mm: memcg: remove unneeded shmem charge type
[deliverable/linux.git] / mm / memcontrol.c
... / ...
CommitLineData
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
27#include <linux/mm.h>
28#include <linux/hugetlb.h>
29#include <linux/pagemap.h>
30#include <linux/smp.h>
31#include <linux/page-flags.h>
32#include <linux/backing-dev.h>
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
35#include <linux/limits.h>
36#include <linux/export.h>
37#include <linux/mutex.h>
38#include <linux/rbtree.h>
39#include <linux/slab.h>
40#include <linux/swap.h>
41#include <linux/swapops.h>
42#include <linux/spinlock.h>
43#include <linux/eventfd.h>
44#include <linux/sort.h>
45#include <linux/fs.h>
46#include <linux/seq_file.h>
47#include <linux/vmalloc.h>
48#include <linux/mm_inline.h>
49#include <linux/page_cgroup.h>
50#include <linux/cpu.h>
51#include <linux/oom.h>
52#include "internal.h"
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
55
56#include <asm/uaccess.h>
57
58#include <trace/events/vmscan.h>
59
60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61#define MEM_CGROUP_RECLAIM_RETRIES 5
62static struct mem_cgroup *root_mem_cgroup __read_mostly;
63
64#ifdef CONFIG_MEMCG_SWAP
65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66int do_swap_account __read_mostly;
67
68/* for remember boot option*/
69#ifdef CONFIG_MEMCG_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
75#else
76#define do_swap_account 0
77#endif
78
79
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_NSTATS,
92};
93
94static const char * const mem_cgroup_stat_names[] = {
95 "cache",
96 "rss",
97 "mapped_file",
98 "swap",
99};
100
101enum mem_cgroup_events_index {
102 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
103 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
104 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
105 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
106 MEM_CGROUP_EVENTS_NSTATS,
107};
108
109static const char * const mem_cgroup_events_names[] = {
110 "pgpgin",
111 "pgpgout",
112 "pgfault",
113 "pgmajfault",
114};
115
116/*
117 * Per memcg event counter is incremented at every pagein/pageout. With THP,
118 * it will be incremated by the number of pages. This counter is used for
119 * for trigger some periodic events. This is straightforward and better
120 * than using jiffies etc. to handle periodic memcg event.
121 */
122enum mem_cgroup_events_target {
123 MEM_CGROUP_TARGET_THRESH,
124 MEM_CGROUP_TARGET_SOFTLIMIT,
125 MEM_CGROUP_TARGET_NUMAINFO,
126 MEM_CGROUP_NTARGETS,
127};
128#define THRESHOLDS_EVENTS_TARGET 128
129#define SOFTLIMIT_EVENTS_TARGET 1024
130#define NUMAINFO_EVENTS_TARGET 1024
131
132struct mem_cgroup_stat_cpu {
133 long count[MEM_CGROUP_STAT_NSTATS];
134 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
135 unsigned long nr_page_events;
136 unsigned long targets[MEM_CGROUP_NTARGETS];
137};
138
139struct mem_cgroup_reclaim_iter {
140 /* css_id of the last scanned hierarchy member */
141 int position;
142 /* scan generation, increased every round-trip */
143 unsigned int generation;
144};
145
146/*
147 * per-zone information in memory controller.
148 */
149struct mem_cgroup_per_zone {
150 struct lruvec lruvec;
151 unsigned long lru_size[NR_LRU_LISTS];
152
153 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
154
155 struct rb_node tree_node; /* RB tree node */
156 unsigned long long usage_in_excess;/* Set to the value by which */
157 /* the soft limit is exceeded*/
158 bool on_tree;
159 struct mem_cgroup *memcg; /* Back pointer, we cannot */
160 /* use container_of */
161};
162
163struct mem_cgroup_per_node {
164 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
165};
166
167struct mem_cgroup_lru_info {
168 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
169};
170
171/*
172 * Cgroups above their limits are maintained in a RB-Tree, independent of
173 * their hierarchy representation
174 */
175
176struct mem_cgroup_tree_per_zone {
177 struct rb_root rb_root;
178 spinlock_t lock;
179};
180
181struct mem_cgroup_tree_per_node {
182 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
183};
184
185struct mem_cgroup_tree {
186 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
187};
188
189static struct mem_cgroup_tree soft_limit_tree __read_mostly;
190
191struct mem_cgroup_threshold {
192 struct eventfd_ctx *eventfd;
193 u64 threshold;
194};
195
196/* For threshold */
197struct mem_cgroup_threshold_ary {
198 /* An array index points to threshold just below or equal to usage. */
199 int current_threshold;
200 /* Size of entries[] */
201 unsigned int size;
202 /* Array of thresholds */
203 struct mem_cgroup_threshold entries[0];
204};
205
206struct mem_cgroup_thresholds {
207 /* Primary thresholds array */
208 struct mem_cgroup_threshold_ary *primary;
209 /*
210 * Spare threshold array.
211 * This is needed to make mem_cgroup_unregister_event() "never fail".
212 * It must be able to store at least primary->size - 1 entries.
213 */
214 struct mem_cgroup_threshold_ary *spare;
215};
216
217/* for OOM */
218struct mem_cgroup_eventfd_list {
219 struct list_head list;
220 struct eventfd_ctx *eventfd;
221};
222
223static void mem_cgroup_threshold(struct mem_cgroup *memcg);
224static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
225
226/*
227 * The memory controller data structure. The memory controller controls both
228 * page cache and RSS per cgroup. We would eventually like to provide
229 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
230 * to help the administrator determine what knobs to tune.
231 *
232 * TODO: Add a water mark for the memory controller. Reclaim will begin when
233 * we hit the water mark. May be even add a low water mark, such that
234 * no reclaim occurs from a cgroup at it's low water mark, this is
235 * a feature that will be implemented much later in the future.
236 */
237struct mem_cgroup {
238 struct cgroup_subsys_state css;
239 /*
240 * the counter to account for memory usage
241 */
242 struct res_counter res;
243
244 union {
245 /*
246 * the counter to account for mem+swap usage.
247 */
248 struct res_counter memsw;
249
250 /*
251 * rcu_freeing is used only when freeing struct mem_cgroup,
252 * so put it into a union to avoid wasting more memory.
253 * It must be disjoint from the css field. It could be
254 * in a union with the res field, but res plays a much
255 * larger part in mem_cgroup life than memsw, and might
256 * be of interest, even at time of free, when debugging.
257 * So share rcu_head with the less interesting memsw.
258 */
259 struct rcu_head rcu_freeing;
260 /*
261 * We also need some space for a worker in deferred freeing.
262 * By the time we call it, rcu_freeing is no longer in use.
263 */
264 struct work_struct work_freeing;
265 };
266
267 /*
268 * Per cgroup active and inactive list, similar to the
269 * per zone LRU lists.
270 */
271 struct mem_cgroup_lru_info info;
272 int last_scanned_node;
273#if MAX_NUMNODES > 1
274 nodemask_t scan_nodes;
275 atomic_t numainfo_events;
276 atomic_t numainfo_updating;
277#endif
278 /*
279 * Should the accounting and control be hierarchical, per subtree?
280 */
281 bool use_hierarchy;
282
283 bool oom_lock;
284 atomic_t under_oom;
285
286 atomic_t refcnt;
287
288 int swappiness;
289 /* OOM-Killer disable */
290 int oom_kill_disable;
291
292 /* set when res.limit == memsw.limit */
293 bool memsw_is_minimum;
294
295 /* protect arrays of thresholds */
296 struct mutex thresholds_lock;
297
298 /* thresholds for memory usage. RCU-protected */
299 struct mem_cgroup_thresholds thresholds;
300
301 /* thresholds for mem+swap usage. RCU-protected */
302 struct mem_cgroup_thresholds memsw_thresholds;
303
304 /* For oom notifier event fd */
305 struct list_head oom_notify;
306
307 /*
308 * Should we move charges of a task when a task is moved into this
309 * mem_cgroup ? And what type of charges should we move ?
310 */
311 unsigned long move_charge_at_immigrate;
312 /*
313 * set > 0 if pages under this cgroup are moving to other cgroup.
314 */
315 atomic_t moving_account;
316 /* taken only while moving_account > 0 */
317 spinlock_t move_lock;
318 /*
319 * percpu counter.
320 */
321 struct mem_cgroup_stat_cpu __percpu *stat;
322 /*
323 * used when a cpu is offlined or other synchronizations
324 * See mem_cgroup_read_stat().
325 */
326 struct mem_cgroup_stat_cpu nocpu_base;
327 spinlock_t pcp_counter_lock;
328
329#ifdef CONFIG_INET
330 struct tcp_memcontrol tcp_mem;
331#endif
332};
333
334/* Stuffs for move charges at task migration. */
335/*
336 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
337 * left-shifted bitmap of these types.
338 */
339enum move_type {
340 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
341 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
342 NR_MOVE_TYPE,
343};
344
345/* "mc" and its members are protected by cgroup_mutex */
346static struct move_charge_struct {
347 spinlock_t lock; /* for from, to */
348 struct mem_cgroup *from;
349 struct mem_cgroup *to;
350 unsigned long precharge;
351 unsigned long moved_charge;
352 unsigned long moved_swap;
353 struct task_struct *moving_task; /* a task moving charges */
354 wait_queue_head_t waitq; /* a waitq for other context */
355} mc = {
356 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
357 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
358};
359
360static bool move_anon(void)
361{
362 return test_bit(MOVE_CHARGE_TYPE_ANON,
363 &mc.to->move_charge_at_immigrate);
364}
365
366static bool move_file(void)
367{
368 return test_bit(MOVE_CHARGE_TYPE_FILE,
369 &mc.to->move_charge_at_immigrate);
370}
371
372/*
373 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
374 * limit reclaim to prevent infinite loops, if they ever occur.
375 */
376#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
377#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
378
379enum charge_type {
380 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
381 MEM_CGROUP_CHARGE_TYPE_ANON,
382 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
383 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
384 NR_CHARGE_TYPE,
385};
386
387/* for encoding cft->private value on file */
388#define _MEM (0)
389#define _MEMSWAP (1)
390#define _OOM_TYPE (2)
391#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
392#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
393#define MEMFILE_ATTR(val) ((val) & 0xffff)
394/* Used for OOM nofiier */
395#define OOM_CONTROL (0)
396
397/*
398 * Reclaim flags for mem_cgroup_hierarchical_reclaim
399 */
400#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
401#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
402#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
403#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
404
405static void mem_cgroup_get(struct mem_cgroup *memcg);
406static void mem_cgroup_put(struct mem_cgroup *memcg);
407
408/* Writing them here to avoid exposing memcg's inner layout */
409#ifdef CONFIG_MEMCG_KMEM
410#include <net/sock.h>
411#include <net/ip.h>
412
413static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
414void sock_update_memcg(struct sock *sk)
415{
416 if (mem_cgroup_sockets_enabled) {
417 struct mem_cgroup *memcg;
418 struct cg_proto *cg_proto;
419
420 BUG_ON(!sk->sk_prot->proto_cgroup);
421
422 /* Socket cloning can throw us here with sk_cgrp already
423 * filled. It won't however, necessarily happen from
424 * process context. So the test for root memcg given
425 * the current task's memcg won't help us in this case.
426 *
427 * Respecting the original socket's memcg is a better
428 * decision in this case.
429 */
430 if (sk->sk_cgrp) {
431 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
432 mem_cgroup_get(sk->sk_cgrp->memcg);
433 return;
434 }
435
436 rcu_read_lock();
437 memcg = mem_cgroup_from_task(current);
438 cg_proto = sk->sk_prot->proto_cgroup(memcg);
439 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
440 mem_cgroup_get(memcg);
441 sk->sk_cgrp = cg_proto;
442 }
443 rcu_read_unlock();
444 }
445}
446EXPORT_SYMBOL(sock_update_memcg);
447
448void sock_release_memcg(struct sock *sk)
449{
450 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
451 struct mem_cgroup *memcg;
452 WARN_ON(!sk->sk_cgrp->memcg);
453 memcg = sk->sk_cgrp->memcg;
454 mem_cgroup_put(memcg);
455 }
456}
457
458#ifdef CONFIG_INET
459struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
460{
461 if (!memcg || mem_cgroup_is_root(memcg))
462 return NULL;
463
464 return &memcg->tcp_mem.cg_proto;
465}
466EXPORT_SYMBOL(tcp_proto_cgroup);
467#endif /* CONFIG_INET */
468#endif /* CONFIG_MEMCG_KMEM */
469
470#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
471static void disarm_sock_keys(struct mem_cgroup *memcg)
472{
473 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
474 return;
475 static_key_slow_dec(&memcg_socket_limit_enabled);
476}
477#else
478static void disarm_sock_keys(struct mem_cgroup *memcg)
479{
480}
481#endif
482
483static void drain_all_stock_async(struct mem_cgroup *memcg);
484
485static struct mem_cgroup_per_zone *
486mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
487{
488 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
489}
490
491struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
492{
493 return &memcg->css;
494}
495
496static struct mem_cgroup_per_zone *
497page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
498{
499 int nid = page_to_nid(page);
500 int zid = page_zonenum(page);
501
502 return mem_cgroup_zoneinfo(memcg, nid, zid);
503}
504
505static struct mem_cgroup_tree_per_zone *
506soft_limit_tree_node_zone(int nid, int zid)
507{
508 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
509}
510
511static struct mem_cgroup_tree_per_zone *
512soft_limit_tree_from_page(struct page *page)
513{
514 int nid = page_to_nid(page);
515 int zid = page_zonenum(page);
516
517 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
518}
519
520static void
521__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
522 struct mem_cgroup_per_zone *mz,
523 struct mem_cgroup_tree_per_zone *mctz,
524 unsigned long long new_usage_in_excess)
525{
526 struct rb_node **p = &mctz->rb_root.rb_node;
527 struct rb_node *parent = NULL;
528 struct mem_cgroup_per_zone *mz_node;
529
530 if (mz->on_tree)
531 return;
532
533 mz->usage_in_excess = new_usage_in_excess;
534 if (!mz->usage_in_excess)
535 return;
536 while (*p) {
537 parent = *p;
538 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
539 tree_node);
540 if (mz->usage_in_excess < mz_node->usage_in_excess)
541 p = &(*p)->rb_left;
542 /*
543 * We can't avoid mem cgroups that are over their soft
544 * limit by the same amount
545 */
546 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
547 p = &(*p)->rb_right;
548 }
549 rb_link_node(&mz->tree_node, parent, p);
550 rb_insert_color(&mz->tree_node, &mctz->rb_root);
551 mz->on_tree = true;
552}
553
554static void
555__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
556 struct mem_cgroup_per_zone *mz,
557 struct mem_cgroup_tree_per_zone *mctz)
558{
559 if (!mz->on_tree)
560 return;
561 rb_erase(&mz->tree_node, &mctz->rb_root);
562 mz->on_tree = false;
563}
564
565static void
566mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
567 struct mem_cgroup_per_zone *mz,
568 struct mem_cgroup_tree_per_zone *mctz)
569{
570 spin_lock(&mctz->lock);
571 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
572 spin_unlock(&mctz->lock);
573}
574
575
576static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
577{
578 unsigned long long excess;
579 struct mem_cgroup_per_zone *mz;
580 struct mem_cgroup_tree_per_zone *mctz;
581 int nid = page_to_nid(page);
582 int zid = page_zonenum(page);
583 mctz = soft_limit_tree_from_page(page);
584
585 /*
586 * Necessary to update all ancestors when hierarchy is used.
587 * because their event counter is not touched.
588 */
589 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
590 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
591 excess = res_counter_soft_limit_excess(&memcg->res);
592 /*
593 * We have to update the tree if mz is on RB-tree or
594 * mem is over its softlimit.
595 */
596 if (excess || mz->on_tree) {
597 spin_lock(&mctz->lock);
598 /* if on-tree, remove it */
599 if (mz->on_tree)
600 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
601 /*
602 * Insert again. mz->usage_in_excess will be updated.
603 * If excess is 0, no tree ops.
604 */
605 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
606 spin_unlock(&mctz->lock);
607 }
608 }
609}
610
611static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
612{
613 int node, zone;
614 struct mem_cgroup_per_zone *mz;
615 struct mem_cgroup_tree_per_zone *mctz;
616
617 for_each_node(node) {
618 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
619 mz = mem_cgroup_zoneinfo(memcg, node, zone);
620 mctz = soft_limit_tree_node_zone(node, zone);
621 mem_cgroup_remove_exceeded(memcg, mz, mctz);
622 }
623 }
624}
625
626static struct mem_cgroup_per_zone *
627__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
628{
629 struct rb_node *rightmost = NULL;
630 struct mem_cgroup_per_zone *mz;
631
632retry:
633 mz = NULL;
634 rightmost = rb_last(&mctz->rb_root);
635 if (!rightmost)
636 goto done; /* Nothing to reclaim from */
637
638 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
639 /*
640 * Remove the node now but someone else can add it back,
641 * we will to add it back at the end of reclaim to its correct
642 * position in the tree.
643 */
644 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
645 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
646 !css_tryget(&mz->memcg->css))
647 goto retry;
648done:
649 return mz;
650}
651
652static struct mem_cgroup_per_zone *
653mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
654{
655 struct mem_cgroup_per_zone *mz;
656
657 spin_lock(&mctz->lock);
658 mz = __mem_cgroup_largest_soft_limit_node(mctz);
659 spin_unlock(&mctz->lock);
660 return mz;
661}
662
663/*
664 * Implementation Note: reading percpu statistics for memcg.
665 *
666 * Both of vmstat[] and percpu_counter has threshold and do periodic
667 * synchronization to implement "quick" read. There are trade-off between
668 * reading cost and precision of value. Then, we may have a chance to implement
669 * a periodic synchronizion of counter in memcg's counter.
670 *
671 * But this _read() function is used for user interface now. The user accounts
672 * memory usage by memory cgroup and he _always_ requires exact value because
673 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
674 * have to visit all online cpus and make sum. So, for now, unnecessary
675 * synchronization is not implemented. (just implemented for cpu hotplug)
676 *
677 * If there are kernel internal actions which can make use of some not-exact
678 * value, and reading all cpu value can be performance bottleneck in some
679 * common workload, threashold and synchonization as vmstat[] should be
680 * implemented.
681 */
682static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
683 enum mem_cgroup_stat_index idx)
684{
685 long val = 0;
686 int cpu;
687
688 get_online_cpus();
689 for_each_online_cpu(cpu)
690 val += per_cpu(memcg->stat->count[idx], cpu);
691#ifdef CONFIG_HOTPLUG_CPU
692 spin_lock(&memcg->pcp_counter_lock);
693 val += memcg->nocpu_base.count[idx];
694 spin_unlock(&memcg->pcp_counter_lock);
695#endif
696 put_online_cpus();
697 return val;
698}
699
700static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
701 bool charge)
702{
703 int val = (charge) ? 1 : -1;
704 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
705}
706
707static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
708 enum mem_cgroup_events_index idx)
709{
710 unsigned long val = 0;
711 int cpu;
712
713 for_each_online_cpu(cpu)
714 val += per_cpu(memcg->stat->events[idx], cpu);
715#ifdef CONFIG_HOTPLUG_CPU
716 spin_lock(&memcg->pcp_counter_lock);
717 val += memcg->nocpu_base.events[idx];
718 spin_unlock(&memcg->pcp_counter_lock);
719#endif
720 return val;
721}
722
723static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
724 bool anon, int nr_pages)
725{
726 preempt_disable();
727
728 /*
729 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
730 * counted as CACHE even if it's on ANON LRU.
731 */
732 if (anon)
733 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
734 nr_pages);
735 else
736 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
737 nr_pages);
738
739 /* pagein of a big page is an event. So, ignore page size */
740 if (nr_pages > 0)
741 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
742 else {
743 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
744 nr_pages = -nr_pages; /* for event */
745 }
746
747 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
748
749 preempt_enable();
750}
751
752unsigned long
753mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
754{
755 struct mem_cgroup_per_zone *mz;
756
757 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
758 return mz->lru_size[lru];
759}
760
761static unsigned long
762mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
763 unsigned int lru_mask)
764{
765 struct mem_cgroup_per_zone *mz;
766 enum lru_list lru;
767 unsigned long ret = 0;
768
769 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
770
771 for_each_lru(lru) {
772 if (BIT(lru) & lru_mask)
773 ret += mz->lru_size[lru];
774 }
775 return ret;
776}
777
778static unsigned long
779mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
780 int nid, unsigned int lru_mask)
781{
782 u64 total = 0;
783 int zid;
784
785 for (zid = 0; zid < MAX_NR_ZONES; zid++)
786 total += mem_cgroup_zone_nr_lru_pages(memcg,
787 nid, zid, lru_mask);
788
789 return total;
790}
791
792static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
793 unsigned int lru_mask)
794{
795 int nid;
796 u64 total = 0;
797
798 for_each_node_state(nid, N_HIGH_MEMORY)
799 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
800 return total;
801}
802
803static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
804 enum mem_cgroup_events_target target)
805{
806 unsigned long val, next;
807
808 val = __this_cpu_read(memcg->stat->nr_page_events);
809 next = __this_cpu_read(memcg->stat->targets[target]);
810 /* from time_after() in jiffies.h */
811 if ((long)next - (long)val < 0) {
812 switch (target) {
813 case MEM_CGROUP_TARGET_THRESH:
814 next = val + THRESHOLDS_EVENTS_TARGET;
815 break;
816 case MEM_CGROUP_TARGET_SOFTLIMIT:
817 next = val + SOFTLIMIT_EVENTS_TARGET;
818 break;
819 case MEM_CGROUP_TARGET_NUMAINFO:
820 next = val + NUMAINFO_EVENTS_TARGET;
821 break;
822 default:
823 break;
824 }
825 __this_cpu_write(memcg->stat->targets[target], next);
826 return true;
827 }
828 return false;
829}
830
831/*
832 * Check events in order.
833 *
834 */
835static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
836{
837 preempt_disable();
838 /* threshold event is triggered in finer grain than soft limit */
839 if (unlikely(mem_cgroup_event_ratelimit(memcg,
840 MEM_CGROUP_TARGET_THRESH))) {
841 bool do_softlimit;
842 bool do_numainfo __maybe_unused;
843
844 do_softlimit = mem_cgroup_event_ratelimit(memcg,
845 MEM_CGROUP_TARGET_SOFTLIMIT);
846#if MAX_NUMNODES > 1
847 do_numainfo = mem_cgroup_event_ratelimit(memcg,
848 MEM_CGROUP_TARGET_NUMAINFO);
849#endif
850 preempt_enable();
851
852 mem_cgroup_threshold(memcg);
853 if (unlikely(do_softlimit))
854 mem_cgroup_update_tree(memcg, page);
855#if MAX_NUMNODES > 1
856 if (unlikely(do_numainfo))
857 atomic_inc(&memcg->numainfo_events);
858#endif
859 } else
860 preempt_enable();
861}
862
863struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
864{
865 return container_of(cgroup_subsys_state(cont,
866 mem_cgroup_subsys_id), struct mem_cgroup,
867 css);
868}
869
870struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
871{
872 /*
873 * mm_update_next_owner() may clear mm->owner to NULL
874 * if it races with swapoff, page migration, etc.
875 * So this can be called with p == NULL.
876 */
877 if (unlikely(!p))
878 return NULL;
879
880 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
881 struct mem_cgroup, css);
882}
883
884struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
885{
886 struct mem_cgroup *memcg = NULL;
887
888 if (!mm)
889 return NULL;
890 /*
891 * Because we have no locks, mm->owner's may be being moved to other
892 * cgroup. We use css_tryget() here even if this looks
893 * pessimistic (rather than adding locks here).
894 */
895 rcu_read_lock();
896 do {
897 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
898 if (unlikely(!memcg))
899 break;
900 } while (!css_tryget(&memcg->css));
901 rcu_read_unlock();
902 return memcg;
903}
904
905/**
906 * mem_cgroup_iter - iterate over memory cgroup hierarchy
907 * @root: hierarchy root
908 * @prev: previously returned memcg, NULL on first invocation
909 * @reclaim: cookie for shared reclaim walks, NULL for full walks
910 *
911 * Returns references to children of the hierarchy below @root, or
912 * @root itself, or %NULL after a full round-trip.
913 *
914 * Caller must pass the return value in @prev on subsequent
915 * invocations for reference counting, or use mem_cgroup_iter_break()
916 * to cancel a hierarchy walk before the round-trip is complete.
917 *
918 * Reclaimers can specify a zone and a priority level in @reclaim to
919 * divide up the memcgs in the hierarchy among all concurrent
920 * reclaimers operating on the same zone and priority.
921 */
922struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
923 struct mem_cgroup *prev,
924 struct mem_cgroup_reclaim_cookie *reclaim)
925{
926 struct mem_cgroup *memcg = NULL;
927 int id = 0;
928
929 if (mem_cgroup_disabled())
930 return NULL;
931
932 if (!root)
933 root = root_mem_cgroup;
934
935 if (prev && !reclaim)
936 id = css_id(&prev->css);
937
938 if (prev && prev != root)
939 css_put(&prev->css);
940
941 if (!root->use_hierarchy && root != root_mem_cgroup) {
942 if (prev)
943 return NULL;
944 return root;
945 }
946
947 while (!memcg) {
948 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
949 struct cgroup_subsys_state *css;
950
951 if (reclaim) {
952 int nid = zone_to_nid(reclaim->zone);
953 int zid = zone_idx(reclaim->zone);
954 struct mem_cgroup_per_zone *mz;
955
956 mz = mem_cgroup_zoneinfo(root, nid, zid);
957 iter = &mz->reclaim_iter[reclaim->priority];
958 if (prev && reclaim->generation != iter->generation)
959 return NULL;
960 id = iter->position;
961 }
962
963 rcu_read_lock();
964 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
965 if (css) {
966 if (css == &root->css || css_tryget(css))
967 memcg = container_of(css,
968 struct mem_cgroup, css);
969 } else
970 id = 0;
971 rcu_read_unlock();
972
973 if (reclaim) {
974 iter->position = id;
975 if (!css)
976 iter->generation++;
977 else if (!prev && memcg)
978 reclaim->generation = iter->generation;
979 }
980
981 if (prev && !css)
982 return NULL;
983 }
984 return memcg;
985}
986
987/**
988 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
989 * @root: hierarchy root
990 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
991 */
992void mem_cgroup_iter_break(struct mem_cgroup *root,
993 struct mem_cgroup *prev)
994{
995 if (!root)
996 root = root_mem_cgroup;
997 if (prev && prev != root)
998 css_put(&prev->css);
999}
1000
1001/*
1002 * Iteration constructs for visiting all cgroups (under a tree). If
1003 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1004 * be used for reference counting.
1005 */
1006#define for_each_mem_cgroup_tree(iter, root) \
1007 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1008 iter != NULL; \
1009 iter = mem_cgroup_iter(root, iter, NULL))
1010
1011#define for_each_mem_cgroup(iter) \
1012 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1013 iter != NULL; \
1014 iter = mem_cgroup_iter(NULL, iter, NULL))
1015
1016static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1017{
1018 return (memcg == root_mem_cgroup);
1019}
1020
1021void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1022{
1023 struct mem_cgroup *memcg;
1024
1025 if (!mm)
1026 return;
1027
1028 rcu_read_lock();
1029 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1030 if (unlikely(!memcg))
1031 goto out;
1032
1033 switch (idx) {
1034 case PGFAULT:
1035 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1036 break;
1037 case PGMAJFAULT:
1038 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1039 break;
1040 default:
1041 BUG();
1042 }
1043out:
1044 rcu_read_unlock();
1045}
1046EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1047
1048/**
1049 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1050 * @zone: zone of the wanted lruvec
1051 * @memcg: memcg of the wanted lruvec
1052 *
1053 * Returns the lru list vector holding pages for the given @zone and
1054 * @mem. This can be the global zone lruvec, if the memory controller
1055 * is disabled.
1056 */
1057struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1058 struct mem_cgroup *memcg)
1059{
1060 struct mem_cgroup_per_zone *mz;
1061
1062 if (mem_cgroup_disabled())
1063 return &zone->lruvec;
1064
1065 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1066 return &mz->lruvec;
1067}
1068
1069/*
1070 * Following LRU functions are allowed to be used without PCG_LOCK.
1071 * Operations are called by routine of global LRU independently from memcg.
1072 * What we have to take care of here is validness of pc->mem_cgroup.
1073 *
1074 * Changes to pc->mem_cgroup happens when
1075 * 1. charge
1076 * 2. moving account
1077 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1078 * It is added to LRU before charge.
1079 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1080 * When moving account, the page is not on LRU. It's isolated.
1081 */
1082
1083/**
1084 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1085 * @page: the page
1086 * @zone: zone of the page
1087 */
1088struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1089{
1090 struct mem_cgroup_per_zone *mz;
1091 struct mem_cgroup *memcg;
1092 struct page_cgroup *pc;
1093
1094 if (mem_cgroup_disabled())
1095 return &zone->lruvec;
1096
1097 pc = lookup_page_cgroup(page);
1098 memcg = pc->mem_cgroup;
1099
1100 /*
1101 * Surreptitiously switch any uncharged offlist page to root:
1102 * an uncharged page off lru does nothing to secure
1103 * its former mem_cgroup from sudden removal.
1104 *
1105 * Our caller holds lru_lock, and PageCgroupUsed is updated
1106 * under page_cgroup lock: between them, they make all uses
1107 * of pc->mem_cgroup safe.
1108 */
1109 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1110 pc->mem_cgroup = memcg = root_mem_cgroup;
1111
1112 mz = page_cgroup_zoneinfo(memcg, page);
1113 return &mz->lruvec;
1114}
1115
1116/**
1117 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1118 * @lruvec: mem_cgroup per zone lru vector
1119 * @lru: index of lru list the page is sitting on
1120 * @nr_pages: positive when adding or negative when removing
1121 *
1122 * This function must be called when a page is added to or removed from an
1123 * lru list.
1124 */
1125void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1126 int nr_pages)
1127{
1128 struct mem_cgroup_per_zone *mz;
1129 unsigned long *lru_size;
1130
1131 if (mem_cgroup_disabled())
1132 return;
1133
1134 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1135 lru_size = mz->lru_size + lru;
1136 *lru_size += nr_pages;
1137 VM_BUG_ON((long)(*lru_size) < 0);
1138}
1139
1140/*
1141 * Checks whether given mem is same or in the root_mem_cgroup's
1142 * hierarchy subtree
1143 */
1144bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1145 struct mem_cgroup *memcg)
1146{
1147 if (root_memcg == memcg)
1148 return true;
1149 if (!root_memcg->use_hierarchy || !memcg)
1150 return false;
1151 return css_is_ancestor(&memcg->css, &root_memcg->css);
1152}
1153
1154static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1155 struct mem_cgroup *memcg)
1156{
1157 bool ret;
1158
1159 rcu_read_lock();
1160 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1161 rcu_read_unlock();
1162 return ret;
1163}
1164
1165int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1166{
1167 int ret;
1168 struct mem_cgroup *curr = NULL;
1169 struct task_struct *p;
1170
1171 p = find_lock_task_mm(task);
1172 if (p) {
1173 curr = try_get_mem_cgroup_from_mm(p->mm);
1174 task_unlock(p);
1175 } else {
1176 /*
1177 * All threads may have already detached their mm's, but the oom
1178 * killer still needs to detect if they have already been oom
1179 * killed to prevent needlessly killing additional tasks.
1180 */
1181 task_lock(task);
1182 curr = mem_cgroup_from_task(task);
1183 if (curr)
1184 css_get(&curr->css);
1185 task_unlock(task);
1186 }
1187 if (!curr)
1188 return 0;
1189 /*
1190 * We should check use_hierarchy of "memcg" not "curr". Because checking
1191 * use_hierarchy of "curr" here make this function true if hierarchy is
1192 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1193 * hierarchy(even if use_hierarchy is disabled in "memcg").
1194 */
1195 ret = mem_cgroup_same_or_subtree(memcg, curr);
1196 css_put(&curr->css);
1197 return ret;
1198}
1199
1200int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1201{
1202 unsigned long inactive_ratio;
1203 unsigned long inactive;
1204 unsigned long active;
1205 unsigned long gb;
1206
1207 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1208 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1209
1210 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1211 if (gb)
1212 inactive_ratio = int_sqrt(10 * gb);
1213 else
1214 inactive_ratio = 1;
1215
1216 return inactive * inactive_ratio < active;
1217}
1218
1219int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1220{
1221 unsigned long active;
1222 unsigned long inactive;
1223
1224 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1225 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1226
1227 return (active > inactive);
1228}
1229
1230#define mem_cgroup_from_res_counter(counter, member) \
1231 container_of(counter, struct mem_cgroup, member)
1232
1233/**
1234 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1235 * @memcg: the memory cgroup
1236 *
1237 * Returns the maximum amount of memory @mem can be charged with, in
1238 * pages.
1239 */
1240static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1241{
1242 unsigned long long margin;
1243
1244 margin = res_counter_margin(&memcg->res);
1245 if (do_swap_account)
1246 margin = min(margin, res_counter_margin(&memcg->memsw));
1247 return margin >> PAGE_SHIFT;
1248}
1249
1250int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1251{
1252 struct cgroup *cgrp = memcg->css.cgroup;
1253
1254 /* root ? */
1255 if (cgrp->parent == NULL)
1256 return vm_swappiness;
1257
1258 return memcg->swappiness;
1259}
1260
1261/*
1262 * memcg->moving_account is used for checking possibility that some thread is
1263 * calling move_account(). When a thread on CPU-A starts moving pages under
1264 * a memcg, other threads should check memcg->moving_account under
1265 * rcu_read_lock(), like this:
1266 *
1267 * CPU-A CPU-B
1268 * rcu_read_lock()
1269 * memcg->moving_account+1 if (memcg->mocing_account)
1270 * take heavy locks.
1271 * synchronize_rcu() update something.
1272 * rcu_read_unlock()
1273 * start move here.
1274 */
1275
1276/* for quick checking without looking up memcg */
1277atomic_t memcg_moving __read_mostly;
1278
1279static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1280{
1281 atomic_inc(&memcg_moving);
1282 atomic_inc(&memcg->moving_account);
1283 synchronize_rcu();
1284}
1285
1286static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1287{
1288 /*
1289 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1290 * We check NULL in callee rather than caller.
1291 */
1292 if (memcg) {
1293 atomic_dec(&memcg_moving);
1294 atomic_dec(&memcg->moving_account);
1295 }
1296}
1297
1298/*
1299 * 2 routines for checking "mem" is under move_account() or not.
1300 *
1301 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1302 * is used for avoiding races in accounting. If true,
1303 * pc->mem_cgroup may be overwritten.
1304 *
1305 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1306 * under hierarchy of moving cgroups. This is for
1307 * waiting at hith-memory prressure caused by "move".
1308 */
1309
1310static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1311{
1312 VM_BUG_ON(!rcu_read_lock_held());
1313 return atomic_read(&memcg->moving_account) > 0;
1314}
1315
1316static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1317{
1318 struct mem_cgroup *from;
1319 struct mem_cgroup *to;
1320 bool ret = false;
1321 /*
1322 * Unlike task_move routines, we access mc.to, mc.from not under
1323 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1324 */
1325 spin_lock(&mc.lock);
1326 from = mc.from;
1327 to = mc.to;
1328 if (!from)
1329 goto unlock;
1330
1331 ret = mem_cgroup_same_or_subtree(memcg, from)
1332 || mem_cgroup_same_or_subtree(memcg, to);
1333unlock:
1334 spin_unlock(&mc.lock);
1335 return ret;
1336}
1337
1338static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1339{
1340 if (mc.moving_task && current != mc.moving_task) {
1341 if (mem_cgroup_under_move(memcg)) {
1342 DEFINE_WAIT(wait);
1343 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1344 /* moving charge context might have finished. */
1345 if (mc.moving_task)
1346 schedule();
1347 finish_wait(&mc.waitq, &wait);
1348 return true;
1349 }
1350 }
1351 return false;
1352}
1353
1354/*
1355 * Take this lock when
1356 * - a code tries to modify page's memcg while it's USED.
1357 * - a code tries to modify page state accounting in a memcg.
1358 * see mem_cgroup_stolen(), too.
1359 */
1360static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1361 unsigned long *flags)
1362{
1363 spin_lock_irqsave(&memcg->move_lock, *flags);
1364}
1365
1366static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1367 unsigned long *flags)
1368{
1369 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1370}
1371
1372/**
1373 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1374 * @memcg: The memory cgroup that went over limit
1375 * @p: Task that is going to be killed
1376 *
1377 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1378 * enabled
1379 */
1380void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1381{
1382 struct cgroup *task_cgrp;
1383 struct cgroup *mem_cgrp;
1384 /*
1385 * Need a buffer in BSS, can't rely on allocations. The code relies
1386 * on the assumption that OOM is serialized for memory controller.
1387 * If this assumption is broken, revisit this code.
1388 */
1389 static char memcg_name[PATH_MAX];
1390 int ret;
1391
1392 if (!memcg || !p)
1393 return;
1394
1395 rcu_read_lock();
1396
1397 mem_cgrp = memcg->css.cgroup;
1398 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1399
1400 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1401 if (ret < 0) {
1402 /*
1403 * Unfortunately, we are unable to convert to a useful name
1404 * But we'll still print out the usage information
1405 */
1406 rcu_read_unlock();
1407 goto done;
1408 }
1409 rcu_read_unlock();
1410
1411 printk(KERN_INFO "Task in %s killed", memcg_name);
1412
1413 rcu_read_lock();
1414 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1415 if (ret < 0) {
1416 rcu_read_unlock();
1417 goto done;
1418 }
1419 rcu_read_unlock();
1420
1421 /*
1422 * Continues from above, so we don't need an KERN_ level
1423 */
1424 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1425done:
1426
1427 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1428 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1429 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1430 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1431 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1432 "failcnt %llu\n",
1433 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1434 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1435 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1436}
1437
1438/*
1439 * This function returns the number of memcg under hierarchy tree. Returns
1440 * 1(self count) if no children.
1441 */
1442static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1443{
1444 int num = 0;
1445 struct mem_cgroup *iter;
1446
1447 for_each_mem_cgroup_tree(iter, memcg)
1448 num++;
1449 return num;
1450}
1451
1452/*
1453 * Return the memory (and swap, if configured) limit for a memcg.
1454 */
1455static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1456{
1457 u64 limit;
1458 u64 memsw;
1459
1460 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1461 limit += total_swap_pages << PAGE_SHIFT;
1462
1463 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1464 /*
1465 * If memsw is finite and limits the amount of swap space available
1466 * to this memcg, return that limit.
1467 */
1468 return min(limit, memsw);
1469}
1470
1471void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1472 int order)
1473{
1474 struct mem_cgroup *iter;
1475 unsigned long chosen_points = 0;
1476 unsigned long totalpages;
1477 unsigned int points = 0;
1478 struct task_struct *chosen = NULL;
1479
1480 /*
1481 * If current has a pending SIGKILL, then automatically select it. The
1482 * goal is to allow it to allocate so that it may quickly exit and free
1483 * its memory.
1484 */
1485 if (fatal_signal_pending(current)) {
1486 set_thread_flag(TIF_MEMDIE);
1487 return;
1488 }
1489
1490 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1491 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1492 for_each_mem_cgroup_tree(iter, memcg) {
1493 struct cgroup *cgroup = iter->css.cgroup;
1494 struct cgroup_iter it;
1495 struct task_struct *task;
1496
1497 cgroup_iter_start(cgroup, &it);
1498 while ((task = cgroup_iter_next(cgroup, &it))) {
1499 switch (oom_scan_process_thread(task, totalpages, NULL,
1500 false)) {
1501 case OOM_SCAN_SELECT:
1502 if (chosen)
1503 put_task_struct(chosen);
1504 chosen = task;
1505 chosen_points = ULONG_MAX;
1506 get_task_struct(chosen);
1507 /* fall through */
1508 case OOM_SCAN_CONTINUE:
1509 continue;
1510 case OOM_SCAN_ABORT:
1511 cgroup_iter_end(cgroup, &it);
1512 mem_cgroup_iter_break(memcg, iter);
1513 if (chosen)
1514 put_task_struct(chosen);
1515 return;
1516 case OOM_SCAN_OK:
1517 break;
1518 };
1519 points = oom_badness(task, memcg, NULL, totalpages);
1520 if (points > chosen_points) {
1521 if (chosen)
1522 put_task_struct(chosen);
1523 chosen = task;
1524 chosen_points = points;
1525 get_task_struct(chosen);
1526 }
1527 }
1528 cgroup_iter_end(cgroup, &it);
1529 }
1530
1531 if (!chosen)
1532 return;
1533 points = chosen_points * 1000 / totalpages;
1534 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1535 NULL, "Memory cgroup out of memory");
1536}
1537
1538static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1539 gfp_t gfp_mask,
1540 unsigned long flags)
1541{
1542 unsigned long total = 0;
1543 bool noswap = false;
1544 int loop;
1545
1546 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1547 noswap = true;
1548 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1549 noswap = true;
1550
1551 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1552 if (loop)
1553 drain_all_stock_async(memcg);
1554 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1555 /*
1556 * Allow limit shrinkers, which are triggered directly
1557 * by userspace, to catch signals and stop reclaim
1558 * after minimal progress, regardless of the margin.
1559 */
1560 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1561 break;
1562 if (mem_cgroup_margin(memcg))
1563 break;
1564 /*
1565 * If nothing was reclaimed after two attempts, there
1566 * may be no reclaimable pages in this hierarchy.
1567 */
1568 if (loop && !total)
1569 break;
1570 }
1571 return total;
1572}
1573
1574/**
1575 * test_mem_cgroup_node_reclaimable
1576 * @memcg: the target memcg
1577 * @nid: the node ID to be checked.
1578 * @noswap : specify true here if the user wants flle only information.
1579 *
1580 * This function returns whether the specified memcg contains any
1581 * reclaimable pages on a node. Returns true if there are any reclaimable
1582 * pages in the node.
1583 */
1584static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1585 int nid, bool noswap)
1586{
1587 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1588 return true;
1589 if (noswap || !total_swap_pages)
1590 return false;
1591 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1592 return true;
1593 return false;
1594
1595}
1596#if MAX_NUMNODES > 1
1597
1598/*
1599 * Always updating the nodemask is not very good - even if we have an empty
1600 * list or the wrong list here, we can start from some node and traverse all
1601 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1602 *
1603 */
1604static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1605{
1606 int nid;
1607 /*
1608 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1609 * pagein/pageout changes since the last update.
1610 */
1611 if (!atomic_read(&memcg->numainfo_events))
1612 return;
1613 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1614 return;
1615
1616 /* make a nodemask where this memcg uses memory from */
1617 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1618
1619 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1620
1621 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1622 node_clear(nid, memcg->scan_nodes);
1623 }
1624
1625 atomic_set(&memcg->numainfo_events, 0);
1626 atomic_set(&memcg->numainfo_updating, 0);
1627}
1628
1629/*
1630 * Selecting a node where we start reclaim from. Because what we need is just
1631 * reducing usage counter, start from anywhere is O,K. Considering
1632 * memory reclaim from current node, there are pros. and cons.
1633 *
1634 * Freeing memory from current node means freeing memory from a node which
1635 * we'll use or we've used. So, it may make LRU bad. And if several threads
1636 * hit limits, it will see a contention on a node. But freeing from remote
1637 * node means more costs for memory reclaim because of memory latency.
1638 *
1639 * Now, we use round-robin. Better algorithm is welcomed.
1640 */
1641int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1642{
1643 int node;
1644
1645 mem_cgroup_may_update_nodemask(memcg);
1646 node = memcg->last_scanned_node;
1647
1648 node = next_node(node, memcg->scan_nodes);
1649 if (node == MAX_NUMNODES)
1650 node = first_node(memcg->scan_nodes);
1651 /*
1652 * We call this when we hit limit, not when pages are added to LRU.
1653 * No LRU may hold pages because all pages are UNEVICTABLE or
1654 * memcg is too small and all pages are not on LRU. In that case,
1655 * we use curret node.
1656 */
1657 if (unlikely(node == MAX_NUMNODES))
1658 node = numa_node_id();
1659
1660 memcg->last_scanned_node = node;
1661 return node;
1662}
1663
1664/*
1665 * Check all nodes whether it contains reclaimable pages or not.
1666 * For quick scan, we make use of scan_nodes. This will allow us to skip
1667 * unused nodes. But scan_nodes is lazily updated and may not cotain
1668 * enough new information. We need to do double check.
1669 */
1670static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1671{
1672 int nid;
1673
1674 /*
1675 * quick check...making use of scan_node.
1676 * We can skip unused nodes.
1677 */
1678 if (!nodes_empty(memcg->scan_nodes)) {
1679 for (nid = first_node(memcg->scan_nodes);
1680 nid < MAX_NUMNODES;
1681 nid = next_node(nid, memcg->scan_nodes)) {
1682
1683 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1684 return true;
1685 }
1686 }
1687 /*
1688 * Check rest of nodes.
1689 */
1690 for_each_node_state(nid, N_HIGH_MEMORY) {
1691 if (node_isset(nid, memcg->scan_nodes))
1692 continue;
1693 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1694 return true;
1695 }
1696 return false;
1697}
1698
1699#else
1700int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1701{
1702 return 0;
1703}
1704
1705static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1706{
1707 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1708}
1709#endif
1710
1711static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1712 struct zone *zone,
1713 gfp_t gfp_mask,
1714 unsigned long *total_scanned)
1715{
1716 struct mem_cgroup *victim = NULL;
1717 int total = 0;
1718 int loop = 0;
1719 unsigned long excess;
1720 unsigned long nr_scanned;
1721 struct mem_cgroup_reclaim_cookie reclaim = {
1722 .zone = zone,
1723 .priority = 0,
1724 };
1725
1726 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1727
1728 while (1) {
1729 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1730 if (!victim) {
1731 loop++;
1732 if (loop >= 2) {
1733 /*
1734 * If we have not been able to reclaim
1735 * anything, it might because there are
1736 * no reclaimable pages under this hierarchy
1737 */
1738 if (!total)
1739 break;
1740 /*
1741 * We want to do more targeted reclaim.
1742 * excess >> 2 is not to excessive so as to
1743 * reclaim too much, nor too less that we keep
1744 * coming back to reclaim from this cgroup
1745 */
1746 if (total >= (excess >> 2) ||
1747 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1748 break;
1749 }
1750 continue;
1751 }
1752 if (!mem_cgroup_reclaimable(victim, false))
1753 continue;
1754 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1755 zone, &nr_scanned);
1756 *total_scanned += nr_scanned;
1757 if (!res_counter_soft_limit_excess(&root_memcg->res))
1758 break;
1759 }
1760 mem_cgroup_iter_break(root_memcg, victim);
1761 return total;
1762}
1763
1764/*
1765 * Check OOM-Killer is already running under our hierarchy.
1766 * If someone is running, return false.
1767 * Has to be called with memcg_oom_lock
1768 */
1769static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1770{
1771 struct mem_cgroup *iter, *failed = NULL;
1772
1773 for_each_mem_cgroup_tree(iter, memcg) {
1774 if (iter->oom_lock) {
1775 /*
1776 * this subtree of our hierarchy is already locked
1777 * so we cannot give a lock.
1778 */
1779 failed = iter;
1780 mem_cgroup_iter_break(memcg, iter);
1781 break;
1782 } else
1783 iter->oom_lock = true;
1784 }
1785
1786 if (!failed)
1787 return true;
1788
1789 /*
1790 * OK, we failed to lock the whole subtree so we have to clean up
1791 * what we set up to the failing subtree
1792 */
1793 for_each_mem_cgroup_tree(iter, memcg) {
1794 if (iter == failed) {
1795 mem_cgroup_iter_break(memcg, iter);
1796 break;
1797 }
1798 iter->oom_lock = false;
1799 }
1800 return false;
1801}
1802
1803/*
1804 * Has to be called with memcg_oom_lock
1805 */
1806static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1807{
1808 struct mem_cgroup *iter;
1809
1810 for_each_mem_cgroup_tree(iter, memcg)
1811 iter->oom_lock = false;
1812 return 0;
1813}
1814
1815static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1816{
1817 struct mem_cgroup *iter;
1818
1819 for_each_mem_cgroup_tree(iter, memcg)
1820 atomic_inc(&iter->under_oom);
1821}
1822
1823static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1824{
1825 struct mem_cgroup *iter;
1826
1827 /*
1828 * When a new child is created while the hierarchy is under oom,
1829 * mem_cgroup_oom_lock() may not be called. We have to use
1830 * atomic_add_unless() here.
1831 */
1832 for_each_mem_cgroup_tree(iter, memcg)
1833 atomic_add_unless(&iter->under_oom, -1, 0);
1834}
1835
1836static DEFINE_SPINLOCK(memcg_oom_lock);
1837static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1838
1839struct oom_wait_info {
1840 struct mem_cgroup *memcg;
1841 wait_queue_t wait;
1842};
1843
1844static int memcg_oom_wake_function(wait_queue_t *wait,
1845 unsigned mode, int sync, void *arg)
1846{
1847 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1848 struct mem_cgroup *oom_wait_memcg;
1849 struct oom_wait_info *oom_wait_info;
1850
1851 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1852 oom_wait_memcg = oom_wait_info->memcg;
1853
1854 /*
1855 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1856 * Then we can use css_is_ancestor without taking care of RCU.
1857 */
1858 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1859 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1860 return 0;
1861 return autoremove_wake_function(wait, mode, sync, arg);
1862}
1863
1864static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1865{
1866 /* for filtering, pass "memcg" as argument. */
1867 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1868}
1869
1870static void memcg_oom_recover(struct mem_cgroup *memcg)
1871{
1872 if (memcg && atomic_read(&memcg->under_oom))
1873 memcg_wakeup_oom(memcg);
1874}
1875
1876/*
1877 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1878 */
1879static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1880 int order)
1881{
1882 struct oom_wait_info owait;
1883 bool locked, need_to_kill;
1884
1885 owait.memcg = memcg;
1886 owait.wait.flags = 0;
1887 owait.wait.func = memcg_oom_wake_function;
1888 owait.wait.private = current;
1889 INIT_LIST_HEAD(&owait.wait.task_list);
1890 need_to_kill = true;
1891 mem_cgroup_mark_under_oom(memcg);
1892
1893 /* At first, try to OOM lock hierarchy under memcg.*/
1894 spin_lock(&memcg_oom_lock);
1895 locked = mem_cgroup_oom_lock(memcg);
1896 /*
1897 * Even if signal_pending(), we can't quit charge() loop without
1898 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1899 * under OOM is always welcomed, use TASK_KILLABLE here.
1900 */
1901 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1902 if (!locked || memcg->oom_kill_disable)
1903 need_to_kill = false;
1904 if (locked)
1905 mem_cgroup_oom_notify(memcg);
1906 spin_unlock(&memcg_oom_lock);
1907
1908 if (need_to_kill) {
1909 finish_wait(&memcg_oom_waitq, &owait.wait);
1910 mem_cgroup_out_of_memory(memcg, mask, order);
1911 } else {
1912 schedule();
1913 finish_wait(&memcg_oom_waitq, &owait.wait);
1914 }
1915 spin_lock(&memcg_oom_lock);
1916 if (locked)
1917 mem_cgroup_oom_unlock(memcg);
1918 memcg_wakeup_oom(memcg);
1919 spin_unlock(&memcg_oom_lock);
1920
1921 mem_cgroup_unmark_under_oom(memcg);
1922
1923 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1924 return false;
1925 /* Give chance to dying process */
1926 schedule_timeout_uninterruptible(1);
1927 return true;
1928}
1929
1930/*
1931 * Currently used to update mapped file statistics, but the routine can be
1932 * generalized to update other statistics as well.
1933 *
1934 * Notes: Race condition
1935 *
1936 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1937 * it tends to be costly. But considering some conditions, we doesn't need
1938 * to do so _always_.
1939 *
1940 * Considering "charge", lock_page_cgroup() is not required because all
1941 * file-stat operations happen after a page is attached to radix-tree. There
1942 * are no race with "charge".
1943 *
1944 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1945 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1946 * if there are race with "uncharge". Statistics itself is properly handled
1947 * by flags.
1948 *
1949 * Considering "move", this is an only case we see a race. To make the race
1950 * small, we check mm->moving_account and detect there are possibility of race
1951 * If there is, we take a lock.
1952 */
1953
1954void __mem_cgroup_begin_update_page_stat(struct page *page,
1955 bool *locked, unsigned long *flags)
1956{
1957 struct mem_cgroup *memcg;
1958 struct page_cgroup *pc;
1959
1960 pc = lookup_page_cgroup(page);
1961again:
1962 memcg = pc->mem_cgroup;
1963 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1964 return;
1965 /*
1966 * If this memory cgroup is not under account moving, we don't
1967 * need to take move_lock_mem_cgroup(). Because we already hold
1968 * rcu_read_lock(), any calls to move_account will be delayed until
1969 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1970 */
1971 if (!mem_cgroup_stolen(memcg))
1972 return;
1973
1974 move_lock_mem_cgroup(memcg, flags);
1975 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1976 move_unlock_mem_cgroup(memcg, flags);
1977 goto again;
1978 }
1979 *locked = true;
1980}
1981
1982void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1983{
1984 struct page_cgroup *pc = lookup_page_cgroup(page);
1985
1986 /*
1987 * It's guaranteed that pc->mem_cgroup never changes while
1988 * lock is held because a routine modifies pc->mem_cgroup
1989 * should take move_lock_mem_cgroup().
1990 */
1991 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1992}
1993
1994void mem_cgroup_update_page_stat(struct page *page,
1995 enum mem_cgroup_page_stat_item idx, int val)
1996{
1997 struct mem_cgroup *memcg;
1998 struct page_cgroup *pc = lookup_page_cgroup(page);
1999 unsigned long uninitialized_var(flags);
2000
2001 if (mem_cgroup_disabled())
2002 return;
2003
2004 memcg = pc->mem_cgroup;
2005 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2006 return;
2007
2008 switch (idx) {
2009 case MEMCG_NR_FILE_MAPPED:
2010 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2011 break;
2012 default:
2013 BUG();
2014 }
2015
2016 this_cpu_add(memcg->stat->count[idx], val);
2017}
2018
2019/*
2020 * size of first charge trial. "32" comes from vmscan.c's magic value.
2021 * TODO: maybe necessary to use big numbers in big irons.
2022 */
2023#define CHARGE_BATCH 32U
2024struct memcg_stock_pcp {
2025 struct mem_cgroup *cached; /* this never be root cgroup */
2026 unsigned int nr_pages;
2027 struct work_struct work;
2028 unsigned long flags;
2029#define FLUSHING_CACHED_CHARGE 0
2030};
2031static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2032static DEFINE_MUTEX(percpu_charge_mutex);
2033
2034/*
2035 * Try to consume stocked charge on this cpu. If success, one page is consumed
2036 * from local stock and true is returned. If the stock is 0 or charges from a
2037 * cgroup which is not current target, returns false. This stock will be
2038 * refilled.
2039 */
2040static bool consume_stock(struct mem_cgroup *memcg)
2041{
2042 struct memcg_stock_pcp *stock;
2043 bool ret = true;
2044
2045 stock = &get_cpu_var(memcg_stock);
2046 if (memcg == stock->cached && stock->nr_pages)
2047 stock->nr_pages--;
2048 else /* need to call res_counter_charge */
2049 ret = false;
2050 put_cpu_var(memcg_stock);
2051 return ret;
2052}
2053
2054/*
2055 * Returns stocks cached in percpu to res_counter and reset cached information.
2056 */
2057static void drain_stock(struct memcg_stock_pcp *stock)
2058{
2059 struct mem_cgroup *old = stock->cached;
2060
2061 if (stock->nr_pages) {
2062 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2063
2064 res_counter_uncharge(&old->res, bytes);
2065 if (do_swap_account)
2066 res_counter_uncharge(&old->memsw, bytes);
2067 stock->nr_pages = 0;
2068 }
2069 stock->cached = NULL;
2070}
2071
2072/*
2073 * This must be called under preempt disabled or must be called by
2074 * a thread which is pinned to local cpu.
2075 */
2076static void drain_local_stock(struct work_struct *dummy)
2077{
2078 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2079 drain_stock(stock);
2080 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2081}
2082
2083/*
2084 * Cache charges(val) which is from res_counter, to local per_cpu area.
2085 * This will be consumed by consume_stock() function, later.
2086 */
2087static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2088{
2089 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2090
2091 if (stock->cached != memcg) { /* reset if necessary */
2092 drain_stock(stock);
2093 stock->cached = memcg;
2094 }
2095 stock->nr_pages += nr_pages;
2096 put_cpu_var(memcg_stock);
2097}
2098
2099/*
2100 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2101 * of the hierarchy under it. sync flag says whether we should block
2102 * until the work is done.
2103 */
2104static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2105{
2106 int cpu, curcpu;
2107
2108 /* Notify other cpus that system-wide "drain" is running */
2109 get_online_cpus();
2110 curcpu = get_cpu();
2111 for_each_online_cpu(cpu) {
2112 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2113 struct mem_cgroup *memcg;
2114
2115 memcg = stock->cached;
2116 if (!memcg || !stock->nr_pages)
2117 continue;
2118 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2119 continue;
2120 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2121 if (cpu == curcpu)
2122 drain_local_stock(&stock->work);
2123 else
2124 schedule_work_on(cpu, &stock->work);
2125 }
2126 }
2127 put_cpu();
2128
2129 if (!sync)
2130 goto out;
2131
2132 for_each_online_cpu(cpu) {
2133 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2134 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2135 flush_work(&stock->work);
2136 }
2137out:
2138 put_online_cpus();
2139}
2140
2141/*
2142 * Tries to drain stocked charges in other cpus. This function is asynchronous
2143 * and just put a work per cpu for draining localy on each cpu. Caller can
2144 * expects some charges will be back to res_counter later but cannot wait for
2145 * it.
2146 */
2147static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2148{
2149 /*
2150 * If someone calls draining, avoid adding more kworker runs.
2151 */
2152 if (!mutex_trylock(&percpu_charge_mutex))
2153 return;
2154 drain_all_stock(root_memcg, false);
2155 mutex_unlock(&percpu_charge_mutex);
2156}
2157
2158/* This is a synchronous drain interface. */
2159static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2160{
2161 /* called when force_empty is called */
2162 mutex_lock(&percpu_charge_mutex);
2163 drain_all_stock(root_memcg, true);
2164 mutex_unlock(&percpu_charge_mutex);
2165}
2166
2167/*
2168 * This function drains percpu counter value from DEAD cpu and
2169 * move it to local cpu. Note that this function can be preempted.
2170 */
2171static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2172{
2173 int i;
2174
2175 spin_lock(&memcg->pcp_counter_lock);
2176 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2177 long x = per_cpu(memcg->stat->count[i], cpu);
2178
2179 per_cpu(memcg->stat->count[i], cpu) = 0;
2180 memcg->nocpu_base.count[i] += x;
2181 }
2182 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2183 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2184
2185 per_cpu(memcg->stat->events[i], cpu) = 0;
2186 memcg->nocpu_base.events[i] += x;
2187 }
2188 spin_unlock(&memcg->pcp_counter_lock);
2189}
2190
2191static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2192 unsigned long action,
2193 void *hcpu)
2194{
2195 int cpu = (unsigned long)hcpu;
2196 struct memcg_stock_pcp *stock;
2197 struct mem_cgroup *iter;
2198
2199 if (action == CPU_ONLINE)
2200 return NOTIFY_OK;
2201
2202 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2203 return NOTIFY_OK;
2204
2205 for_each_mem_cgroup(iter)
2206 mem_cgroup_drain_pcp_counter(iter, cpu);
2207
2208 stock = &per_cpu(memcg_stock, cpu);
2209 drain_stock(stock);
2210 return NOTIFY_OK;
2211}
2212
2213
2214/* See __mem_cgroup_try_charge() for details */
2215enum {
2216 CHARGE_OK, /* success */
2217 CHARGE_RETRY, /* need to retry but retry is not bad */
2218 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2219 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2220 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2221};
2222
2223static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2224 unsigned int nr_pages, bool oom_check)
2225{
2226 unsigned long csize = nr_pages * PAGE_SIZE;
2227 struct mem_cgroup *mem_over_limit;
2228 struct res_counter *fail_res;
2229 unsigned long flags = 0;
2230 int ret;
2231
2232 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2233
2234 if (likely(!ret)) {
2235 if (!do_swap_account)
2236 return CHARGE_OK;
2237 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2238 if (likely(!ret))
2239 return CHARGE_OK;
2240
2241 res_counter_uncharge(&memcg->res, csize);
2242 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2243 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2244 } else
2245 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2246 /*
2247 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2248 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2249 *
2250 * Never reclaim on behalf of optional batching, retry with a
2251 * single page instead.
2252 */
2253 if (nr_pages == CHARGE_BATCH)
2254 return CHARGE_RETRY;
2255
2256 if (!(gfp_mask & __GFP_WAIT))
2257 return CHARGE_WOULDBLOCK;
2258
2259 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2260 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2261 return CHARGE_RETRY;
2262 /*
2263 * Even though the limit is exceeded at this point, reclaim
2264 * may have been able to free some pages. Retry the charge
2265 * before killing the task.
2266 *
2267 * Only for regular pages, though: huge pages are rather
2268 * unlikely to succeed so close to the limit, and we fall back
2269 * to regular pages anyway in case of failure.
2270 */
2271 if (nr_pages == 1 && ret)
2272 return CHARGE_RETRY;
2273
2274 /*
2275 * At task move, charge accounts can be doubly counted. So, it's
2276 * better to wait until the end of task_move if something is going on.
2277 */
2278 if (mem_cgroup_wait_acct_move(mem_over_limit))
2279 return CHARGE_RETRY;
2280
2281 /* If we don't need to call oom-killer at el, return immediately */
2282 if (!oom_check)
2283 return CHARGE_NOMEM;
2284 /* check OOM */
2285 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2286 return CHARGE_OOM_DIE;
2287
2288 return CHARGE_RETRY;
2289}
2290
2291/*
2292 * __mem_cgroup_try_charge() does
2293 * 1. detect memcg to be charged against from passed *mm and *ptr,
2294 * 2. update res_counter
2295 * 3. call memory reclaim if necessary.
2296 *
2297 * In some special case, if the task is fatal, fatal_signal_pending() or
2298 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2299 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2300 * as possible without any hazards. 2: all pages should have a valid
2301 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2302 * pointer, that is treated as a charge to root_mem_cgroup.
2303 *
2304 * So __mem_cgroup_try_charge() will return
2305 * 0 ... on success, filling *ptr with a valid memcg pointer.
2306 * -ENOMEM ... charge failure because of resource limits.
2307 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2308 *
2309 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2310 * the oom-killer can be invoked.
2311 */
2312static int __mem_cgroup_try_charge(struct mm_struct *mm,
2313 gfp_t gfp_mask,
2314 unsigned int nr_pages,
2315 struct mem_cgroup **ptr,
2316 bool oom)
2317{
2318 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2319 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2320 struct mem_cgroup *memcg = NULL;
2321 int ret;
2322
2323 /*
2324 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2325 * in system level. So, allow to go ahead dying process in addition to
2326 * MEMDIE process.
2327 */
2328 if (unlikely(test_thread_flag(TIF_MEMDIE)
2329 || fatal_signal_pending(current)))
2330 goto bypass;
2331
2332 /*
2333 * We always charge the cgroup the mm_struct belongs to.
2334 * The mm_struct's mem_cgroup changes on task migration if the
2335 * thread group leader migrates. It's possible that mm is not
2336 * set, if so charge the init_mm (happens for pagecache usage).
2337 */
2338 if (!*ptr && !mm)
2339 *ptr = root_mem_cgroup;
2340again:
2341 if (*ptr) { /* css should be a valid one */
2342 memcg = *ptr;
2343 VM_BUG_ON(css_is_removed(&memcg->css));
2344 if (mem_cgroup_is_root(memcg))
2345 goto done;
2346 if (nr_pages == 1 && consume_stock(memcg))
2347 goto done;
2348 css_get(&memcg->css);
2349 } else {
2350 struct task_struct *p;
2351
2352 rcu_read_lock();
2353 p = rcu_dereference(mm->owner);
2354 /*
2355 * Because we don't have task_lock(), "p" can exit.
2356 * In that case, "memcg" can point to root or p can be NULL with
2357 * race with swapoff. Then, we have small risk of mis-accouning.
2358 * But such kind of mis-account by race always happens because
2359 * we don't have cgroup_mutex(). It's overkill and we allo that
2360 * small race, here.
2361 * (*) swapoff at el will charge against mm-struct not against
2362 * task-struct. So, mm->owner can be NULL.
2363 */
2364 memcg = mem_cgroup_from_task(p);
2365 if (!memcg)
2366 memcg = root_mem_cgroup;
2367 if (mem_cgroup_is_root(memcg)) {
2368 rcu_read_unlock();
2369 goto done;
2370 }
2371 if (nr_pages == 1 && consume_stock(memcg)) {
2372 /*
2373 * It seems dagerous to access memcg without css_get().
2374 * But considering how consume_stok works, it's not
2375 * necessary. If consume_stock success, some charges
2376 * from this memcg are cached on this cpu. So, we
2377 * don't need to call css_get()/css_tryget() before
2378 * calling consume_stock().
2379 */
2380 rcu_read_unlock();
2381 goto done;
2382 }
2383 /* after here, we may be blocked. we need to get refcnt */
2384 if (!css_tryget(&memcg->css)) {
2385 rcu_read_unlock();
2386 goto again;
2387 }
2388 rcu_read_unlock();
2389 }
2390
2391 do {
2392 bool oom_check;
2393
2394 /* If killed, bypass charge */
2395 if (fatal_signal_pending(current)) {
2396 css_put(&memcg->css);
2397 goto bypass;
2398 }
2399
2400 oom_check = false;
2401 if (oom && !nr_oom_retries) {
2402 oom_check = true;
2403 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2404 }
2405
2406 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2407 switch (ret) {
2408 case CHARGE_OK:
2409 break;
2410 case CHARGE_RETRY: /* not in OOM situation but retry */
2411 batch = nr_pages;
2412 css_put(&memcg->css);
2413 memcg = NULL;
2414 goto again;
2415 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2416 css_put(&memcg->css);
2417 goto nomem;
2418 case CHARGE_NOMEM: /* OOM routine works */
2419 if (!oom) {
2420 css_put(&memcg->css);
2421 goto nomem;
2422 }
2423 /* If oom, we never return -ENOMEM */
2424 nr_oom_retries--;
2425 break;
2426 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2427 css_put(&memcg->css);
2428 goto bypass;
2429 }
2430 } while (ret != CHARGE_OK);
2431
2432 if (batch > nr_pages)
2433 refill_stock(memcg, batch - nr_pages);
2434 css_put(&memcg->css);
2435done:
2436 *ptr = memcg;
2437 return 0;
2438nomem:
2439 *ptr = NULL;
2440 return -ENOMEM;
2441bypass:
2442 *ptr = root_mem_cgroup;
2443 return -EINTR;
2444}
2445
2446/*
2447 * Somemtimes we have to undo a charge we got by try_charge().
2448 * This function is for that and do uncharge, put css's refcnt.
2449 * gotten by try_charge().
2450 */
2451static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2452 unsigned int nr_pages)
2453{
2454 if (!mem_cgroup_is_root(memcg)) {
2455 unsigned long bytes = nr_pages * PAGE_SIZE;
2456
2457 res_counter_uncharge(&memcg->res, bytes);
2458 if (do_swap_account)
2459 res_counter_uncharge(&memcg->memsw, bytes);
2460 }
2461}
2462
2463/*
2464 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2465 * This is useful when moving usage to parent cgroup.
2466 */
2467static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2468 unsigned int nr_pages)
2469{
2470 unsigned long bytes = nr_pages * PAGE_SIZE;
2471
2472 if (mem_cgroup_is_root(memcg))
2473 return;
2474
2475 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2476 if (do_swap_account)
2477 res_counter_uncharge_until(&memcg->memsw,
2478 memcg->memsw.parent, bytes);
2479}
2480
2481/*
2482 * A helper function to get mem_cgroup from ID. must be called under
2483 * rcu_read_lock(). The caller must check css_is_removed() or some if
2484 * it's concern. (dropping refcnt from swap can be called against removed
2485 * memcg.)
2486 */
2487static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2488{
2489 struct cgroup_subsys_state *css;
2490
2491 /* ID 0 is unused ID */
2492 if (!id)
2493 return NULL;
2494 css = css_lookup(&mem_cgroup_subsys, id);
2495 if (!css)
2496 return NULL;
2497 return container_of(css, struct mem_cgroup, css);
2498}
2499
2500struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2501{
2502 struct mem_cgroup *memcg = NULL;
2503 struct page_cgroup *pc;
2504 unsigned short id;
2505 swp_entry_t ent;
2506
2507 VM_BUG_ON(!PageLocked(page));
2508
2509 pc = lookup_page_cgroup(page);
2510 lock_page_cgroup(pc);
2511 if (PageCgroupUsed(pc)) {
2512 memcg = pc->mem_cgroup;
2513 if (memcg && !css_tryget(&memcg->css))
2514 memcg = NULL;
2515 } else if (PageSwapCache(page)) {
2516 ent.val = page_private(page);
2517 id = lookup_swap_cgroup_id(ent);
2518 rcu_read_lock();
2519 memcg = mem_cgroup_lookup(id);
2520 if (memcg && !css_tryget(&memcg->css))
2521 memcg = NULL;
2522 rcu_read_unlock();
2523 }
2524 unlock_page_cgroup(pc);
2525 return memcg;
2526}
2527
2528static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2529 struct page *page,
2530 unsigned int nr_pages,
2531 enum charge_type ctype,
2532 bool lrucare)
2533{
2534 struct page_cgroup *pc = lookup_page_cgroup(page);
2535 struct zone *uninitialized_var(zone);
2536 struct lruvec *lruvec;
2537 bool was_on_lru = false;
2538 bool anon;
2539
2540 lock_page_cgroup(pc);
2541 if (unlikely(PageCgroupUsed(pc))) {
2542 unlock_page_cgroup(pc);
2543 __mem_cgroup_cancel_charge(memcg, nr_pages);
2544 return;
2545 }
2546 /*
2547 * we don't need page_cgroup_lock about tail pages, becase they are not
2548 * accessed by any other context at this point.
2549 */
2550
2551 /*
2552 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2553 * may already be on some other mem_cgroup's LRU. Take care of it.
2554 */
2555 if (lrucare) {
2556 zone = page_zone(page);
2557 spin_lock_irq(&zone->lru_lock);
2558 if (PageLRU(page)) {
2559 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2560 ClearPageLRU(page);
2561 del_page_from_lru_list(page, lruvec, page_lru(page));
2562 was_on_lru = true;
2563 }
2564 }
2565
2566 pc->mem_cgroup = memcg;
2567 /*
2568 * We access a page_cgroup asynchronously without lock_page_cgroup().
2569 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2570 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2571 * before USED bit, we need memory barrier here.
2572 * See mem_cgroup_add_lru_list(), etc.
2573 */
2574 smp_wmb();
2575 SetPageCgroupUsed(pc);
2576
2577 if (lrucare) {
2578 if (was_on_lru) {
2579 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2580 VM_BUG_ON(PageLRU(page));
2581 SetPageLRU(page);
2582 add_page_to_lru_list(page, lruvec, page_lru(page));
2583 }
2584 spin_unlock_irq(&zone->lru_lock);
2585 }
2586
2587 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2588 anon = true;
2589 else
2590 anon = false;
2591
2592 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2593 unlock_page_cgroup(pc);
2594
2595 /*
2596 * "charge_statistics" updated event counter. Then, check it.
2597 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2598 * if they exceeds softlimit.
2599 */
2600 memcg_check_events(memcg, page);
2601}
2602
2603#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2604
2605#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2606/*
2607 * Because tail pages are not marked as "used", set it. We're under
2608 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2609 * charge/uncharge will be never happen and move_account() is done under
2610 * compound_lock(), so we don't have to take care of races.
2611 */
2612void mem_cgroup_split_huge_fixup(struct page *head)
2613{
2614 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2615 struct page_cgroup *pc;
2616 int i;
2617
2618 if (mem_cgroup_disabled())
2619 return;
2620 for (i = 1; i < HPAGE_PMD_NR; i++) {
2621 pc = head_pc + i;
2622 pc->mem_cgroup = head_pc->mem_cgroup;
2623 smp_wmb();/* see __commit_charge() */
2624 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2625 }
2626}
2627#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2628
2629/**
2630 * mem_cgroup_move_account - move account of the page
2631 * @page: the page
2632 * @nr_pages: number of regular pages (>1 for huge pages)
2633 * @pc: page_cgroup of the page.
2634 * @from: mem_cgroup which the page is moved from.
2635 * @to: mem_cgroup which the page is moved to. @from != @to.
2636 *
2637 * The caller must confirm following.
2638 * - page is not on LRU (isolate_page() is useful.)
2639 * - compound_lock is held when nr_pages > 1
2640 *
2641 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2642 * from old cgroup.
2643 */
2644static int mem_cgroup_move_account(struct page *page,
2645 unsigned int nr_pages,
2646 struct page_cgroup *pc,
2647 struct mem_cgroup *from,
2648 struct mem_cgroup *to)
2649{
2650 unsigned long flags;
2651 int ret;
2652 bool anon = PageAnon(page);
2653
2654 VM_BUG_ON(from == to);
2655 VM_BUG_ON(PageLRU(page));
2656 /*
2657 * The page is isolated from LRU. So, collapse function
2658 * will not handle this page. But page splitting can happen.
2659 * Do this check under compound_page_lock(). The caller should
2660 * hold it.
2661 */
2662 ret = -EBUSY;
2663 if (nr_pages > 1 && !PageTransHuge(page))
2664 goto out;
2665
2666 lock_page_cgroup(pc);
2667
2668 ret = -EINVAL;
2669 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2670 goto unlock;
2671
2672 move_lock_mem_cgroup(from, &flags);
2673
2674 if (!anon && page_mapped(page)) {
2675 /* Update mapped_file data for mem_cgroup */
2676 preempt_disable();
2677 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2678 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2679 preempt_enable();
2680 }
2681 mem_cgroup_charge_statistics(from, anon, -nr_pages);
2682
2683 /* caller should have done css_get */
2684 pc->mem_cgroup = to;
2685 mem_cgroup_charge_statistics(to, anon, nr_pages);
2686 /*
2687 * We charges against "to" which may not have any tasks. Then, "to"
2688 * can be under rmdir(). But in current implementation, caller of
2689 * this function is just force_empty() and move charge, so it's
2690 * guaranteed that "to" is never removed. So, we don't check rmdir
2691 * status here.
2692 */
2693 move_unlock_mem_cgroup(from, &flags);
2694 ret = 0;
2695unlock:
2696 unlock_page_cgroup(pc);
2697 /*
2698 * check events
2699 */
2700 memcg_check_events(to, page);
2701 memcg_check_events(from, page);
2702out:
2703 return ret;
2704}
2705
2706/*
2707 * move charges to its parent.
2708 */
2709
2710static int mem_cgroup_move_parent(struct page *page,
2711 struct page_cgroup *pc,
2712 struct mem_cgroup *child)
2713{
2714 struct mem_cgroup *parent;
2715 unsigned int nr_pages;
2716 unsigned long uninitialized_var(flags);
2717 int ret;
2718
2719 /* Is ROOT ? */
2720 if (mem_cgroup_is_root(child))
2721 return -EINVAL;
2722
2723 ret = -EBUSY;
2724 if (!get_page_unless_zero(page))
2725 goto out;
2726 if (isolate_lru_page(page))
2727 goto put;
2728
2729 nr_pages = hpage_nr_pages(page);
2730
2731 parent = parent_mem_cgroup(child);
2732 /*
2733 * If no parent, move charges to root cgroup.
2734 */
2735 if (!parent)
2736 parent = root_mem_cgroup;
2737
2738 if (nr_pages > 1)
2739 flags = compound_lock_irqsave(page);
2740
2741 ret = mem_cgroup_move_account(page, nr_pages,
2742 pc, child, parent);
2743 if (!ret)
2744 __mem_cgroup_cancel_local_charge(child, nr_pages);
2745
2746 if (nr_pages > 1)
2747 compound_unlock_irqrestore(page, flags);
2748 putback_lru_page(page);
2749put:
2750 put_page(page);
2751out:
2752 return ret;
2753}
2754
2755/*
2756 * Charge the memory controller for page usage.
2757 * Return
2758 * 0 if the charge was successful
2759 * < 0 if the cgroup is over its limit
2760 */
2761static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2762 gfp_t gfp_mask, enum charge_type ctype)
2763{
2764 struct mem_cgroup *memcg = NULL;
2765 unsigned int nr_pages = 1;
2766 bool oom = true;
2767 int ret;
2768
2769 if (PageTransHuge(page)) {
2770 nr_pages <<= compound_order(page);
2771 VM_BUG_ON(!PageTransHuge(page));
2772 /*
2773 * Never OOM-kill a process for a huge page. The
2774 * fault handler will fall back to regular pages.
2775 */
2776 oom = false;
2777 }
2778
2779 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2780 if (ret == -ENOMEM)
2781 return ret;
2782 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2783 return 0;
2784}
2785
2786int mem_cgroup_newpage_charge(struct page *page,
2787 struct mm_struct *mm, gfp_t gfp_mask)
2788{
2789 if (mem_cgroup_disabled())
2790 return 0;
2791 VM_BUG_ON(page_mapped(page));
2792 VM_BUG_ON(page->mapping && !PageAnon(page));
2793 VM_BUG_ON(!mm);
2794 return mem_cgroup_charge_common(page, mm, gfp_mask,
2795 MEM_CGROUP_CHARGE_TYPE_ANON);
2796}
2797
2798/*
2799 * While swap-in, try_charge -> commit or cancel, the page is locked.
2800 * And when try_charge() successfully returns, one refcnt to memcg without
2801 * struct page_cgroup is acquired. This refcnt will be consumed by
2802 * "commit()" or removed by "cancel()"
2803 */
2804int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2805 struct page *page,
2806 gfp_t mask, struct mem_cgroup **memcgp)
2807{
2808 struct mem_cgroup *memcg;
2809 int ret;
2810
2811 *memcgp = NULL;
2812
2813 if (mem_cgroup_disabled())
2814 return 0;
2815
2816 if (!do_swap_account)
2817 goto charge_cur_mm;
2818 /*
2819 * A racing thread's fault, or swapoff, may have already updated
2820 * the pte, and even removed page from swap cache: in those cases
2821 * do_swap_page()'s pte_same() test will fail; but there's also a
2822 * KSM case which does need to charge the page.
2823 */
2824 if (!PageSwapCache(page))
2825 goto charge_cur_mm;
2826 memcg = try_get_mem_cgroup_from_page(page);
2827 if (!memcg)
2828 goto charge_cur_mm;
2829 *memcgp = memcg;
2830 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2831 css_put(&memcg->css);
2832 if (ret == -EINTR)
2833 ret = 0;
2834 return ret;
2835charge_cur_mm:
2836 if (unlikely(!mm))
2837 mm = &init_mm;
2838 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2839 if (ret == -EINTR)
2840 ret = 0;
2841 return ret;
2842}
2843
2844void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2845{
2846 if (mem_cgroup_disabled())
2847 return;
2848 if (!memcg)
2849 return;
2850 __mem_cgroup_cancel_charge(memcg, 1);
2851}
2852
2853static void
2854__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2855 enum charge_type ctype)
2856{
2857 if (mem_cgroup_disabled())
2858 return;
2859 if (!memcg)
2860 return;
2861 cgroup_exclude_rmdir(&memcg->css);
2862
2863 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2864 /*
2865 * Now swap is on-memory. This means this page may be
2866 * counted both as mem and swap....double count.
2867 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2868 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2869 * may call delete_from_swap_cache() before reach here.
2870 */
2871 if (do_swap_account && PageSwapCache(page)) {
2872 swp_entry_t ent = {.val = page_private(page)};
2873 mem_cgroup_uncharge_swap(ent);
2874 }
2875 /*
2876 * At swapin, we may charge account against cgroup which has no tasks.
2877 * So, rmdir()->pre_destroy() can be called while we do this charge.
2878 * In that case, we need to call pre_destroy() again. check it here.
2879 */
2880 cgroup_release_and_wakeup_rmdir(&memcg->css);
2881}
2882
2883void mem_cgroup_commit_charge_swapin(struct page *page,
2884 struct mem_cgroup *memcg)
2885{
2886 __mem_cgroup_commit_charge_swapin(page, memcg,
2887 MEM_CGROUP_CHARGE_TYPE_ANON);
2888}
2889
2890int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2891 gfp_t gfp_mask)
2892{
2893 struct mem_cgroup *memcg = NULL;
2894 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2895 int ret;
2896
2897 if (mem_cgroup_disabled())
2898 return 0;
2899 if (PageCompound(page))
2900 return 0;
2901
2902 if (unlikely(!mm))
2903 mm = &init_mm;
2904
2905 if (!PageSwapCache(page))
2906 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2907 else { /* page is swapcache/shmem */
2908 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2909 if (!ret)
2910 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2911 }
2912 return ret;
2913}
2914
2915static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2916 unsigned int nr_pages,
2917 const enum charge_type ctype)
2918{
2919 struct memcg_batch_info *batch = NULL;
2920 bool uncharge_memsw = true;
2921
2922 /* If swapout, usage of swap doesn't decrease */
2923 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2924 uncharge_memsw = false;
2925
2926 batch = &current->memcg_batch;
2927 /*
2928 * In usual, we do css_get() when we remember memcg pointer.
2929 * But in this case, we keep res->usage until end of a series of
2930 * uncharges. Then, it's ok to ignore memcg's refcnt.
2931 */
2932 if (!batch->memcg)
2933 batch->memcg = memcg;
2934 /*
2935 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2936 * In those cases, all pages freed continuously can be expected to be in
2937 * the same cgroup and we have chance to coalesce uncharges.
2938 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2939 * because we want to do uncharge as soon as possible.
2940 */
2941
2942 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2943 goto direct_uncharge;
2944
2945 if (nr_pages > 1)
2946 goto direct_uncharge;
2947
2948 /*
2949 * In typical case, batch->memcg == mem. This means we can
2950 * merge a series of uncharges to an uncharge of res_counter.
2951 * If not, we uncharge res_counter ony by one.
2952 */
2953 if (batch->memcg != memcg)
2954 goto direct_uncharge;
2955 /* remember freed charge and uncharge it later */
2956 batch->nr_pages++;
2957 if (uncharge_memsw)
2958 batch->memsw_nr_pages++;
2959 return;
2960direct_uncharge:
2961 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2962 if (uncharge_memsw)
2963 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2964 if (unlikely(batch->memcg != memcg))
2965 memcg_oom_recover(memcg);
2966}
2967
2968/*
2969 * uncharge if !page_mapped(page)
2970 */
2971static struct mem_cgroup *
2972__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
2973 bool end_migration)
2974{
2975 struct mem_cgroup *memcg = NULL;
2976 unsigned int nr_pages = 1;
2977 struct page_cgroup *pc;
2978 bool anon;
2979
2980 if (mem_cgroup_disabled())
2981 return NULL;
2982
2983 VM_BUG_ON(PageSwapCache(page));
2984
2985 if (PageTransHuge(page)) {
2986 nr_pages <<= compound_order(page);
2987 VM_BUG_ON(!PageTransHuge(page));
2988 }
2989 /*
2990 * Check if our page_cgroup is valid
2991 */
2992 pc = lookup_page_cgroup(page);
2993 if (unlikely(!PageCgroupUsed(pc)))
2994 return NULL;
2995
2996 lock_page_cgroup(pc);
2997
2998 memcg = pc->mem_cgroup;
2999
3000 if (!PageCgroupUsed(pc))
3001 goto unlock_out;
3002
3003 anon = PageAnon(page);
3004
3005 switch (ctype) {
3006 case MEM_CGROUP_CHARGE_TYPE_ANON:
3007 /*
3008 * Generally PageAnon tells if it's the anon statistics to be
3009 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3010 * used before page reached the stage of being marked PageAnon.
3011 */
3012 anon = true;
3013 /* fallthrough */
3014 case MEM_CGROUP_CHARGE_TYPE_DROP:
3015 /* See mem_cgroup_prepare_migration() */
3016 if (page_mapped(page))
3017 goto unlock_out;
3018 /*
3019 * Pages under migration may not be uncharged. But
3020 * end_migration() /must/ be the one uncharging the
3021 * unused post-migration page and so it has to call
3022 * here with the migration bit still set. See the
3023 * res_counter handling below.
3024 */
3025 if (!end_migration && PageCgroupMigration(pc))
3026 goto unlock_out;
3027 break;
3028 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3029 if (!PageAnon(page)) { /* Shared memory */
3030 if (page->mapping && !page_is_file_cache(page))
3031 goto unlock_out;
3032 } else if (page_mapped(page)) /* Anon */
3033 goto unlock_out;
3034 break;
3035 default:
3036 break;
3037 }
3038
3039 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3040
3041 ClearPageCgroupUsed(pc);
3042 /*
3043 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3044 * freed from LRU. This is safe because uncharged page is expected not
3045 * to be reused (freed soon). Exception is SwapCache, it's handled by
3046 * special functions.
3047 */
3048
3049 unlock_page_cgroup(pc);
3050 /*
3051 * even after unlock, we have memcg->res.usage here and this memcg
3052 * will never be freed.
3053 */
3054 memcg_check_events(memcg, page);
3055 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3056 mem_cgroup_swap_statistics(memcg, true);
3057 mem_cgroup_get(memcg);
3058 }
3059 /*
3060 * Migration does not charge the res_counter for the
3061 * replacement page, so leave it alone when phasing out the
3062 * page that is unused after the migration.
3063 */
3064 if (!end_migration && !mem_cgroup_is_root(memcg))
3065 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3066
3067 return memcg;
3068
3069unlock_out:
3070 unlock_page_cgroup(pc);
3071 return NULL;
3072}
3073
3074void mem_cgroup_uncharge_page(struct page *page)
3075{
3076 /* early check. */
3077 if (page_mapped(page))
3078 return;
3079 VM_BUG_ON(page->mapping && !PageAnon(page));
3080 if (PageSwapCache(page))
3081 return;
3082 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3083}
3084
3085void mem_cgroup_uncharge_cache_page(struct page *page)
3086{
3087 VM_BUG_ON(page_mapped(page));
3088 VM_BUG_ON(page->mapping);
3089 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3090}
3091
3092/*
3093 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3094 * In that cases, pages are freed continuously and we can expect pages
3095 * are in the same memcg. All these calls itself limits the number of
3096 * pages freed at once, then uncharge_start/end() is called properly.
3097 * This may be called prural(2) times in a context,
3098 */
3099
3100void mem_cgroup_uncharge_start(void)
3101{
3102 current->memcg_batch.do_batch++;
3103 /* We can do nest. */
3104 if (current->memcg_batch.do_batch == 1) {
3105 current->memcg_batch.memcg = NULL;
3106 current->memcg_batch.nr_pages = 0;
3107 current->memcg_batch.memsw_nr_pages = 0;
3108 }
3109}
3110
3111void mem_cgroup_uncharge_end(void)
3112{
3113 struct memcg_batch_info *batch = &current->memcg_batch;
3114
3115 if (!batch->do_batch)
3116 return;
3117
3118 batch->do_batch--;
3119 if (batch->do_batch) /* If stacked, do nothing. */
3120 return;
3121
3122 if (!batch->memcg)
3123 return;
3124 /*
3125 * This "batch->memcg" is valid without any css_get/put etc...
3126 * bacause we hide charges behind us.
3127 */
3128 if (batch->nr_pages)
3129 res_counter_uncharge(&batch->memcg->res,
3130 batch->nr_pages * PAGE_SIZE);
3131 if (batch->memsw_nr_pages)
3132 res_counter_uncharge(&batch->memcg->memsw,
3133 batch->memsw_nr_pages * PAGE_SIZE);
3134 memcg_oom_recover(batch->memcg);
3135 /* forget this pointer (for sanity check) */
3136 batch->memcg = NULL;
3137}
3138
3139#ifdef CONFIG_SWAP
3140/*
3141 * called after __delete_from_swap_cache() and drop "page" account.
3142 * memcg information is recorded to swap_cgroup of "ent"
3143 */
3144void
3145mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3146{
3147 struct mem_cgroup *memcg;
3148 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3149
3150 if (!swapout) /* this was a swap cache but the swap is unused ! */
3151 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3152
3153 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3154
3155 /*
3156 * record memcg information, if swapout && memcg != NULL,
3157 * mem_cgroup_get() was called in uncharge().
3158 */
3159 if (do_swap_account && swapout && memcg)
3160 swap_cgroup_record(ent, css_id(&memcg->css));
3161}
3162#endif
3163
3164#ifdef CONFIG_MEMCG_SWAP
3165/*
3166 * called from swap_entry_free(). remove record in swap_cgroup and
3167 * uncharge "memsw" account.
3168 */
3169void mem_cgroup_uncharge_swap(swp_entry_t ent)
3170{
3171 struct mem_cgroup *memcg;
3172 unsigned short id;
3173
3174 if (!do_swap_account)
3175 return;
3176
3177 id = swap_cgroup_record(ent, 0);
3178 rcu_read_lock();
3179 memcg = mem_cgroup_lookup(id);
3180 if (memcg) {
3181 /*
3182 * We uncharge this because swap is freed.
3183 * This memcg can be obsolete one. We avoid calling css_tryget
3184 */
3185 if (!mem_cgroup_is_root(memcg))
3186 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3187 mem_cgroup_swap_statistics(memcg, false);
3188 mem_cgroup_put(memcg);
3189 }
3190 rcu_read_unlock();
3191}
3192
3193/**
3194 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3195 * @entry: swap entry to be moved
3196 * @from: mem_cgroup which the entry is moved from
3197 * @to: mem_cgroup which the entry is moved to
3198 *
3199 * It succeeds only when the swap_cgroup's record for this entry is the same
3200 * as the mem_cgroup's id of @from.
3201 *
3202 * Returns 0 on success, -EINVAL on failure.
3203 *
3204 * The caller must have charged to @to, IOW, called res_counter_charge() about
3205 * both res and memsw, and called css_get().
3206 */
3207static int mem_cgroup_move_swap_account(swp_entry_t entry,
3208 struct mem_cgroup *from, struct mem_cgroup *to)
3209{
3210 unsigned short old_id, new_id;
3211
3212 old_id = css_id(&from->css);
3213 new_id = css_id(&to->css);
3214
3215 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3216 mem_cgroup_swap_statistics(from, false);
3217 mem_cgroup_swap_statistics(to, true);
3218 /*
3219 * This function is only called from task migration context now.
3220 * It postpones res_counter and refcount handling till the end
3221 * of task migration(mem_cgroup_clear_mc()) for performance
3222 * improvement. But we cannot postpone mem_cgroup_get(to)
3223 * because if the process that has been moved to @to does
3224 * swap-in, the refcount of @to might be decreased to 0.
3225 */
3226 mem_cgroup_get(to);
3227 return 0;
3228 }
3229 return -EINVAL;
3230}
3231#else
3232static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3233 struct mem_cgroup *from, struct mem_cgroup *to)
3234{
3235 return -EINVAL;
3236}
3237#endif
3238
3239/*
3240 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3241 * page belongs to.
3242 */
3243void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
3244 struct mem_cgroup **memcgp)
3245{
3246 struct mem_cgroup *memcg = NULL;
3247 struct page_cgroup *pc;
3248 enum charge_type ctype;
3249
3250 *memcgp = NULL;
3251
3252 VM_BUG_ON(PageTransHuge(page));
3253 if (mem_cgroup_disabled())
3254 return;
3255
3256 pc = lookup_page_cgroup(page);
3257 lock_page_cgroup(pc);
3258 if (PageCgroupUsed(pc)) {
3259 memcg = pc->mem_cgroup;
3260 css_get(&memcg->css);
3261 /*
3262 * At migrating an anonymous page, its mapcount goes down
3263 * to 0 and uncharge() will be called. But, even if it's fully
3264 * unmapped, migration may fail and this page has to be
3265 * charged again. We set MIGRATION flag here and delay uncharge
3266 * until end_migration() is called
3267 *
3268 * Corner Case Thinking
3269 * A)
3270 * When the old page was mapped as Anon and it's unmap-and-freed
3271 * while migration was ongoing.
3272 * If unmap finds the old page, uncharge() of it will be delayed
3273 * until end_migration(). If unmap finds a new page, it's
3274 * uncharged when it make mapcount to be 1->0. If unmap code
3275 * finds swap_migration_entry, the new page will not be mapped
3276 * and end_migration() will find it(mapcount==0).
3277 *
3278 * B)
3279 * When the old page was mapped but migraion fails, the kernel
3280 * remaps it. A charge for it is kept by MIGRATION flag even
3281 * if mapcount goes down to 0. We can do remap successfully
3282 * without charging it again.
3283 *
3284 * C)
3285 * The "old" page is under lock_page() until the end of
3286 * migration, so, the old page itself will not be swapped-out.
3287 * If the new page is swapped out before end_migraton, our
3288 * hook to usual swap-out path will catch the event.
3289 */
3290 if (PageAnon(page))
3291 SetPageCgroupMigration(pc);
3292 }
3293 unlock_page_cgroup(pc);
3294 /*
3295 * If the page is not charged at this point,
3296 * we return here.
3297 */
3298 if (!memcg)
3299 return;
3300
3301 *memcgp = memcg;
3302 /*
3303 * We charge new page before it's used/mapped. So, even if unlock_page()
3304 * is called before end_migration, we can catch all events on this new
3305 * page. In the case new page is migrated but not remapped, new page's
3306 * mapcount will be finally 0 and we call uncharge in end_migration().
3307 */
3308 if (PageAnon(page))
3309 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3310 else
3311 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3312 /*
3313 * The page is committed to the memcg, but it's not actually
3314 * charged to the res_counter since we plan on replacing the
3315 * old one and only one page is going to be left afterwards.
3316 */
3317 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3318}
3319
3320/* remove redundant charge if migration failed*/
3321void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3322 struct page *oldpage, struct page *newpage, bool migration_ok)
3323{
3324 struct page *used, *unused;
3325 struct page_cgroup *pc;
3326 bool anon;
3327
3328 if (!memcg)
3329 return;
3330 /* blocks rmdir() */
3331 cgroup_exclude_rmdir(&memcg->css);
3332 if (!migration_ok) {
3333 used = oldpage;
3334 unused = newpage;
3335 } else {
3336 used = newpage;
3337 unused = oldpage;
3338 }
3339 anon = PageAnon(used);
3340 __mem_cgroup_uncharge_common(unused,
3341 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3342 : MEM_CGROUP_CHARGE_TYPE_CACHE,
3343 true);
3344 css_put(&memcg->css);
3345 /*
3346 * We disallowed uncharge of pages under migration because mapcount
3347 * of the page goes down to zero, temporarly.
3348 * Clear the flag and check the page should be charged.
3349 */
3350 pc = lookup_page_cgroup(oldpage);
3351 lock_page_cgroup(pc);
3352 ClearPageCgroupMigration(pc);
3353 unlock_page_cgroup(pc);
3354
3355 /*
3356 * If a page is a file cache, radix-tree replacement is very atomic
3357 * and we can skip this check. When it was an Anon page, its mapcount
3358 * goes down to 0. But because we added MIGRATION flage, it's not
3359 * uncharged yet. There are several case but page->mapcount check
3360 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3361 * check. (see prepare_charge() also)
3362 */
3363 if (anon)
3364 mem_cgroup_uncharge_page(used);
3365 /*
3366 * At migration, we may charge account against cgroup which has no
3367 * tasks.
3368 * So, rmdir()->pre_destroy() can be called while we do this charge.
3369 * In that case, we need to call pre_destroy() again. check it here.
3370 */
3371 cgroup_release_and_wakeup_rmdir(&memcg->css);
3372}
3373
3374/*
3375 * At replace page cache, newpage is not under any memcg but it's on
3376 * LRU. So, this function doesn't touch res_counter but handles LRU
3377 * in correct way. Both pages are locked so we cannot race with uncharge.
3378 */
3379void mem_cgroup_replace_page_cache(struct page *oldpage,
3380 struct page *newpage)
3381{
3382 struct mem_cgroup *memcg = NULL;
3383 struct page_cgroup *pc;
3384 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3385
3386 if (mem_cgroup_disabled())
3387 return;
3388
3389 pc = lookup_page_cgroup(oldpage);
3390 /* fix accounting on old pages */
3391 lock_page_cgroup(pc);
3392 if (PageCgroupUsed(pc)) {
3393 memcg = pc->mem_cgroup;
3394 mem_cgroup_charge_statistics(memcg, false, -1);
3395 ClearPageCgroupUsed(pc);
3396 }
3397 unlock_page_cgroup(pc);
3398
3399 /*
3400 * When called from shmem_replace_page(), in some cases the
3401 * oldpage has already been charged, and in some cases not.
3402 */
3403 if (!memcg)
3404 return;
3405 /*
3406 * Even if newpage->mapping was NULL before starting replacement,
3407 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3408 * LRU while we overwrite pc->mem_cgroup.
3409 */
3410 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3411}
3412
3413#ifdef CONFIG_DEBUG_VM
3414static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3415{
3416 struct page_cgroup *pc;
3417
3418 pc = lookup_page_cgroup(page);
3419 /*
3420 * Can be NULL while feeding pages into the page allocator for
3421 * the first time, i.e. during boot or memory hotplug;
3422 * or when mem_cgroup_disabled().
3423 */
3424 if (likely(pc) && PageCgroupUsed(pc))
3425 return pc;
3426 return NULL;
3427}
3428
3429bool mem_cgroup_bad_page_check(struct page *page)
3430{
3431 if (mem_cgroup_disabled())
3432 return false;
3433
3434 return lookup_page_cgroup_used(page) != NULL;
3435}
3436
3437void mem_cgroup_print_bad_page(struct page *page)
3438{
3439 struct page_cgroup *pc;
3440
3441 pc = lookup_page_cgroup_used(page);
3442 if (pc) {
3443 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3444 pc, pc->flags, pc->mem_cgroup);
3445 }
3446}
3447#endif
3448
3449static DEFINE_MUTEX(set_limit_mutex);
3450
3451static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3452 unsigned long long val)
3453{
3454 int retry_count;
3455 u64 memswlimit, memlimit;
3456 int ret = 0;
3457 int children = mem_cgroup_count_children(memcg);
3458 u64 curusage, oldusage;
3459 int enlarge;
3460
3461 /*
3462 * For keeping hierarchical_reclaim simple, how long we should retry
3463 * is depends on callers. We set our retry-count to be function
3464 * of # of children which we should visit in this loop.
3465 */
3466 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3467
3468 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3469
3470 enlarge = 0;
3471 while (retry_count) {
3472 if (signal_pending(current)) {
3473 ret = -EINTR;
3474 break;
3475 }
3476 /*
3477 * Rather than hide all in some function, I do this in
3478 * open coded manner. You see what this really does.
3479 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3480 */
3481 mutex_lock(&set_limit_mutex);
3482 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3483 if (memswlimit < val) {
3484 ret = -EINVAL;
3485 mutex_unlock(&set_limit_mutex);
3486 break;
3487 }
3488
3489 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3490 if (memlimit < val)
3491 enlarge = 1;
3492
3493 ret = res_counter_set_limit(&memcg->res, val);
3494 if (!ret) {
3495 if (memswlimit == val)
3496 memcg->memsw_is_minimum = true;
3497 else
3498 memcg->memsw_is_minimum = false;
3499 }
3500 mutex_unlock(&set_limit_mutex);
3501
3502 if (!ret)
3503 break;
3504
3505 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3506 MEM_CGROUP_RECLAIM_SHRINK);
3507 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3508 /* Usage is reduced ? */
3509 if (curusage >= oldusage)
3510 retry_count--;
3511 else
3512 oldusage = curusage;
3513 }
3514 if (!ret && enlarge)
3515 memcg_oom_recover(memcg);
3516
3517 return ret;
3518}
3519
3520static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3521 unsigned long long val)
3522{
3523 int retry_count;
3524 u64 memlimit, memswlimit, oldusage, curusage;
3525 int children = mem_cgroup_count_children(memcg);
3526 int ret = -EBUSY;
3527 int enlarge = 0;
3528
3529 /* see mem_cgroup_resize_res_limit */
3530 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3531 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3532 while (retry_count) {
3533 if (signal_pending(current)) {
3534 ret = -EINTR;
3535 break;
3536 }
3537 /*
3538 * Rather than hide all in some function, I do this in
3539 * open coded manner. You see what this really does.
3540 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3541 */
3542 mutex_lock(&set_limit_mutex);
3543 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3544 if (memlimit > val) {
3545 ret = -EINVAL;
3546 mutex_unlock(&set_limit_mutex);
3547 break;
3548 }
3549 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3550 if (memswlimit < val)
3551 enlarge = 1;
3552 ret = res_counter_set_limit(&memcg->memsw, val);
3553 if (!ret) {
3554 if (memlimit == val)
3555 memcg->memsw_is_minimum = true;
3556 else
3557 memcg->memsw_is_minimum = false;
3558 }
3559 mutex_unlock(&set_limit_mutex);
3560
3561 if (!ret)
3562 break;
3563
3564 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3565 MEM_CGROUP_RECLAIM_NOSWAP |
3566 MEM_CGROUP_RECLAIM_SHRINK);
3567 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3568 /* Usage is reduced ? */
3569 if (curusage >= oldusage)
3570 retry_count--;
3571 else
3572 oldusage = curusage;
3573 }
3574 if (!ret && enlarge)
3575 memcg_oom_recover(memcg);
3576 return ret;
3577}
3578
3579unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3580 gfp_t gfp_mask,
3581 unsigned long *total_scanned)
3582{
3583 unsigned long nr_reclaimed = 0;
3584 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3585 unsigned long reclaimed;
3586 int loop = 0;
3587 struct mem_cgroup_tree_per_zone *mctz;
3588 unsigned long long excess;
3589 unsigned long nr_scanned;
3590
3591 if (order > 0)
3592 return 0;
3593
3594 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3595 /*
3596 * This loop can run a while, specially if mem_cgroup's continuously
3597 * keep exceeding their soft limit and putting the system under
3598 * pressure
3599 */
3600 do {
3601 if (next_mz)
3602 mz = next_mz;
3603 else
3604 mz = mem_cgroup_largest_soft_limit_node(mctz);
3605 if (!mz)
3606 break;
3607
3608 nr_scanned = 0;
3609 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3610 gfp_mask, &nr_scanned);
3611 nr_reclaimed += reclaimed;
3612 *total_scanned += nr_scanned;
3613 spin_lock(&mctz->lock);
3614
3615 /*
3616 * If we failed to reclaim anything from this memory cgroup
3617 * it is time to move on to the next cgroup
3618 */
3619 next_mz = NULL;
3620 if (!reclaimed) {
3621 do {
3622 /*
3623 * Loop until we find yet another one.
3624 *
3625 * By the time we get the soft_limit lock
3626 * again, someone might have aded the
3627 * group back on the RB tree. Iterate to
3628 * make sure we get a different mem.
3629 * mem_cgroup_largest_soft_limit_node returns
3630 * NULL if no other cgroup is present on
3631 * the tree
3632 */
3633 next_mz =
3634 __mem_cgroup_largest_soft_limit_node(mctz);
3635 if (next_mz == mz)
3636 css_put(&next_mz->memcg->css);
3637 else /* next_mz == NULL or other memcg */
3638 break;
3639 } while (1);
3640 }
3641 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3642 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3643 /*
3644 * One school of thought says that we should not add
3645 * back the node to the tree if reclaim returns 0.
3646 * But our reclaim could return 0, simply because due
3647 * to priority we are exposing a smaller subset of
3648 * memory to reclaim from. Consider this as a longer
3649 * term TODO.
3650 */
3651 /* If excess == 0, no tree ops */
3652 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3653 spin_unlock(&mctz->lock);
3654 css_put(&mz->memcg->css);
3655 loop++;
3656 /*
3657 * Could not reclaim anything and there are no more
3658 * mem cgroups to try or we seem to be looping without
3659 * reclaiming anything.
3660 */
3661 if (!nr_reclaimed &&
3662 (next_mz == NULL ||
3663 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3664 break;
3665 } while (!nr_reclaimed);
3666 if (next_mz)
3667 css_put(&next_mz->memcg->css);
3668 return nr_reclaimed;
3669}
3670
3671/*
3672 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
3673 * reclaim the pages page themselves - it just removes the page_cgroups.
3674 * Returns true if some page_cgroups were not freed, indicating that the caller
3675 * must retry this operation.
3676 */
3677static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3678 int node, int zid, enum lru_list lru)
3679{
3680 struct mem_cgroup_per_zone *mz;
3681 unsigned long flags, loop;
3682 struct list_head *list;
3683 struct page *busy;
3684 struct zone *zone;
3685
3686 zone = &NODE_DATA(node)->node_zones[zid];
3687 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3688 list = &mz->lruvec.lists[lru];
3689
3690 loop = mz->lru_size[lru];
3691 /* give some margin against EBUSY etc...*/
3692 loop += 256;
3693 busy = NULL;
3694 while (loop--) {
3695 struct page_cgroup *pc;
3696 struct page *page;
3697
3698 spin_lock_irqsave(&zone->lru_lock, flags);
3699 if (list_empty(list)) {
3700 spin_unlock_irqrestore(&zone->lru_lock, flags);
3701 break;
3702 }
3703 page = list_entry(list->prev, struct page, lru);
3704 if (busy == page) {
3705 list_move(&page->lru, list);
3706 busy = NULL;
3707 spin_unlock_irqrestore(&zone->lru_lock, flags);
3708 continue;
3709 }
3710 spin_unlock_irqrestore(&zone->lru_lock, flags);
3711
3712 pc = lookup_page_cgroup(page);
3713
3714 if (mem_cgroup_move_parent(page, pc, memcg)) {
3715 /* found lock contention or "pc" is obsolete. */
3716 busy = page;
3717 cond_resched();
3718 } else
3719 busy = NULL;
3720 }
3721 return !list_empty(list);
3722}
3723
3724/*
3725 * make mem_cgroup's charge to be 0 if there is no task.
3726 * This enables deleting this mem_cgroup.
3727 */
3728static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3729{
3730 int ret;
3731 int node, zid, shrink;
3732 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3733 struct cgroup *cgrp = memcg->css.cgroup;
3734
3735 css_get(&memcg->css);
3736
3737 shrink = 0;
3738 /* should free all ? */
3739 if (free_all)
3740 goto try_to_free;
3741move_account:
3742 do {
3743 ret = -EBUSY;
3744 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3745 goto out;
3746 /* This is for making all *used* pages to be on LRU. */
3747 lru_add_drain_all();
3748 drain_all_stock_sync(memcg);
3749 ret = 0;
3750 mem_cgroup_start_move(memcg);
3751 for_each_node_state(node, N_HIGH_MEMORY) {
3752 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3753 enum lru_list lru;
3754 for_each_lru(lru) {
3755 ret = mem_cgroup_force_empty_list(memcg,
3756 node, zid, lru);
3757 if (ret)
3758 break;
3759 }
3760 }
3761 if (ret)
3762 break;
3763 }
3764 mem_cgroup_end_move(memcg);
3765 memcg_oom_recover(memcg);
3766 cond_resched();
3767 /* "ret" should also be checked to ensure all lists are empty. */
3768 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3769out:
3770 css_put(&memcg->css);
3771 return ret;
3772
3773try_to_free:
3774 /* returns EBUSY if there is a task or if we come here twice. */
3775 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3776 ret = -EBUSY;
3777 goto out;
3778 }
3779 /* we call try-to-free pages for make this cgroup empty */
3780 lru_add_drain_all();
3781 /* try to free all pages in this cgroup */
3782 shrink = 1;
3783 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3784 int progress;
3785
3786 if (signal_pending(current)) {
3787 ret = -EINTR;
3788 goto out;
3789 }
3790 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3791 false);
3792 if (!progress) {
3793 nr_retries--;
3794 /* maybe some writeback is necessary */
3795 congestion_wait(BLK_RW_ASYNC, HZ/10);
3796 }
3797
3798 }
3799 lru_add_drain();
3800 /* try move_account...there may be some *locked* pages. */
3801 goto move_account;
3802}
3803
3804static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3805{
3806 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3807}
3808
3809
3810static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3811{
3812 return mem_cgroup_from_cont(cont)->use_hierarchy;
3813}
3814
3815static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3816 u64 val)
3817{
3818 int retval = 0;
3819 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3820 struct cgroup *parent = cont->parent;
3821 struct mem_cgroup *parent_memcg = NULL;
3822
3823 if (parent)
3824 parent_memcg = mem_cgroup_from_cont(parent);
3825
3826 cgroup_lock();
3827
3828 if (memcg->use_hierarchy == val)
3829 goto out;
3830
3831 /*
3832 * If parent's use_hierarchy is set, we can't make any modifications
3833 * in the child subtrees. If it is unset, then the change can
3834 * occur, provided the current cgroup has no children.
3835 *
3836 * For the root cgroup, parent_mem is NULL, we allow value to be
3837 * set if there are no children.
3838 */
3839 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3840 (val == 1 || val == 0)) {
3841 if (list_empty(&cont->children))
3842 memcg->use_hierarchy = val;
3843 else
3844 retval = -EBUSY;
3845 } else
3846 retval = -EINVAL;
3847
3848out:
3849 cgroup_unlock();
3850
3851 return retval;
3852}
3853
3854
3855static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3856 enum mem_cgroup_stat_index idx)
3857{
3858 struct mem_cgroup *iter;
3859 long val = 0;
3860
3861 /* Per-cpu values can be negative, use a signed accumulator */
3862 for_each_mem_cgroup_tree(iter, memcg)
3863 val += mem_cgroup_read_stat(iter, idx);
3864
3865 if (val < 0) /* race ? */
3866 val = 0;
3867 return val;
3868}
3869
3870static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3871{
3872 u64 val;
3873
3874 if (!mem_cgroup_is_root(memcg)) {
3875 if (!swap)
3876 return res_counter_read_u64(&memcg->res, RES_USAGE);
3877 else
3878 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3879 }
3880
3881 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3882 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3883
3884 if (swap)
3885 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3886
3887 return val << PAGE_SHIFT;
3888}
3889
3890static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3891 struct file *file, char __user *buf,
3892 size_t nbytes, loff_t *ppos)
3893{
3894 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3895 char str[64];
3896 u64 val;
3897 int type, name, len;
3898
3899 type = MEMFILE_TYPE(cft->private);
3900 name = MEMFILE_ATTR(cft->private);
3901
3902 if (!do_swap_account && type == _MEMSWAP)
3903 return -EOPNOTSUPP;
3904
3905 switch (type) {
3906 case _MEM:
3907 if (name == RES_USAGE)
3908 val = mem_cgroup_usage(memcg, false);
3909 else
3910 val = res_counter_read_u64(&memcg->res, name);
3911 break;
3912 case _MEMSWAP:
3913 if (name == RES_USAGE)
3914 val = mem_cgroup_usage(memcg, true);
3915 else
3916 val = res_counter_read_u64(&memcg->memsw, name);
3917 break;
3918 default:
3919 BUG();
3920 }
3921
3922 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3923 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3924}
3925/*
3926 * The user of this function is...
3927 * RES_LIMIT.
3928 */
3929static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3930 const char *buffer)
3931{
3932 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3933 int type, name;
3934 unsigned long long val;
3935 int ret;
3936
3937 type = MEMFILE_TYPE(cft->private);
3938 name = MEMFILE_ATTR(cft->private);
3939
3940 if (!do_swap_account && type == _MEMSWAP)
3941 return -EOPNOTSUPP;
3942
3943 switch (name) {
3944 case RES_LIMIT:
3945 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3946 ret = -EINVAL;
3947 break;
3948 }
3949 /* This function does all necessary parse...reuse it */
3950 ret = res_counter_memparse_write_strategy(buffer, &val);
3951 if (ret)
3952 break;
3953 if (type == _MEM)
3954 ret = mem_cgroup_resize_limit(memcg, val);
3955 else
3956 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3957 break;
3958 case RES_SOFT_LIMIT:
3959 ret = res_counter_memparse_write_strategy(buffer, &val);
3960 if (ret)
3961 break;
3962 /*
3963 * For memsw, soft limits are hard to implement in terms
3964 * of semantics, for now, we support soft limits for
3965 * control without swap
3966 */
3967 if (type == _MEM)
3968 ret = res_counter_set_soft_limit(&memcg->res, val);
3969 else
3970 ret = -EINVAL;
3971 break;
3972 default:
3973 ret = -EINVAL; /* should be BUG() ? */
3974 break;
3975 }
3976 return ret;
3977}
3978
3979static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3980 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3981{
3982 struct cgroup *cgroup;
3983 unsigned long long min_limit, min_memsw_limit, tmp;
3984
3985 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3986 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3987 cgroup = memcg->css.cgroup;
3988 if (!memcg->use_hierarchy)
3989 goto out;
3990
3991 while (cgroup->parent) {
3992 cgroup = cgroup->parent;
3993 memcg = mem_cgroup_from_cont(cgroup);
3994 if (!memcg->use_hierarchy)
3995 break;
3996 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3997 min_limit = min(min_limit, tmp);
3998 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3999 min_memsw_limit = min(min_memsw_limit, tmp);
4000 }
4001out:
4002 *mem_limit = min_limit;
4003 *memsw_limit = min_memsw_limit;
4004}
4005
4006static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4007{
4008 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4009 int type, name;
4010
4011 type = MEMFILE_TYPE(event);
4012 name = MEMFILE_ATTR(event);
4013
4014 if (!do_swap_account && type == _MEMSWAP)
4015 return -EOPNOTSUPP;
4016
4017 switch (name) {
4018 case RES_MAX_USAGE:
4019 if (type == _MEM)
4020 res_counter_reset_max(&memcg->res);
4021 else
4022 res_counter_reset_max(&memcg->memsw);
4023 break;
4024 case RES_FAILCNT:
4025 if (type == _MEM)
4026 res_counter_reset_failcnt(&memcg->res);
4027 else
4028 res_counter_reset_failcnt(&memcg->memsw);
4029 break;
4030 }
4031
4032 return 0;
4033}
4034
4035static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4036 struct cftype *cft)
4037{
4038 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4039}
4040
4041#ifdef CONFIG_MMU
4042static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4043 struct cftype *cft, u64 val)
4044{
4045 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4046
4047 if (val >= (1 << NR_MOVE_TYPE))
4048 return -EINVAL;
4049 /*
4050 * We check this value several times in both in can_attach() and
4051 * attach(), so we need cgroup lock to prevent this value from being
4052 * inconsistent.
4053 */
4054 cgroup_lock();
4055 memcg->move_charge_at_immigrate = val;
4056 cgroup_unlock();
4057
4058 return 0;
4059}
4060#else
4061static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4062 struct cftype *cft, u64 val)
4063{
4064 return -ENOSYS;
4065}
4066#endif
4067
4068#ifdef CONFIG_NUMA
4069static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4070 struct seq_file *m)
4071{
4072 int nid;
4073 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4074 unsigned long node_nr;
4075 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4076
4077 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4078 seq_printf(m, "total=%lu", total_nr);
4079 for_each_node_state(nid, N_HIGH_MEMORY) {
4080 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4081 seq_printf(m, " N%d=%lu", nid, node_nr);
4082 }
4083 seq_putc(m, '\n');
4084
4085 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4086 seq_printf(m, "file=%lu", file_nr);
4087 for_each_node_state(nid, N_HIGH_MEMORY) {
4088 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4089 LRU_ALL_FILE);
4090 seq_printf(m, " N%d=%lu", nid, node_nr);
4091 }
4092 seq_putc(m, '\n');
4093
4094 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4095 seq_printf(m, "anon=%lu", anon_nr);
4096 for_each_node_state(nid, N_HIGH_MEMORY) {
4097 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4098 LRU_ALL_ANON);
4099 seq_printf(m, " N%d=%lu", nid, node_nr);
4100 }
4101 seq_putc(m, '\n');
4102
4103 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4104 seq_printf(m, "unevictable=%lu", unevictable_nr);
4105 for_each_node_state(nid, N_HIGH_MEMORY) {
4106 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4107 BIT(LRU_UNEVICTABLE));
4108 seq_printf(m, " N%d=%lu", nid, node_nr);
4109 }
4110 seq_putc(m, '\n');
4111 return 0;
4112}
4113#endif /* CONFIG_NUMA */
4114
4115static const char * const mem_cgroup_lru_names[] = {
4116 "inactive_anon",
4117 "active_anon",
4118 "inactive_file",
4119 "active_file",
4120 "unevictable",
4121};
4122
4123static inline void mem_cgroup_lru_names_not_uptodate(void)
4124{
4125 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4126}
4127
4128static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4129 struct seq_file *m)
4130{
4131 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4132 struct mem_cgroup *mi;
4133 unsigned int i;
4134
4135 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4136 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4137 continue;
4138 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4139 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4140 }
4141
4142 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4143 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4144 mem_cgroup_read_events(memcg, i));
4145
4146 for (i = 0; i < NR_LRU_LISTS; i++)
4147 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4148 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4149
4150 /* Hierarchical information */
4151 {
4152 unsigned long long limit, memsw_limit;
4153 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4154 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4155 if (do_swap_account)
4156 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4157 memsw_limit);
4158 }
4159
4160 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4161 long long val = 0;
4162
4163 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4164 continue;
4165 for_each_mem_cgroup_tree(mi, memcg)
4166 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4167 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4168 }
4169
4170 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4171 unsigned long long val = 0;
4172
4173 for_each_mem_cgroup_tree(mi, memcg)
4174 val += mem_cgroup_read_events(mi, i);
4175 seq_printf(m, "total_%s %llu\n",
4176 mem_cgroup_events_names[i], val);
4177 }
4178
4179 for (i = 0; i < NR_LRU_LISTS; i++) {
4180 unsigned long long val = 0;
4181
4182 for_each_mem_cgroup_tree(mi, memcg)
4183 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4184 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4185 }
4186
4187#ifdef CONFIG_DEBUG_VM
4188 {
4189 int nid, zid;
4190 struct mem_cgroup_per_zone *mz;
4191 struct zone_reclaim_stat *rstat;
4192 unsigned long recent_rotated[2] = {0, 0};
4193 unsigned long recent_scanned[2] = {0, 0};
4194
4195 for_each_online_node(nid)
4196 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4197 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4198 rstat = &mz->lruvec.reclaim_stat;
4199
4200 recent_rotated[0] += rstat->recent_rotated[0];
4201 recent_rotated[1] += rstat->recent_rotated[1];
4202 recent_scanned[0] += rstat->recent_scanned[0];
4203 recent_scanned[1] += rstat->recent_scanned[1];
4204 }
4205 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4206 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4207 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4208 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4209 }
4210#endif
4211
4212 return 0;
4213}
4214
4215static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4216{
4217 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4218
4219 return mem_cgroup_swappiness(memcg);
4220}
4221
4222static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4223 u64 val)
4224{
4225 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4226 struct mem_cgroup *parent;
4227
4228 if (val > 100)
4229 return -EINVAL;
4230
4231 if (cgrp->parent == NULL)
4232 return -EINVAL;
4233
4234 parent = mem_cgroup_from_cont(cgrp->parent);
4235
4236 cgroup_lock();
4237
4238 /* If under hierarchy, only empty-root can set this value */
4239 if ((parent->use_hierarchy) ||
4240 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4241 cgroup_unlock();
4242 return -EINVAL;
4243 }
4244
4245 memcg->swappiness = val;
4246
4247 cgroup_unlock();
4248
4249 return 0;
4250}
4251
4252static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4253{
4254 struct mem_cgroup_threshold_ary *t;
4255 u64 usage;
4256 int i;
4257
4258 rcu_read_lock();
4259 if (!swap)
4260 t = rcu_dereference(memcg->thresholds.primary);
4261 else
4262 t = rcu_dereference(memcg->memsw_thresholds.primary);
4263
4264 if (!t)
4265 goto unlock;
4266
4267 usage = mem_cgroup_usage(memcg, swap);
4268
4269 /*
4270 * current_threshold points to threshold just below or equal to usage.
4271 * If it's not true, a threshold was crossed after last
4272 * call of __mem_cgroup_threshold().
4273 */
4274 i = t->current_threshold;
4275
4276 /*
4277 * Iterate backward over array of thresholds starting from
4278 * current_threshold and check if a threshold is crossed.
4279 * If none of thresholds below usage is crossed, we read
4280 * only one element of the array here.
4281 */
4282 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4283 eventfd_signal(t->entries[i].eventfd, 1);
4284
4285 /* i = current_threshold + 1 */
4286 i++;
4287
4288 /*
4289 * Iterate forward over array of thresholds starting from
4290 * current_threshold+1 and check if a threshold is crossed.
4291 * If none of thresholds above usage is crossed, we read
4292 * only one element of the array here.
4293 */
4294 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4295 eventfd_signal(t->entries[i].eventfd, 1);
4296
4297 /* Update current_threshold */
4298 t->current_threshold = i - 1;
4299unlock:
4300 rcu_read_unlock();
4301}
4302
4303static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4304{
4305 while (memcg) {
4306 __mem_cgroup_threshold(memcg, false);
4307 if (do_swap_account)
4308 __mem_cgroup_threshold(memcg, true);
4309
4310 memcg = parent_mem_cgroup(memcg);
4311 }
4312}
4313
4314static int compare_thresholds(const void *a, const void *b)
4315{
4316 const struct mem_cgroup_threshold *_a = a;
4317 const struct mem_cgroup_threshold *_b = b;
4318
4319 return _a->threshold - _b->threshold;
4320}
4321
4322static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4323{
4324 struct mem_cgroup_eventfd_list *ev;
4325
4326 list_for_each_entry(ev, &memcg->oom_notify, list)
4327 eventfd_signal(ev->eventfd, 1);
4328 return 0;
4329}
4330
4331static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4332{
4333 struct mem_cgroup *iter;
4334
4335 for_each_mem_cgroup_tree(iter, memcg)
4336 mem_cgroup_oom_notify_cb(iter);
4337}
4338
4339static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4340 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4341{
4342 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4343 struct mem_cgroup_thresholds *thresholds;
4344 struct mem_cgroup_threshold_ary *new;
4345 int type = MEMFILE_TYPE(cft->private);
4346 u64 threshold, usage;
4347 int i, size, ret;
4348
4349 ret = res_counter_memparse_write_strategy(args, &threshold);
4350 if (ret)
4351 return ret;
4352
4353 mutex_lock(&memcg->thresholds_lock);
4354
4355 if (type == _MEM)
4356 thresholds = &memcg->thresholds;
4357 else if (type == _MEMSWAP)
4358 thresholds = &memcg->memsw_thresholds;
4359 else
4360 BUG();
4361
4362 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4363
4364 /* Check if a threshold crossed before adding a new one */
4365 if (thresholds->primary)
4366 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4367
4368 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4369
4370 /* Allocate memory for new array of thresholds */
4371 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4372 GFP_KERNEL);
4373 if (!new) {
4374 ret = -ENOMEM;
4375 goto unlock;
4376 }
4377 new->size = size;
4378
4379 /* Copy thresholds (if any) to new array */
4380 if (thresholds->primary) {
4381 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4382 sizeof(struct mem_cgroup_threshold));
4383 }
4384
4385 /* Add new threshold */
4386 new->entries[size - 1].eventfd = eventfd;
4387 new->entries[size - 1].threshold = threshold;
4388
4389 /* Sort thresholds. Registering of new threshold isn't time-critical */
4390 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4391 compare_thresholds, NULL);
4392
4393 /* Find current threshold */
4394 new->current_threshold = -1;
4395 for (i = 0; i < size; i++) {
4396 if (new->entries[i].threshold <= usage) {
4397 /*
4398 * new->current_threshold will not be used until
4399 * rcu_assign_pointer(), so it's safe to increment
4400 * it here.
4401 */
4402 ++new->current_threshold;
4403 } else
4404 break;
4405 }
4406
4407 /* Free old spare buffer and save old primary buffer as spare */
4408 kfree(thresholds->spare);
4409 thresholds->spare = thresholds->primary;
4410
4411 rcu_assign_pointer(thresholds->primary, new);
4412
4413 /* To be sure that nobody uses thresholds */
4414 synchronize_rcu();
4415
4416unlock:
4417 mutex_unlock(&memcg->thresholds_lock);
4418
4419 return ret;
4420}
4421
4422static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4423 struct cftype *cft, struct eventfd_ctx *eventfd)
4424{
4425 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4426 struct mem_cgroup_thresholds *thresholds;
4427 struct mem_cgroup_threshold_ary *new;
4428 int type = MEMFILE_TYPE(cft->private);
4429 u64 usage;
4430 int i, j, size;
4431
4432 mutex_lock(&memcg->thresholds_lock);
4433 if (type == _MEM)
4434 thresholds = &memcg->thresholds;
4435 else if (type == _MEMSWAP)
4436 thresholds = &memcg->memsw_thresholds;
4437 else
4438 BUG();
4439
4440 if (!thresholds->primary)
4441 goto unlock;
4442
4443 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4444
4445 /* Check if a threshold crossed before removing */
4446 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4447
4448 /* Calculate new number of threshold */
4449 size = 0;
4450 for (i = 0; i < thresholds->primary->size; i++) {
4451 if (thresholds->primary->entries[i].eventfd != eventfd)
4452 size++;
4453 }
4454
4455 new = thresholds->spare;
4456
4457 /* Set thresholds array to NULL if we don't have thresholds */
4458 if (!size) {
4459 kfree(new);
4460 new = NULL;
4461 goto swap_buffers;
4462 }
4463
4464 new->size = size;
4465
4466 /* Copy thresholds and find current threshold */
4467 new->current_threshold = -1;
4468 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4469 if (thresholds->primary->entries[i].eventfd == eventfd)
4470 continue;
4471
4472 new->entries[j] = thresholds->primary->entries[i];
4473 if (new->entries[j].threshold <= usage) {
4474 /*
4475 * new->current_threshold will not be used
4476 * until rcu_assign_pointer(), so it's safe to increment
4477 * it here.
4478 */
4479 ++new->current_threshold;
4480 }
4481 j++;
4482 }
4483
4484swap_buffers:
4485 /* Swap primary and spare array */
4486 thresholds->spare = thresholds->primary;
4487 /* If all events are unregistered, free the spare array */
4488 if (!new) {
4489 kfree(thresholds->spare);
4490 thresholds->spare = NULL;
4491 }
4492
4493 rcu_assign_pointer(thresholds->primary, new);
4494
4495 /* To be sure that nobody uses thresholds */
4496 synchronize_rcu();
4497unlock:
4498 mutex_unlock(&memcg->thresholds_lock);
4499}
4500
4501static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4502 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4503{
4504 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4505 struct mem_cgroup_eventfd_list *event;
4506 int type = MEMFILE_TYPE(cft->private);
4507
4508 BUG_ON(type != _OOM_TYPE);
4509 event = kmalloc(sizeof(*event), GFP_KERNEL);
4510 if (!event)
4511 return -ENOMEM;
4512
4513 spin_lock(&memcg_oom_lock);
4514
4515 event->eventfd = eventfd;
4516 list_add(&event->list, &memcg->oom_notify);
4517
4518 /* already in OOM ? */
4519 if (atomic_read(&memcg->under_oom))
4520 eventfd_signal(eventfd, 1);
4521 spin_unlock(&memcg_oom_lock);
4522
4523 return 0;
4524}
4525
4526static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4527 struct cftype *cft, struct eventfd_ctx *eventfd)
4528{
4529 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4530 struct mem_cgroup_eventfd_list *ev, *tmp;
4531 int type = MEMFILE_TYPE(cft->private);
4532
4533 BUG_ON(type != _OOM_TYPE);
4534
4535 spin_lock(&memcg_oom_lock);
4536
4537 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4538 if (ev->eventfd == eventfd) {
4539 list_del(&ev->list);
4540 kfree(ev);
4541 }
4542 }
4543
4544 spin_unlock(&memcg_oom_lock);
4545}
4546
4547static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4548 struct cftype *cft, struct cgroup_map_cb *cb)
4549{
4550 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4551
4552 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4553
4554 if (atomic_read(&memcg->under_oom))
4555 cb->fill(cb, "under_oom", 1);
4556 else
4557 cb->fill(cb, "under_oom", 0);
4558 return 0;
4559}
4560
4561static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4562 struct cftype *cft, u64 val)
4563{
4564 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4565 struct mem_cgroup *parent;
4566
4567 /* cannot set to root cgroup and only 0 and 1 are allowed */
4568 if (!cgrp->parent || !((val == 0) || (val == 1)))
4569 return -EINVAL;
4570
4571 parent = mem_cgroup_from_cont(cgrp->parent);
4572
4573 cgroup_lock();
4574 /* oom-kill-disable is a flag for subhierarchy. */
4575 if ((parent->use_hierarchy) ||
4576 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4577 cgroup_unlock();
4578 return -EINVAL;
4579 }
4580 memcg->oom_kill_disable = val;
4581 if (!val)
4582 memcg_oom_recover(memcg);
4583 cgroup_unlock();
4584 return 0;
4585}
4586
4587#ifdef CONFIG_MEMCG_KMEM
4588static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4589{
4590 return mem_cgroup_sockets_init(memcg, ss);
4591};
4592
4593static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4594{
4595 mem_cgroup_sockets_destroy(memcg);
4596}
4597#else
4598static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4599{
4600 return 0;
4601}
4602
4603static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4604{
4605}
4606#endif
4607
4608static struct cftype mem_cgroup_files[] = {
4609 {
4610 .name = "usage_in_bytes",
4611 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4612 .read = mem_cgroup_read,
4613 .register_event = mem_cgroup_usage_register_event,
4614 .unregister_event = mem_cgroup_usage_unregister_event,
4615 },
4616 {
4617 .name = "max_usage_in_bytes",
4618 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4619 .trigger = mem_cgroup_reset,
4620 .read = mem_cgroup_read,
4621 },
4622 {
4623 .name = "limit_in_bytes",
4624 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4625 .write_string = mem_cgroup_write,
4626 .read = mem_cgroup_read,
4627 },
4628 {
4629 .name = "soft_limit_in_bytes",
4630 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4631 .write_string = mem_cgroup_write,
4632 .read = mem_cgroup_read,
4633 },
4634 {
4635 .name = "failcnt",
4636 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4637 .trigger = mem_cgroup_reset,
4638 .read = mem_cgroup_read,
4639 },
4640 {
4641 .name = "stat",
4642 .read_seq_string = memcg_stat_show,
4643 },
4644 {
4645 .name = "force_empty",
4646 .trigger = mem_cgroup_force_empty_write,
4647 },
4648 {
4649 .name = "use_hierarchy",
4650 .write_u64 = mem_cgroup_hierarchy_write,
4651 .read_u64 = mem_cgroup_hierarchy_read,
4652 },
4653 {
4654 .name = "swappiness",
4655 .read_u64 = mem_cgroup_swappiness_read,
4656 .write_u64 = mem_cgroup_swappiness_write,
4657 },
4658 {
4659 .name = "move_charge_at_immigrate",
4660 .read_u64 = mem_cgroup_move_charge_read,
4661 .write_u64 = mem_cgroup_move_charge_write,
4662 },
4663 {
4664 .name = "oom_control",
4665 .read_map = mem_cgroup_oom_control_read,
4666 .write_u64 = mem_cgroup_oom_control_write,
4667 .register_event = mem_cgroup_oom_register_event,
4668 .unregister_event = mem_cgroup_oom_unregister_event,
4669 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4670 },
4671#ifdef CONFIG_NUMA
4672 {
4673 .name = "numa_stat",
4674 .read_seq_string = memcg_numa_stat_show,
4675 },
4676#endif
4677#ifdef CONFIG_MEMCG_SWAP
4678 {
4679 .name = "memsw.usage_in_bytes",
4680 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4681 .read = mem_cgroup_read,
4682 .register_event = mem_cgroup_usage_register_event,
4683 .unregister_event = mem_cgroup_usage_unregister_event,
4684 },
4685 {
4686 .name = "memsw.max_usage_in_bytes",
4687 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4688 .trigger = mem_cgroup_reset,
4689 .read = mem_cgroup_read,
4690 },
4691 {
4692 .name = "memsw.limit_in_bytes",
4693 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4694 .write_string = mem_cgroup_write,
4695 .read = mem_cgroup_read,
4696 },
4697 {
4698 .name = "memsw.failcnt",
4699 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4700 .trigger = mem_cgroup_reset,
4701 .read = mem_cgroup_read,
4702 },
4703#endif
4704 { }, /* terminate */
4705};
4706
4707static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4708{
4709 struct mem_cgroup_per_node *pn;
4710 struct mem_cgroup_per_zone *mz;
4711 int zone, tmp = node;
4712 /*
4713 * This routine is called against possible nodes.
4714 * But it's BUG to call kmalloc() against offline node.
4715 *
4716 * TODO: this routine can waste much memory for nodes which will
4717 * never be onlined. It's better to use memory hotplug callback
4718 * function.
4719 */
4720 if (!node_state(node, N_NORMAL_MEMORY))
4721 tmp = -1;
4722 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4723 if (!pn)
4724 return 1;
4725
4726 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4727 mz = &pn->zoneinfo[zone];
4728 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4729 mz->usage_in_excess = 0;
4730 mz->on_tree = false;
4731 mz->memcg = memcg;
4732 }
4733 memcg->info.nodeinfo[node] = pn;
4734 return 0;
4735}
4736
4737static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4738{
4739 kfree(memcg->info.nodeinfo[node]);
4740}
4741
4742static struct mem_cgroup *mem_cgroup_alloc(void)
4743{
4744 struct mem_cgroup *memcg;
4745 int size = sizeof(struct mem_cgroup);
4746
4747 /* Can be very big if MAX_NUMNODES is very big */
4748 if (size < PAGE_SIZE)
4749 memcg = kzalloc(size, GFP_KERNEL);
4750 else
4751 memcg = vzalloc(size);
4752
4753 if (!memcg)
4754 return NULL;
4755
4756 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4757 if (!memcg->stat)
4758 goto out_free;
4759 spin_lock_init(&memcg->pcp_counter_lock);
4760 return memcg;
4761
4762out_free:
4763 if (size < PAGE_SIZE)
4764 kfree(memcg);
4765 else
4766 vfree(memcg);
4767 return NULL;
4768}
4769
4770/*
4771 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4772 * but in process context. The work_freeing structure is overlaid
4773 * on the rcu_freeing structure, which itself is overlaid on memsw.
4774 */
4775static void free_work(struct work_struct *work)
4776{
4777 struct mem_cgroup *memcg;
4778 int size = sizeof(struct mem_cgroup);
4779
4780 memcg = container_of(work, struct mem_cgroup, work_freeing);
4781 /*
4782 * We need to make sure that (at least for now), the jump label
4783 * destruction code runs outside of the cgroup lock. This is because
4784 * get_online_cpus(), which is called from the static_branch update,
4785 * can't be called inside the cgroup_lock. cpusets are the ones
4786 * enforcing this dependency, so if they ever change, we might as well.
4787 *
4788 * schedule_work() will guarantee this happens. Be careful if you need
4789 * to move this code around, and make sure it is outside
4790 * the cgroup_lock.
4791 */
4792 disarm_sock_keys(memcg);
4793 if (size < PAGE_SIZE)
4794 kfree(memcg);
4795 else
4796 vfree(memcg);
4797}
4798
4799static void free_rcu(struct rcu_head *rcu_head)
4800{
4801 struct mem_cgroup *memcg;
4802
4803 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4804 INIT_WORK(&memcg->work_freeing, free_work);
4805 schedule_work(&memcg->work_freeing);
4806}
4807
4808/*
4809 * At destroying mem_cgroup, references from swap_cgroup can remain.
4810 * (scanning all at force_empty is too costly...)
4811 *
4812 * Instead of clearing all references at force_empty, we remember
4813 * the number of reference from swap_cgroup and free mem_cgroup when
4814 * it goes down to 0.
4815 *
4816 * Removal of cgroup itself succeeds regardless of refs from swap.
4817 */
4818
4819static void __mem_cgroup_free(struct mem_cgroup *memcg)
4820{
4821 int node;
4822
4823 mem_cgroup_remove_from_trees(memcg);
4824 free_css_id(&mem_cgroup_subsys, &memcg->css);
4825
4826 for_each_node(node)
4827 free_mem_cgroup_per_zone_info(memcg, node);
4828
4829 free_percpu(memcg->stat);
4830 call_rcu(&memcg->rcu_freeing, free_rcu);
4831}
4832
4833static void mem_cgroup_get(struct mem_cgroup *memcg)
4834{
4835 atomic_inc(&memcg->refcnt);
4836}
4837
4838static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4839{
4840 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4841 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4842 __mem_cgroup_free(memcg);
4843 if (parent)
4844 mem_cgroup_put(parent);
4845 }
4846}
4847
4848static void mem_cgroup_put(struct mem_cgroup *memcg)
4849{
4850 __mem_cgroup_put(memcg, 1);
4851}
4852
4853/*
4854 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4855 */
4856struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4857{
4858 if (!memcg->res.parent)
4859 return NULL;
4860 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4861}
4862EXPORT_SYMBOL(parent_mem_cgroup);
4863
4864#ifdef CONFIG_MEMCG_SWAP
4865static void __init enable_swap_cgroup(void)
4866{
4867 if (!mem_cgroup_disabled() && really_do_swap_account)
4868 do_swap_account = 1;
4869}
4870#else
4871static void __init enable_swap_cgroup(void)
4872{
4873}
4874#endif
4875
4876static int mem_cgroup_soft_limit_tree_init(void)
4877{
4878 struct mem_cgroup_tree_per_node *rtpn;
4879 struct mem_cgroup_tree_per_zone *rtpz;
4880 int tmp, node, zone;
4881
4882 for_each_node(node) {
4883 tmp = node;
4884 if (!node_state(node, N_NORMAL_MEMORY))
4885 tmp = -1;
4886 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4887 if (!rtpn)
4888 goto err_cleanup;
4889
4890 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4891
4892 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4893 rtpz = &rtpn->rb_tree_per_zone[zone];
4894 rtpz->rb_root = RB_ROOT;
4895 spin_lock_init(&rtpz->lock);
4896 }
4897 }
4898 return 0;
4899
4900err_cleanup:
4901 for_each_node(node) {
4902 if (!soft_limit_tree.rb_tree_per_node[node])
4903 break;
4904 kfree(soft_limit_tree.rb_tree_per_node[node]);
4905 soft_limit_tree.rb_tree_per_node[node] = NULL;
4906 }
4907 return 1;
4908
4909}
4910
4911static struct cgroup_subsys_state * __ref
4912mem_cgroup_create(struct cgroup *cont)
4913{
4914 struct mem_cgroup *memcg, *parent;
4915 long error = -ENOMEM;
4916 int node;
4917
4918 memcg = mem_cgroup_alloc();
4919 if (!memcg)
4920 return ERR_PTR(error);
4921
4922 for_each_node(node)
4923 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4924 goto free_out;
4925
4926 /* root ? */
4927 if (cont->parent == NULL) {
4928 int cpu;
4929 enable_swap_cgroup();
4930 parent = NULL;
4931 if (mem_cgroup_soft_limit_tree_init())
4932 goto free_out;
4933 root_mem_cgroup = memcg;
4934 for_each_possible_cpu(cpu) {
4935 struct memcg_stock_pcp *stock =
4936 &per_cpu(memcg_stock, cpu);
4937 INIT_WORK(&stock->work, drain_local_stock);
4938 }
4939 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4940 } else {
4941 parent = mem_cgroup_from_cont(cont->parent);
4942 memcg->use_hierarchy = parent->use_hierarchy;
4943 memcg->oom_kill_disable = parent->oom_kill_disable;
4944 }
4945
4946 if (parent && parent->use_hierarchy) {
4947 res_counter_init(&memcg->res, &parent->res);
4948 res_counter_init(&memcg->memsw, &parent->memsw);
4949 /*
4950 * We increment refcnt of the parent to ensure that we can
4951 * safely access it on res_counter_charge/uncharge.
4952 * This refcnt will be decremented when freeing this
4953 * mem_cgroup(see mem_cgroup_put).
4954 */
4955 mem_cgroup_get(parent);
4956 } else {
4957 res_counter_init(&memcg->res, NULL);
4958 res_counter_init(&memcg->memsw, NULL);
4959 }
4960 memcg->last_scanned_node = MAX_NUMNODES;
4961 INIT_LIST_HEAD(&memcg->oom_notify);
4962
4963 if (parent)
4964 memcg->swappiness = mem_cgroup_swappiness(parent);
4965 atomic_set(&memcg->refcnt, 1);
4966 memcg->move_charge_at_immigrate = 0;
4967 mutex_init(&memcg->thresholds_lock);
4968 spin_lock_init(&memcg->move_lock);
4969
4970 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4971 if (error) {
4972 /*
4973 * We call put now because our (and parent's) refcnts
4974 * are already in place. mem_cgroup_put() will internally
4975 * call __mem_cgroup_free, so return directly
4976 */
4977 mem_cgroup_put(memcg);
4978 return ERR_PTR(error);
4979 }
4980 return &memcg->css;
4981free_out:
4982 __mem_cgroup_free(memcg);
4983 return ERR_PTR(error);
4984}
4985
4986static int mem_cgroup_pre_destroy(struct cgroup *cont)
4987{
4988 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4989
4990 return mem_cgroup_force_empty(memcg, false);
4991}
4992
4993static void mem_cgroup_destroy(struct cgroup *cont)
4994{
4995 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4996
4997 kmem_cgroup_destroy(memcg);
4998
4999 mem_cgroup_put(memcg);
5000}
5001
5002#ifdef CONFIG_MMU
5003/* Handlers for move charge at task migration. */
5004#define PRECHARGE_COUNT_AT_ONCE 256
5005static int mem_cgroup_do_precharge(unsigned long count)
5006{
5007 int ret = 0;
5008 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5009 struct mem_cgroup *memcg = mc.to;
5010
5011 if (mem_cgroup_is_root(memcg)) {
5012 mc.precharge += count;
5013 /* we don't need css_get for root */
5014 return ret;
5015 }
5016 /* try to charge at once */
5017 if (count > 1) {
5018 struct res_counter *dummy;
5019 /*
5020 * "memcg" cannot be under rmdir() because we've already checked
5021 * by cgroup_lock_live_cgroup() that it is not removed and we
5022 * are still under the same cgroup_mutex. So we can postpone
5023 * css_get().
5024 */
5025 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5026 goto one_by_one;
5027 if (do_swap_account && res_counter_charge(&memcg->memsw,
5028 PAGE_SIZE * count, &dummy)) {
5029 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5030 goto one_by_one;
5031 }
5032 mc.precharge += count;
5033 return ret;
5034 }
5035one_by_one:
5036 /* fall back to one by one charge */
5037 while (count--) {
5038 if (signal_pending(current)) {
5039 ret = -EINTR;
5040 break;
5041 }
5042 if (!batch_count--) {
5043 batch_count = PRECHARGE_COUNT_AT_ONCE;
5044 cond_resched();
5045 }
5046 ret = __mem_cgroup_try_charge(NULL,
5047 GFP_KERNEL, 1, &memcg, false);
5048 if (ret)
5049 /* mem_cgroup_clear_mc() will do uncharge later */
5050 return ret;
5051 mc.precharge++;
5052 }
5053 return ret;
5054}
5055
5056/**
5057 * get_mctgt_type - get target type of moving charge
5058 * @vma: the vma the pte to be checked belongs
5059 * @addr: the address corresponding to the pte to be checked
5060 * @ptent: the pte to be checked
5061 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5062 *
5063 * Returns
5064 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5065 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5066 * move charge. if @target is not NULL, the page is stored in target->page
5067 * with extra refcnt got(Callers should handle it).
5068 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5069 * target for charge migration. if @target is not NULL, the entry is stored
5070 * in target->ent.
5071 *
5072 * Called with pte lock held.
5073 */
5074union mc_target {
5075 struct page *page;
5076 swp_entry_t ent;
5077};
5078
5079enum mc_target_type {
5080 MC_TARGET_NONE = 0,
5081 MC_TARGET_PAGE,
5082 MC_TARGET_SWAP,
5083};
5084
5085static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5086 unsigned long addr, pte_t ptent)
5087{
5088 struct page *page = vm_normal_page(vma, addr, ptent);
5089
5090 if (!page || !page_mapped(page))
5091 return NULL;
5092 if (PageAnon(page)) {
5093 /* we don't move shared anon */
5094 if (!move_anon())
5095 return NULL;
5096 } else if (!move_file())
5097 /* we ignore mapcount for file pages */
5098 return NULL;
5099 if (!get_page_unless_zero(page))
5100 return NULL;
5101
5102 return page;
5103}
5104
5105#ifdef CONFIG_SWAP
5106static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5107 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5108{
5109 struct page *page = NULL;
5110 swp_entry_t ent = pte_to_swp_entry(ptent);
5111
5112 if (!move_anon() || non_swap_entry(ent))
5113 return NULL;
5114 /*
5115 * Because lookup_swap_cache() updates some statistics counter,
5116 * we call find_get_page() with swapper_space directly.
5117 */
5118 page = find_get_page(&swapper_space, ent.val);
5119 if (do_swap_account)
5120 entry->val = ent.val;
5121
5122 return page;
5123}
5124#else
5125static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5126 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5127{
5128 return NULL;
5129}
5130#endif
5131
5132static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5133 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5134{
5135 struct page *page = NULL;
5136 struct address_space *mapping;
5137 pgoff_t pgoff;
5138
5139 if (!vma->vm_file) /* anonymous vma */
5140 return NULL;
5141 if (!move_file())
5142 return NULL;
5143
5144 mapping = vma->vm_file->f_mapping;
5145 if (pte_none(ptent))
5146 pgoff = linear_page_index(vma, addr);
5147 else /* pte_file(ptent) is true */
5148 pgoff = pte_to_pgoff(ptent);
5149
5150 /* page is moved even if it's not RSS of this task(page-faulted). */
5151 page = find_get_page(mapping, pgoff);
5152
5153#ifdef CONFIG_SWAP
5154 /* shmem/tmpfs may report page out on swap: account for that too. */
5155 if (radix_tree_exceptional_entry(page)) {
5156 swp_entry_t swap = radix_to_swp_entry(page);
5157 if (do_swap_account)
5158 *entry = swap;
5159 page = find_get_page(&swapper_space, swap.val);
5160 }
5161#endif
5162 return page;
5163}
5164
5165static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5166 unsigned long addr, pte_t ptent, union mc_target *target)
5167{
5168 struct page *page = NULL;
5169 struct page_cgroup *pc;
5170 enum mc_target_type ret = MC_TARGET_NONE;
5171 swp_entry_t ent = { .val = 0 };
5172
5173 if (pte_present(ptent))
5174 page = mc_handle_present_pte(vma, addr, ptent);
5175 else if (is_swap_pte(ptent))
5176 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5177 else if (pte_none(ptent) || pte_file(ptent))
5178 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5179
5180 if (!page && !ent.val)
5181 return ret;
5182 if (page) {
5183 pc = lookup_page_cgroup(page);
5184 /*
5185 * Do only loose check w/o page_cgroup lock.
5186 * mem_cgroup_move_account() checks the pc is valid or not under
5187 * the lock.
5188 */
5189 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5190 ret = MC_TARGET_PAGE;
5191 if (target)
5192 target->page = page;
5193 }
5194 if (!ret || !target)
5195 put_page(page);
5196 }
5197 /* There is a swap entry and a page doesn't exist or isn't charged */
5198 if (ent.val && !ret &&
5199 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5200 ret = MC_TARGET_SWAP;
5201 if (target)
5202 target->ent = ent;
5203 }
5204 return ret;
5205}
5206
5207#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5208/*
5209 * We don't consider swapping or file mapped pages because THP does not
5210 * support them for now.
5211 * Caller should make sure that pmd_trans_huge(pmd) is true.
5212 */
5213static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5214 unsigned long addr, pmd_t pmd, union mc_target *target)
5215{
5216 struct page *page = NULL;
5217 struct page_cgroup *pc;
5218 enum mc_target_type ret = MC_TARGET_NONE;
5219
5220 page = pmd_page(pmd);
5221 VM_BUG_ON(!page || !PageHead(page));
5222 if (!move_anon())
5223 return ret;
5224 pc = lookup_page_cgroup(page);
5225 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5226 ret = MC_TARGET_PAGE;
5227 if (target) {
5228 get_page(page);
5229 target->page = page;
5230 }
5231 }
5232 return ret;
5233}
5234#else
5235static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5236 unsigned long addr, pmd_t pmd, union mc_target *target)
5237{
5238 return MC_TARGET_NONE;
5239}
5240#endif
5241
5242static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5243 unsigned long addr, unsigned long end,
5244 struct mm_walk *walk)
5245{
5246 struct vm_area_struct *vma = walk->private;
5247 pte_t *pte;
5248 spinlock_t *ptl;
5249
5250 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5251 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5252 mc.precharge += HPAGE_PMD_NR;
5253 spin_unlock(&vma->vm_mm->page_table_lock);
5254 return 0;
5255 }
5256
5257 if (pmd_trans_unstable(pmd))
5258 return 0;
5259 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5260 for (; addr != end; pte++, addr += PAGE_SIZE)
5261 if (get_mctgt_type(vma, addr, *pte, NULL))
5262 mc.precharge++; /* increment precharge temporarily */
5263 pte_unmap_unlock(pte - 1, ptl);
5264 cond_resched();
5265
5266 return 0;
5267}
5268
5269static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5270{
5271 unsigned long precharge;
5272 struct vm_area_struct *vma;
5273
5274 down_read(&mm->mmap_sem);
5275 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5276 struct mm_walk mem_cgroup_count_precharge_walk = {
5277 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5278 .mm = mm,
5279 .private = vma,
5280 };
5281 if (is_vm_hugetlb_page(vma))
5282 continue;
5283 walk_page_range(vma->vm_start, vma->vm_end,
5284 &mem_cgroup_count_precharge_walk);
5285 }
5286 up_read(&mm->mmap_sem);
5287
5288 precharge = mc.precharge;
5289 mc.precharge = 0;
5290
5291 return precharge;
5292}
5293
5294static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5295{
5296 unsigned long precharge = mem_cgroup_count_precharge(mm);
5297
5298 VM_BUG_ON(mc.moving_task);
5299 mc.moving_task = current;
5300 return mem_cgroup_do_precharge(precharge);
5301}
5302
5303/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5304static void __mem_cgroup_clear_mc(void)
5305{
5306 struct mem_cgroup *from = mc.from;
5307 struct mem_cgroup *to = mc.to;
5308
5309 /* we must uncharge all the leftover precharges from mc.to */
5310 if (mc.precharge) {
5311 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5312 mc.precharge = 0;
5313 }
5314 /*
5315 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5316 * we must uncharge here.
5317 */
5318 if (mc.moved_charge) {
5319 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5320 mc.moved_charge = 0;
5321 }
5322 /* we must fixup refcnts and charges */
5323 if (mc.moved_swap) {
5324 /* uncharge swap account from the old cgroup */
5325 if (!mem_cgroup_is_root(mc.from))
5326 res_counter_uncharge(&mc.from->memsw,
5327 PAGE_SIZE * mc.moved_swap);
5328 __mem_cgroup_put(mc.from, mc.moved_swap);
5329
5330 if (!mem_cgroup_is_root(mc.to)) {
5331 /*
5332 * we charged both to->res and to->memsw, so we should
5333 * uncharge to->res.
5334 */
5335 res_counter_uncharge(&mc.to->res,
5336 PAGE_SIZE * mc.moved_swap);
5337 }
5338 /* we've already done mem_cgroup_get(mc.to) */
5339 mc.moved_swap = 0;
5340 }
5341 memcg_oom_recover(from);
5342 memcg_oom_recover(to);
5343 wake_up_all(&mc.waitq);
5344}
5345
5346static void mem_cgroup_clear_mc(void)
5347{
5348 struct mem_cgroup *from = mc.from;
5349
5350 /*
5351 * we must clear moving_task before waking up waiters at the end of
5352 * task migration.
5353 */
5354 mc.moving_task = NULL;
5355 __mem_cgroup_clear_mc();
5356 spin_lock(&mc.lock);
5357 mc.from = NULL;
5358 mc.to = NULL;
5359 spin_unlock(&mc.lock);
5360 mem_cgroup_end_move(from);
5361}
5362
5363static int mem_cgroup_can_attach(struct cgroup *cgroup,
5364 struct cgroup_taskset *tset)
5365{
5366 struct task_struct *p = cgroup_taskset_first(tset);
5367 int ret = 0;
5368 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5369
5370 if (memcg->move_charge_at_immigrate) {
5371 struct mm_struct *mm;
5372 struct mem_cgroup *from = mem_cgroup_from_task(p);
5373
5374 VM_BUG_ON(from == memcg);
5375
5376 mm = get_task_mm(p);
5377 if (!mm)
5378 return 0;
5379 /* We move charges only when we move a owner of the mm */
5380 if (mm->owner == p) {
5381 VM_BUG_ON(mc.from);
5382 VM_BUG_ON(mc.to);
5383 VM_BUG_ON(mc.precharge);
5384 VM_BUG_ON(mc.moved_charge);
5385 VM_BUG_ON(mc.moved_swap);
5386 mem_cgroup_start_move(from);
5387 spin_lock(&mc.lock);
5388 mc.from = from;
5389 mc.to = memcg;
5390 spin_unlock(&mc.lock);
5391 /* We set mc.moving_task later */
5392
5393 ret = mem_cgroup_precharge_mc(mm);
5394 if (ret)
5395 mem_cgroup_clear_mc();
5396 }
5397 mmput(mm);
5398 }
5399 return ret;
5400}
5401
5402static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5403 struct cgroup_taskset *tset)
5404{
5405 mem_cgroup_clear_mc();
5406}
5407
5408static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5409 unsigned long addr, unsigned long end,
5410 struct mm_walk *walk)
5411{
5412 int ret = 0;
5413 struct vm_area_struct *vma = walk->private;
5414 pte_t *pte;
5415 spinlock_t *ptl;
5416 enum mc_target_type target_type;
5417 union mc_target target;
5418 struct page *page;
5419 struct page_cgroup *pc;
5420
5421 /*
5422 * We don't take compound_lock() here but no race with splitting thp
5423 * happens because:
5424 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5425 * under splitting, which means there's no concurrent thp split,
5426 * - if another thread runs into split_huge_page() just after we
5427 * entered this if-block, the thread must wait for page table lock
5428 * to be unlocked in __split_huge_page_splitting(), where the main
5429 * part of thp split is not executed yet.
5430 */
5431 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5432 if (mc.precharge < HPAGE_PMD_NR) {
5433 spin_unlock(&vma->vm_mm->page_table_lock);
5434 return 0;
5435 }
5436 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5437 if (target_type == MC_TARGET_PAGE) {
5438 page = target.page;
5439 if (!isolate_lru_page(page)) {
5440 pc = lookup_page_cgroup(page);
5441 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5442 pc, mc.from, mc.to)) {
5443 mc.precharge -= HPAGE_PMD_NR;
5444 mc.moved_charge += HPAGE_PMD_NR;
5445 }
5446 putback_lru_page(page);
5447 }
5448 put_page(page);
5449 }
5450 spin_unlock(&vma->vm_mm->page_table_lock);
5451 return 0;
5452 }
5453
5454 if (pmd_trans_unstable(pmd))
5455 return 0;
5456retry:
5457 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5458 for (; addr != end; addr += PAGE_SIZE) {
5459 pte_t ptent = *(pte++);
5460 swp_entry_t ent;
5461
5462 if (!mc.precharge)
5463 break;
5464
5465 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5466 case MC_TARGET_PAGE:
5467 page = target.page;
5468 if (isolate_lru_page(page))
5469 goto put;
5470 pc = lookup_page_cgroup(page);
5471 if (!mem_cgroup_move_account(page, 1, pc,
5472 mc.from, mc.to)) {
5473 mc.precharge--;
5474 /* we uncharge from mc.from later. */
5475 mc.moved_charge++;
5476 }
5477 putback_lru_page(page);
5478put: /* get_mctgt_type() gets the page */
5479 put_page(page);
5480 break;
5481 case MC_TARGET_SWAP:
5482 ent = target.ent;
5483 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5484 mc.precharge--;
5485 /* we fixup refcnts and charges later. */
5486 mc.moved_swap++;
5487 }
5488 break;
5489 default:
5490 break;
5491 }
5492 }
5493 pte_unmap_unlock(pte - 1, ptl);
5494 cond_resched();
5495
5496 if (addr != end) {
5497 /*
5498 * We have consumed all precharges we got in can_attach().
5499 * We try charge one by one, but don't do any additional
5500 * charges to mc.to if we have failed in charge once in attach()
5501 * phase.
5502 */
5503 ret = mem_cgroup_do_precharge(1);
5504 if (!ret)
5505 goto retry;
5506 }
5507
5508 return ret;
5509}
5510
5511static void mem_cgroup_move_charge(struct mm_struct *mm)
5512{
5513 struct vm_area_struct *vma;
5514
5515 lru_add_drain_all();
5516retry:
5517 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5518 /*
5519 * Someone who are holding the mmap_sem might be waiting in
5520 * waitq. So we cancel all extra charges, wake up all waiters,
5521 * and retry. Because we cancel precharges, we might not be able
5522 * to move enough charges, but moving charge is a best-effort
5523 * feature anyway, so it wouldn't be a big problem.
5524 */
5525 __mem_cgroup_clear_mc();
5526 cond_resched();
5527 goto retry;
5528 }
5529 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5530 int ret;
5531 struct mm_walk mem_cgroup_move_charge_walk = {
5532 .pmd_entry = mem_cgroup_move_charge_pte_range,
5533 .mm = mm,
5534 .private = vma,
5535 };
5536 if (is_vm_hugetlb_page(vma))
5537 continue;
5538 ret = walk_page_range(vma->vm_start, vma->vm_end,
5539 &mem_cgroup_move_charge_walk);
5540 if (ret)
5541 /*
5542 * means we have consumed all precharges and failed in
5543 * doing additional charge. Just abandon here.
5544 */
5545 break;
5546 }
5547 up_read(&mm->mmap_sem);
5548}
5549
5550static void mem_cgroup_move_task(struct cgroup *cont,
5551 struct cgroup_taskset *tset)
5552{
5553 struct task_struct *p = cgroup_taskset_first(tset);
5554 struct mm_struct *mm = get_task_mm(p);
5555
5556 if (mm) {
5557 if (mc.to)
5558 mem_cgroup_move_charge(mm);
5559 mmput(mm);
5560 }
5561 if (mc.to)
5562 mem_cgroup_clear_mc();
5563}
5564#else /* !CONFIG_MMU */
5565static int mem_cgroup_can_attach(struct cgroup *cgroup,
5566 struct cgroup_taskset *tset)
5567{
5568 return 0;
5569}
5570static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5571 struct cgroup_taskset *tset)
5572{
5573}
5574static void mem_cgroup_move_task(struct cgroup *cont,
5575 struct cgroup_taskset *tset)
5576{
5577}
5578#endif
5579
5580struct cgroup_subsys mem_cgroup_subsys = {
5581 .name = "memory",
5582 .subsys_id = mem_cgroup_subsys_id,
5583 .create = mem_cgroup_create,
5584 .pre_destroy = mem_cgroup_pre_destroy,
5585 .destroy = mem_cgroup_destroy,
5586 .can_attach = mem_cgroup_can_attach,
5587 .cancel_attach = mem_cgroup_cancel_attach,
5588 .attach = mem_cgroup_move_task,
5589 .base_cftypes = mem_cgroup_files,
5590 .early_init = 0,
5591 .use_id = 1,
5592 .__DEPRECATED_clear_css_refs = true,
5593};
5594
5595#ifdef CONFIG_MEMCG_SWAP
5596static int __init enable_swap_account(char *s)
5597{
5598 /* consider enabled if no parameter or 1 is given */
5599 if (!strcmp(s, "1"))
5600 really_do_swap_account = 1;
5601 else if (!strcmp(s, "0"))
5602 really_do_swap_account = 0;
5603 return 1;
5604}
5605__setup("swapaccount=", enable_swap_account);
5606
5607#endif
This page took 0.102178 seconds and 5 git commands to generate.