timer: Relocate declarations of init_timer_on_stack_key()
[deliverable/linux.git] / kernel / timer.c
... / ...
CommitLineData
1/*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers, basic process system calls
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/export.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
29#include <linux/pid_namespace.h>
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
37#include <linux/delay.h>
38#include <linux/tick.h>
39#include <linux/kallsyms.h>
40#include <linux/irq_work.h>
41#include <linux/sched.h>
42#include <linux/slab.h>
43
44#include <asm/uaccess.h>
45#include <asm/unistd.h>
46#include <asm/div64.h>
47#include <asm/timex.h>
48#include <asm/io.h>
49
50#define CREATE_TRACE_POINTS
51#include <trace/events/timer.h>
52
53u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
54
55EXPORT_SYMBOL(jiffies_64);
56
57/*
58 * per-CPU timer vector definitions:
59 */
60#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62#define TVN_SIZE (1 << TVN_BITS)
63#define TVR_SIZE (1 << TVR_BITS)
64#define TVN_MASK (TVN_SIZE - 1)
65#define TVR_MASK (TVR_SIZE - 1)
66
67struct tvec {
68 struct list_head vec[TVN_SIZE];
69};
70
71struct tvec_root {
72 struct list_head vec[TVR_SIZE];
73};
74
75struct tvec_base {
76 spinlock_t lock;
77 struct timer_list *running_timer;
78 unsigned long timer_jiffies;
79 unsigned long next_timer;
80 unsigned long active_timers;
81 struct tvec_root tv1;
82 struct tvec tv2;
83 struct tvec tv3;
84 struct tvec tv4;
85 struct tvec tv5;
86} ____cacheline_aligned;
87
88struct tvec_base boot_tvec_bases;
89EXPORT_SYMBOL(boot_tvec_bases);
90static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
91
92/* Functions below help us manage 'deferrable' flag */
93static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
94{
95 return ((unsigned int)(unsigned long)base & TIMER_DEFERRABLE);
96}
97
98static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
99{
100 return ((struct tvec_base *)((unsigned long)base & ~TIMER_FLAG_MASK));
101}
102
103static inline void timer_set_deferrable(struct timer_list *timer)
104{
105 timer->base = TBASE_MAKE_DEFERRED(timer->base);
106}
107
108static inline void
109timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
110{
111 unsigned long flags = (unsigned long)timer->base & TIMER_FLAG_MASK;
112
113 timer->base = (struct tvec_base *)((unsigned long)(new_base) | flags);
114}
115
116static unsigned long round_jiffies_common(unsigned long j, int cpu,
117 bool force_up)
118{
119 int rem;
120 unsigned long original = j;
121
122 /*
123 * We don't want all cpus firing their timers at once hitting the
124 * same lock or cachelines, so we skew each extra cpu with an extra
125 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
126 * already did this.
127 * The skew is done by adding 3*cpunr, then round, then subtract this
128 * extra offset again.
129 */
130 j += cpu * 3;
131
132 rem = j % HZ;
133
134 /*
135 * If the target jiffie is just after a whole second (which can happen
136 * due to delays of the timer irq, long irq off times etc etc) then
137 * we should round down to the whole second, not up. Use 1/4th second
138 * as cutoff for this rounding as an extreme upper bound for this.
139 * But never round down if @force_up is set.
140 */
141 if (rem < HZ/4 && !force_up) /* round down */
142 j = j - rem;
143 else /* round up */
144 j = j - rem + HZ;
145
146 /* now that we have rounded, subtract the extra skew again */
147 j -= cpu * 3;
148
149 if (j <= jiffies) /* rounding ate our timeout entirely; */
150 return original;
151 return j;
152}
153
154/**
155 * __round_jiffies - function to round jiffies to a full second
156 * @j: the time in (absolute) jiffies that should be rounded
157 * @cpu: the processor number on which the timeout will happen
158 *
159 * __round_jiffies() rounds an absolute time in the future (in jiffies)
160 * up or down to (approximately) full seconds. This is useful for timers
161 * for which the exact time they fire does not matter too much, as long as
162 * they fire approximately every X seconds.
163 *
164 * By rounding these timers to whole seconds, all such timers will fire
165 * at the same time, rather than at various times spread out. The goal
166 * of this is to have the CPU wake up less, which saves power.
167 *
168 * The exact rounding is skewed for each processor to avoid all
169 * processors firing at the exact same time, which could lead
170 * to lock contention or spurious cache line bouncing.
171 *
172 * The return value is the rounded version of the @j parameter.
173 */
174unsigned long __round_jiffies(unsigned long j, int cpu)
175{
176 return round_jiffies_common(j, cpu, false);
177}
178EXPORT_SYMBOL_GPL(__round_jiffies);
179
180/**
181 * __round_jiffies_relative - function to round jiffies to a full second
182 * @j: the time in (relative) jiffies that should be rounded
183 * @cpu: the processor number on which the timeout will happen
184 *
185 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
186 * up or down to (approximately) full seconds. This is useful for timers
187 * for which the exact time they fire does not matter too much, as long as
188 * they fire approximately every X seconds.
189 *
190 * By rounding these timers to whole seconds, all such timers will fire
191 * at the same time, rather than at various times spread out. The goal
192 * of this is to have the CPU wake up less, which saves power.
193 *
194 * The exact rounding is skewed for each processor to avoid all
195 * processors firing at the exact same time, which could lead
196 * to lock contention or spurious cache line bouncing.
197 *
198 * The return value is the rounded version of the @j parameter.
199 */
200unsigned long __round_jiffies_relative(unsigned long j, int cpu)
201{
202 unsigned long j0 = jiffies;
203
204 /* Use j0 because jiffies might change while we run */
205 return round_jiffies_common(j + j0, cpu, false) - j0;
206}
207EXPORT_SYMBOL_GPL(__round_jiffies_relative);
208
209/**
210 * round_jiffies - function to round jiffies to a full second
211 * @j: the time in (absolute) jiffies that should be rounded
212 *
213 * round_jiffies() rounds an absolute time in the future (in jiffies)
214 * up or down to (approximately) full seconds. This is useful for timers
215 * for which the exact time they fire does not matter too much, as long as
216 * they fire approximately every X seconds.
217 *
218 * By rounding these timers to whole seconds, all such timers will fire
219 * at the same time, rather than at various times spread out. The goal
220 * of this is to have the CPU wake up less, which saves power.
221 *
222 * The return value is the rounded version of the @j parameter.
223 */
224unsigned long round_jiffies(unsigned long j)
225{
226 return round_jiffies_common(j, raw_smp_processor_id(), false);
227}
228EXPORT_SYMBOL_GPL(round_jiffies);
229
230/**
231 * round_jiffies_relative - function to round jiffies to a full second
232 * @j: the time in (relative) jiffies that should be rounded
233 *
234 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
235 * up or down to (approximately) full seconds. This is useful for timers
236 * for which the exact time they fire does not matter too much, as long as
237 * they fire approximately every X seconds.
238 *
239 * By rounding these timers to whole seconds, all such timers will fire
240 * at the same time, rather than at various times spread out. The goal
241 * of this is to have the CPU wake up less, which saves power.
242 *
243 * The return value is the rounded version of the @j parameter.
244 */
245unsigned long round_jiffies_relative(unsigned long j)
246{
247 return __round_jiffies_relative(j, raw_smp_processor_id());
248}
249EXPORT_SYMBOL_GPL(round_jiffies_relative);
250
251/**
252 * __round_jiffies_up - function to round jiffies up to a full second
253 * @j: the time in (absolute) jiffies that should be rounded
254 * @cpu: the processor number on which the timeout will happen
255 *
256 * This is the same as __round_jiffies() except that it will never
257 * round down. This is useful for timeouts for which the exact time
258 * of firing does not matter too much, as long as they don't fire too
259 * early.
260 */
261unsigned long __round_jiffies_up(unsigned long j, int cpu)
262{
263 return round_jiffies_common(j, cpu, true);
264}
265EXPORT_SYMBOL_GPL(__round_jiffies_up);
266
267/**
268 * __round_jiffies_up_relative - function to round jiffies up to a full second
269 * @j: the time in (relative) jiffies that should be rounded
270 * @cpu: the processor number on which the timeout will happen
271 *
272 * This is the same as __round_jiffies_relative() except that it will never
273 * round down. This is useful for timeouts for which the exact time
274 * of firing does not matter too much, as long as they don't fire too
275 * early.
276 */
277unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
278{
279 unsigned long j0 = jiffies;
280
281 /* Use j0 because jiffies might change while we run */
282 return round_jiffies_common(j + j0, cpu, true) - j0;
283}
284EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
285
286/**
287 * round_jiffies_up - function to round jiffies up to a full second
288 * @j: the time in (absolute) jiffies that should be rounded
289 *
290 * This is the same as round_jiffies() except that it will never
291 * round down. This is useful for timeouts for which the exact time
292 * of firing does not matter too much, as long as they don't fire too
293 * early.
294 */
295unsigned long round_jiffies_up(unsigned long j)
296{
297 return round_jiffies_common(j, raw_smp_processor_id(), true);
298}
299EXPORT_SYMBOL_GPL(round_jiffies_up);
300
301/**
302 * round_jiffies_up_relative - function to round jiffies up to a full second
303 * @j: the time in (relative) jiffies that should be rounded
304 *
305 * This is the same as round_jiffies_relative() except that it will never
306 * round down. This is useful for timeouts for which the exact time
307 * of firing does not matter too much, as long as they don't fire too
308 * early.
309 */
310unsigned long round_jiffies_up_relative(unsigned long j)
311{
312 return __round_jiffies_up_relative(j, raw_smp_processor_id());
313}
314EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
315
316/**
317 * set_timer_slack - set the allowed slack for a timer
318 * @timer: the timer to be modified
319 * @slack_hz: the amount of time (in jiffies) allowed for rounding
320 *
321 * Set the amount of time, in jiffies, that a certain timer has
322 * in terms of slack. By setting this value, the timer subsystem
323 * will schedule the actual timer somewhere between
324 * the time mod_timer() asks for, and that time plus the slack.
325 *
326 * By setting the slack to -1, a percentage of the delay is used
327 * instead.
328 */
329void set_timer_slack(struct timer_list *timer, int slack_hz)
330{
331 timer->slack = slack_hz;
332}
333EXPORT_SYMBOL_GPL(set_timer_slack);
334
335static void
336__internal_add_timer(struct tvec_base *base, struct timer_list *timer)
337{
338 unsigned long expires = timer->expires;
339 unsigned long idx = expires - base->timer_jiffies;
340 struct list_head *vec;
341
342 if (idx < TVR_SIZE) {
343 int i = expires & TVR_MASK;
344 vec = base->tv1.vec + i;
345 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
346 int i = (expires >> TVR_BITS) & TVN_MASK;
347 vec = base->tv2.vec + i;
348 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
349 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
350 vec = base->tv3.vec + i;
351 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
352 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
353 vec = base->tv4.vec + i;
354 } else if ((signed long) idx < 0) {
355 /*
356 * Can happen if you add a timer with expires == jiffies,
357 * or you set a timer to go off in the past
358 */
359 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
360 } else {
361 int i;
362 /* If the timeout is larger than 0xffffffff on 64-bit
363 * architectures then we use the maximum timeout:
364 */
365 if (idx > 0xffffffffUL) {
366 idx = 0xffffffffUL;
367 expires = idx + base->timer_jiffies;
368 }
369 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
370 vec = base->tv5.vec + i;
371 }
372 /*
373 * Timers are FIFO:
374 */
375 list_add_tail(&timer->entry, vec);
376}
377
378static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
379{
380 __internal_add_timer(base, timer);
381 /*
382 * Update base->active_timers and base->next_timer
383 */
384 if (!tbase_get_deferrable(timer->base)) {
385 if (time_before(timer->expires, base->next_timer))
386 base->next_timer = timer->expires;
387 base->active_timers++;
388 }
389}
390
391#ifdef CONFIG_TIMER_STATS
392void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
393{
394 if (timer->start_site)
395 return;
396
397 timer->start_site = addr;
398 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
399 timer->start_pid = current->pid;
400}
401
402static void timer_stats_account_timer(struct timer_list *timer)
403{
404 unsigned int flag = 0;
405
406 if (likely(!timer->start_site))
407 return;
408 if (unlikely(tbase_get_deferrable(timer->base)))
409 flag |= TIMER_STATS_FLAG_DEFERRABLE;
410
411 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
412 timer->function, timer->start_comm, flag);
413}
414
415#else
416static void timer_stats_account_timer(struct timer_list *timer) {}
417#endif
418
419#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
420
421static struct debug_obj_descr timer_debug_descr;
422
423static void *timer_debug_hint(void *addr)
424{
425 return ((struct timer_list *) addr)->function;
426}
427
428/*
429 * fixup_init is called when:
430 * - an active object is initialized
431 */
432static int timer_fixup_init(void *addr, enum debug_obj_state state)
433{
434 struct timer_list *timer = addr;
435
436 switch (state) {
437 case ODEBUG_STATE_ACTIVE:
438 del_timer_sync(timer);
439 debug_object_init(timer, &timer_debug_descr);
440 return 1;
441 default:
442 return 0;
443 }
444}
445
446/* Stub timer callback for improperly used timers. */
447static void stub_timer(unsigned long data)
448{
449 WARN_ON(1);
450}
451
452/*
453 * fixup_activate is called when:
454 * - an active object is activated
455 * - an unknown object is activated (might be a statically initialized object)
456 */
457static int timer_fixup_activate(void *addr, enum debug_obj_state state)
458{
459 struct timer_list *timer = addr;
460
461 switch (state) {
462
463 case ODEBUG_STATE_NOTAVAILABLE:
464 /*
465 * This is not really a fixup. The timer was
466 * statically initialized. We just make sure that it
467 * is tracked in the object tracker.
468 */
469 if (timer->entry.next == NULL &&
470 timer->entry.prev == TIMER_ENTRY_STATIC) {
471 debug_object_init(timer, &timer_debug_descr);
472 debug_object_activate(timer, &timer_debug_descr);
473 return 0;
474 } else {
475 setup_timer(timer, stub_timer, 0);
476 return 1;
477 }
478 return 0;
479
480 case ODEBUG_STATE_ACTIVE:
481 WARN_ON(1);
482
483 default:
484 return 0;
485 }
486}
487
488/*
489 * fixup_free is called when:
490 * - an active object is freed
491 */
492static int timer_fixup_free(void *addr, enum debug_obj_state state)
493{
494 struct timer_list *timer = addr;
495
496 switch (state) {
497 case ODEBUG_STATE_ACTIVE:
498 del_timer_sync(timer);
499 debug_object_free(timer, &timer_debug_descr);
500 return 1;
501 default:
502 return 0;
503 }
504}
505
506/*
507 * fixup_assert_init is called when:
508 * - an untracked/uninit-ed object is found
509 */
510static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
511{
512 struct timer_list *timer = addr;
513
514 switch (state) {
515 case ODEBUG_STATE_NOTAVAILABLE:
516 if (timer->entry.prev == TIMER_ENTRY_STATIC) {
517 /*
518 * This is not really a fixup. The timer was
519 * statically initialized. We just make sure that it
520 * is tracked in the object tracker.
521 */
522 debug_object_init(timer, &timer_debug_descr);
523 return 0;
524 } else {
525 setup_timer(timer, stub_timer, 0);
526 return 1;
527 }
528 default:
529 return 0;
530 }
531}
532
533static struct debug_obj_descr timer_debug_descr = {
534 .name = "timer_list",
535 .debug_hint = timer_debug_hint,
536 .fixup_init = timer_fixup_init,
537 .fixup_activate = timer_fixup_activate,
538 .fixup_free = timer_fixup_free,
539 .fixup_assert_init = timer_fixup_assert_init,
540};
541
542static inline void debug_timer_init(struct timer_list *timer)
543{
544 debug_object_init(timer, &timer_debug_descr);
545}
546
547static inline void debug_timer_activate(struct timer_list *timer)
548{
549 debug_object_activate(timer, &timer_debug_descr);
550}
551
552static inline void debug_timer_deactivate(struct timer_list *timer)
553{
554 debug_object_deactivate(timer, &timer_debug_descr);
555}
556
557static inline void debug_timer_free(struct timer_list *timer)
558{
559 debug_object_free(timer, &timer_debug_descr);
560}
561
562static inline void debug_timer_assert_init(struct timer_list *timer)
563{
564 debug_object_assert_init(timer, &timer_debug_descr);
565}
566
567static void __init_timer(struct timer_list *timer,
568 const char *name,
569 struct lock_class_key *key);
570
571void init_timer_on_stack_key(struct timer_list *timer,
572 const char *name,
573 struct lock_class_key *key)
574{
575 debug_object_init_on_stack(timer, &timer_debug_descr);
576 __init_timer(timer, name, key);
577}
578EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
579
580void destroy_timer_on_stack(struct timer_list *timer)
581{
582 debug_object_free(timer, &timer_debug_descr);
583}
584EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
585
586#else
587static inline void debug_timer_init(struct timer_list *timer) { }
588static inline void debug_timer_activate(struct timer_list *timer) { }
589static inline void debug_timer_deactivate(struct timer_list *timer) { }
590static inline void debug_timer_assert_init(struct timer_list *timer) { }
591#endif
592
593static inline void debug_init(struct timer_list *timer)
594{
595 debug_timer_init(timer);
596 trace_timer_init(timer);
597}
598
599static inline void
600debug_activate(struct timer_list *timer, unsigned long expires)
601{
602 debug_timer_activate(timer);
603 trace_timer_start(timer, expires);
604}
605
606static inline void debug_deactivate(struct timer_list *timer)
607{
608 debug_timer_deactivate(timer);
609 trace_timer_cancel(timer);
610}
611
612static inline void debug_assert_init(struct timer_list *timer)
613{
614 debug_timer_assert_init(timer);
615}
616
617static void __init_timer(struct timer_list *timer,
618 const char *name,
619 struct lock_class_key *key)
620{
621 timer->entry.next = NULL;
622 timer->base = __raw_get_cpu_var(tvec_bases);
623 timer->slack = -1;
624#ifdef CONFIG_TIMER_STATS
625 timer->start_site = NULL;
626 timer->start_pid = -1;
627 memset(timer->start_comm, 0, TASK_COMM_LEN);
628#endif
629 lockdep_init_map(&timer->lockdep_map, name, key, 0);
630}
631
632void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
633 const char *name,
634 struct lock_class_key *key,
635 void (*function)(unsigned long),
636 unsigned long data)
637{
638 timer->function = function;
639 timer->data = data;
640 init_timer_on_stack_key(timer, name, key);
641 timer_set_deferrable(timer);
642}
643EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);
644
645/**
646 * init_timer_key - initialize a timer
647 * @timer: the timer to be initialized
648 * @name: name of the timer
649 * @key: lockdep class key of the fake lock used for tracking timer
650 * sync lock dependencies
651 *
652 * init_timer_key() must be done to a timer prior calling *any* of the
653 * other timer functions.
654 */
655void init_timer_key(struct timer_list *timer,
656 const char *name,
657 struct lock_class_key *key)
658{
659 debug_init(timer);
660 __init_timer(timer, name, key);
661}
662EXPORT_SYMBOL(init_timer_key);
663
664void init_timer_deferrable_key(struct timer_list *timer,
665 const char *name,
666 struct lock_class_key *key)
667{
668 init_timer_key(timer, name, key);
669 timer_set_deferrable(timer);
670}
671EXPORT_SYMBOL(init_timer_deferrable_key);
672
673static inline void detach_timer(struct timer_list *timer, bool clear_pending)
674{
675 struct list_head *entry = &timer->entry;
676
677 debug_deactivate(timer);
678
679 __list_del(entry->prev, entry->next);
680 if (clear_pending)
681 entry->next = NULL;
682 entry->prev = LIST_POISON2;
683}
684
685static inline void
686detach_expired_timer(struct timer_list *timer, struct tvec_base *base)
687{
688 detach_timer(timer, true);
689 if (!tbase_get_deferrable(timer->base))
690 base->active_timers--;
691}
692
693static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
694 bool clear_pending)
695{
696 if (!timer_pending(timer))
697 return 0;
698
699 detach_timer(timer, clear_pending);
700 if (!tbase_get_deferrable(timer->base)) {
701 base->active_timers--;
702 if (timer->expires == base->next_timer)
703 base->next_timer = base->timer_jiffies;
704 }
705 return 1;
706}
707
708/*
709 * We are using hashed locking: holding per_cpu(tvec_bases).lock
710 * means that all timers which are tied to this base via timer->base are
711 * locked, and the base itself is locked too.
712 *
713 * So __run_timers/migrate_timers can safely modify all timers which could
714 * be found on ->tvX lists.
715 *
716 * When the timer's base is locked, and the timer removed from list, it is
717 * possible to set timer->base = NULL and drop the lock: the timer remains
718 * locked.
719 */
720static struct tvec_base *lock_timer_base(struct timer_list *timer,
721 unsigned long *flags)
722 __acquires(timer->base->lock)
723{
724 struct tvec_base *base;
725
726 for (;;) {
727 struct tvec_base *prelock_base = timer->base;
728 base = tbase_get_base(prelock_base);
729 if (likely(base != NULL)) {
730 spin_lock_irqsave(&base->lock, *flags);
731 if (likely(prelock_base == timer->base))
732 return base;
733 /* The timer has migrated to another CPU */
734 spin_unlock_irqrestore(&base->lock, *flags);
735 }
736 cpu_relax();
737 }
738}
739
740static inline int
741__mod_timer(struct timer_list *timer, unsigned long expires,
742 bool pending_only, int pinned)
743{
744 struct tvec_base *base, *new_base;
745 unsigned long flags;
746 int ret = 0 , cpu;
747
748 timer_stats_timer_set_start_info(timer);
749 BUG_ON(!timer->function);
750
751 base = lock_timer_base(timer, &flags);
752
753 ret = detach_if_pending(timer, base, false);
754 if (!ret && pending_only)
755 goto out_unlock;
756
757 debug_activate(timer, expires);
758
759 cpu = smp_processor_id();
760
761#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
762 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
763 cpu = get_nohz_timer_target();
764#endif
765 new_base = per_cpu(tvec_bases, cpu);
766
767 if (base != new_base) {
768 /*
769 * We are trying to schedule the timer on the local CPU.
770 * However we can't change timer's base while it is running,
771 * otherwise del_timer_sync() can't detect that the timer's
772 * handler yet has not finished. This also guarantees that
773 * the timer is serialized wrt itself.
774 */
775 if (likely(base->running_timer != timer)) {
776 /* See the comment in lock_timer_base() */
777 timer_set_base(timer, NULL);
778 spin_unlock(&base->lock);
779 base = new_base;
780 spin_lock(&base->lock);
781 timer_set_base(timer, base);
782 }
783 }
784
785 timer->expires = expires;
786 internal_add_timer(base, timer);
787
788out_unlock:
789 spin_unlock_irqrestore(&base->lock, flags);
790
791 return ret;
792}
793
794/**
795 * mod_timer_pending - modify a pending timer's timeout
796 * @timer: the pending timer to be modified
797 * @expires: new timeout in jiffies
798 *
799 * mod_timer_pending() is the same for pending timers as mod_timer(),
800 * but will not re-activate and modify already deleted timers.
801 *
802 * It is useful for unserialized use of timers.
803 */
804int mod_timer_pending(struct timer_list *timer, unsigned long expires)
805{
806 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
807}
808EXPORT_SYMBOL(mod_timer_pending);
809
810/*
811 * Decide where to put the timer while taking the slack into account
812 *
813 * Algorithm:
814 * 1) calculate the maximum (absolute) time
815 * 2) calculate the highest bit where the expires and new max are different
816 * 3) use this bit to make a mask
817 * 4) use the bitmask to round down the maximum time, so that all last
818 * bits are zeros
819 */
820static inline
821unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
822{
823 unsigned long expires_limit, mask;
824 int bit;
825
826 if (timer->slack >= 0) {
827 expires_limit = expires + timer->slack;
828 } else {
829 long delta = expires - jiffies;
830
831 if (delta < 256)
832 return expires;
833
834 expires_limit = expires + delta / 256;
835 }
836 mask = expires ^ expires_limit;
837 if (mask == 0)
838 return expires;
839
840 bit = find_last_bit(&mask, BITS_PER_LONG);
841
842 mask = (1 << bit) - 1;
843
844 expires_limit = expires_limit & ~(mask);
845
846 return expires_limit;
847}
848
849/**
850 * mod_timer - modify a timer's timeout
851 * @timer: the timer to be modified
852 * @expires: new timeout in jiffies
853 *
854 * mod_timer() is a more efficient way to update the expire field of an
855 * active timer (if the timer is inactive it will be activated)
856 *
857 * mod_timer(timer, expires) is equivalent to:
858 *
859 * del_timer(timer); timer->expires = expires; add_timer(timer);
860 *
861 * Note that if there are multiple unserialized concurrent users of the
862 * same timer, then mod_timer() is the only safe way to modify the timeout,
863 * since add_timer() cannot modify an already running timer.
864 *
865 * The function returns whether it has modified a pending timer or not.
866 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
867 * active timer returns 1.)
868 */
869int mod_timer(struct timer_list *timer, unsigned long expires)
870{
871 expires = apply_slack(timer, expires);
872
873 /*
874 * This is a common optimization triggered by the
875 * networking code - if the timer is re-modified
876 * to be the same thing then just return:
877 */
878 if (timer_pending(timer) && timer->expires == expires)
879 return 1;
880
881 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
882}
883EXPORT_SYMBOL(mod_timer);
884
885/**
886 * mod_timer_pinned - modify a timer's timeout
887 * @timer: the timer to be modified
888 * @expires: new timeout in jiffies
889 *
890 * mod_timer_pinned() is a way to update the expire field of an
891 * active timer (if the timer is inactive it will be activated)
892 * and to ensure that the timer is scheduled on the current CPU.
893 *
894 * Note that this does not prevent the timer from being migrated
895 * when the current CPU goes offline. If this is a problem for
896 * you, use CPU-hotplug notifiers to handle it correctly, for
897 * example, cancelling the timer when the corresponding CPU goes
898 * offline.
899 *
900 * mod_timer_pinned(timer, expires) is equivalent to:
901 *
902 * del_timer(timer); timer->expires = expires; add_timer(timer);
903 */
904int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
905{
906 if (timer->expires == expires && timer_pending(timer))
907 return 1;
908
909 return __mod_timer(timer, expires, false, TIMER_PINNED);
910}
911EXPORT_SYMBOL(mod_timer_pinned);
912
913/**
914 * add_timer - start a timer
915 * @timer: the timer to be added
916 *
917 * The kernel will do a ->function(->data) callback from the
918 * timer interrupt at the ->expires point in the future. The
919 * current time is 'jiffies'.
920 *
921 * The timer's ->expires, ->function (and if the handler uses it, ->data)
922 * fields must be set prior calling this function.
923 *
924 * Timers with an ->expires field in the past will be executed in the next
925 * timer tick.
926 */
927void add_timer(struct timer_list *timer)
928{
929 BUG_ON(timer_pending(timer));
930 mod_timer(timer, timer->expires);
931}
932EXPORT_SYMBOL(add_timer);
933
934/**
935 * add_timer_on - start a timer on a particular CPU
936 * @timer: the timer to be added
937 * @cpu: the CPU to start it on
938 *
939 * This is not very scalable on SMP. Double adds are not possible.
940 */
941void add_timer_on(struct timer_list *timer, int cpu)
942{
943 struct tvec_base *base = per_cpu(tvec_bases, cpu);
944 unsigned long flags;
945
946 timer_stats_timer_set_start_info(timer);
947 BUG_ON(timer_pending(timer) || !timer->function);
948 spin_lock_irqsave(&base->lock, flags);
949 timer_set_base(timer, base);
950 debug_activate(timer, timer->expires);
951 internal_add_timer(base, timer);
952 /*
953 * Check whether the other CPU is idle and needs to be
954 * triggered to reevaluate the timer wheel when nohz is
955 * active. We are protected against the other CPU fiddling
956 * with the timer by holding the timer base lock. This also
957 * makes sure that a CPU on the way to idle can not evaluate
958 * the timer wheel.
959 */
960 wake_up_idle_cpu(cpu);
961 spin_unlock_irqrestore(&base->lock, flags);
962}
963EXPORT_SYMBOL_GPL(add_timer_on);
964
965/**
966 * del_timer - deactive a timer.
967 * @timer: the timer to be deactivated
968 *
969 * del_timer() deactivates a timer - this works on both active and inactive
970 * timers.
971 *
972 * The function returns whether it has deactivated a pending timer or not.
973 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
974 * active timer returns 1.)
975 */
976int del_timer(struct timer_list *timer)
977{
978 struct tvec_base *base;
979 unsigned long flags;
980 int ret = 0;
981
982 debug_assert_init(timer);
983
984 timer_stats_timer_clear_start_info(timer);
985 if (timer_pending(timer)) {
986 base = lock_timer_base(timer, &flags);
987 ret = detach_if_pending(timer, base, true);
988 spin_unlock_irqrestore(&base->lock, flags);
989 }
990
991 return ret;
992}
993EXPORT_SYMBOL(del_timer);
994
995/**
996 * try_to_del_timer_sync - Try to deactivate a timer
997 * @timer: timer do del
998 *
999 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1000 * exit the timer is not queued and the handler is not running on any CPU.
1001 */
1002int try_to_del_timer_sync(struct timer_list *timer)
1003{
1004 struct tvec_base *base;
1005 unsigned long flags;
1006 int ret = -1;
1007
1008 debug_assert_init(timer);
1009
1010 base = lock_timer_base(timer, &flags);
1011
1012 if (base->running_timer != timer) {
1013 timer_stats_timer_clear_start_info(timer);
1014 ret = detach_if_pending(timer, base, true);
1015 }
1016 spin_unlock_irqrestore(&base->lock, flags);
1017
1018 return ret;
1019}
1020EXPORT_SYMBOL(try_to_del_timer_sync);
1021
1022#ifdef CONFIG_SMP
1023/**
1024 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1025 * @timer: the timer to be deactivated
1026 *
1027 * This function only differs from del_timer() on SMP: besides deactivating
1028 * the timer it also makes sure the handler has finished executing on other
1029 * CPUs.
1030 *
1031 * Synchronization rules: Callers must prevent restarting of the timer,
1032 * otherwise this function is meaningless. It must not be called from
1033 * interrupt contexts. The caller must not hold locks which would prevent
1034 * completion of the timer's handler. The timer's handler must not call
1035 * add_timer_on(). Upon exit the timer is not queued and the handler is
1036 * not running on any CPU.
1037 *
1038 * Note: You must not hold locks that are held in interrupt context
1039 * while calling this function. Even if the lock has nothing to do
1040 * with the timer in question. Here's why:
1041 *
1042 * CPU0 CPU1
1043 * ---- ----
1044 * <SOFTIRQ>
1045 * call_timer_fn();
1046 * base->running_timer = mytimer;
1047 * spin_lock_irq(somelock);
1048 * <IRQ>
1049 * spin_lock(somelock);
1050 * del_timer_sync(mytimer);
1051 * while (base->running_timer == mytimer);
1052 *
1053 * Now del_timer_sync() will never return and never release somelock.
1054 * The interrupt on the other CPU is waiting to grab somelock but
1055 * it has interrupted the softirq that CPU0 is waiting to finish.
1056 *
1057 * The function returns whether it has deactivated a pending timer or not.
1058 */
1059int del_timer_sync(struct timer_list *timer)
1060{
1061#ifdef CONFIG_LOCKDEP
1062 unsigned long flags;
1063
1064 /*
1065 * If lockdep gives a backtrace here, please reference
1066 * the synchronization rules above.
1067 */
1068 local_irq_save(flags);
1069 lock_map_acquire(&timer->lockdep_map);
1070 lock_map_release(&timer->lockdep_map);
1071 local_irq_restore(flags);
1072#endif
1073 /*
1074 * don't use it in hardirq context, because it
1075 * could lead to deadlock.
1076 */
1077 WARN_ON(in_irq());
1078 for (;;) {
1079 int ret = try_to_del_timer_sync(timer);
1080 if (ret >= 0)
1081 return ret;
1082 cpu_relax();
1083 }
1084}
1085EXPORT_SYMBOL(del_timer_sync);
1086#endif
1087
1088static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1089{
1090 /* cascade all the timers from tv up one level */
1091 struct timer_list *timer, *tmp;
1092 struct list_head tv_list;
1093
1094 list_replace_init(tv->vec + index, &tv_list);
1095
1096 /*
1097 * We are removing _all_ timers from the list, so we
1098 * don't have to detach them individually.
1099 */
1100 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1101 BUG_ON(tbase_get_base(timer->base) != base);
1102 /* No accounting, while moving them */
1103 __internal_add_timer(base, timer);
1104 }
1105
1106 return index;
1107}
1108
1109static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1110 unsigned long data)
1111{
1112 int preempt_count = preempt_count();
1113
1114#ifdef CONFIG_LOCKDEP
1115 /*
1116 * It is permissible to free the timer from inside the
1117 * function that is called from it, this we need to take into
1118 * account for lockdep too. To avoid bogus "held lock freed"
1119 * warnings as well as problems when looking into
1120 * timer->lockdep_map, make a copy and use that here.
1121 */
1122 struct lockdep_map lockdep_map;
1123
1124 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1125#endif
1126 /*
1127 * Couple the lock chain with the lock chain at
1128 * del_timer_sync() by acquiring the lock_map around the fn()
1129 * call here and in del_timer_sync().
1130 */
1131 lock_map_acquire(&lockdep_map);
1132
1133 trace_timer_expire_entry(timer);
1134 fn(data);
1135 trace_timer_expire_exit(timer);
1136
1137 lock_map_release(&lockdep_map);
1138
1139 if (preempt_count != preempt_count()) {
1140 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1141 fn, preempt_count, preempt_count());
1142 /*
1143 * Restore the preempt count. That gives us a decent
1144 * chance to survive and extract information. If the
1145 * callback kept a lock held, bad luck, but not worse
1146 * than the BUG() we had.
1147 */
1148 preempt_count() = preempt_count;
1149 }
1150}
1151
1152#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1153
1154/**
1155 * __run_timers - run all expired timers (if any) on this CPU.
1156 * @base: the timer vector to be processed.
1157 *
1158 * This function cascades all vectors and executes all expired timer
1159 * vectors.
1160 */
1161static inline void __run_timers(struct tvec_base *base)
1162{
1163 struct timer_list *timer;
1164
1165 spin_lock_irq(&base->lock);
1166 while (time_after_eq(jiffies, base->timer_jiffies)) {
1167 struct list_head work_list;
1168 struct list_head *head = &work_list;
1169 int index = base->timer_jiffies & TVR_MASK;
1170
1171 /*
1172 * Cascade timers:
1173 */
1174 if (!index &&
1175 (!cascade(base, &base->tv2, INDEX(0))) &&
1176 (!cascade(base, &base->tv3, INDEX(1))) &&
1177 !cascade(base, &base->tv4, INDEX(2)))
1178 cascade(base, &base->tv5, INDEX(3));
1179 ++base->timer_jiffies;
1180 list_replace_init(base->tv1.vec + index, &work_list);
1181 while (!list_empty(head)) {
1182 void (*fn)(unsigned long);
1183 unsigned long data;
1184
1185 timer = list_first_entry(head, struct timer_list,entry);
1186 fn = timer->function;
1187 data = timer->data;
1188
1189 timer_stats_account_timer(timer);
1190
1191 base->running_timer = timer;
1192 detach_expired_timer(timer, base);
1193
1194 spin_unlock_irq(&base->lock);
1195 call_timer_fn(timer, fn, data);
1196 spin_lock_irq(&base->lock);
1197 }
1198 }
1199 base->running_timer = NULL;
1200 spin_unlock_irq(&base->lock);
1201}
1202
1203#ifdef CONFIG_NO_HZ
1204/*
1205 * Find out when the next timer event is due to happen. This
1206 * is used on S/390 to stop all activity when a CPU is idle.
1207 * This function needs to be called with interrupts disabled.
1208 */
1209static unsigned long __next_timer_interrupt(struct tvec_base *base)
1210{
1211 unsigned long timer_jiffies = base->timer_jiffies;
1212 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1213 int index, slot, array, found = 0;
1214 struct timer_list *nte;
1215 struct tvec *varray[4];
1216
1217 /* Look for timer events in tv1. */
1218 index = slot = timer_jiffies & TVR_MASK;
1219 do {
1220 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1221 if (tbase_get_deferrable(nte->base))
1222 continue;
1223
1224 found = 1;
1225 expires = nte->expires;
1226 /* Look at the cascade bucket(s)? */
1227 if (!index || slot < index)
1228 goto cascade;
1229 return expires;
1230 }
1231 slot = (slot + 1) & TVR_MASK;
1232 } while (slot != index);
1233
1234cascade:
1235 /* Calculate the next cascade event */
1236 if (index)
1237 timer_jiffies += TVR_SIZE - index;
1238 timer_jiffies >>= TVR_BITS;
1239
1240 /* Check tv2-tv5. */
1241 varray[0] = &base->tv2;
1242 varray[1] = &base->tv3;
1243 varray[2] = &base->tv4;
1244 varray[3] = &base->tv5;
1245
1246 for (array = 0; array < 4; array++) {
1247 struct tvec *varp = varray[array];
1248
1249 index = slot = timer_jiffies & TVN_MASK;
1250 do {
1251 list_for_each_entry(nte, varp->vec + slot, entry) {
1252 if (tbase_get_deferrable(nte->base))
1253 continue;
1254
1255 found = 1;
1256 if (time_before(nte->expires, expires))
1257 expires = nte->expires;
1258 }
1259 /*
1260 * Do we still search for the first timer or are
1261 * we looking up the cascade buckets ?
1262 */
1263 if (found) {
1264 /* Look at the cascade bucket(s)? */
1265 if (!index || slot < index)
1266 break;
1267 return expires;
1268 }
1269 slot = (slot + 1) & TVN_MASK;
1270 } while (slot != index);
1271
1272 if (index)
1273 timer_jiffies += TVN_SIZE - index;
1274 timer_jiffies >>= TVN_BITS;
1275 }
1276 return expires;
1277}
1278
1279/*
1280 * Check, if the next hrtimer event is before the next timer wheel
1281 * event:
1282 */
1283static unsigned long cmp_next_hrtimer_event(unsigned long now,
1284 unsigned long expires)
1285{
1286 ktime_t hr_delta = hrtimer_get_next_event();
1287 struct timespec tsdelta;
1288 unsigned long delta;
1289
1290 if (hr_delta.tv64 == KTIME_MAX)
1291 return expires;
1292
1293 /*
1294 * Expired timer available, let it expire in the next tick
1295 */
1296 if (hr_delta.tv64 <= 0)
1297 return now + 1;
1298
1299 tsdelta = ktime_to_timespec(hr_delta);
1300 delta = timespec_to_jiffies(&tsdelta);
1301
1302 /*
1303 * Limit the delta to the max value, which is checked in
1304 * tick_nohz_stop_sched_tick():
1305 */
1306 if (delta > NEXT_TIMER_MAX_DELTA)
1307 delta = NEXT_TIMER_MAX_DELTA;
1308
1309 /*
1310 * Take rounding errors in to account and make sure, that it
1311 * expires in the next tick. Otherwise we go into an endless
1312 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1313 * the timer softirq
1314 */
1315 if (delta < 1)
1316 delta = 1;
1317 now += delta;
1318 if (time_before(now, expires))
1319 return now;
1320 return expires;
1321}
1322
1323/**
1324 * get_next_timer_interrupt - return the jiffy of the next pending timer
1325 * @now: current time (in jiffies)
1326 */
1327unsigned long get_next_timer_interrupt(unsigned long now)
1328{
1329 struct tvec_base *base = __this_cpu_read(tvec_bases);
1330 unsigned long expires = now + NEXT_TIMER_MAX_DELTA;
1331
1332 /*
1333 * Pretend that there is no timer pending if the cpu is offline.
1334 * Possible pending timers will be migrated later to an active cpu.
1335 */
1336 if (cpu_is_offline(smp_processor_id()))
1337 return expires;
1338
1339 spin_lock(&base->lock);
1340 if (base->active_timers) {
1341 if (time_before_eq(base->next_timer, base->timer_jiffies))
1342 base->next_timer = __next_timer_interrupt(base);
1343 expires = base->next_timer;
1344 }
1345 spin_unlock(&base->lock);
1346
1347 if (time_before_eq(expires, now))
1348 return now;
1349
1350 return cmp_next_hrtimer_event(now, expires);
1351}
1352#endif
1353
1354/*
1355 * Called from the timer interrupt handler to charge one tick to the current
1356 * process. user_tick is 1 if the tick is user time, 0 for system.
1357 */
1358void update_process_times(int user_tick)
1359{
1360 struct task_struct *p = current;
1361 int cpu = smp_processor_id();
1362
1363 /* Note: this timer irq context must be accounted for as well. */
1364 account_process_tick(p, user_tick);
1365 run_local_timers();
1366 rcu_check_callbacks(cpu, user_tick);
1367 printk_tick();
1368#ifdef CONFIG_IRQ_WORK
1369 if (in_irq())
1370 irq_work_run();
1371#endif
1372 scheduler_tick();
1373 run_posix_cpu_timers(p);
1374}
1375
1376/*
1377 * This function runs timers and the timer-tq in bottom half context.
1378 */
1379static void run_timer_softirq(struct softirq_action *h)
1380{
1381 struct tvec_base *base = __this_cpu_read(tvec_bases);
1382
1383 hrtimer_run_pending();
1384
1385 if (time_after_eq(jiffies, base->timer_jiffies))
1386 __run_timers(base);
1387}
1388
1389/*
1390 * Called by the local, per-CPU timer interrupt on SMP.
1391 */
1392void run_local_timers(void)
1393{
1394 hrtimer_run_queues();
1395 raise_softirq(TIMER_SOFTIRQ);
1396}
1397
1398#ifdef __ARCH_WANT_SYS_ALARM
1399
1400/*
1401 * For backwards compatibility? This can be done in libc so Alpha
1402 * and all newer ports shouldn't need it.
1403 */
1404SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1405{
1406 return alarm_setitimer(seconds);
1407}
1408
1409#endif
1410
1411#ifndef __alpha__
1412
1413/*
1414 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1415 * should be moved into arch/i386 instead?
1416 */
1417
1418/**
1419 * sys_getpid - return the thread group id of the current process
1420 *
1421 * Note, despite the name, this returns the tgid not the pid. The tgid and
1422 * the pid are identical unless CLONE_THREAD was specified on clone() in
1423 * which case the tgid is the same in all threads of the same group.
1424 *
1425 * This is SMP safe as current->tgid does not change.
1426 */
1427SYSCALL_DEFINE0(getpid)
1428{
1429 return task_tgid_vnr(current);
1430}
1431
1432/*
1433 * Accessing ->real_parent is not SMP-safe, it could
1434 * change from under us. However, we can use a stale
1435 * value of ->real_parent under rcu_read_lock(), see
1436 * release_task()->call_rcu(delayed_put_task_struct).
1437 */
1438SYSCALL_DEFINE0(getppid)
1439{
1440 int pid;
1441
1442 rcu_read_lock();
1443 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
1444 rcu_read_unlock();
1445
1446 return pid;
1447}
1448
1449SYSCALL_DEFINE0(getuid)
1450{
1451 /* Only we change this so SMP safe */
1452 return from_kuid_munged(current_user_ns(), current_uid());
1453}
1454
1455SYSCALL_DEFINE0(geteuid)
1456{
1457 /* Only we change this so SMP safe */
1458 return from_kuid_munged(current_user_ns(), current_euid());
1459}
1460
1461SYSCALL_DEFINE0(getgid)
1462{
1463 /* Only we change this so SMP safe */
1464 return from_kgid_munged(current_user_ns(), current_gid());
1465}
1466
1467SYSCALL_DEFINE0(getegid)
1468{
1469 /* Only we change this so SMP safe */
1470 return from_kgid_munged(current_user_ns(), current_egid());
1471}
1472
1473#endif
1474
1475static void process_timeout(unsigned long __data)
1476{
1477 wake_up_process((struct task_struct *)__data);
1478}
1479
1480/**
1481 * schedule_timeout - sleep until timeout
1482 * @timeout: timeout value in jiffies
1483 *
1484 * Make the current task sleep until @timeout jiffies have
1485 * elapsed. The routine will return immediately unless
1486 * the current task state has been set (see set_current_state()).
1487 *
1488 * You can set the task state as follows -
1489 *
1490 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1491 * pass before the routine returns. The routine will return 0
1492 *
1493 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1494 * delivered to the current task. In this case the remaining time
1495 * in jiffies will be returned, or 0 if the timer expired in time
1496 *
1497 * The current task state is guaranteed to be TASK_RUNNING when this
1498 * routine returns.
1499 *
1500 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1501 * the CPU away without a bound on the timeout. In this case the return
1502 * value will be %MAX_SCHEDULE_TIMEOUT.
1503 *
1504 * In all cases the return value is guaranteed to be non-negative.
1505 */
1506signed long __sched schedule_timeout(signed long timeout)
1507{
1508 struct timer_list timer;
1509 unsigned long expire;
1510
1511 switch (timeout)
1512 {
1513 case MAX_SCHEDULE_TIMEOUT:
1514 /*
1515 * These two special cases are useful to be comfortable
1516 * in the caller. Nothing more. We could take
1517 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1518 * but I' d like to return a valid offset (>=0) to allow
1519 * the caller to do everything it want with the retval.
1520 */
1521 schedule();
1522 goto out;
1523 default:
1524 /*
1525 * Another bit of PARANOID. Note that the retval will be
1526 * 0 since no piece of kernel is supposed to do a check
1527 * for a negative retval of schedule_timeout() (since it
1528 * should never happens anyway). You just have the printk()
1529 * that will tell you if something is gone wrong and where.
1530 */
1531 if (timeout < 0) {
1532 printk(KERN_ERR "schedule_timeout: wrong timeout "
1533 "value %lx\n", timeout);
1534 dump_stack();
1535 current->state = TASK_RUNNING;
1536 goto out;
1537 }
1538 }
1539
1540 expire = timeout + jiffies;
1541
1542 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1543 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1544 schedule();
1545 del_singleshot_timer_sync(&timer);
1546
1547 /* Remove the timer from the object tracker */
1548 destroy_timer_on_stack(&timer);
1549
1550 timeout = expire - jiffies;
1551
1552 out:
1553 return timeout < 0 ? 0 : timeout;
1554}
1555EXPORT_SYMBOL(schedule_timeout);
1556
1557/*
1558 * We can use __set_current_state() here because schedule_timeout() calls
1559 * schedule() unconditionally.
1560 */
1561signed long __sched schedule_timeout_interruptible(signed long timeout)
1562{
1563 __set_current_state(TASK_INTERRUPTIBLE);
1564 return schedule_timeout(timeout);
1565}
1566EXPORT_SYMBOL(schedule_timeout_interruptible);
1567
1568signed long __sched schedule_timeout_killable(signed long timeout)
1569{
1570 __set_current_state(TASK_KILLABLE);
1571 return schedule_timeout(timeout);
1572}
1573EXPORT_SYMBOL(schedule_timeout_killable);
1574
1575signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1576{
1577 __set_current_state(TASK_UNINTERRUPTIBLE);
1578 return schedule_timeout(timeout);
1579}
1580EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1581
1582/* Thread ID - the internal kernel "pid" */
1583SYSCALL_DEFINE0(gettid)
1584{
1585 return task_pid_vnr(current);
1586}
1587
1588/**
1589 * do_sysinfo - fill in sysinfo struct
1590 * @info: pointer to buffer to fill
1591 */
1592int do_sysinfo(struct sysinfo *info)
1593{
1594 unsigned long mem_total, sav_total;
1595 unsigned int mem_unit, bitcount;
1596 struct timespec tp;
1597
1598 memset(info, 0, sizeof(struct sysinfo));
1599
1600 ktime_get_ts(&tp);
1601 monotonic_to_bootbased(&tp);
1602 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1603
1604 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1605
1606 info->procs = nr_threads;
1607
1608 si_meminfo(info);
1609 si_swapinfo(info);
1610
1611 /*
1612 * If the sum of all the available memory (i.e. ram + swap)
1613 * is less than can be stored in a 32 bit unsigned long then
1614 * we can be binary compatible with 2.2.x kernels. If not,
1615 * well, in that case 2.2.x was broken anyways...
1616 *
1617 * -Erik Andersen <andersee@debian.org>
1618 */
1619
1620 mem_total = info->totalram + info->totalswap;
1621 if (mem_total < info->totalram || mem_total < info->totalswap)
1622 goto out;
1623 bitcount = 0;
1624 mem_unit = info->mem_unit;
1625 while (mem_unit > 1) {
1626 bitcount++;
1627 mem_unit >>= 1;
1628 sav_total = mem_total;
1629 mem_total <<= 1;
1630 if (mem_total < sav_total)
1631 goto out;
1632 }
1633
1634 /*
1635 * If mem_total did not overflow, multiply all memory values by
1636 * info->mem_unit and set it to 1. This leaves things compatible
1637 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1638 * kernels...
1639 */
1640
1641 info->mem_unit = 1;
1642 info->totalram <<= bitcount;
1643 info->freeram <<= bitcount;
1644 info->sharedram <<= bitcount;
1645 info->bufferram <<= bitcount;
1646 info->totalswap <<= bitcount;
1647 info->freeswap <<= bitcount;
1648 info->totalhigh <<= bitcount;
1649 info->freehigh <<= bitcount;
1650
1651out:
1652 return 0;
1653}
1654
1655SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1656{
1657 struct sysinfo val;
1658
1659 do_sysinfo(&val);
1660
1661 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1662 return -EFAULT;
1663
1664 return 0;
1665}
1666
1667static int __cpuinit init_timers_cpu(int cpu)
1668{
1669 int j;
1670 struct tvec_base *base;
1671 static char __cpuinitdata tvec_base_done[NR_CPUS];
1672
1673 if (!tvec_base_done[cpu]) {
1674 static char boot_done;
1675
1676 if (boot_done) {
1677 /*
1678 * The APs use this path later in boot
1679 */
1680 base = kmalloc_node(sizeof(*base),
1681 GFP_KERNEL | __GFP_ZERO,
1682 cpu_to_node(cpu));
1683 if (!base)
1684 return -ENOMEM;
1685
1686 /* Make sure that tvec_base is 2 byte aligned */
1687 if (tbase_get_deferrable(base)) {
1688 WARN_ON(1);
1689 kfree(base);
1690 return -ENOMEM;
1691 }
1692 per_cpu(tvec_bases, cpu) = base;
1693 } else {
1694 /*
1695 * This is for the boot CPU - we use compile-time
1696 * static initialisation because per-cpu memory isn't
1697 * ready yet and because the memory allocators are not
1698 * initialised either.
1699 */
1700 boot_done = 1;
1701 base = &boot_tvec_bases;
1702 }
1703 tvec_base_done[cpu] = 1;
1704 } else {
1705 base = per_cpu(tvec_bases, cpu);
1706 }
1707
1708 spin_lock_init(&base->lock);
1709
1710 for (j = 0; j < TVN_SIZE; j++) {
1711 INIT_LIST_HEAD(base->tv5.vec + j);
1712 INIT_LIST_HEAD(base->tv4.vec + j);
1713 INIT_LIST_HEAD(base->tv3.vec + j);
1714 INIT_LIST_HEAD(base->tv2.vec + j);
1715 }
1716 for (j = 0; j < TVR_SIZE; j++)
1717 INIT_LIST_HEAD(base->tv1.vec + j);
1718
1719 base->timer_jiffies = jiffies;
1720 base->next_timer = base->timer_jiffies;
1721 base->active_timers = 0;
1722 return 0;
1723}
1724
1725#ifdef CONFIG_HOTPLUG_CPU
1726static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1727{
1728 struct timer_list *timer;
1729
1730 while (!list_empty(head)) {
1731 timer = list_first_entry(head, struct timer_list, entry);
1732 /* We ignore the accounting on the dying cpu */
1733 detach_timer(timer, false);
1734 timer_set_base(timer, new_base);
1735 internal_add_timer(new_base, timer);
1736 }
1737}
1738
1739static void __cpuinit migrate_timers(int cpu)
1740{
1741 struct tvec_base *old_base;
1742 struct tvec_base *new_base;
1743 int i;
1744
1745 BUG_ON(cpu_online(cpu));
1746 old_base = per_cpu(tvec_bases, cpu);
1747 new_base = get_cpu_var(tvec_bases);
1748 /*
1749 * The caller is globally serialized and nobody else
1750 * takes two locks at once, deadlock is not possible.
1751 */
1752 spin_lock_irq(&new_base->lock);
1753 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1754
1755 BUG_ON(old_base->running_timer);
1756
1757 for (i = 0; i < TVR_SIZE; i++)
1758 migrate_timer_list(new_base, old_base->tv1.vec + i);
1759 for (i = 0; i < TVN_SIZE; i++) {
1760 migrate_timer_list(new_base, old_base->tv2.vec + i);
1761 migrate_timer_list(new_base, old_base->tv3.vec + i);
1762 migrate_timer_list(new_base, old_base->tv4.vec + i);
1763 migrate_timer_list(new_base, old_base->tv5.vec + i);
1764 }
1765
1766 spin_unlock(&old_base->lock);
1767 spin_unlock_irq(&new_base->lock);
1768 put_cpu_var(tvec_bases);
1769}
1770#endif /* CONFIG_HOTPLUG_CPU */
1771
1772static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1773 unsigned long action, void *hcpu)
1774{
1775 long cpu = (long)hcpu;
1776 int err;
1777
1778 switch(action) {
1779 case CPU_UP_PREPARE:
1780 case CPU_UP_PREPARE_FROZEN:
1781 err = init_timers_cpu(cpu);
1782 if (err < 0)
1783 return notifier_from_errno(err);
1784 break;
1785#ifdef CONFIG_HOTPLUG_CPU
1786 case CPU_DEAD:
1787 case CPU_DEAD_FROZEN:
1788 migrate_timers(cpu);
1789 break;
1790#endif
1791 default:
1792 break;
1793 }
1794 return NOTIFY_OK;
1795}
1796
1797static struct notifier_block __cpuinitdata timers_nb = {
1798 .notifier_call = timer_cpu_notify,
1799};
1800
1801
1802void __init init_timers(void)
1803{
1804 int err;
1805
1806 /* ensure there are enough low bits for flags in timer->base pointer */
1807 BUILD_BUG_ON(__alignof__(struct tvec_base) & TIMER_FLAG_MASK);
1808
1809 err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1810 (void *)(long)smp_processor_id());
1811 init_timer_stats();
1812
1813 BUG_ON(err != NOTIFY_OK);
1814 register_cpu_notifier(&timers_nb);
1815 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1816}
1817
1818/**
1819 * msleep - sleep safely even with waitqueue interruptions
1820 * @msecs: Time in milliseconds to sleep for
1821 */
1822void msleep(unsigned int msecs)
1823{
1824 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1825
1826 while (timeout)
1827 timeout = schedule_timeout_uninterruptible(timeout);
1828}
1829
1830EXPORT_SYMBOL(msleep);
1831
1832/**
1833 * msleep_interruptible - sleep waiting for signals
1834 * @msecs: Time in milliseconds to sleep for
1835 */
1836unsigned long msleep_interruptible(unsigned int msecs)
1837{
1838 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1839
1840 while (timeout && !signal_pending(current))
1841 timeout = schedule_timeout_interruptible(timeout);
1842 return jiffies_to_msecs(timeout);
1843}
1844
1845EXPORT_SYMBOL(msleep_interruptible);
1846
1847static int __sched do_usleep_range(unsigned long min, unsigned long max)
1848{
1849 ktime_t kmin;
1850 unsigned long delta;
1851
1852 kmin = ktime_set(0, min * NSEC_PER_USEC);
1853 delta = (max - min) * NSEC_PER_USEC;
1854 return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1855}
1856
1857/**
1858 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1859 * @min: Minimum time in usecs to sleep
1860 * @max: Maximum time in usecs to sleep
1861 */
1862void usleep_range(unsigned long min, unsigned long max)
1863{
1864 __set_current_state(TASK_UNINTERRUPTIBLE);
1865 do_usleep_range(min, max);
1866}
1867EXPORT_SYMBOL(usleep_range);
This page took 0.036142 seconds and 5 git commands to generate.