mm: memcontrol: zap memcg_kmem_online helper
[deliverable/linux.git] / mm / memcontrol.c
... / ...
CommitLineData
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34#include <linux/page_counter.h>
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
37#include <linux/mm.h>
38#include <linux/hugetlb.h>
39#include <linux/pagemap.h>
40#include <linux/smp.h>
41#include <linux/page-flags.h>
42#include <linux/backing-dev.h>
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
45#include <linux/limits.h>
46#include <linux/export.h>
47#include <linux/mutex.h>
48#include <linux/rbtree.h>
49#include <linux/slab.h>
50#include <linux/swap.h>
51#include <linux/swapops.h>
52#include <linux/spinlock.h>
53#include <linux/eventfd.h>
54#include <linux/poll.h>
55#include <linux/sort.h>
56#include <linux/fs.h>
57#include <linux/seq_file.h>
58#include <linux/vmpressure.h>
59#include <linux/mm_inline.h>
60#include <linux/swap_cgroup.h>
61#include <linux/cpu.h>
62#include <linux/oom.h>
63#include <linux/lockdep.h>
64#include <linux/file.h>
65#include <linux/tracehook.h>
66#include "internal.h"
67#include <net/sock.h>
68#include <net/ip.h>
69#include "slab.h"
70
71#include <asm/uaccess.h>
72
73#include <trace/events/vmscan.h>
74
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
77
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80#define MEM_CGROUP_RECLAIM_RETRIES 5
81
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
88/* Whether the swap controller is active */
89#ifdef CONFIG_MEMCG_SWAP
90int do_swap_account __read_mostly;
91#else
92#define do_swap_account 0
93#endif
94
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109};
110
111static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116};
117
118static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124};
125
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
129
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
140struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142};
143
144struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146};
147
148static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150/* for OOM */
151struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154};
155
156/*
157 * cgroup_event represents events which userspace want to receive.
158 */
159struct mem_cgroup_event {
160 /*
161 * memcg which the event belongs to.
162 */
163 struct mem_cgroup *memcg;
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
177 int (*register_event)(struct mem_cgroup *memcg,
178 struct eventfd_ctx *eventfd, const char *args);
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
184 void (*unregister_event)(struct mem_cgroup *memcg,
185 struct eventfd_ctx *eventfd);
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194};
195
196static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199/* Stuffs for move charges at task migration. */
200/*
201 * Types of charges to be moved.
202 */
203#define MOVE_ANON 0x1U
204#define MOVE_FILE 0x2U
205#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
206
207/* "mc" and its members are protected by cgroup_mutex */
208static struct move_charge_struct {
209 spinlock_t lock; /* for from, to */
210 struct mem_cgroup *from;
211 struct mem_cgroup *to;
212 unsigned long flags;
213 unsigned long precharge;
214 unsigned long moved_charge;
215 unsigned long moved_swap;
216 struct task_struct *moving_task; /* a task moving charges */
217 wait_queue_head_t waitq; /* a waitq for other context */
218} mc = {
219 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
220 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
221};
222
223/*
224 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
225 * limit reclaim to prevent infinite loops, if they ever occur.
226 */
227#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
228#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
229
230enum charge_type {
231 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
232 MEM_CGROUP_CHARGE_TYPE_ANON,
233 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
234 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
235 NR_CHARGE_TYPE,
236};
237
238/* for encoding cft->private value on file */
239enum res_type {
240 _MEM,
241 _MEMSWAP,
242 _OOM_TYPE,
243 _KMEM,
244 _TCP,
245};
246
247#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
248#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
249#define MEMFILE_ATTR(val) ((val) & 0xffff)
250/* Used for OOM nofiier */
251#define OOM_CONTROL (0)
252
253/* Some nice accessors for the vmpressure. */
254struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
255{
256 if (!memcg)
257 memcg = root_mem_cgroup;
258 return &memcg->vmpressure;
259}
260
261struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
262{
263 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
264}
265
266static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
267{
268 return (memcg == root_mem_cgroup);
269}
270
271#ifndef CONFIG_SLOB
272/*
273 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
274 * The main reason for not using cgroup id for this:
275 * this works better in sparse environments, where we have a lot of memcgs,
276 * but only a few kmem-limited. Or also, if we have, for instance, 200
277 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
278 * 200 entry array for that.
279 *
280 * The current size of the caches array is stored in memcg_nr_cache_ids. It
281 * will double each time we have to increase it.
282 */
283static DEFINE_IDA(memcg_cache_ida);
284int memcg_nr_cache_ids;
285
286/* Protects memcg_nr_cache_ids */
287static DECLARE_RWSEM(memcg_cache_ids_sem);
288
289void memcg_get_cache_ids(void)
290{
291 down_read(&memcg_cache_ids_sem);
292}
293
294void memcg_put_cache_ids(void)
295{
296 up_read(&memcg_cache_ids_sem);
297}
298
299/*
300 * MIN_SIZE is different than 1, because we would like to avoid going through
301 * the alloc/free process all the time. In a small machine, 4 kmem-limited
302 * cgroups is a reasonable guess. In the future, it could be a parameter or
303 * tunable, but that is strictly not necessary.
304 *
305 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
306 * this constant directly from cgroup, but it is understandable that this is
307 * better kept as an internal representation in cgroup.c. In any case, the
308 * cgrp_id space is not getting any smaller, and we don't have to necessarily
309 * increase ours as well if it increases.
310 */
311#define MEMCG_CACHES_MIN_SIZE 4
312#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
313
314/*
315 * A lot of the calls to the cache allocation functions are expected to be
316 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
317 * conditional to this static branch, we'll have to allow modules that does
318 * kmem_cache_alloc and the such to see this symbol as well
319 */
320DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
321EXPORT_SYMBOL(memcg_kmem_enabled_key);
322
323#endif /* !CONFIG_SLOB */
324
325static struct mem_cgroup_per_zone *
326mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
327{
328 int nid = zone_to_nid(zone);
329 int zid = zone_idx(zone);
330
331 return &memcg->nodeinfo[nid]->zoneinfo[zid];
332}
333
334/**
335 * mem_cgroup_css_from_page - css of the memcg associated with a page
336 * @page: page of interest
337 *
338 * If memcg is bound to the default hierarchy, css of the memcg associated
339 * with @page is returned. The returned css remains associated with @page
340 * until it is released.
341 *
342 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
343 * is returned.
344 */
345struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
346{
347 struct mem_cgroup *memcg;
348
349 memcg = page->mem_cgroup;
350
351 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
352 memcg = root_mem_cgroup;
353
354 return &memcg->css;
355}
356
357/**
358 * page_cgroup_ino - return inode number of the memcg a page is charged to
359 * @page: the page
360 *
361 * Look up the closest online ancestor of the memory cgroup @page is charged to
362 * and return its inode number or 0 if @page is not charged to any cgroup. It
363 * is safe to call this function without holding a reference to @page.
364 *
365 * Note, this function is inherently racy, because there is nothing to prevent
366 * the cgroup inode from getting torn down and potentially reallocated a moment
367 * after page_cgroup_ino() returns, so it only should be used by callers that
368 * do not care (such as procfs interfaces).
369 */
370ino_t page_cgroup_ino(struct page *page)
371{
372 struct mem_cgroup *memcg;
373 unsigned long ino = 0;
374
375 rcu_read_lock();
376 memcg = READ_ONCE(page->mem_cgroup);
377 while (memcg && !(memcg->css.flags & CSS_ONLINE))
378 memcg = parent_mem_cgroup(memcg);
379 if (memcg)
380 ino = cgroup_ino(memcg->css.cgroup);
381 rcu_read_unlock();
382 return ino;
383}
384
385static struct mem_cgroup_per_zone *
386mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
387{
388 int nid = page_to_nid(page);
389 int zid = page_zonenum(page);
390
391 return &memcg->nodeinfo[nid]->zoneinfo[zid];
392}
393
394static struct mem_cgroup_tree_per_zone *
395soft_limit_tree_node_zone(int nid, int zid)
396{
397 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
398}
399
400static struct mem_cgroup_tree_per_zone *
401soft_limit_tree_from_page(struct page *page)
402{
403 int nid = page_to_nid(page);
404 int zid = page_zonenum(page);
405
406 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
407}
408
409static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
410 struct mem_cgroup_tree_per_zone *mctz,
411 unsigned long new_usage_in_excess)
412{
413 struct rb_node **p = &mctz->rb_root.rb_node;
414 struct rb_node *parent = NULL;
415 struct mem_cgroup_per_zone *mz_node;
416
417 if (mz->on_tree)
418 return;
419
420 mz->usage_in_excess = new_usage_in_excess;
421 if (!mz->usage_in_excess)
422 return;
423 while (*p) {
424 parent = *p;
425 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
426 tree_node);
427 if (mz->usage_in_excess < mz_node->usage_in_excess)
428 p = &(*p)->rb_left;
429 /*
430 * We can't avoid mem cgroups that are over their soft
431 * limit by the same amount
432 */
433 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
434 p = &(*p)->rb_right;
435 }
436 rb_link_node(&mz->tree_node, parent, p);
437 rb_insert_color(&mz->tree_node, &mctz->rb_root);
438 mz->on_tree = true;
439}
440
441static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
442 struct mem_cgroup_tree_per_zone *mctz)
443{
444 if (!mz->on_tree)
445 return;
446 rb_erase(&mz->tree_node, &mctz->rb_root);
447 mz->on_tree = false;
448}
449
450static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
451 struct mem_cgroup_tree_per_zone *mctz)
452{
453 unsigned long flags;
454
455 spin_lock_irqsave(&mctz->lock, flags);
456 __mem_cgroup_remove_exceeded(mz, mctz);
457 spin_unlock_irqrestore(&mctz->lock, flags);
458}
459
460static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
461{
462 unsigned long nr_pages = page_counter_read(&memcg->memory);
463 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
464 unsigned long excess = 0;
465
466 if (nr_pages > soft_limit)
467 excess = nr_pages - soft_limit;
468
469 return excess;
470}
471
472static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
473{
474 unsigned long excess;
475 struct mem_cgroup_per_zone *mz;
476 struct mem_cgroup_tree_per_zone *mctz;
477
478 mctz = soft_limit_tree_from_page(page);
479 /*
480 * Necessary to update all ancestors when hierarchy is used.
481 * because their event counter is not touched.
482 */
483 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
484 mz = mem_cgroup_page_zoneinfo(memcg, page);
485 excess = soft_limit_excess(memcg);
486 /*
487 * We have to update the tree if mz is on RB-tree or
488 * mem is over its softlimit.
489 */
490 if (excess || mz->on_tree) {
491 unsigned long flags;
492
493 spin_lock_irqsave(&mctz->lock, flags);
494 /* if on-tree, remove it */
495 if (mz->on_tree)
496 __mem_cgroup_remove_exceeded(mz, mctz);
497 /*
498 * Insert again. mz->usage_in_excess will be updated.
499 * If excess is 0, no tree ops.
500 */
501 __mem_cgroup_insert_exceeded(mz, mctz, excess);
502 spin_unlock_irqrestore(&mctz->lock, flags);
503 }
504 }
505}
506
507static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
508{
509 struct mem_cgroup_tree_per_zone *mctz;
510 struct mem_cgroup_per_zone *mz;
511 int nid, zid;
512
513 for_each_node(nid) {
514 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
515 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
516 mctz = soft_limit_tree_node_zone(nid, zid);
517 mem_cgroup_remove_exceeded(mz, mctz);
518 }
519 }
520}
521
522static struct mem_cgroup_per_zone *
523__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
524{
525 struct rb_node *rightmost = NULL;
526 struct mem_cgroup_per_zone *mz;
527
528retry:
529 mz = NULL;
530 rightmost = rb_last(&mctz->rb_root);
531 if (!rightmost)
532 goto done; /* Nothing to reclaim from */
533
534 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
535 /*
536 * Remove the node now but someone else can add it back,
537 * we will to add it back at the end of reclaim to its correct
538 * position in the tree.
539 */
540 __mem_cgroup_remove_exceeded(mz, mctz);
541 if (!soft_limit_excess(mz->memcg) ||
542 !css_tryget_online(&mz->memcg->css))
543 goto retry;
544done:
545 return mz;
546}
547
548static struct mem_cgroup_per_zone *
549mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
550{
551 struct mem_cgroup_per_zone *mz;
552
553 spin_lock_irq(&mctz->lock);
554 mz = __mem_cgroup_largest_soft_limit_node(mctz);
555 spin_unlock_irq(&mctz->lock);
556 return mz;
557}
558
559/*
560 * Return page count for single (non recursive) @memcg.
561 *
562 * Implementation Note: reading percpu statistics for memcg.
563 *
564 * Both of vmstat[] and percpu_counter has threshold and do periodic
565 * synchronization to implement "quick" read. There are trade-off between
566 * reading cost and precision of value. Then, we may have a chance to implement
567 * a periodic synchronization of counter in memcg's counter.
568 *
569 * But this _read() function is used for user interface now. The user accounts
570 * memory usage by memory cgroup and he _always_ requires exact value because
571 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
572 * have to visit all online cpus and make sum. So, for now, unnecessary
573 * synchronization is not implemented. (just implemented for cpu hotplug)
574 *
575 * If there are kernel internal actions which can make use of some not-exact
576 * value, and reading all cpu value can be performance bottleneck in some
577 * common workload, threshold and synchronization as vmstat[] should be
578 * implemented.
579 */
580static unsigned long
581mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
582{
583 long val = 0;
584 int cpu;
585
586 /* Per-cpu values can be negative, use a signed accumulator */
587 for_each_possible_cpu(cpu)
588 val += per_cpu(memcg->stat->count[idx], cpu);
589 /*
590 * Summing races with updates, so val may be negative. Avoid exposing
591 * transient negative values.
592 */
593 if (val < 0)
594 val = 0;
595 return val;
596}
597
598static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
599 enum mem_cgroup_events_index idx)
600{
601 unsigned long val = 0;
602 int cpu;
603
604 for_each_possible_cpu(cpu)
605 val += per_cpu(memcg->stat->events[idx], cpu);
606 return val;
607}
608
609static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
610 struct page *page,
611 bool compound, int nr_pages)
612{
613 /*
614 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
615 * counted as CACHE even if it's on ANON LRU.
616 */
617 if (PageAnon(page))
618 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
619 nr_pages);
620 else
621 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
622 nr_pages);
623
624 if (compound) {
625 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
626 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
627 nr_pages);
628 }
629
630 /* pagein of a big page is an event. So, ignore page size */
631 if (nr_pages > 0)
632 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
633 else {
634 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
635 nr_pages = -nr_pages; /* for event */
636 }
637
638 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
639}
640
641static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
642 int nid,
643 unsigned int lru_mask)
644{
645 unsigned long nr = 0;
646 int zid;
647
648 VM_BUG_ON((unsigned)nid >= nr_node_ids);
649
650 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 struct mem_cgroup_per_zone *mz;
652 enum lru_list lru;
653
654 for_each_lru(lru) {
655 if (!(BIT(lru) & lru_mask))
656 continue;
657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 nr += mz->lru_size[lru];
659 }
660 }
661 return nr;
662}
663
664static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665 unsigned int lru_mask)
666{
667 unsigned long nr = 0;
668 int nid;
669
670 for_each_node_state(nid, N_MEMORY)
671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 return nr;
673}
674
675static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 enum mem_cgroup_events_target target)
677{
678 unsigned long val, next;
679
680 val = __this_cpu_read(memcg->stat->nr_page_events);
681 next = __this_cpu_read(memcg->stat->targets[target]);
682 /* from time_after() in jiffies.h */
683 if ((long)next - (long)val < 0) {
684 switch (target) {
685 case MEM_CGROUP_TARGET_THRESH:
686 next = val + THRESHOLDS_EVENTS_TARGET;
687 break;
688 case MEM_CGROUP_TARGET_SOFTLIMIT:
689 next = val + SOFTLIMIT_EVENTS_TARGET;
690 break;
691 case MEM_CGROUP_TARGET_NUMAINFO:
692 next = val + NUMAINFO_EVENTS_TARGET;
693 break;
694 default:
695 break;
696 }
697 __this_cpu_write(memcg->stat->targets[target], next);
698 return true;
699 }
700 return false;
701}
702
703/*
704 * Check events in order.
705 *
706 */
707static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708{
709 /* threshold event is triggered in finer grain than soft limit */
710 if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 MEM_CGROUP_TARGET_THRESH))) {
712 bool do_softlimit;
713 bool do_numainfo __maybe_unused;
714
715 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 MEM_CGROUP_TARGET_SOFTLIMIT);
717#if MAX_NUMNODES > 1
718 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 MEM_CGROUP_TARGET_NUMAINFO);
720#endif
721 mem_cgroup_threshold(memcg);
722 if (unlikely(do_softlimit))
723 mem_cgroup_update_tree(memcg, page);
724#if MAX_NUMNODES > 1
725 if (unlikely(do_numainfo))
726 atomic_inc(&memcg->numainfo_events);
727#endif
728 }
729}
730
731struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732{
733 /*
734 * mm_update_next_owner() may clear mm->owner to NULL
735 * if it races with swapoff, page migration, etc.
736 * So this can be called with p == NULL.
737 */
738 if (unlikely(!p))
739 return NULL;
740
741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742}
743EXPORT_SYMBOL(mem_cgroup_from_task);
744
745static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746{
747 struct mem_cgroup *memcg = NULL;
748
749 rcu_read_lock();
750 do {
751 /*
752 * Page cache insertions can happen withou an
753 * actual mm context, e.g. during disk probing
754 * on boot, loopback IO, acct() writes etc.
755 */
756 if (unlikely(!mm))
757 memcg = root_mem_cgroup;
758 else {
759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 if (unlikely(!memcg))
761 memcg = root_mem_cgroup;
762 }
763 } while (!css_tryget_online(&memcg->css));
764 rcu_read_unlock();
765 return memcg;
766}
767
768/**
769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
770 * @root: hierarchy root
771 * @prev: previously returned memcg, NULL on first invocation
772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
773 *
774 * Returns references to children of the hierarchy below @root, or
775 * @root itself, or %NULL after a full round-trip.
776 *
777 * Caller must pass the return value in @prev on subsequent
778 * invocations for reference counting, or use mem_cgroup_iter_break()
779 * to cancel a hierarchy walk before the round-trip is complete.
780 *
781 * Reclaimers can specify a zone and a priority level in @reclaim to
782 * divide up the memcgs in the hierarchy among all concurrent
783 * reclaimers operating on the same zone and priority.
784 */
785struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786 struct mem_cgroup *prev,
787 struct mem_cgroup_reclaim_cookie *reclaim)
788{
789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790 struct cgroup_subsys_state *css = NULL;
791 struct mem_cgroup *memcg = NULL;
792 struct mem_cgroup *pos = NULL;
793
794 if (mem_cgroup_disabled())
795 return NULL;
796
797 if (!root)
798 root = root_mem_cgroup;
799
800 if (prev && !reclaim)
801 pos = prev;
802
803 if (!root->use_hierarchy && root != root_mem_cgroup) {
804 if (prev)
805 goto out;
806 return root;
807 }
808
809 rcu_read_lock();
810
811 if (reclaim) {
812 struct mem_cgroup_per_zone *mz;
813
814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 iter = &mz->iter[reclaim->priority];
816
817 if (prev && reclaim->generation != iter->generation)
818 goto out_unlock;
819
820 while (1) {
821 pos = READ_ONCE(iter->position);
822 if (!pos || css_tryget(&pos->css))
823 break;
824 /*
825 * css reference reached zero, so iter->position will
826 * be cleared by ->css_released. However, we should not
827 * rely on this happening soon, because ->css_released
828 * is called from a work queue, and by busy-waiting we
829 * might block it. So we clear iter->position right
830 * away.
831 */
832 (void)cmpxchg(&iter->position, pos, NULL);
833 }
834 }
835
836 if (pos)
837 css = &pos->css;
838
839 for (;;) {
840 css = css_next_descendant_pre(css, &root->css);
841 if (!css) {
842 /*
843 * Reclaimers share the hierarchy walk, and a
844 * new one might jump in right at the end of
845 * the hierarchy - make sure they see at least
846 * one group and restart from the beginning.
847 */
848 if (!prev)
849 continue;
850 break;
851 }
852
853 /*
854 * Verify the css and acquire a reference. The root
855 * is provided by the caller, so we know it's alive
856 * and kicking, and don't take an extra reference.
857 */
858 memcg = mem_cgroup_from_css(css);
859
860 if (css == &root->css)
861 break;
862
863 if (css_tryget(css))
864 break;
865
866 memcg = NULL;
867 }
868
869 if (reclaim) {
870 /*
871 * The position could have already been updated by a competing
872 * thread, so check that the value hasn't changed since we read
873 * it to avoid reclaiming from the same cgroup twice.
874 */
875 (void)cmpxchg(&iter->position, pos, memcg);
876
877 if (pos)
878 css_put(&pos->css);
879
880 if (!memcg)
881 iter->generation++;
882 else if (!prev)
883 reclaim->generation = iter->generation;
884 }
885
886out_unlock:
887 rcu_read_unlock();
888out:
889 if (prev && prev != root)
890 css_put(&prev->css);
891
892 return memcg;
893}
894
895/**
896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897 * @root: hierarchy root
898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899 */
900void mem_cgroup_iter_break(struct mem_cgroup *root,
901 struct mem_cgroup *prev)
902{
903 if (!root)
904 root = root_mem_cgroup;
905 if (prev && prev != root)
906 css_put(&prev->css);
907}
908
909static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910{
911 struct mem_cgroup *memcg = dead_memcg;
912 struct mem_cgroup_reclaim_iter *iter;
913 struct mem_cgroup_per_zone *mz;
914 int nid, zid;
915 int i;
916
917 while ((memcg = parent_mem_cgroup(memcg))) {
918 for_each_node(nid) {
919 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 for (i = 0; i <= DEF_PRIORITY; i++) {
922 iter = &mz->iter[i];
923 cmpxchg(&iter->position,
924 dead_memcg, NULL);
925 }
926 }
927 }
928 }
929}
930
931/*
932 * Iteration constructs for visiting all cgroups (under a tree). If
933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
934 * be used for reference counting.
935 */
936#define for_each_mem_cgroup_tree(iter, root) \
937 for (iter = mem_cgroup_iter(root, NULL, NULL); \
938 iter != NULL; \
939 iter = mem_cgroup_iter(root, iter, NULL))
940
941#define for_each_mem_cgroup(iter) \
942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
943 iter != NULL; \
944 iter = mem_cgroup_iter(NULL, iter, NULL))
945
946/**
947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948 * @zone: zone of the wanted lruvec
949 * @memcg: memcg of the wanted lruvec
950 *
951 * Returns the lru list vector holding pages for the given @zone and
952 * @mem. This can be the global zone lruvec, if the memory controller
953 * is disabled.
954 */
955struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 struct mem_cgroup *memcg)
957{
958 struct mem_cgroup_per_zone *mz;
959 struct lruvec *lruvec;
960
961 if (mem_cgroup_disabled()) {
962 lruvec = &zone->lruvec;
963 goto out;
964 }
965
966 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 lruvec = &mz->lruvec;
968out:
969 /*
970 * Since a node can be onlined after the mem_cgroup was created,
971 * we have to be prepared to initialize lruvec->zone here;
972 * and if offlined then reonlined, we need to reinitialize it.
973 */
974 if (unlikely(lruvec->zone != zone))
975 lruvec->zone = zone;
976 return lruvec;
977}
978
979/**
980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981 * @page: the page
982 * @zone: zone of the page
983 *
984 * This function is only safe when following the LRU page isolation
985 * and putback protocol: the LRU lock must be held, and the page must
986 * either be PageLRU() or the caller must have isolated/allocated it.
987 */
988struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
989{
990 struct mem_cgroup_per_zone *mz;
991 struct mem_cgroup *memcg;
992 struct lruvec *lruvec;
993
994 if (mem_cgroup_disabled()) {
995 lruvec = &zone->lruvec;
996 goto out;
997 }
998
999 memcg = page->mem_cgroup;
1000 /*
1001 * Swapcache readahead pages are added to the LRU - and
1002 * possibly migrated - before they are charged.
1003 */
1004 if (!memcg)
1005 memcg = root_mem_cgroup;
1006
1007 mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 lruvec = &mz->lruvec;
1009out:
1010 /*
1011 * Since a node can be onlined after the mem_cgroup was created,
1012 * we have to be prepared to initialize lruvec->zone here;
1013 * and if offlined then reonlined, we need to reinitialize it.
1014 */
1015 if (unlikely(lruvec->zone != zone))
1016 lruvec->zone = zone;
1017 return lruvec;
1018}
1019
1020/**
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
1025 *
1026 * This function must be called when a page is added to or removed from an
1027 * lru list.
1028 */
1029void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1030 int nr_pages)
1031{
1032 struct mem_cgroup_per_zone *mz;
1033 unsigned long *lru_size;
1034
1035 if (mem_cgroup_disabled())
1036 return;
1037
1038 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1039 lru_size = mz->lru_size + lru;
1040 *lru_size += nr_pages;
1041 VM_BUG_ON((long)(*lru_size) < 0);
1042}
1043
1044bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1045{
1046 struct mem_cgroup *task_memcg;
1047 struct task_struct *p;
1048 bool ret;
1049
1050 p = find_lock_task_mm(task);
1051 if (p) {
1052 task_memcg = get_mem_cgroup_from_mm(p->mm);
1053 task_unlock(p);
1054 } else {
1055 /*
1056 * All threads may have already detached their mm's, but the oom
1057 * killer still needs to detect if they have already been oom
1058 * killed to prevent needlessly killing additional tasks.
1059 */
1060 rcu_read_lock();
1061 task_memcg = mem_cgroup_from_task(task);
1062 css_get(&task_memcg->css);
1063 rcu_read_unlock();
1064 }
1065 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1066 css_put(&task_memcg->css);
1067 return ret;
1068}
1069
1070/**
1071 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1072 * @memcg: the memory cgroup
1073 *
1074 * Returns the maximum amount of memory @mem can be charged with, in
1075 * pages.
1076 */
1077static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1078{
1079 unsigned long margin = 0;
1080 unsigned long count;
1081 unsigned long limit;
1082
1083 count = page_counter_read(&memcg->memory);
1084 limit = READ_ONCE(memcg->memory.limit);
1085 if (count < limit)
1086 margin = limit - count;
1087
1088 if (do_memsw_account()) {
1089 count = page_counter_read(&memcg->memsw);
1090 limit = READ_ONCE(memcg->memsw.limit);
1091 if (count <= limit)
1092 margin = min(margin, limit - count);
1093 }
1094
1095 return margin;
1096}
1097
1098/*
1099 * A routine for checking "mem" is under move_account() or not.
1100 *
1101 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102 * moving cgroups. This is for waiting at high-memory pressure
1103 * caused by "move".
1104 */
1105static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1106{
1107 struct mem_cgroup *from;
1108 struct mem_cgroup *to;
1109 bool ret = false;
1110 /*
1111 * Unlike task_move routines, we access mc.to, mc.from not under
1112 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1113 */
1114 spin_lock(&mc.lock);
1115 from = mc.from;
1116 to = mc.to;
1117 if (!from)
1118 goto unlock;
1119
1120 ret = mem_cgroup_is_descendant(from, memcg) ||
1121 mem_cgroup_is_descendant(to, memcg);
1122unlock:
1123 spin_unlock(&mc.lock);
1124 return ret;
1125}
1126
1127static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1128{
1129 if (mc.moving_task && current != mc.moving_task) {
1130 if (mem_cgroup_under_move(memcg)) {
1131 DEFINE_WAIT(wait);
1132 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1133 /* moving charge context might have finished. */
1134 if (mc.moving_task)
1135 schedule();
1136 finish_wait(&mc.waitq, &wait);
1137 return true;
1138 }
1139 }
1140 return false;
1141}
1142
1143#define K(x) ((x) << (PAGE_SHIFT-10))
1144/**
1145 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1146 * @memcg: The memory cgroup that went over limit
1147 * @p: Task that is going to be killed
1148 *
1149 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1150 * enabled
1151 */
1152void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1153{
1154 /* oom_info_lock ensures that parallel ooms do not interleave */
1155 static DEFINE_MUTEX(oom_info_lock);
1156 struct mem_cgroup *iter;
1157 unsigned int i;
1158
1159 mutex_lock(&oom_info_lock);
1160 rcu_read_lock();
1161
1162 if (p) {
1163 pr_info("Task in ");
1164 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1165 pr_cont(" killed as a result of limit of ");
1166 } else {
1167 pr_info("Memory limit reached of cgroup ");
1168 }
1169
1170 pr_cont_cgroup_path(memcg->css.cgroup);
1171 pr_cont("\n");
1172
1173 rcu_read_unlock();
1174
1175 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1176 K((u64)page_counter_read(&memcg->memory)),
1177 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1178 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1179 K((u64)page_counter_read(&memcg->memsw)),
1180 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1181 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1182 K((u64)page_counter_read(&memcg->kmem)),
1183 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1184
1185 for_each_mem_cgroup_tree(iter, memcg) {
1186 pr_info("Memory cgroup stats for ");
1187 pr_cont_cgroup_path(iter->css.cgroup);
1188 pr_cont(":");
1189
1190 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1191 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1192 continue;
1193 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1194 K(mem_cgroup_read_stat(iter, i)));
1195 }
1196
1197 for (i = 0; i < NR_LRU_LISTS; i++)
1198 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1199 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1200
1201 pr_cont("\n");
1202 }
1203 mutex_unlock(&oom_info_lock);
1204}
1205
1206/*
1207 * This function returns the number of memcg under hierarchy tree. Returns
1208 * 1(self count) if no children.
1209 */
1210static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1211{
1212 int num = 0;
1213 struct mem_cgroup *iter;
1214
1215 for_each_mem_cgroup_tree(iter, memcg)
1216 num++;
1217 return num;
1218}
1219
1220/*
1221 * Return the memory (and swap, if configured) limit for a memcg.
1222 */
1223static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1224{
1225 unsigned long limit;
1226
1227 limit = memcg->memory.limit;
1228 if (mem_cgroup_swappiness(memcg)) {
1229 unsigned long memsw_limit;
1230 unsigned long swap_limit;
1231
1232 memsw_limit = memcg->memsw.limit;
1233 swap_limit = memcg->swap.limit;
1234 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1235 limit = min(limit + swap_limit, memsw_limit);
1236 }
1237 return limit;
1238}
1239
1240static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1241 int order)
1242{
1243 struct oom_control oc = {
1244 .zonelist = NULL,
1245 .nodemask = NULL,
1246 .gfp_mask = gfp_mask,
1247 .order = order,
1248 };
1249 struct mem_cgroup *iter;
1250 unsigned long chosen_points = 0;
1251 unsigned long totalpages;
1252 unsigned int points = 0;
1253 struct task_struct *chosen = NULL;
1254
1255 mutex_lock(&oom_lock);
1256
1257 /*
1258 * If current has a pending SIGKILL or is exiting, then automatically
1259 * select it. The goal is to allow it to allocate so that it may
1260 * quickly exit and free its memory.
1261 */
1262 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1263 mark_oom_victim(current);
1264 goto unlock;
1265 }
1266
1267 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1268 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1269 for_each_mem_cgroup_tree(iter, memcg) {
1270 struct css_task_iter it;
1271 struct task_struct *task;
1272
1273 css_task_iter_start(&iter->css, &it);
1274 while ((task = css_task_iter_next(&it))) {
1275 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1276 case OOM_SCAN_SELECT:
1277 if (chosen)
1278 put_task_struct(chosen);
1279 chosen = task;
1280 chosen_points = ULONG_MAX;
1281 get_task_struct(chosen);
1282 /* fall through */
1283 case OOM_SCAN_CONTINUE:
1284 continue;
1285 case OOM_SCAN_ABORT:
1286 css_task_iter_end(&it);
1287 mem_cgroup_iter_break(memcg, iter);
1288 if (chosen)
1289 put_task_struct(chosen);
1290 goto unlock;
1291 case OOM_SCAN_OK:
1292 break;
1293 };
1294 points = oom_badness(task, memcg, NULL, totalpages);
1295 if (!points || points < chosen_points)
1296 continue;
1297 /* Prefer thread group leaders for display purposes */
1298 if (points == chosen_points &&
1299 thread_group_leader(chosen))
1300 continue;
1301
1302 if (chosen)
1303 put_task_struct(chosen);
1304 chosen = task;
1305 chosen_points = points;
1306 get_task_struct(chosen);
1307 }
1308 css_task_iter_end(&it);
1309 }
1310
1311 if (chosen) {
1312 points = chosen_points * 1000 / totalpages;
1313 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1314 "Memory cgroup out of memory");
1315 }
1316unlock:
1317 mutex_unlock(&oom_lock);
1318}
1319
1320#if MAX_NUMNODES > 1
1321
1322/**
1323 * test_mem_cgroup_node_reclaimable
1324 * @memcg: the target memcg
1325 * @nid: the node ID to be checked.
1326 * @noswap : specify true here if the user wants flle only information.
1327 *
1328 * This function returns whether the specified memcg contains any
1329 * reclaimable pages on a node. Returns true if there are any reclaimable
1330 * pages in the node.
1331 */
1332static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1333 int nid, bool noswap)
1334{
1335 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1336 return true;
1337 if (noswap || !total_swap_pages)
1338 return false;
1339 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1340 return true;
1341 return false;
1342
1343}
1344
1345/*
1346 * Always updating the nodemask is not very good - even if we have an empty
1347 * list or the wrong list here, we can start from some node and traverse all
1348 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1349 *
1350 */
1351static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1352{
1353 int nid;
1354 /*
1355 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1356 * pagein/pageout changes since the last update.
1357 */
1358 if (!atomic_read(&memcg->numainfo_events))
1359 return;
1360 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1361 return;
1362
1363 /* make a nodemask where this memcg uses memory from */
1364 memcg->scan_nodes = node_states[N_MEMORY];
1365
1366 for_each_node_mask(nid, node_states[N_MEMORY]) {
1367
1368 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1369 node_clear(nid, memcg->scan_nodes);
1370 }
1371
1372 atomic_set(&memcg->numainfo_events, 0);
1373 atomic_set(&memcg->numainfo_updating, 0);
1374}
1375
1376/*
1377 * Selecting a node where we start reclaim from. Because what we need is just
1378 * reducing usage counter, start from anywhere is O,K. Considering
1379 * memory reclaim from current node, there are pros. and cons.
1380 *
1381 * Freeing memory from current node means freeing memory from a node which
1382 * we'll use or we've used. So, it may make LRU bad. And if several threads
1383 * hit limits, it will see a contention on a node. But freeing from remote
1384 * node means more costs for memory reclaim because of memory latency.
1385 *
1386 * Now, we use round-robin. Better algorithm is welcomed.
1387 */
1388int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1389{
1390 int node;
1391
1392 mem_cgroup_may_update_nodemask(memcg);
1393 node = memcg->last_scanned_node;
1394
1395 node = next_node(node, memcg->scan_nodes);
1396 if (node == MAX_NUMNODES)
1397 node = first_node(memcg->scan_nodes);
1398 /*
1399 * We call this when we hit limit, not when pages are added to LRU.
1400 * No LRU may hold pages because all pages are UNEVICTABLE or
1401 * memcg is too small and all pages are not on LRU. In that case,
1402 * we use curret node.
1403 */
1404 if (unlikely(node == MAX_NUMNODES))
1405 node = numa_node_id();
1406
1407 memcg->last_scanned_node = node;
1408 return node;
1409}
1410#else
1411int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1412{
1413 return 0;
1414}
1415#endif
1416
1417static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1418 struct zone *zone,
1419 gfp_t gfp_mask,
1420 unsigned long *total_scanned)
1421{
1422 struct mem_cgroup *victim = NULL;
1423 int total = 0;
1424 int loop = 0;
1425 unsigned long excess;
1426 unsigned long nr_scanned;
1427 struct mem_cgroup_reclaim_cookie reclaim = {
1428 .zone = zone,
1429 .priority = 0,
1430 };
1431
1432 excess = soft_limit_excess(root_memcg);
1433
1434 while (1) {
1435 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1436 if (!victim) {
1437 loop++;
1438 if (loop >= 2) {
1439 /*
1440 * If we have not been able to reclaim
1441 * anything, it might because there are
1442 * no reclaimable pages under this hierarchy
1443 */
1444 if (!total)
1445 break;
1446 /*
1447 * We want to do more targeted reclaim.
1448 * excess >> 2 is not to excessive so as to
1449 * reclaim too much, nor too less that we keep
1450 * coming back to reclaim from this cgroup
1451 */
1452 if (total >= (excess >> 2) ||
1453 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1454 break;
1455 }
1456 continue;
1457 }
1458 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1459 zone, &nr_scanned);
1460 *total_scanned += nr_scanned;
1461 if (!soft_limit_excess(root_memcg))
1462 break;
1463 }
1464 mem_cgroup_iter_break(root_memcg, victim);
1465 return total;
1466}
1467
1468#ifdef CONFIG_LOCKDEP
1469static struct lockdep_map memcg_oom_lock_dep_map = {
1470 .name = "memcg_oom_lock",
1471};
1472#endif
1473
1474static DEFINE_SPINLOCK(memcg_oom_lock);
1475
1476/*
1477 * Check OOM-Killer is already running under our hierarchy.
1478 * If someone is running, return false.
1479 */
1480static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1481{
1482 struct mem_cgroup *iter, *failed = NULL;
1483
1484 spin_lock(&memcg_oom_lock);
1485
1486 for_each_mem_cgroup_tree(iter, memcg) {
1487 if (iter->oom_lock) {
1488 /*
1489 * this subtree of our hierarchy is already locked
1490 * so we cannot give a lock.
1491 */
1492 failed = iter;
1493 mem_cgroup_iter_break(memcg, iter);
1494 break;
1495 } else
1496 iter->oom_lock = true;
1497 }
1498
1499 if (failed) {
1500 /*
1501 * OK, we failed to lock the whole subtree so we have
1502 * to clean up what we set up to the failing subtree
1503 */
1504 for_each_mem_cgroup_tree(iter, memcg) {
1505 if (iter == failed) {
1506 mem_cgroup_iter_break(memcg, iter);
1507 break;
1508 }
1509 iter->oom_lock = false;
1510 }
1511 } else
1512 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1513
1514 spin_unlock(&memcg_oom_lock);
1515
1516 return !failed;
1517}
1518
1519static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1520{
1521 struct mem_cgroup *iter;
1522
1523 spin_lock(&memcg_oom_lock);
1524 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1525 for_each_mem_cgroup_tree(iter, memcg)
1526 iter->oom_lock = false;
1527 spin_unlock(&memcg_oom_lock);
1528}
1529
1530static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1531{
1532 struct mem_cgroup *iter;
1533
1534 spin_lock(&memcg_oom_lock);
1535 for_each_mem_cgroup_tree(iter, memcg)
1536 iter->under_oom++;
1537 spin_unlock(&memcg_oom_lock);
1538}
1539
1540static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1541{
1542 struct mem_cgroup *iter;
1543
1544 /*
1545 * When a new child is created while the hierarchy is under oom,
1546 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1547 */
1548 spin_lock(&memcg_oom_lock);
1549 for_each_mem_cgroup_tree(iter, memcg)
1550 if (iter->under_oom > 0)
1551 iter->under_oom--;
1552 spin_unlock(&memcg_oom_lock);
1553}
1554
1555static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1556
1557struct oom_wait_info {
1558 struct mem_cgroup *memcg;
1559 wait_queue_t wait;
1560};
1561
1562static int memcg_oom_wake_function(wait_queue_t *wait,
1563 unsigned mode, int sync, void *arg)
1564{
1565 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1566 struct mem_cgroup *oom_wait_memcg;
1567 struct oom_wait_info *oom_wait_info;
1568
1569 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1570 oom_wait_memcg = oom_wait_info->memcg;
1571
1572 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1573 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1574 return 0;
1575 return autoremove_wake_function(wait, mode, sync, arg);
1576}
1577
1578static void memcg_oom_recover(struct mem_cgroup *memcg)
1579{
1580 /*
1581 * For the following lockless ->under_oom test, the only required
1582 * guarantee is that it must see the state asserted by an OOM when
1583 * this function is called as a result of userland actions
1584 * triggered by the notification of the OOM. This is trivially
1585 * achieved by invoking mem_cgroup_mark_under_oom() before
1586 * triggering notification.
1587 */
1588 if (memcg && memcg->under_oom)
1589 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1590}
1591
1592static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1593{
1594 if (!current->memcg_may_oom)
1595 return;
1596 /*
1597 * We are in the middle of the charge context here, so we
1598 * don't want to block when potentially sitting on a callstack
1599 * that holds all kinds of filesystem and mm locks.
1600 *
1601 * Also, the caller may handle a failed allocation gracefully
1602 * (like optional page cache readahead) and so an OOM killer
1603 * invocation might not even be necessary.
1604 *
1605 * That's why we don't do anything here except remember the
1606 * OOM context and then deal with it at the end of the page
1607 * fault when the stack is unwound, the locks are released,
1608 * and when we know whether the fault was overall successful.
1609 */
1610 css_get(&memcg->css);
1611 current->memcg_in_oom = memcg;
1612 current->memcg_oom_gfp_mask = mask;
1613 current->memcg_oom_order = order;
1614}
1615
1616/**
1617 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1618 * @handle: actually kill/wait or just clean up the OOM state
1619 *
1620 * This has to be called at the end of a page fault if the memcg OOM
1621 * handler was enabled.
1622 *
1623 * Memcg supports userspace OOM handling where failed allocations must
1624 * sleep on a waitqueue until the userspace task resolves the
1625 * situation. Sleeping directly in the charge context with all kinds
1626 * of locks held is not a good idea, instead we remember an OOM state
1627 * in the task and mem_cgroup_oom_synchronize() has to be called at
1628 * the end of the page fault to complete the OOM handling.
1629 *
1630 * Returns %true if an ongoing memcg OOM situation was detected and
1631 * completed, %false otherwise.
1632 */
1633bool mem_cgroup_oom_synchronize(bool handle)
1634{
1635 struct mem_cgroup *memcg = current->memcg_in_oom;
1636 struct oom_wait_info owait;
1637 bool locked;
1638
1639 /* OOM is global, do not handle */
1640 if (!memcg)
1641 return false;
1642
1643 if (!handle || oom_killer_disabled)
1644 goto cleanup;
1645
1646 owait.memcg = memcg;
1647 owait.wait.flags = 0;
1648 owait.wait.func = memcg_oom_wake_function;
1649 owait.wait.private = current;
1650 INIT_LIST_HEAD(&owait.wait.task_list);
1651
1652 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1653 mem_cgroup_mark_under_oom(memcg);
1654
1655 locked = mem_cgroup_oom_trylock(memcg);
1656
1657 if (locked)
1658 mem_cgroup_oom_notify(memcg);
1659
1660 if (locked && !memcg->oom_kill_disable) {
1661 mem_cgroup_unmark_under_oom(memcg);
1662 finish_wait(&memcg_oom_waitq, &owait.wait);
1663 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1664 current->memcg_oom_order);
1665 } else {
1666 schedule();
1667 mem_cgroup_unmark_under_oom(memcg);
1668 finish_wait(&memcg_oom_waitq, &owait.wait);
1669 }
1670
1671 if (locked) {
1672 mem_cgroup_oom_unlock(memcg);
1673 /*
1674 * There is no guarantee that an OOM-lock contender
1675 * sees the wakeups triggered by the OOM kill
1676 * uncharges. Wake any sleepers explicitely.
1677 */
1678 memcg_oom_recover(memcg);
1679 }
1680cleanup:
1681 current->memcg_in_oom = NULL;
1682 css_put(&memcg->css);
1683 return true;
1684}
1685
1686/**
1687 * lock_page_memcg - lock a page->mem_cgroup binding
1688 * @page: the page
1689 *
1690 * This function protects unlocked LRU pages from being moved to
1691 * another cgroup and stabilizes their page->mem_cgroup binding.
1692 */
1693void lock_page_memcg(struct page *page)
1694{
1695 struct mem_cgroup *memcg;
1696 unsigned long flags;
1697
1698 /*
1699 * The RCU lock is held throughout the transaction. The fast
1700 * path can get away without acquiring the memcg->move_lock
1701 * because page moving starts with an RCU grace period.
1702 */
1703 rcu_read_lock();
1704
1705 if (mem_cgroup_disabled())
1706 return;
1707again:
1708 memcg = page->mem_cgroup;
1709 if (unlikely(!memcg))
1710 return;
1711
1712 if (atomic_read(&memcg->moving_account) <= 0)
1713 return;
1714
1715 spin_lock_irqsave(&memcg->move_lock, flags);
1716 if (memcg != page->mem_cgroup) {
1717 spin_unlock_irqrestore(&memcg->move_lock, flags);
1718 goto again;
1719 }
1720
1721 /*
1722 * When charge migration first begins, we can have locked and
1723 * unlocked page stat updates happening concurrently. Track
1724 * the task who has the lock for unlock_page_memcg().
1725 */
1726 memcg->move_lock_task = current;
1727 memcg->move_lock_flags = flags;
1728
1729 return;
1730}
1731EXPORT_SYMBOL(lock_page_memcg);
1732
1733/**
1734 * unlock_page_memcg - unlock a page->mem_cgroup binding
1735 * @page: the page
1736 */
1737void unlock_page_memcg(struct page *page)
1738{
1739 struct mem_cgroup *memcg = page->mem_cgroup;
1740
1741 if (memcg && memcg->move_lock_task == current) {
1742 unsigned long flags = memcg->move_lock_flags;
1743
1744 memcg->move_lock_task = NULL;
1745 memcg->move_lock_flags = 0;
1746
1747 spin_unlock_irqrestore(&memcg->move_lock, flags);
1748 }
1749
1750 rcu_read_unlock();
1751}
1752EXPORT_SYMBOL(unlock_page_memcg);
1753
1754/*
1755 * size of first charge trial. "32" comes from vmscan.c's magic value.
1756 * TODO: maybe necessary to use big numbers in big irons.
1757 */
1758#define CHARGE_BATCH 32U
1759struct memcg_stock_pcp {
1760 struct mem_cgroup *cached; /* this never be root cgroup */
1761 unsigned int nr_pages;
1762 struct work_struct work;
1763 unsigned long flags;
1764#define FLUSHING_CACHED_CHARGE 0
1765};
1766static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1767static DEFINE_MUTEX(percpu_charge_mutex);
1768
1769/**
1770 * consume_stock: Try to consume stocked charge on this cpu.
1771 * @memcg: memcg to consume from.
1772 * @nr_pages: how many pages to charge.
1773 *
1774 * The charges will only happen if @memcg matches the current cpu's memcg
1775 * stock, and at least @nr_pages are available in that stock. Failure to
1776 * service an allocation will refill the stock.
1777 *
1778 * returns true if successful, false otherwise.
1779 */
1780static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1781{
1782 struct memcg_stock_pcp *stock;
1783 bool ret = false;
1784
1785 if (nr_pages > CHARGE_BATCH)
1786 return ret;
1787
1788 stock = &get_cpu_var(memcg_stock);
1789 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1790 stock->nr_pages -= nr_pages;
1791 ret = true;
1792 }
1793 put_cpu_var(memcg_stock);
1794 return ret;
1795}
1796
1797/*
1798 * Returns stocks cached in percpu and reset cached information.
1799 */
1800static void drain_stock(struct memcg_stock_pcp *stock)
1801{
1802 struct mem_cgroup *old = stock->cached;
1803
1804 if (stock->nr_pages) {
1805 page_counter_uncharge(&old->memory, stock->nr_pages);
1806 if (do_memsw_account())
1807 page_counter_uncharge(&old->memsw, stock->nr_pages);
1808 css_put_many(&old->css, stock->nr_pages);
1809 stock->nr_pages = 0;
1810 }
1811 stock->cached = NULL;
1812}
1813
1814/*
1815 * This must be called under preempt disabled or must be called by
1816 * a thread which is pinned to local cpu.
1817 */
1818static void drain_local_stock(struct work_struct *dummy)
1819{
1820 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1821 drain_stock(stock);
1822 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1823}
1824
1825/*
1826 * Cache charges(val) to local per_cpu area.
1827 * This will be consumed by consume_stock() function, later.
1828 */
1829static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1830{
1831 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1832
1833 if (stock->cached != memcg) { /* reset if necessary */
1834 drain_stock(stock);
1835 stock->cached = memcg;
1836 }
1837 stock->nr_pages += nr_pages;
1838 put_cpu_var(memcg_stock);
1839}
1840
1841/*
1842 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1843 * of the hierarchy under it.
1844 */
1845static void drain_all_stock(struct mem_cgroup *root_memcg)
1846{
1847 int cpu, curcpu;
1848
1849 /* If someone's already draining, avoid adding running more workers. */
1850 if (!mutex_trylock(&percpu_charge_mutex))
1851 return;
1852 /* Notify other cpus that system-wide "drain" is running */
1853 get_online_cpus();
1854 curcpu = get_cpu();
1855 for_each_online_cpu(cpu) {
1856 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1857 struct mem_cgroup *memcg;
1858
1859 memcg = stock->cached;
1860 if (!memcg || !stock->nr_pages)
1861 continue;
1862 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1863 continue;
1864 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1865 if (cpu == curcpu)
1866 drain_local_stock(&stock->work);
1867 else
1868 schedule_work_on(cpu, &stock->work);
1869 }
1870 }
1871 put_cpu();
1872 put_online_cpus();
1873 mutex_unlock(&percpu_charge_mutex);
1874}
1875
1876static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1877 unsigned long action,
1878 void *hcpu)
1879{
1880 int cpu = (unsigned long)hcpu;
1881 struct memcg_stock_pcp *stock;
1882
1883 if (action == CPU_ONLINE)
1884 return NOTIFY_OK;
1885
1886 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1887 return NOTIFY_OK;
1888
1889 stock = &per_cpu(memcg_stock, cpu);
1890 drain_stock(stock);
1891 return NOTIFY_OK;
1892}
1893
1894static void reclaim_high(struct mem_cgroup *memcg,
1895 unsigned int nr_pages,
1896 gfp_t gfp_mask)
1897{
1898 do {
1899 if (page_counter_read(&memcg->memory) <= memcg->high)
1900 continue;
1901 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1902 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1903 } while ((memcg = parent_mem_cgroup(memcg)));
1904}
1905
1906static void high_work_func(struct work_struct *work)
1907{
1908 struct mem_cgroup *memcg;
1909
1910 memcg = container_of(work, struct mem_cgroup, high_work);
1911 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1912}
1913
1914/*
1915 * Scheduled by try_charge() to be executed from the userland return path
1916 * and reclaims memory over the high limit.
1917 */
1918void mem_cgroup_handle_over_high(void)
1919{
1920 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1921 struct mem_cgroup *memcg;
1922
1923 if (likely(!nr_pages))
1924 return;
1925
1926 memcg = get_mem_cgroup_from_mm(current->mm);
1927 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1928 css_put(&memcg->css);
1929 current->memcg_nr_pages_over_high = 0;
1930}
1931
1932static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1933 unsigned int nr_pages)
1934{
1935 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1936 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1937 struct mem_cgroup *mem_over_limit;
1938 struct page_counter *counter;
1939 unsigned long nr_reclaimed;
1940 bool may_swap = true;
1941 bool drained = false;
1942
1943 if (mem_cgroup_is_root(memcg))
1944 return 0;
1945retry:
1946 if (consume_stock(memcg, nr_pages))
1947 return 0;
1948
1949 if (!do_memsw_account() ||
1950 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1951 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1952 goto done_restock;
1953 if (do_memsw_account())
1954 page_counter_uncharge(&memcg->memsw, batch);
1955 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1956 } else {
1957 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1958 may_swap = false;
1959 }
1960
1961 if (batch > nr_pages) {
1962 batch = nr_pages;
1963 goto retry;
1964 }
1965
1966 /*
1967 * Unlike in global OOM situations, memcg is not in a physical
1968 * memory shortage. Allow dying and OOM-killed tasks to
1969 * bypass the last charges so that they can exit quickly and
1970 * free their memory.
1971 */
1972 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1973 fatal_signal_pending(current) ||
1974 current->flags & PF_EXITING))
1975 goto force;
1976
1977 if (unlikely(task_in_memcg_oom(current)))
1978 goto nomem;
1979
1980 if (!gfpflags_allow_blocking(gfp_mask))
1981 goto nomem;
1982
1983 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1984
1985 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1986 gfp_mask, may_swap);
1987
1988 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1989 goto retry;
1990
1991 if (!drained) {
1992 drain_all_stock(mem_over_limit);
1993 drained = true;
1994 goto retry;
1995 }
1996
1997 if (gfp_mask & __GFP_NORETRY)
1998 goto nomem;
1999 /*
2000 * Even though the limit is exceeded at this point, reclaim
2001 * may have been able to free some pages. Retry the charge
2002 * before killing the task.
2003 *
2004 * Only for regular pages, though: huge pages are rather
2005 * unlikely to succeed so close to the limit, and we fall back
2006 * to regular pages anyway in case of failure.
2007 */
2008 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2009 goto retry;
2010 /*
2011 * At task move, charge accounts can be doubly counted. So, it's
2012 * better to wait until the end of task_move if something is going on.
2013 */
2014 if (mem_cgroup_wait_acct_move(mem_over_limit))
2015 goto retry;
2016
2017 if (nr_retries--)
2018 goto retry;
2019
2020 if (gfp_mask & __GFP_NOFAIL)
2021 goto force;
2022
2023 if (fatal_signal_pending(current))
2024 goto force;
2025
2026 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2027
2028 mem_cgroup_oom(mem_over_limit, gfp_mask,
2029 get_order(nr_pages * PAGE_SIZE));
2030nomem:
2031 if (!(gfp_mask & __GFP_NOFAIL))
2032 return -ENOMEM;
2033force:
2034 /*
2035 * The allocation either can't fail or will lead to more memory
2036 * being freed very soon. Allow memory usage go over the limit
2037 * temporarily by force charging it.
2038 */
2039 page_counter_charge(&memcg->memory, nr_pages);
2040 if (do_memsw_account())
2041 page_counter_charge(&memcg->memsw, nr_pages);
2042 css_get_many(&memcg->css, nr_pages);
2043
2044 return 0;
2045
2046done_restock:
2047 css_get_many(&memcg->css, batch);
2048 if (batch > nr_pages)
2049 refill_stock(memcg, batch - nr_pages);
2050
2051 /*
2052 * If the hierarchy is above the normal consumption range, schedule
2053 * reclaim on returning to userland. We can perform reclaim here
2054 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2055 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2056 * not recorded as it most likely matches current's and won't
2057 * change in the meantime. As high limit is checked again before
2058 * reclaim, the cost of mismatch is negligible.
2059 */
2060 do {
2061 if (page_counter_read(&memcg->memory) > memcg->high) {
2062 /* Don't bother a random interrupted task */
2063 if (in_interrupt()) {
2064 schedule_work(&memcg->high_work);
2065 break;
2066 }
2067 current->memcg_nr_pages_over_high += batch;
2068 set_notify_resume(current);
2069 break;
2070 }
2071 } while ((memcg = parent_mem_cgroup(memcg)));
2072
2073 return 0;
2074}
2075
2076static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2077{
2078 if (mem_cgroup_is_root(memcg))
2079 return;
2080
2081 page_counter_uncharge(&memcg->memory, nr_pages);
2082 if (do_memsw_account())
2083 page_counter_uncharge(&memcg->memsw, nr_pages);
2084
2085 css_put_many(&memcg->css, nr_pages);
2086}
2087
2088static void lock_page_lru(struct page *page, int *isolated)
2089{
2090 struct zone *zone = page_zone(page);
2091
2092 spin_lock_irq(&zone->lru_lock);
2093 if (PageLRU(page)) {
2094 struct lruvec *lruvec;
2095
2096 lruvec = mem_cgroup_page_lruvec(page, zone);
2097 ClearPageLRU(page);
2098 del_page_from_lru_list(page, lruvec, page_lru(page));
2099 *isolated = 1;
2100 } else
2101 *isolated = 0;
2102}
2103
2104static void unlock_page_lru(struct page *page, int isolated)
2105{
2106 struct zone *zone = page_zone(page);
2107
2108 if (isolated) {
2109 struct lruvec *lruvec;
2110
2111 lruvec = mem_cgroup_page_lruvec(page, zone);
2112 VM_BUG_ON_PAGE(PageLRU(page), page);
2113 SetPageLRU(page);
2114 add_page_to_lru_list(page, lruvec, page_lru(page));
2115 }
2116 spin_unlock_irq(&zone->lru_lock);
2117}
2118
2119static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2120 bool lrucare)
2121{
2122 int isolated;
2123
2124 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2125
2126 /*
2127 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2128 * may already be on some other mem_cgroup's LRU. Take care of it.
2129 */
2130 if (lrucare)
2131 lock_page_lru(page, &isolated);
2132
2133 /*
2134 * Nobody should be changing or seriously looking at
2135 * page->mem_cgroup at this point:
2136 *
2137 * - the page is uncharged
2138 *
2139 * - the page is off-LRU
2140 *
2141 * - an anonymous fault has exclusive page access, except for
2142 * a locked page table
2143 *
2144 * - a page cache insertion, a swapin fault, or a migration
2145 * have the page locked
2146 */
2147 page->mem_cgroup = memcg;
2148
2149 if (lrucare)
2150 unlock_page_lru(page, isolated);
2151}
2152
2153#ifndef CONFIG_SLOB
2154static int memcg_alloc_cache_id(void)
2155{
2156 int id, size;
2157 int err;
2158
2159 id = ida_simple_get(&memcg_cache_ida,
2160 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2161 if (id < 0)
2162 return id;
2163
2164 if (id < memcg_nr_cache_ids)
2165 return id;
2166
2167 /*
2168 * There's no space for the new id in memcg_caches arrays,
2169 * so we have to grow them.
2170 */
2171 down_write(&memcg_cache_ids_sem);
2172
2173 size = 2 * (id + 1);
2174 if (size < MEMCG_CACHES_MIN_SIZE)
2175 size = MEMCG_CACHES_MIN_SIZE;
2176 else if (size > MEMCG_CACHES_MAX_SIZE)
2177 size = MEMCG_CACHES_MAX_SIZE;
2178
2179 err = memcg_update_all_caches(size);
2180 if (!err)
2181 err = memcg_update_all_list_lrus(size);
2182 if (!err)
2183 memcg_nr_cache_ids = size;
2184
2185 up_write(&memcg_cache_ids_sem);
2186
2187 if (err) {
2188 ida_simple_remove(&memcg_cache_ida, id);
2189 return err;
2190 }
2191 return id;
2192}
2193
2194static void memcg_free_cache_id(int id)
2195{
2196 ida_simple_remove(&memcg_cache_ida, id);
2197}
2198
2199struct memcg_kmem_cache_create_work {
2200 struct mem_cgroup *memcg;
2201 struct kmem_cache *cachep;
2202 struct work_struct work;
2203};
2204
2205static void memcg_kmem_cache_create_func(struct work_struct *w)
2206{
2207 struct memcg_kmem_cache_create_work *cw =
2208 container_of(w, struct memcg_kmem_cache_create_work, work);
2209 struct mem_cgroup *memcg = cw->memcg;
2210 struct kmem_cache *cachep = cw->cachep;
2211
2212 memcg_create_kmem_cache(memcg, cachep);
2213
2214 css_put(&memcg->css);
2215 kfree(cw);
2216}
2217
2218/*
2219 * Enqueue the creation of a per-memcg kmem_cache.
2220 */
2221static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2222 struct kmem_cache *cachep)
2223{
2224 struct memcg_kmem_cache_create_work *cw;
2225
2226 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2227 if (!cw)
2228 return;
2229
2230 css_get(&memcg->css);
2231
2232 cw->memcg = memcg;
2233 cw->cachep = cachep;
2234 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2235
2236 schedule_work(&cw->work);
2237}
2238
2239static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2240 struct kmem_cache *cachep)
2241{
2242 /*
2243 * We need to stop accounting when we kmalloc, because if the
2244 * corresponding kmalloc cache is not yet created, the first allocation
2245 * in __memcg_schedule_kmem_cache_create will recurse.
2246 *
2247 * However, it is better to enclose the whole function. Depending on
2248 * the debugging options enabled, INIT_WORK(), for instance, can
2249 * trigger an allocation. This too, will make us recurse. Because at
2250 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2251 * the safest choice is to do it like this, wrapping the whole function.
2252 */
2253 current->memcg_kmem_skip_account = 1;
2254 __memcg_schedule_kmem_cache_create(memcg, cachep);
2255 current->memcg_kmem_skip_account = 0;
2256}
2257
2258/*
2259 * Return the kmem_cache we're supposed to use for a slab allocation.
2260 * We try to use the current memcg's version of the cache.
2261 *
2262 * If the cache does not exist yet, if we are the first user of it,
2263 * we either create it immediately, if possible, or create it asynchronously
2264 * in a workqueue.
2265 * In the latter case, we will let the current allocation go through with
2266 * the original cache.
2267 *
2268 * Can't be called in interrupt context or from kernel threads.
2269 * This function needs to be called with rcu_read_lock() held.
2270 */
2271struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2272{
2273 struct mem_cgroup *memcg;
2274 struct kmem_cache *memcg_cachep;
2275 int kmemcg_id;
2276
2277 VM_BUG_ON(!is_root_cache(cachep));
2278
2279 if (cachep->flags & SLAB_ACCOUNT)
2280 gfp |= __GFP_ACCOUNT;
2281
2282 if (!(gfp & __GFP_ACCOUNT))
2283 return cachep;
2284
2285 if (current->memcg_kmem_skip_account)
2286 return cachep;
2287
2288 memcg = get_mem_cgroup_from_mm(current->mm);
2289 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2290 if (kmemcg_id < 0)
2291 goto out;
2292
2293 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2294 if (likely(memcg_cachep))
2295 return memcg_cachep;
2296
2297 /*
2298 * If we are in a safe context (can wait, and not in interrupt
2299 * context), we could be be predictable and return right away.
2300 * This would guarantee that the allocation being performed
2301 * already belongs in the new cache.
2302 *
2303 * However, there are some clashes that can arrive from locking.
2304 * For instance, because we acquire the slab_mutex while doing
2305 * memcg_create_kmem_cache, this means no further allocation
2306 * could happen with the slab_mutex held. So it's better to
2307 * defer everything.
2308 */
2309 memcg_schedule_kmem_cache_create(memcg, cachep);
2310out:
2311 css_put(&memcg->css);
2312 return cachep;
2313}
2314
2315void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2316{
2317 if (!is_root_cache(cachep))
2318 css_put(&cachep->memcg_params.memcg->css);
2319}
2320
2321int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2322 struct mem_cgroup *memcg)
2323{
2324 unsigned int nr_pages = 1 << order;
2325 struct page_counter *counter;
2326 int ret;
2327
2328 ret = try_charge(memcg, gfp, nr_pages);
2329 if (ret)
2330 return ret;
2331
2332 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2333 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2334 cancel_charge(memcg, nr_pages);
2335 return -ENOMEM;
2336 }
2337
2338 page->mem_cgroup = memcg;
2339
2340 return 0;
2341}
2342
2343int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2344{
2345 struct mem_cgroup *memcg;
2346 int ret = 0;
2347
2348 memcg = get_mem_cgroup_from_mm(current->mm);
2349 if (!mem_cgroup_is_root(memcg))
2350 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2351 css_put(&memcg->css);
2352 return ret;
2353}
2354
2355void __memcg_kmem_uncharge(struct page *page, int order)
2356{
2357 struct mem_cgroup *memcg = page->mem_cgroup;
2358 unsigned int nr_pages = 1 << order;
2359
2360 if (!memcg)
2361 return;
2362
2363 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2364
2365 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2366 page_counter_uncharge(&memcg->kmem, nr_pages);
2367
2368 page_counter_uncharge(&memcg->memory, nr_pages);
2369 if (do_memsw_account())
2370 page_counter_uncharge(&memcg->memsw, nr_pages);
2371
2372 page->mem_cgroup = NULL;
2373 css_put_many(&memcg->css, nr_pages);
2374}
2375#endif /* !CONFIG_SLOB */
2376
2377#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2378
2379/*
2380 * Because tail pages are not marked as "used", set it. We're under
2381 * zone->lru_lock and migration entries setup in all page mappings.
2382 */
2383void mem_cgroup_split_huge_fixup(struct page *head)
2384{
2385 int i;
2386
2387 if (mem_cgroup_disabled())
2388 return;
2389
2390 for (i = 1; i < HPAGE_PMD_NR; i++)
2391 head[i].mem_cgroup = head->mem_cgroup;
2392
2393 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2394 HPAGE_PMD_NR);
2395}
2396#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2397
2398#ifdef CONFIG_MEMCG_SWAP
2399static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2400 bool charge)
2401{
2402 int val = (charge) ? 1 : -1;
2403 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2404}
2405
2406/**
2407 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2408 * @entry: swap entry to be moved
2409 * @from: mem_cgroup which the entry is moved from
2410 * @to: mem_cgroup which the entry is moved to
2411 *
2412 * It succeeds only when the swap_cgroup's record for this entry is the same
2413 * as the mem_cgroup's id of @from.
2414 *
2415 * Returns 0 on success, -EINVAL on failure.
2416 *
2417 * The caller must have charged to @to, IOW, called page_counter_charge() about
2418 * both res and memsw, and called css_get().
2419 */
2420static int mem_cgroup_move_swap_account(swp_entry_t entry,
2421 struct mem_cgroup *from, struct mem_cgroup *to)
2422{
2423 unsigned short old_id, new_id;
2424
2425 old_id = mem_cgroup_id(from);
2426 new_id = mem_cgroup_id(to);
2427
2428 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2429 mem_cgroup_swap_statistics(from, false);
2430 mem_cgroup_swap_statistics(to, true);
2431 return 0;
2432 }
2433 return -EINVAL;
2434}
2435#else
2436static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2437 struct mem_cgroup *from, struct mem_cgroup *to)
2438{
2439 return -EINVAL;
2440}
2441#endif
2442
2443static DEFINE_MUTEX(memcg_limit_mutex);
2444
2445static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2446 unsigned long limit)
2447{
2448 unsigned long curusage;
2449 unsigned long oldusage;
2450 bool enlarge = false;
2451 int retry_count;
2452 int ret;
2453
2454 /*
2455 * For keeping hierarchical_reclaim simple, how long we should retry
2456 * is depends on callers. We set our retry-count to be function
2457 * of # of children which we should visit in this loop.
2458 */
2459 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2460 mem_cgroup_count_children(memcg);
2461
2462 oldusage = page_counter_read(&memcg->memory);
2463
2464 do {
2465 if (signal_pending(current)) {
2466 ret = -EINTR;
2467 break;
2468 }
2469
2470 mutex_lock(&memcg_limit_mutex);
2471 if (limit > memcg->memsw.limit) {
2472 mutex_unlock(&memcg_limit_mutex);
2473 ret = -EINVAL;
2474 break;
2475 }
2476 if (limit > memcg->memory.limit)
2477 enlarge = true;
2478 ret = page_counter_limit(&memcg->memory, limit);
2479 mutex_unlock(&memcg_limit_mutex);
2480
2481 if (!ret)
2482 break;
2483
2484 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2485
2486 curusage = page_counter_read(&memcg->memory);
2487 /* Usage is reduced ? */
2488 if (curusage >= oldusage)
2489 retry_count--;
2490 else
2491 oldusage = curusage;
2492 } while (retry_count);
2493
2494 if (!ret && enlarge)
2495 memcg_oom_recover(memcg);
2496
2497 return ret;
2498}
2499
2500static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2501 unsigned long limit)
2502{
2503 unsigned long curusage;
2504 unsigned long oldusage;
2505 bool enlarge = false;
2506 int retry_count;
2507 int ret;
2508
2509 /* see mem_cgroup_resize_res_limit */
2510 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2511 mem_cgroup_count_children(memcg);
2512
2513 oldusage = page_counter_read(&memcg->memsw);
2514
2515 do {
2516 if (signal_pending(current)) {
2517 ret = -EINTR;
2518 break;
2519 }
2520
2521 mutex_lock(&memcg_limit_mutex);
2522 if (limit < memcg->memory.limit) {
2523 mutex_unlock(&memcg_limit_mutex);
2524 ret = -EINVAL;
2525 break;
2526 }
2527 if (limit > memcg->memsw.limit)
2528 enlarge = true;
2529 ret = page_counter_limit(&memcg->memsw, limit);
2530 mutex_unlock(&memcg_limit_mutex);
2531
2532 if (!ret)
2533 break;
2534
2535 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2536
2537 curusage = page_counter_read(&memcg->memsw);
2538 /* Usage is reduced ? */
2539 if (curusage >= oldusage)
2540 retry_count--;
2541 else
2542 oldusage = curusage;
2543 } while (retry_count);
2544
2545 if (!ret && enlarge)
2546 memcg_oom_recover(memcg);
2547
2548 return ret;
2549}
2550
2551unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2552 gfp_t gfp_mask,
2553 unsigned long *total_scanned)
2554{
2555 unsigned long nr_reclaimed = 0;
2556 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2557 unsigned long reclaimed;
2558 int loop = 0;
2559 struct mem_cgroup_tree_per_zone *mctz;
2560 unsigned long excess;
2561 unsigned long nr_scanned;
2562
2563 if (order > 0)
2564 return 0;
2565
2566 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2567 /*
2568 * This loop can run a while, specially if mem_cgroup's continuously
2569 * keep exceeding their soft limit and putting the system under
2570 * pressure
2571 */
2572 do {
2573 if (next_mz)
2574 mz = next_mz;
2575 else
2576 mz = mem_cgroup_largest_soft_limit_node(mctz);
2577 if (!mz)
2578 break;
2579
2580 nr_scanned = 0;
2581 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2582 gfp_mask, &nr_scanned);
2583 nr_reclaimed += reclaimed;
2584 *total_scanned += nr_scanned;
2585 spin_lock_irq(&mctz->lock);
2586 __mem_cgroup_remove_exceeded(mz, mctz);
2587
2588 /*
2589 * If we failed to reclaim anything from this memory cgroup
2590 * it is time to move on to the next cgroup
2591 */
2592 next_mz = NULL;
2593 if (!reclaimed)
2594 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2595
2596 excess = soft_limit_excess(mz->memcg);
2597 /*
2598 * One school of thought says that we should not add
2599 * back the node to the tree if reclaim returns 0.
2600 * But our reclaim could return 0, simply because due
2601 * to priority we are exposing a smaller subset of
2602 * memory to reclaim from. Consider this as a longer
2603 * term TODO.
2604 */
2605 /* If excess == 0, no tree ops */
2606 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2607 spin_unlock_irq(&mctz->lock);
2608 css_put(&mz->memcg->css);
2609 loop++;
2610 /*
2611 * Could not reclaim anything and there are no more
2612 * mem cgroups to try or we seem to be looping without
2613 * reclaiming anything.
2614 */
2615 if (!nr_reclaimed &&
2616 (next_mz == NULL ||
2617 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2618 break;
2619 } while (!nr_reclaimed);
2620 if (next_mz)
2621 css_put(&next_mz->memcg->css);
2622 return nr_reclaimed;
2623}
2624
2625/*
2626 * Test whether @memcg has children, dead or alive. Note that this
2627 * function doesn't care whether @memcg has use_hierarchy enabled and
2628 * returns %true if there are child csses according to the cgroup
2629 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2630 */
2631static inline bool memcg_has_children(struct mem_cgroup *memcg)
2632{
2633 bool ret;
2634
2635 rcu_read_lock();
2636 ret = css_next_child(NULL, &memcg->css);
2637 rcu_read_unlock();
2638 return ret;
2639}
2640
2641/*
2642 * Reclaims as many pages from the given memcg as possible and moves
2643 * the rest to the parent.
2644 *
2645 * Caller is responsible for holding css reference for memcg.
2646 */
2647static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2648{
2649 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2650
2651 /* we call try-to-free pages for make this cgroup empty */
2652 lru_add_drain_all();
2653 /* try to free all pages in this cgroup */
2654 while (nr_retries && page_counter_read(&memcg->memory)) {
2655 int progress;
2656
2657 if (signal_pending(current))
2658 return -EINTR;
2659
2660 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2661 GFP_KERNEL, true);
2662 if (!progress) {
2663 nr_retries--;
2664 /* maybe some writeback is necessary */
2665 congestion_wait(BLK_RW_ASYNC, HZ/10);
2666 }
2667
2668 }
2669
2670 return 0;
2671}
2672
2673static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2674 char *buf, size_t nbytes,
2675 loff_t off)
2676{
2677 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2678
2679 if (mem_cgroup_is_root(memcg))
2680 return -EINVAL;
2681 return mem_cgroup_force_empty(memcg) ?: nbytes;
2682}
2683
2684static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2685 struct cftype *cft)
2686{
2687 return mem_cgroup_from_css(css)->use_hierarchy;
2688}
2689
2690static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2691 struct cftype *cft, u64 val)
2692{
2693 int retval = 0;
2694 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2695 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2696
2697 if (memcg->use_hierarchy == val)
2698 return 0;
2699
2700 /*
2701 * If parent's use_hierarchy is set, we can't make any modifications
2702 * in the child subtrees. If it is unset, then the change can
2703 * occur, provided the current cgroup has no children.
2704 *
2705 * For the root cgroup, parent_mem is NULL, we allow value to be
2706 * set if there are no children.
2707 */
2708 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2709 (val == 1 || val == 0)) {
2710 if (!memcg_has_children(memcg))
2711 memcg->use_hierarchy = val;
2712 else
2713 retval = -EBUSY;
2714 } else
2715 retval = -EINVAL;
2716
2717 return retval;
2718}
2719
2720static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2721{
2722 struct mem_cgroup *iter;
2723 int i;
2724
2725 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2726
2727 for_each_mem_cgroup_tree(iter, memcg) {
2728 for (i = 0; i < MEMCG_NR_STAT; i++)
2729 stat[i] += mem_cgroup_read_stat(iter, i);
2730 }
2731}
2732
2733static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2734{
2735 struct mem_cgroup *iter;
2736 int i;
2737
2738 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2739
2740 for_each_mem_cgroup_tree(iter, memcg) {
2741 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2742 events[i] += mem_cgroup_read_events(iter, i);
2743 }
2744}
2745
2746static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2747{
2748 unsigned long val = 0;
2749
2750 if (mem_cgroup_is_root(memcg)) {
2751 struct mem_cgroup *iter;
2752
2753 for_each_mem_cgroup_tree(iter, memcg) {
2754 val += mem_cgroup_read_stat(iter,
2755 MEM_CGROUP_STAT_CACHE);
2756 val += mem_cgroup_read_stat(iter,
2757 MEM_CGROUP_STAT_RSS);
2758 if (swap)
2759 val += mem_cgroup_read_stat(iter,
2760 MEM_CGROUP_STAT_SWAP);
2761 }
2762 } else {
2763 if (!swap)
2764 val = page_counter_read(&memcg->memory);
2765 else
2766 val = page_counter_read(&memcg->memsw);
2767 }
2768 return val;
2769}
2770
2771enum {
2772 RES_USAGE,
2773 RES_LIMIT,
2774 RES_MAX_USAGE,
2775 RES_FAILCNT,
2776 RES_SOFT_LIMIT,
2777};
2778
2779static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2780 struct cftype *cft)
2781{
2782 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2783 struct page_counter *counter;
2784
2785 switch (MEMFILE_TYPE(cft->private)) {
2786 case _MEM:
2787 counter = &memcg->memory;
2788 break;
2789 case _MEMSWAP:
2790 counter = &memcg->memsw;
2791 break;
2792 case _KMEM:
2793 counter = &memcg->kmem;
2794 break;
2795 case _TCP:
2796 counter = &memcg->tcpmem;
2797 break;
2798 default:
2799 BUG();
2800 }
2801
2802 switch (MEMFILE_ATTR(cft->private)) {
2803 case RES_USAGE:
2804 if (counter == &memcg->memory)
2805 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2806 if (counter == &memcg->memsw)
2807 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2808 return (u64)page_counter_read(counter) * PAGE_SIZE;
2809 case RES_LIMIT:
2810 return (u64)counter->limit * PAGE_SIZE;
2811 case RES_MAX_USAGE:
2812 return (u64)counter->watermark * PAGE_SIZE;
2813 case RES_FAILCNT:
2814 return counter->failcnt;
2815 case RES_SOFT_LIMIT:
2816 return (u64)memcg->soft_limit * PAGE_SIZE;
2817 default:
2818 BUG();
2819 }
2820}
2821
2822#ifndef CONFIG_SLOB
2823static int memcg_online_kmem(struct mem_cgroup *memcg)
2824{
2825 int memcg_id;
2826
2827 if (cgroup_memory_nokmem)
2828 return 0;
2829
2830 BUG_ON(memcg->kmemcg_id >= 0);
2831 BUG_ON(memcg->kmem_state);
2832
2833 memcg_id = memcg_alloc_cache_id();
2834 if (memcg_id < 0)
2835 return memcg_id;
2836
2837 static_branch_inc(&memcg_kmem_enabled_key);
2838 /*
2839 * A memory cgroup is considered kmem-online as soon as it gets
2840 * kmemcg_id. Setting the id after enabling static branching will
2841 * guarantee no one starts accounting before all call sites are
2842 * patched.
2843 */
2844 memcg->kmemcg_id = memcg_id;
2845 memcg->kmem_state = KMEM_ONLINE;
2846
2847 return 0;
2848}
2849
2850static void memcg_offline_kmem(struct mem_cgroup *memcg)
2851{
2852 struct cgroup_subsys_state *css;
2853 struct mem_cgroup *parent, *child;
2854 int kmemcg_id;
2855
2856 if (memcg->kmem_state != KMEM_ONLINE)
2857 return;
2858 /*
2859 * Clear the online state before clearing memcg_caches array
2860 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2861 * guarantees that no cache will be created for this cgroup
2862 * after we are done (see memcg_create_kmem_cache()).
2863 */
2864 memcg->kmem_state = KMEM_ALLOCATED;
2865
2866 memcg_deactivate_kmem_caches(memcg);
2867
2868 kmemcg_id = memcg->kmemcg_id;
2869 BUG_ON(kmemcg_id < 0);
2870
2871 parent = parent_mem_cgroup(memcg);
2872 if (!parent)
2873 parent = root_mem_cgroup;
2874
2875 /*
2876 * Change kmemcg_id of this cgroup and all its descendants to the
2877 * parent's id, and then move all entries from this cgroup's list_lrus
2878 * to ones of the parent. After we have finished, all list_lrus
2879 * corresponding to this cgroup are guaranteed to remain empty. The
2880 * ordering is imposed by list_lru_node->lock taken by
2881 * memcg_drain_all_list_lrus().
2882 */
2883 css_for_each_descendant_pre(css, &memcg->css) {
2884 child = mem_cgroup_from_css(css);
2885 BUG_ON(child->kmemcg_id != kmemcg_id);
2886 child->kmemcg_id = parent->kmemcg_id;
2887 if (!memcg->use_hierarchy)
2888 break;
2889 }
2890 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2891
2892 memcg_free_cache_id(kmemcg_id);
2893}
2894
2895static void memcg_free_kmem(struct mem_cgroup *memcg)
2896{
2897 /* css_alloc() failed, offlining didn't happen */
2898 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2899 memcg_offline_kmem(memcg);
2900
2901 if (memcg->kmem_state == KMEM_ALLOCATED) {
2902 memcg_destroy_kmem_caches(memcg);
2903 static_branch_dec(&memcg_kmem_enabled_key);
2904 WARN_ON(page_counter_read(&memcg->kmem));
2905 }
2906}
2907#else
2908static int memcg_online_kmem(struct mem_cgroup *memcg)
2909{
2910 return 0;
2911}
2912static void memcg_offline_kmem(struct mem_cgroup *memcg)
2913{
2914}
2915static void memcg_free_kmem(struct mem_cgroup *memcg)
2916{
2917}
2918#endif /* !CONFIG_SLOB */
2919
2920static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2921 unsigned long limit)
2922{
2923 int ret;
2924
2925 mutex_lock(&memcg_limit_mutex);
2926 ret = page_counter_limit(&memcg->kmem, limit);
2927 mutex_unlock(&memcg_limit_mutex);
2928 return ret;
2929}
2930
2931static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2932{
2933 int ret;
2934
2935 mutex_lock(&memcg_limit_mutex);
2936
2937 ret = page_counter_limit(&memcg->tcpmem, limit);
2938 if (ret)
2939 goto out;
2940
2941 if (!memcg->tcpmem_active) {
2942 /*
2943 * The active flag needs to be written after the static_key
2944 * update. This is what guarantees that the socket activation
2945 * function is the last one to run. See sock_update_memcg() for
2946 * details, and note that we don't mark any socket as belonging
2947 * to this memcg until that flag is up.
2948 *
2949 * We need to do this, because static_keys will span multiple
2950 * sites, but we can't control their order. If we mark a socket
2951 * as accounted, but the accounting functions are not patched in
2952 * yet, we'll lose accounting.
2953 *
2954 * We never race with the readers in sock_update_memcg(),
2955 * because when this value change, the code to process it is not
2956 * patched in yet.
2957 */
2958 static_branch_inc(&memcg_sockets_enabled_key);
2959 memcg->tcpmem_active = true;
2960 }
2961out:
2962 mutex_unlock(&memcg_limit_mutex);
2963 return ret;
2964}
2965
2966/*
2967 * The user of this function is...
2968 * RES_LIMIT.
2969 */
2970static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2971 char *buf, size_t nbytes, loff_t off)
2972{
2973 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2974 unsigned long nr_pages;
2975 int ret;
2976
2977 buf = strstrip(buf);
2978 ret = page_counter_memparse(buf, "-1", &nr_pages);
2979 if (ret)
2980 return ret;
2981
2982 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2983 case RES_LIMIT:
2984 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2985 ret = -EINVAL;
2986 break;
2987 }
2988 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2989 case _MEM:
2990 ret = mem_cgroup_resize_limit(memcg, nr_pages);
2991 break;
2992 case _MEMSWAP:
2993 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2994 break;
2995 case _KMEM:
2996 ret = memcg_update_kmem_limit(memcg, nr_pages);
2997 break;
2998 case _TCP:
2999 ret = memcg_update_tcp_limit(memcg, nr_pages);
3000 break;
3001 }
3002 break;
3003 case RES_SOFT_LIMIT:
3004 memcg->soft_limit = nr_pages;
3005 ret = 0;
3006 break;
3007 }
3008 return ret ?: nbytes;
3009}
3010
3011static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3012 size_t nbytes, loff_t off)
3013{
3014 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3015 struct page_counter *counter;
3016
3017 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3018 case _MEM:
3019 counter = &memcg->memory;
3020 break;
3021 case _MEMSWAP:
3022 counter = &memcg->memsw;
3023 break;
3024 case _KMEM:
3025 counter = &memcg->kmem;
3026 break;
3027 case _TCP:
3028 counter = &memcg->tcpmem;
3029 break;
3030 default:
3031 BUG();
3032 }
3033
3034 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3035 case RES_MAX_USAGE:
3036 page_counter_reset_watermark(counter);
3037 break;
3038 case RES_FAILCNT:
3039 counter->failcnt = 0;
3040 break;
3041 default:
3042 BUG();
3043 }
3044
3045 return nbytes;
3046}
3047
3048static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3049 struct cftype *cft)
3050{
3051 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3052}
3053
3054#ifdef CONFIG_MMU
3055static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3056 struct cftype *cft, u64 val)
3057{
3058 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3059
3060 if (val & ~MOVE_MASK)
3061 return -EINVAL;
3062
3063 /*
3064 * No kind of locking is needed in here, because ->can_attach() will
3065 * check this value once in the beginning of the process, and then carry
3066 * on with stale data. This means that changes to this value will only
3067 * affect task migrations starting after the change.
3068 */
3069 memcg->move_charge_at_immigrate = val;
3070 return 0;
3071}
3072#else
3073static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3074 struct cftype *cft, u64 val)
3075{
3076 return -ENOSYS;
3077}
3078#endif
3079
3080#ifdef CONFIG_NUMA
3081static int memcg_numa_stat_show(struct seq_file *m, void *v)
3082{
3083 struct numa_stat {
3084 const char *name;
3085 unsigned int lru_mask;
3086 };
3087
3088 static const struct numa_stat stats[] = {
3089 { "total", LRU_ALL },
3090 { "file", LRU_ALL_FILE },
3091 { "anon", LRU_ALL_ANON },
3092 { "unevictable", BIT(LRU_UNEVICTABLE) },
3093 };
3094 const struct numa_stat *stat;
3095 int nid;
3096 unsigned long nr;
3097 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3098
3099 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3100 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3101 seq_printf(m, "%s=%lu", stat->name, nr);
3102 for_each_node_state(nid, N_MEMORY) {
3103 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3104 stat->lru_mask);
3105 seq_printf(m, " N%d=%lu", nid, nr);
3106 }
3107 seq_putc(m, '\n');
3108 }
3109
3110 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3111 struct mem_cgroup *iter;
3112
3113 nr = 0;
3114 for_each_mem_cgroup_tree(iter, memcg)
3115 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3116 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3117 for_each_node_state(nid, N_MEMORY) {
3118 nr = 0;
3119 for_each_mem_cgroup_tree(iter, memcg)
3120 nr += mem_cgroup_node_nr_lru_pages(
3121 iter, nid, stat->lru_mask);
3122 seq_printf(m, " N%d=%lu", nid, nr);
3123 }
3124 seq_putc(m, '\n');
3125 }
3126
3127 return 0;
3128}
3129#endif /* CONFIG_NUMA */
3130
3131static int memcg_stat_show(struct seq_file *m, void *v)
3132{
3133 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3134 unsigned long memory, memsw;
3135 struct mem_cgroup *mi;
3136 unsigned int i;
3137
3138 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3139 MEM_CGROUP_STAT_NSTATS);
3140 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3141 MEM_CGROUP_EVENTS_NSTATS);
3142 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3143
3144 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3145 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3146 continue;
3147 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3148 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3149 }
3150
3151 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3152 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3153 mem_cgroup_read_events(memcg, i));
3154
3155 for (i = 0; i < NR_LRU_LISTS; i++)
3156 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3157 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3158
3159 /* Hierarchical information */
3160 memory = memsw = PAGE_COUNTER_MAX;
3161 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3162 memory = min(memory, mi->memory.limit);
3163 memsw = min(memsw, mi->memsw.limit);
3164 }
3165 seq_printf(m, "hierarchical_memory_limit %llu\n",
3166 (u64)memory * PAGE_SIZE);
3167 if (do_memsw_account())
3168 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3169 (u64)memsw * PAGE_SIZE);
3170
3171 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3172 unsigned long long val = 0;
3173
3174 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3175 continue;
3176 for_each_mem_cgroup_tree(mi, memcg)
3177 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3178 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3179 }
3180
3181 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3182 unsigned long long val = 0;
3183
3184 for_each_mem_cgroup_tree(mi, memcg)
3185 val += mem_cgroup_read_events(mi, i);
3186 seq_printf(m, "total_%s %llu\n",
3187 mem_cgroup_events_names[i], val);
3188 }
3189
3190 for (i = 0; i < NR_LRU_LISTS; i++) {
3191 unsigned long long val = 0;
3192
3193 for_each_mem_cgroup_tree(mi, memcg)
3194 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3195 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3196 }
3197
3198#ifdef CONFIG_DEBUG_VM
3199 {
3200 int nid, zid;
3201 struct mem_cgroup_per_zone *mz;
3202 struct zone_reclaim_stat *rstat;
3203 unsigned long recent_rotated[2] = {0, 0};
3204 unsigned long recent_scanned[2] = {0, 0};
3205
3206 for_each_online_node(nid)
3207 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3208 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3209 rstat = &mz->lruvec.reclaim_stat;
3210
3211 recent_rotated[0] += rstat->recent_rotated[0];
3212 recent_rotated[1] += rstat->recent_rotated[1];
3213 recent_scanned[0] += rstat->recent_scanned[0];
3214 recent_scanned[1] += rstat->recent_scanned[1];
3215 }
3216 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3217 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3218 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3219 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3220 }
3221#endif
3222
3223 return 0;
3224}
3225
3226static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3227 struct cftype *cft)
3228{
3229 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3230
3231 return mem_cgroup_swappiness(memcg);
3232}
3233
3234static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3235 struct cftype *cft, u64 val)
3236{
3237 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3238
3239 if (val > 100)
3240 return -EINVAL;
3241
3242 if (css->parent)
3243 memcg->swappiness = val;
3244 else
3245 vm_swappiness = val;
3246
3247 return 0;
3248}
3249
3250static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3251{
3252 struct mem_cgroup_threshold_ary *t;
3253 unsigned long usage;
3254 int i;
3255
3256 rcu_read_lock();
3257 if (!swap)
3258 t = rcu_dereference(memcg->thresholds.primary);
3259 else
3260 t = rcu_dereference(memcg->memsw_thresholds.primary);
3261
3262 if (!t)
3263 goto unlock;
3264
3265 usage = mem_cgroup_usage(memcg, swap);
3266
3267 /*
3268 * current_threshold points to threshold just below or equal to usage.
3269 * If it's not true, a threshold was crossed after last
3270 * call of __mem_cgroup_threshold().
3271 */
3272 i = t->current_threshold;
3273
3274 /*
3275 * Iterate backward over array of thresholds starting from
3276 * current_threshold and check if a threshold is crossed.
3277 * If none of thresholds below usage is crossed, we read
3278 * only one element of the array here.
3279 */
3280 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3281 eventfd_signal(t->entries[i].eventfd, 1);
3282
3283 /* i = current_threshold + 1 */
3284 i++;
3285
3286 /*
3287 * Iterate forward over array of thresholds starting from
3288 * current_threshold+1 and check if a threshold is crossed.
3289 * If none of thresholds above usage is crossed, we read
3290 * only one element of the array here.
3291 */
3292 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3293 eventfd_signal(t->entries[i].eventfd, 1);
3294
3295 /* Update current_threshold */
3296 t->current_threshold = i - 1;
3297unlock:
3298 rcu_read_unlock();
3299}
3300
3301static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3302{
3303 while (memcg) {
3304 __mem_cgroup_threshold(memcg, false);
3305 if (do_memsw_account())
3306 __mem_cgroup_threshold(memcg, true);
3307
3308 memcg = parent_mem_cgroup(memcg);
3309 }
3310}
3311
3312static int compare_thresholds(const void *a, const void *b)
3313{
3314 const struct mem_cgroup_threshold *_a = a;
3315 const struct mem_cgroup_threshold *_b = b;
3316
3317 if (_a->threshold > _b->threshold)
3318 return 1;
3319
3320 if (_a->threshold < _b->threshold)
3321 return -1;
3322
3323 return 0;
3324}
3325
3326static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3327{
3328 struct mem_cgroup_eventfd_list *ev;
3329
3330 spin_lock(&memcg_oom_lock);
3331
3332 list_for_each_entry(ev, &memcg->oom_notify, list)
3333 eventfd_signal(ev->eventfd, 1);
3334
3335 spin_unlock(&memcg_oom_lock);
3336 return 0;
3337}
3338
3339static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3340{
3341 struct mem_cgroup *iter;
3342
3343 for_each_mem_cgroup_tree(iter, memcg)
3344 mem_cgroup_oom_notify_cb(iter);
3345}
3346
3347static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3348 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3349{
3350 struct mem_cgroup_thresholds *thresholds;
3351 struct mem_cgroup_threshold_ary *new;
3352 unsigned long threshold;
3353 unsigned long usage;
3354 int i, size, ret;
3355
3356 ret = page_counter_memparse(args, "-1", &threshold);
3357 if (ret)
3358 return ret;
3359
3360 mutex_lock(&memcg->thresholds_lock);
3361
3362 if (type == _MEM) {
3363 thresholds = &memcg->thresholds;
3364 usage = mem_cgroup_usage(memcg, false);
3365 } else if (type == _MEMSWAP) {
3366 thresholds = &memcg->memsw_thresholds;
3367 usage = mem_cgroup_usage(memcg, true);
3368 } else
3369 BUG();
3370
3371 /* Check if a threshold crossed before adding a new one */
3372 if (thresholds->primary)
3373 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3374
3375 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3376
3377 /* Allocate memory for new array of thresholds */
3378 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3379 GFP_KERNEL);
3380 if (!new) {
3381 ret = -ENOMEM;
3382 goto unlock;
3383 }
3384 new->size = size;
3385
3386 /* Copy thresholds (if any) to new array */
3387 if (thresholds->primary) {
3388 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3389 sizeof(struct mem_cgroup_threshold));
3390 }
3391
3392 /* Add new threshold */
3393 new->entries[size - 1].eventfd = eventfd;
3394 new->entries[size - 1].threshold = threshold;
3395
3396 /* Sort thresholds. Registering of new threshold isn't time-critical */
3397 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3398 compare_thresholds, NULL);
3399
3400 /* Find current threshold */
3401 new->current_threshold = -1;
3402 for (i = 0; i < size; i++) {
3403 if (new->entries[i].threshold <= usage) {
3404 /*
3405 * new->current_threshold will not be used until
3406 * rcu_assign_pointer(), so it's safe to increment
3407 * it here.
3408 */
3409 ++new->current_threshold;
3410 } else
3411 break;
3412 }
3413
3414 /* Free old spare buffer and save old primary buffer as spare */
3415 kfree(thresholds->spare);
3416 thresholds->spare = thresholds->primary;
3417
3418 rcu_assign_pointer(thresholds->primary, new);
3419
3420 /* To be sure that nobody uses thresholds */
3421 synchronize_rcu();
3422
3423unlock:
3424 mutex_unlock(&memcg->thresholds_lock);
3425
3426 return ret;
3427}
3428
3429static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3430 struct eventfd_ctx *eventfd, const char *args)
3431{
3432 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3433}
3434
3435static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3436 struct eventfd_ctx *eventfd, const char *args)
3437{
3438 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3439}
3440
3441static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3442 struct eventfd_ctx *eventfd, enum res_type type)
3443{
3444 struct mem_cgroup_thresholds *thresholds;
3445 struct mem_cgroup_threshold_ary *new;
3446 unsigned long usage;
3447 int i, j, size;
3448
3449 mutex_lock(&memcg->thresholds_lock);
3450
3451 if (type == _MEM) {
3452 thresholds = &memcg->thresholds;
3453 usage = mem_cgroup_usage(memcg, false);
3454 } else if (type == _MEMSWAP) {
3455 thresholds = &memcg->memsw_thresholds;
3456 usage = mem_cgroup_usage(memcg, true);
3457 } else
3458 BUG();
3459
3460 if (!thresholds->primary)
3461 goto unlock;
3462
3463 /* Check if a threshold crossed before removing */
3464 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3465
3466 /* Calculate new number of threshold */
3467 size = 0;
3468 for (i = 0; i < thresholds->primary->size; i++) {
3469 if (thresholds->primary->entries[i].eventfd != eventfd)
3470 size++;
3471 }
3472
3473 new = thresholds->spare;
3474
3475 /* Set thresholds array to NULL if we don't have thresholds */
3476 if (!size) {
3477 kfree(new);
3478 new = NULL;
3479 goto swap_buffers;
3480 }
3481
3482 new->size = size;
3483
3484 /* Copy thresholds and find current threshold */
3485 new->current_threshold = -1;
3486 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3487 if (thresholds->primary->entries[i].eventfd == eventfd)
3488 continue;
3489
3490 new->entries[j] = thresholds->primary->entries[i];
3491 if (new->entries[j].threshold <= usage) {
3492 /*
3493 * new->current_threshold will not be used
3494 * until rcu_assign_pointer(), so it's safe to increment
3495 * it here.
3496 */
3497 ++new->current_threshold;
3498 }
3499 j++;
3500 }
3501
3502swap_buffers:
3503 /* Swap primary and spare array */
3504 thresholds->spare = thresholds->primary;
3505
3506 rcu_assign_pointer(thresholds->primary, new);
3507
3508 /* To be sure that nobody uses thresholds */
3509 synchronize_rcu();
3510
3511 /* If all events are unregistered, free the spare array */
3512 if (!new) {
3513 kfree(thresholds->spare);
3514 thresholds->spare = NULL;
3515 }
3516unlock:
3517 mutex_unlock(&memcg->thresholds_lock);
3518}
3519
3520static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3521 struct eventfd_ctx *eventfd)
3522{
3523 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3524}
3525
3526static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3527 struct eventfd_ctx *eventfd)
3528{
3529 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3530}
3531
3532static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3533 struct eventfd_ctx *eventfd, const char *args)
3534{
3535 struct mem_cgroup_eventfd_list *event;
3536
3537 event = kmalloc(sizeof(*event), GFP_KERNEL);
3538 if (!event)
3539 return -ENOMEM;
3540
3541 spin_lock(&memcg_oom_lock);
3542
3543 event->eventfd = eventfd;
3544 list_add(&event->list, &memcg->oom_notify);
3545
3546 /* already in OOM ? */
3547 if (memcg->under_oom)
3548 eventfd_signal(eventfd, 1);
3549 spin_unlock(&memcg_oom_lock);
3550
3551 return 0;
3552}
3553
3554static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3555 struct eventfd_ctx *eventfd)
3556{
3557 struct mem_cgroup_eventfd_list *ev, *tmp;
3558
3559 spin_lock(&memcg_oom_lock);
3560
3561 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3562 if (ev->eventfd == eventfd) {
3563 list_del(&ev->list);
3564 kfree(ev);
3565 }
3566 }
3567
3568 spin_unlock(&memcg_oom_lock);
3569}
3570
3571static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3572{
3573 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3574
3575 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3576 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3577 return 0;
3578}
3579
3580static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3581 struct cftype *cft, u64 val)
3582{
3583 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3584
3585 /* cannot set to root cgroup and only 0 and 1 are allowed */
3586 if (!css->parent || !((val == 0) || (val == 1)))
3587 return -EINVAL;
3588
3589 memcg->oom_kill_disable = val;
3590 if (!val)
3591 memcg_oom_recover(memcg);
3592
3593 return 0;
3594}
3595
3596#ifdef CONFIG_CGROUP_WRITEBACK
3597
3598struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3599{
3600 return &memcg->cgwb_list;
3601}
3602
3603static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3604{
3605 return wb_domain_init(&memcg->cgwb_domain, gfp);
3606}
3607
3608static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3609{
3610 wb_domain_exit(&memcg->cgwb_domain);
3611}
3612
3613static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3614{
3615 wb_domain_size_changed(&memcg->cgwb_domain);
3616}
3617
3618struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3619{
3620 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3621
3622 if (!memcg->css.parent)
3623 return NULL;
3624
3625 return &memcg->cgwb_domain;
3626}
3627
3628/**
3629 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3630 * @wb: bdi_writeback in question
3631 * @pfilepages: out parameter for number of file pages
3632 * @pheadroom: out parameter for number of allocatable pages according to memcg
3633 * @pdirty: out parameter for number of dirty pages
3634 * @pwriteback: out parameter for number of pages under writeback
3635 *
3636 * Determine the numbers of file, headroom, dirty, and writeback pages in
3637 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3638 * is a bit more involved.
3639 *
3640 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3641 * headroom is calculated as the lowest headroom of itself and the
3642 * ancestors. Note that this doesn't consider the actual amount of
3643 * available memory in the system. The caller should further cap
3644 * *@pheadroom accordingly.
3645 */
3646void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3647 unsigned long *pheadroom, unsigned long *pdirty,
3648 unsigned long *pwriteback)
3649{
3650 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3651 struct mem_cgroup *parent;
3652
3653 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3654
3655 /* this should eventually include NR_UNSTABLE_NFS */
3656 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3657 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3658 (1 << LRU_ACTIVE_FILE));
3659 *pheadroom = PAGE_COUNTER_MAX;
3660
3661 while ((parent = parent_mem_cgroup(memcg))) {
3662 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3663 unsigned long used = page_counter_read(&memcg->memory);
3664
3665 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3666 memcg = parent;
3667 }
3668}
3669
3670#else /* CONFIG_CGROUP_WRITEBACK */
3671
3672static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3673{
3674 return 0;
3675}
3676
3677static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3678{
3679}
3680
3681static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3682{
3683}
3684
3685#endif /* CONFIG_CGROUP_WRITEBACK */
3686
3687/*
3688 * DO NOT USE IN NEW FILES.
3689 *
3690 * "cgroup.event_control" implementation.
3691 *
3692 * This is way over-engineered. It tries to support fully configurable
3693 * events for each user. Such level of flexibility is completely
3694 * unnecessary especially in the light of the planned unified hierarchy.
3695 *
3696 * Please deprecate this and replace with something simpler if at all
3697 * possible.
3698 */
3699
3700/*
3701 * Unregister event and free resources.
3702 *
3703 * Gets called from workqueue.
3704 */
3705static void memcg_event_remove(struct work_struct *work)
3706{
3707 struct mem_cgroup_event *event =
3708 container_of(work, struct mem_cgroup_event, remove);
3709 struct mem_cgroup *memcg = event->memcg;
3710
3711 remove_wait_queue(event->wqh, &event->wait);
3712
3713 event->unregister_event(memcg, event->eventfd);
3714
3715 /* Notify userspace the event is going away. */
3716 eventfd_signal(event->eventfd, 1);
3717
3718 eventfd_ctx_put(event->eventfd);
3719 kfree(event);
3720 css_put(&memcg->css);
3721}
3722
3723/*
3724 * Gets called on POLLHUP on eventfd when user closes it.
3725 *
3726 * Called with wqh->lock held and interrupts disabled.
3727 */
3728static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3729 int sync, void *key)
3730{
3731 struct mem_cgroup_event *event =
3732 container_of(wait, struct mem_cgroup_event, wait);
3733 struct mem_cgroup *memcg = event->memcg;
3734 unsigned long flags = (unsigned long)key;
3735
3736 if (flags & POLLHUP) {
3737 /*
3738 * If the event has been detached at cgroup removal, we
3739 * can simply return knowing the other side will cleanup
3740 * for us.
3741 *
3742 * We can't race against event freeing since the other
3743 * side will require wqh->lock via remove_wait_queue(),
3744 * which we hold.
3745 */
3746 spin_lock(&memcg->event_list_lock);
3747 if (!list_empty(&event->list)) {
3748 list_del_init(&event->list);
3749 /*
3750 * We are in atomic context, but cgroup_event_remove()
3751 * may sleep, so we have to call it in workqueue.
3752 */
3753 schedule_work(&event->remove);
3754 }
3755 spin_unlock(&memcg->event_list_lock);
3756 }
3757
3758 return 0;
3759}
3760
3761static void memcg_event_ptable_queue_proc(struct file *file,
3762 wait_queue_head_t *wqh, poll_table *pt)
3763{
3764 struct mem_cgroup_event *event =
3765 container_of(pt, struct mem_cgroup_event, pt);
3766
3767 event->wqh = wqh;
3768 add_wait_queue(wqh, &event->wait);
3769}
3770
3771/*
3772 * DO NOT USE IN NEW FILES.
3773 *
3774 * Parse input and register new cgroup event handler.
3775 *
3776 * Input must be in format '<event_fd> <control_fd> <args>'.
3777 * Interpretation of args is defined by control file implementation.
3778 */
3779static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3780 char *buf, size_t nbytes, loff_t off)
3781{
3782 struct cgroup_subsys_state *css = of_css(of);
3783 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3784 struct mem_cgroup_event *event;
3785 struct cgroup_subsys_state *cfile_css;
3786 unsigned int efd, cfd;
3787 struct fd efile;
3788 struct fd cfile;
3789 const char *name;
3790 char *endp;
3791 int ret;
3792
3793 buf = strstrip(buf);
3794
3795 efd = simple_strtoul(buf, &endp, 10);
3796 if (*endp != ' ')
3797 return -EINVAL;
3798 buf = endp + 1;
3799
3800 cfd = simple_strtoul(buf, &endp, 10);
3801 if ((*endp != ' ') && (*endp != '\0'))
3802 return -EINVAL;
3803 buf = endp + 1;
3804
3805 event = kzalloc(sizeof(*event), GFP_KERNEL);
3806 if (!event)
3807 return -ENOMEM;
3808
3809 event->memcg = memcg;
3810 INIT_LIST_HEAD(&event->list);
3811 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3812 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3813 INIT_WORK(&event->remove, memcg_event_remove);
3814
3815 efile = fdget(efd);
3816 if (!efile.file) {
3817 ret = -EBADF;
3818 goto out_kfree;
3819 }
3820
3821 event->eventfd = eventfd_ctx_fileget(efile.file);
3822 if (IS_ERR(event->eventfd)) {
3823 ret = PTR_ERR(event->eventfd);
3824 goto out_put_efile;
3825 }
3826
3827 cfile = fdget(cfd);
3828 if (!cfile.file) {
3829 ret = -EBADF;
3830 goto out_put_eventfd;
3831 }
3832
3833 /* the process need read permission on control file */
3834 /* AV: shouldn't we check that it's been opened for read instead? */
3835 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3836 if (ret < 0)
3837 goto out_put_cfile;
3838
3839 /*
3840 * Determine the event callbacks and set them in @event. This used
3841 * to be done via struct cftype but cgroup core no longer knows
3842 * about these events. The following is crude but the whole thing
3843 * is for compatibility anyway.
3844 *
3845 * DO NOT ADD NEW FILES.
3846 */
3847 name = cfile.file->f_path.dentry->d_name.name;
3848
3849 if (!strcmp(name, "memory.usage_in_bytes")) {
3850 event->register_event = mem_cgroup_usage_register_event;
3851 event->unregister_event = mem_cgroup_usage_unregister_event;
3852 } else if (!strcmp(name, "memory.oom_control")) {
3853 event->register_event = mem_cgroup_oom_register_event;
3854 event->unregister_event = mem_cgroup_oom_unregister_event;
3855 } else if (!strcmp(name, "memory.pressure_level")) {
3856 event->register_event = vmpressure_register_event;
3857 event->unregister_event = vmpressure_unregister_event;
3858 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3859 event->register_event = memsw_cgroup_usage_register_event;
3860 event->unregister_event = memsw_cgroup_usage_unregister_event;
3861 } else {
3862 ret = -EINVAL;
3863 goto out_put_cfile;
3864 }
3865
3866 /*
3867 * Verify @cfile should belong to @css. Also, remaining events are
3868 * automatically removed on cgroup destruction but the removal is
3869 * asynchronous, so take an extra ref on @css.
3870 */
3871 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3872 &memory_cgrp_subsys);
3873 ret = -EINVAL;
3874 if (IS_ERR(cfile_css))
3875 goto out_put_cfile;
3876 if (cfile_css != css) {
3877 css_put(cfile_css);
3878 goto out_put_cfile;
3879 }
3880
3881 ret = event->register_event(memcg, event->eventfd, buf);
3882 if (ret)
3883 goto out_put_css;
3884
3885 efile.file->f_op->poll(efile.file, &event->pt);
3886
3887 spin_lock(&memcg->event_list_lock);
3888 list_add(&event->list, &memcg->event_list);
3889 spin_unlock(&memcg->event_list_lock);
3890
3891 fdput(cfile);
3892 fdput(efile);
3893
3894 return nbytes;
3895
3896out_put_css:
3897 css_put(css);
3898out_put_cfile:
3899 fdput(cfile);
3900out_put_eventfd:
3901 eventfd_ctx_put(event->eventfd);
3902out_put_efile:
3903 fdput(efile);
3904out_kfree:
3905 kfree(event);
3906
3907 return ret;
3908}
3909
3910static struct cftype mem_cgroup_legacy_files[] = {
3911 {
3912 .name = "usage_in_bytes",
3913 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3914 .read_u64 = mem_cgroup_read_u64,
3915 },
3916 {
3917 .name = "max_usage_in_bytes",
3918 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3919 .write = mem_cgroup_reset,
3920 .read_u64 = mem_cgroup_read_u64,
3921 },
3922 {
3923 .name = "limit_in_bytes",
3924 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3925 .write = mem_cgroup_write,
3926 .read_u64 = mem_cgroup_read_u64,
3927 },
3928 {
3929 .name = "soft_limit_in_bytes",
3930 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3931 .write = mem_cgroup_write,
3932 .read_u64 = mem_cgroup_read_u64,
3933 },
3934 {
3935 .name = "failcnt",
3936 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3937 .write = mem_cgroup_reset,
3938 .read_u64 = mem_cgroup_read_u64,
3939 },
3940 {
3941 .name = "stat",
3942 .seq_show = memcg_stat_show,
3943 },
3944 {
3945 .name = "force_empty",
3946 .write = mem_cgroup_force_empty_write,
3947 },
3948 {
3949 .name = "use_hierarchy",
3950 .write_u64 = mem_cgroup_hierarchy_write,
3951 .read_u64 = mem_cgroup_hierarchy_read,
3952 },
3953 {
3954 .name = "cgroup.event_control", /* XXX: for compat */
3955 .write = memcg_write_event_control,
3956 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3957 },
3958 {
3959 .name = "swappiness",
3960 .read_u64 = mem_cgroup_swappiness_read,
3961 .write_u64 = mem_cgroup_swappiness_write,
3962 },
3963 {
3964 .name = "move_charge_at_immigrate",
3965 .read_u64 = mem_cgroup_move_charge_read,
3966 .write_u64 = mem_cgroup_move_charge_write,
3967 },
3968 {
3969 .name = "oom_control",
3970 .seq_show = mem_cgroup_oom_control_read,
3971 .write_u64 = mem_cgroup_oom_control_write,
3972 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3973 },
3974 {
3975 .name = "pressure_level",
3976 },
3977#ifdef CONFIG_NUMA
3978 {
3979 .name = "numa_stat",
3980 .seq_show = memcg_numa_stat_show,
3981 },
3982#endif
3983 {
3984 .name = "kmem.limit_in_bytes",
3985 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3986 .write = mem_cgroup_write,
3987 .read_u64 = mem_cgroup_read_u64,
3988 },
3989 {
3990 .name = "kmem.usage_in_bytes",
3991 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3992 .read_u64 = mem_cgroup_read_u64,
3993 },
3994 {
3995 .name = "kmem.failcnt",
3996 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3997 .write = mem_cgroup_reset,
3998 .read_u64 = mem_cgroup_read_u64,
3999 },
4000 {
4001 .name = "kmem.max_usage_in_bytes",
4002 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4003 .write = mem_cgroup_reset,
4004 .read_u64 = mem_cgroup_read_u64,
4005 },
4006#ifdef CONFIG_SLABINFO
4007 {
4008 .name = "kmem.slabinfo",
4009 .seq_start = slab_start,
4010 .seq_next = slab_next,
4011 .seq_stop = slab_stop,
4012 .seq_show = memcg_slab_show,
4013 },
4014#endif
4015 {
4016 .name = "kmem.tcp.limit_in_bytes",
4017 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4018 .write = mem_cgroup_write,
4019 .read_u64 = mem_cgroup_read_u64,
4020 },
4021 {
4022 .name = "kmem.tcp.usage_in_bytes",
4023 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4024 .read_u64 = mem_cgroup_read_u64,
4025 },
4026 {
4027 .name = "kmem.tcp.failcnt",
4028 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4029 .write = mem_cgroup_reset,
4030 .read_u64 = mem_cgroup_read_u64,
4031 },
4032 {
4033 .name = "kmem.tcp.max_usage_in_bytes",
4034 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4035 .write = mem_cgroup_reset,
4036 .read_u64 = mem_cgroup_read_u64,
4037 },
4038 { }, /* terminate */
4039};
4040
4041static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4042{
4043 struct mem_cgroup_per_node *pn;
4044 struct mem_cgroup_per_zone *mz;
4045 int zone, tmp = node;
4046 /*
4047 * This routine is called against possible nodes.
4048 * But it's BUG to call kmalloc() against offline node.
4049 *
4050 * TODO: this routine can waste much memory for nodes which will
4051 * never be onlined. It's better to use memory hotplug callback
4052 * function.
4053 */
4054 if (!node_state(node, N_NORMAL_MEMORY))
4055 tmp = -1;
4056 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4057 if (!pn)
4058 return 1;
4059
4060 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4061 mz = &pn->zoneinfo[zone];
4062 lruvec_init(&mz->lruvec);
4063 mz->usage_in_excess = 0;
4064 mz->on_tree = false;
4065 mz->memcg = memcg;
4066 }
4067 memcg->nodeinfo[node] = pn;
4068 return 0;
4069}
4070
4071static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4072{
4073 kfree(memcg->nodeinfo[node]);
4074}
4075
4076static void mem_cgroup_free(struct mem_cgroup *memcg)
4077{
4078 int node;
4079
4080 memcg_wb_domain_exit(memcg);
4081 for_each_node(node)
4082 free_mem_cgroup_per_zone_info(memcg, node);
4083 free_percpu(memcg->stat);
4084 kfree(memcg);
4085}
4086
4087static struct mem_cgroup *mem_cgroup_alloc(void)
4088{
4089 struct mem_cgroup *memcg;
4090 size_t size;
4091 int node;
4092
4093 size = sizeof(struct mem_cgroup);
4094 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4095
4096 memcg = kzalloc(size, GFP_KERNEL);
4097 if (!memcg)
4098 return NULL;
4099
4100 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4101 if (!memcg->stat)
4102 goto fail;
4103
4104 for_each_node(node)
4105 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4106 goto fail;
4107
4108 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4109 goto fail;
4110
4111 INIT_WORK(&memcg->high_work, high_work_func);
4112 memcg->last_scanned_node = MAX_NUMNODES;
4113 INIT_LIST_HEAD(&memcg->oom_notify);
4114 mutex_init(&memcg->thresholds_lock);
4115 spin_lock_init(&memcg->move_lock);
4116 vmpressure_init(&memcg->vmpressure);
4117 INIT_LIST_HEAD(&memcg->event_list);
4118 spin_lock_init(&memcg->event_list_lock);
4119 memcg->socket_pressure = jiffies;
4120#ifndef CONFIG_SLOB
4121 memcg->kmemcg_id = -1;
4122#endif
4123#ifdef CONFIG_CGROUP_WRITEBACK
4124 INIT_LIST_HEAD(&memcg->cgwb_list);
4125#endif
4126 return memcg;
4127fail:
4128 mem_cgroup_free(memcg);
4129 return NULL;
4130}
4131
4132static struct cgroup_subsys_state * __ref
4133mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4134{
4135 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4136 struct mem_cgroup *memcg;
4137 long error = -ENOMEM;
4138
4139 memcg = mem_cgroup_alloc();
4140 if (!memcg)
4141 return ERR_PTR(error);
4142
4143 memcg->high = PAGE_COUNTER_MAX;
4144 memcg->soft_limit = PAGE_COUNTER_MAX;
4145 if (parent) {
4146 memcg->swappiness = mem_cgroup_swappiness(parent);
4147 memcg->oom_kill_disable = parent->oom_kill_disable;
4148 }
4149 if (parent && parent->use_hierarchy) {
4150 memcg->use_hierarchy = true;
4151 page_counter_init(&memcg->memory, &parent->memory);
4152 page_counter_init(&memcg->swap, &parent->swap);
4153 page_counter_init(&memcg->memsw, &parent->memsw);
4154 page_counter_init(&memcg->kmem, &parent->kmem);
4155 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4156 } else {
4157 page_counter_init(&memcg->memory, NULL);
4158 page_counter_init(&memcg->swap, NULL);
4159 page_counter_init(&memcg->memsw, NULL);
4160 page_counter_init(&memcg->kmem, NULL);
4161 page_counter_init(&memcg->tcpmem, NULL);
4162 /*
4163 * Deeper hierachy with use_hierarchy == false doesn't make
4164 * much sense so let cgroup subsystem know about this
4165 * unfortunate state in our controller.
4166 */
4167 if (parent != root_mem_cgroup)
4168 memory_cgrp_subsys.broken_hierarchy = true;
4169 }
4170
4171 /* The following stuff does not apply to the root */
4172 if (!parent) {
4173 root_mem_cgroup = memcg;
4174 return &memcg->css;
4175 }
4176
4177 error = memcg_online_kmem(memcg);
4178 if (error)
4179 goto fail;
4180
4181 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4182 static_branch_inc(&memcg_sockets_enabled_key);
4183
4184 return &memcg->css;
4185fail:
4186 mem_cgroup_free(memcg);
4187 return NULL;
4188}
4189
4190static int
4191mem_cgroup_css_online(struct cgroup_subsys_state *css)
4192{
4193 if (css->id > MEM_CGROUP_ID_MAX)
4194 return -ENOSPC;
4195
4196 return 0;
4197}
4198
4199static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4200{
4201 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4202 struct mem_cgroup_event *event, *tmp;
4203
4204 /*
4205 * Unregister events and notify userspace.
4206 * Notify userspace about cgroup removing only after rmdir of cgroup
4207 * directory to avoid race between userspace and kernelspace.
4208 */
4209 spin_lock(&memcg->event_list_lock);
4210 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4211 list_del_init(&event->list);
4212 schedule_work(&event->remove);
4213 }
4214 spin_unlock(&memcg->event_list_lock);
4215
4216 memcg_offline_kmem(memcg);
4217 wb_memcg_offline(memcg);
4218}
4219
4220static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4221{
4222 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4223
4224 invalidate_reclaim_iterators(memcg);
4225}
4226
4227static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4228{
4229 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4230
4231 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4232 static_branch_dec(&memcg_sockets_enabled_key);
4233
4234 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4235 static_branch_dec(&memcg_sockets_enabled_key);
4236
4237 vmpressure_cleanup(&memcg->vmpressure);
4238 cancel_work_sync(&memcg->high_work);
4239 mem_cgroup_remove_from_trees(memcg);
4240 memcg_free_kmem(memcg);
4241 mem_cgroup_free(memcg);
4242}
4243
4244/**
4245 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4246 * @css: the target css
4247 *
4248 * Reset the states of the mem_cgroup associated with @css. This is
4249 * invoked when the userland requests disabling on the default hierarchy
4250 * but the memcg is pinned through dependency. The memcg should stop
4251 * applying policies and should revert to the vanilla state as it may be
4252 * made visible again.
4253 *
4254 * The current implementation only resets the essential configurations.
4255 * This needs to be expanded to cover all the visible parts.
4256 */
4257static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4258{
4259 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4260
4261 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4262 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4263 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4264 memcg->low = 0;
4265 memcg->high = PAGE_COUNTER_MAX;
4266 memcg->soft_limit = PAGE_COUNTER_MAX;
4267 memcg_wb_domain_size_changed(memcg);
4268}
4269
4270#ifdef CONFIG_MMU
4271/* Handlers for move charge at task migration. */
4272static int mem_cgroup_do_precharge(unsigned long count)
4273{
4274 int ret;
4275
4276 /* Try a single bulk charge without reclaim first, kswapd may wake */
4277 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4278 if (!ret) {
4279 mc.precharge += count;
4280 return ret;
4281 }
4282
4283 /* Try charges one by one with reclaim */
4284 while (count--) {
4285 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4286 if (ret)
4287 return ret;
4288 mc.precharge++;
4289 cond_resched();
4290 }
4291 return 0;
4292}
4293
4294/**
4295 * get_mctgt_type - get target type of moving charge
4296 * @vma: the vma the pte to be checked belongs
4297 * @addr: the address corresponding to the pte to be checked
4298 * @ptent: the pte to be checked
4299 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4300 *
4301 * Returns
4302 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4303 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4304 * move charge. if @target is not NULL, the page is stored in target->page
4305 * with extra refcnt got(Callers should handle it).
4306 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4307 * target for charge migration. if @target is not NULL, the entry is stored
4308 * in target->ent.
4309 *
4310 * Called with pte lock held.
4311 */
4312union mc_target {
4313 struct page *page;
4314 swp_entry_t ent;
4315};
4316
4317enum mc_target_type {
4318 MC_TARGET_NONE = 0,
4319 MC_TARGET_PAGE,
4320 MC_TARGET_SWAP,
4321};
4322
4323static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4324 unsigned long addr, pte_t ptent)
4325{
4326 struct page *page = vm_normal_page(vma, addr, ptent);
4327
4328 if (!page || !page_mapped(page))
4329 return NULL;
4330 if (PageAnon(page)) {
4331 if (!(mc.flags & MOVE_ANON))
4332 return NULL;
4333 } else {
4334 if (!(mc.flags & MOVE_FILE))
4335 return NULL;
4336 }
4337 if (!get_page_unless_zero(page))
4338 return NULL;
4339
4340 return page;
4341}
4342
4343#ifdef CONFIG_SWAP
4344static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4345 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4346{
4347 struct page *page = NULL;
4348 swp_entry_t ent = pte_to_swp_entry(ptent);
4349
4350 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4351 return NULL;
4352 /*
4353 * Because lookup_swap_cache() updates some statistics counter,
4354 * we call find_get_page() with swapper_space directly.
4355 */
4356 page = find_get_page(swap_address_space(ent), ent.val);
4357 if (do_memsw_account())
4358 entry->val = ent.val;
4359
4360 return page;
4361}
4362#else
4363static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4364 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4365{
4366 return NULL;
4367}
4368#endif
4369
4370static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4371 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4372{
4373 struct page *page = NULL;
4374 struct address_space *mapping;
4375 pgoff_t pgoff;
4376
4377 if (!vma->vm_file) /* anonymous vma */
4378 return NULL;
4379 if (!(mc.flags & MOVE_FILE))
4380 return NULL;
4381
4382 mapping = vma->vm_file->f_mapping;
4383 pgoff = linear_page_index(vma, addr);
4384
4385 /* page is moved even if it's not RSS of this task(page-faulted). */
4386#ifdef CONFIG_SWAP
4387 /* shmem/tmpfs may report page out on swap: account for that too. */
4388 if (shmem_mapping(mapping)) {
4389 page = find_get_entry(mapping, pgoff);
4390 if (radix_tree_exceptional_entry(page)) {
4391 swp_entry_t swp = radix_to_swp_entry(page);
4392 if (do_memsw_account())
4393 *entry = swp;
4394 page = find_get_page(swap_address_space(swp), swp.val);
4395 }
4396 } else
4397 page = find_get_page(mapping, pgoff);
4398#else
4399 page = find_get_page(mapping, pgoff);
4400#endif
4401 return page;
4402}
4403
4404/**
4405 * mem_cgroup_move_account - move account of the page
4406 * @page: the page
4407 * @nr_pages: number of regular pages (>1 for huge pages)
4408 * @from: mem_cgroup which the page is moved from.
4409 * @to: mem_cgroup which the page is moved to. @from != @to.
4410 *
4411 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4412 *
4413 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4414 * from old cgroup.
4415 */
4416static int mem_cgroup_move_account(struct page *page,
4417 bool compound,
4418 struct mem_cgroup *from,
4419 struct mem_cgroup *to)
4420{
4421 unsigned long flags;
4422 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4423 int ret;
4424 bool anon;
4425
4426 VM_BUG_ON(from == to);
4427 VM_BUG_ON_PAGE(PageLRU(page), page);
4428 VM_BUG_ON(compound && !PageTransHuge(page));
4429
4430 /*
4431 * Prevent mem_cgroup_migrate() from looking at
4432 * page->mem_cgroup of its source page while we change it.
4433 */
4434 ret = -EBUSY;
4435 if (!trylock_page(page))
4436 goto out;
4437
4438 ret = -EINVAL;
4439 if (page->mem_cgroup != from)
4440 goto out_unlock;
4441
4442 anon = PageAnon(page);
4443
4444 spin_lock_irqsave(&from->move_lock, flags);
4445
4446 if (!anon && page_mapped(page)) {
4447 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4448 nr_pages);
4449 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4450 nr_pages);
4451 }
4452
4453 /*
4454 * move_lock grabbed above and caller set from->moving_account, so
4455 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4456 * So mapping should be stable for dirty pages.
4457 */
4458 if (!anon && PageDirty(page)) {
4459 struct address_space *mapping = page_mapping(page);
4460
4461 if (mapping_cap_account_dirty(mapping)) {
4462 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4463 nr_pages);
4464 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4465 nr_pages);
4466 }
4467 }
4468
4469 if (PageWriteback(page)) {
4470 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4471 nr_pages);
4472 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4473 nr_pages);
4474 }
4475
4476 /*
4477 * It is safe to change page->mem_cgroup here because the page
4478 * is referenced, charged, and isolated - we can't race with
4479 * uncharging, charging, migration, or LRU putback.
4480 */
4481
4482 /* caller should have done css_get */
4483 page->mem_cgroup = to;
4484 spin_unlock_irqrestore(&from->move_lock, flags);
4485
4486 ret = 0;
4487
4488 local_irq_disable();
4489 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4490 memcg_check_events(to, page);
4491 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4492 memcg_check_events(from, page);
4493 local_irq_enable();
4494out_unlock:
4495 unlock_page(page);
4496out:
4497 return ret;
4498}
4499
4500static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4501 unsigned long addr, pte_t ptent, union mc_target *target)
4502{
4503 struct page *page = NULL;
4504 enum mc_target_type ret = MC_TARGET_NONE;
4505 swp_entry_t ent = { .val = 0 };
4506
4507 if (pte_present(ptent))
4508 page = mc_handle_present_pte(vma, addr, ptent);
4509 else if (is_swap_pte(ptent))
4510 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4511 else if (pte_none(ptent))
4512 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4513
4514 if (!page && !ent.val)
4515 return ret;
4516 if (page) {
4517 /*
4518 * Do only loose check w/o serialization.
4519 * mem_cgroup_move_account() checks the page is valid or
4520 * not under LRU exclusion.
4521 */
4522 if (page->mem_cgroup == mc.from) {
4523 ret = MC_TARGET_PAGE;
4524 if (target)
4525 target->page = page;
4526 }
4527 if (!ret || !target)
4528 put_page(page);
4529 }
4530 /* There is a swap entry and a page doesn't exist or isn't charged */
4531 if (ent.val && !ret &&
4532 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4533 ret = MC_TARGET_SWAP;
4534 if (target)
4535 target->ent = ent;
4536 }
4537 return ret;
4538}
4539
4540#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4541/*
4542 * We don't consider swapping or file mapped pages because THP does not
4543 * support them for now.
4544 * Caller should make sure that pmd_trans_huge(pmd) is true.
4545 */
4546static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4547 unsigned long addr, pmd_t pmd, union mc_target *target)
4548{
4549 struct page *page = NULL;
4550 enum mc_target_type ret = MC_TARGET_NONE;
4551
4552 page = pmd_page(pmd);
4553 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4554 if (!(mc.flags & MOVE_ANON))
4555 return ret;
4556 if (page->mem_cgroup == mc.from) {
4557 ret = MC_TARGET_PAGE;
4558 if (target) {
4559 get_page(page);
4560 target->page = page;
4561 }
4562 }
4563 return ret;
4564}
4565#else
4566static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4567 unsigned long addr, pmd_t pmd, union mc_target *target)
4568{
4569 return MC_TARGET_NONE;
4570}
4571#endif
4572
4573static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4574 unsigned long addr, unsigned long end,
4575 struct mm_walk *walk)
4576{
4577 struct vm_area_struct *vma = walk->vma;
4578 pte_t *pte;
4579 spinlock_t *ptl;
4580
4581 ptl = pmd_trans_huge_lock(pmd, vma);
4582 if (ptl) {
4583 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4584 mc.precharge += HPAGE_PMD_NR;
4585 spin_unlock(ptl);
4586 return 0;
4587 }
4588
4589 if (pmd_trans_unstable(pmd))
4590 return 0;
4591 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4592 for (; addr != end; pte++, addr += PAGE_SIZE)
4593 if (get_mctgt_type(vma, addr, *pte, NULL))
4594 mc.precharge++; /* increment precharge temporarily */
4595 pte_unmap_unlock(pte - 1, ptl);
4596 cond_resched();
4597
4598 return 0;
4599}
4600
4601static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4602{
4603 unsigned long precharge;
4604
4605 struct mm_walk mem_cgroup_count_precharge_walk = {
4606 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4607 .mm = mm,
4608 };
4609 down_read(&mm->mmap_sem);
4610 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4611 up_read(&mm->mmap_sem);
4612
4613 precharge = mc.precharge;
4614 mc.precharge = 0;
4615
4616 return precharge;
4617}
4618
4619static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4620{
4621 unsigned long precharge = mem_cgroup_count_precharge(mm);
4622
4623 VM_BUG_ON(mc.moving_task);
4624 mc.moving_task = current;
4625 return mem_cgroup_do_precharge(precharge);
4626}
4627
4628/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4629static void __mem_cgroup_clear_mc(void)
4630{
4631 struct mem_cgroup *from = mc.from;
4632 struct mem_cgroup *to = mc.to;
4633
4634 /* we must uncharge all the leftover precharges from mc.to */
4635 if (mc.precharge) {
4636 cancel_charge(mc.to, mc.precharge);
4637 mc.precharge = 0;
4638 }
4639 /*
4640 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4641 * we must uncharge here.
4642 */
4643 if (mc.moved_charge) {
4644 cancel_charge(mc.from, mc.moved_charge);
4645 mc.moved_charge = 0;
4646 }
4647 /* we must fixup refcnts and charges */
4648 if (mc.moved_swap) {
4649 /* uncharge swap account from the old cgroup */
4650 if (!mem_cgroup_is_root(mc.from))
4651 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4652
4653 /*
4654 * we charged both to->memory and to->memsw, so we
4655 * should uncharge to->memory.
4656 */
4657 if (!mem_cgroup_is_root(mc.to))
4658 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4659
4660 css_put_many(&mc.from->css, mc.moved_swap);
4661
4662 /* we've already done css_get(mc.to) */
4663 mc.moved_swap = 0;
4664 }
4665 memcg_oom_recover(from);
4666 memcg_oom_recover(to);
4667 wake_up_all(&mc.waitq);
4668}
4669
4670static void mem_cgroup_clear_mc(void)
4671{
4672 /*
4673 * we must clear moving_task before waking up waiters at the end of
4674 * task migration.
4675 */
4676 mc.moving_task = NULL;
4677 __mem_cgroup_clear_mc();
4678 spin_lock(&mc.lock);
4679 mc.from = NULL;
4680 mc.to = NULL;
4681 spin_unlock(&mc.lock);
4682}
4683
4684static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4685{
4686 struct cgroup_subsys_state *css;
4687 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4688 struct mem_cgroup *from;
4689 struct task_struct *leader, *p;
4690 struct mm_struct *mm;
4691 unsigned long move_flags;
4692 int ret = 0;
4693
4694 /* charge immigration isn't supported on the default hierarchy */
4695 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4696 return 0;
4697
4698 /*
4699 * Multi-process migrations only happen on the default hierarchy
4700 * where charge immigration is not used. Perform charge
4701 * immigration if @tset contains a leader and whine if there are
4702 * multiple.
4703 */
4704 p = NULL;
4705 cgroup_taskset_for_each_leader(leader, css, tset) {
4706 WARN_ON_ONCE(p);
4707 p = leader;
4708 memcg = mem_cgroup_from_css(css);
4709 }
4710 if (!p)
4711 return 0;
4712
4713 /*
4714 * We are now commited to this value whatever it is. Changes in this
4715 * tunable will only affect upcoming migrations, not the current one.
4716 * So we need to save it, and keep it going.
4717 */
4718 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4719 if (!move_flags)
4720 return 0;
4721
4722 from = mem_cgroup_from_task(p);
4723
4724 VM_BUG_ON(from == memcg);
4725
4726 mm = get_task_mm(p);
4727 if (!mm)
4728 return 0;
4729 /* We move charges only when we move a owner of the mm */
4730 if (mm->owner == p) {
4731 VM_BUG_ON(mc.from);
4732 VM_BUG_ON(mc.to);
4733 VM_BUG_ON(mc.precharge);
4734 VM_BUG_ON(mc.moved_charge);
4735 VM_BUG_ON(mc.moved_swap);
4736
4737 spin_lock(&mc.lock);
4738 mc.from = from;
4739 mc.to = memcg;
4740 mc.flags = move_flags;
4741 spin_unlock(&mc.lock);
4742 /* We set mc.moving_task later */
4743
4744 ret = mem_cgroup_precharge_mc(mm);
4745 if (ret)
4746 mem_cgroup_clear_mc();
4747 }
4748 mmput(mm);
4749 return ret;
4750}
4751
4752static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4753{
4754 if (mc.to)
4755 mem_cgroup_clear_mc();
4756}
4757
4758static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4759 unsigned long addr, unsigned long end,
4760 struct mm_walk *walk)
4761{
4762 int ret = 0;
4763 struct vm_area_struct *vma = walk->vma;
4764 pte_t *pte;
4765 spinlock_t *ptl;
4766 enum mc_target_type target_type;
4767 union mc_target target;
4768 struct page *page;
4769
4770 ptl = pmd_trans_huge_lock(pmd, vma);
4771 if (ptl) {
4772 if (mc.precharge < HPAGE_PMD_NR) {
4773 spin_unlock(ptl);
4774 return 0;
4775 }
4776 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4777 if (target_type == MC_TARGET_PAGE) {
4778 page = target.page;
4779 if (!isolate_lru_page(page)) {
4780 if (!mem_cgroup_move_account(page, true,
4781 mc.from, mc.to)) {
4782 mc.precharge -= HPAGE_PMD_NR;
4783 mc.moved_charge += HPAGE_PMD_NR;
4784 }
4785 putback_lru_page(page);
4786 }
4787 put_page(page);
4788 }
4789 spin_unlock(ptl);
4790 return 0;
4791 }
4792
4793 if (pmd_trans_unstable(pmd))
4794 return 0;
4795retry:
4796 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4797 for (; addr != end; addr += PAGE_SIZE) {
4798 pte_t ptent = *(pte++);
4799 swp_entry_t ent;
4800
4801 if (!mc.precharge)
4802 break;
4803
4804 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4805 case MC_TARGET_PAGE:
4806 page = target.page;
4807 /*
4808 * We can have a part of the split pmd here. Moving it
4809 * can be done but it would be too convoluted so simply
4810 * ignore such a partial THP and keep it in original
4811 * memcg. There should be somebody mapping the head.
4812 */
4813 if (PageTransCompound(page))
4814 goto put;
4815 if (isolate_lru_page(page))
4816 goto put;
4817 if (!mem_cgroup_move_account(page, false,
4818 mc.from, mc.to)) {
4819 mc.precharge--;
4820 /* we uncharge from mc.from later. */
4821 mc.moved_charge++;
4822 }
4823 putback_lru_page(page);
4824put: /* get_mctgt_type() gets the page */
4825 put_page(page);
4826 break;
4827 case MC_TARGET_SWAP:
4828 ent = target.ent;
4829 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4830 mc.precharge--;
4831 /* we fixup refcnts and charges later. */
4832 mc.moved_swap++;
4833 }
4834 break;
4835 default:
4836 break;
4837 }
4838 }
4839 pte_unmap_unlock(pte - 1, ptl);
4840 cond_resched();
4841
4842 if (addr != end) {
4843 /*
4844 * We have consumed all precharges we got in can_attach().
4845 * We try charge one by one, but don't do any additional
4846 * charges to mc.to if we have failed in charge once in attach()
4847 * phase.
4848 */
4849 ret = mem_cgroup_do_precharge(1);
4850 if (!ret)
4851 goto retry;
4852 }
4853
4854 return ret;
4855}
4856
4857static void mem_cgroup_move_charge(struct mm_struct *mm)
4858{
4859 struct mm_walk mem_cgroup_move_charge_walk = {
4860 .pmd_entry = mem_cgroup_move_charge_pte_range,
4861 .mm = mm,
4862 };
4863
4864 lru_add_drain_all();
4865 /*
4866 * Signal lock_page_memcg() to take the memcg's move_lock
4867 * while we're moving its pages to another memcg. Then wait
4868 * for already started RCU-only updates to finish.
4869 */
4870 atomic_inc(&mc.from->moving_account);
4871 synchronize_rcu();
4872retry:
4873 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4874 /*
4875 * Someone who are holding the mmap_sem might be waiting in
4876 * waitq. So we cancel all extra charges, wake up all waiters,
4877 * and retry. Because we cancel precharges, we might not be able
4878 * to move enough charges, but moving charge is a best-effort
4879 * feature anyway, so it wouldn't be a big problem.
4880 */
4881 __mem_cgroup_clear_mc();
4882 cond_resched();
4883 goto retry;
4884 }
4885 /*
4886 * When we have consumed all precharges and failed in doing
4887 * additional charge, the page walk just aborts.
4888 */
4889 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4890 up_read(&mm->mmap_sem);
4891 atomic_dec(&mc.from->moving_account);
4892}
4893
4894static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4895{
4896 struct cgroup_subsys_state *css;
4897 struct task_struct *p = cgroup_taskset_first(tset, &css);
4898 struct mm_struct *mm = get_task_mm(p);
4899
4900 if (mm) {
4901 if (mc.to)
4902 mem_cgroup_move_charge(mm);
4903 mmput(mm);
4904 }
4905 if (mc.to)
4906 mem_cgroup_clear_mc();
4907}
4908#else /* !CONFIG_MMU */
4909static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4910{
4911 return 0;
4912}
4913static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4914{
4915}
4916static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4917{
4918}
4919#endif
4920
4921/*
4922 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4923 * to verify whether we're attached to the default hierarchy on each mount
4924 * attempt.
4925 */
4926static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4927{
4928 /*
4929 * use_hierarchy is forced on the default hierarchy. cgroup core
4930 * guarantees that @root doesn't have any children, so turning it
4931 * on for the root memcg is enough.
4932 */
4933 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4934 root_mem_cgroup->use_hierarchy = true;
4935 else
4936 root_mem_cgroup->use_hierarchy = false;
4937}
4938
4939static u64 memory_current_read(struct cgroup_subsys_state *css,
4940 struct cftype *cft)
4941{
4942 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4943
4944 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4945}
4946
4947static int memory_low_show(struct seq_file *m, void *v)
4948{
4949 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4950 unsigned long low = READ_ONCE(memcg->low);
4951
4952 if (low == PAGE_COUNTER_MAX)
4953 seq_puts(m, "max\n");
4954 else
4955 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4956
4957 return 0;
4958}
4959
4960static ssize_t memory_low_write(struct kernfs_open_file *of,
4961 char *buf, size_t nbytes, loff_t off)
4962{
4963 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4964 unsigned long low;
4965 int err;
4966
4967 buf = strstrip(buf);
4968 err = page_counter_memparse(buf, "max", &low);
4969 if (err)
4970 return err;
4971
4972 memcg->low = low;
4973
4974 return nbytes;
4975}
4976
4977static int memory_high_show(struct seq_file *m, void *v)
4978{
4979 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4980 unsigned long high = READ_ONCE(memcg->high);
4981
4982 if (high == PAGE_COUNTER_MAX)
4983 seq_puts(m, "max\n");
4984 else
4985 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
4986
4987 return 0;
4988}
4989
4990static ssize_t memory_high_write(struct kernfs_open_file *of,
4991 char *buf, size_t nbytes, loff_t off)
4992{
4993 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4994 unsigned long high;
4995 int err;
4996
4997 buf = strstrip(buf);
4998 err = page_counter_memparse(buf, "max", &high);
4999 if (err)
5000 return err;
5001
5002 memcg->high = high;
5003
5004 memcg_wb_domain_size_changed(memcg);
5005 return nbytes;
5006}
5007
5008static int memory_max_show(struct seq_file *m, void *v)
5009{
5010 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5011 unsigned long max = READ_ONCE(memcg->memory.limit);
5012
5013 if (max == PAGE_COUNTER_MAX)
5014 seq_puts(m, "max\n");
5015 else
5016 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5017
5018 return 0;
5019}
5020
5021static ssize_t memory_max_write(struct kernfs_open_file *of,
5022 char *buf, size_t nbytes, loff_t off)
5023{
5024 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5025 unsigned long max;
5026 int err;
5027
5028 buf = strstrip(buf);
5029 err = page_counter_memparse(buf, "max", &max);
5030 if (err)
5031 return err;
5032
5033 err = mem_cgroup_resize_limit(memcg, max);
5034 if (err)
5035 return err;
5036
5037 memcg_wb_domain_size_changed(memcg);
5038 return nbytes;
5039}
5040
5041static int memory_events_show(struct seq_file *m, void *v)
5042{
5043 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5044
5045 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5046 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5047 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5048 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5049
5050 return 0;
5051}
5052
5053static int memory_stat_show(struct seq_file *m, void *v)
5054{
5055 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5056 unsigned long stat[MEMCG_NR_STAT];
5057 unsigned long events[MEMCG_NR_EVENTS];
5058 int i;
5059
5060 /*
5061 * Provide statistics on the state of the memory subsystem as
5062 * well as cumulative event counters that show past behavior.
5063 *
5064 * This list is ordered following a combination of these gradients:
5065 * 1) generic big picture -> specifics and details
5066 * 2) reflecting userspace activity -> reflecting kernel heuristics
5067 *
5068 * Current memory state:
5069 */
5070
5071 tree_stat(memcg, stat);
5072 tree_events(memcg, events);
5073
5074 seq_printf(m, "anon %llu\n",
5075 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5076 seq_printf(m, "file %llu\n",
5077 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5078 seq_printf(m, "kernel_stack %llu\n",
5079 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5080 seq_printf(m, "slab %llu\n",
5081 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5082 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5083 seq_printf(m, "sock %llu\n",
5084 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5085
5086 seq_printf(m, "file_mapped %llu\n",
5087 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5088 seq_printf(m, "file_dirty %llu\n",
5089 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5090 seq_printf(m, "file_writeback %llu\n",
5091 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5092
5093 for (i = 0; i < NR_LRU_LISTS; i++) {
5094 struct mem_cgroup *mi;
5095 unsigned long val = 0;
5096
5097 for_each_mem_cgroup_tree(mi, memcg)
5098 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5099 seq_printf(m, "%s %llu\n",
5100 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5101 }
5102
5103 seq_printf(m, "slab_reclaimable %llu\n",
5104 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5105 seq_printf(m, "slab_unreclaimable %llu\n",
5106 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5107
5108 /* Accumulated memory events */
5109
5110 seq_printf(m, "pgfault %lu\n",
5111 events[MEM_CGROUP_EVENTS_PGFAULT]);
5112 seq_printf(m, "pgmajfault %lu\n",
5113 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5114
5115 return 0;
5116}
5117
5118static struct cftype memory_files[] = {
5119 {
5120 .name = "current",
5121 .flags = CFTYPE_NOT_ON_ROOT,
5122 .read_u64 = memory_current_read,
5123 },
5124 {
5125 .name = "low",
5126 .flags = CFTYPE_NOT_ON_ROOT,
5127 .seq_show = memory_low_show,
5128 .write = memory_low_write,
5129 },
5130 {
5131 .name = "high",
5132 .flags = CFTYPE_NOT_ON_ROOT,
5133 .seq_show = memory_high_show,
5134 .write = memory_high_write,
5135 },
5136 {
5137 .name = "max",
5138 .flags = CFTYPE_NOT_ON_ROOT,
5139 .seq_show = memory_max_show,
5140 .write = memory_max_write,
5141 },
5142 {
5143 .name = "events",
5144 .flags = CFTYPE_NOT_ON_ROOT,
5145 .file_offset = offsetof(struct mem_cgroup, events_file),
5146 .seq_show = memory_events_show,
5147 },
5148 {
5149 .name = "stat",
5150 .flags = CFTYPE_NOT_ON_ROOT,
5151 .seq_show = memory_stat_show,
5152 },
5153 { } /* terminate */
5154};
5155
5156struct cgroup_subsys memory_cgrp_subsys = {
5157 .css_alloc = mem_cgroup_css_alloc,
5158 .css_online = mem_cgroup_css_online,
5159 .css_offline = mem_cgroup_css_offline,
5160 .css_released = mem_cgroup_css_released,
5161 .css_free = mem_cgroup_css_free,
5162 .css_reset = mem_cgroup_css_reset,
5163 .can_attach = mem_cgroup_can_attach,
5164 .cancel_attach = mem_cgroup_cancel_attach,
5165 .attach = mem_cgroup_move_task,
5166 .bind = mem_cgroup_bind,
5167 .dfl_cftypes = memory_files,
5168 .legacy_cftypes = mem_cgroup_legacy_files,
5169 .early_init = 0,
5170};
5171
5172/**
5173 * mem_cgroup_low - check if memory consumption is below the normal range
5174 * @root: the highest ancestor to consider
5175 * @memcg: the memory cgroup to check
5176 *
5177 * Returns %true if memory consumption of @memcg, and that of all
5178 * configurable ancestors up to @root, is below the normal range.
5179 */
5180bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5181{
5182 if (mem_cgroup_disabled())
5183 return false;
5184
5185 /*
5186 * The toplevel group doesn't have a configurable range, so
5187 * it's never low when looked at directly, and it is not
5188 * considered an ancestor when assessing the hierarchy.
5189 */
5190
5191 if (memcg == root_mem_cgroup)
5192 return false;
5193
5194 if (page_counter_read(&memcg->memory) >= memcg->low)
5195 return false;
5196
5197 while (memcg != root) {
5198 memcg = parent_mem_cgroup(memcg);
5199
5200 if (memcg == root_mem_cgroup)
5201 break;
5202
5203 if (page_counter_read(&memcg->memory) >= memcg->low)
5204 return false;
5205 }
5206 return true;
5207}
5208
5209/**
5210 * mem_cgroup_try_charge - try charging a page
5211 * @page: page to charge
5212 * @mm: mm context of the victim
5213 * @gfp_mask: reclaim mode
5214 * @memcgp: charged memcg return
5215 *
5216 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5217 * pages according to @gfp_mask if necessary.
5218 *
5219 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5220 * Otherwise, an error code is returned.
5221 *
5222 * After page->mapping has been set up, the caller must finalize the
5223 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5224 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5225 */
5226int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5227 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5228 bool compound)
5229{
5230 struct mem_cgroup *memcg = NULL;
5231 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5232 int ret = 0;
5233
5234 if (mem_cgroup_disabled())
5235 goto out;
5236
5237 if (PageSwapCache(page)) {
5238 /*
5239 * Every swap fault against a single page tries to charge the
5240 * page, bail as early as possible. shmem_unuse() encounters
5241 * already charged pages, too. The USED bit is protected by
5242 * the page lock, which serializes swap cache removal, which
5243 * in turn serializes uncharging.
5244 */
5245 VM_BUG_ON_PAGE(!PageLocked(page), page);
5246 if (page->mem_cgroup)
5247 goto out;
5248
5249 if (do_swap_account) {
5250 swp_entry_t ent = { .val = page_private(page), };
5251 unsigned short id = lookup_swap_cgroup_id(ent);
5252
5253 rcu_read_lock();
5254 memcg = mem_cgroup_from_id(id);
5255 if (memcg && !css_tryget_online(&memcg->css))
5256 memcg = NULL;
5257 rcu_read_unlock();
5258 }
5259 }
5260
5261 if (!memcg)
5262 memcg = get_mem_cgroup_from_mm(mm);
5263
5264 ret = try_charge(memcg, gfp_mask, nr_pages);
5265
5266 css_put(&memcg->css);
5267out:
5268 *memcgp = memcg;
5269 return ret;
5270}
5271
5272/**
5273 * mem_cgroup_commit_charge - commit a page charge
5274 * @page: page to charge
5275 * @memcg: memcg to charge the page to
5276 * @lrucare: page might be on LRU already
5277 *
5278 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5279 * after page->mapping has been set up. This must happen atomically
5280 * as part of the page instantiation, i.e. under the page table lock
5281 * for anonymous pages, under the page lock for page and swap cache.
5282 *
5283 * In addition, the page must not be on the LRU during the commit, to
5284 * prevent racing with task migration. If it might be, use @lrucare.
5285 *
5286 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5287 */
5288void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5289 bool lrucare, bool compound)
5290{
5291 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5292
5293 VM_BUG_ON_PAGE(!page->mapping, page);
5294 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5295
5296 if (mem_cgroup_disabled())
5297 return;
5298 /*
5299 * Swap faults will attempt to charge the same page multiple
5300 * times. But reuse_swap_page() might have removed the page
5301 * from swapcache already, so we can't check PageSwapCache().
5302 */
5303 if (!memcg)
5304 return;
5305
5306 commit_charge(page, memcg, lrucare);
5307
5308 local_irq_disable();
5309 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5310 memcg_check_events(memcg, page);
5311 local_irq_enable();
5312
5313 if (do_memsw_account() && PageSwapCache(page)) {
5314 swp_entry_t entry = { .val = page_private(page) };
5315 /*
5316 * The swap entry might not get freed for a long time,
5317 * let's not wait for it. The page already received a
5318 * memory+swap charge, drop the swap entry duplicate.
5319 */
5320 mem_cgroup_uncharge_swap(entry);
5321 }
5322}
5323
5324/**
5325 * mem_cgroup_cancel_charge - cancel a page charge
5326 * @page: page to charge
5327 * @memcg: memcg to charge the page to
5328 *
5329 * Cancel a charge transaction started by mem_cgroup_try_charge().
5330 */
5331void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5332 bool compound)
5333{
5334 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5335
5336 if (mem_cgroup_disabled())
5337 return;
5338 /*
5339 * Swap faults will attempt to charge the same page multiple
5340 * times. But reuse_swap_page() might have removed the page
5341 * from swapcache already, so we can't check PageSwapCache().
5342 */
5343 if (!memcg)
5344 return;
5345
5346 cancel_charge(memcg, nr_pages);
5347}
5348
5349static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5350 unsigned long nr_anon, unsigned long nr_file,
5351 unsigned long nr_huge, struct page *dummy_page)
5352{
5353 unsigned long nr_pages = nr_anon + nr_file;
5354 unsigned long flags;
5355
5356 if (!mem_cgroup_is_root(memcg)) {
5357 page_counter_uncharge(&memcg->memory, nr_pages);
5358 if (do_memsw_account())
5359 page_counter_uncharge(&memcg->memsw, nr_pages);
5360 memcg_oom_recover(memcg);
5361 }
5362
5363 local_irq_save(flags);
5364 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5365 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5366 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5367 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5368 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5369 memcg_check_events(memcg, dummy_page);
5370 local_irq_restore(flags);
5371
5372 if (!mem_cgroup_is_root(memcg))
5373 css_put_many(&memcg->css, nr_pages);
5374}
5375
5376static void uncharge_list(struct list_head *page_list)
5377{
5378 struct mem_cgroup *memcg = NULL;
5379 unsigned long nr_anon = 0;
5380 unsigned long nr_file = 0;
5381 unsigned long nr_huge = 0;
5382 unsigned long pgpgout = 0;
5383 struct list_head *next;
5384 struct page *page;
5385
5386 next = page_list->next;
5387 do {
5388 unsigned int nr_pages = 1;
5389
5390 page = list_entry(next, struct page, lru);
5391 next = page->lru.next;
5392
5393 VM_BUG_ON_PAGE(PageLRU(page), page);
5394 VM_BUG_ON_PAGE(page_count(page), page);
5395
5396 if (!page->mem_cgroup)
5397 continue;
5398
5399 /*
5400 * Nobody should be changing or seriously looking at
5401 * page->mem_cgroup at this point, we have fully
5402 * exclusive access to the page.
5403 */
5404
5405 if (memcg != page->mem_cgroup) {
5406 if (memcg) {
5407 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5408 nr_huge, page);
5409 pgpgout = nr_anon = nr_file = nr_huge = 0;
5410 }
5411 memcg = page->mem_cgroup;
5412 }
5413
5414 if (PageTransHuge(page)) {
5415 nr_pages <<= compound_order(page);
5416 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5417 nr_huge += nr_pages;
5418 }
5419
5420 if (PageAnon(page))
5421 nr_anon += nr_pages;
5422 else
5423 nr_file += nr_pages;
5424
5425 page->mem_cgroup = NULL;
5426
5427 pgpgout++;
5428 } while (next != page_list);
5429
5430 if (memcg)
5431 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5432 nr_huge, page);
5433}
5434
5435/**
5436 * mem_cgroup_uncharge - uncharge a page
5437 * @page: page to uncharge
5438 *
5439 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5440 * mem_cgroup_commit_charge().
5441 */
5442void mem_cgroup_uncharge(struct page *page)
5443{
5444 if (mem_cgroup_disabled())
5445 return;
5446
5447 /* Don't touch page->lru of any random page, pre-check: */
5448 if (!page->mem_cgroup)
5449 return;
5450
5451 INIT_LIST_HEAD(&page->lru);
5452 uncharge_list(&page->lru);
5453}
5454
5455/**
5456 * mem_cgroup_uncharge_list - uncharge a list of page
5457 * @page_list: list of pages to uncharge
5458 *
5459 * Uncharge a list of pages previously charged with
5460 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5461 */
5462void mem_cgroup_uncharge_list(struct list_head *page_list)
5463{
5464 if (mem_cgroup_disabled())
5465 return;
5466
5467 if (!list_empty(page_list))
5468 uncharge_list(page_list);
5469}
5470
5471/**
5472 * mem_cgroup_migrate - charge a page's replacement
5473 * @oldpage: currently circulating page
5474 * @newpage: replacement page
5475 *
5476 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5477 * be uncharged upon free.
5478 *
5479 * Both pages must be locked, @newpage->mapping must be set up.
5480 */
5481void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5482{
5483 struct mem_cgroup *memcg;
5484 unsigned int nr_pages;
5485 bool compound;
5486
5487 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5488 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5489 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5490 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5491 newpage);
5492
5493 if (mem_cgroup_disabled())
5494 return;
5495
5496 /* Page cache replacement: new page already charged? */
5497 if (newpage->mem_cgroup)
5498 return;
5499
5500 /* Swapcache readahead pages can get replaced before being charged */
5501 memcg = oldpage->mem_cgroup;
5502 if (!memcg)
5503 return;
5504
5505 /* Force-charge the new page. The old one will be freed soon */
5506 compound = PageTransHuge(newpage);
5507 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5508
5509 page_counter_charge(&memcg->memory, nr_pages);
5510 if (do_memsw_account())
5511 page_counter_charge(&memcg->memsw, nr_pages);
5512 css_get_many(&memcg->css, nr_pages);
5513
5514 commit_charge(newpage, memcg, false);
5515
5516 local_irq_disable();
5517 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5518 memcg_check_events(memcg, newpage);
5519 local_irq_enable();
5520}
5521
5522DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5523EXPORT_SYMBOL(memcg_sockets_enabled_key);
5524
5525void sock_update_memcg(struct sock *sk)
5526{
5527 struct mem_cgroup *memcg;
5528
5529 /* Socket cloning can throw us here with sk_cgrp already
5530 * filled. It won't however, necessarily happen from
5531 * process context. So the test for root memcg given
5532 * the current task's memcg won't help us in this case.
5533 *
5534 * Respecting the original socket's memcg is a better
5535 * decision in this case.
5536 */
5537 if (sk->sk_memcg) {
5538 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5539 css_get(&sk->sk_memcg->css);
5540 return;
5541 }
5542
5543 rcu_read_lock();
5544 memcg = mem_cgroup_from_task(current);
5545 if (memcg == root_mem_cgroup)
5546 goto out;
5547 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5548 goto out;
5549 if (css_tryget_online(&memcg->css))
5550 sk->sk_memcg = memcg;
5551out:
5552 rcu_read_unlock();
5553}
5554EXPORT_SYMBOL(sock_update_memcg);
5555
5556void sock_release_memcg(struct sock *sk)
5557{
5558 WARN_ON(!sk->sk_memcg);
5559 css_put(&sk->sk_memcg->css);
5560}
5561
5562/**
5563 * mem_cgroup_charge_skmem - charge socket memory
5564 * @memcg: memcg to charge
5565 * @nr_pages: number of pages to charge
5566 *
5567 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5568 * @memcg's configured limit, %false if the charge had to be forced.
5569 */
5570bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5571{
5572 gfp_t gfp_mask = GFP_KERNEL;
5573
5574 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5575 struct page_counter *fail;
5576
5577 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5578 memcg->tcpmem_pressure = 0;
5579 return true;
5580 }
5581 page_counter_charge(&memcg->tcpmem, nr_pages);
5582 memcg->tcpmem_pressure = 1;
5583 return false;
5584 }
5585
5586 /* Don't block in the packet receive path */
5587 if (in_softirq())
5588 gfp_mask = GFP_NOWAIT;
5589
5590 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5591
5592 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5593 return true;
5594
5595 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5596 return false;
5597}
5598
5599/**
5600 * mem_cgroup_uncharge_skmem - uncharge socket memory
5601 * @memcg - memcg to uncharge
5602 * @nr_pages - number of pages to uncharge
5603 */
5604void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5605{
5606 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5607 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5608 return;
5609 }
5610
5611 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5612
5613 page_counter_uncharge(&memcg->memory, nr_pages);
5614 css_put_many(&memcg->css, nr_pages);
5615}
5616
5617static int __init cgroup_memory(char *s)
5618{
5619 char *token;
5620
5621 while ((token = strsep(&s, ",")) != NULL) {
5622 if (!*token)
5623 continue;
5624 if (!strcmp(token, "nosocket"))
5625 cgroup_memory_nosocket = true;
5626 if (!strcmp(token, "nokmem"))
5627 cgroup_memory_nokmem = true;
5628 }
5629 return 0;
5630}
5631__setup("cgroup.memory=", cgroup_memory);
5632
5633/*
5634 * subsys_initcall() for memory controller.
5635 *
5636 * Some parts like hotcpu_notifier() have to be initialized from this context
5637 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5638 * everything that doesn't depend on a specific mem_cgroup structure should
5639 * be initialized from here.
5640 */
5641static int __init mem_cgroup_init(void)
5642{
5643 int cpu, node;
5644
5645 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5646
5647 for_each_possible_cpu(cpu)
5648 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5649 drain_local_stock);
5650
5651 for_each_node(node) {
5652 struct mem_cgroup_tree_per_node *rtpn;
5653 int zone;
5654
5655 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5656 node_online(node) ? node : NUMA_NO_NODE);
5657
5658 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5659 struct mem_cgroup_tree_per_zone *rtpz;
5660
5661 rtpz = &rtpn->rb_tree_per_zone[zone];
5662 rtpz->rb_root = RB_ROOT;
5663 spin_lock_init(&rtpz->lock);
5664 }
5665 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5666 }
5667
5668 return 0;
5669}
5670subsys_initcall(mem_cgroup_init);
5671
5672#ifdef CONFIG_MEMCG_SWAP
5673/**
5674 * mem_cgroup_swapout - transfer a memsw charge to swap
5675 * @page: page whose memsw charge to transfer
5676 * @entry: swap entry to move the charge to
5677 *
5678 * Transfer the memsw charge of @page to @entry.
5679 */
5680void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5681{
5682 struct mem_cgroup *memcg;
5683 unsigned short oldid;
5684
5685 VM_BUG_ON_PAGE(PageLRU(page), page);
5686 VM_BUG_ON_PAGE(page_count(page), page);
5687
5688 if (!do_memsw_account())
5689 return;
5690
5691 memcg = page->mem_cgroup;
5692
5693 /* Readahead page, never charged */
5694 if (!memcg)
5695 return;
5696
5697 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5698 VM_BUG_ON_PAGE(oldid, page);
5699 mem_cgroup_swap_statistics(memcg, true);
5700
5701 page->mem_cgroup = NULL;
5702
5703 if (!mem_cgroup_is_root(memcg))
5704 page_counter_uncharge(&memcg->memory, 1);
5705
5706 /*
5707 * Interrupts should be disabled here because the caller holds the
5708 * mapping->tree_lock lock which is taken with interrupts-off. It is
5709 * important here to have the interrupts disabled because it is the
5710 * only synchronisation we have for udpating the per-CPU variables.
5711 */
5712 VM_BUG_ON(!irqs_disabled());
5713 mem_cgroup_charge_statistics(memcg, page, false, -1);
5714 memcg_check_events(memcg, page);
5715}
5716
5717/*
5718 * mem_cgroup_try_charge_swap - try charging a swap entry
5719 * @page: page being added to swap
5720 * @entry: swap entry to charge
5721 *
5722 * Try to charge @entry to the memcg that @page belongs to.
5723 *
5724 * Returns 0 on success, -ENOMEM on failure.
5725 */
5726int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5727{
5728 struct mem_cgroup *memcg;
5729 struct page_counter *counter;
5730 unsigned short oldid;
5731
5732 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5733 return 0;
5734
5735 memcg = page->mem_cgroup;
5736
5737 /* Readahead page, never charged */
5738 if (!memcg)
5739 return 0;
5740
5741 if (!mem_cgroup_is_root(memcg) &&
5742 !page_counter_try_charge(&memcg->swap, 1, &counter))
5743 return -ENOMEM;
5744
5745 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5746 VM_BUG_ON_PAGE(oldid, page);
5747 mem_cgroup_swap_statistics(memcg, true);
5748
5749 css_get(&memcg->css);
5750 return 0;
5751}
5752
5753/**
5754 * mem_cgroup_uncharge_swap - uncharge a swap entry
5755 * @entry: swap entry to uncharge
5756 *
5757 * Drop the swap charge associated with @entry.
5758 */
5759void mem_cgroup_uncharge_swap(swp_entry_t entry)
5760{
5761 struct mem_cgroup *memcg;
5762 unsigned short id;
5763
5764 if (!do_swap_account)
5765 return;
5766
5767 id = swap_cgroup_record(entry, 0);
5768 rcu_read_lock();
5769 memcg = mem_cgroup_from_id(id);
5770 if (memcg) {
5771 if (!mem_cgroup_is_root(memcg)) {
5772 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5773 page_counter_uncharge(&memcg->swap, 1);
5774 else
5775 page_counter_uncharge(&memcg->memsw, 1);
5776 }
5777 mem_cgroup_swap_statistics(memcg, false);
5778 css_put(&memcg->css);
5779 }
5780 rcu_read_unlock();
5781}
5782
5783long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5784{
5785 long nr_swap_pages = get_nr_swap_pages();
5786
5787 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5788 return nr_swap_pages;
5789 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5790 nr_swap_pages = min_t(long, nr_swap_pages,
5791 READ_ONCE(memcg->swap.limit) -
5792 page_counter_read(&memcg->swap));
5793 return nr_swap_pages;
5794}
5795
5796bool mem_cgroup_swap_full(struct page *page)
5797{
5798 struct mem_cgroup *memcg;
5799
5800 VM_BUG_ON_PAGE(!PageLocked(page), page);
5801
5802 if (vm_swap_full())
5803 return true;
5804 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5805 return false;
5806
5807 memcg = page->mem_cgroup;
5808 if (!memcg)
5809 return false;
5810
5811 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5812 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5813 return true;
5814
5815 return false;
5816}
5817
5818/* for remember boot option*/
5819#ifdef CONFIG_MEMCG_SWAP_ENABLED
5820static int really_do_swap_account __initdata = 1;
5821#else
5822static int really_do_swap_account __initdata;
5823#endif
5824
5825static int __init enable_swap_account(char *s)
5826{
5827 if (!strcmp(s, "1"))
5828 really_do_swap_account = 1;
5829 else if (!strcmp(s, "0"))
5830 really_do_swap_account = 0;
5831 return 1;
5832}
5833__setup("swapaccount=", enable_swap_account);
5834
5835static u64 swap_current_read(struct cgroup_subsys_state *css,
5836 struct cftype *cft)
5837{
5838 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5839
5840 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5841}
5842
5843static int swap_max_show(struct seq_file *m, void *v)
5844{
5845 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5846 unsigned long max = READ_ONCE(memcg->swap.limit);
5847
5848 if (max == PAGE_COUNTER_MAX)
5849 seq_puts(m, "max\n");
5850 else
5851 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5852
5853 return 0;
5854}
5855
5856static ssize_t swap_max_write(struct kernfs_open_file *of,
5857 char *buf, size_t nbytes, loff_t off)
5858{
5859 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5860 unsigned long max;
5861 int err;
5862
5863 buf = strstrip(buf);
5864 err = page_counter_memparse(buf, "max", &max);
5865 if (err)
5866 return err;
5867
5868 mutex_lock(&memcg_limit_mutex);
5869 err = page_counter_limit(&memcg->swap, max);
5870 mutex_unlock(&memcg_limit_mutex);
5871 if (err)
5872 return err;
5873
5874 return nbytes;
5875}
5876
5877static struct cftype swap_files[] = {
5878 {
5879 .name = "swap.current",
5880 .flags = CFTYPE_NOT_ON_ROOT,
5881 .read_u64 = swap_current_read,
5882 },
5883 {
5884 .name = "swap.max",
5885 .flags = CFTYPE_NOT_ON_ROOT,
5886 .seq_show = swap_max_show,
5887 .write = swap_max_write,
5888 },
5889 { } /* terminate */
5890};
5891
5892static struct cftype memsw_cgroup_files[] = {
5893 {
5894 .name = "memsw.usage_in_bytes",
5895 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5896 .read_u64 = mem_cgroup_read_u64,
5897 },
5898 {
5899 .name = "memsw.max_usage_in_bytes",
5900 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5901 .write = mem_cgroup_reset,
5902 .read_u64 = mem_cgroup_read_u64,
5903 },
5904 {
5905 .name = "memsw.limit_in_bytes",
5906 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5907 .write = mem_cgroup_write,
5908 .read_u64 = mem_cgroup_read_u64,
5909 },
5910 {
5911 .name = "memsw.failcnt",
5912 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5913 .write = mem_cgroup_reset,
5914 .read_u64 = mem_cgroup_read_u64,
5915 },
5916 { }, /* terminate */
5917};
5918
5919static int __init mem_cgroup_swap_init(void)
5920{
5921 if (!mem_cgroup_disabled() && really_do_swap_account) {
5922 do_swap_account = 1;
5923 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5924 swap_files));
5925 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5926 memsw_cgroup_files));
5927 }
5928 return 0;
5929}
5930subsys_initcall(mem_cgroup_swap_init);
5931
5932#endif /* CONFIG_MEMCG_SWAP */
This page took 0.044064 seconds and 5 git commands to generate.