drm/i915: Sample the frame counter instead of a timestamp for CRCs
[deliverable/linux.git] / kernel / time / tick-broadcast.c
... / ...
CommitLineData
1/*
2 * linux/kernel/time/tick-broadcast.c
3 *
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
6 *
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10 *
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
13 */
14#include <linux/cpu.h>
15#include <linux/err.h>
16#include <linux/hrtimer.h>
17#include <linux/interrupt.h>
18#include <linux/percpu.h>
19#include <linux/profile.h>
20#include <linux/sched.h>
21#include <linux/smp.h>
22#include <linux/module.h>
23
24#include "tick-internal.h"
25
26/*
27 * Broadcast support for broken x86 hardware, where the local apic
28 * timer stops in C3 state.
29 */
30
31static struct tick_device tick_broadcast_device;
32static cpumask_var_t tick_broadcast_mask;
33static cpumask_var_t tick_broadcast_on;
34static cpumask_var_t tmpmask;
35static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
36static int tick_broadcast_force;
37
38#ifdef CONFIG_TICK_ONESHOT
39static void tick_broadcast_clear_oneshot(int cpu);
40#else
41static inline void tick_broadcast_clear_oneshot(int cpu) { }
42#endif
43
44/*
45 * Debugging: see timer_list.c
46 */
47struct tick_device *tick_get_broadcast_device(void)
48{
49 return &tick_broadcast_device;
50}
51
52struct cpumask *tick_get_broadcast_mask(void)
53{
54 return tick_broadcast_mask;
55}
56
57/*
58 * Start the device in periodic mode
59 */
60static void tick_broadcast_start_periodic(struct clock_event_device *bc)
61{
62 if (bc)
63 tick_setup_periodic(bc, 1);
64}
65
66/*
67 * Check, if the device can be utilized as broadcast device:
68 */
69static bool tick_check_broadcast_device(struct clock_event_device *curdev,
70 struct clock_event_device *newdev)
71{
72 if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
73 (newdev->features & CLOCK_EVT_FEAT_C3STOP))
74 return false;
75
76 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
77 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
78 return false;
79
80 return !curdev || newdev->rating > curdev->rating;
81}
82
83/*
84 * Conditionally install/replace broadcast device
85 */
86void tick_install_broadcast_device(struct clock_event_device *dev)
87{
88 struct clock_event_device *cur = tick_broadcast_device.evtdev;
89
90 if (!tick_check_broadcast_device(cur, dev))
91 return;
92
93 if (!try_module_get(dev->owner))
94 return;
95
96 clockevents_exchange_device(cur, dev);
97 if (cur)
98 cur->event_handler = clockevents_handle_noop;
99 tick_broadcast_device.evtdev = dev;
100 if (!cpumask_empty(tick_broadcast_mask))
101 tick_broadcast_start_periodic(dev);
102 /*
103 * Inform all cpus about this. We might be in a situation
104 * where we did not switch to oneshot mode because the per cpu
105 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
106 * of a oneshot capable broadcast device. Without that
107 * notification the systems stays stuck in periodic mode
108 * forever.
109 */
110 if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
111 tick_clock_notify();
112}
113
114/*
115 * Check, if the device is the broadcast device
116 */
117int tick_is_broadcast_device(struct clock_event_device *dev)
118{
119 return (dev && tick_broadcast_device.evtdev == dev);
120}
121
122static void err_broadcast(const struct cpumask *mask)
123{
124 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
125}
126
127static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
128{
129 if (!dev->broadcast)
130 dev->broadcast = tick_broadcast;
131 if (!dev->broadcast) {
132 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
133 dev->name);
134 dev->broadcast = err_broadcast;
135 }
136}
137
138/*
139 * Check, if the device is disfunctional and a place holder, which
140 * needs to be handled by the broadcast device.
141 */
142int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
143{
144 struct clock_event_device *bc = tick_broadcast_device.evtdev;
145 unsigned long flags;
146 int ret;
147
148 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
149
150 /*
151 * Devices might be registered with both periodic and oneshot
152 * mode disabled. This signals, that the device needs to be
153 * operated from the broadcast device and is a placeholder for
154 * the cpu local device.
155 */
156 if (!tick_device_is_functional(dev)) {
157 dev->event_handler = tick_handle_periodic;
158 tick_device_setup_broadcast_func(dev);
159 cpumask_set_cpu(cpu, tick_broadcast_mask);
160 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
161 tick_broadcast_start_periodic(bc);
162 else
163 tick_broadcast_setup_oneshot(bc);
164 ret = 1;
165 } else {
166 /*
167 * Clear the broadcast bit for this cpu if the
168 * device is not power state affected.
169 */
170 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
171 cpumask_clear_cpu(cpu, tick_broadcast_mask);
172 else
173 tick_device_setup_broadcast_func(dev);
174
175 /*
176 * Clear the broadcast bit if the CPU is not in
177 * periodic broadcast on state.
178 */
179 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
180 cpumask_clear_cpu(cpu, tick_broadcast_mask);
181
182 switch (tick_broadcast_device.mode) {
183 case TICKDEV_MODE_ONESHOT:
184 /*
185 * If the system is in oneshot mode we can
186 * unconditionally clear the oneshot mask bit,
187 * because the CPU is running and therefore
188 * not in an idle state which causes the power
189 * state affected device to stop. Let the
190 * caller initialize the device.
191 */
192 tick_broadcast_clear_oneshot(cpu);
193 ret = 0;
194 break;
195
196 case TICKDEV_MODE_PERIODIC:
197 /*
198 * If the system is in periodic mode, check
199 * whether the broadcast device can be
200 * switched off now.
201 */
202 if (cpumask_empty(tick_broadcast_mask) && bc)
203 clockevents_shutdown(bc);
204 /*
205 * If we kept the cpu in the broadcast mask,
206 * tell the caller to leave the per cpu device
207 * in shutdown state. The periodic interrupt
208 * is delivered by the broadcast device.
209 */
210 ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
211 break;
212 default:
213 /* Nothing to do */
214 ret = 0;
215 break;
216 }
217 }
218 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
219 return ret;
220}
221
222#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
223int tick_receive_broadcast(void)
224{
225 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
226 struct clock_event_device *evt = td->evtdev;
227
228 if (!evt)
229 return -ENODEV;
230
231 if (!evt->event_handler)
232 return -EINVAL;
233
234 evt->event_handler(evt);
235 return 0;
236}
237#endif
238
239/*
240 * Broadcast the event to the cpus, which are set in the mask (mangled).
241 */
242static void tick_do_broadcast(struct cpumask *mask)
243{
244 int cpu = smp_processor_id();
245 struct tick_device *td;
246
247 /*
248 * Check, if the current cpu is in the mask
249 */
250 if (cpumask_test_cpu(cpu, mask)) {
251 cpumask_clear_cpu(cpu, mask);
252 td = &per_cpu(tick_cpu_device, cpu);
253 td->evtdev->event_handler(td->evtdev);
254 }
255
256 if (!cpumask_empty(mask)) {
257 /*
258 * It might be necessary to actually check whether the devices
259 * have different broadcast functions. For now, just use the
260 * one of the first device. This works as long as we have this
261 * misfeature only on x86 (lapic)
262 */
263 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
264 td->evtdev->broadcast(mask);
265 }
266}
267
268/*
269 * Periodic broadcast:
270 * - invoke the broadcast handlers
271 */
272static void tick_do_periodic_broadcast(void)
273{
274 raw_spin_lock(&tick_broadcast_lock);
275
276 cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
277 tick_do_broadcast(tmpmask);
278
279 raw_spin_unlock(&tick_broadcast_lock);
280}
281
282/*
283 * Event handler for periodic broadcast ticks
284 */
285static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
286{
287 ktime_t next;
288
289 tick_do_periodic_broadcast();
290
291 /*
292 * The device is in periodic mode. No reprogramming necessary:
293 */
294 if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
295 return;
296
297 /*
298 * Setup the next period for devices, which do not have
299 * periodic mode. We read dev->next_event first and add to it
300 * when the event already expired. clockevents_program_event()
301 * sets dev->next_event only when the event is really
302 * programmed to the device.
303 */
304 for (next = dev->next_event; ;) {
305 next = ktime_add(next, tick_period);
306
307 if (!clockevents_program_event(dev, next, false))
308 return;
309 tick_do_periodic_broadcast();
310 }
311}
312
313/*
314 * Powerstate information: The system enters/leaves a state, where
315 * affected devices might stop
316 */
317static void tick_do_broadcast_on_off(unsigned long *reason)
318{
319 struct clock_event_device *bc, *dev;
320 struct tick_device *td;
321 unsigned long flags;
322 int cpu, bc_stopped;
323
324 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
325
326 cpu = smp_processor_id();
327 td = &per_cpu(tick_cpu_device, cpu);
328 dev = td->evtdev;
329 bc = tick_broadcast_device.evtdev;
330
331 /*
332 * Is the device not affected by the powerstate ?
333 */
334 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
335 goto out;
336
337 if (!tick_device_is_functional(dev))
338 goto out;
339
340 bc_stopped = cpumask_empty(tick_broadcast_mask);
341
342 switch (*reason) {
343 case CLOCK_EVT_NOTIFY_BROADCAST_ON:
344 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
345 cpumask_set_cpu(cpu, tick_broadcast_on);
346 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
347 if (tick_broadcast_device.mode ==
348 TICKDEV_MODE_PERIODIC)
349 clockevents_shutdown(dev);
350 }
351 if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
352 tick_broadcast_force = 1;
353 break;
354 case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
355 if (tick_broadcast_force)
356 break;
357 cpumask_clear_cpu(cpu, tick_broadcast_on);
358 if (!tick_device_is_functional(dev))
359 break;
360 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
361 if (tick_broadcast_device.mode ==
362 TICKDEV_MODE_PERIODIC)
363 tick_setup_periodic(dev, 0);
364 }
365 break;
366 }
367
368 if (cpumask_empty(tick_broadcast_mask)) {
369 if (!bc_stopped)
370 clockevents_shutdown(bc);
371 } else if (bc_stopped) {
372 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
373 tick_broadcast_start_periodic(bc);
374 else
375 tick_broadcast_setup_oneshot(bc);
376 }
377out:
378 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
379}
380
381/*
382 * Powerstate information: The system enters/leaves a state, where
383 * affected devices might stop.
384 */
385void tick_broadcast_on_off(unsigned long reason, int *oncpu)
386{
387 if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
388 printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
389 "offline CPU #%d\n", *oncpu);
390 else
391 tick_do_broadcast_on_off(&reason);
392}
393
394/*
395 * Set the periodic handler depending on broadcast on/off
396 */
397void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
398{
399 if (!broadcast)
400 dev->event_handler = tick_handle_periodic;
401 else
402 dev->event_handler = tick_handle_periodic_broadcast;
403}
404
405/*
406 * Remove a CPU from broadcasting
407 */
408void tick_shutdown_broadcast(unsigned int *cpup)
409{
410 struct clock_event_device *bc;
411 unsigned long flags;
412 unsigned int cpu = *cpup;
413
414 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
415
416 bc = tick_broadcast_device.evtdev;
417 cpumask_clear_cpu(cpu, tick_broadcast_mask);
418 cpumask_clear_cpu(cpu, tick_broadcast_on);
419
420 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
421 if (bc && cpumask_empty(tick_broadcast_mask))
422 clockevents_shutdown(bc);
423 }
424
425 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
426}
427
428void tick_suspend_broadcast(void)
429{
430 struct clock_event_device *bc;
431 unsigned long flags;
432
433 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
434
435 bc = tick_broadcast_device.evtdev;
436 if (bc)
437 clockevents_shutdown(bc);
438
439 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
440}
441
442int tick_resume_broadcast(void)
443{
444 struct clock_event_device *bc;
445 unsigned long flags;
446 int broadcast = 0;
447
448 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
449
450 bc = tick_broadcast_device.evtdev;
451
452 if (bc) {
453 clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
454
455 switch (tick_broadcast_device.mode) {
456 case TICKDEV_MODE_PERIODIC:
457 if (!cpumask_empty(tick_broadcast_mask))
458 tick_broadcast_start_periodic(bc);
459 broadcast = cpumask_test_cpu(smp_processor_id(),
460 tick_broadcast_mask);
461 break;
462 case TICKDEV_MODE_ONESHOT:
463 if (!cpumask_empty(tick_broadcast_mask))
464 broadcast = tick_resume_broadcast_oneshot(bc);
465 break;
466 }
467 }
468 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
469
470 return broadcast;
471}
472
473
474#ifdef CONFIG_TICK_ONESHOT
475
476static cpumask_var_t tick_broadcast_oneshot_mask;
477static cpumask_var_t tick_broadcast_pending_mask;
478static cpumask_var_t tick_broadcast_force_mask;
479
480/*
481 * Exposed for debugging: see timer_list.c
482 */
483struct cpumask *tick_get_broadcast_oneshot_mask(void)
484{
485 return tick_broadcast_oneshot_mask;
486}
487
488/*
489 * Called before going idle with interrupts disabled. Checks whether a
490 * broadcast event from the other core is about to happen. We detected
491 * that in tick_broadcast_oneshot_control(). The callsite can use this
492 * to avoid a deep idle transition as we are about to get the
493 * broadcast IPI right away.
494 */
495int tick_check_broadcast_expired(void)
496{
497 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
498}
499
500/*
501 * Set broadcast interrupt affinity
502 */
503static void tick_broadcast_set_affinity(struct clock_event_device *bc,
504 const struct cpumask *cpumask)
505{
506 if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
507 return;
508
509 if (cpumask_equal(bc->cpumask, cpumask))
510 return;
511
512 bc->cpumask = cpumask;
513 irq_set_affinity(bc->irq, bc->cpumask);
514}
515
516static int tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
517 ktime_t expires, int force)
518{
519 int ret;
520
521 if (bc->mode != CLOCK_EVT_MODE_ONESHOT)
522 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
523
524 ret = clockevents_program_event(bc, expires, force);
525 if (!ret)
526 tick_broadcast_set_affinity(bc, cpumask_of(cpu));
527 return ret;
528}
529
530int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
531{
532 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
533 return 0;
534}
535
536/*
537 * Called from irq_enter() when idle was interrupted to reenable the
538 * per cpu device.
539 */
540void tick_check_oneshot_broadcast(int cpu)
541{
542 if (cpumask_test_cpu(cpu, tick_broadcast_oneshot_mask)) {
543 struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
544
545 /*
546 * We might be in the middle of switching over from
547 * periodic to oneshot. If the CPU has not yet
548 * switched over, leave the device alone.
549 */
550 if (td->mode == TICKDEV_MODE_ONESHOT) {
551 clockevents_set_mode(td->evtdev,
552 CLOCK_EVT_MODE_ONESHOT);
553 }
554 }
555}
556
557/*
558 * Handle oneshot mode broadcasting
559 */
560static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
561{
562 struct tick_device *td;
563 ktime_t now, next_event;
564 int cpu, next_cpu = 0;
565
566 raw_spin_lock(&tick_broadcast_lock);
567again:
568 dev->next_event.tv64 = KTIME_MAX;
569 next_event.tv64 = KTIME_MAX;
570 cpumask_clear(tmpmask);
571 now = ktime_get();
572 /* Find all expired events */
573 for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
574 td = &per_cpu(tick_cpu_device, cpu);
575 if (td->evtdev->next_event.tv64 <= now.tv64) {
576 cpumask_set_cpu(cpu, tmpmask);
577 /*
578 * Mark the remote cpu in the pending mask, so
579 * it can avoid reprogramming the cpu local
580 * timer in tick_broadcast_oneshot_control().
581 */
582 cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
583 } else if (td->evtdev->next_event.tv64 < next_event.tv64) {
584 next_event.tv64 = td->evtdev->next_event.tv64;
585 next_cpu = cpu;
586 }
587 }
588
589 /*
590 * Remove the current cpu from the pending mask. The event is
591 * delivered immediately in tick_do_broadcast() !
592 */
593 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
594
595 /* Take care of enforced broadcast requests */
596 cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
597 cpumask_clear(tick_broadcast_force_mask);
598
599 /*
600 * Sanity check. Catch the case where we try to broadcast to
601 * offline cpus.
602 */
603 if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
604 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
605
606 /*
607 * Wakeup the cpus which have an expired event.
608 */
609 tick_do_broadcast(tmpmask);
610
611 /*
612 * Two reasons for reprogram:
613 *
614 * - The global event did not expire any CPU local
615 * events. This happens in dyntick mode, as the maximum PIT
616 * delta is quite small.
617 *
618 * - There are pending events on sleeping CPUs which were not
619 * in the event mask
620 */
621 if (next_event.tv64 != KTIME_MAX) {
622 /*
623 * Rearm the broadcast device. If event expired,
624 * repeat the above
625 */
626 if (tick_broadcast_set_event(dev, next_cpu, next_event, 0))
627 goto again;
628 }
629 raw_spin_unlock(&tick_broadcast_lock);
630}
631
632/*
633 * Powerstate information: The system enters/leaves a state, where
634 * affected devices might stop
635 */
636void tick_broadcast_oneshot_control(unsigned long reason)
637{
638 struct clock_event_device *bc, *dev;
639 struct tick_device *td;
640 unsigned long flags;
641 ktime_t now;
642 int cpu;
643
644 /*
645 * Periodic mode does not care about the enter/exit of power
646 * states
647 */
648 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
649 return;
650
651 /*
652 * We are called with preemtion disabled from the depth of the
653 * idle code, so we can't be moved away.
654 */
655 cpu = smp_processor_id();
656 td = &per_cpu(tick_cpu_device, cpu);
657 dev = td->evtdev;
658
659 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
660 return;
661
662 bc = tick_broadcast_device.evtdev;
663
664 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
665 if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
666 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
667 WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
668 clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
669 /*
670 * We only reprogram the broadcast timer if we
671 * did not mark ourself in the force mask and
672 * if the cpu local event is earlier than the
673 * broadcast event. If the current CPU is in
674 * the force mask, then we are going to be
675 * woken by the IPI right away.
676 */
677 if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) &&
678 dev->next_event.tv64 < bc->next_event.tv64)
679 tick_broadcast_set_event(bc, cpu, dev->next_event, 1);
680 }
681 } else {
682 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
683 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
684 /*
685 * The cpu which was handling the broadcast
686 * timer marked this cpu in the broadcast
687 * pending mask and fired the broadcast
688 * IPI. So we are going to handle the expired
689 * event anyway via the broadcast IPI
690 * handler. No need to reprogram the timer
691 * with an already expired event.
692 */
693 if (cpumask_test_and_clear_cpu(cpu,
694 tick_broadcast_pending_mask))
695 goto out;
696
697 /*
698 * Bail out if there is no next event.
699 */
700 if (dev->next_event.tv64 == KTIME_MAX)
701 goto out;
702 /*
703 * If the pending bit is not set, then we are
704 * either the CPU handling the broadcast
705 * interrupt or we got woken by something else.
706 *
707 * We are not longer in the broadcast mask, so
708 * if the cpu local expiry time is already
709 * reached, we would reprogram the cpu local
710 * timer with an already expired event.
711 *
712 * This can lead to a ping-pong when we return
713 * to idle and therefor rearm the broadcast
714 * timer before the cpu local timer was able
715 * to fire. This happens because the forced
716 * reprogramming makes sure that the event
717 * will happen in the future and depending on
718 * the min_delta setting this might be far
719 * enough out that the ping-pong starts.
720 *
721 * If the cpu local next_event has expired
722 * then we know that the broadcast timer
723 * next_event has expired as well and
724 * broadcast is about to be handled. So we
725 * avoid reprogramming and enforce that the
726 * broadcast handler, which did not run yet,
727 * will invoke the cpu local handler.
728 *
729 * We cannot call the handler directly from
730 * here, because we might be in a NOHZ phase
731 * and we did not go through the irq_enter()
732 * nohz fixups.
733 */
734 now = ktime_get();
735 if (dev->next_event.tv64 <= now.tv64) {
736 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
737 goto out;
738 }
739 /*
740 * We got woken by something else. Reprogram
741 * the cpu local timer device.
742 */
743 tick_program_event(dev->next_event, 1);
744 }
745 }
746out:
747 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
748}
749
750/*
751 * Reset the one shot broadcast for a cpu
752 *
753 * Called with tick_broadcast_lock held
754 */
755static void tick_broadcast_clear_oneshot(int cpu)
756{
757 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
758}
759
760static void tick_broadcast_init_next_event(struct cpumask *mask,
761 ktime_t expires)
762{
763 struct tick_device *td;
764 int cpu;
765
766 for_each_cpu(cpu, mask) {
767 td = &per_cpu(tick_cpu_device, cpu);
768 if (td->evtdev)
769 td->evtdev->next_event = expires;
770 }
771}
772
773/**
774 * tick_broadcast_setup_oneshot - setup the broadcast device
775 */
776void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
777{
778 int cpu = smp_processor_id();
779
780 /* Set it up only once ! */
781 if (bc->event_handler != tick_handle_oneshot_broadcast) {
782 int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
783
784 bc->event_handler = tick_handle_oneshot_broadcast;
785
786 /*
787 * We must be careful here. There might be other CPUs
788 * waiting for periodic broadcast. We need to set the
789 * oneshot_mask bits for those and program the
790 * broadcast device to fire.
791 */
792 cpumask_copy(tmpmask, tick_broadcast_mask);
793 cpumask_clear_cpu(cpu, tmpmask);
794 cpumask_or(tick_broadcast_oneshot_mask,
795 tick_broadcast_oneshot_mask, tmpmask);
796
797 if (was_periodic && !cpumask_empty(tmpmask)) {
798 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
799 tick_broadcast_init_next_event(tmpmask,
800 tick_next_period);
801 tick_broadcast_set_event(bc, cpu, tick_next_period, 1);
802 } else
803 bc->next_event.tv64 = KTIME_MAX;
804 } else {
805 /*
806 * The first cpu which switches to oneshot mode sets
807 * the bit for all other cpus which are in the general
808 * (periodic) broadcast mask. So the bit is set and
809 * would prevent the first broadcast enter after this
810 * to program the bc device.
811 */
812 tick_broadcast_clear_oneshot(cpu);
813 }
814}
815
816/*
817 * Select oneshot operating mode for the broadcast device
818 */
819void tick_broadcast_switch_to_oneshot(void)
820{
821 struct clock_event_device *bc;
822 unsigned long flags;
823
824 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
825
826 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
827 bc = tick_broadcast_device.evtdev;
828 if (bc)
829 tick_broadcast_setup_oneshot(bc);
830
831 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
832}
833
834
835/*
836 * Remove a dead CPU from broadcasting
837 */
838void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
839{
840 unsigned long flags;
841 unsigned int cpu = *cpup;
842
843 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
844
845 /*
846 * Clear the broadcast masks for the dead cpu, but do not stop
847 * the broadcast device!
848 */
849 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
850 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
851 cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
852
853 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
854}
855
856/*
857 * Check, whether the broadcast device is in one shot mode
858 */
859int tick_broadcast_oneshot_active(void)
860{
861 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
862}
863
864/*
865 * Check whether the broadcast device supports oneshot.
866 */
867bool tick_broadcast_oneshot_available(void)
868{
869 struct clock_event_device *bc = tick_broadcast_device.evtdev;
870
871 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
872}
873
874#endif
875
876void __init tick_broadcast_init(void)
877{
878 zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
879 zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
880 zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
881#ifdef CONFIG_TICK_ONESHOT
882 zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
883 zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
884 zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
885#endif
886}
This page took 0.031961 seconds and 5 git commands to generate.