
2041 case __SI_CHLD:
2042 err |= __put_user(from->si_pid, &to->si_pid);
2043 err |= __put_user(from->si_uid, &to->si_uid);
2044 err |= __put_user(from->si_status, &to->si_status);
2045 err |= __put_user(from->si_utime, &to->si_utime);
2046 err |= __put_user(from->si_stime, &to->si_stime);
2047 break;
2048 case __SI_RT: /* This is not generated by the kernel as of now. */
2049 case __SI_MESGQ: /* But this is */
2050 err |= __put_user(from->si_pid, &to->si_pid);
2051 err |= __put_user(from->si_uid, &to->si_uid);
2052 err |= __put_user(from->si_ptr, &to->si_ptr);
2053 break;
2054 default: /* this is just in case for now ... */
2055 err |= __put_user(from->si_pid, &to->si_pid);
2056 err |= __put_user(from->si_uid, &to->si_uid);
2057 break;
2058 }
2059 return err;
2060}
2061
2062#endif
2063
2064asmlinkage long
2065sys_rt_sigtimedwait(const sigset_t __user *uthese,
2066 siginfo_t __user *uinfo,
2067 const struct timespec __user *uts,
2068 size_t sigsetsize)
2069{
2070 int ret, sig;
2071 sigset_t these;
2072 struct timespec ts;
2073 siginfo_t info;
2074 long timeout = 0;
2075
2076 /* XXX: Don't preclude handling different sized sigset_t's. */
2077 if (sigsetsize != sizeof(sigset_t))
2078 return -EINVAL;
2079
2080 if (copy_from_user(&these, uthese, sizeof(these)))
2081 return -EFAULT;
2082
2083 /*
2084 * Invert the set of allowed signals to get those we
2085 * want to block.
2086 */
2087 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2088 signotset(&these);
2089
2090 if (uts) {
2091 if (copy_from_user(&ts, uts, sizeof(ts)))
2092 return -EFAULT;
2093 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2094 || ts.tv_sec < 0)
2095 return -EINVAL;
2096 }
2097
2098 spin_lock_irq(&current->sighand->siglock);
2099 sig = dequeue_signal(current, &these, &info);
2100 if (!sig) {
2101 timeout = MAX_SCHEDULE_TIMEOUT;
2102 if (uts)
2103 timeout = (timespec_to_jiffies(&ts)
2104 + (ts.tv_sec || ts.tv_nsec));
2105
2106 if (timeout) {
2107 /* None ready -- temporarily unblock those we're
2108 * interested while we are sleeping in so that we'll
2109 * be awakened when they arrive. */
2110 current->real_blocked = current->blocked;
2111 sigandsets(&current->blocked, &current->blocked, &these);
2112 recalc_sigpending();
2113 spin_unlock_irq(&current->sighand->siglock);
2114
2115 timeout = schedule_timeout_interruptible(timeout);
2116
2117 spin_lock_irq(&current->sighand->siglock);
2118 sig = dequeue_signal(current, &these, &info);
2119 current->blocked = current->real_blocked;
2120 siginitset(&current->real_blocked, 0);
2121 recalc_sigpending();
2122 }
2123 }
2124 spin_unlock_irq(&current->sighand->siglock);
2125
2126 if (sig) {
2127 ret = sig;
2128 if (uinfo) {
2129 if (copy_siginfo_to_user(uinfo, &info))
2130 ret = -EFAULT;
2131 }
2132 } else {
2133 ret = -EAGAIN;
2134 if (timeout)
2135 ret = -EINTR;
2136 }
2137
2138 return ret;
2139}
2140
2141asmlinkage long
2142sys_kill(int pid, int sig)
2143{
2144 struct siginfo info;
2145
2146 info.si_signo = sig;
2147 info.si_errno = 0;
2148 info.si_code = SI_USER;
2149 info.si_pid = task_tgid_vnr(current);
2150 info.si_uid = current->uid;
2151
2152 return kill_something_info(sig, &info, pid);
2153}
2154
2155static int do_tkill(int tgid, int pid, int sig)
2156{
2157 int error;
2158 struct siginfo info;
2159 struct task_struct *p;
2160 unsigned long flags;
2161
2162 error = -ESRCH;
2163 info.si_signo = sig;
2164 info.si_errno = 0;
2165 info.si_code = SI_TKILL;
2166 info.si_pid = task_tgid_vnr(current);
2167 info.si_uid = current->uid;
2168
2169 rcu_read_lock();
2170 p = find_task_by_vpid(pid);
2171 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2172 error = check_kill_permission(sig, &info, p);
2173 /*
2174 * The null signal is a permissions and process existence
2175 * probe. No signal is actually delivered.
2176 *
2177 * If lock_task_sighand() fails we pretend the task dies
2178 * after receiving the signal. The window is tiny, and the
2179 * signal is private anyway.
2180 */
2181 if (!error && sig && lock_task_sighand(p, &flags)) {
2182 error = specific_send_sig_info(sig, &info, p);
2183 unlock_task_sighand(p, &flags);
2184 }
2185 }
2186 rcu_read_unlock();
2187
2188 return error;
2189}
2190
2191/**
2192 * sys_tgkill - send signal to one specific thread
2193 * @tgid: the thread group ID of the thread
2194 * @pid: the PID of the thread
2195 * @sig: signal to be sent
2196 *
2197 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2198 * exists but it's not belonging to the target process anymore. This
2199 * method solves the problem of threads exiting and PIDs getting reused.
2200 */
2201asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2202{
2203 /* This is only valid for single tasks */
2204 if (pid <= 0 || tgid <= 0)
2205 return -EINVAL;
2206
2207 return do_tkill(tgid, pid, sig);
2208}
2209
2210/*
2211 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2212 */
2213asmlinkage long
2214sys_tkill(int pid, int sig)
2215{
2216 /* This is only valid for single tasks */
2217 if (pid <= 0)
2218 return -EINVAL;
2219
2220 return do_tkill(0, pid, sig);
2221}
2222
2223asmlinkage long
2224sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2225{
2226 siginfo_t info;
2227
2228 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2229 return -EFAULT;
2230
2231 /* Not even root can pretend to send signals from the kernel.
2232 Nor can they impersonate a kill(), which adds source info. */
2233 if (info.si_code >= 0)
2234 return -EPERM;
2235 info.si_signo = sig;
2236
2237 /* POSIX.1b doesn't mention process groups. */
2238 return kill_proc_info(sig, &info, pid);
2239}
2240
2241int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2242{
2243 struct task_struct *t = current;
2244 struct k_sigaction *k;
2245 sigset_t mask;
2246
2247 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2248 return -EINVAL;
2249
2250 k = &t->sighand->action[sig-1];
2251
2252 spin_lock_irq(&current->sighand->siglock);
2253 if (oact)
2254 *oact = *k;
2255
2256 if (act) {
2257 sigdelsetmask(&act->sa.sa_mask,
2258 sigmask(SIGKILL) | sigmask(SIGSTOP));
2259 *k = *act;
2260 /*
2261 * POSIX 3.3.1.3:
2262 * "Setting a signal action to SIG_IGN for a signal that is
2263 * pending shall cause the pending signal to be discarded,
2264 * whether or not it is blocked."
2265 *
2266 * "Setting a signal action to SIG_DFL for a signal that is
2267 * pending and whose default action is to ignore the signal
2268 * (for example, SIGCHLD), shall cause the pending signal to
2269 * be discarded, whether or not it is blocked"
2270 */
2271 if (__sig_ignored(t, sig)) {
2272 sigemptyset(&mask);
2273 sigaddset(&mask, sig);
2274 rm_from_queue_full(&mask, &t->signal->shared_pending);
2275 do {
2276 rm_from_queue_full(&mask, &t->pending);
2277 t = next_thread(t);
2278 } while (t != current);
2279 }
2280 }
2281
2282 spin_unlock_irq(&current->sighand->siglock);
2283 return 0;
2284}
2285
2286int
2287do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2288{
2289 stack_t oss;
2290 int error;
2291
2292 if (uoss) {
2293 oss.ss_sp = (void __user *) current->sas_ss_sp;
2294 oss.ss_size = current->sas_ss_size;
2295 oss.ss_flags = sas_ss_flags(sp);
2296 }
2297
2298 if (uss) {
2299 void __user *ss_sp;
2300 size_t ss_size;
2301 int ss_flags;
2302
2303 error = -EFAULT;
2304 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2305 || __get_user(ss_sp, &uss->ss_sp)
2306 || __get_user(ss_flags, &uss->ss_flags)
2307 || __get_user(ss_size, &uss->ss_size))
2308 goto out;
2309
2310 error = -EPERM;
2311 if (on_sig_stack(sp))
2312 goto out;
2313
2314 error = -EINVAL;
2315 /*
2316 *
2317 * Note - this code used to test ss_flags incorrectly
2318 * old code may have been written using ss_flags==0
2319 * to mean ss_flags==SS_ONSTACK (as this was the only
2320 * way that worked) - this fix preserves that older
2321 * mechanism
2322 */
2323 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2324 goto out;
2325
2326 if (ss_flags == SS_DISABLE) {
2327 ss_size = 0;
2328 ss_sp = NULL;
2329 } else {
2330 error = -ENOMEM;
2331 if (ss_size < MINSIGSTKSZ)
2332 goto out;
2333 }
2334
2335 current->sas_ss_sp = (unsigned long) ss_sp;
2336 current->sas_ss_size = ss_size;
2337 }
2338
2339 if (uoss) {
2340 error = -EFAULT;
2341 if (copy_to_user(uoss, &oss, sizeof(oss)))
2342 goto out;
2343 }
2344
2345 error = 0;
2346out:
2347 return error;
2348}
2349
2350#ifdef __ARCH_WANT_SYS_SIGPENDING
2351
2352asmlinkage long
2353sys_sigpending(old_sigset_t __user *set)
2354{
2355 return do_sigpending(set, sizeof(*set));
2356}
2357
2358#endif
2359
2360#ifdef __ARCH_WANT_SYS_SIGPROCMASK
2361/* Some platforms have their own version with special arguments others
2362 support only sys_rt_sigprocmask. */
2363
2364asmlinkage long
2365sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2366{
2367 int error;
2368 old_sigset_t old_set, new_set;
2369
2370 if (set) {
2371 error = -EFAULT;
2372 if (copy_from_user(&new_set, set, sizeof(*set)))
2373 goto out;
2374 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2375
2376 spin_lock_irq(&current->sighand->siglock);
2377 old_set = current->blocked.sig[0];
2378
2379 error = 0;
2380 switch (how) {
2381 default:
2382 error = -EINVAL;
2383 break;
2384 case SIG_BLOCK:
2385 sigaddsetmask(&current->blocked, new_set);
2386 break;
2387 case SIG_UNBLOCK:
2388 sigdelsetmask(&current->blocked, new_set);
2389 break;
2390 case SIG_SETMASK:
2391 current->blocked.sig[0] = new_set;
2392 break;
2393 }
2394
2395 recalc_sigpending();
2396 spin_unlock_irq(&current->sighand->siglock);
2397 if (error)
2398 goto out;
2399 if (oset)
2400 goto set_old;
2401 } else if (oset) {
2402 old_set = current->blocked.sig[0];
2403 set_old:
2404 error = -EFAULT;
2405 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2406 goto out;
2407 }
2408 error = 0;
2409out:
2410 return error;
2411}
2412#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2413
2414#ifdef __ARCH_WANT_SYS_RT_SIGACTION
2415asmlinkage long
2416sys_rt_sigaction(int sig,
2417 const struct sigaction __user *act,
2418 struct sigaction __user *oact,
2419 size_t sigsetsize)
2420{
2421 struct k_sigaction new_sa, old_sa;
2422 int ret = -EINVAL;
2423
2424 /* XXX: Don't preclude handling different sized sigset_t's. */
2425 if (sigsetsize != sizeof(sigset_t))
2426 goto out;
2427
2428 if (act) {
2429 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2430 return -EFAULT;
2431 }
2432
2433 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2434
2435 if (!ret && oact) {
2436 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2437 return -EFAULT;
2438 }
2439out:
2440 return ret;
2441}
2442#endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2443
2444#ifdef __ARCH_WANT_SYS_SGETMASK
2445
2446/*
2447 * For backwards compatibility. Functionality superseded by sigprocmask.
2448 */
2449asmlinkage long
2450sys_sgetmask(void)
2451{
2452 /* SMP safe */
2453 return current->blocked.sig[0];
2454}
2455
2456asmlinkage long
2457sys_ssetmask(int newmask)
2458{
2459 int old;
2460
2461 spin_lock_irq(&current->sighand->siglock);
2462 old = current->blocked.sig[0];
2463
2464 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2465 sigmask(SIGSTOP)));
2466 recalc_sigpending();
2467 spin_unlock_irq(&current->sighand->siglock);
2468
2469 return old;
2470}
2471#endif /* __ARCH_WANT_SGETMASK */
2472
2473#ifdef __ARCH_WANT_SYS_SIGNAL
2474/*
2475 * For backwards compatibility. Functionality superseded by sigaction.
2476 */
2477asmlinkage unsigned long
2478sys_signal(int sig, __sighandler_t handler)
2479{
2480 struct k_sigaction new_sa, old_sa;
2481 int ret;
2482
2483 new_sa.sa.sa_handler = handler;
2484 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2485 sigemptyset(&new_sa.sa.sa_mask);
2486
2487 ret = do_sigaction(sig, &new_sa, &old_sa);
2488
2489 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2490}
2491#endif /* __ARCH_WANT_SYS_SIGNAL */
2492
2493#ifdef __ARCH_WANT_SYS_PAUSE
2494
2495asmlinkage long
2496sys_pause(void)
2497{
2498 current->state = TASK_INTERRUPTIBLE;
2499 schedule();
2500 return -ERESTARTNOHAND;
2501}
2502
2503#endif
2504
2505#ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2506asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2507{
2508 sigset_t newset;
2509
2510 /* XXX: Don't preclude handling different sized sigset_t's. */
2511 if (sigsetsize != sizeof(sigset_t))
2512 return -EINVAL;
2513
2514 if (copy_from_user(&newset, unewset, sizeof(newset)))
2515 return -EFAULT;
2516 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2517
2518 spin_lock_irq(&current->sighand->siglock);
2519 current->saved_sigmask = current->blocked;
2520 current->blocked = newset;
2521 recalc_sigpending();
2522 spin_unlock_irq(&current->sighand->siglock);
2523
2524 current->state = TASK_INTERRUPTIBLE;
2525 schedule();
2526 set_thread_flag(TIF_RESTORE_SIGMASK);
2527 return -ERESTARTNOHAND;
2528}
2529#endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2530
2531__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2532{
2533 return NULL;
2534}
2535
2536void __init signals_init(void)
2537{
2538 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2539}
This page took 0.033024 seconds and 5 git commands to generate.