mm: have zonelist contains structs with both a zone pointer and zone_idx
[deliverable/linux.git] / kernel / time.c
... / ...
CommitLineData
1/*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10/*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30#include <linux/module.h>
31#include <linux/timex.h>
32#include <linux/capability.h>
33#include <linux/clocksource.h>
34#include <linux/errno.h>
35#include <linux/syscalls.h>
36#include <linux/security.h>
37#include <linux/fs.h>
38
39#include <asm/uaccess.h>
40#include <asm/unistd.h>
41
42#include "timeconst.h"
43
44/*
45 * The timezone where the local system is located. Used as a default by some
46 * programs who obtain this value by using gettimeofday.
47 */
48struct timezone sys_tz;
49
50EXPORT_SYMBOL(sys_tz);
51
52#ifdef __ARCH_WANT_SYS_TIME
53
54/*
55 * sys_time() can be implemented in user-level using
56 * sys_gettimeofday(). Is this for backwards compatibility? If so,
57 * why not move it into the appropriate arch directory (for those
58 * architectures that need it).
59 */
60asmlinkage long sys_time(time_t __user * tloc)
61{
62 time_t i = get_seconds();
63
64 if (tloc) {
65 if (put_user(i,tloc))
66 i = -EFAULT;
67 }
68 return i;
69}
70
71/*
72 * sys_stime() can be implemented in user-level using
73 * sys_settimeofday(). Is this for backwards compatibility? If so,
74 * why not move it into the appropriate arch directory (for those
75 * architectures that need it).
76 */
77
78asmlinkage long sys_stime(time_t __user *tptr)
79{
80 struct timespec tv;
81 int err;
82
83 if (get_user(tv.tv_sec, tptr))
84 return -EFAULT;
85
86 tv.tv_nsec = 0;
87
88 err = security_settime(&tv, NULL);
89 if (err)
90 return err;
91
92 do_settimeofday(&tv);
93 return 0;
94}
95
96#endif /* __ARCH_WANT_SYS_TIME */
97
98asmlinkage long sys_gettimeofday(struct timeval __user *tv,
99 struct timezone __user *tz)
100{
101 if (likely(tv != NULL)) {
102 struct timeval ktv;
103 do_gettimeofday(&ktv);
104 if (copy_to_user(tv, &ktv, sizeof(ktv)))
105 return -EFAULT;
106 }
107 if (unlikely(tz != NULL)) {
108 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
109 return -EFAULT;
110 }
111 return 0;
112}
113
114/*
115 * Adjust the time obtained from the CMOS to be UTC time instead of
116 * local time.
117 *
118 * This is ugly, but preferable to the alternatives. Otherwise we
119 * would either need to write a program to do it in /etc/rc (and risk
120 * confusion if the program gets run more than once; it would also be
121 * hard to make the program warp the clock precisely n hours) or
122 * compile in the timezone information into the kernel. Bad, bad....
123 *
124 * - TYT, 1992-01-01
125 *
126 * The best thing to do is to keep the CMOS clock in universal time (UTC)
127 * as real UNIX machines always do it. This avoids all headaches about
128 * daylight saving times and warping kernel clocks.
129 */
130static inline void warp_clock(void)
131{
132 write_seqlock_irq(&xtime_lock);
133 wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
134 xtime.tv_sec += sys_tz.tz_minuteswest * 60;
135 update_xtime_cache(0);
136 write_sequnlock_irq(&xtime_lock);
137 clock_was_set();
138}
139
140/*
141 * In case for some reason the CMOS clock has not already been running
142 * in UTC, but in some local time: The first time we set the timezone,
143 * we will warp the clock so that it is ticking UTC time instead of
144 * local time. Presumably, if someone is setting the timezone then we
145 * are running in an environment where the programs understand about
146 * timezones. This should be done at boot time in the /etc/rc script,
147 * as soon as possible, so that the clock can be set right. Otherwise,
148 * various programs will get confused when the clock gets warped.
149 */
150
151int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
152{
153 static int firsttime = 1;
154 int error = 0;
155
156 if (tv && !timespec_valid(tv))
157 return -EINVAL;
158
159 error = security_settime(tv, tz);
160 if (error)
161 return error;
162
163 if (tz) {
164 /* SMP safe, global irq locking makes it work. */
165 sys_tz = *tz;
166 update_vsyscall_tz();
167 if (firsttime) {
168 firsttime = 0;
169 if (!tv)
170 warp_clock();
171 }
172 }
173 if (tv)
174 {
175 /* SMP safe, again the code in arch/foo/time.c should
176 * globally block out interrupts when it runs.
177 */
178 return do_settimeofday(tv);
179 }
180 return 0;
181}
182
183asmlinkage long sys_settimeofday(struct timeval __user *tv,
184 struct timezone __user *tz)
185{
186 struct timeval user_tv;
187 struct timespec new_ts;
188 struct timezone new_tz;
189
190 if (tv) {
191 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
192 return -EFAULT;
193 new_ts.tv_sec = user_tv.tv_sec;
194 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
195 }
196 if (tz) {
197 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
198 return -EFAULT;
199 }
200
201 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
202}
203
204asmlinkage long sys_adjtimex(struct timex __user *txc_p)
205{
206 struct timex txc; /* Local copy of parameter */
207 int ret;
208
209 /* Copy the user data space into the kernel copy
210 * structure. But bear in mind that the structures
211 * may change
212 */
213 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
214 return -EFAULT;
215 ret = do_adjtimex(&txc);
216 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
217}
218
219/**
220 * current_fs_time - Return FS time
221 * @sb: Superblock.
222 *
223 * Return the current time truncated to the time granularity supported by
224 * the fs.
225 */
226struct timespec current_fs_time(struct super_block *sb)
227{
228 struct timespec now = current_kernel_time();
229 return timespec_trunc(now, sb->s_time_gran);
230}
231EXPORT_SYMBOL(current_fs_time);
232
233/*
234 * Convert jiffies to milliseconds and back.
235 *
236 * Avoid unnecessary multiplications/divisions in the
237 * two most common HZ cases:
238 */
239unsigned int inline jiffies_to_msecs(const unsigned long j)
240{
241#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
242 return (MSEC_PER_SEC / HZ) * j;
243#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
244 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
245#else
246# if BITS_PER_LONG == 32
247 return ((u64)HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
248# else
249 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
250# endif
251#endif
252}
253EXPORT_SYMBOL(jiffies_to_msecs);
254
255unsigned int inline jiffies_to_usecs(const unsigned long j)
256{
257#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
258 return (USEC_PER_SEC / HZ) * j;
259#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
260 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
261#else
262# if BITS_PER_LONG == 32
263 return ((u64)HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
264# else
265 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
266# endif
267#endif
268}
269EXPORT_SYMBOL(jiffies_to_usecs);
270
271/**
272 * timespec_trunc - Truncate timespec to a granularity
273 * @t: Timespec
274 * @gran: Granularity in ns.
275 *
276 * Truncate a timespec to a granularity. gran must be smaller than a second.
277 * Always rounds down.
278 *
279 * This function should be only used for timestamps returned by
280 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
281 * it doesn't handle the better resolution of the latter.
282 */
283struct timespec timespec_trunc(struct timespec t, unsigned gran)
284{
285 /*
286 * Division is pretty slow so avoid it for common cases.
287 * Currently current_kernel_time() never returns better than
288 * jiffies resolution. Exploit that.
289 */
290 if (gran <= jiffies_to_usecs(1) * 1000) {
291 /* nothing */
292 } else if (gran == 1000000000) {
293 t.tv_nsec = 0;
294 } else {
295 t.tv_nsec -= t.tv_nsec % gran;
296 }
297 return t;
298}
299EXPORT_SYMBOL(timespec_trunc);
300
301#ifndef CONFIG_GENERIC_TIME
302/*
303 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
304 * and therefore only yields usec accuracy
305 */
306void getnstimeofday(struct timespec *tv)
307{
308 struct timeval x;
309
310 do_gettimeofday(&x);
311 tv->tv_sec = x.tv_sec;
312 tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
313}
314EXPORT_SYMBOL_GPL(getnstimeofday);
315#endif
316
317/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
318 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
319 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
320 *
321 * [For the Julian calendar (which was used in Russia before 1917,
322 * Britain & colonies before 1752, anywhere else before 1582,
323 * and is still in use by some communities) leave out the
324 * -year/100+year/400 terms, and add 10.]
325 *
326 * This algorithm was first published by Gauss (I think).
327 *
328 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
329 * machines where long is 32-bit! (However, as time_t is signed, we
330 * will already get problems at other places on 2038-01-19 03:14:08)
331 */
332unsigned long
333mktime(const unsigned int year0, const unsigned int mon0,
334 const unsigned int day, const unsigned int hour,
335 const unsigned int min, const unsigned int sec)
336{
337 unsigned int mon = mon0, year = year0;
338
339 /* 1..12 -> 11,12,1..10 */
340 if (0 >= (int) (mon -= 2)) {
341 mon += 12; /* Puts Feb last since it has leap day */
342 year -= 1;
343 }
344
345 return ((((unsigned long)
346 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
347 year*365 - 719499
348 )*24 + hour /* now have hours */
349 )*60 + min /* now have minutes */
350 )*60 + sec; /* finally seconds */
351}
352
353EXPORT_SYMBOL(mktime);
354
355/**
356 * set_normalized_timespec - set timespec sec and nsec parts and normalize
357 *
358 * @ts: pointer to timespec variable to be set
359 * @sec: seconds to set
360 * @nsec: nanoseconds to set
361 *
362 * Set seconds and nanoseconds field of a timespec variable and
363 * normalize to the timespec storage format
364 *
365 * Note: The tv_nsec part is always in the range of
366 * 0 <= tv_nsec < NSEC_PER_SEC
367 * For negative values only the tv_sec field is negative !
368 */
369void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
370{
371 while (nsec >= NSEC_PER_SEC) {
372 nsec -= NSEC_PER_SEC;
373 ++sec;
374 }
375 while (nsec < 0) {
376 nsec += NSEC_PER_SEC;
377 --sec;
378 }
379 ts->tv_sec = sec;
380 ts->tv_nsec = nsec;
381}
382EXPORT_SYMBOL(set_normalized_timespec);
383
384/**
385 * ns_to_timespec - Convert nanoseconds to timespec
386 * @nsec: the nanoseconds value to be converted
387 *
388 * Returns the timespec representation of the nsec parameter.
389 */
390struct timespec ns_to_timespec(const s64 nsec)
391{
392 struct timespec ts;
393
394 if (!nsec)
395 return (struct timespec) {0, 0};
396
397 ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
398 if (unlikely(nsec < 0))
399 set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
400
401 return ts;
402}
403EXPORT_SYMBOL(ns_to_timespec);
404
405/**
406 * ns_to_timeval - Convert nanoseconds to timeval
407 * @nsec: the nanoseconds value to be converted
408 *
409 * Returns the timeval representation of the nsec parameter.
410 */
411struct timeval ns_to_timeval(const s64 nsec)
412{
413 struct timespec ts = ns_to_timespec(nsec);
414 struct timeval tv;
415
416 tv.tv_sec = ts.tv_sec;
417 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
418
419 return tv;
420}
421EXPORT_SYMBOL(ns_to_timeval);
422
423/*
424 * When we convert to jiffies then we interpret incoming values
425 * the following way:
426 *
427 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
428 *
429 * - 'too large' values [that would result in larger than
430 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
431 *
432 * - all other values are converted to jiffies by either multiplying
433 * the input value by a factor or dividing it with a factor
434 *
435 * We must also be careful about 32-bit overflows.
436 */
437unsigned long msecs_to_jiffies(const unsigned int m)
438{
439 /*
440 * Negative value, means infinite timeout:
441 */
442 if ((int)m < 0)
443 return MAX_JIFFY_OFFSET;
444
445#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
446 /*
447 * HZ is equal to or smaller than 1000, and 1000 is a nice
448 * round multiple of HZ, divide with the factor between them,
449 * but round upwards:
450 */
451 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
452#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
453 /*
454 * HZ is larger than 1000, and HZ is a nice round multiple of
455 * 1000 - simply multiply with the factor between them.
456 *
457 * But first make sure the multiplication result cannot
458 * overflow:
459 */
460 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
461 return MAX_JIFFY_OFFSET;
462
463 return m * (HZ / MSEC_PER_SEC);
464#else
465 /*
466 * Generic case - multiply, round and divide. But first
467 * check that if we are doing a net multiplication, that
468 * we wouldn't overflow:
469 */
470 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
471 return MAX_JIFFY_OFFSET;
472
473 return ((u64)MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
474 >> MSEC_TO_HZ_SHR32;
475#endif
476}
477EXPORT_SYMBOL(msecs_to_jiffies);
478
479unsigned long usecs_to_jiffies(const unsigned int u)
480{
481 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
482 return MAX_JIFFY_OFFSET;
483#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
484 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
485#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
486 return u * (HZ / USEC_PER_SEC);
487#else
488 return ((u64)USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
489 >> USEC_TO_HZ_SHR32;
490#endif
491}
492EXPORT_SYMBOL(usecs_to_jiffies);
493
494/*
495 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
496 * that a remainder subtract here would not do the right thing as the
497 * resolution values don't fall on second boundries. I.e. the line:
498 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
499 *
500 * Rather, we just shift the bits off the right.
501 *
502 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
503 * value to a scaled second value.
504 */
505unsigned long
506timespec_to_jiffies(const struct timespec *value)
507{
508 unsigned long sec = value->tv_sec;
509 long nsec = value->tv_nsec + TICK_NSEC - 1;
510
511 if (sec >= MAX_SEC_IN_JIFFIES){
512 sec = MAX_SEC_IN_JIFFIES;
513 nsec = 0;
514 }
515 return (((u64)sec * SEC_CONVERSION) +
516 (((u64)nsec * NSEC_CONVERSION) >>
517 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
518
519}
520EXPORT_SYMBOL(timespec_to_jiffies);
521
522void
523jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
524{
525 /*
526 * Convert jiffies to nanoseconds and separate with
527 * one divide.
528 */
529 u64 nsec = (u64)jiffies * TICK_NSEC;
530 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
531}
532EXPORT_SYMBOL(jiffies_to_timespec);
533
534/* Same for "timeval"
535 *
536 * Well, almost. The problem here is that the real system resolution is
537 * in nanoseconds and the value being converted is in micro seconds.
538 * Also for some machines (those that use HZ = 1024, in-particular),
539 * there is a LARGE error in the tick size in microseconds.
540
541 * The solution we use is to do the rounding AFTER we convert the
542 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
543 * Instruction wise, this should cost only an additional add with carry
544 * instruction above the way it was done above.
545 */
546unsigned long
547timeval_to_jiffies(const struct timeval *value)
548{
549 unsigned long sec = value->tv_sec;
550 long usec = value->tv_usec;
551
552 if (sec >= MAX_SEC_IN_JIFFIES){
553 sec = MAX_SEC_IN_JIFFIES;
554 usec = 0;
555 }
556 return (((u64)sec * SEC_CONVERSION) +
557 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
558 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
559}
560EXPORT_SYMBOL(timeval_to_jiffies);
561
562void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
563{
564 /*
565 * Convert jiffies to nanoseconds and separate with
566 * one divide.
567 */
568 u64 nsec = (u64)jiffies * TICK_NSEC;
569 long tv_usec;
570
571 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
572 tv_usec /= NSEC_PER_USEC;
573 value->tv_usec = tv_usec;
574}
575EXPORT_SYMBOL(jiffies_to_timeval);
576
577/*
578 * Convert jiffies/jiffies_64 to clock_t and back.
579 */
580clock_t jiffies_to_clock_t(long x)
581{
582#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
583# if HZ < USER_HZ
584 return x * (USER_HZ / HZ);
585# else
586 return x / (HZ / USER_HZ);
587# endif
588#else
589 u64 tmp = (u64)x * TICK_NSEC;
590 do_div(tmp, (NSEC_PER_SEC / USER_HZ));
591 return (long)tmp;
592#endif
593}
594EXPORT_SYMBOL(jiffies_to_clock_t);
595
596unsigned long clock_t_to_jiffies(unsigned long x)
597{
598#if (HZ % USER_HZ)==0
599 if (x >= ~0UL / (HZ / USER_HZ))
600 return ~0UL;
601 return x * (HZ / USER_HZ);
602#else
603 u64 jif;
604
605 /* Don't worry about loss of precision here .. */
606 if (x >= ~0UL / HZ * USER_HZ)
607 return ~0UL;
608
609 /* .. but do try to contain it here */
610 jif = x * (u64) HZ;
611 do_div(jif, USER_HZ);
612 return jif;
613#endif
614}
615EXPORT_SYMBOL(clock_t_to_jiffies);
616
617u64 jiffies_64_to_clock_t(u64 x)
618{
619#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
620# if HZ < USER_HZ
621 x *= USER_HZ;
622 do_div(x, HZ);
623# elif HZ > USER_HZ
624 do_div(x, HZ / USER_HZ);
625# else
626 /* Nothing to do */
627# endif
628#else
629 /*
630 * There are better ways that don't overflow early,
631 * but even this doesn't overflow in hundreds of years
632 * in 64 bits, so..
633 */
634 x *= TICK_NSEC;
635 do_div(x, (NSEC_PER_SEC / USER_HZ));
636#endif
637 return x;
638}
639EXPORT_SYMBOL(jiffies_64_to_clock_t);
640
641u64 nsec_to_clock_t(u64 x)
642{
643#if (NSEC_PER_SEC % USER_HZ) == 0
644 do_div(x, (NSEC_PER_SEC / USER_HZ));
645#elif (USER_HZ % 512) == 0
646 x *= USER_HZ/512;
647 do_div(x, (NSEC_PER_SEC / 512));
648#else
649 /*
650 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
651 * overflow after 64.99 years.
652 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
653 */
654 x *= 9;
655 do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
656 USER_HZ));
657#endif
658 return x;
659}
660
661#if (BITS_PER_LONG < 64)
662u64 get_jiffies_64(void)
663{
664 unsigned long seq;
665 u64 ret;
666
667 do {
668 seq = read_seqbegin(&xtime_lock);
669 ret = jiffies_64;
670 } while (read_seqretry(&xtime_lock, seq));
671 return ret;
672}
673EXPORT_SYMBOL(get_jiffies_64);
674#endif
675
676EXPORT_SYMBOL(jiffies);
This page took 0.038816 seconds and 5 git commands to generate.