memcg: reduce function dereference
[deliverable/linux.git] / mm / memcontrol.c
... / ...
CommitLineData
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
31#include <linux/mm.h>
32#include <linux/hugetlb.h>
33#include <linux/pagemap.h>
34#include <linux/smp.h>
35#include <linux/page-flags.h>
36#include <linux/backing-dev.h>
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
39#include <linux/limits.h>
40#include <linux/export.h>
41#include <linux/mutex.h>
42#include <linux/slab.h>
43#include <linux/swap.h>
44#include <linux/swapops.h>
45#include <linux/spinlock.h>
46#include <linux/eventfd.h>
47#include <linux/sort.h>
48#include <linux/fs.h>
49#include <linux/seq_file.h>
50#include <linux/vmalloc.h>
51#include <linux/vmpressure.h>
52#include <linux/mm_inline.h>
53#include <linux/page_cgroup.h>
54#include <linux/cpu.h>
55#include <linux/oom.h>
56#include "internal.h"
57#include <net/sock.h>
58#include <net/ip.h>
59#include <net/tcp_memcontrol.h>
60
61#include <asm/uaccess.h>
62
63#include <trace/events/vmscan.h>
64
65struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66EXPORT_SYMBOL(mem_cgroup_subsys);
67
68#define MEM_CGROUP_RECLAIM_RETRIES 5
69static struct mem_cgroup *root_mem_cgroup __read_mostly;
70
71#ifdef CONFIG_MEMCG_SWAP
72/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73int do_swap_account __read_mostly;
74
75/* for remember boot option*/
76#ifdef CONFIG_MEMCG_SWAP_ENABLED
77static int really_do_swap_account __initdata = 1;
78#else
79static int really_do_swap_account __initdata = 0;
80#endif
81
82#else
83#define do_swap_account 0
84#endif
85
86
87/*
88 * Statistics for memory cgroup.
89 */
90enum mem_cgroup_stat_index {
91 /*
92 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
93 */
94 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
95 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
96 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
97 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
98 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
99 MEM_CGROUP_STAT_NSTATS,
100};
101
102static const char * const mem_cgroup_stat_names[] = {
103 "cache",
104 "rss",
105 "rss_huge",
106 "mapped_file",
107 "swap",
108};
109
110enum mem_cgroup_events_index {
111 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
112 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
113 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
114 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
115 MEM_CGROUP_EVENTS_NSTATS,
116};
117
118static const char * const mem_cgroup_events_names[] = {
119 "pgpgin",
120 "pgpgout",
121 "pgfault",
122 "pgmajfault",
123};
124
125static const char * const mem_cgroup_lru_names[] = {
126 "inactive_anon",
127 "active_anon",
128 "inactive_file",
129 "active_file",
130 "unevictable",
131};
132
133/*
134 * Per memcg event counter is incremented at every pagein/pageout. With THP,
135 * it will be incremated by the number of pages. This counter is used for
136 * for trigger some periodic events. This is straightforward and better
137 * than using jiffies etc. to handle periodic memcg event.
138 */
139enum mem_cgroup_events_target {
140 MEM_CGROUP_TARGET_THRESH,
141 MEM_CGROUP_TARGET_SOFTLIMIT,
142 MEM_CGROUP_TARGET_NUMAINFO,
143 MEM_CGROUP_NTARGETS,
144};
145#define THRESHOLDS_EVENTS_TARGET 128
146#define SOFTLIMIT_EVENTS_TARGET 1024
147#define NUMAINFO_EVENTS_TARGET 1024
148
149struct mem_cgroup_stat_cpu {
150 long count[MEM_CGROUP_STAT_NSTATS];
151 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
152 unsigned long nr_page_events;
153 unsigned long targets[MEM_CGROUP_NTARGETS];
154};
155
156struct mem_cgroup_reclaim_iter {
157 /*
158 * last scanned hierarchy member. Valid only if last_dead_count
159 * matches memcg->dead_count of the hierarchy root group.
160 */
161 struct mem_cgroup *last_visited;
162 unsigned long last_dead_count;
163
164 /* scan generation, increased every round-trip */
165 unsigned int generation;
166};
167
168/*
169 * per-zone information in memory controller.
170 */
171struct mem_cgroup_per_zone {
172 struct lruvec lruvec;
173 unsigned long lru_size[NR_LRU_LISTS];
174
175 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
176
177 struct mem_cgroup *memcg; /* Back pointer, we cannot */
178 /* use container_of */
179};
180
181struct mem_cgroup_per_node {
182 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
183};
184
185struct mem_cgroup_threshold {
186 struct eventfd_ctx *eventfd;
187 u64 threshold;
188};
189
190/* For threshold */
191struct mem_cgroup_threshold_ary {
192 /* An array index points to threshold just below or equal to usage. */
193 int current_threshold;
194 /* Size of entries[] */
195 unsigned int size;
196 /* Array of thresholds */
197 struct mem_cgroup_threshold entries[0];
198};
199
200struct mem_cgroup_thresholds {
201 /* Primary thresholds array */
202 struct mem_cgroup_threshold_ary *primary;
203 /*
204 * Spare threshold array.
205 * This is needed to make mem_cgroup_unregister_event() "never fail".
206 * It must be able to store at least primary->size - 1 entries.
207 */
208 struct mem_cgroup_threshold_ary *spare;
209};
210
211/* for OOM */
212struct mem_cgroup_eventfd_list {
213 struct list_head list;
214 struct eventfd_ctx *eventfd;
215};
216
217static void mem_cgroup_threshold(struct mem_cgroup *memcg);
218static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
219
220/*
221 * The memory controller data structure. The memory controller controls both
222 * page cache and RSS per cgroup. We would eventually like to provide
223 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
224 * to help the administrator determine what knobs to tune.
225 *
226 * TODO: Add a water mark for the memory controller. Reclaim will begin when
227 * we hit the water mark. May be even add a low water mark, such that
228 * no reclaim occurs from a cgroup at it's low water mark, this is
229 * a feature that will be implemented much later in the future.
230 */
231struct mem_cgroup {
232 struct cgroup_subsys_state css;
233 /*
234 * the counter to account for memory usage
235 */
236 struct res_counter res;
237
238 /* vmpressure notifications */
239 struct vmpressure vmpressure;
240
241 /*
242 * the counter to account for mem+swap usage.
243 */
244 struct res_counter memsw;
245
246 /*
247 * the counter to account for kernel memory usage.
248 */
249 struct res_counter kmem;
250 /*
251 * Should the accounting and control be hierarchical, per subtree?
252 */
253 bool use_hierarchy;
254 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
255
256 bool oom_lock;
257 atomic_t under_oom;
258 atomic_t oom_wakeups;
259
260 int swappiness;
261 /* OOM-Killer disable */
262 int oom_kill_disable;
263
264 /* set when res.limit == memsw.limit */
265 bool memsw_is_minimum;
266
267 /* protect arrays of thresholds */
268 struct mutex thresholds_lock;
269
270 /* thresholds for memory usage. RCU-protected */
271 struct mem_cgroup_thresholds thresholds;
272
273 /* thresholds for mem+swap usage. RCU-protected */
274 struct mem_cgroup_thresholds memsw_thresholds;
275
276 /* For oom notifier event fd */
277 struct list_head oom_notify;
278
279 /*
280 * Should we move charges of a task when a task is moved into this
281 * mem_cgroup ? And what type of charges should we move ?
282 */
283 unsigned long move_charge_at_immigrate;
284 /*
285 * set > 0 if pages under this cgroup are moving to other cgroup.
286 */
287 atomic_t moving_account;
288 /* taken only while moving_account > 0 */
289 spinlock_t move_lock;
290 /*
291 * percpu counter.
292 */
293 struct mem_cgroup_stat_cpu __percpu *stat;
294 /*
295 * used when a cpu is offlined or other synchronizations
296 * See mem_cgroup_read_stat().
297 */
298 struct mem_cgroup_stat_cpu nocpu_base;
299 spinlock_t pcp_counter_lock;
300
301 atomic_t dead_count;
302#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
303 struct tcp_memcontrol tcp_mem;
304#endif
305#if defined(CONFIG_MEMCG_KMEM)
306 /* analogous to slab_common's slab_caches list. per-memcg */
307 struct list_head memcg_slab_caches;
308 /* Not a spinlock, we can take a lot of time walking the list */
309 struct mutex slab_caches_mutex;
310 /* Index in the kmem_cache->memcg_params->memcg_caches array */
311 int kmemcg_id;
312#endif
313
314 int last_scanned_node;
315#if MAX_NUMNODES > 1
316 nodemask_t scan_nodes;
317 atomic_t numainfo_events;
318 atomic_t numainfo_updating;
319#endif
320 /*
321 * Protects soft_contributed transitions.
322 * See mem_cgroup_update_soft_limit
323 */
324 spinlock_t soft_lock;
325
326 /*
327 * If true then this group has increased parents' children_in_excess
328 * when it got over the soft limit.
329 * When a group falls bellow the soft limit, parents' children_in_excess
330 * is decreased and soft_contributed changed to false.
331 */
332 bool soft_contributed;
333
334 /* Number of children that are in soft limit excess */
335 atomic_t children_in_excess;
336
337 struct mem_cgroup_per_node *nodeinfo[0];
338 /* WARNING: nodeinfo must be the last member here */
339};
340
341static size_t memcg_size(void)
342{
343 return sizeof(struct mem_cgroup) +
344 nr_node_ids * sizeof(struct mem_cgroup_per_node);
345}
346
347/* internal only representation about the status of kmem accounting. */
348enum {
349 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
350 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
351 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
352};
353
354/* We account when limit is on, but only after call sites are patched */
355#define KMEM_ACCOUNTED_MASK \
356 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
357
358#ifdef CONFIG_MEMCG_KMEM
359static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
360{
361 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
362}
363
364static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
365{
366 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
367}
368
369static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
370{
371 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
372}
373
374static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
375{
376 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
377}
378
379static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
380{
381 /*
382 * Our caller must use css_get() first, because memcg_uncharge_kmem()
383 * will call css_put() if it sees the memcg is dead.
384 */
385 smp_wmb();
386 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
387 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
388}
389
390static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
391{
392 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
393 &memcg->kmem_account_flags);
394}
395#endif
396
397/* Stuffs for move charges at task migration. */
398/*
399 * Types of charges to be moved. "move_charge_at_immitgrate" and
400 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
401 */
402enum move_type {
403 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
404 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
405 NR_MOVE_TYPE,
406};
407
408/* "mc" and its members are protected by cgroup_mutex */
409static struct move_charge_struct {
410 spinlock_t lock; /* for from, to */
411 struct mem_cgroup *from;
412 struct mem_cgroup *to;
413 unsigned long immigrate_flags;
414 unsigned long precharge;
415 unsigned long moved_charge;
416 unsigned long moved_swap;
417 struct task_struct *moving_task; /* a task moving charges */
418 wait_queue_head_t waitq; /* a waitq for other context */
419} mc = {
420 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
421 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
422};
423
424static bool move_anon(void)
425{
426 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
427}
428
429static bool move_file(void)
430{
431 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
432}
433
434/*
435 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
436 * limit reclaim to prevent infinite loops, if they ever occur.
437 */
438#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
439
440enum charge_type {
441 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
442 MEM_CGROUP_CHARGE_TYPE_ANON,
443 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
444 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
445 NR_CHARGE_TYPE,
446};
447
448/* for encoding cft->private value on file */
449enum res_type {
450 _MEM,
451 _MEMSWAP,
452 _OOM_TYPE,
453 _KMEM,
454};
455
456#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
457#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
458#define MEMFILE_ATTR(val) ((val) & 0xffff)
459/* Used for OOM nofiier */
460#define OOM_CONTROL (0)
461
462/*
463 * Reclaim flags for mem_cgroup_hierarchical_reclaim
464 */
465#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
466#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
467#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
468#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
469
470/*
471 * The memcg_create_mutex will be held whenever a new cgroup is created.
472 * As a consequence, any change that needs to protect against new child cgroups
473 * appearing has to hold it as well.
474 */
475static DEFINE_MUTEX(memcg_create_mutex);
476
477struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
478{
479 return s ? container_of(s, struct mem_cgroup, css) : NULL;
480}
481
482/* Some nice accessors for the vmpressure. */
483struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
484{
485 if (!memcg)
486 memcg = root_mem_cgroup;
487 return &memcg->vmpressure;
488}
489
490struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
491{
492 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
493}
494
495struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
496{
497 return &mem_cgroup_from_css(css)->vmpressure;
498}
499
500static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
501{
502 return (memcg == root_mem_cgroup);
503}
504
505/* Writing them here to avoid exposing memcg's inner layout */
506#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
507
508void sock_update_memcg(struct sock *sk)
509{
510 if (mem_cgroup_sockets_enabled) {
511 struct mem_cgroup *memcg;
512 struct cg_proto *cg_proto;
513
514 BUG_ON(!sk->sk_prot->proto_cgroup);
515
516 /* Socket cloning can throw us here with sk_cgrp already
517 * filled. It won't however, necessarily happen from
518 * process context. So the test for root memcg given
519 * the current task's memcg won't help us in this case.
520 *
521 * Respecting the original socket's memcg is a better
522 * decision in this case.
523 */
524 if (sk->sk_cgrp) {
525 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
526 css_get(&sk->sk_cgrp->memcg->css);
527 return;
528 }
529
530 rcu_read_lock();
531 memcg = mem_cgroup_from_task(current);
532 cg_proto = sk->sk_prot->proto_cgroup(memcg);
533 if (!mem_cgroup_is_root(memcg) &&
534 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
535 sk->sk_cgrp = cg_proto;
536 }
537 rcu_read_unlock();
538 }
539}
540EXPORT_SYMBOL(sock_update_memcg);
541
542void sock_release_memcg(struct sock *sk)
543{
544 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
545 struct mem_cgroup *memcg;
546 WARN_ON(!sk->sk_cgrp->memcg);
547 memcg = sk->sk_cgrp->memcg;
548 css_put(&sk->sk_cgrp->memcg->css);
549 }
550}
551
552struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
553{
554 if (!memcg || mem_cgroup_is_root(memcg))
555 return NULL;
556
557 return &memcg->tcp_mem.cg_proto;
558}
559EXPORT_SYMBOL(tcp_proto_cgroup);
560
561static void disarm_sock_keys(struct mem_cgroup *memcg)
562{
563 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
564 return;
565 static_key_slow_dec(&memcg_socket_limit_enabled);
566}
567#else
568static void disarm_sock_keys(struct mem_cgroup *memcg)
569{
570}
571#endif
572
573#ifdef CONFIG_MEMCG_KMEM
574/*
575 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
576 * There are two main reasons for not using the css_id for this:
577 * 1) this works better in sparse environments, where we have a lot of memcgs,
578 * but only a few kmem-limited. Or also, if we have, for instance, 200
579 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
580 * 200 entry array for that.
581 *
582 * 2) In order not to violate the cgroup API, we would like to do all memory
583 * allocation in ->create(). At that point, we haven't yet allocated the
584 * css_id. Having a separate index prevents us from messing with the cgroup
585 * core for this
586 *
587 * The current size of the caches array is stored in
588 * memcg_limited_groups_array_size. It will double each time we have to
589 * increase it.
590 */
591static DEFINE_IDA(kmem_limited_groups);
592int memcg_limited_groups_array_size;
593
594/*
595 * MIN_SIZE is different than 1, because we would like to avoid going through
596 * the alloc/free process all the time. In a small machine, 4 kmem-limited
597 * cgroups is a reasonable guess. In the future, it could be a parameter or
598 * tunable, but that is strictly not necessary.
599 *
600 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
601 * this constant directly from cgroup, but it is understandable that this is
602 * better kept as an internal representation in cgroup.c. In any case, the
603 * css_id space is not getting any smaller, and we don't have to necessarily
604 * increase ours as well if it increases.
605 */
606#define MEMCG_CACHES_MIN_SIZE 4
607#define MEMCG_CACHES_MAX_SIZE 65535
608
609/*
610 * A lot of the calls to the cache allocation functions are expected to be
611 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
612 * conditional to this static branch, we'll have to allow modules that does
613 * kmem_cache_alloc and the such to see this symbol as well
614 */
615struct static_key memcg_kmem_enabled_key;
616EXPORT_SYMBOL(memcg_kmem_enabled_key);
617
618static void disarm_kmem_keys(struct mem_cgroup *memcg)
619{
620 if (memcg_kmem_is_active(memcg)) {
621 static_key_slow_dec(&memcg_kmem_enabled_key);
622 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
623 }
624 /*
625 * This check can't live in kmem destruction function,
626 * since the charges will outlive the cgroup
627 */
628 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
629}
630#else
631static void disarm_kmem_keys(struct mem_cgroup *memcg)
632{
633}
634#endif /* CONFIG_MEMCG_KMEM */
635
636static void disarm_static_keys(struct mem_cgroup *memcg)
637{
638 disarm_sock_keys(memcg);
639 disarm_kmem_keys(memcg);
640}
641
642static void drain_all_stock_async(struct mem_cgroup *memcg);
643
644static struct mem_cgroup_per_zone *
645mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
646{
647 VM_BUG_ON((unsigned)nid >= nr_node_ids);
648 return &memcg->nodeinfo[nid]->zoneinfo[zid];
649}
650
651struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
652{
653 return &memcg->css;
654}
655
656static struct mem_cgroup_per_zone *
657page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
658{
659 int nid = page_to_nid(page);
660 int zid = page_zonenum(page);
661
662 return mem_cgroup_zoneinfo(memcg, nid, zid);
663}
664
665/*
666 * Implementation Note: reading percpu statistics for memcg.
667 *
668 * Both of vmstat[] and percpu_counter has threshold and do periodic
669 * synchronization to implement "quick" read. There are trade-off between
670 * reading cost and precision of value. Then, we may have a chance to implement
671 * a periodic synchronizion of counter in memcg's counter.
672 *
673 * But this _read() function is used for user interface now. The user accounts
674 * memory usage by memory cgroup and he _always_ requires exact value because
675 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
676 * have to visit all online cpus and make sum. So, for now, unnecessary
677 * synchronization is not implemented. (just implemented for cpu hotplug)
678 *
679 * If there are kernel internal actions which can make use of some not-exact
680 * value, and reading all cpu value can be performance bottleneck in some
681 * common workload, threashold and synchonization as vmstat[] should be
682 * implemented.
683 */
684static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
685 enum mem_cgroup_stat_index idx)
686{
687 long val = 0;
688 int cpu;
689
690 get_online_cpus();
691 for_each_online_cpu(cpu)
692 val += per_cpu(memcg->stat->count[idx], cpu);
693#ifdef CONFIG_HOTPLUG_CPU
694 spin_lock(&memcg->pcp_counter_lock);
695 val += memcg->nocpu_base.count[idx];
696 spin_unlock(&memcg->pcp_counter_lock);
697#endif
698 put_online_cpus();
699 return val;
700}
701
702static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
703 bool charge)
704{
705 int val = (charge) ? 1 : -1;
706 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
707}
708
709static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
710 enum mem_cgroup_events_index idx)
711{
712 unsigned long val = 0;
713 int cpu;
714
715 for_each_online_cpu(cpu)
716 val += per_cpu(memcg->stat->events[idx], cpu);
717#ifdef CONFIG_HOTPLUG_CPU
718 spin_lock(&memcg->pcp_counter_lock);
719 val += memcg->nocpu_base.events[idx];
720 spin_unlock(&memcg->pcp_counter_lock);
721#endif
722 return val;
723}
724
725static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
726 struct page *page,
727 bool anon, int nr_pages)
728{
729 preempt_disable();
730
731 /*
732 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
733 * counted as CACHE even if it's on ANON LRU.
734 */
735 if (anon)
736 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
737 nr_pages);
738 else
739 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
740 nr_pages);
741
742 if (PageTransHuge(page))
743 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
744 nr_pages);
745
746 /* pagein of a big page is an event. So, ignore page size */
747 if (nr_pages > 0)
748 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
749 else {
750 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
751 nr_pages = -nr_pages; /* for event */
752 }
753
754 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
755
756 preempt_enable();
757}
758
759unsigned long
760mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
761{
762 struct mem_cgroup_per_zone *mz;
763
764 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
765 return mz->lru_size[lru];
766}
767
768static unsigned long
769mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
770 unsigned int lru_mask)
771{
772 struct mem_cgroup_per_zone *mz;
773 enum lru_list lru;
774 unsigned long ret = 0;
775
776 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
777
778 for_each_lru(lru) {
779 if (BIT(lru) & lru_mask)
780 ret += mz->lru_size[lru];
781 }
782 return ret;
783}
784
785static unsigned long
786mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
787 int nid, unsigned int lru_mask)
788{
789 u64 total = 0;
790 int zid;
791
792 for (zid = 0; zid < MAX_NR_ZONES; zid++)
793 total += mem_cgroup_zone_nr_lru_pages(memcg,
794 nid, zid, lru_mask);
795
796 return total;
797}
798
799static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
800 unsigned int lru_mask)
801{
802 int nid;
803 u64 total = 0;
804
805 for_each_node_state(nid, N_MEMORY)
806 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
807 return total;
808}
809
810static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
811 enum mem_cgroup_events_target target)
812{
813 unsigned long val, next;
814
815 val = __this_cpu_read(memcg->stat->nr_page_events);
816 next = __this_cpu_read(memcg->stat->targets[target]);
817 /* from time_after() in jiffies.h */
818 if ((long)next - (long)val < 0) {
819 switch (target) {
820 case MEM_CGROUP_TARGET_THRESH:
821 next = val + THRESHOLDS_EVENTS_TARGET;
822 break;
823 case MEM_CGROUP_TARGET_SOFTLIMIT:
824 next = val + SOFTLIMIT_EVENTS_TARGET;
825 break;
826 case MEM_CGROUP_TARGET_NUMAINFO:
827 next = val + NUMAINFO_EVENTS_TARGET;
828 break;
829 default:
830 break;
831 }
832 __this_cpu_write(memcg->stat->targets[target], next);
833 return true;
834 }
835 return false;
836}
837
838/*
839 * Called from rate-limited memcg_check_events when enough
840 * MEM_CGROUP_TARGET_SOFTLIMIT events are accumulated and it makes sure
841 * that all the parents up the hierarchy will be notified that this group
842 * is in excess or that it is not in excess anymore. mmecg->soft_contributed
843 * makes the transition a single action whenever the state flips from one to
844 * the other.
845 */
846static void mem_cgroup_update_soft_limit(struct mem_cgroup *memcg)
847{
848 unsigned long long excess = res_counter_soft_limit_excess(&memcg->res);
849 struct mem_cgroup *parent = memcg;
850 int delta = 0;
851
852 spin_lock(&memcg->soft_lock);
853 if (excess) {
854 if (!memcg->soft_contributed) {
855 delta = 1;
856 memcg->soft_contributed = true;
857 }
858 } else {
859 if (memcg->soft_contributed) {
860 delta = -1;
861 memcg->soft_contributed = false;
862 }
863 }
864
865 /*
866 * Necessary to update all ancestors when hierarchy is used
867 * because their event counter is not touched.
868 * We track children even outside the hierarchy for the root
869 * cgroup because tree walk starting at root should visit
870 * all cgroups and we want to prevent from pointless tree
871 * walk if no children is below the limit.
872 */
873 while (delta && (parent = parent_mem_cgroup(parent)))
874 atomic_add(delta, &parent->children_in_excess);
875 if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy)
876 atomic_add(delta, &root_mem_cgroup->children_in_excess);
877 spin_unlock(&memcg->soft_lock);
878}
879
880/*
881 * Check events in order.
882 *
883 */
884static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
885{
886 preempt_disable();
887 /* threshold event is triggered in finer grain than soft limit */
888 if (unlikely(mem_cgroup_event_ratelimit(memcg,
889 MEM_CGROUP_TARGET_THRESH))) {
890 bool do_softlimit;
891 bool do_numainfo __maybe_unused;
892
893 do_softlimit = mem_cgroup_event_ratelimit(memcg,
894 MEM_CGROUP_TARGET_SOFTLIMIT);
895#if MAX_NUMNODES > 1
896 do_numainfo = mem_cgroup_event_ratelimit(memcg,
897 MEM_CGROUP_TARGET_NUMAINFO);
898#endif
899 preempt_enable();
900
901 mem_cgroup_threshold(memcg);
902 if (unlikely(do_softlimit))
903 mem_cgroup_update_soft_limit(memcg);
904#if MAX_NUMNODES > 1
905 if (unlikely(do_numainfo))
906 atomic_inc(&memcg->numainfo_events);
907#endif
908 } else
909 preempt_enable();
910}
911
912struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
913{
914 /*
915 * mm_update_next_owner() may clear mm->owner to NULL
916 * if it races with swapoff, page migration, etc.
917 * So this can be called with p == NULL.
918 */
919 if (unlikely(!p))
920 return NULL;
921
922 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
923}
924
925struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
926{
927 struct mem_cgroup *memcg = NULL;
928
929 if (!mm)
930 return NULL;
931 /*
932 * Because we have no locks, mm->owner's may be being moved to other
933 * cgroup. We use css_tryget() here even if this looks
934 * pessimistic (rather than adding locks here).
935 */
936 rcu_read_lock();
937 do {
938 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
939 if (unlikely(!memcg))
940 break;
941 } while (!css_tryget(&memcg->css));
942 rcu_read_unlock();
943 return memcg;
944}
945
946static enum mem_cgroup_filter_t
947mem_cgroup_filter(struct mem_cgroup *memcg, struct mem_cgroup *root,
948 mem_cgroup_iter_filter cond)
949{
950 if (!cond)
951 return VISIT;
952 return cond(memcg, root);
953}
954
955/*
956 * Returns a next (in a pre-order walk) alive memcg (with elevated css
957 * ref. count) or NULL if the whole root's subtree has been visited.
958 *
959 * helper function to be used by mem_cgroup_iter
960 */
961static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
962 struct mem_cgroup *last_visited, mem_cgroup_iter_filter cond)
963{
964 struct cgroup_subsys_state *prev_css, *next_css;
965
966 prev_css = last_visited ? &last_visited->css : NULL;
967skip_node:
968 next_css = css_next_descendant_pre(prev_css, &root->css);
969
970 /*
971 * Even if we found a group we have to make sure it is
972 * alive. css && !memcg means that the groups should be
973 * skipped and we should continue the tree walk.
974 * last_visited css is safe to use because it is
975 * protected by css_get and the tree walk is rcu safe.
976 */
977 if (next_css) {
978 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
979
980 switch (mem_cgroup_filter(mem, root, cond)) {
981 case SKIP:
982 prev_css = next_css;
983 goto skip_node;
984 case SKIP_TREE:
985 if (mem == root)
986 return NULL;
987 /*
988 * css_rightmost_descendant is not an optimal way to
989 * skip through a subtree (especially for imbalanced
990 * trees leaning to right) but that's what we have right
991 * now. More effective solution would be traversing
992 * right-up for first non-NULL without calling
993 * css_next_descendant_pre afterwards.
994 */
995 prev_css = css_rightmost_descendant(next_css);
996 goto skip_node;
997 case VISIT:
998 if (css_tryget(&mem->css))
999 return mem;
1000 else {
1001 prev_css = next_css;
1002 goto skip_node;
1003 }
1004 break;
1005 }
1006 }
1007
1008 return NULL;
1009}
1010
1011static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1012{
1013 /*
1014 * When a group in the hierarchy below root is destroyed, the
1015 * hierarchy iterator can no longer be trusted since it might
1016 * have pointed to the destroyed group. Invalidate it.
1017 */
1018 atomic_inc(&root->dead_count);
1019}
1020
1021static struct mem_cgroup *
1022mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1023 struct mem_cgroup *root,
1024 int *sequence)
1025{
1026 struct mem_cgroup *position = NULL;
1027 /*
1028 * A cgroup destruction happens in two stages: offlining and
1029 * release. They are separated by a RCU grace period.
1030 *
1031 * If the iterator is valid, we may still race with an
1032 * offlining. The RCU lock ensures the object won't be
1033 * released, tryget will fail if we lost the race.
1034 */
1035 *sequence = atomic_read(&root->dead_count);
1036 if (iter->last_dead_count == *sequence) {
1037 smp_rmb();
1038 position = iter->last_visited;
1039 if (position && !css_tryget(&position->css))
1040 position = NULL;
1041 }
1042 return position;
1043}
1044
1045static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1046 struct mem_cgroup *last_visited,
1047 struct mem_cgroup *new_position,
1048 int sequence)
1049{
1050 if (last_visited)
1051 css_put(&last_visited->css);
1052 /*
1053 * We store the sequence count from the time @last_visited was
1054 * loaded successfully instead of rereading it here so that we
1055 * don't lose destruction events in between. We could have
1056 * raced with the destruction of @new_position after all.
1057 */
1058 iter->last_visited = new_position;
1059 smp_wmb();
1060 iter->last_dead_count = sequence;
1061}
1062
1063/**
1064 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1065 * @root: hierarchy root
1066 * @prev: previously returned memcg, NULL on first invocation
1067 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1068 * @cond: filter for visited nodes, NULL for no filter
1069 *
1070 * Returns references to children of the hierarchy below @root, or
1071 * @root itself, or %NULL after a full round-trip.
1072 *
1073 * Caller must pass the return value in @prev on subsequent
1074 * invocations for reference counting, or use mem_cgroup_iter_break()
1075 * to cancel a hierarchy walk before the round-trip is complete.
1076 *
1077 * Reclaimers can specify a zone and a priority level in @reclaim to
1078 * divide up the memcgs in the hierarchy among all concurrent
1079 * reclaimers operating on the same zone and priority.
1080 */
1081struct mem_cgroup *mem_cgroup_iter_cond(struct mem_cgroup *root,
1082 struct mem_cgroup *prev,
1083 struct mem_cgroup_reclaim_cookie *reclaim,
1084 mem_cgroup_iter_filter cond)
1085{
1086 struct mem_cgroup *memcg = NULL;
1087 struct mem_cgroup *last_visited = NULL;
1088
1089 if (mem_cgroup_disabled()) {
1090 /* first call must return non-NULL, second return NULL */
1091 return (struct mem_cgroup *)(unsigned long)!prev;
1092 }
1093
1094 if (!root)
1095 root = root_mem_cgroup;
1096
1097 if (prev && !reclaim)
1098 last_visited = prev;
1099
1100 if (!root->use_hierarchy && root != root_mem_cgroup) {
1101 if (prev)
1102 goto out_css_put;
1103 if (mem_cgroup_filter(root, root, cond) == VISIT)
1104 return root;
1105 return NULL;
1106 }
1107
1108 rcu_read_lock();
1109 while (!memcg) {
1110 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1111 int uninitialized_var(seq);
1112
1113 if (reclaim) {
1114 int nid = zone_to_nid(reclaim->zone);
1115 int zid = zone_idx(reclaim->zone);
1116 struct mem_cgroup_per_zone *mz;
1117
1118 mz = mem_cgroup_zoneinfo(root, nid, zid);
1119 iter = &mz->reclaim_iter[reclaim->priority];
1120 if (prev && reclaim->generation != iter->generation) {
1121 iter->last_visited = NULL;
1122 goto out_unlock;
1123 }
1124
1125 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1126 }
1127
1128 memcg = __mem_cgroup_iter_next(root, last_visited, cond);
1129
1130 if (reclaim) {
1131 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1132
1133 if (!memcg)
1134 iter->generation++;
1135 else if (!prev && memcg)
1136 reclaim->generation = iter->generation;
1137 }
1138
1139 /*
1140 * We have finished the whole tree walk or no group has been
1141 * visited because filter told us to skip the root node.
1142 */
1143 if (!memcg && (prev || (cond && !last_visited)))
1144 goto out_unlock;
1145 }
1146out_unlock:
1147 rcu_read_unlock();
1148out_css_put:
1149 if (prev && prev != root)
1150 css_put(&prev->css);
1151
1152 return memcg;
1153}
1154
1155/**
1156 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1157 * @root: hierarchy root
1158 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1159 */
1160void mem_cgroup_iter_break(struct mem_cgroup *root,
1161 struct mem_cgroup *prev)
1162{
1163 if (!root)
1164 root = root_mem_cgroup;
1165 if (prev && prev != root)
1166 css_put(&prev->css);
1167}
1168
1169/*
1170 * Iteration constructs for visiting all cgroups (under a tree). If
1171 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1172 * be used for reference counting.
1173 */
1174#define for_each_mem_cgroup_tree(iter, root) \
1175 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1176 iter != NULL; \
1177 iter = mem_cgroup_iter(root, iter, NULL))
1178
1179#define for_each_mem_cgroup(iter) \
1180 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1181 iter != NULL; \
1182 iter = mem_cgroup_iter(NULL, iter, NULL))
1183
1184void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1185{
1186 struct mem_cgroup *memcg;
1187
1188 rcu_read_lock();
1189 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1190 if (unlikely(!memcg))
1191 goto out;
1192
1193 switch (idx) {
1194 case PGFAULT:
1195 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1196 break;
1197 case PGMAJFAULT:
1198 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1199 break;
1200 default:
1201 BUG();
1202 }
1203out:
1204 rcu_read_unlock();
1205}
1206EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1207
1208/**
1209 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1210 * @zone: zone of the wanted lruvec
1211 * @memcg: memcg of the wanted lruvec
1212 *
1213 * Returns the lru list vector holding pages for the given @zone and
1214 * @mem. This can be the global zone lruvec, if the memory controller
1215 * is disabled.
1216 */
1217struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1218 struct mem_cgroup *memcg)
1219{
1220 struct mem_cgroup_per_zone *mz;
1221 struct lruvec *lruvec;
1222
1223 if (mem_cgroup_disabled()) {
1224 lruvec = &zone->lruvec;
1225 goto out;
1226 }
1227
1228 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1229 lruvec = &mz->lruvec;
1230out:
1231 /*
1232 * Since a node can be onlined after the mem_cgroup was created,
1233 * we have to be prepared to initialize lruvec->zone here;
1234 * and if offlined then reonlined, we need to reinitialize it.
1235 */
1236 if (unlikely(lruvec->zone != zone))
1237 lruvec->zone = zone;
1238 return lruvec;
1239}
1240
1241/*
1242 * Following LRU functions are allowed to be used without PCG_LOCK.
1243 * Operations are called by routine of global LRU independently from memcg.
1244 * What we have to take care of here is validness of pc->mem_cgroup.
1245 *
1246 * Changes to pc->mem_cgroup happens when
1247 * 1. charge
1248 * 2. moving account
1249 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1250 * It is added to LRU before charge.
1251 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1252 * When moving account, the page is not on LRU. It's isolated.
1253 */
1254
1255/**
1256 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1257 * @page: the page
1258 * @zone: zone of the page
1259 */
1260struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1261{
1262 struct mem_cgroup_per_zone *mz;
1263 struct mem_cgroup *memcg;
1264 struct page_cgroup *pc;
1265 struct lruvec *lruvec;
1266
1267 if (mem_cgroup_disabled()) {
1268 lruvec = &zone->lruvec;
1269 goto out;
1270 }
1271
1272 pc = lookup_page_cgroup(page);
1273 memcg = pc->mem_cgroup;
1274
1275 /*
1276 * Surreptitiously switch any uncharged offlist page to root:
1277 * an uncharged page off lru does nothing to secure
1278 * its former mem_cgroup from sudden removal.
1279 *
1280 * Our caller holds lru_lock, and PageCgroupUsed is updated
1281 * under page_cgroup lock: between them, they make all uses
1282 * of pc->mem_cgroup safe.
1283 */
1284 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1285 pc->mem_cgroup = memcg = root_mem_cgroup;
1286
1287 mz = page_cgroup_zoneinfo(memcg, page);
1288 lruvec = &mz->lruvec;
1289out:
1290 /*
1291 * Since a node can be onlined after the mem_cgroup was created,
1292 * we have to be prepared to initialize lruvec->zone here;
1293 * and if offlined then reonlined, we need to reinitialize it.
1294 */
1295 if (unlikely(lruvec->zone != zone))
1296 lruvec->zone = zone;
1297 return lruvec;
1298}
1299
1300/**
1301 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1302 * @lruvec: mem_cgroup per zone lru vector
1303 * @lru: index of lru list the page is sitting on
1304 * @nr_pages: positive when adding or negative when removing
1305 *
1306 * This function must be called when a page is added to or removed from an
1307 * lru list.
1308 */
1309void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1310 int nr_pages)
1311{
1312 struct mem_cgroup_per_zone *mz;
1313 unsigned long *lru_size;
1314
1315 if (mem_cgroup_disabled())
1316 return;
1317
1318 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1319 lru_size = mz->lru_size + lru;
1320 *lru_size += nr_pages;
1321 VM_BUG_ON((long)(*lru_size) < 0);
1322}
1323
1324/*
1325 * Checks whether given mem is same or in the root_mem_cgroup's
1326 * hierarchy subtree
1327 */
1328bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1329 struct mem_cgroup *memcg)
1330{
1331 if (root_memcg == memcg)
1332 return true;
1333 if (!root_memcg->use_hierarchy || !memcg)
1334 return false;
1335 return css_is_ancestor(&memcg->css, &root_memcg->css);
1336}
1337
1338static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1339 struct mem_cgroup *memcg)
1340{
1341 bool ret;
1342
1343 rcu_read_lock();
1344 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1345 rcu_read_unlock();
1346 return ret;
1347}
1348
1349bool task_in_mem_cgroup(struct task_struct *task,
1350 const struct mem_cgroup *memcg)
1351{
1352 struct mem_cgroup *curr = NULL;
1353 struct task_struct *p;
1354 bool ret;
1355
1356 p = find_lock_task_mm(task);
1357 if (p) {
1358 curr = try_get_mem_cgroup_from_mm(p->mm);
1359 task_unlock(p);
1360 } else {
1361 /*
1362 * All threads may have already detached their mm's, but the oom
1363 * killer still needs to detect if they have already been oom
1364 * killed to prevent needlessly killing additional tasks.
1365 */
1366 rcu_read_lock();
1367 curr = mem_cgroup_from_task(task);
1368 if (curr)
1369 css_get(&curr->css);
1370 rcu_read_unlock();
1371 }
1372 if (!curr)
1373 return false;
1374 /*
1375 * We should check use_hierarchy of "memcg" not "curr". Because checking
1376 * use_hierarchy of "curr" here make this function true if hierarchy is
1377 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1378 * hierarchy(even if use_hierarchy is disabled in "memcg").
1379 */
1380 ret = mem_cgroup_same_or_subtree(memcg, curr);
1381 css_put(&curr->css);
1382 return ret;
1383}
1384
1385int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1386{
1387 unsigned long inactive_ratio;
1388 unsigned long inactive;
1389 unsigned long active;
1390 unsigned long gb;
1391
1392 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1393 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1394
1395 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1396 if (gb)
1397 inactive_ratio = int_sqrt(10 * gb);
1398 else
1399 inactive_ratio = 1;
1400
1401 return inactive * inactive_ratio < active;
1402}
1403
1404#define mem_cgroup_from_res_counter(counter, member) \
1405 container_of(counter, struct mem_cgroup, member)
1406
1407/**
1408 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1409 * @memcg: the memory cgroup
1410 *
1411 * Returns the maximum amount of memory @mem can be charged with, in
1412 * pages.
1413 */
1414static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1415{
1416 unsigned long long margin;
1417
1418 margin = res_counter_margin(&memcg->res);
1419 if (do_swap_account)
1420 margin = min(margin, res_counter_margin(&memcg->memsw));
1421 return margin >> PAGE_SHIFT;
1422}
1423
1424int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1425{
1426 /* root ? */
1427 if (!css_parent(&memcg->css))
1428 return vm_swappiness;
1429
1430 return memcg->swappiness;
1431}
1432
1433/*
1434 * memcg->moving_account is used for checking possibility that some thread is
1435 * calling move_account(). When a thread on CPU-A starts moving pages under
1436 * a memcg, other threads should check memcg->moving_account under
1437 * rcu_read_lock(), like this:
1438 *
1439 * CPU-A CPU-B
1440 * rcu_read_lock()
1441 * memcg->moving_account+1 if (memcg->mocing_account)
1442 * take heavy locks.
1443 * synchronize_rcu() update something.
1444 * rcu_read_unlock()
1445 * start move here.
1446 */
1447
1448/* for quick checking without looking up memcg */
1449atomic_t memcg_moving __read_mostly;
1450
1451static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1452{
1453 atomic_inc(&memcg_moving);
1454 atomic_inc(&memcg->moving_account);
1455 synchronize_rcu();
1456}
1457
1458static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1459{
1460 /*
1461 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1462 * We check NULL in callee rather than caller.
1463 */
1464 if (memcg) {
1465 atomic_dec(&memcg_moving);
1466 atomic_dec(&memcg->moving_account);
1467 }
1468}
1469
1470/*
1471 * 2 routines for checking "mem" is under move_account() or not.
1472 *
1473 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1474 * is used for avoiding races in accounting. If true,
1475 * pc->mem_cgroup may be overwritten.
1476 *
1477 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1478 * under hierarchy of moving cgroups. This is for
1479 * waiting at hith-memory prressure caused by "move".
1480 */
1481
1482static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1483{
1484 VM_BUG_ON(!rcu_read_lock_held());
1485 return atomic_read(&memcg->moving_account) > 0;
1486}
1487
1488static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1489{
1490 struct mem_cgroup *from;
1491 struct mem_cgroup *to;
1492 bool ret = false;
1493 /*
1494 * Unlike task_move routines, we access mc.to, mc.from not under
1495 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1496 */
1497 spin_lock(&mc.lock);
1498 from = mc.from;
1499 to = mc.to;
1500 if (!from)
1501 goto unlock;
1502
1503 ret = mem_cgroup_same_or_subtree(memcg, from)
1504 || mem_cgroup_same_or_subtree(memcg, to);
1505unlock:
1506 spin_unlock(&mc.lock);
1507 return ret;
1508}
1509
1510static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1511{
1512 if (mc.moving_task && current != mc.moving_task) {
1513 if (mem_cgroup_under_move(memcg)) {
1514 DEFINE_WAIT(wait);
1515 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1516 /* moving charge context might have finished. */
1517 if (mc.moving_task)
1518 schedule();
1519 finish_wait(&mc.waitq, &wait);
1520 return true;
1521 }
1522 }
1523 return false;
1524}
1525
1526/*
1527 * Take this lock when
1528 * - a code tries to modify page's memcg while it's USED.
1529 * - a code tries to modify page state accounting in a memcg.
1530 * see mem_cgroup_stolen(), too.
1531 */
1532static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1533 unsigned long *flags)
1534{
1535 spin_lock_irqsave(&memcg->move_lock, *flags);
1536}
1537
1538static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1539 unsigned long *flags)
1540{
1541 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1542}
1543
1544#define K(x) ((x) << (PAGE_SHIFT-10))
1545/**
1546 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1547 * @memcg: The memory cgroup that went over limit
1548 * @p: Task that is going to be killed
1549 *
1550 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1551 * enabled
1552 */
1553void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1554{
1555 struct cgroup *task_cgrp;
1556 struct cgroup *mem_cgrp;
1557 /*
1558 * Need a buffer in BSS, can't rely on allocations. The code relies
1559 * on the assumption that OOM is serialized for memory controller.
1560 * If this assumption is broken, revisit this code.
1561 */
1562 static char memcg_name[PATH_MAX];
1563 int ret;
1564 struct mem_cgroup *iter;
1565 unsigned int i;
1566
1567 if (!p)
1568 return;
1569
1570 rcu_read_lock();
1571
1572 mem_cgrp = memcg->css.cgroup;
1573 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1574
1575 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1576 if (ret < 0) {
1577 /*
1578 * Unfortunately, we are unable to convert to a useful name
1579 * But we'll still print out the usage information
1580 */
1581 rcu_read_unlock();
1582 goto done;
1583 }
1584 rcu_read_unlock();
1585
1586 pr_info("Task in %s killed", memcg_name);
1587
1588 rcu_read_lock();
1589 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1590 if (ret < 0) {
1591 rcu_read_unlock();
1592 goto done;
1593 }
1594 rcu_read_unlock();
1595
1596 /*
1597 * Continues from above, so we don't need an KERN_ level
1598 */
1599 pr_cont(" as a result of limit of %s\n", memcg_name);
1600done:
1601
1602 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1603 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1604 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1605 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1606 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1607 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1608 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1609 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1610 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1611 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1612 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1613 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1614
1615 for_each_mem_cgroup_tree(iter, memcg) {
1616 pr_info("Memory cgroup stats");
1617
1618 rcu_read_lock();
1619 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1620 if (!ret)
1621 pr_cont(" for %s", memcg_name);
1622 rcu_read_unlock();
1623 pr_cont(":");
1624
1625 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1626 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1627 continue;
1628 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1629 K(mem_cgroup_read_stat(iter, i)));
1630 }
1631
1632 for (i = 0; i < NR_LRU_LISTS; i++)
1633 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1634 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1635
1636 pr_cont("\n");
1637 }
1638}
1639
1640/*
1641 * This function returns the number of memcg under hierarchy tree. Returns
1642 * 1(self count) if no children.
1643 */
1644static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1645{
1646 int num = 0;
1647 struct mem_cgroup *iter;
1648
1649 for_each_mem_cgroup_tree(iter, memcg)
1650 num++;
1651 return num;
1652}
1653
1654/*
1655 * Return the memory (and swap, if configured) limit for a memcg.
1656 */
1657static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1658{
1659 u64 limit;
1660
1661 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1662
1663 /*
1664 * Do not consider swap space if we cannot swap due to swappiness
1665 */
1666 if (mem_cgroup_swappiness(memcg)) {
1667 u64 memsw;
1668
1669 limit += total_swap_pages << PAGE_SHIFT;
1670 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1671
1672 /*
1673 * If memsw is finite and limits the amount of swap space
1674 * available to this memcg, return that limit.
1675 */
1676 limit = min(limit, memsw);
1677 }
1678
1679 return limit;
1680}
1681
1682static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1683 int order)
1684{
1685 struct mem_cgroup *iter;
1686 unsigned long chosen_points = 0;
1687 unsigned long totalpages;
1688 unsigned int points = 0;
1689 struct task_struct *chosen = NULL;
1690
1691 /*
1692 * If current has a pending SIGKILL or is exiting, then automatically
1693 * select it. The goal is to allow it to allocate so that it may
1694 * quickly exit and free its memory.
1695 */
1696 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1697 set_thread_flag(TIF_MEMDIE);
1698 return;
1699 }
1700
1701 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1702 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1703 for_each_mem_cgroup_tree(iter, memcg) {
1704 struct css_task_iter it;
1705 struct task_struct *task;
1706
1707 css_task_iter_start(&iter->css, &it);
1708 while ((task = css_task_iter_next(&it))) {
1709 switch (oom_scan_process_thread(task, totalpages, NULL,
1710 false)) {
1711 case OOM_SCAN_SELECT:
1712 if (chosen)
1713 put_task_struct(chosen);
1714 chosen = task;
1715 chosen_points = ULONG_MAX;
1716 get_task_struct(chosen);
1717 /* fall through */
1718 case OOM_SCAN_CONTINUE:
1719 continue;
1720 case OOM_SCAN_ABORT:
1721 css_task_iter_end(&it);
1722 mem_cgroup_iter_break(memcg, iter);
1723 if (chosen)
1724 put_task_struct(chosen);
1725 return;
1726 case OOM_SCAN_OK:
1727 break;
1728 };
1729 points = oom_badness(task, memcg, NULL, totalpages);
1730 if (points > chosen_points) {
1731 if (chosen)
1732 put_task_struct(chosen);
1733 chosen = task;
1734 chosen_points = points;
1735 get_task_struct(chosen);
1736 }
1737 }
1738 css_task_iter_end(&it);
1739 }
1740
1741 if (!chosen)
1742 return;
1743 points = chosen_points * 1000 / totalpages;
1744 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1745 NULL, "Memory cgroup out of memory");
1746}
1747
1748static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1749 gfp_t gfp_mask,
1750 unsigned long flags)
1751{
1752 unsigned long total = 0;
1753 bool noswap = false;
1754 int loop;
1755
1756 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1757 noswap = true;
1758 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1759 noswap = true;
1760
1761 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1762 if (loop)
1763 drain_all_stock_async(memcg);
1764 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1765 /*
1766 * Allow limit shrinkers, which are triggered directly
1767 * by userspace, to catch signals and stop reclaim
1768 * after minimal progress, regardless of the margin.
1769 */
1770 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1771 break;
1772 if (mem_cgroup_margin(memcg))
1773 break;
1774 /*
1775 * If nothing was reclaimed after two attempts, there
1776 * may be no reclaimable pages in this hierarchy.
1777 */
1778 if (loop && !total)
1779 break;
1780 }
1781 return total;
1782}
1783
1784#if MAX_NUMNODES > 1
1785/**
1786 * test_mem_cgroup_node_reclaimable
1787 * @memcg: the target memcg
1788 * @nid: the node ID to be checked.
1789 * @noswap : specify true here if the user wants flle only information.
1790 *
1791 * This function returns whether the specified memcg contains any
1792 * reclaimable pages on a node. Returns true if there are any reclaimable
1793 * pages in the node.
1794 */
1795static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1796 int nid, bool noswap)
1797{
1798 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1799 return true;
1800 if (noswap || !total_swap_pages)
1801 return false;
1802 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1803 return true;
1804 return false;
1805
1806}
1807
1808/*
1809 * Always updating the nodemask is not very good - even if we have an empty
1810 * list or the wrong list here, we can start from some node and traverse all
1811 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1812 *
1813 */
1814static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1815{
1816 int nid;
1817 /*
1818 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1819 * pagein/pageout changes since the last update.
1820 */
1821 if (!atomic_read(&memcg->numainfo_events))
1822 return;
1823 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1824 return;
1825
1826 /* make a nodemask where this memcg uses memory from */
1827 memcg->scan_nodes = node_states[N_MEMORY];
1828
1829 for_each_node_mask(nid, node_states[N_MEMORY]) {
1830
1831 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1832 node_clear(nid, memcg->scan_nodes);
1833 }
1834
1835 atomic_set(&memcg->numainfo_events, 0);
1836 atomic_set(&memcg->numainfo_updating, 0);
1837}
1838
1839/*
1840 * Selecting a node where we start reclaim from. Because what we need is just
1841 * reducing usage counter, start from anywhere is O,K. Considering
1842 * memory reclaim from current node, there are pros. and cons.
1843 *
1844 * Freeing memory from current node means freeing memory from a node which
1845 * we'll use or we've used. So, it may make LRU bad. And if several threads
1846 * hit limits, it will see a contention on a node. But freeing from remote
1847 * node means more costs for memory reclaim because of memory latency.
1848 *
1849 * Now, we use round-robin. Better algorithm is welcomed.
1850 */
1851int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1852{
1853 int node;
1854
1855 mem_cgroup_may_update_nodemask(memcg);
1856 node = memcg->last_scanned_node;
1857
1858 node = next_node(node, memcg->scan_nodes);
1859 if (node == MAX_NUMNODES)
1860 node = first_node(memcg->scan_nodes);
1861 /*
1862 * We call this when we hit limit, not when pages are added to LRU.
1863 * No LRU may hold pages because all pages are UNEVICTABLE or
1864 * memcg is too small and all pages are not on LRU. In that case,
1865 * we use curret node.
1866 */
1867 if (unlikely(node == MAX_NUMNODES))
1868 node = numa_node_id();
1869
1870 memcg->last_scanned_node = node;
1871 return node;
1872}
1873
1874#else
1875int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1876{
1877 return 0;
1878}
1879
1880#endif
1881
1882/*
1883 * A group is eligible for the soft limit reclaim under the given root
1884 * hierarchy if
1885 * a) it is over its soft limit
1886 * b) any parent up the hierarchy is over its soft limit
1887 *
1888 * If the given group doesn't have any children over the limit then it
1889 * doesn't make any sense to iterate its subtree.
1890 */
1891enum mem_cgroup_filter_t
1892mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg,
1893 struct mem_cgroup *root)
1894{
1895 struct mem_cgroup *parent;
1896
1897 if (!memcg)
1898 memcg = root_mem_cgroup;
1899 parent = memcg;
1900
1901 if (res_counter_soft_limit_excess(&memcg->res))
1902 return VISIT;
1903
1904 /*
1905 * If any parent up to the root in the hierarchy is over its soft limit
1906 * then we have to obey and reclaim from this group as well.
1907 */
1908 while ((parent = parent_mem_cgroup(parent))) {
1909 if (res_counter_soft_limit_excess(&parent->res))
1910 return VISIT;
1911 if (parent == root)
1912 break;
1913 }
1914
1915 if (!atomic_read(&memcg->children_in_excess))
1916 return SKIP_TREE;
1917 return SKIP;
1918}
1919
1920static DEFINE_SPINLOCK(memcg_oom_lock);
1921
1922/*
1923 * Check OOM-Killer is already running under our hierarchy.
1924 * If someone is running, return false.
1925 */
1926static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1927{
1928 struct mem_cgroup *iter, *failed = NULL;
1929
1930 spin_lock(&memcg_oom_lock);
1931
1932 for_each_mem_cgroup_tree(iter, memcg) {
1933 if (iter->oom_lock) {
1934 /*
1935 * this subtree of our hierarchy is already locked
1936 * so we cannot give a lock.
1937 */
1938 failed = iter;
1939 mem_cgroup_iter_break(memcg, iter);
1940 break;
1941 } else
1942 iter->oom_lock = true;
1943 }
1944
1945 if (failed) {
1946 /*
1947 * OK, we failed to lock the whole subtree so we have
1948 * to clean up what we set up to the failing subtree
1949 */
1950 for_each_mem_cgroup_tree(iter, memcg) {
1951 if (iter == failed) {
1952 mem_cgroup_iter_break(memcg, iter);
1953 break;
1954 }
1955 iter->oom_lock = false;
1956 }
1957 }
1958
1959 spin_unlock(&memcg_oom_lock);
1960
1961 return !failed;
1962}
1963
1964static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1965{
1966 struct mem_cgroup *iter;
1967
1968 spin_lock(&memcg_oom_lock);
1969 for_each_mem_cgroup_tree(iter, memcg)
1970 iter->oom_lock = false;
1971 spin_unlock(&memcg_oom_lock);
1972}
1973
1974static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1975{
1976 struct mem_cgroup *iter;
1977
1978 for_each_mem_cgroup_tree(iter, memcg)
1979 atomic_inc(&iter->under_oom);
1980}
1981
1982static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1983{
1984 struct mem_cgroup *iter;
1985
1986 /*
1987 * When a new child is created while the hierarchy is under oom,
1988 * mem_cgroup_oom_lock() may not be called. We have to use
1989 * atomic_add_unless() here.
1990 */
1991 for_each_mem_cgroup_tree(iter, memcg)
1992 atomic_add_unless(&iter->under_oom, -1, 0);
1993}
1994
1995static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1996
1997struct oom_wait_info {
1998 struct mem_cgroup *memcg;
1999 wait_queue_t wait;
2000};
2001
2002static int memcg_oom_wake_function(wait_queue_t *wait,
2003 unsigned mode, int sync, void *arg)
2004{
2005 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2006 struct mem_cgroup *oom_wait_memcg;
2007 struct oom_wait_info *oom_wait_info;
2008
2009 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2010 oom_wait_memcg = oom_wait_info->memcg;
2011
2012 /*
2013 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2014 * Then we can use css_is_ancestor without taking care of RCU.
2015 */
2016 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2017 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2018 return 0;
2019 return autoremove_wake_function(wait, mode, sync, arg);
2020}
2021
2022static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2023{
2024 atomic_inc(&memcg->oom_wakeups);
2025 /* for filtering, pass "memcg" as argument. */
2026 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2027}
2028
2029static void memcg_oom_recover(struct mem_cgroup *memcg)
2030{
2031 if (memcg && atomic_read(&memcg->under_oom))
2032 memcg_wakeup_oom(memcg);
2033}
2034
2035/*
2036 * try to call OOM killer
2037 */
2038static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2039{
2040 bool locked;
2041 int wakeups;
2042
2043 if (!current->memcg_oom.may_oom)
2044 return;
2045
2046 current->memcg_oom.in_memcg_oom = 1;
2047
2048 /*
2049 * As with any blocking lock, a contender needs to start
2050 * listening for wakeups before attempting the trylock,
2051 * otherwise it can miss the wakeup from the unlock and sleep
2052 * indefinitely. This is just open-coded because our locking
2053 * is so particular to memcg hierarchies.
2054 */
2055 wakeups = atomic_read(&memcg->oom_wakeups);
2056 mem_cgroup_mark_under_oom(memcg);
2057
2058 locked = mem_cgroup_oom_trylock(memcg);
2059
2060 if (locked)
2061 mem_cgroup_oom_notify(memcg);
2062
2063 if (locked && !memcg->oom_kill_disable) {
2064 mem_cgroup_unmark_under_oom(memcg);
2065 mem_cgroup_out_of_memory(memcg, mask, order);
2066 mem_cgroup_oom_unlock(memcg);
2067 /*
2068 * There is no guarantee that an OOM-lock contender
2069 * sees the wakeups triggered by the OOM kill
2070 * uncharges. Wake any sleepers explicitely.
2071 */
2072 memcg_oom_recover(memcg);
2073 } else {
2074 /*
2075 * A system call can just return -ENOMEM, but if this
2076 * is a page fault and somebody else is handling the
2077 * OOM already, we need to sleep on the OOM waitqueue
2078 * for this memcg until the situation is resolved.
2079 * Which can take some time because it might be
2080 * handled by a userspace task.
2081 *
2082 * However, this is the charge context, which means
2083 * that we may sit on a large call stack and hold
2084 * various filesystem locks, the mmap_sem etc. and we
2085 * don't want the OOM handler to deadlock on them
2086 * while we sit here and wait. Store the current OOM
2087 * context in the task_struct, then return -ENOMEM.
2088 * At the end of the page fault handler, with the
2089 * stack unwound, pagefault_out_of_memory() will check
2090 * back with us by calling
2091 * mem_cgroup_oom_synchronize(), possibly putting the
2092 * task to sleep.
2093 */
2094 current->memcg_oom.oom_locked = locked;
2095 current->memcg_oom.wakeups = wakeups;
2096 css_get(&memcg->css);
2097 current->memcg_oom.wait_on_memcg = memcg;
2098 }
2099}
2100
2101/**
2102 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2103 *
2104 * This has to be called at the end of a page fault if the the memcg
2105 * OOM handler was enabled and the fault is returning %VM_FAULT_OOM.
2106 *
2107 * Memcg supports userspace OOM handling, so failed allocations must
2108 * sleep on a waitqueue until the userspace task resolves the
2109 * situation. Sleeping directly in the charge context with all kinds
2110 * of locks held is not a good idea, instead we remember an OOM state
2111 * in the task and mem_cgroup_oom_synchronize() has to be called at
2112 * the end of the page fault to put the task to sleep and clean up the
2113 * OOM state.
2114 *
2115 * Returns %true if an ongoing memcg OOM situation was detected and
2116 * finalized, %false otherwise.
2117 */
2118bool mem_cgroup_oom_synchronize(void)
2119{
2120 struct oom_wait_info owait;
2121 struct mem_cgroup *memcg;
2122
2123 /* OOM is global, do not handle */
2124 if (!current->memcg_oom.in_memcg_oom)
2125 return false;
2126
2127 /*
2128 * We invoked the OOM killer but there is a chance that a kill
2129 * did not free up any charges. Everybody else might already
2130 * be sleeping, so restart the fault and keep the rampage
2131 * going until some charges are released.
2132 */
2133 memcg = current->memcg_oom.wait_on_memcg;
2134 if (!memcg)
2135 goto out;
2136
2137 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2138 goto out_memcg;
2139
2140 owait.memcg = memcg;
2141 owait.wait.flags = 0;
2142 owait.wait.func = memcg_oom_wake_function;
2143 owait.wait.private = current;
2144 INIT_LIST_HEAD(&owait.wait.task_list);
2145
2146 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2147 /* Only sleep if we didn't miss any wakeups since OOM */
2148 if (atomic_read(&memcg->oom_wakeups) == current->memcg_oom.wakeups)
2149 schedule();
2150 finish_wait(&memcg_oom_waitq, &owait.wait);
2151out_memcg:
2152 mem_cgroup_unmark_under_oom(memcg);
2153 if (current->memcg_oom.oom_locked) {
2154 mem_cgroup_oom_unlock(memcg);
2155 /*
2156 * There is no guarantee that an OOM-lock contender
2157 * sees the wakeups triggered by the OOM kill
2158 * uncharges. Wake any sleepers explicitely.
2159 */
2160 memcg_oom_recover(memcg);
2161 }
2162 css_put(&memcg->css);
2163 current->memcg_oom.wait_on_memcg = NULL;
2164out:
2165 current->memcg_oom.in_memcg_oom = 0;
2166 return true;
2167}
2168
2169/*
2170 * Currently used to update mapped file statistics, but the routine can be
2171 * generalized to update other statistics as well.
2172 *
2173 * Notes: Race condition
2174 *
2175 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2176 * it tends to be costly. But considering some conditions, we doesn't need
2177 * to do so _always_.
2178 *
2179 * Considering "charge", lock_page_cgroup() is not required because all
2180 * file-stat operations happen after a page is attached to radix-tree. There
2181 * are no race with "charge".
2182 *
2183 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2184 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2185 * if there are race with "uncharge". Statistics itself is properly handled
2186 * by flags.
2187 *
2188 * Considering "move", this is an only case we see a race. To make the race
2189 * small, we check mm->moving_account and detect there are possibility of race
2190 * If there is, we take a lock.
2191 */
2192
2193void __mem_cgroup_begin_update_page_stat(struct page *page,
2194 bool *locked, unsigned long *flags)
2195{
2196 struct mem_cgroup *memcg;
2197 struct page_cgroup *pc;
2198
2199 pc = lookup_page_cgroup(page);
2200again:
2201 memcg = pc->mem_cgroup;
2202 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2203 return;
2204 /*
2205 * If this memory cgroup is not under account moving, we don't
2206 * need to take move_lock_mem_cgroup(). Because we already hold
2207 * rcu_read_lock(), any calls to move_account will be delayed until
2208 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2209 */
2210 if (!mem_cgroup_stolen(memcg))
2211 return;
2212
2213 move_lock_mem_cgroup(memcg, flags);
2214 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2215 move_unlock_mem_cgroup(memcg, flags);
2216 goto again;
2217 }
2218 *locked = true;
2219}
2220
2221void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2222{
2223 struct page_cgroup *pc = lookup_page_cgroup(page);
2224
2225 /*
2226 * It's guaranteed that pc->mem_cgroup never changes while
2227 * lock is held because a routine modifies pc->mem_cgroup
2228 * should take move_lock_mem_cgroup().
2229 */
2230 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2231}
2232
2233void mem_cgroup_update_page_stat(struct page *page,
2234 enum mem_cgroup_page_stat_item idx, int val)
2235{
2236 struct mem_cgroup *memcg;
2237 struct page_cgroup *pc = lookup_page_cgroup(page);
2238 unsigned long uninitialized_var(flags);
2239
2240 if (mem_cgroup_disabled())
2241 return;
2242
2243 memcg = pc->mem_cgroup;
2244 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2245 return;
2246
2247 switch (idx) {
2248 case MEMCG_NR_FILE_MAPPED:
2249 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2250 break;
2251 default:
2252 BUG();
2253 }
2254
2255 this_cpu_add(memcg->stat->count[idx], val);
2256}
2257
2258/*
2259 * size of first charge trial. "32" comes from vmscan.c's magic value.
2260 * TODO: maybe necessary to use big numbers in big irons.
2261 */
2262#define CHARGE_BATCH 32U
2263struct memcg_stock_pcp {
2264 struct mem_cgroup *cached; /* this never be root cgroup */
2265 unsigned int nr_pages;
2266 struct work_struct work;
2267 unsigned long flags;
2268#define FLUSHING_CACHED_CHARGE 0
2269};
2270static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2271static DEFINE_MUTEX(percpu_charge_mutex);
2272
2273/**
2274 * consume_stock: Try to consume stocked charge on this cpu.
2275 * @memcg: memcg to consume from.
2276 * @nr_pages: how many pages to charge.
2277 *
2278 * The charges will only happen if @memcg matches the current cpu's memcg
2279 * stock, and at least @nr_pages are available in that stock. Failure to
2280 * service an allocation will refill the stock.
2281 *
2282 * returns true if successful, false otherwise.
2283 */
2284static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2285{
2286 struct memcg_stock_pcp *stock;
2287 bool ret = true;
2288
2289 if (nr_pages > CHARGE_BATCH)
2290 return false;
2291
2292 stock = &get_cpu_var(memcg_stock);
2293 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2294 stock->nr_pages -= nr_pages;
2295 else /* need to call res_counter_charge */
2296 ret = false;
2297 put_cpu_var(memcg_stock);
2298 return ret;
2299}
2300
2301/*
2302 * Returns stocks cached in percpu to res_counter and reset cached information.
2303 */
2304static void drain_stock(struct memcg_stock_pcp *stock)
2305{
2306 struct mem_cgroup *old = stock->cached;
2307
2308 if (stock->nr_pages) {
2309 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2310
2311 res_counter_uncharge(&old->res, bytes);
2312 if (do_swap_account)
2313 res_counter_uncharge(&old->memsw, bytes);
2314 stock->nr_pages = 0;
2315 }
2316 stock->cached = NULL;
2317}
2318
2319/*
2320 * This must be called under preempt disabled or must be called by
2321 * a thread which is pinned to local cpu.
2322 */
2323static void drain_local_stock(struct work_struct *dummy)
2324{
2325 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2326 drain_stock(stock);
2327 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2328}
2329
2330static void __init memcg_stock_init(void)
2331{
2332 int cpu;
2333
2334 for_each_possible_cpu(cpu) {
2335 struct memcg_stock_pcp *stock =
2336 &per_cpu(memcg_stock, cpu);
2337 INIT_WORK(&stock->work, drain_local_stock);
2338 }
2339}
2340
2341/*
2342 * Cache charges(val) which is from res_counter, to local per_cpu area.
2343 * This will be consumed by consume_stock() function, later.
2344 */
2345static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2346{
2347 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2348
2349 if (stock->cached != memcg) { /* reset if necessary */
2350 drain_stock(stock);
2351 stock->cached = memcg;
2352 }
2353 stock->nr_pages += nr_pages;
2354 put_cpu_var(memcg_stock);
2355}
2356
2357/*
2358 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2359 * of the hierarchy under it. sync flag says whether we should block
2360 * until the work is done.
2361 */
2362static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2363{
2364 int cpu, curcpu;
2365
2366 /* Notify other cpus that system-wide "drain" is running */
2367 get_online_cpus();
2368 curcpu = get_cpu();
2369 for_each_online_cpu(cpu) {
2370 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2371 struct mem_cgroup *memcg;
2372
2373 memcg = stock->cached;
2374 if (!memcg || !stock->nr_pages)
2375 continue;
2376 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2377 continue;
2378 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2379 if (cpu == curcpu)
2380 drain_local_stock(&stock->work);
2381 else
2382 schedule_work_on(cpu, &stock->work);
2383 }
2384 }
2385 put_cpu();
2386
2387 if (!sync)
2388 goto out;
2389
2390 for_each_online_cpu(cpu) {
2391 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2392 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2393 flush_work(&stock->work);
2394 }
2395out:
2396 put_online_cpus();
2397}
2398
2399/*
2400 * Tries to drain stocked charges in other cpus. This function is asynchronous
2401 * and just put a work per cpu for draining localy on each cpu. Caller can
2402 * expects some charges will be back to res_counter later but cannot wait for
2403 * it.
2404 */
2405static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2406{
2407 /*
2408 * If someone calls draining, avoid adding more kworker runs.
2409 */
2410 if (!mutex_trylock(&percpu_charge_mutex))
2411 return;
2412 drain_all_stock(root_memcg, false);
2413 mutex_unlock(&percpu_charge_mutex);
2414}
2415
2416/* This is a synchronous drain interface. */
2417static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2418{
2419 /* called when force_empty is called */
2420 mutex_lock(&percpu_charge_mutex);
2421 drain_all_stock(root_memcg, true);
2422 mutex_unlock(&percpu_charge_mutex);
2423}
2424
2425/*
2426 * This function drains percpu counter value from DEAD cpu and
2427 * move it to local cpu. Note that this function can be preempted.
2428 */
2429static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2430{
2431 int i;
2432
2433 spin_lock(&memcg->pcp_counter_lock);
2434 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2435 long x = per_cpu(memcg->stat->count[i], cpu);
2436
2437 per_cpu(memcg->stat->count[i], cpu) = 0;
2438 memcg->nocpu_base.count[i] += x;
2439 }
2440 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2441 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2442
2443 per_cpu(memcg->stat->events[i], cpu) = 0;
2444 memcg->nocpu_base.events[i] += x;
2445 }
2446 spin_unlock(&memcg->pcp_counter_lock);
2447}
2448
2449static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2450 unsigned long action,
2451 void *hcpu)
2452{
2453 int cpu = (unsigned long)hcpu;
2454 struct memcg_stock_pcp *stock;
2455 struct mem_cgroup *iter;
2456
2457 if (action == CPU_ONLINE)
2458 return NOTIFY_OK;
2459
2460 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2461 return NOTIFY_OK;
2462
2463 for_each_mem_cgroup(iter)
2464 mem_cgroup_drain_pcp_counter(iter, cpu);
2465
2466 stock = &per_cpu(memcg_stock, cpu);
2467 drain_stock(stock);
2468 return NOTIFY_OK;
2469}
2470
2471
2472/* See __mem_cgroup_try_charge() for details */
2473enum {
2474 CHARGE_OK, /* success */
2475 CHARGE_RETRY, /* need to retry but retry is not bad */
2476 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2477 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2478};
2479
2480static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2481 unsigned int nr_pages, unsigned int min_pages,
2482 bool invoke_oom)
2483{
2484 unsigned long csize = nr_pages * PAGE_SIZE;
2485 struct mem_cgroup *mem_over_limit;
2486 struct res_counter *fail_res;
2487 unsigned long flags = 0;
2488 int ret;
2489
2490 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2491
2492 if (likely(!ret)) {
2493 if (!do_swap_account)
2494 return CHARGE_OK;
2495 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2496 if (likely(!ret))
2497 return CHARGE_OK;
2498
2499 res_counter_uncharge(&memcg->res, csize);
2500 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2501 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2502 } else
2503 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2504 /*
2505 * Never reclaim on behalf of optional batching, retry with a
2506 * single page instead.
2507 */
2508 if (nr_pages > min_pages)
2509 return CHARGE_RETRY;
2510
2511 if (!(gfp_mask & __GFP_WAIT))
2512 return CHARGE_WOULDBLOCK;
2513
2514 if (gfp_mask & __GFP_NORETRY)
2515 return CHARGE_NOMEM;
2516
2517 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2518 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2519 return CHARGE_RETRY;
2520 /*
2521 * Even though the limit is exceeded at this point, reclaim
2522 * may have been able to free some pages. Retry the charge
2523 * before killing the task.
2524 *
2525 * Only for regular pages, though: huge pages are rather
2526 * unlikely to succeed so close to the limit, and we fall back
2527 * to regular pages anyway in case of failure.
2528 */
2529 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2530 return CHARGE_RETRY;
2531
2532 /*
2533 * At task move, charge accounts can be doubly counted. So, it's
2534 * better to wait until the end of task_move if something is going on.
2535 */
2536 if (mem_cgroup_wait_acct_move(mem_over_limit))
2537 return CHARGE_RETRY;
2538
2539 if (invoke_oom)
2540 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2541
2542 return CHARGE_NOMEM;
2543}
2544
2545/*
2546 * __mem_cgroup_try_charge() does
2547 * 1. detect memcg to be charged against from passed *mm and *ptr,
2548 * 2. update res_counter
2549 * 3. call memory reclaim if necessary.
2550 *
2551 * In some special case, if the task is fatal, fatal_signal_pending() or
2552 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2553 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2554 * as possible without any hazards. 2: all pages should have a valid
2555 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2556 * pointer, that is treated as a charge to root_mem_cgroup.
2557 *
2558 * So __mem_cgroup_try_charge() will return
2559 * 0 ... on success, filling *ptr with a valid memcg pointer.
2560 * -ENOMEM ... charge failure because of resource limits.
2561 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2562 *
2563 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2564 * the oom-killer can be invoked.
2565 */
2566static int __mem_cgroup_try_charge(struct mm_struct *mm,
2567 gfp_t gfp_mask,
2568 unsigned int nr_pages,
2569 struct mem_cgroup **ptr,
2570 bool oom)
2571{
2572 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2573 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2574 struct mem_cgroup *memcg = NULL;
2575 int ret;
2576
2577 /*
2578 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2579 * in system level. So, allow to go ahead dying process in addition to
2580 * MEMDIE process.
2581 */
2582 if (unlikely(test_thread_flag(TIF_MEMDIE)
2583 || fatal_signal_pending(current)))
2584 goto bypass;
2585
2586 /*
2587 * We always charge the cgroup the mm_struct belongs to.
2588 * The mm_struct's mem_cgroup changes on task migration if the
2589 * thread group leader migrates. It's possible that mm is not
2590 * set, if so charge the root memcg (happens for pagecache usage).
2591 */
2592 if (!*ptr && !mm)
2593 *ptr = root_mem_cgroup;
2594again:
2595 if (*ptr) { /* css should be a valid one */
2596 memcg = *ptr;
2597 if (mem_cgroup_is_root(memcg))
2598 goto done;
2599 if (consume_stock(memcg, nr_pages))
2600 goto done;
2601 css_get(&memcg->css);
2602 } else {
2603 struct task_struct *p;
2604
2605 rcu_read_lock();
2606 p = rcu_dereference(mm->owner);
2607 /*
2608 * Because we don't have task_lock(), "p" can exit.
2609 * In that case, "memcg" can point to root or p can be NULL with
2610 * race with swapoff. Then, we have small risk of mis-accouning.
2611 * But such kind of mis-account by race always happens because
2612 * we don't have cgroup_mutex(). It's overkill and we allo that
2613 * small race, here.
2614 * (*) swapoff at el will charge against mm-struct not against
2615 * task-struct. So, mm->owner can be NULL.
2616 */
2617 memcg = mem_cgroup_from_task(p);
2618 if (!memcg)
2619 memcg = root_mem_cgroup;
2620 if (mem_cgroup_is_root(memcg)) {
2621 rcu_read_unlock();
2622 goto done;
2623 }
2624 if (consume_stock(memcg, nr_pages)) {
2625 /*
2626 * It seems dagerous to access memcg without css_get().
2627 * But considering how consume_stok works, it's not
2628 * necessary. If consume_stock success, some charges
2629 * from this memcg are cached on this cpu. So, we
2630 * don't need to call css_get()/css_tryget() before
2631 * calling consume_stock().
2632 */
2633 rcu_read_unlock();
2634 goto done;
2635 }
2636 /* after here, we may be blocked. we need to get refcnt */
2637 if (!css_tryget(&memcg->css)) {
2638 rcu_read_unlock();
2639 goto again;
2640 }
2641 rcu_read_unlock();
2642 }
2643
2644 do {
2645 bool invoke_oom = oom && !nr_oom_retries;
2646
2647 /* If killed, bypass charge */
2648 if (fatal_signal_pending(current)) {
2649 css_put(&memcg->css);
2650 goto bypass;
2651 }
2652
2653 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2654 nr_pages, invoke_oom);
2655 switch (ret) {
2656 case CHARGE_OK:
2657 break;
2658 case CHARGE_RETRY: /* not in OOM situation but retry */
2659 batch = nr_pages;
2660 css_put(&memcg->css);
2661 memcg = NULL;
2662 goto again;
2663 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2664 css_put(&memcg->css);
2665 goto nomem;
2666 case CHARGE_NOMEM: /* OOM routine works */
2667 if (!oom || invoke_oom) {
2668 css_put(&memcg->css);
2669 goto nomem;
2670 }
2671 nr_oom_retries--;
2672 break;
2673 }
2674 } while (ret != CHARGE_OK);
2675
2676 if (batch > nr_pages)
2677 refill_stock(memcg, batch - nr_pages);
2678 css_put(&memcg->css);
2679done:
2680 *ptr = memcg;
2681 return 0;
2682nomem:
2683 *ptr = NULL;
2684 return -ENOMEM;
2685bypass:
2686 *ptr = root_mem_cgroup;
2687 return -EINTR;
2688}
2689
2690/*
2691 * Somemtimes we have to undo a charge we got by try_charge().
2692 * This function is for that and do uncharge, put css's refcnt.
2693 * gotten by try_charge().
2694 */
2695static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2696 unsigned int nr_pages)
2697{
2698 if (!mem_cgroup_is_root(memcg)) {
2699 unsigned long bytes = nr_pages * PAGE_SIZE;
2700
2701 res_counter_uncharge(&memcg->res, bytes);
2702 if (do_swap_account)
2703 res_counter_uncharge(&memcg->memsw, bytes);
2704 }
2705}
2706
2707/*
2708 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2709 * This is useful when moving usage to parent cgroup.
2710 */
2711static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2712 unsigned int nr_pages)
2713{
2714 unsigned long bytes = nr_pages * PAGE_SIZE;
2715
2716 if (mem_cgroup_is_root(memcg))
2717 return;
2718
2719 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2720 if (do_swap_account)
2721 res_counter_uncharge_until(&memcg->memsw,
2722 memcg->memsw.parent, bytes);
2723}
2724
2725/*
2726 * A helper function to get mem_cgroup from ID. must be called under
2727 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2728 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2729 * called against removed memcg.)
2730 */
2731static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2732{
2733 struct cgroup_subsys_state *css;
2734
2735 /* ID 0 is unused ID */
2736 if (!id)
2737 return NULL;
2738 css = css_lookup(&mem_cgroup_subsys, id);
2739 if (!css)
2740 return NULL;
2741 return mem_cgroup_from_css(css);
2742}
2743
2744struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2745{
2746 struct mem_cgroup *memcg = NULL;
2747 struct page_cgroup *pc;
2748 unsigned short id;
2749 swp_entry_t ent;
2750
2751 VM_BUG_ON(!PageLocked(page));
2752
2753 pc = lookup_page_cgroup(page);
2754 lock_page_cgroup(pc);
2755 if (PageCgroupUsed(pc)) {
2756 memcg = pc->mem_cgroup;
2757 if (memcg && !css_tryget(&memcg->css))
2758 memcg = NULL;
2759 } else if (PageSwapCache(page)) {
2760 ent.val = page_private(page);
2761 id = lookup_swap_cgroup_id(ent);
2762 rcu_read_lock();
2763 memcg = mem_cgroup_lookup(id);
2764 if (memcg && !css_tryget(&memcg->css))
2765 memcg = NULL;
2766 rcu_read_unlock();
2767 }
2768 unlock_page_cgroup(pc);
2769 return memcg;
2770}
2771
2772static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2773 struct page *page,
2774 unsigned int nr_pages,
2775 enum charge_type ctype,
2776 bool lrucare)
2777{
2778 struct page_cgroup *pc = lookup_page_cgroup(page);
2779 struct zone *uninitialized_var(zone);
2780 struct lruvec *lruvec;
2781 bool was_on_lru = false;
2782 bool anon;
2783
2784 lock_page_cgroup(pc);
2785 VM_BUG_ON(PageCgroupUsed(pc));
2786 /*
2787 * we don't need page_cgroup_lock about tail pages, becase they are not
2788 * accessed by any other context at this point.
2789 */
2790
2791 /*
2792 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2793 * may already be on some other mem_cgroup's LRU. Take care of it.
2794 */
2795 if (lrucare) {
2796 zone = page_zone(page);
2797 spin_lock_irq(&zone->lru_lock);
2798 if (PageLRU(page)) {
2799 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2800 ClearPageLRU(page);
2801 del_page_from_lru_list(page, lruvec, page_lru(page));
2802 was_on_lru = true;
2803 }
2804 }
2805
2806 pc->mem_cgroup = memcg;
2807 /*
2808 * We access a page_cgroup asynchronously without lock_page_cgroup().
2809 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2810 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2811 * before USED bit, we need memory barrier here.
2812 * See mem_cgroup_add_lru_list(), etc.
2813 */
2814 smp_wmb();
2815 SetPageCgroupUsed(pc);
2816
2817 if (lrucare) {
2818 if (was_on_lru) {
2819 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2820 VM_BUG_ON(PageLRU(page));
2821 SetPageLRU(page);
2822 add_page_to_lru_list(page, lruvec, page_lru(page));
2823 }
2824 spin_unlock_irq(&zone->lru_lock);
2825 }
2826
2827 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2828 anon = true;
2829 else
2830 anon = false;
2831
2832 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2833 unlock_page_cgroup(pc);
2834
2835 /*
2836 * "charge_statistics" updated event counter.
2837 */
2838 memcg_check_events(memcg, page);
2839}
2840
2841static DEFINE_MUTEX(set_limit_mutex);
2842
2843#ifdef CONFIG_MEMCG_KMEM
2844static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2845{
2846 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2847 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2848}
2849
2850/*
2851 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2852 * in the memcg_cache_params struct.
2853 */
2854static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2855{
2856 struct kmem_cache *cachep;
2857
2858 VM_BUG_ON(p->is_root_cache);
2859 cachep = p->root_cache;
2860 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2861}
2862
2863#ifdef CONFIG_SLABINFO
2864static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2865 struct cftype *cft, struct seq_file *m)
2866{
2867 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2868 struct memcg_cache_params *params;
2869
2870 if (!memcg_can_account_kmem(memcg))
2871 return -EIO;
2872
2873 print_slabinfo_header(m);
2874
2875 mutex_lock(&memcg->slab_caches_mutex);
2876 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2877 cache_show(memcg_params_to_cache(params), m);
2878 mutex_unlock(&memcg->slab_caches_mutex);
2879
2880 return 0;
2881}
2882#endif
2883
2884static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2885{
2886 struct res_counter *fail_res;
2887 struct mem_cgroup *_memcg;
2888 int ret = 0;
2889 bool may_oom;
2890
2891 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2892 if (ret)
2893 return ret;
2894
2895 /*
2896 * Conditions under which we can wait for the oom_killer. Those are
2897 * the same conditions tested by the core page allocator
2898 */
2899 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2900
2901 _memcg = memcg;
2902 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2903 &_memcg, may_oom);
2904
2905 if (ret == -EINTR) {
2906 /*
2907 * __mem_cgroup_try_charge() chosed to bypass to root due to
2908 * OOM kill or fatal signal. Since our only options are to
2909 * either fail the allocation or charge it to this cgroup, do
2910 * it as a temporary condition. But we can't fail. From a
2911 * kmem/slab perspective, the cache has already been selected,
2912 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2913 * our minds.
2914 *
2915 * This condition will only trigger if the task entered
2916 * memcg_charge_kmem in a sane state, but was OOM-killed during
2917 * __mem_cgroup_try_charge() above. Tasks that were already
2918 * dying when the allocation triggers should have been already
2919 * directed to the root cgroup in memcontrol.h
2920 */
2921 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2922 if (do_swap_account)
2923 res_counter_charge_nofail(&memcg->memsw, size,
2924 &fail_res);
2925 ret = 0;
2926 } else if (ret)
2927 res_counter_uncharge(&memcg->kmem, size);
2928
2929 return ret;
2930}
2931
2932static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2933{
2934 res_counter_uncharge(&memcg->res, size);
2935 if (do_swap_account)
2936 res_counter_uncharge(&memcg->memsw, size);
2937
2938 /* Not down to 0 */
2939 if (res_counter_uncharge(&memcg->kmem, size))
2940 return;
2941
2942 /*
2943 * Releases a reference taken in kmem_cgroup_css_offline in case
2944 * this last uncharge is racing with the offlining code or it is
2945 * outliving the memcg existence.
2946 *
2947 * The memory barrier imposed by test&clear is paired with the
2948 * explicit one in memcg_kmem_mark_dead().
2949 */
2950 if (memcg_kmem_test_and_clear_dead(memcg))
2951 css_put(&memcg->css);
2952}
2953
2954void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
2955{
2956 if (!memcg)
2957 return;
2958
2959 mutex_lock(&memcg->slab_caches_mutex);
2960 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2961 mutex_unlock(&memcg->slab_caches_mutex);
2962}
2963
2964/*
2965 * helper for acessing a memcg's index. It will be used as an index in the
2966 * child cache array in kmem_cache, and also to derive its name. This function
2967 * will return -1 when this is not a kmem-limited memcg.
2968 */
2969int memcg_cache_id(struct mem_cgroup *memcg)
2970{
2971 return memcg ? memcg->kmemcg_id : -1;
2972}
2973
2974/*
2975 * This ends up being protected by the set_limit mutex, during normal
2976 * operation, because that is its main call site.
2977 *
2978 * But when we create a new cache, we can call this as well if its parent
2979 * is kmem-limited. That will have to hold set_limit_mutex as well.
2980 */
2981int memcg_update_cache_sizes(struct mem_cgroup *memcg)
2982{
2983 int num, ret;
2984
2985 num = ida_simple_get(&kmem_limited_groups,
2986 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2987 if (num < 0)
2988 return num;
2989 /*
2990 * After this point, kmem_accounted (that we test atomically in
2991 * the beginning of this conditional), is no longer 0. This
2992 * guarantees only one process will set the following boolean
2993 * to true. We don't need test_and_set because we're protected
2994 * by the set_limit_mutex anyway.
2995 */
2996 memcg_kmem_set_activated(memcg);
2997
2998 ret = memcg_update_all_caches(num+1);
2999 if (ret) {
3000 ida_simple_remove(&kmem_limited_groups, num);
3001 memcg_kmem_clear_activated(memcg);
3002 return ret;
3003 }
3004
3005 memcg->kmemcg_id = num;
3006 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3007 mutex_init(&memcg->slab_caches_mutex);
3008 return 0;
3009}
3010
3011static size_t memcg_caches_array_size(int num_groups)
3012{
3013 ssize_t size;
3014 if (num_groups <= 0)
3015 return 0;
3016
3017 size = 2 * num_groups;
3018 if (size < MEMCG_CACHES_MIN_SIZE)
3019 size = MEMCG_CACHES_MIN_SIZE;
3020 else if (size > MEMCG_CACHES_MAX_SIZE)
3021 size = MEMCG_CACHES_MAX_SIZE;
3022
3023 return size;
3024}
3025
3026/*
3027 * We should update the current array size iff all caches updates succeed. This
3028 * can only be done from the slab side. The slab mutex needs to be held when
3029 * calling this.
3030 */
3031void memcg_update_array_size(int num)
3032{
3033 if (num > memcg_limited_groups_array_size)
3034 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3035}
3036
3037static void kmem_cache_destroy_work_func(struct work_struct *w);
3038
3039int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3040{
3041 struct memcg_cache_params *cur_params = s->memcg_params;
3042
3043 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3044
3045 if (num_groups > memcg_limited_groups_array_size) {
3046 int i;
3047 ssize_t size = memcg_caches_array_size(num_groups);
3048
3049 size *= sizeof(void *);
3050 size += offsetof(struct memcg_cache_params, memcg_caches);
3051
3052 s->memcg_params = kzalloc(size, GFP_KERNEL);
3053 if (!s->memcg_params) {
3054 s->memcg_params = cur_params;
3055 return -ENOMEM;
3056 }
3057
3058 s->memcg_params->is_root_cache = true;
3059
3060 /*
3061 * There is the chance it will be bigger than
3062 * memcg_limited_groups_array_size, if we failed an allocation
3063 * in a cache, in which case all caches updated before it, will
3064 * have a bigger array.
3065 *
3066 * But if that is the case, the data after
3067 * memcg_limited_groups_array_size is certainly unused
3068 */
3069 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3070 if (!cur_params->memcg_caches[i])
3071 continue;
3072 s->memcg_params->memcg_caches[i] =
3073 cur_params->memcg_caches[i];
3074 }
3075
3076 /*
3077 * Ideally, we would wait until all caches succeed, and only
3078 * then free the old one. But this is not worth the extra
3079 * pointer per-cache we'd have to have for this.
3080 *
3081 * It is not a big deal if some caches are left with a size
3082 * bigger than the others. And all updates will reset this
3083 * anyway.
3084 */
3085 kfree(cur_params);
3086 }
3087 return 0;
3088}
3089
3090int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3091 struct kmem_cache *root_cache)
3092{
3093 size_t size;
3094
3095 if (!memcg_kmem_enabled())
3096 return 0;
3097
3098 if (!memcg) {
3099 size = offsetof(struct memcg_cache_params, memcg_caches);
3100 size += memcg_limited_groups_array_size * sizeof(void *);
3101 } else
3102 size = sizeof(struct memcg_cache_params);
3103
3104 s->memcg_params = kzalloc(size, GFP_KERNEL);
3105 if (!s->memcg_params)
3106 return -ENOMEM;
3107
3108 if (memcg) {
3109 s->memcg_params->memcg = memcg;
3110 s->memcg_params->root_cache = root_cache;
3111 INIT_WORK(&s->memcg_params->destroy,
3112 kmem_cache_destroy_work_func);
3113 } else
3114 s->memcg_params->is_root_cache = true;
3115
3116 return 0;
3117}
3118
3119void memcg_release_cache(struct kmem_cache *s)
3120{
3121 struct kmem_cache *root;
3122 struct mem_cgroup *memcg;
3123 int id;
3124
3125 /*
3126 * This happens, for instance, when a root cache goes away before we
3127 * add any memcg.
3128 */
3129 if (!s->memcg_params)
3130 return;
3131
3132 if (s->memcg_params->is_root_cache)
3133 goto out;
3134
3135 memcg = s->memcg_params->memcg;
3136 id = memcg_cache_id(memcg);
3137
3138 root = s->memcg_params->root_cache;
3139 root->memcg_params->memcg_caches[id] = NULL;
3140
3141 mutex_lock(&memcg->slab_caches_mutex);
3142 list_del(&s->memcg_params->list);
3143 mutex_unlock(&memcg->slab_caches_mutex);
3144
3145 css_put(&memcg->css);
3146out:
3147 kfree(s->memcg_params);
3148}
3149
3150/*
3151 * During the creation a new cache, we need to disable our accounting mechanism
3152 * altogether. This is true even if we are not creating, but rather just
3153 * enqueing new caches to be created.
3154 *
3155 * This is because that process will trigger allocations; some visible, like
3156 * explicit kmallocs to auxiliary data structures, name strings and internal
3157 * cache structures; some well concealed, like INIT_WORK() that can allocate
3158 * objects during debug.
3159 *
3160 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3161 * to it. This may not be a bounded recursion: since the first cache creation
3162 * failed to complete (waiting on the allocation), we'll just try to create the
3163 * cache again, failing at the same point.
3164 *
3165 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3166 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3167 * inside the following two functions.
3168 */
3169static inline void memcg_stop_kmem_account(void)
3170{
3171 VM_BUG_ON(!current->mm);
3172 current->memcg_kmem_skip_account++;
3173}
3174
3175static inline void memcg_resume_kmem_account(void)
3176{
3177 VM_BUG_ON(!current->mm);
3178 current->memcg_kmem_skip_account--;
3179}
3180
3181static void kmem_cache_destroy_work_func(struct work_struct *w)
3182{
3183 struct kmem_cache *cachep;
3184 struct memcg_cache_params *p;
3185
3186 p = container_of(w, struct memcg_cache_params, destroy);
3187
3188 cachep = memcg_params_to_cache(p);
3189
3190 /*
3191 * If we get down to 0 after shrink, we could delete right away.
3192 * However, memcg_release_pages() already puts us back in the workqueue
3193 * in that case. If we proceed deleting, we'll get a dangling
3194 * reference, and removing the object from the workqueue in that case
3195 * is unnecessary complication. We are not a fast path.
3196 *
3197 * Note that this case is fundamentally different from racing with
3198 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3199 * kmem_cache_shrink, not only we would be reinserting a dead cache
3200 * into the queue, but doing so from inside the worker racing to
3201 * destroy it.
3202 *
3203 * So if we aren't down to zero, we'll just schedule a worker and try
3204 * again
3205 */
3206 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3207 kmem_cache_shrink(cachep);
3208 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3209 return;
3210 } else
3211 kmem_cache_destroy(cachep);
3212}
3213
3214void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3215{
3216 if (!cachep->memcg_params->dead)
3217 return;
3218
3219 /*
3220 * There are many ways in which we can get here.
3221 *
3222 * We can get to a memory-pressure situation while the delayed work is
3223 * still pending to run. The vmscan shrinkers can then release all
3224 * cache memory and get us to destruction. If this is the case, we'll
3225 * be executed twice, which is a bug (the second time will execute over
3226 * bogus data). In this case, cancelling the work should be fine.
3227 *
3228 * But we can also get here from the worker itself, if
3229 * kmem_cache_shrink is enough to shake all the remaining objects and
3230 * get the page count to 0. In this case, we'll deadlock if we try to
3231 * cancel the work (the worker runs with an internal lock held, which
3232 * is the same lock we would hold for cancel_work_sync().)
3233 *
3234 * Since we can't possibly know who got us here, just refrain from
3235 * running if there is already work pending
3236 */
3237 if (work_pending(&cachep->memcg_params->destroy))
3238 return;
3239 /*
3240 * We have to defer the actual destroying to a workqueue, because
3241 * we might currently be in a context that cannot sleep.
3242 */
3243 schedule_work(&cachep->memcg_params->destroy);
3244}
3245
3246/*
3247 * This lock protects updaters, not readers. We want readers to be as fast as
3248 * they can, and they will either see NULL or a valid cache value. Our model
3249 * allow them to see NULL, in which case the root memcg will be selected.
3250 *
3251 * We need this lock because multiple allocations to the same cache from a non
3252 * will span more than one worker. Only one of them can create the cache.
3253 */
3254static DEFINE_MUTEX(memcg_cache_mutex);
3255
3256/*
3257 * Called with memcg_cache_mutex held
3258 */
3259static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3260 struct kmem_cache *s)
3261{
3262 struct kmem_cache *new;
3263 static char *tmp_name = NULL;
3264
3265 lockdep_assert_held(&memcg_cache_mutex);
3266
3267 /*
3268 * kmem_cache_create_memcg duplicates the given name and
3269 * cgroup_name for this name requires RCU context.
3270 * This static temporary buffer is used to prevent from
3271 * pointless shortliving allocation.
3272 */
3273 if (!tmp_name) {
3274 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3275 if (!tmp_name)
3276 return NULL;
3277 }
3278
3279 rcu_read_lock();
3280 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3281 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3282 rcu_read_unlock();
3283
3284 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3285 (s->flags & ~SLAB_PANIC), s->ctor, s);
3286
3287 if (new)
3288 new->allocflags |= __GFP_KMEMCG;
3289
3290 return new;
3291}
3292
3293static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3294 struct kmem_cache *cachep)
3295{
3296 struct kmem_cache *new_cachep;
3297 int idx;
3298
3299 BUG_ON(!memcg_can_account_kmem(memcg));
3300
3301 idx = memcg_cache_id(memcg);
3302
3303 mutex_lock(&memcg_cache_mutex);
3304 new_cachep = cachep->memcg_params->memcg_caches[idx];
3305 if (new_cachep) {
3306 css_put(&memcg->css);
3307 goto out;
3308 }
3309
3310 new_cachep = kmem_cache_dup(memcg, cachep);
3311 if (new_cachep == NULL) {
3312 new_cachep = cachep;
3313 css_put(&memcg->css);
3314 goto out;
3315 }
3316
3317 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3318
3319 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3320 /*
3321 * the readers won't lock, make sure everybody sees the updated value,
3322 * so they won't put stuff in the queue again for no reason
3323 */
3324 wmb();
3325out:
3326 mutex_unlock(&memcg_cache_mutex);
3327 return new_cachep;
3328}
3329
3330void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3331{
3332 struct kmem_cache *c;
3333 int i;
3334
3335 if (!s->memcg_params)
3336 return;
3337 if (!s->memcg_params->is_root_cache)
3338 return;
3339
3340 /*
3341 * If the cache is being destroyed, we trust that there is no one else
3342 * requesting objects from it. Even if there are, the sanity checks in
3343 * kmem_cache_destroy should caught this ill-case.
3344 *
3345 * Still, we don't want anyone else freeing memcg_caches under our
3346 * noses, which can happen if a new memcg comes to life. As usual,
3347 * we'll take the set_limit_mutex to protect ourselves against this.
3348 */
3349 mutex_lock(&set_limit_mutex);
3350 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3351 c = s->memcg_params->memcg_caches[i];
3352 if (!c)
3353 continue;
3354
3355 /*
3356 * We will now manually delete the caches, so to avoid races
3357 * we need to cancel all pending destruction workers and
3358 * proceed with destruction ourselves.
3359 *
3360 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3361 * and that could spawn the workers again: it is likely that
3362 * the cache still have active pages until this very moment.
3363 * This would lead us back to mem_cgroup_destroy_cache.
3364 *
3365 * But that will not execute at all if the "dead" flag is not
3366 * set, so flip it down to guarantee we are in control.
3367 */
3368 c->memcg_params->dead = false;
3369 cancel_work_sync(&c->memcg_params->destroy);
3370 kmem_cache_destroy(c);
3371 }
3372 mutex_unlock(&set_limit_mutex);
3373}
3374
3375struct create_work {
3376 struct mem_cgroup *memcg;
3377 struct kmem_cache *cachep;
3378 struct work_struct work;
3379};
3380
3381static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3382{
3383 struct kmem_cache *cachep;
3384 struct memcg_cache_params *params;
3385
3386 if (!memcg_kmem_is_active(memcg))
3387 return;
3388
3389 mutex_lock(&memcg->slab_caches_mutex);
3390 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3391 cachep = memcg_params_to_cache(params);
3392 cachep->memcg_params->dead = true;
3393 schedule_work(&cachep->memcg_params->destroy);
3394 }
3395 mutex_unlock(&memcg->slab_caches_mutex);
3396}
3397
3398static void memcg_create_cache_work_func(struct work_struct *w)
3399{
3400 struct create_work *cw;
3401
3402 cw = container_of(w, struct create_work, work);
3403 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3404 kfree(cw);
3405}
3406
3407/*
3408 * Enqueue the creation of a per-memcg kmem_cache.
3409 */
3410static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3411 struct kmem_cache *cachep)
3412{
3413 struct create_work *cw;
3414
3415 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3416 if (cw == NULL) {
3417 css_put(&memcg->css);
3418 return;
3419 }
3420
3421 cw->memcg = memcg;
3422 cw->cachep = cachep;
3423
3424 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3425 schedule_work(&cw->work);
3426}
3427
3428static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3429 struct kmem_cache *cachep)
3430{
3431 /*
3432 * We need to stop accounting when we kmalloc, because if the
3433 * corresponding kmalloc cache is not yet created, the first allocation
3434 * in __memcg_create_cache_enqueue will recurse.
3435 *
3436 * However, it is better to enclose the whole function. Depending on
3437 * the debugging options enabled, INIT_WORK(), for instance, can
3438 * trigger an allocation. This too, will make us recurse. Because at
3439 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3440 * the safest choice is to do it like this, wrapping the whole function.
3441 */
3442 memcg_stop_kmem_account();
3443 __memcg_create_cache_enqueue(memcg, cachep);
3444 memcg_resume_kmem_account();
3445}
3446/*
3447 * Return the kmem_cache we're supposed to use for a slab allocation.
3448 * We try to use the current memcg's version of the cache.
3449 *
3450 * If the cache does not exist yet, if we are the first user of it,
3451 * we either create it immediately, if possible, or create it asynchronously
3452 * in a workqueue.
3453 * In the latter case, we will let the current allocation go through with
3454 * the original cache.
3455 *
3456 * Can't be called in interrupt context or from kernel threads.
3457 * This function needs to be called with rcu_read_lock() held.
3458 */
3459struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3460 gfp_t gfp)
3461{
3462 struct mem_cgroup *memcg;
3463 int idx;
3464
3465 VM_BUG_ON(!cachep->memcg_params);
3466 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3467
3468 if (!current->mm || current->memcg_kmem_skip_account)
3469 return cachep;
3470
3471 rcu_read_lock();
3472 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3473
3474 if (!memcg_can_account_kmem(memcg))
3475 goto out;
3476
3477 idx = memcg_cache_id(memcg);
3478
3479 /*
3480 * barrier to mare sure we're always seeing the up to date value. The
3481 * code updating memcg_caches will issue a write barrier to match this.
3482 */
3483 read_barrier_depends();
3484 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3485 cachep = cachep->memcg_params->memcg_caches[idx];
3486 goto out;
3487 }
3488
3489 /* The corresponding put will be done in the workqueue. */
3490 if (!css_tryget(&memcg->css))
3491 goto out;
3492 rcu_read_unlock();
3493
3494 /*
3495 * If we are in a safe context (can wait, and not in interrupt
3496 * context), we could be be predictable and return right away.
3497 * This would guarantee that the allocation being performed
3498 * already belongs in the new cache.
3499 *
3500 * However, there are some clashes that can arrive from locking.
3501 * For instance, because we acquire the slab_mutex while doing
3502 * kmem_cache_dup, this means no further allocation could happen
3503 * with the slab_mutex held.
3504 *
3505 * Also, because cache creation issue get_online_cpus(), this
3506 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3507 * that ends up reversed during cpu hotplug. (cpuset allocates
3508 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3509 * better to defer everything.
3510 */
3511 memcg_create_cache_enqueue(memcg, cachep);
3512 return cachep;
3513out:
3514 rcu_read_unlock();
3515 return cachep;
3516}
3517EXPORT_SYMBOL(__memcg_kmem_get_cache);
3518
3519/*
3520 * We need to verify if the allocation against current->mm->owner's memcg is
3521 * possible for the given order. But the page is not allocated yet, so we'll
3522 * need a further commit step to do the final arrangements.
3523 *
3524 * It is possible for the task to switch cgroups in this mean time, so at
3525 * commit time, we can't rely on task conversion any longer. We'll then use
3526 * the handle argument to return to the caller which cgroup we should commit
3527 * against. We could also return the memcg directly and avoid the pointer
3528 * passing, but a boolean return value gives better semantics considering
3529 * the compiled-out case as well.
3530 *
3531 * Returning true means the allocation is possible.
3532 */
3533bool
3534__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3535{
3536 struct mem_cgroup *memcg;
3537 int ret;
3538
3539 *_memcg = NULL;
3540
3541 /*
3542 * Disabling accounting is only relevant for some specific memcg
3543 * internal allocations. Therefore we would initially not have such
3544 * check here, since direct calls to the page allocator that are marked
3545 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3546 * concerned with cache allocations, and by having this test at
3547 * memcg_kmem_get_cache, we are already able to relay the allocation to
3548 * the root cache and bypass the memcg cache altogether.
3549 *
3550 * There is one exception, though: the SLUB allocator does not create
3551 * large order caches, but rather service large kmallocs directly from
3552 * the page allocator. Therefore, the following sequence when backed by
3553 * the SLUB allocator:
3554 *
3555 * memcg_stop_kmem_account();
3556 * kmalloc(<large_number>)
3557 * memcg_resume_kmem_account();
3558 *
3559 * would effectively ignore the fact that we should skip accounting,
3560 * since it will drive us directly to this function without passing
3561 * through the cache selector memcg_kmem_get_cache. Such large
3562 * allocations are extremely rare but can happen, for instance, for the
3563 * cache arrays. We bring this test here.
3564 */
3565 if (!current->mm || current->memcg_kmem_skip_account)
3566 return true;
3567
3568 memcg = try_get_mem_cgroup_from_mm(current->mm);
3569
3570 /*
3571 * very rare case described in mem_cgroup_from_task. Unfortunately there
3572 * isn't much we can do without complicating this too much, and it would
3573 * be gfp-dependent anyway. Just let it go
3574 */
3575 if (unlikely(!memcg))
3576 return true;
3577
3578 if (!memcg_can_account_kmem(memcg)) {
3579 css_put(&memcg->css);
3580 return true;
3581 }
3582
3583 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3584 if (!ret)
3585 *_memcg = memcg;
3586
3587 css_put(&memcg->css);
3588 return (ret == 0);
3589}
3590
3591void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3592 int order)
3593{
3594 struct page_cgroup *pc;
3595
3596 VM_BUG_ON(mem_cgroup_is_root(memcg));
3597
3598 /* The page allocation failed. Revert */
3599 if (!page) {
3600 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3601 return;
3602 }
3603
3604 pc = lookup_page_cgroup(page);
3605 lock_page_cgroup(pc);
3606 pc->mem_cgroup = memcg;
3607 SetPageCgroupUsed(pc);
3608 unlock_page_cgroup(pc);
3609}
3610
3611void __memcg_kmem_uncharge_pages(struct page *page, int order)
3612{
3613 struct mem_cgroup *memcg = NULL;
3614 struct page_cgroup *pc;
3615
3616
3617 pc = lookup_page_cgroup(page);
3618 /*
3619 * Fast unlocked return. Theoretically might have changed, have to
3620 * check again after locking.
3621 */
3622 if (!PageCgroupUsed(pc))
3623 return;
3624
3625 lock_page_cgroup(pc);
3626 if (PageCgroupUsed(pc)) {
3627 memcg = pc->mem_cgroup;
3628 ClearPageCgroupUsed(pc);
3629 }
3630 unlock_page_cgroup(pc);
3631
3632 /*
3633 * We trust that only if there is a memcg associated with the page, it
3634 * is a valid allocation
3635 */
3636 if (!memcg)
3637 return;
3638
3639 VM_BUG_ON(mem_cgroup_is_root(memcg));
3640 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3641}
3642#else
3643static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3644{
3645}
3646#endif /* CONFIG_MEMCG_KMEM */
3647
3648#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3649
3650#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3651/*
3652 * Because tail pages are not marked as "used", set it. We're under
3653 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3654 * charge/uncharge will be never happen and move_account() is done under
3655 * compound_lock(), so we don't have to take care of races.
3656 */
3657void mem_cgroup_split_huge_fixup(struct page *head)
3658{
3659 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3660 struct page_cgroup *pc;
3661 struct mem_cgroup *memcg;
3662 int i;
3663
3664 if (mem_cgroup_disabled())
3665 return;
3666
3667 memcg = head_pc->mem_cgroup;
3668 for (i = 1; i < HPAGE_PMD_NR; i++) {
3669 pc = head_pc + i;
3670 pc->mem_cgroup = memcg;
3671 smp_wmb();/* see __commit_charge() */
3672 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3673 }
3674 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3675 HPAGE_PMD_NR);
3676}
3677#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3678
3679/**
3680 * mem_cgroup_move_account - move account of the page
3681 * @page: the page
3682 * @nr_pages: number of regular pages (>1 for huge pages)
3683 * @pc: page_cgroup of the page.
3684 * @from: mem_cgroup which the page is moved from.
3685 * @to: mem_cgroup which the page is moved to. @from != @to.
3686 *
3687 * The caller must confirm following.
3688 * - page is not on LRU (isolate_page() is useful.)
3689 * - compound_lock is held when nr_pages > 1
3690 *
3691 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3692 * from old cgroup.
3693 */
3694static int mem_cgroup_move_account(struct page *page,
3695 unsigned int nr_pages,
3696 struct page_cgroup *pc,
3697 struct mem_cgroup *from,
3698 struct mem_cgroup *to)
3699{
3700 unsigned long flags;
3701 int ret;
3702 bool anon = PageAnon(page);
3703
3704 VM_BUG_ON(from == to);
3705 VM_BUG_ON(PageLRU(page));
3706 /*
3707 * The page is isolated from LRU. So, collapse function
3708 * will not handle this page. But page splitting can happen.
3709 * Do this check under compound_page_lock(). The caller should
3710 * hold it.
3711 */
3712 ret = -EBUSY;
3713 if (nr_pages > 1 && !PageTransHuge(page))
3714 goto out;
3715
3716 lock_page_cgroup(pc);
3717
3718 ret = -EINVAL;
3719 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3720 goto unlock;
3721
3722 move_lock_mem_cgroup(from, &flags);
3723
3724 if (!anon && page_mapped(page)) {
3725 /* Update mapped_file data for mem_cgroup */
3726 preempt_disable();
3727 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3728 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3729 preempt_enable();
3730 }
3731 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3732
3733 /* caller should have done css_get */
3734 pc->mem_cgroup = to;
3735 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3736 move_unlock_mem_cgroup(from, &flags);
3737 ret = 0;
3738unlock:
3739 unlock_page_cgroup(pc);
3740 /*
3741 * check events
3742 */
3743 memcg_check_events(to, page);
3744 memcg_check_events(from, page);
3745out:
3746 return ret;
3747}
3748
3749/**
3750 * mem_cgroup_move_parent - moves page to the parent group
3751 * @page: the page to move
3752 * @pc: page_cgroup of the page
3753 * @child: page's cgroup
3754 *
3755 * move charges to its parent or the root cgroup if the group has no
3756 * parent (aka use_hierarchy==0).
3757 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3758 * mem_cgroup_move_account fails) the failure is always temporary and
3759 * it signals a race with a page removal/uncharge or migration. In the
3760 * first case the page is on the way out and it will vanish from the LRU
3761 * on the next attempt and the call should be retried later.
3762 * Isolation from the LRU fails only if page has been isolated from
3763 * the LRU since we looked at it and that usually means either global
3764 * reclaim or migration going on. The page will either get back to the
3765 * LRU or vanish.
3766 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3767 * (!PageCgroupUsed) or moved to a different group. The page will
3768 * disappear in the next attempt.
3769 */
3770static int mem_cgroup_move_parent(struct page *page,
3771 struct page_cgroup *pc,
3772 struct mem_cgroup *child)
3773{
3774 struct mem_cgroup *parent;
3775 unsigned int nr_pages;
3776 unsigned long uninitialized_var(flags);
3777 int ret;
3778
3779 VM_BUG_ON(mem_cgroup_is_root(child));
3780
3781 ret = -EBUSY;
3782 if (!get_page_unless_zero(page))
3783 goto out;
3784 if (isolate_lru_page(page))
3785 goto put;
3786
3787 nr_pages = hpage_nr_pages(page);
3788
3789 parent = parent_mem_cgroup(child);
3790 /*
3791 * If no parent, move charges to root cgroup.
3792 */
3793 if (!parent)
3794 parent = root_mem_cgroup;
3795
3796 if (nr_pages > 1) {
3797 VM_BUG_ON(!PageTransHuge(page));
3798 flags = compound_lock_irqsave(page);
3799 }
3800
3801 ret = mem_cgroup_move_account(page, nr_pages,
3802 pc, child, parent);
3803 if (!ret)
3804 __mem_cgroup_cancel_local_charge(child, nr_pages);
3805
3806 if (nr_pages > 1)
3807 compound_unlock_irqrestore(page, flags);
3808 putback_lru_page(page);
3809put:
3810 put_page(page);
3811out:
3812 return ret;
3813}
3814
3815/*
3816 * Charge the memory controller for page usage.
3817 * Return
3818 * 0 if the charge was successful
3819 * < 0 if the cgroup is over its limit
3820 */
3821static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3822 gfp_t gfp_mask, enum charge_type ctype)
3823{
3824 struct mem_cgroup *memcg = NULL;
3825 unsigned int nr_pages = 1;
3826 bool oom = true;
3827 int ret;
3828
3829 if (PageTransHuge(page)) {
3830 nr_pages <<= compound_order(page);
3831 VM_BUG_ON(!PageTransHuge(page));
3832 /*
3833 * Never OOM-kill a process for a huge page. The
3834 * fault handler will fall back to regular pages.
3835 */
3836 oom = false;
3837 }
3838
3839 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3840 if (ret == -ENOMEM)
3841 return ret;
3842 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3843 return 0;
3844}
3845
3846int mem_cgroup_newpage_charge(struct page *page,
3847 struct mm_struct *mm, gfp_t gfp_mask)
3848{
3849 if (mem_cgroup_disabled())
3850 return 0;
3851 VM_BUG_ON(page_mapped(page));
3852 VM_BUG_ON(page->mapping && !PageAnon(page));
3853 VM_BUG_ON(!mm);
3854 return mem_cgroup_charge_common(page, mm, gfp_mask,
3855 MEM_CGROUP_CHARGE_TYPE_ANON);
3856}
3857
3858/*
3859 * While swap-in, try_charge -> commit or cancel, the page is locked.
3860 * And when try_charge() successfully returns, one refcnt to memcg without
3861 * struct page_cgroup is acquired. This refcnt will be consumed by
3862 * "commit()" or removed by "cancel()"
3863 */
3864static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3865 struct page *page,
3866 gfp_t mask,
3867 struct mem_cgroup **memcgp)
3868{
3869 struct mem_cgroup *memcg;
3870 struct page_cgroup *pc;
3871 int ret;
3872
3873 pc = lookup_page_cgroup(page);
3874 /*
3875 * Every swap fault against a single page tries to charge the
3876 * page, bail as early as possible. shmem_unuse() encounters
3877 * already charged pages, too. The USED bit is protected by
3878 * the page lock, which serializes swap cache removal, which
3879 * in turn serializes uncharging.
3880 */
3881 if (PageCgroupUsed(pc))
3882 return 0;
3883 if (!do_swap_account)
3884 goto charge_cur_mm;
3885 memcg = try_get_mem_cgroup_from_page(page);
3886 if (!memcg)
3887 goto charge_cur_mm;
3888 *memcgp = memcg;
3889 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3890 css_put(&memcg->css);
3891 if (ret == -EINTR)
3892 ret = 0;
3893 return ret;
3894charge_cur_mm:
3895 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3896 if (ret == -EINTR)
3897 ret = 0;
3898 return ret;
3899}
3900
3901int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3902 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3903{
3904 *memcgp = NULL;
3905 if (mem_cgroup_disabled())
3906 return 0;
3907 /*
3908 * A racing thread's fault, or swapoff, may have already
3909 * updated the pte, and even removed page from swap cache: in
3910 * those cases unuse_pte()'s pte_same() test will fail; but
3911 * there's also a KSM case which does need to charge the page.
3912 */
3913 if (!PageSwapCache(page)) {
3914 int ret;
3915
3916 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3917 if (ret == -EINTR)
3918 ret = 0;
3919 return ret;
3920 }
3921 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3922}
3923
3924void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3925{
3926 if (mem_cgroup_disabled())
3927 return;
3928 if (!memcg)
3929 return;
3930 __mem_cgroup_cancel_charge(memcg, 1);
3931}
3932
3933static void
3934__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3935 enum charge_type ctype)
3936{
3937 if (mem_cgroup_disabled())
3938 return;
3939 if (!memcg)
3940 return;
3941
3942 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3943 /*
3944 * Now swap is on-memory. This means this page may be
3945 * counted both as mem and swap....double count.
3946 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3947 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3948 * may call delete_from_swap_cache() before reach here.
3949 */
3950 if (do_swap_account && PageSwapCache(page)) {
3951 swp_entry_t ent = {.val = page_private(page)};
3952 mem_cgroup_uncharge_swap(ent);
3953 }
3954}
3955
3956void mem_cgroup_commit_charge_swapin(struct page *page,
3957 struct mem_cgroup *memcg)
3958{
3959 __mem_cgroup_commit_charge_swapin(page, memcg,
3960 MEM_CGROUP_CHARGE_TYPE_ANON);
3961}
3962
3963int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
3964 gfp_t gfp_mask)
3965{
3966 struct mem_cgroup *memcg = NULL;
3967 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3968 int ret;
3969
3970 if (mem_cgroup_disabled())
3971 return 0;
3972 if (PageCompound(page))
3973 return 0;
3974
3975 if (!PageSwapCache(page))
3976 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
3977 else { /* page is swapcache/shmem */
3978 ret = __mem_cgroup_try_charge_swapin(mm, page,
3979 gfp_mask, &memcg);
3980 if (!ret)
3981 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3982 }
3983 return ret;
3984}
3985
3986static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3987 unsigned int nr_pages,
3988 const enum charge_type ctype)
3989{
3990 struct memcg_batch_info *batch = NULL;
3991 bool uncharge_memsw = true;
3992
3993 /* If swapout, usage of swap doesn't decrease */
3994 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3995 uncharge_memsw = false;
3996
3997 batch = &current->memcg_batch;
3998 /*
3999 * In usual, we do css_get() when we remember memcg pointer.
4000 * But in this case, we keep res->usage until end of a series of
4001 * uncharges. Then, it's ok to ignore memcg's refcnt.
4002 */
4003 if (!batch->memcg)
4004 batch->memcg = memcg;
4005 /*
4006 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4007 * In those cases, all pages freed continuously can be expected to be in
4008 * the same cgroup and we have chance to coalesce uncharges.
4009 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4010 * because we want to do uncharge as soon as possible.
4011 */
4012
4013 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4014 goto direct_uncharge;
4015
4016 if (nr_pages > 1)
4017 goto direct_uncharge;
4018
4019 /*
4020 * In typical case, batch->memcg == mem. This means we can
4021 * merge a series of uncharges to an uncharge of res_counter.
4022 * If not, we uncharge res_counter ony by one.
4023 */
4024 if (batch->memcg != memcg)
4025 goto direct_uncharge;
4026 /* remember freed charge and uncharge it later */
4027 batch->nr_pages++;
4028 if (uncharge_memsw)
4029 batch->memsw_nr_pages++;
4030 return;
4031direct_uncharge:
4032 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4033 if (uncharge_memsw)
4034 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4035 if (unlikely(batch->memcg != memcg))
4036 memcg_oom_recover(memcg);
4037}
4038
4039/*
4040 * uncharge if !page_mapped(page)
4041 */
4042static struct mem_cgroup *
4043__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4044 bool end_migration)
4045{
4046 struct mem_cgroup *memcg = NULL;
4047 unsigned int nr_pages = 1;
4048 struct page_cgroup *pc;
4049 bool anon;
4050
4051 if (mem_cgroup_disabled())
4052 return NULL;
4053
4054 if (PageTransHuge(page)) {
4055 nr_pages <<= compound_order(page);
4056 VM_BUG_ON(!PageTransHuge(page));
4057 }
4058 /*
4059 * Check if our page_cgroup is valid
4060 */
4061 pc = lookup_page_cgroup(page);
4062 if (unlikely(!PageCgroupUsed(pc)))
4063 return NULL;
4064
4065 lock_page_cgroup(pc);
4066
4067 memcg = pc->mem_cgroup;
4068
4069 if (!PageCgroupUsed(pc))
4070 goto unlock_out;
4071
4072 anon = PageAnon(page);
4073
4074 switch (ctype) {
4075 case MEM_CGROUP_CHARGE_TYPE_ANON:
4076 /*
4077 * Generally PageAnon tells if it's the anon statistics to be
4078 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4079 * used before page reached the stage of being marked PageAnon.
4080 */
4081 anon = true;
4082 /* fallthrough */
4083 case MEM_CGROUP_CHARGE_TYPE_DROP:
4084 /* See mem_cgroup_prepare_migration() */
4085 if (page_mapped(page))
4086 goto unlock_out;
4087 /*
4088 * Pages under migration may not be uncharged. But
4089 * end_migration() /must/ be the one uncharging the
4090 * unused post-migration page and so it has to call
4091 * here with the migration bit still set. See the
4092 * res_counter handling below.
4093 */
4094 if (!end_migration && PageCgroupMigration(pc))
4095 goto unlock_out;
4096 break;
4097 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4098 if (!PageAnon(page)) { /* Shared memory */
4099 if (page->mapping && !page_is_file_cache(page))
4100 goto unlock_out;
4101 } else if (page_mapped(page)) /* Anon */
4102 goto unlock_out;
4103 break;
4104 default:
4105 break;
4106 }
4107
4108 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4109
4110 ClearPageCgroupUsed(pc);
4111 /*
4112 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4113 * freed from LRU. This is safe because uncharged page is expected not
4114 * to be reused (freed soon). Exception is SwapCache, it's handled by
4115 * special functions.
4116 */
4117
4118 unlock_page_cgroup(pc);
4119 /*
4120 * even after unlock, we have memcg->res.usage here and this memcg
4121 * will never be freed, so it's safe to call css_get().
4122 */
4123 memcg_check_events(memcg, page);
4124 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4125 mem_cgroup_swap_statistics(memcg, true);
4126 css_get(&memcg->css);
4127 }
4128 /*
4129 * Migration does not charge the res_counter for the
4130 * replacement page, so leave it alone when phasing out the
4131 * page that is unused after the migration.
4132 */
4133 if (!end_migration && !mem_cgroup_is_root(memcg))
4134 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4135
4136 return memcg;
4137
4138unlock_out:
4139 unlock_page_cgroup(pc);
4140 return NULL;
4141}
4142
4143void mem_cgroup_uncharge_page(struct page *page)
4144{
4145 /* early check. */
4146 if (page_mapped(page))
4147 return;
4148 VM_BUG_ON(page->mapping && !PageAnon(page));
4149 /*
4150 * If the page is in swap cache, uncharge should be deferred
4151 * to the swap path, which also properly accounts swap usage
4152 * and handles memcg lifetime.
4153 *
4154 * Note that this check is not stable and reclaim may add the
4155 * page to swap cache at any time after this. However, if the
4156 * page is not in swap cache by the time page->mapcount hits
4157 * 0, there won't be any page table references to the swap
4158 * slot, and reclaim will free it and not actually write the
4159 * page to disk.
4160 */
4161 if (PageSwapCache(page))
4162 return;
4163 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4164}
4165
4166void mem_cgroup_uncharge_cache_page(struct page *page)
4167{
4168 VM_BUG_ON(page_mapped(page));
4169 VM_BUG_ON(page->mapping);
4170 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4171}
4172
4173/*
4174 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4175 * In that cases, pages are freed continuously and we can expect pages
4176 * are in the same memcg. All these calls itself limits the number of
4177 * pages freed at once, then uncharge_start/end() is called properly.
4178 * This may be called prural(2) times in a context,
4179 */
4180
4181void mem_cgroup_uncharge_start(void)
4182{
4183 current->memcg_batch.do_batch++;
4184 /* We can do nest. */
4185 if (current->memcg_batch.do_batch == 1) {
4186 current->memcg_batch.memcg = NULL;
4187 current->memcg_batch.nr_pages = 0;
4188 current->memcg_batch.memsw_nr_pages = 0;
4189 }
4190}
4191
4192void mem_cgroup_uncharge_end(void)
4193{
4194 struct memcg_batch_info *batch = &current->memcg_batch;
4195
4196 if (!batch->do_batch)
4197 return;
4198
4199 batch->do_batch--;
4200 if (batch->do_batch) /* If stacked, do nothing. */
4201 return;
4202
4203 if (!batch->memcg)
4204 return;
4205 /*
4206 * This "batch->memcg" is valid without any css_get/put etc...
4207 * bacause we hide charges behind us.
4208 */
4209 if (batch->nr_pages)
4210 res_counter_uncharge(&batch->memcg->res,
4211 batch->nr_pages * PAGE_SIZE);
4212 if (batch->memsw_nr_pages)
4213 res_counter_uncharge(&batch->memcg->memsw,
4214 batch->memsw_nr_pages * PAGE_SIZE);
4215 memcg_oom_recover(batch->memcg);
4216 /* forget this pointer (for sanity check) */
4217 batch->memcg = NULL;
4218}
4219
4220#ifdef CONFIG_SWAP
4221/*
4222 * called after __delete_from_swap_cache() and drop "page" account.
4223 * memcg information is recorded to swap_cgroup of "ent"
4224 */
4225void
4226mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4227{
4228 struct mem_cgroup *memcg;
4229 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4230
4231 if (!swapout) /* this was a swap cache but the swap is unused ! */
4232 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4233
4234 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4235
4236 /*
4237 * record memcg information, if swapout && memcg != NULL,
4238 * css_get() was called in uncharge().
4239 */
4240 if (do_swap_account && swapout && memcg)
4241 swap_cgroup_record(ent, css_id(&memcg->css));
4242}
4243#endif
4244
4245#ifdef CONFIG_MEMCG_SWAP
4246/*
4247 * called from swap_entry_free(). remove record in swap_cgroup and
4248 * uncharge "memsw" account.
4249 */
4250void mem_cgroup_uncharge_swap(swp_entry_t ent)
4251{
4252 struct mem_cgroup *memcg;
4253 unsigned short id;
4254
4255 if (!do_swap_account)
4256 return;
4257
4258 id = swap_cgroup_record(ent, 0);
4259 rcu_read_lock();
4260 memcg = mem_cgroup_lookup(id);
4261 if (memcg) {
4262 /*
4263 * We uncharge this because swap is freed.
4264 * This memcg can be obsolete one. We avoid calling css_tryget
4265 */
4266 if (!mem_cgroup_is_root(memcg))
4267 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4268 mem_cgroup_swap_statistics(memcg, false);
4269 css_put(&memcg->css);
4270 }
4271 rcu_read_unlock();
4272}
4273
4274/**
4275 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4276 * @entry: swap entry to be moved
4277 * @from: mem_cgroup which the entry is moved from
4278 * @to: mem_cgroup which the entry is moved to
4279 *
4280 * It succeeds only when the swap_cgroup's record for this entry is the same
4281 * as the mem_cgroup's id of @from.
4282 *
4283 * Returns 0 on success, -EINVAL on failure.
4284 *
4285 * The caller must have charged to @to, IOW, called res_counter_charge() about
4286 * both res and memsw, and called css_get().
4287 */
4288static int mem_cgroup_move_swap_account(swp_entry_t entry,
4289 struct mem_cgroup *from, struct mem_cgroup *to)
4290{
4291 unsigned short old_id, new_id;
4292
4293 old_id = css_id(&from->css);
4294 new_id = css_id(&to->css);
4295
4296 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4297 mem_cgroup_swap_statistics(from, false);
4298 mem_cgroup_swap_statistics(to, true);
4299 /*
4300 * This function is only called from task migration context now.
4301 * It postpones res_counter and refcount handling till the end
4302 * of task migration(mem_cgroup_clear_mc()) for performance
4303 * improvement. But we cannot postpone css_get(to) because if
4304 * the process that has been moved to @to does swap-in, the
4305 * refcount of @to might be decreased to 0.
4306 *
4307 * We are in attach() phase, so the cgroup is guaranteed to be
4308 * alive, so we can just call css_get().
4309 */
4310 css_get(&to->css);
4311 return 0;
4312 }
4313 return -EINVAL;
4314}
4315#else
4316static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4317 struct mem_cgroup *from, struct mem_cgroup *to)
4318{
4319 return -EINVAL;
4320}
4321#endif
4322
4323/*
4324 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4325 * page belongs to.
4326 */
4327void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4328 struct mem_cgroup **memcgp)
4329{
4330 struct mem_cgroup *memcg = NULL;
4331 unsigned int nr_pages = 1;
4332 struct page_cgroup *pc;
4333 enum charge_type ctype;
4334
4335 *memcgp = NULL;
4336
4337 if (mem_cgroup_disabled())
4338 return;
4339
4340 if (PageTransHuge(page))
4341 nr_pages <<= compound_order(page);
4342
4343 pc = lookup_page_cgroup(page);
4344 lock_page_cgroup(pc);
4345 if (PageCgroupUsed(pc)) {
4346 memcg = pc->mem_cgroup;
4347 css_get(&memcg->css);
4348 /*
4349 * At migrating an anonymous page, its mapcount goes down
4350 * to 0 and uncharge() will be called. But, even if it's fully
4351 * unmapped, migration may fail and this page has to be
4352 * charged again. We set MIGRATION flag here and delay uncharge
4353 * until end_migration() is called
4354 *
4355 * Corner Case Thinking
4356 * A)
4357 * When the old page was mapped as Anon and it's unmap-and-freed
4358 * while migration was ongoing.
4359 * If unmap finds the old page, uncharge() of it will be delayed
4360 * until end_migration(). If unmap finds a new page, it's
4361 * uncharged when it make mapcount to be 1->0. If unmap code
4362 * finds swap_migration_entry, the new page will not be mapped
4363 * and end_migration() will find it(mapcount==0).
4364 *
4365 * B)
4366 * When the old page was mapped but migraion fails, the kernel
4367 * remaps it. A charge for it is kept by MIGRATION flag even
4368 * if mapcount goes down to 0. We can do remap successfully
4369 * without charging it again.
4370 *
4371 * C)
4372 * The "old" page is under lock_page() until the end of
4373 * migration, so, the old page itself will not be swapped-out.
4374 * If the new page is swapped out before end_migraton, our
4375 * hook to usual swap-out path will catch the event.
4376 */
4377 if (PageAnon(page))
4378 SetPageCgroupMigration(pc);
4379 }
4380 unlock_page_cgroup(pc);
4381 /*
4382 * If the page is not charged at this point,
4383 * we return here.
4384 */
4385 if (!memcg)
4386 return;
4387
4388 *memcgp = memcg;
4389 /*
4390 * We charge new page before it's used/mapped. So, even if unlock_page()
4391 * is called before end_migration, we can catch all events on this new
4392 * page. In the case new page is migrated but not remapped, new page's
4393 * mapcount will be finally 0 and we call uncharge in end_migration().
4394 */
4395 if (PageAnon(page))
4396 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4397 else
4398 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4399 /*
4400 * The page is committed to the memcg, but it's not actually
4401 * charged to the res_counter since we plan on replacing the
4402 * old one and only one page is going to be left afterwards.
4403 */
4404 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4405}
4406
4407/* remove redundant charge if migration failed*/
4408void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4409 struct page *oldpage, struct page *newpage, bool migration_ok)
4410{
4411 struct page *used, *unused;
4412 struct page_cgroup *pc;
4413 bool anon;
4414
4415 if (!memcg)
4416 return;
4417
4418 if (!migration_ok) {
4419 used = oldpage;
4420 unused = newpage;
4421 } else {
4422 used = newpage;
4423 unused = oldpage;
4424 }
4425 anon = PageAnon(used);
4426 __mem_cgroup_uncharge_common(unused,
4427 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4428 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4429 true);
4430 css_put(&memcg->css);
4431 /*
4432 * We disallowed uncharge of pages under migration because mapcount
4433 * of the page goes down to zero, temporarly.
4434 * Clear the flag and check the page should be charged.
4435 */
4436 pc = lookup_page_cgroup(oldpage);
4437 lock_page_cgroup(pc);
4438 ClearPageCgroupMigration(pc);
4439 unlock_page_cgroup(pc);
4440
4441 /*
4442 * If a page is a file cache, radix-tree replacement is very atomic
4443 * and we can skip this check. When it was an Anon page, its mapcount
4444 * goes down to 0. But because we added MIGRATION flage, it's not
4445 * uncharged yet. There are several case but page->mapcount check
4446 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4447 * check. (see prepare_charge() also)
4448 */
4449 if (anon)
4450 mem_cgroup_uncharge_page(used);
4451}
4452
4453/*
4454 * At replace page cache, newpage is not under any memcg but it's on
4455 * LRU. So, this function doesn't touch res_counter but handles LRU
4456 * in correct way. Both pages are locked so we cannot race with uncharge.
4457 */
4458void mem_cgroup_replace_page_cache(struct page *oldpage,
4459 struct page *newpage)
4460{
4461 struct mem_cgroup *memcg = NULL;
4462 struct page_cgroup *pc;
4463 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4464
4465 if (mem_cgroup_disabled())
4466 return;
4467
4468 pc = lookup_page_cgroup(oldpage);
4469 /* fix accounting on old pages */
4470 lock_page_cgroup(pc);
4471 if (PageCgroupUsed(pc)) {
4472 memcg = pc->mem_cgroup;
4473 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4474 ClearPageCgroupUsed(pc);
4475 }
4476 unlock_page_cgroup(pc);
4477
4478 /*
4479 * When called from shmem_replace_page(), in some cases the
4480 * oldpage has already been charged, and in some cases not.
4481 */
4482 if (!memcg)
4483 return;
4484 /*
4485 * Even if newpage->mapping was NULL before starting replacement,
4486 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4487 * LRU while we overwrite pc->mem_cgroup.
4488 */
4489 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4490}
4491
4492#ifdef CONFIG_DEBUG_VM
4493static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4494{
4495 struct page_cgroup *pc;
4496
4497 pc = lookup_page_cgroup(page);
4498 /*
4499 * Can be NULL while feeding pages into the page allocator for
4500 * the first time, i.e. during boot or memory hotplug;
4501 * or when mem_cgroup_disabled().
4502 */
4503 if (likely(pc) && PageCgroupUsed(pc))
4504 return pc;
4505 return NULL;
4506}
4507
4508bool mem_cgroup_bad_page_check(struct page *page)
4509{
4510 if (mem_cgroup_disabled())
4511 return false;
4512
4513 return lookup_page_cgroup_used(page) != NULL;
4514}
4515
4516void mem_cgroup_print_bad_page(struct page *page)
4517{
4518 struct page_cgroup *pc;
4519
4520 pc = lookup_page_cgroup_used(page);
4521 if (pc) {
4522 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4523 pc, pc->flags, pc->mem_cgroup);
4524 }
4525}
4526#endif
4527
4528static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4529 unsigned long long val)
4530{
4531 int retry_count;
4532 u64 memswlimit, memlimit;
4533 int ret = 0;
4534 int children = mem_cgroup_count_children(memcg);
4535 u64 curusage, oldusage;
4536 int enlarge;
4537
4538 /*
4539 * For keeping hierarchical_reclaim simple, how long we should retry
4540 * is depends on callers. We set our retry-count to be function
4541 * of # of children which we should visit in this loop.
4542 */
4543 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4544
4545 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4546
4547 enlarge = 0;
4548 while (retry_count) {
4549 if (signal_pending(current)) {
4550 ret = -EINTR;
4551 break;
4552 }
4553 /*
4554 * Rather than hide all in some function, I do this in
4555 * open coded manner. You see what this really does.
4556 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4557 */
4558 mutex_lock(&set_limit_mutex);
4559 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4560 if (memswlimit < val) {
4561 ret = -EINVAL;
4562 mutex_unlock(&set_limit_mutex);
4563 break;
4564 }
4565
4566 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4567 if (memlimit < val)
4568 enlarge = 1;
4569
4570 ret = res_counter_set_limit(&memcg->res, val);
4571 if (!ret) {
4572 if (memswlimit == val)
4573 memcg->memsw_is_minimum = true;
4574 else
4575 memcg->memsw_is_minimum = false;
4576 }
4577 mutex_unlock(&set_limit_mutex);
4578
4579 if (!ret)
4580 break;
4581
4582 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4583 MEM_CGROUP_RECLAIM_SHRINK);
4584 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4585 /* Usage is reduced ? */
4586 if (curusage >= oldusage)
4587 retry_count--;
4588 else
4589 oldusage = curusage;
4590 }
4591 if (!ret && enlarge)
4592 memcg_oom_recover(memcg);
4593
4594 return ret;
4595}
4596
4597static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4598 unsigned long long val)
4599{
4600 int retry_count;
4601 u64 memlimit, memswlimit, oldusage, curusage;
4602 int children = mem_cgroup_count_children(memcg);
4603 int ret = -EBUSY;
4604 int enlarge = 0;
4605
4606 /* see mem_cgroup_resize_res_limit */
4607 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4608 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4609 while (retry_count) {
4610 if (signal_pending(current)) {
4611 ret = -EINTR;
4612 break;
4613 }
4614 /*
4615 * Rather than hide all in some function, I do this in
4616 * open coded manner. You see what this really does.
4617 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4618 */
4619 mutex_lock(&set_limit_mutex);
4620 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4621 if (memlimit > val) {
4622 ret = -EINVAL;
4623 mutex_unlock(&set_limit_mutex);
4624 break;
4625 }
4626 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4627 if (memswlimit < val)
4628 enlarge = 1;
4629 ret = res_counter_set_limit(&memcg->memsw, val);
4630 if (!ret) {
4631 if (memlimit == val)
4632 memcg->memsw_is_minimum = true;
4633 else
4634 memcg->memsw_is_minimum = false;
4635 }
4636 mutex_unlock(&set_limit_mutex);
4637
4638 if (!ret)
4639 break;
4640
4641 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4642 MEM_CGROUP_RECLAIM_NOSWAP |
4643 MEM_CGROUP_RECLAIM_SHRINK);
4644 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4645 /* Usage is reduced ? */
4646 if (curusage >= oldusage)
4647 retry_count--;
4648 else
4649 oldusage = curusage;
4650 }
4651 if (!ret && enlarge)
4652 memcg_oom_recover(memcg);
4653 return ret;
4654}
4655
4656/**
4657 * mem_cgroup_force_empty_list - clears LRU of a group
4658 * @memcg: group to clear
4659 * @node: NUMA node
4660 * @zid: zone id
4661 * @lru: lru to to clear
4662 *
4663 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4664 * reclaim the pages page themselves - pages are moved to the parent (or root)
4665 * group.
4666 */
4667static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4668 int node, int zid, enum lru_list lru)
4669{
4670 struct lruvec *lruvec;
4671 unsigned long flags;
4672 struct list_head *list;
4673 struct page *busy;
4674 struct zone *zone;
4675
4676 zone = &NODE_DATA(node)->node_zones[zid];
4677 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4678 list = &lruvec->lists[lru];
4679
4680 busy = NULL;
4681 do {
4682 struct page_cgroup *pc;
4683 struct page *page;
4684
4685 spin_lock_irqsave(&zone->lru_lock, flags);
4686 if (list_empty(list)) {
4687 spin_unlock_irqrestore(&zone->lru_lock, flags);
4688 break;
4689 }
4690 page = list_entry(list->prev, struct page, lru);
4691 if (busy == page) {
4692 list_move(&page->lru, list);
4693 busy = NULL;
4694 spin_unlock_irqrestore(&zone->lru_lock, flags);
4695 continue;
4696 }
4697 spin_unlock_irqrestore(&zone->lru_lock, flags);
4698
4699 pc = lookup_page_cgroup(page);
4700
4701 if (mem_cgroup_move_parent(page, pc, memcg)) {
4702 /* found lock contention or "pc" is obsolete. */
4703 busy = page;
4704 cond_resched();
4705 } else
4706 busy = NULL;
4707 } while (!list_empty(list));
4708}
4709
4710/*
4711 * make mem_cgroup's charge to be 0 if there is no task by moving
4712 * all the charges and pages to the parent.
4713 * This enables deleting this mem_cgroup.
4714 *
4715 * Caller is responsible for holding css reference on the memcg.
4716 */
4717static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4718{
4719 int node, zid;
4720 u64 usage;
4721
4722 do {
4723 /* This is for making all *used* pages to be on LRU. */
4724 lru_add_drain_all();
4725 drain_all_stock_sync(memcg);
4726 mem_cgroup_start_move(memcg);
4727 for_each_node_state(node, N_MEMORY) {
4728 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4729 enum lru_list lru;
4730 for_each_lru(lru) {
4731 mem_cgroup_force_empty_list(memcg,
4732 node, zid, lru);
4733 }
4734 }
4735 }
4736 mem_cgroup_end_move(memcg);
4737 memcg_oom_recover(memcg);
4738 cond_resched();
4739
4740 /*
4741 * Kernel memory may not necessarily be trackable to a specific
4742 * process. So they are not migrated, and therefore we can't
4743 * expect their value to drop to 0 here.
4744 * Having res filled up with kmem only is enough.
4745 *
4746 * This is a safety check because mem_cgroup_force_empty_list
4747 * could have raced with mem_cgroup_replace_page_cache callers
4748 * so the lru seemed empty but the page could have been added
4749 * right after the check. RES_USAGE should be safe as we always
4750 * charge before adding to the LRU.
4751 */
4752 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4753 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4754 } while (usage > 0);
4755}
4756
4757/*
4758 * This mainly exists for tests during the setting of set of use_hierarchy.
4759 * Since this is the very setting we are changing, the current hierarchy value
4760 * is meaningless
4761 */
4762static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4763{
4764 struct cgroup_subsys_state *pos;
4765
4766 /* bounce at first found */
4767 css_for_each_child(pos, &memcg->css)
4768 return true;
4769 return false;
4770}
4771
4772/*
4773 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4774 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
4775 * from mem_cgroup_count_children(), in the sense that we don't really care how
4776 * many children we have; we only need to know if we have any. It also counts
4777 * any memcg without hierarchy as infertile.
4778 */
4779static inline bool memcg_has_children(struct mem_cgroup *memcg)
4780{
4781 return memcg->use_hierarchy && __memcg_has_children(memcg);
4782}
4783
4784/*
4785 * Reclaims as many pages from the given memcg as possible and moves
4786 * the rest to the parent.
4787 *
4788 * Caller is responsible for holding css reference for memcg.
4789 */
4790static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4791{
4792 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4793 struct cgroup *cgrp = memcg->css.cgroup;
4794
4795 /* returns EBUSY if there is a task or if we come here twice. */
4796 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4797 return -EBUSY;
4798
4799 /* we call try-to-free pages for make this cgroup empty */
4800 lru_add_drain_all();
4801 /* try to free all pages in this cgroup */
4802 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4803 int progress;
4804
4805 if (signal_pending(current))
4806 return -EINTR;
4807
4808 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4809 false);
4810 if (!progress) {
4811 nr_retries--;
4812 /* maybe some writeback is necessary */
4813 congestion_wait(BLK_RW_ASYNC, HZ/10);
4814 }
4815
4816 }
4817 lru_add_drain();
4818 mem_cgroup_reparent_charges(memcg);
4819
4820 return 0;
4821}
4822
4823static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
4824 unsigned int event)
4825{
4826 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4827
4828 if (mem_cgroup_is_root(memcg))
4829 return -EINVAL;
4830 return mem_cgroup_force_empty(memcg);
4831}
4832
4833static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4834 struct cftype *cft)
4835{
4836 return mem_cgroup_from_css(css)->use_hierarchy;
4837}
4838
4839static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4840 struct cftype *cft, u64 val)
4841{
4842 int retval = 0;
4843 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4844 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4845
4846 mutex_lock(&memcg_create_mutex);
4847
4848 if (memcg->use_hierarchy == val)
4849 goto out;
4850
4851 /*
4852 * If parent's use_hierarchy is set, we can't make any modifications
4853 * in the child subtrees. If it is unset, then the change can
4854 * occur, provided the current cgroup has no children.
4855 *
4856 * For the root cgroup, parent_mem is NULL, we allow value to be
4857 * set if there are no children.
4858 */
4859 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4860 (val == 1 || val == 0)) {
4861 if (!__memcg_has_children(memcg))
4862 memcg->use_hierarchy = val;
4863 else
4864 retval = -EBUSY;
4865 } else
4866 retval = -EINVAL;
4867
4868out:
4869 mutex_unlock(&memcg_create_mutex);
4870
4871 return retval;
4872}
4873
4874
4875static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4876 enum mem_cgroup_stat_index idx)
4877{
4878 struct mem_cgroup *iter;
4879 long val = 0;
4880
4881 /* Per-cpu values can be negative, use a signed accumulator */
4882 for_each_mem_cgroup_tree(iter, memcg)
4883 val += mem_cgroup_read_stat(iter, idx);
4884
4885 if (val < 0) /* race ? */
4886 val = 0;
4887 return val;
4888}
4889
4890static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4891{
4892 u64 val;
4893
4894 if (!mem_cgroup_is_root(memcg)) {
4895 if (!swap)
4896 return res_counter_read_u64(&memcg->res, RES_USAGE);
4897 else
4898 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4899 }
4900
4901 /*
4902 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4903 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4904 */
4905 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4906 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4907
4908 if (swap)
4909 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4910
4911 return val << PAGE_SHIFT;
4912}
4913
4914static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
4915 struct cftype *cft, struct file *file,
4916 char __user *buf, size_t nbytes, loff_t *ppos)
4917{
4918 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4919 char str[64];
4920 u64 val;
4921 int name, len;
4922 enum res_type type;
4923
4924 type = MEMFILE_TYPE(cft->private);
4925 name = MEMFILE_ATTR(cft->private);
4926
4927 switch (type) {
4928 case _MEM:
4929 if (name == RES_USAGE)
4930 val = mem_cgroup_usage(memcg, false);
4931 else
4932 val = res_counter_read_u64(&memcg->res, name);
4933 break;
4934 case _MEMSWAP:
4935 if (name == RES_USAGE)
4936 val = mem_cgroup_usage(memcg, true);
4937 else
4938 val = res_counter_read_u64(&memcg->memsw, name);
4939 break;
4940 case _KMEM:
4941 val = res_counter_read_u64(&memcg->kmem, name);
4942 break;
4943 default:
4944 BUG();
4945 }
4946
4947 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
4948 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
4949}
4950
4951static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
4952{
4953 int ret = -EINVAL;
4954#ifdef CONFIG_MEMCG_KMEM
4955 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4956 /*
4957 * For simplicity, we won't allow this to be disabled. It also can't
4958 * be changed if the cgroup has children already, or if tasks had
4959 * already joined.
4960 *
4961 * If tasks join before we set the limit, a person looking at
4962 * kmem.usage_in_bytes will have no way to determine when it took
4963 * place, which makes the value quite meaningless.
4964 *
4965 * After it first became limited, changes in the value of the limit are
4966 * of course permitted.
4967 */
4968 mutex_lock(&memcg_create_mutex);
4969 mutex_lock(&set_limit_mutex);
4970 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
4971 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
4972 ret = -EBUSY;
4973 goto out;
4974 }
4975 ret = res_counter_set_limit(&memcg->kmem, val);
4976 VM_BUG_ON(ret);
4977
4978 ret = memcg_update_cache_sizes(memcg);
4979 if (ret) {
4980 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
4981 goto out;
4982 }
4983 static_key_slow_inc(&memcg_kmem_enabled_key);
4984 /*
4985 * setting the active bit after the inc will guarantee no one
4986 * starts accounting before all call sites are patched
4987 */
4988 memcg_kmem_set_active(memcg);
4989 } else
4990 ret = res_counter_set_limit(&memcg->kmem, val);
4991out:
4992 mutex_unlock(&set_limit_mutex);
4993 mutex_unlock(&memcg_create_mutex);
4994#endif
4995 return ret;
4996}
4997
4998#ifdef CONFIG_MEMCG_KMEM
4999static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5000{
5001 int ret = 0;
5002 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5003 if (!parent)
5004 goto out;
5005
5006 memcg->kmem_account_flags = parent->kmem_account_flags;
5007 /*
5008 * When that happen, we need to disable the static branch only on those
5009 * memcgs that enabled it. To achieve this, we would be forced to
5010 * complicate the code by keeping track of which memcgs were the ones
5011 * that actually enabled limits, and which ones got it from its
5012 * parents.
5013 *
5014 * It is a lot simpler just to do static_key_slow_inc() on every child
5015 * that is accounted.
5016 */
5017 if (!memcg_kmem_is_active(memcg))
5018 goto out;
5019
5020 /*
5021 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5022 * memcg is active already. If the later initialization fails then the
5023 * cgroup core triggers the cleanup so we do not have to do it here.
5024 */
5025 static_key_slow_inc(&memcg_kmem_enabled_key);
5026
5027 mutex_lock(&set_limit_mutex);
5028 memcg_stop_kmem_account();
5029 ret = memcg_update_cache_sizes(memcg);
5030 memcg_resume_kmem_account();
5031 mutex_unlock(&set_limit_mutex);
5032out:
5033 return ret;
5034}
5035#endif /* CONFIG_MEMCG_KMEM */
5036
5037/*
5038 * The user of this function is...
5039 * RES_LIMIT.
5040 */
5041static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5042 const char *buffer)
5043{
5044 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5045 enum res_type type;
5046 int name;
5047 unsigned long long val;
5048 int ret;
5049
5050 type = MEMFILE_TYPE(cft->private);
5051 name = MEMFILE_ATTR(cft->private);
5052
5053 switch (name) {
5054 case RES_LIMIT:
5055 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5056 ret = -EINVAL;
5057 break;
5058 }
5059 /* This function does all necessary parse...reuse it */
5060 ret = res_counter_memparse_write_strategy(buffer, &val);
5061 if (ret)
5062 break;
5063 if (type == _MEM)
5064 ret = mem_cgroup_resize_limit(memcg, val);
5065 else if (type == _MEMSWAP)
5066 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5067 else if (type == _KMEM)
5068 ret = memcg_update_kmem_limit(css, val);
5069 else
5070 return -EINVAL;
5071 break;
5072 case RES_SOFT_LIMIT:
5073 ret = res_counter_memparse_write_strategy(buffer, &val);
5074 if (ret)
5075 break;
5076 /*
5077 * For memsw, soft limits are hard to implement in terms
5078 * of semantics, for now, we support soft limits for
5079 * control without swap
5080 */
5081 if (type == _MEM)
5082 ret = res_counter_set_soft_limit(&memcg->res, val);
5083 else
5084 ret = -EINVAL;
5085 break;
5086 default:
5087 ret = -EINVAL; /* should be BUG() ? */
5088 break;
5089 }
5090 return ret;
5091}
5092
5093static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5094 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5095{
5096 unsigned long long min_limit, min_memsw_limit, tmp;
5097
5098 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5099 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5100 if (!memcg->use_hierarchy)
5101 goto out;
5102
5103 while (css_parent(&memcg->css)) {
5104 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5105 if (!memcg->use_hierarchy)
5106 break;
5107 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5108 min_limit = min(min_limit, tmp);
5109 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5110 min_memsw_limit = min(min_memsw_limit, tmp);
5111 }
5112out:
5113 *mem_limit = min_limit;
5114 *memsw_limit = min_memsw_limit;
5115}
5116
5117static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5118{
5119 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5120 int name;
5121 enum res_type type;
5122
5123 type = MEMFILE_TYPE(event);
5124 name = MEMFILE_ATTR(event);
5125
5126 switch (name) {
5127 case RES_MAX_USAGE:
5128 if (type == _MEM)
5129 res_counter_reset_max(&memcg->res);
5130 else if (type == _MEMSWAP)
5131 res_counter_reset_max(&memcg->memsw);
5132 else if (type == _KMEM)
5133 res_counter_reset_max(&memcg->kmem);
5134 else
5135 return -EINVAL;
5136 break;
5137 case RES_FAILCNT:
5138 if (type == _MEM)
5139 res_counter_reset_failcnt(&memcg->res);
5140 else if (type == _MEMSWAP)
5141 res_counter_reset_failcnt(&memcg->memsw);
5142 else if (type == _KMEM)
5143 res_counter_reset_failcnt(&memcg->kmem);
5144 else
5145 return -EINVAL;
5146 break;
5147 }
5148
5149 return 0;
5150}
5151
5152static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5153 struct cftype *cft)
5154{
5155 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5156}
5157
5158#ifdef CONFIG_MMU
5159static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5160 struct cftype *cft, u64 val)
5161{
5162 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5163
5164 if (val >= (1 << NR_MOVE_TYPE))
5165 return -EINVAL;
5166
5167 /*
5168 * No kind of locking is needed in here, because ->can_attach() will
5169 * check this value once in the beginning of the process, and then carry
5170 * on with stale data. This means that changes to this value will only
5171 * affect task migrations starting after the change.
5172 */
5173 memcg->move_charge_at_immigrate = val;
5174 return 0;
5175}
5176#else
5177static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5178 struct cftype *cft, u64 val)
5179{
5180 return -ENOSYS;
5181}
5182#endif
5183
5184#ifdef CONFIG_NUMA
5185static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5186 struct cftype *cft, struct seq_file *m)
5187{
5188 int nid;
5189 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5190 unsigned long node_nr;
5191 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5192
5193 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5194 seq_printf(m, "total=%lu", total_nr);
5195 for_each_node_state(nid, N_MEMORY) {
5196 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5197 seq_printf(m, " N%d=%lu", nid, node_nr);
5198 }
5199 seq_putc(m, '\n');
5200
5201 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5202 seq_printf(m, "file=%lu", file_nr);
5203 for_each_node_state(nid, N_MEMORY) {
5204 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5205 LRU_ALL_FILE);
5206 seq_printf(m, " N%d=%lu", nid, node_nr);
5207 }
5208 seq_putc(m, '\n');
5209
5210 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5211 seq_printf(m, "anon=%lu", anon_nr);
5212 for_each_node_state(nid, N_MEMORY) {
5213 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5214 LRU_ALL_ANON);
5215 seq_printf(m, " N%d=%lu", nid, node_nr);
5216 }
5217 seq_putc(m, '\n');
5218
5219 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5220 seq_printf(m, "unevictable=%lu", unevictable_nr);
5221 for_each_node_state(nid, N_MEMORY) {
5222 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5223 BIT(LRU_UNEVICTABLE));
5224 seq_printf(m, " N%d=%lu", nid, node_nr);
5225 }
5226 seq_putc(m, '\n');
5227 return 0;
5228}
5229#endif /* CONFIG_NUMA */
5230
5231static inline void mem_cgroup_lru_names_not_uptodate(void)
5232{
5233 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5234}
5235
5236static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5237 struct seq_file *m)
5238{
5239 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5240 struct mem_cgroup *mi;
5241 unsigned int i;
5242
5243 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5244 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5245 continue;
5246 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5247 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5248 }
5249
5250 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5251 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5252 mem_cgroup_read_events(memcg, i));
5253
5254 for (i = 0; i < NR_LRU_LISTS; i++)
5255 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5256 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5257
5258 /* Hierarchical information */
5259 {
5260 unsigned long long limit, memsw_limit;
5261 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5262 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5263 if (do_swap_account)
5264 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5265 memsw_limit);
5266 }
5267
5268 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5269 long long val = 0;
5270
5271 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5272 continue;
5273 for_each_mem_cgroup_tree(mi, memcg)
5274 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5275 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5276 }
5277
5278 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5279 unsigned long long val = 0;
5280
5281 for_each_mem_cgroup_tree(mi, memcg)
5282 val += mem_cgroup_read_events(mi, i);
5283 seq_printf(m, "total_%s %llu\n",
5284 mem_cgroup_events_names[i], val);
5285 }
5286
5287 for (i = 0; i < NR_LRU_LISTS; i++) {
5288 unsigned long long val = 0;
5289
5290 for_each_mem_cgroup_tree(mi, memcg)
5291 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5292 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5293 }
5294
5295#ifdef CONFIG_DEBUG_VM
5296 {
5297 int nid, zid;
5298 struct mem_cgroup_per_zone *mz;
5299 struct zone_reclaim_stat *rstat;
5300 unsigned long recent_rotated[2] = {0, 0};
5301 unsigned long recent_scanned[2] = {0, 0};
5302
5303 for_each_online_node(nid)
5304 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5305 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5306 rstat = &mz->lruvec.reclaim_stat;
5307
5308 recent_rotated[0] += rstat->recent_rotated[0];
5309 recent_rotated[1] += rstat->recent_rotated[1];
5310 recent_scanned[0] += rstat->recent_scanned[0];
5311 recent_scanned[1] += rstat->recent_scanned[1];
5312 }
5313 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5314 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5315 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5316 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5317 }
5318#endif
5319
5320 return 0;
5321}
5322
5323static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5324 struct cftype *cft)
5325{
5326 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5327
5328 return mem_cgroup_swappiness(memcg);
5329}
5330
5331static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5332 struct cftype *cft, u64 val)
5333{
5334 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5335 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5336
5337 if (val > 100 || !parent)
5338 return -EINVAL;
5339
5340 mutex_lock(&memcg_create_mutex);
5341
5342 /* If under hierarchy, only empty-root can set this value */
5343 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5344 mutex_unlock(&memcg_create_mutex);
5345 return -EINVAL;
5346 }
5347
5348 memcg->swappiness = val;
5349
5350 mutex_unlock(&memcg_create_mutex);
5351
5352 return 0;
5353}
5354
5355static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5356{
5357 struct mem_cgroup_threshold_ary *t;
5358 u64 usage;
5359 int i;
5360
5361 rcu_read_lock();
5362 if (!swap)
5363 t = rcu_dereference(memcg->thresholds.primary);
5364 else
5365 t = rcu_dereference(memcg->memsw_thresholds.primary);
5366
5367 if (!t)
5368 goto unlock;
5369
5370 usage = mem_cgroup_usage(memcg, swap);
5371
5372 /*
5373 * current_threshold points to threshold just below or equal to usage.
5374 * If it's not true, a threshold was crossed after last
5375 * call of __mem_cgroup_threshold().
5376 */
5377 i = t->current_threshold;
5378
5379 /*
5380 * Iterate backward over array of thresholds starting from
5381 * current_threshold and check if a threshold is crossed.
5382 * If none of thresholds below usage is crossed, we read
5383 * only one element of the array here.
5384 */
5385 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5386 eventfd_signal(t->entries[i].eventfd, 1);
5387
5388 /* i = current_threshold + 1 */
5389 i++;
5390
5391 /*
5392 * Iterate forward over array of thresholds starting from
5393 * current_threshold+1 and check if a threshold is crossed.
5394 * If none of thresholds above usage is crossed, we read
5395 * only one element of the array here.
5396 */
5397 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5398 eventfd_signal(t->entries[i].eventfd, 1);
5399
5400 /* Update current_threshold */
5401 t->current_threshold = i - 1;
5402unlock:
5403 rcu_read_unlock();
5404}
5405
5406static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5407{
5408 while (memcg) {
5409 __mem_cgroup_threshold(memcg, false);
5410 if (do_swap_account)
5411 __mem_cgroup_threshold(memcg, true);
5412
5413 memcg = parent_mem_cgroup(memcg);
5414 }
5415}
5416
5417static int compare_thresholds(const void *a, const void *b)
5418{
5419 const struct mem_cgroup_threshold *_a = a;
5420 const struct mem_cgroup_threshold *_b = b;
5421
5422 if (_a->threshold > _b->threshold)
5423 return 1;
5424
5425 if (_a->threshold < _b->threshold)
5426 return -1;
5427
5428 return 0;
5429}
5430
5431static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5432{
5433 struct mem_cgroup_eventfd_list *ev;
5434
5435 list_for_each_entry(ev, &memcg->oom_notify, list)
5436 eventfd_signal(ev->eventfd, 1);
5437 return 0;
5438}
5439
5440static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5441{
5442 struct mem_cgroup *iter;
5443
5444 for_each_mem_cgroup_tree(iter, memcg)
5445 mem_cgroup_oom_notify_cb(iter);
5446}
5447
5448static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
5449 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5450{
5451 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5452 struct mem_cgroup_thresholds *thresholds;
5453 struct mem_cgroup_threshold_ary *new;
5454 enum res_type type = MEMFILE_TYPE(cft->private);
5455 u64 threshold, usage;
5456 int i, size, ret;
5457
5458 ret = res_counter_memparse_write_strategy(args, &threshold);
5459 if (ret)
5460 return ret;
5461
5462 mutex_lock(&memcg->thresholds_lock);
5463
5464 if (type == _MEM)
5465 thresholds = &memcg->thresholds;
5466 else if (type == _MEMSWAP)
5467 thresholds = &memcg->memsw_thresholds;
5468 else
5469 BUG();
5470
5471 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5472
5473 /* Check if a threshold crossed before adding a new one */
5474 if (thresholds->primary)
5475 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5476
5477 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5478
5479 /* Allocate memory for new array of thresholds */
5480 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5481 GFP_KERNEL);
5482 if (!new) {
5483 ret = -ENOMEM;
5484 goto unlock;
5485 }
5486 new->size = size;
5487
5488 /* Copy thresholds (if any) to new array */
5489 if (thresholds->primary) {
5490 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5491 sizeof(struct mem_cgroup_threshold));
5492 }
5493
5494 /* Add new threshold */
5495 new->entries[size - 1].eventfd = eventfd;
5496 new->entries[size - 1].threshold = threshold;
5497
5498 /* Sort thresholds. Registering of new threshold isn't time-critical */
5499 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5500 compare_thresholds, NULL);
5501
5502 /* Find current threshold */
5503 new->current_threshold = -1;
5504 for (i = 0; i < size; i++) {
5505 if (new->entries[i].threshold <= usage) {
5506 /*
5507 * new->current_threshold will not be used until
5508 * rcu_assign_pointer(), so it's safe to increment
5509 * it here.
5510 */
5511 ++new->current_threshold;
5512 } else
5513 break;
5514 }
5515
5516 /* Free old spare buffer and save old primary buffer as spare */
5517 kfree(thresholds->spare);
5518 thresholds->spare = thresholds->primary;
5519
5520 rcu_assign_pointer(thresholds->primary, new);
5521
5522 /* To be sure that nobody uses thresholds */
5523 synchronize_rcu();
5524
5525unlock:
5526 mutex_unlock(&memcg->thresholds_lock);
5527
5528 return ret;
5529}
5530
5531static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
5532 struct cftype *cft, struct eventfd_ctx *eventfd)
5533{
5534 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5535 struct mem_cgroup_thresholds *thresholds;
5536 struct mem_cgroup_threshold_ary *new;
5537 enum res_type type = MEMFILE_TYPE(cft->private);
5538 u64 usage;
5539 int i, j, size;
5540
5541 mutex_lock(&memcg->thresholds_lock);
5542 if (type == _MEM)
5543 thresholds = &memcg->thresholds;
5544 else if (type == _MEMSWAP)
5545 thresholds = &memcg->memsw_thresholds;
5546 else
5547 BUG();
5548
5549 if (!thresholds->primary)
5550 goto unlock;
5551
5552 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5553
5554 /* Check if a threshold crossed before removing */
5555 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5556
5557 /* Calculate new number of threshold */
5558 size = 0;
5559 for (i = 0; i < thresholds->primary->size; i++) {
5560 if (thresholds->primary->entries[i].eventfd != eventfd)
5561 size++;
5562 }
5563
5564 new = thresholds->spare;
5565
5566 /* Set thresholds array to NULL if we don't have thresholds */
5567 if (!size) {
5568 kfree(new);
5569 new = NULL;
5570 goto swap_buffers;
5571 }
5572
5573 new->size = size;
5574
5575 /* Copy thresholds and find current threshold */
5576 new->current_threshold = -1;
5577 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5578 if (thresholds->primary->entries[i].eventfd == eventfd)
5579 continue;
5580
5581 new->entries[j] = thresholds->primary->entries[i];
5582 if (new->entries[j].threshold <= usage) {
5583 /*
5584 * new->current_threshold will not be used
5585 * until rcu_assign_pointer(), so it's safe to increment
5586 * it here.
5587 */
5588 ++new->current_threshold;
5589 }
5590 j++;
5591 }
5592
5593swap_buffers:
5594 /* Swap primary and spare array */
5595 thresholds->spare = thresholds->primary;
5596 /* If all events are unregistered, free the spare array */
5597 if (!new) {
5598 kfree(thresholds->spare);
5599 thresholds->spare = NULL;
5600 }
5601
5602 rcu_assign_pointer(thresholds->primary, new);
5603
5604 /* To be sure that nobody uses thresholds */
5605 synchronize_rcu();
5606unlock:
5607 mutex_unlock(&memcg->thresholds_lock);
5608}
5609
5610static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
5611 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5612{
5613 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5614 struct mem_cgroup_eventfd_list *event;
5615 enum res_type type = MEMFILE_TYPE(cft->private);
5616
5617 BUG_ON(type != _OOM_TYPE);
5618 event = kmalloc(sizeof(*event), GFP_KERNEL);
5619 if (!event)
5620 return -ENOMEM;
5621
5622 spin_lock(&memcg_oom_lock);
5623
5624 event->eventfd = eventfd;
5625 list_add(&event->list, &memcg->oom_notify);
5626
5627 /* already in OOM ? */
5628 if (atomic_read(&memcg->under_oom))
5629 eventfd_signal(eventfd, 1);
5630 spin_unlock(&memcg_oom_lock);
5631
5632 return 0;
5633}
5634
5635static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
5636 struct cftype *cft, struct eventfd_ctx *eventfd)
5637{
5638 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5639 struct mem_cgroup_eventfd_list *ev, *tmp;
5640 enum res_type type = MEMFILE_TYPE(cft->private);
5641
5642 BUG_ON(type != _OOM_TYPE);
5643
5644 spin_lock(&memcg_oom_lock);
5645
5646 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5647 if (ev->eventfd == eventfd) {
5648 list_del(&ev->list);
5649 kfree(ev);
5650 }
5651 }
5652
5653 spin_unlock(&memcg_oom_lock);
5654}
5655
5656static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5657 struct cftype *cft, struct cgroup_map_cb *cb)
5658{
5659 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5660
5661 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5662
5663 if (atomic_read(&memcg->under_oom))
5664 cb->fill(cb, "under_oom", 1);
5665 else
5666 cb->fill(cb, "under_oom", 0);
5667 return 0;
5668}
5669
5670static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5671 struct cftype *cft, u64 val)
5672{
5673 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5674 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5675
5676 /* cannot set to root cgroup and only 0 and 1 are allowed */
5677 if (!parent || !((val == 0) || (val == 1)))
5678 return -EINVAL;
5679
5680 mutex_lock(&memcg_create_mutex);
5681 /* oom-kill-disable is a flag for subhierarchy. */
5682 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5683 mutex_unlock(&memcg_create_mutex);
5684 return -EINVAL;
5685 }
5686 memcg->oom_kill_disable = val;
5687 if (!val)
5688 memcg_oom_recover(memcg);
5689 mutex_unlock(&memcg_create_mutex);
5690 return 0;
5691}
5692
5693#ifdef CONFIG_MEMCG_KMEM
5694static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5695{
5696 int ret;
5697
5698 memcg->kmemcg_id = -1;
5699 ret = memcg_propagate_kmem(memcg);
5700 if (ret)
5701 return ret;
5702
5703 return mem_cgroup_sockets_init(memcg, ss);
5704}
5705
5706static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5707{
5708 mem_cgroup_sockets_destroy(memcg);
5709}
5710
5711static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5712{
5713 if (!memcg_kmem_is_active(memcg))
5714 return;
5715
5716 /*
5717 * kmem charges can outlive the cgroup. In the case of slab
5718 * pages, for instance, a page contain objects from various
5719 * processes. As we prevent from taking a reference for every
5720 * such allocation we have to be careful when doing uncharge
5721 * (see memcg_uncharge_kmem) and here during offlining.
5722 *
5723 * The idea is that that only the _last_ uncharge which sees
5724 * the dead memcg will drop the last reference. An additional
5725 * reference is taken here before the group is marked dead
5726 * which is then paired with css_put during uncharge resp. here.
5727 *
5728 * Although this might sound strange as this path is called from
5729 * css_offline() when the referencemight have dropped down to 0
5730 * and shouldn't be incremented anymore (css_tryget would fail)
5731 * we do not have other options because of the kmem allocations
5732 * lifetime.
5733 */
5734 css_get(&memcg->css);
5735
5736 memcg_kmem_mark_dead(memcg);
5737
5738 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5739 return;
5740
5741 if (memcg_kmem_test_and_clear_dead(memcg))
5742 css_put(&memcg->css);
5743}
5744#else
5745static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5746{
5747 return 0;
5748}
5749
5750static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5751{
5752}
5753
5754static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5755{
5756}
5757#endif
5758
5759static struct cftype mem_cgroup_files[] = {
5760 {
5761 .name = "usage_in_bytes",
5762 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5763 .read = mem_cgroup_read,
5764 .register_event = mem_cgroup_usage_register_event,
5765 .unregister_event = mem_cgroup_usage_unregister_event,
5766 },
5767 {
5768 .name = "max_usage_in_bytes",
5769 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5770 .trigger = mem_cgroup_reset,
5771 .read = mem_cgroup_read,
5772 },
5773 {
5774 .name = "limit_in_bytes",
5775 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5776 .write_string = mem_cgroup_write,
5777 .read = mem_cgroup_read,
5778 },
5779 {
5780 .name = "soft_limit_in_bytes",
5781 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5782 .write_string = mem_cgroup_write,
5783 .read = mem_cgroup_read,
5784 },
5785 {
5786 .name = "failcnt",
5787 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5788 .trigger = mem_cgroup_reset,
5789 .read = mem_cgroup_read,
5790 },
5791 {
5792 .name = "stat",
5793 .read_seq_string = memcg_stat_show,
5794 },
5795 {
5796 .name = "force_empty",
5797 .trigger = mem_cgroup_force_empty_write,
5798 },
5799 {
5800 .name = "use_hierarchy",
5801 .flags = CFTYPE_INSANE,
5802 .write_u64 = mem_cgroup_hierarchy_write,
5803 .read_u64 = mem_cgroup_hierarchy_read,
5804 },
5805 {
5806 .name = "swappiness",
5807 .read_u64 = mem_cgroup_swappiness_read,
5808 .write_u64 = mem_cgroup_swappiness_write,
5809 },
5810 {
5811 .name = "move_charge_at_immigrate",
5812 .read_u64 = mem_cgroup_move_charge_read,
5813 .write_u64 = mem_cgroup_move_charge_write,
5814 },
5815 {
5816 .name = "oom_control",
5817 .read_map = mem_cgroup_oom_control_read,
5818 .write_u64 = mem_cgroup_oom_control_write,
5819 .register_event = mem_cgroup_oom_register_event,
5820 .unregister_event = mem_cgroup_oom_unregister_event,
5821 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5822 },
5823 {
5824 .name = "pressure_level",
5825 .register_event = vmpressure_register_event,
5826 .unregister_event = vmpressure_unregister_event,
5827 },
5828#ifdef CONFIG_NUMA
5829 {
5830 .name = "numa_stat",
5831 .read_seq_string = memcg_numa_stat_show,
5832 },
5833#endif
5834#ifdef CONFIG_MEMCG_KMEM
5835 {
5836 .name = "kmem.limit_in_bytes",
5837 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5838 .write_string = mem_cgroup_write,
5839 .read = mem_cgroup_read,
5840 },
5841 {
5842 .name = "kmem.usage_in_bytes",
5843 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5844 .read = mem_cgroup_read,
5845 },
5846 {
5847 .name = "kmem.failcnt",
5848 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5849 .trigger = mem_cgroup_reset,
5850 .read = mem_cgroup_read,
5851 },
5852 {
5853 .name = "kmem.max_usage_in_bytes",
5854 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5855 .trigger = mem_cgroup_reset,
5856 .read = mem_cgroup_read,
5857 },
5858#ifdef CONFIG_SLABINFO
5859 {
5860 .name = "kmem.slabinfo",
5861 .read_seq_string = mem_cgroup_slabinfo_read,
5862 },
5863#endif
5864#endif
5865 { }, /* terminate */
5866};
5867
5868#ifdef CONFIG_MEMCG_SWAP
5869static struct cftype memsw_cgroup_files[] = {
5870 {
5871 .name = "memsw.usage_in_bytes",
5872 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5873 .read = mem_cgroup_read,
5874 .register_event = mem_cgroup_usage_register_event,
5875 .unregister_event = mem_cgroup_usage_unregister_event,
5876 },
5877 {
5878 .name = "memsw.max_usage_in_bytes",
5879 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5880 .trigger = mem_cgroup_reset,
5881 .read = mem_cgroup_read,
5882 },
5883 {
5884 .name = "memsw.limit_in_bytes",
5885 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5886 .write_string = mem_cgroup_write,
5887 .read = mem_cgroup_read,
5888 },
5889 {
5890 .name = "memsw.failcnt",
5891 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5892 .trigger = mem_cgroup_reset,
5893 .read = mem_cgroup_read,
5894 },
5895 { }, /* terminate */
5896};
5897#endif
5898static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5899{
5900 struct mem_cgroup_per_node *pn;
5901 struct mem_cgroup_per_zone *mz;
5902 int zone, tmp = node;
5903 /*
5904 * This routine is called against possible nodes.
5905 * But it's BUG to call kmalloc() against offline node.
5906 *
5907 * TODO: this routine can waste much memory for nodes which will
5908 * never be onlined. It's better to use memory hotplug callback
5909 * function.
5910 */
5911 if (!node_state(node, N_NORMAL_MEMORY))
5912 tmp = -1;
5913 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5914 if (!pn)
5915 return 1;
5916
5917 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5918 mz = &pn->zoneinfo[zone];
5919 lruvec_init(&mz->lruvec);
5920 mz->memcg = memcg;
5921 }
5922 memcg->nodeinfo[node] = pn;
5923 return 0;
5924}
5925
5926static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5927{
5928 kfree(memcg->nodeinfo[node]);
5929}
5930
5931static struct mem_cgroup *mem_cgroup_alloc(void)
5932{
5933 struct mem_cgroup *memcg;
5934 size_t size = memcg_size();
5935
5936 /* Can be very big if nr_node_ids is very big */
5937 if (size < PAGE_SIZE)
5938 memcg = kzalloc(size, GFP_KERNEL);
5939 else
5940 memcg = vzalloc(size);
5941
5942 if (!memcg)
5943 return NULL;
5944
5945 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5946 if (!memcg->stat)
5947 goto out_free;
5948 spin_lock_init(&memcg->pcp_counter_lock);
5949 return memcg;
5950
5951out_free:
5952 if (size < PAGE_SIZE)
5953 kfree(memcg);
5954 else
5955 vfree(memcg);
5956 return NULL;
5957}
5958
5959/*
5960 * At destroying mem_cgroup, references from swap_cgroup can remain.
5961 * (scanning all at force_empty is too costly...)
5962 *
5963 * Instead of clearing all references at force_empty, we remember
5964 * the number of reference from swap_cgroup and free mem_cgroup when
5965 * it goes down to 0.
5966 *
5967 * Removal of cgroup itself succeeds regardless of refs from swap.
5968 */
5969
5970static void __mem_cgroup_free(struct mem_cgroup *memcg)
5971{
5972 int node;
5973 size_t size = memcg_size();
5974
5975 free_css_id(&mem_cgroup_subsys, &memcg->css);
5976
5977 for_each_node(node)
5978 free_mem_cgroup_per_zone_info(memcg, node);
5979
5980 free_percpu(memcg->stat);
5981
5982 /*
5983 * We need to make sure that (at least for now), the jump label
5984 * destruction code runs outside of the cgroup lock. This is because
5985 * get_online_cpus(), which is called from the static_branch update,
5986 * can't be called inside the cgroup_lock. cpusets are the ones
5987 * enforcing this dependency, so if they ever change, we might as well.
5988 *
5989 * schedule_work() will guarantee this happens. Be careful if you need
5990 * to move this code around, and make sure it is outside
5991 * the cgroup_lock.
5992 */
5993 disarm_static_keys(memcg);
5994 if (size < PAGE_SIZE)
5995 kfree(memcg);
5996 else
5997 vfree(memcg);
5998}
5999
6000/*
6001 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6002 */
6003struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6004{
6005 if (!memcg->res.parent)
6006 return NULL;
6007 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6008}
6009EXPORT_SYMBOL(parent_mem_cgroup);
6010
6011static struct cgroup_subsys_state * __ref
6012mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6013{
6014 struct mem_cgroup *memcg;
6015 long error = -ENOMEM;
6016 int node;
6017
6018 memcg = mem_cgroup_alloc();
6019 if (!memcg)
6020 return ERR_PTR(error);
6021
6022 for_each_node(node)
6023 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6024 goto free_out;
6025
6026 /* root ? */
6027 if (parent_css == NULL) {
6028 root_mem_cgroup = memcg;
6029 res_counter_init(&memcg->res, NULL);
6030 res_counter_init(&memcg->memsw, NULL);
6031 res_counter_init(&memcg->kmem, NULL);
6032 }
6033
6034 memcg->last_scanned_node = MAX_NUMNODES;
6035 INIT_LIST_HEAD(&memcg->oom_notify);
6036 memcg->move_charge_at_immigrate = 0;
6037 mutex_init(&memcg->thresholds_lock);
6038 spin_lock_init(&memcg->move_lock);
6039 vmpressure_init(&memcg->vmpressure);
6040 spin_lock_init(&memcg->soft_lock);
6041
6042 return &memcg->css;
6043
6044free_out:
6045 __mem_cgroup_free(memcg);
6046 return ERR_PTR(error);
6047}
6048
6049static int
6050mem_cgroup_css_online(struct cgroup_subsys_state *css)
6051{
6052 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6053 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6054 int error = 0;
6055
6056 if (!parent)
6057 return 0;
6058
6059 mutex_lock(&memcg_create_mutex);
6060
6061 memcg->use_hierarchy = parent->use_hierarchy;
6062 memcg->oom_kill_disable = parent->oom_kill_disable;
6063 memcg->swappiness = mem_cgroup_swappiness(parent);
6064
6065 if (parent->use_hierarchy) {
6066 res_counter_init(&memcg->res, &parent->res);
6067 res_counter_init(&memcg->memsw, &parent->memsw);
6068 res_counter_init(&memcg->kmem, &parent->kmem);
6069
6070 /*
6071 * No need to take a reference to the parent because cgroup
6072 * core guarantees its existence.
6073 */
6074 } else {
6075 res_counter_init(&memcg->res, NULL);
6076 res_counter_init(&memcg->memsw, NULL);
6077 res_counter_init(&memcg->kmem, NULL);
6078 /*
6079 * Deeper hierachy with use_hierarchy == false doesn't make
6080 * much sense so let cgroup subsystem know about this
6081 * unfortunate state in our controller.
6082 */
6083 if (parent != root_mem_cgroup)
6084 mem_cgroup_subsys.broken_hierarchy = true;
6085 }
6086
6087 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6088 mutex_unlock(&memcg_create_mutex);
6089 return error;
6090}
6091
6092/*
6093 * Announce all parents that a group from their hierarchy is gone.
6094 */
6095static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6096{
6097 struct mem_cgroup *parent = memcg;
6098
6099 while ((parent = parent_mem_cgroup(parent)))
6100 mem_cgroup_iter_invalidate(parent);
6101
6102 /*
6103 * if the root memcg is not hierarchical we have to check it
6104 * explicitely.
6105 */
6106 if (!root_mem_cgroup->use_hierarchy)
6107 mem_cgroup_iter_invalidate(root_mem_cgroup);
6108}
6109
6110static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6111{
6112 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6113
6114 kmem_cgroup_css_offline(memcg);
6115
6116 mem_cgroup_invalidate_reclaim_iterators(memcg);
6117 mem_cgroup_reparent_charges(memcg);
6118 if (memcg->soft_contributed) {
6119 while ((memcg = parent_mem_cgroup(memcg)))
6120 atomic_dec(&memcg->children_in_excess);
6121
6122 if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy)
6123 atomic_dec(&root_mem_cgroup->children_in_excess);
6124 }
6125 mem_cgroup_destroy_all_caches(memcg);
6126 vmpressure_cleanup(&memcg->vmpressure);
6127}
6128
6129static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6130{
6131 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6132
6133 memcg_destroy_kmem(memcg);
6134 __mem_cgroup_free(memcg);
6135}
6136
6137#ifdef CONFIG_MMU
6138/* Handlers for move charge at task migration. */
6139#define PRECHARGE_COUNT_AT_ONCE 256
6140static int mem_cgroup_do_precharge(unsigned long count)
6141{
6142 int ret = 0;
6143 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6144 struct mem_cgroup *memcg = mc.to;
6145
6146 if (mem_cgroup_is_root(memcg)) {
6147 mc.precharge += count;
6148 /* we don't need css_get for root */
6149 return ret;
6150 }
6151 /* try to charge at once */
6152 if (count > 1) {
6153 struct res_counter *dummy;
6154 /*
6155 * "memcg" cannot be under rmdir() because we've already checked
6156 * by cgroup_lock_live_cgroup() that it is not removed and we
6157 * are still under the same cgroup_mutex. So we can postpone
6158 * css_get().
6159 */
6160 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6161 goto one_by_one;
6162 if (do_swap_account && res_counter_charge(&memcg->memsw,
6163 PAGE_SIZE * count, &dummy)) {
6164 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6165 goto one_by_one;
6166 }
6167 mc.precharge += count;
6168 return ret;
6169 }
6170one_by_one:
6171 /* fall back to one by one charge */
6172 while (count--) {
6173 if (signal_pending(current)) {
6174 ret = -EINTR;
6175 break;
6176 }
6177 if (!batch_count--) {
6178 batch_count = PRECHARGE_COUNT_AT_ONCE;
6179 cond_resched();
6180 }
6181 ret = __mem_cgroup_try_charge(NULL,
6182 GFP_KERNEL, 1, &memcg, false);
6183 if (ret)
6184 /* mem_cgroup_clear_mc() will do uncharge later */
6185 return ret;
6186 mc.precharge++;
6187 }
6188 return ret;
6189}
6190
6191/**
6192 * get_mctgt_type - get target type of moving charge
6193 * @vma: the vma the pte to be checked belongs
6194 * @addr: the address corresponding to the pte to be checked
6195 * @ptent: the pte to be checked
6196 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6197 *
6198 * Returns
6199 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6200 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6201 * move charge. if @target is not NULL, the page is stored in target->page
6202 * with extra refcnt got(Callers should handle it).
6203 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6204 * target for charge migration. if @target is not NULL, the entry is stored
6205 * in target->ent.
6206 *
6207 * Called with pte lock held.
6208 */
6209union mc_target {
6210 struct page *page;
6211 swp_entry_t ent;
6212};
6213
6214enum mc_target_type {
6215 MC_TARGET_NONE = 0,
6216 MC_TARGET_PAGE,
6217 MC_TARGET_SWAP,
6218};
6219
6220static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6221 unsigned long addr, pte_t ptent)
6222{
6223 struct page *page = vm_normal_page(vma, addr, ptent);
6224
6225 if (!page || !page_mapped(page))
6226 return NULL;
6227 if (PageAnon(page)) {
6228 /* we don't move shared anon */
6229 if (!move_anon())
6230 return NULL;
6231 } else if (!move_file())
6232 /* we ignore mapcount for file pages */
6233 return NULL;
6234 if (!get_page_unless_zero(page))
6235 return NULL;
6236
6237 return page;
6238}
6239
6240#ifdef CONFIG_SWAP
6241static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6242 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6243{
6244 struct page *page = NULL;
6245 swp_entry_t ent = pte_to_swp_entry(ptent);
6246
6247 if (!move_anon() || non_swap_entry(ent))
6248 return NULL;
6249 /*
6250 * Because lookup_swap_cache() updates some statistics counter,
6251 * we call find_get_page() with swapper_space directly.
6252 */
6253 page = find_get_page(swap_address_space(ent), ent.val);
6254 if (do_swap_account)
6255 entry->val = ent.val;
6256
6257 return page;
6258}
6259#else
6260static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6261 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6262{
6263 return NULL;
6264}
6265#endif
6266
6267static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6268 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6269{
6270 struct page *page = NULL;
6271 struct address_space *mapping;
6272 pgoff_t pgoff;
6273
6274 if (!vma->vm_file) /* anonymous vma */
6275 return NULL;
6276 if (!move_file())
6277 return NULL;
6278
6279 mapping = vma->vm_file->f_mapping;
6280 if (pte_none(ptent))
6281 pgoff = linear_page_index(vma, addr);
6282 else /* pte_file(ptent) is true */
6283 pgoff = pte_to_pgoff(ptent);
6284
6285 /* page is moved even if it's not RSS of this task(page-faulted). */
6286 page = find_get_page(mapping, pgoff);
6287
6288#ifdef CONFIG_SWAP
6289 /* shmem/tmpfs may report page out on swap: account for that too. */
6290 if (radix_tree_exceptional_entry(page)) {
6291 swp_entry_t swap = radix_to_swp_entry(page);
6292 if (do_swap_account)
6293 *entry = swap;
6294 page = find_get_page(swap_address_space(swap), swap.val);
6295 }
6296#endif
6297 return page;
6298}
6299
6300static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6301 unsigned long addr, pte_t ptent, union mc_target *target)
6302{
6303 struct page *page = NULL;
6304 struct page_cgroup *pc;
6305 enum mc_target_type ret = MC_TARGET_NONE;
6306 swp_entry_t ent = { .val = 0 };
6307
6308 if (pte_present(ptent))
6309 page = mc_handle_present_pte(vma, addr, ptent);
6310 else if (is_swap_pte(ptent))
6311 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6312 else if (pte_none(ptent) || pte_file(ptent))
6313 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6314
6315 if (!page && !ent.val)
6316 return ret;
6317 if (page) {
6318 pc = lookup_page_cgroup(page);
6319 /*
6320 * Do only loose check w/o page_cgroup lock.
6321 * mem_cgroup_move_account() checks the pc is valid or not under
6322 * the lock.
6323 */
6324 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6325 ret = MC_TARGET_PAGE;
6326 if (target)
6327 target->page = page;
6328 }
6329 if (!ret || !target)
6330 put_page(page);
6331 }
6332 /* There is a swap entry and a page doesn't exist or isn't charged */
6333 if (ent.val && !ret &&
6334 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6335 ret = MC_TARGET_SWAP;
6336 if (target)
6337 target->ent = ent;
6338 }
6339 return ret;
6340}
6341
6342#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6343/*
6344 * We don't consider swapping or file mapped pages because THP does not
6345 * support them for now.
6346 * Caller should make sure that pmd_trans_huge(pmd) is true.
6347 */
6348static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6349 unsigned long addr, pmd_t pmd, union mc_target *target)
6350{
6351 struct page *page = NULL;
6352 struct page_cgroup *pc;
6353 enum mc_target_type ret = MC_TARGET_NONE;
6354
6355 page = pmd_page(pmd);
6356 VM_BUG_ON(!page || !PageHead(page));
6357 if (!move_anon())
6358 return ret;
6359 pc = lookup_page_cgroup(page);
6360 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6361 ret = MC_TARGET_PAGE;
6362 if (target) {
6363 get_page(page);
6364 target->page = page;
6365 }
6366 }
6367 return ret;
6368}
6369#else
6370static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6371 unsigned long addr, pmd_t pmd, union mc_target *target)
6372{
6373 return MC_TARGET_NONE;
6374}
6375#endif
6376
6377static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6378 unsigned long addr, unsigned long end,
6379 struct mm_walk *walk)
6380{
6381 struct vm_area_struct *vma = walk->private;
6382 pte_t *pte;
6383 spinlock_t *ptl;
6384
6385 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6386 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6387 mc.precharge += HPAGE_PMD_NR;
6388 spin_unlock(&vma->vm_mm->page_table_lock);
6389 return 0;
6390 }
6391
6392 if (pmd_trans_unstable(pmd))
6393 return 0;
6394 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6395 for (; addr != end; pte++, addr += PAGE_SIZE)
6396 if (get_mctgt_type(vma, addr, *pte, NULL))
6397 mc.precharge++; /* increment precharge temporarily */
6398 pte_unmap_unlock(pte - 1, ptl);
6399 cond_resched();
6400
6401 return 0;
6402}
6403
6404static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6405{
6406 unsigned long precharge;
6407 struct vm_area_struct *vma;
6408
6409 down_read(&mm->mmap_sem);
6410 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6411 struct mm_walk mem_cgroup_count_precharge_walk = {
6412 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6413 .mm = mm,
6414 .private = vma,
6415 };
6416 if (is_vm_hugetlb_page(vma))
6417 continue;
6418 walk_page_range(vma->vm_start, vma->vm_end,
6419 &mem_cgroup_count_precharge_walk);
6420 }
6421 up_read(&mm->mmap_sem);
6422
6423 precharge = mc.precharge;
6424 mc.precharge = 0;
6425
6426 return precharge;
6427}
6428
6429static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6430{
6431 unsigned long precharge = mem_cgroup_count_precharge(mm);
6432
6433 VM_BUG_ON(mc.moving_task);
6434 mc.moving_task = current;
6435 return mem_cgroup_do_precharge(precharge);
6436}
6437
6438/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6439static void __mem_cgroup_clear_mc(void)
6440{
6441 struct mem_cgroup *from = mc.from;
6442 struct mem_cgroup *to = mc.to;
6443 int i;
6444
6445 /* we must uncharge all the leftover precharges from mc.to */
6446 if (mc.precharge) {
6447 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6448 mc.precharge = 0;
6449 }
6450 /*
6451 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6452 * we must uncharge here.
6453 */
6454 if (mc.moved_charge) {
6455 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6456 mc.moved_charge = 0;
6457 }
6458 /* we must fixup refcnts and charges */
6459 if (mc.moved_swap) {
6460 /* uncharge swap account from the old cgroup */
6461 if (!mem_cgroup_is_root(mc.from))
6462 res_counter_uncharge(&mc.from->memsw,
6463 PAGE_SIZE * mc.moved_swap);
6464
6465 for (i = 0; i < mc.moved_swap; i++)
6466 css_put(&mc.from->css);
6467
6468 if (!mem_cgroup_is_root(mc.to)) {
6469 /*
6470 * we charged both to->res and to->memsw, so we should
6471 * uncharge to->res.
6472 */
6473 res_counter_uncharge(&mc.to->res,
6474 PAGE_SIZE * mc.moved_swap);
6475 }
6476 /* we've already done css_get(mc.to) */
6477 mc.moved_swap = 0;
6478 }
6479 memcg_oom_recover(from);
6480 memcg_oom_recover(to);
6481 wake_up_all(&mc.waitq);
6482}
6483
6484static void mem_cgroup_clear_mc(void)
6485{
6486 struct mem_cgroup *from = mc.from;
6487
6488 /*
6489 * we must clear moving_task before waking up waiters at the end of
6490 * task migration.
6491 */
6492 mc.moving_task = NULL;
6493 __mem_cgroup_clear_mc();
6494 spin_lock(&mc.lock);
6495 mc.from = NULL;
6496 mc.to = NULL;
6497 spin_unlock(&mc.lock);
6498 mem_cgroup_end_move(from);
6499}
6500
6501static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6502 struct cgroup_taskset *tset)
6503{
6504 struct task_struct *p = cgroup_taskset_first(tset);
6505 int ret = 0;
6506 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6507 unsigned long move_charge_at_immigrate;
6508
6509 /*
6510 * We are now commited to this value whatever it is. Changes in this
6511 * tunable will only affect upcoming migrations, not the current one.
6512 * So we need to save it, and keep it going.
6513 */
6514 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6515 if (move_charge_at_immigrate) {
6516 struct mm_struct *mm;
6517 struct mem_cgroup *from = mem_cgroup_from_task(p);
6518
6519 VM_BUG_ON(from == memcg);
6520
6521 mm = get_task_mm(p);
6522 if (!mm)
6523 return 0;
6524 /* We move charges only when we move a owner of the mm */
6525 if (mm->owner == p) {
6526 VM_BUG_ON(mc.from);
6527 VM_BUG_ON(mc.to);
6528 VM_BUG_ON(mc.precharge);
6529 VM_BUG_ON(mc.moved_charge);
6530 VM_BUG_ON(mc.moved_swap);
6531 mem_cgroup_start_move(from);
6532 spin_lock(&mc.lock);
6533 mc.from = from;
6534 mc.to = memcg;
6535 mc.immigrate_flags = move_charge_at_immigrate;
6536 spin_unlock(&mc.lock);
6537 /* We set mc.moving_task later */
6538
6539 ret = mem_cgroup_precharge_mc(mm);
6540 if (ret)
6541 mem_cgroup_clear_mc();
6542 }
6543 mmput(mm);
6544 }
6545 return ret;
6546}
6547
6548static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6549 struct cgroup_taskset *tset)
6550{
6551 mem_cgroup_clear_mc();
6552}
6553
6554static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6555 unsigned long addr, unsigned long end,
6556 struct mm_walk *walk)
6557{
6558 int ret = 0;
6559 struct vm_area_struct *vma = walk->private;
6560 pte_t *pte;
6561 spinlock_t *ptl;
6562 enum mc_target_type target_type;
6563 union mc_target target;
6564 struct page *page;
6565 struct page_cgroup *pc;
6566
6567 /*
6568 * We don't take compound_lock() here but no race with splitting thp
6569 * happens because:
6570 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6571 * under splitting, which means there's no concurrent thp split,
6572 * - if another thread runs into split_huge_page() just after we
6573 * entered this if-block, the thread must wait for page table lock
6574 * to be unlocked in __split_huge_page_splitting(), where the main
6575 * part of thp split is not executed yet.
6576 */
6577 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6578 if (mc.precharge < HPAGE_PMD_NR) {
6579 spin_unlock(&vma->vm_mm->page_table_lock);
6580 return 0;
6581 }
6582 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6583 if (target_type == MC_TARGET_PAGE) {
6584 page = target.page;
6585 if (!isolate_lru_page(page)) {
6586 pc = lookup_page_cgroup(page);
6587 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6588 pc, mc.from, mc.to)) {
6589 mc.precharge -= HPAGE_PMD_NR;
6590 mc.moved_charge += HPAGE_PMD_NR;
6591 }
6592 putback_lru_page(page);
6593 }
6594 put_page(page);
6595 }
6596 spin_unlock(&vma->vm_mm->page_table_lock);
6597 return 0;
6598 }
6599
6600 if (pmd_trans_unstable(pmd))
6601 return 0;
6602retry:
6603 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6604 for (; addr != end; addr += PAGE_SIZE) {
6605 pte_t ptent = *(pte++);
6606 swp_entry_t ent;
6607
6608 if (!mc.precharge)
6609 break;
6610
6611 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6612 case MC_TARGET_PAGE:
6613 page = target.page;
6614 if (isolate_lru_page(page))
6615 goto put;
6616 pc = lookup_page_cgroup(page);
6617 if (!mem_cgroup_move_account(page, 1, pc,
6618 mc.from, mc.to)) {
6619 mc.precharge--;
6620 /* we uncharge from mc.from later. */
6621 mc.moved_charge++;
6622 }
6623 putback_lru_page(page);
6624put: /* get_mctgt_type() gets the page */
6625 put_page(page);
6626 break;
6627 case MC_TARGET_SWAP:
6628 ent = target.ent;
6629 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6630 mc.precharge--;
6631 /* we fixup refcnts and charges later. */
6632 mc.moved_swap++;
6633 }
6634 break;
6635 default:
6636 break;
6637 }
6638 }
6639 pte_unmap_unlock(pte - 1, ptl);
6640 cond_resched();
6641
6642 if (addr != end) {
6643 /*
6644 * We have consumed all precharges we got in can_attach().
6645 * We try charge one by one, but don't do any additional
6646 * charges to mc.to if we have failed in charge once in attach()
6647 * phase.
6648 */
6649 ret = mem_cgroup_do_precharge(1);
6650 if (!ret)
6651 goto retry;
6652 }
6653
6654 return ret;
6655}
6656
6657static void mem_cgroup_move_charge(struct mm_struct *mm)
6658{
6659 struct vm_area_struct *vma;
6660
6661 lru_add_drain_all();
6662retry:
6663 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6664 /*
6665 * Someone who are holding the mmap_sem might be waiting in
6666 * waitq. So we cancel all extra charges, wake up all waiters,
6667 * and retry. Because we cancel precharges, we might not be able
6668 * to move enough charges, but moving charge is a best-effort
6669 * feature anyway, so it wouldn't be a big problem.
6670 */
6671 __mem_cgroup_clear_mc();
6672 cond_resched();
6673 goto retry;
6674 }
6675 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6676 int ret;
6677 struct mm_walk mem_cgroup_move_charge_walk = {
6678 .pmd_entry = mem_cgroup_move_charge_pte_range,
6679 .mm = mm,
6680 .private = vma,
6681 };
6682 if (is_vm_hugetlb_page(vma))
6683 continue;
6684 ret = walk_page_range(vma->vm_start, vma->vm_end,
6685 &mem_cgroup_move_charge_walk);
6686 if (ret)
6687 /*
6688 * means we have consumed all precharges and failed in
6689 * doing additional charge. Just abandon here.
6690 */
6691 break;
6692 }
6693 up_read(&mm->mmap_sem);
6694}
6695
6696static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6697 struct cgroup_taskset *tset)
6698{
6699 struct task_struct *p = cgroup_taskset_first(tset);
6700 struct mm_struct *mm = get_task_mm(p);
6701
6702 if (mm) {
6703 if (mc.to)
6704 mem_cgroup_move_charge(mm);
6705 mmput(mm);
6706 }
6707 if (mc.to)
6708 mem_cgroup_clear_mc();
6709}
6710#else /* !CONFIG_MMU */
6711static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6712 struct cgroup_taskset *tset)
6713{
6714 return 0;
6715}
6716static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6717 struct cgroup_taskset *tset)
6718{
6719}
6720static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6721 struct cgroup_taskset *tset)
6722{
6723}
6724#endif
6725
6726/*
6727 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6728 * to verify sane_behavior flag on each mount attempt.
6729 */
6730static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6731{
6732 /*
6733 * use_hierarchy is forced with sane_behavior. cgroup core
6734 * guarantees that @root doesn't have any children, so turning it
6735 * on for the root memcg is enough.
6736 */
6737 if (cgroup_sane_behavior(root_css->cgroup))
6738 mem_cgroup_from_css(root_css)->use_hierarchy = true;
6739}
6740
6741struct cgroup_subsys mem_cgroup_subsys = {
6742 .name = "memory",
6743 .subsys_id = mem_cgroup_subsys_id,
6744 .css_alloc = mem_cgroup_css_alloc,
6745 .css_online = mem_cgroup_css_online,
6746 .css_offline = mem_cgroup_css_offline,
6747 .css_free = mem_cgroup_css_free,
6748 .can_attach = mem_cgroup_can_attach,
6749 .cancel_attach = mem_cgroup_cancel_attach,
6750 .attach = mem_cgroup_move_task,
6751 .bind = mem_cgroup_bind,
6752 .base_cftypes = mem_cgroup_files,
6753 .early_init = 0,
6754 .use_id = 1,
6755};
6756
6757#ifdef CONFIG_MEMCG_SWAP
6758static int __init enable_swap_account(char *s)
6759{
6760 if (!strcmp(s, "1"))
6761 really_do_swap_account = 1;
6762 else if (!strcmp(s, "0"))
6763 really_do_swap_account = 0;
6764 return 1;
6765}
6766__setup("swapaccount=", enable_swap_account);
6767
6768static void __init memsw_file_init(void)
6769{
6770 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6771}
6772
6773static void __init enable_swap_cgroup(void)
6774{
6775 if (!mem_cgroup_disabled() && really_do_swap_account) {
6776 do_swap_account = 1;
6777 memsw_file_init();
6778 }
6779}
6780
6781#else
6782static void __init enable_swap_cgroup(void)
6783{
6784}
6785#endif
6786
6787/*
6788 * subsys_initcall() for memory controller.
6789 *
6790 * Some parts like hotcpu_notifier() have to be initialized from this context
6791 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6792 * everything that doesn't depend on a specific mem_cgroup structure should
6793 * be initialized from here.
6794 */
6795static int __init mem_cgroup_init(void)
6796{
6797 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6798 enable_swap_cgroup();
6799 memcg_stock_init();
6800 return 0;
6801}
6802subsys_initcall(mem_cgroup_init);
This page took 0.111649 seconds and 5 git commands to generate.