mm: move swp_entry_t definition to include/linux/mm_types.h
[deliverable/linux.git] / mm / memcontrol.c
... / ...
CommitLineData
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/page_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
31#include <linux/mm.h>
32#include <linux/hugetlb.h>
33#include <linux/pagemap.h>
34#include <linux/smp.h>
35#include <linux/page-flags.h>
36#include <linux/backing-dev.h>
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
39#include <linux/limits.h>
40#include <linux/export.h>
41#include <linux/mutex.h>
42#include <linux/rbtree.h>
43#include <linux/slab.h>
44#include <linux/swap.h>
45#include <linux/swapops.h>
46#include <linux/spinlock.h>
47#include <linux/eventfd.h>
48#include <linux/poll.h>
49#include <linux/sort.h>
50#include <linux/fs.h>
51#include <linux/seq_file.h>
52#include <linux/vmpressure.h>
53#include <linux/mm_inline.h>
54#include <linux/swap_cgroup.h>
55#include <linux/cpu.h>
56#include <linux/oom.h>
57#include <linux/lockdep.h>
58#include <linux/file.h>
59#include "internal.h"
60#include <net/sock.h>
61#include <net/ip.h>
62#include <net/tcp_memcontrol.h>
63#include "slab.h"
64
65#include <asm/uaccess.h>
66
67#include <trace/events/vmscan.h>
68
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
71
72#define MEM_CGROUP_RECLAIM_RETRIES 5
73static struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75#ifdef CONFIG_MEMCG_SWAP
76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77int do_swap_account __read_mostly;
78
79/* for remember boot option*/
80#ifdef CONFIG_MEMCG_SWAP_ENABLED
81static int really_do_swap_account __initdata = 1;
82#else
83static int really_do_swap_account __initdata;
84#endif
85
86#else
87#define do_swap_account 0
88#endif
89
90
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
94 "rss_huge",
95 "mapped_file",
96 "writeback",
97 "swap",
98};
99
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS,
106};
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
133 MEM_CGROUP_NTARGETS,
134};
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
138
139struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
144};
145
146struct reclaim_iter {
147 struct mem_cgroup *position;
148 /* scan generation, increased every round-trip */
149 unsigned int generation;
150};
151
152/*
153 * per-zone information in memory controller.
154 */
155struct mem_cgroup_per_zone {
156 struct lruvec lruvec;
157 unsigned long lru_size[NR_LRU_LISTS];
158
159 struct reclaim_iter iter[DEF_PRIORITY + 1];
160
161 struct rb_node tree_node; /* RB tree node */
162 unsigned long usage_in_excess;/* Set to the value by which */
163 /* the soft limit is exceeded*/
164 bool on_tree;
165 struct mem_cgroup *memcg; /* Back pointer, we cannot */
166 /* use container_of */
167};
168
169struct mem_cgroup_per_node {
170 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
171};
172
173/*
174 * Cgroups above their limits are maintained in a RB-Tree, independent of
175 * their hierarchy representation
176 */
177
178struct mem_cgroup_tree_per_zone {
179 struct rb_root rb_root;
180 spinlock_t lock;
181};
182
183struct mem_cgroup_tree_per_node {
184 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
185};
186
187struct mem_cgroup_tree {
188 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
189};
190
191static struct mem_cgroup_tree soft_limit_tree __read_mostly;
192
193struct mem_cgroup_threshold {
194 struct eventfd_ctx *eventfd;
195 unsigned long threshold;
196};
197
198/* For threshold */
199struct mem_cgroup_threshold_ary {
200 /* An array index points to threshold just below or equal to usage. */
201 int current_threshold;
202 /* Size of entries[] */
203 unsigned int size;
204 /* Array of thresholds */
205 struct mem_cgroup_threshold entries[0];
206};
207
208struct mem_cgroup_thresholds {
209 /* Primary thresholds array */
210 struct mem_cgroup_threshold_ary *primary;
211 /*
212 * Spare threshold array.
213 * This is needed to make mem_cgroup_unregister_event() "never fail".
214 * It must be able to store at least primary->size - 1 entries.
215 */
216 struct mem_cgroup_threshold_ary *spare;
217};
218
219/* for OOM */
220struct mem_cgroup_eventfd_list {
221 struct list_head list;
222 struct eventfd_ctx *eventfd;
223};
224
225/*
226 * cgroup_event represents events which userspace want to receive.
227 */
228struct mem_cgroup_event {
229 /*
230 * memcg which the event belongs to.
231 */
232 struct mem_cgroup *memcg;
233 /*
234 * eventfd to signal userspace about the event.
235 */
236 struct eventfd_ctx *eventfd;
237 /*
238 * Each of these stored in a list by the cgroup.
239 */
240 struct list_head list;
241 /*
242 * register_event() callback will be used to add new userspace
243 * waiter for changes related to this event. Use eventfd_signal()
244 * on eventfd to send notification to userspace.
245 */
246 int (*register_event)(struct mem_cgroup *memcg,
247 struct eventfd_ctx *eventfd, const char *args);
248 /*
249 * unregister_event() callback will be called when userspace closes
250 * the eventfd or on cgroup removing. This callback must be set,
251 * if you want provide notification functionality.
252 */
253 void (*unregister_event)(struct mem_cgroup *memcg,
254 struct eventfd_ctx *eventfd);
255 /*
256 * All fields below needed to unregister event when
257 * userspace closes eventfd.
258 */
259 poll_table pt;
260 wait_queue_head_t *wqh;
261 wait_queue_t wait;
262 struct work_struct remove;
263};
264
265static void mem_cgroup_threshold(struct mem_cgroup *memcg);
266static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
267
268/*
269 * The memory controller data structure. The memory controller controls both
270 * page cache and RSS per cgroup. We would eventually like to provide
271 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
272 * to help the administrator determine what knobs to tune.
273 *
274 * TODO: Add a water mark for the memory controller. Reclaim will begin when
275 * we hit the water mark. May be even add a low water mark, such that
276 * no reclaim occurs from a cgroup at it's low water mark, this is
277 * a feature that will be implemented much later in the future.
278 */
279struct mem_cgroup {
280 struct cgroup_subsys_state css;
281
282 /* Accounted resources */
283 struct page_counter memory;
284 struct page_counter memsw;
285 struct page_counter kmem;
286
287 unsigned long soft_limit;
288
289 /* vmpressure notifications */
290 struct vmpressure vmpressure;
291
292 /* css_online() has been completed */
293 int initialized;
294
295 /*
296 * Should the accounting and control be hierarchical, per subtree?
297 */
298 bool use_hierarchy;
299
300 bool oom_lock;
301 atomic_t under_oom;
302 atomic_t oom_wakeups;
303
304 int swappiness;
305 /* OOM-Killer disable */
306 int oom_kill_disable;
307
308 /* protect arrays of thresholds */
309 struct mutex thresholds_lock;
310
311 /* thresholds for memory usage. RCU-protected */
312 struct mem_cgroup_thresholds thresholds;
313
314 /* thresholds for mem+swap usage. RCU-protected */
315 struct mem_cgroup_thresholds memsw_thresholds;
316
317 /* For oom notifier event fd */
318 struct list_head oom_notify;
319
320 /*
321 * Should we move charges of a task when a task is moved into this
322 * mem_cgroup ? And what type of charges should we move ?
323 */
324 unsigned long move_charge_at_immigrate;
325 /*
326 * set > 0 if pages under this cgroup are moving to other cgroup.
327 */
328 atomic_t moving_account;
329 /* taken only while moving_account > 0 */
330 spinlock_t move_lock;
331 /*
332 * percpu counter.
333 */
334 struct mem_cgroup_stat_cpu __percpu *stat;
335 /*
336 * used when a cpu is offlined or other synchronizations
337 * See mem_cgroup_read_stat().
338 */
339 struct mem_cgroup_stat_cpu nocpu_base;
340 spinlock_t pcp_counter_lock;
341
342#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
343 struct cg_proto tcp_mem;
344#endif
345#if defined(CONFIG_MEMCG_KMEM)
346 /* analogous to slab_common's slab_caches list, but per-memcg;
347 * protected by memcg_slab_mutex */
348 struct list_head memcg_slab_caches;
349 /* Index in the kmem_cache->memcg_params->memcg_caches array */
350 int kmemcg_id;
351#endif
352
353 int last_scanned_node;
354#if MAX_NUMNODES > 1
355 nodemask_t scan_nodes;
356 atomic_t numainfo_events;
357 atomic_t numainfo_updating;
358#endif
359
360 /* List of events which userspace want to receive */
361 struct list_head event_list;
362 spinlock_t event_list_lock;
363
364 struct mem_cgroup_per_node *nodeinfo[0];
365 /* WARNING: nodeinfo must be the last member here */
366};
367
368#ifdef CONFIG_MEMCG_KMEM
369static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
370{
371 return memcg->kmemcg_id >= 0;
372}
373#endif
374
375/* Stuffs for move charges at task migration. */
376/*
377 * Types of charges to be moved. "move_charge_at_immitgrate" and
378 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
379 */
380enum move_type {
381 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
382 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
383 NR_MOVE_TYPE,
384};
385
386/* "mc" and its members are protected by cgroup_mutex */
387static struct move_charge_struct {
388 spinlock_t lock; /* for from, to */
389 struct mem_cgroup *from;
390 struct mem_cgroup *to;
391 unsigned long immigrate_flags;
392 unsigned long precharge;
393 unsigned long moved_charge;
394 unsigned long moved_swap;
395 struct task_struct *moving_task; /* a task moving charges */
396 wait_queue_head_t waitq; /* a waitq for other context */
397} mc = {
398 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
399 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
400};
401
402static bool move_anon(void)
403{
404 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
405}
406
407static bool move_file(void)
408{
409 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
410}
411
412/*
413 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
414 * limit reclaim to prevent infinite loops, if they ever occur.
415 */
416#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
417#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
418
419enum charge_type {
420 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
421 MEM_CGROUP_CHARGE_TYPE_ANON,
422 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
423 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
424 NR_CHARGE_TYPE,
425};
426
427/* for encoding cft->private value on file */
428enum res_type {
429 _MEM,
430 _MEMSWAP,
431 _OOM_TYPE,
432 _KMEM,
433};
434
435#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
436#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
437#define MEMFILE_ATTR(val) ((val) & 0xffff)
438/* Used for OOM nofiier */
439#define OOM_CONTROL (0)
440
441/*
442 * The memcg_create_mutex will be held whenever a new cgroup is created.
443 * As a consequence, any change that needs to protect against new child cgroups
444 * appearing has to hold it as well.
445 */
446static DEFINE_MUTEX(memcg_create_mutex);
447
448struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
449{
450 return s ? container_of(s, struct mem_cgroup, css) : NULL;
451}
452
453/* Some nice accessors for the vmpressure. */
454struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
455{
456 if (!memcg)
457 memcg = root_mem_cgroup;
458 return &memcg->vmpressure;
459}
460
461struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
462{
463 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
464}
465
466static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
467{
468 return (memcg == root_mem_cgroup);
469}
470
471/*
472 * We restrict the id in the range of [1, 65535], so it can fit into
473 * an unsigned short.
474 */
475#define MEM_CGROUP_ID_MAX USHRT_MAX
476
477static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
478{
479 return memcg->css.id;
480}
481
482static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
483{
484 struct cgroup_subsys_state *css;
485
486 css = css_from_id(id, &memory_cgrp_subsys);
487 return mem_cgroup_from_css(css);
488}
489
490/* Writing them here to avoid exposing memcg's inner layout */
491#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
492
493void sock_update_memcg(struct sock *sk)
494{
495 if (mem_cgroup_sockets_enabled) {
496 struct mem_cgroup *memcg;
497 struct cg_proto *cg_proto;
498
499 BUG_ON(!sk->sk_prot->proto_cgroup);
500
501 /* Socket cloning can throw us here with sk_cgrp already
502 * filled. It won't however, necessarily happen from
503 * process context. So the test for root memcg given
504 * the current task's memcg won't help us in this case.
505 *
506 * Respecting the original socket's memcg is a better
507 * decision in this case.
508 */
509 if (sk->sk_cgrp) {
510 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
511 css_get(&sk->sk_cgrp->memcg->css);
512 return;
513 }
514
515 rcu_read_lock();
516 memcg = mem_cgroup_from_task(current);
517 cg_proto = sk->sk_prot->proto_cgroup(memcg);
518 if (!mem_cgroup_is_root(memcg) &&
519 memcg_proto_active(cg_proto) &&
520 css_tryget_online(&memcg->css)) {
521 sk->sk_cgrp = cg_proto;
522 }
523 rcu_read_unlock();
524 }
525}
526EXPORT_SYMBOL(sock_update_memcg);
527
528void sock_release_memcg(struct sock *sk)
529{
530 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
531 struct mem_cgroup *memcg;
532 WARN_ON(!sk->sk_cgrp->memcg);
533 memcg = sk->sk_cgrp->memcg;
534 css_put(&sk->sk_cgrp->memcg->css);
535 }
536}
537
538struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
539{
540 if (!memcg || mem_cgroup_is_root(memcg))
541 return NULL;
542
543 return &memcg->tcp_mem;
544}
545EXPORT_SYMBOL(tcp_proto_cgroup);
546
547static void disarm_sock_keys(struct mem_cgroup *memcg)
548{
549 if (!memcg_proto_activated(&memcg->tcp_mem))
550 return;
551 static_key_slow_dec(&memcg_socket_limit_enabled);
552}
553#else
554static void disarm_sock_keys(struct mem_cgroup *memcg)
555{
556}
557#endif
558
559#ifdef CONFIG_MEMCG_KMEM
560/*
561 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
562 * The main reason for not using cgroup id for this:
563 * this works better in sparse environments, where we have a lot of memcgs,
564 * but only a few kmem-limited. Or also, if we have, for instance, 200
565 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
566 * 200 entry array for that.
567 *
568 * The current size of the caches array is stored in
569 * memcg_limited_groups_array_size. It will double each time we have to
570 * increase it.
571 */
572static DEFINE_IDA(kmem_limited_groups);
573int memcg_limited_groups_array_size;
574
575/*
576 * MIN_SIZE is different than 1, because we would like to avoid going through
577 * the alloc/free process all the time. In a small machine, 4 kmem-limited
578 * cgroups is a reasonable guess. In the future, it could be a parameter or
579 * tunable, but that is strictly not necessary.
580 *
581 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
582 * this constant directly from cgroup, but it is understandable that this is
583 * better kept as an internal representation in cgroup.c. In any case, the
584 * cgrp_id space is not getting any smaller, and we don't have to necessarily
585 * increase ours as well if it increases.
586 */
587#define MEMCG_CACHES_MIN_SIZE 4
588#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
589
590/*
591 * A lot of the calls to the cache allocation functions are expected to be
592 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
593 * conditional to this static branch, we'll have to allow modules that does
594 * kmem_cache_alloc and the such to see this symbol as well
595 */
596struct static_key memcg_kmem_enabled_key;
597EXPORT_SYMBOL(memcg_kmem_enabled_key);
598
599static void memcg_free_cache_id(int id);
600
601static void disarm_kmem_keys(struct mem_cgroup *memcg)
602{
603 if (memcg_kmem_is_active(memcg)) {
604 static_key_slow_dec(&memcg_kmem_enabled_key);
605 memcg_free_cache_id(memcg->kmemcg_id);
606 }
607 /*
608 * This check can't live in kmem destruction function,
609 * since the charges will outlive the cgroup
610 */
611 WARN_ON(page_counter_read(&memcg->kmem));
612}
613#else
614static void disarm_kmem_keys(struct mem_cgroup *memcg)
615{
616}
617#endif /* CONFIG_MEMCG_KMEM */
618
619static void disarm_static_keys(struct mem_cgroup *memcg)
620{
621 disarm_sock_keys(memcg);
622 disarm_kmem_keys(memcg);
623}
624
625static struct mem_cgroup_per_zone *
626mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
627{
628 int nid = zone_to_nid(zone);
629 int zid = zone_idx(zone);
630
631 return &memcg->nodeinfo[nid]->zoneinfo[zid];
632}
633
634struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
635{
636 return &memcg->css;
637}
638
639static struct mem_cgroup_per_zone *
640mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
641{
642 int nid = page_to_nid(page);
643 int zid = page_zonenum(page);
644
645 return &memcg->nodeinfo[nid]->zoneinfo[zid];
646}
647
648static struct mem_cgroup_tree_per_zone *
649soft_limit_tree_node_zone(int nid, int zid)
650{
651 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
652}
653
654static struct mem_cgroup_tree_per_zone *
655soft_limit_tree_from_page(struct page *page)
656{
657 int nid = page_to_nid(page);
658 int zid = page_zonenum(page);
659
660 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
661}
662
663static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
664 struct mem_cgroup_tree_per_zone *mctz,
665 unsigned long new_usage_in_excess)
666{
667 struct rb_node **p = &mctz->rb_root.rb_node;
668 struct rb_node *parent = NULL;
669 struct mem_cgroup_per_zone *mz_node;
670
671 if (mz->on_tree)
672 return;
673
674 mz->usage_in_excess = new_usage_in_excess;
675 if (!mz->usage_in_excess)
676 return;
677 while (*p) {
678 parent = *p;
679 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
680 tree_node);
681 if (mz->usage_in_excess < mz_node->usage_in_excess)
682 p = &(*p)->rb_left;
683 /*
684 * We can't avoid mem cgroups that are over their soft
685 * limit by the same amount
686 */
687 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
688 p = &(*p)->rb_right;
689 }
690 rb_link_node(&mz->tree_node, parent, p);
691 rb_insert_color(&mz->tree_node, &mctz->rb_root);
692 mz->on_tree = true;
693}
694
695static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
696 struct mem_cgroup_tree_per_zone *mctz)
697{
698 if (!mz->on_tree)
699 return;
700 rb_erase(&mz->tree_node, &mctz->rb_root);
701 mz->on_tree = false;
702}
703
704static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
705 struct mem_cgroup_tree_per_zone *mctz)
706{
707 unsigned long flags;
708
709 spin_lock_irqsave(&mctz->lock, flags);
710 __mem_cgroup_remove_exceeded(mz, mctz);
711 spin_unlock_irqrestore(&mctz->lock, flags);
712}
713
714static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
715{
716 unsigned long nr_pages = page_counter_read(&memcg->memory);
717 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
718 unsigned long excess = 0;
719
720 if (nr_pages > soft_limit)
721 excess = nr_pages - soft_limit;
722
723 return excess;
724}
725
726static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
727{
728 unsigned long excess;
729 struct mem_cgroup_per_zone *mz;
730 struct mem_cgroup_tree_per_zone *mctz;
731
732 mctz = soft_limit_tree_from_page(page);
733 /*
734 * Necessary to update all ancestors when hierarchy is used.
735 * because their event counter is not touched.
736 */
737 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
738 mz = mem_cgroup_page_zoneinfo(memcg, page);
739 excess = soft_limit_excess(memcg);
740 /*
741 * We have to update the tree if mz is on RB-tree or
742 * mem is over its softlimit.
743 */
744 if (excess || mz->on_tree) {
745 unsigned long flags;
746
747 spin_lock_irqsave(&mctz->lock, flags);
748 /* if on-tree, remove it */
749 if (mz->on_tree)
750 __mem_cgroup_remove_exceeded(mz, mctz);
751 /*
752 * Insert again. mz->usage_in_excess will be updated.
753 * If excess is 0, no tree ops.
754 */
755 __mem_cgroup_insert_exceeded(mz, mctz, excess);
756 spin_unlock_irqrestore(&mctz->lock, flags);
757 }
758 }
759}
760
761static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
762{
763 struct mem_cgroup_tree_per_zone *mctz;
764 struct mem_cgroup_per_zone *mz;
765 int nid, zid;
766
767 for_each_node(nid) {
768 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
769 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
770 mctz = soft_limit_tree_node_zone(nid, zid);
771 mem_cgroup_remove_exceeded(mz, mctz);
772 }
773 }
774}
775
776static struct mem_cgroup_per_zone *
777__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
778{
779 struct rb_node *rightmost = NULL;
780 struct mem_cgroup_per_zone *mz;
781
782retry:
783 mz = NULL;
784 rightmost = rb_last(&mctz->rb_root);
785 if (!rightmost)
786 goto done; /* Nothing to reclaim from */
787
788 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
789 /*
790 * Remove the node now but someone else can add it back,
791 * we will to add it back at the end of reclaim to its correct
792 * position in the tree.
793 */
794 __mem_cgroup_remove_exceeded(mz, mctz);
795 if (!soft_limit_excess(mz->memcg) ||
796 !css_tryget_online(&mz->memcg->css))
797 goto retry;
798done:
799 return mz;
800}
801
802static struct mem_cgroup_per_zone *
803mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
804{
805 struct mem_cgroup_per_zone *mz;
806
807 spin_lock_irq(&mctz->lock);
808 mz = __mem_cgroup_largest_soft_limit_node(mctz);
809 spin_unlock_irq(&mctz->lock);
810 return mz;
811}
812
813/*
814 * Implementation Note: reading percpu statistics for memcg.
815 *
816 * Both of vmstat[] and percpu_counter has threshold and do periodic
817 * synchronization to implement "quick" read. There are trade-off between
818 * reading cost and precision of value. Then, we may have a chance to implement
819 * a periodic synchronizion of counter in memcg's counter.
820 *
821 * But this _read() function is used for user interface now. The user accounts
822 * memory usage by memory cgroup and he _always_ requires exact value because
823 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
824 * have to visit all online cpus and make sum. So, for now, unnecessary
825 * synchronization is not implemented. (just implemented for cpu hotplug)
826 *
827 * If there are kernel internal actions which can make use of some not-exact
828 * value, and reading all cpu value can be performance bottleneck in some
829 * common workload, threashold and synchonization as vmstat[] should be
830 * implemented.
831 */
832static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
833 enum mem_cgroup_stat_index idx)
834{
835 long val = 0;
836 int cpu;
837
838 get_online_cpus();
839 for_each_online_cpu(cpu)
840 val += per_cpu(memcg->stat->count[idx], cpu);
841#ifdef CONFIG_HOTPLUG_CPU
842 spin_lock(&memcg->pcp_counter_lock);
843 val += memcg->nocpu_base.count[idx];
844 spin_unlock(&memcg->pcp_counter_lock);
845#endif
846 put_online_cpus();
847 return val;
848}
849
850static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
851 enum mem_cgroup_events_index idx)
852{
853 unsigned long val = 0;
854 int cpu;
855
856 get_online_cpus();
857 for_each_online_cpu(cpu)
858 val += per_cpu(memcg->stat->events[idx], cpu);
859#ifdef CONFIG_HOTPLUG_CPU
860 spin_lock(&memcg->pcp_counter_lock);
861 val += memcg->nocpu_base.events[idx];
862 spin_unlock(&memcg->pcp_counter_lock);
863#endif
864 put_online_cpus();
865 return val;
866}
867
868static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
869 struct page *page,
870 int nr_pages)
871{
872 /*
873 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
874 * counted as CACHE even if it's on ANON LRU.
875 */
876 if (PageAnon(page))
877 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
878 nr_pages);
879 else
880 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
881 nr_pages);
882
883 if (PageTransHuge(page))
884 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
885 nr_pages);
886
887 /* pagein of a big page is an event. So, ignore page size */
888 if (nr_pages > 0)
889 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
890 else {
891 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
892 nr_pages = -nr_pages; /* for event */
893 }
894
895 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
896}
897
898unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
899{
900 struct mem_cgroup_per_zone *mz;
901
902 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
903 return mz->lru_size[lru];
904}
905
906static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
907 int nid,
908 unsigned int lru_mask)
909{
910 unsigned long nr = 0;
911 int zid;
912
913 VM_BUG_ON((unsigned)nid >= nr_node_ids);
914
915 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
916 struct mem_cgroup_per_zone *mz;
917 enum lru_list lru;
918
919 for_each_lru(lru) {
920 if (!(BIT(lru) & lru_mask))
921 continue;
922 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
923 nr += mz->lru_size[lru];
924 }
925 }
926 return nr;
927}
928
929static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
930 unsigned int lru_mask)
931{
932 unsigned long nr = 0;
933 int nid;
934
935 for_each_node_state(nid, N_MEMORY)
936 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
937 return nr;
938}
939
940static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
941 enum mem_cgroup_events_target target)
942{
943 unsigned long val, next;
944
945 val = __this_cpu_read(memcg->stat->nr_page_events);
946 next = __this_cpu_read(memcg->stat->targets[target]);
947 /* from time_after() in jiffies.h */
948 if ((long)next - (long)val < 0) {
949 switch (target) {
950 case MEM_CGROUP_TARGET_THRESH:
951 next = val + THRESHOLDS_EVENTS_TARGET;
952 break;
953 case MEM_CGROUP_TARGET_SOFTLIMIT:
954 next = val + SOFTLIMIT_EVENTS_TARGET;
955 break;
956 case MEM_CGROUP_TARGET_NUMAINFO:
957 next = val + NUMAINFO_EVENTS_TARGET;
958 break;
959 default:
960 break;
961 }
962 __this_cpu_write(memcg->stat->targets[target], next);
963 return true;
964 }
965 return false;
966}
967
968/*
969 * Check events in order.
970 *
971 */
972static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
973{
974 /* threshold event is triggered in finer grain than soft limit */
975 if (unlikely(mem_cgroup_event_ratelimit(memcg,
976 MEM_CGROUP_TARGET_THRESH))) {
977 bool do_softlimit;
978 bool do_numainfo __maybe_unused;
979
980 do_softlimit = mem_cgroup_event_ratelimit(memcg,
981 MEM_CGROUP_TARGET_SOFTLIMIT);
982#if MAX_NUMNODES > 1
983 do_numainfo = mem_cgroup_event_ratelimit(memcg,
984 MEM_CGROUP_TARGET_NUMAINFO);
985#endif
986 mem_cgroup_threshold(memcg);
987 if (unlikely(do_softlimit))
988 mem_cgroup_update_tree(memcg, page);
989#if MAX_NUMNODES > 1
990 if (unlikely(do_numainfo))
991 atomic_inc(&memcg->numainfo_events);
992#endif
993 }
994}
995
996struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
997{
998 /*
999 * mm_update_next_owner() may clear mm->owner to NULL
1000 * if it races with swapoff, page migration, etc.
1001 * So this can be called with p == NULL.
1002 */
1003 if (unlikely(!p))
1004 return NULL;
1005
1006 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1007}
1008
1009static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1010{
1011 struct mem_cgroup *memcg = NULL;
1012
1013 rcu_read_lock();
1014 do {
1015 /*
1016 * Page cache insertions can happen withou an
1017 * actual mm context, e.g. during disk probing
1018 * on boot, loopback IO, acct() writes etc.
1019 */
1020 if (unlikely(!mm))
1021 memcg = root_mem_cgroup;
1022 else {
1023 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1024 if (unlikely(!memcg))
1025 memcg = root_mem_cgroup;
1026 }
1027 } while (!css_tryget_online(&memcg->css));
1028 rcu_read_unlock();
1029 return memcg;
1030}
1031
1032/**
1033 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1034 * @root: hierarchy root
1035 * @prev: previously returned memcg, NULL on first invocation
1036 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1037 *
1038 * Returns references to children of the hierarchy below @root, or
1039 * @root itself, or %NULL after a full round-trip.
1040 *
1041 * Caller must pass the return value in @prev on subsequent
1042 * invocations for reference counting, or use mem_cgroup_iter_break()
1043 * to cancel a hierarchy walk before the round-trip is complete.
1044 *
1045 * Reclaimers can specify a zone and a priority level in @reclaim to
1046 * divide up the memcgs in the hierarchy among all concurrent
1047 * reclaimers operating on the same zone and priority.
1048 */
1049struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1050 struct mem_cgroup *prev,
1051 struct mem_cgroup_reclaim_cookie *reclaim)
1052{
1053 struct reclaim_iter *uninitialized_var(iter);
1054 struct cgroup_subsys_state *css = NULL;
1055 struct mem_cgroup *memcg = NULL;
1056 struct mem_cgroup *pos = NULL;
1057
1058 if (mem_cgroup_disabled())
1059 return NULL;
1060
1061 if (!root)
1062 root = root_mem_cgroup;
1063
1064 if (prev && !reclaim)
1065 pos = prev;
1066
1067 if (!root->use_hierarchy && root != root_mem_cgroup) {
1068 if (prev)
1069 goto out;
1070 return root;
1071 }
1072
1073 rcu_read_lock();
1074
1075 if (reclaim) {
1076 struct mem_cgroup_per_zone *mz;
1077
1078 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1079 iter = &mz->iter[reclaim->priority];
1080
1081 if (prev && reclaim->generation != iter->generation)
1082 goto out_unlock;
1083
1084 do {
1085 pos = ACCESS_ONCE(iter->position);
1086 /*
1087 * A racing update may change the position and
1088 * put the last reference, hence css_tryget(),
1089 * or retry to see the updated position.
1090 */
1091 } while (pos && !css_tryget(&pos->css));
1092 }
1093
1094 if (pos)
1095 css = &pos->css;
1096
1097 for (;;) {
1098 css = css_next_descendant_pre(css, &root->css);
1099 if (!css) {
1100 /*
1101 * Reclaimers share the hierarchy walk, and a
1102 * new one might jump in right at the end of
1103 * the hierarchy - make sure they see at least
1104 * one group and restart from the beginning.
1105 */
1106 if (!prev)
1107 continue;
1108 break;
1109 }
1110
1111 /*
1112 * Verify the css and acquire a reference. The root
1113 * is provided by the caller, so we know it's alive
1114 * and kicking, and don't take an extra reference.
1115 */
1116 memcg = mem_cgroup_from_css(css);
1117
1118 if (css == &root->css)
1119 break;
1120
1121 if (css_tryget(css)) {
1122 /*
1123 * Make sure the memcg is initialized:
1124 * mem_cgroup_css_online() orders the the
1125 * initialization against setting the flag.
1126 */
1127 if (smp_load_acquire(&memcg->initialized))
1128 break;
1129
1130 css_put(css);
1131 }
1132
1133 memcg = NULL;
1134 }
1135
1136 if (reclaim) {
1137 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1138 if (memcg)
1139 css_get(&memcg->css);
1140 if (pos)
1141 css_put(&pos->css);
1142 }
1143
1144 /*
1145 * pairs with css_tryget when dereferencing iter->position
1146 * above.
1147 */
1148 if (pos)
1149 css_put(&pos->css);
1150
1151 if (!memcg)
1152 iter->generation++;
1153 else if (!prev)
1154 reclaim->generation = iter->generation;
1155 }
1156
1157out_unlock:
1158 rcu_read_unlock();
1159out:
1160 if (prev && prev != root)
1161 css_put(&prev->css);
1162
1163 return memcg;
1164}
1165
1166/**
1167 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1168 * @root: hierarchy root
1169 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1170 */
1171void mem_cgroup_iter_break(struct mem_cgroup *root,
1172 struct mem_cgroup *prev)
1173{
1174 if (!root)
1175 root = root_mem_cgroup;
1176 if (prev && prev != root)
1177 css_put(&prev->css);
1178}
1179
1180/*
1181 * Iteration constructs for visiting all cgroups (under a tree). If
1182 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1183 * be used for reference counting.
1184 */
1185#define for_each_mem_cgroup_tree(iter, root) \
1186 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1187 iter != NULL; \
1188 iter = mem_cgroup_iter(root, iter, NULL))
1189
1190#define for_each_mem_cgroup(iter) \
1191 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1192 iter != NULL; \
1193 iter = mem_cgroup_iter(NULL, iter, NULL))
1194
1195void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1196{
1197 struct mem_cgroup *memcg;
1198
1199 rcu_read_lock();
1200 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1201 if (unlikely(!memcg))
1202 goto out;
1203
1204 switch (idx) {
1205 case PGFAULT:
1206 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1207 break;
1208 case PGMAJFAULT:
1209 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1210 break;
1211 default:
1212 BUG();
1213 }
1214out:
1215 rcu_read_unlock();
1216}
1217EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1218
1219/**
1220 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1221 * @zone: zone of the wanted lruvec
1222 * @memcg: memcg of the wanted lruvec
1223 *
1224 * Returns the lru list vector holding pages for the given @zone and
1225 * @mem. This can be the global zone lruvec, if the memory controller
1226 * is disabled.
1227 */
1228struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1229 struct mem_cgroup *memcg)
1230{
1231 struct mem_cgroup_per_zone *mz;
1232 struct lruvec *lruvec;
1233
1234 if (mem_cgroup_disabled()) {
1235 lruvec = &zone->lruvec;
1236 goto out;
1237 }
1238
1239 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1240 lruvec = &mz->lruvec;
1241out:
1242 /*
1243 * Since a node can be onlined after the mem_cgroup was created,
1244 * we have to be prepared to initialize lruvec->zone here;
1245 * and if offlined then reonlined, we need to reinitialize it.
1246 */
1247 if (unlikely(lruvec->zone != zone))
1248 lruvec->zone = zone;
1249 return lruvec;
1250}
1251
1252/**
1253 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1254 * @page: the page
1255 * @zone: zone of the page
1256 *
1257 * This function is only safe when following the LRU page isolation
1258 * and putback protocol: the LRU lock must be held, and the page must
1259 * either be PageLRU() or the caller must have isolated/allocated it.
1260 */
1261struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1262{
1263 struct mem_cgroup_per_zone *mz;
1264 struct mem_cgroup *memcg;
1265 struct lruvec *lruvec;
1266
1267 if (mem_cgroup_disabled()) {
1268 lruvec = &zone->lruvec;
1269 goto out;
1270 }
1271
1272 memcg = page->mem_cgroup;
1273 /*
1274 * Swapcache readahead pages are added to the LRU - and
1275 * possibly migrated - before they are charged.
1276 */
1277 if (!memcg)
1278 memcg = root_mem_cgroup;
1279
1280 mz = mem_cgroup_page_zoneinfo(memcg, page);
1281 lruvec = &mz->lruvec;
1282out:
1283 /*
1284 * Since a node can be onlined after the mem_cgroup was created,
1285 * we have to be prepared to initialize lruvec->zone here;
1286 * and if offlined then reonlined, we need to reinitialize it.
1287 */
1288 if (unlikely(lruvec->zone != zone))
1289 lruvec->zone = zone;
1290 return lruvec;
1291}
1292
1293/**
1294 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1295 * @lruvec: mem_cgroup per zone lru vector
1296 * @lru: index of lru list the page is sitting on
1297 * @nr_pages: positive when adding or negative when removing
1298 *
1299 * This function must be called when a page is added to or removed from an
1300 * lru list.
1301 */
1302void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1303 int nr_pages)
1304{
1305 struct mem_cgroup_per_zone *mz;
1306 unsigned long *lru_size;
1307
1308 if (mem_cgroup_disabled())
1309 return;
1310
1311 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1312 lru_size = mz->lru_size + lru;
1313 *lru_size += nr_pages;
1314 VM_BUG_ON((long)(*lru_size) < 0);
1315}
1316
1317bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1318{
1319 if (root == memcg)
1320 return true;
1321 if (!root->use_hierarchy)
1322 return false;
1323 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1324}
1325
1326bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1327{
1328 struct mem_cgroup *task_memcg;
1329 struct task_struct *p;
1330 bool ret;
1331
1332 p = find_lock_task_mm(task);
1333 if (p) {
1334 task_memcg = get_mem_cgroup_from_mm(p->mm);
1335 task_unlock(p);
1336 } else {
1337 /*
1338 * All threads may have already detached their mm's, but the oom
1339 * killer still needs to detect if they have already been oom
1340 * killed to prevent needlessly killing additional tasks.
1341 */
1342 rcu_read_lock();
1343 task_memcg = mem_cgroup_from_task(task);
1344 css_get(&task_memcg->css);
1345 rcu_read_unlock();
1346 }
1347 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1348 css_put(&task_memcg->css);
1349 return ret;
1350}
1351
1352int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1353{
1354 unsigned long inactive_ratio;
1355 unsigned long inactive;
1356 unsigned long active;
1357 unsigned long gb;
1358
1359 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1360 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1361
1362 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1363 if (gb)
1364 inactive_ratio = int_sqrt(10 * gb);
1365 else
1366 inactive_ratio = 1;
1367
1368 return inactive * inactive_ratio < active;
1369}
1370
1371#define mem_cgroup_from_counter(counter, member) \
1372 container_of(counter, struct mem_cgroup, member)
1373
1374/**
1375 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1376 * @memcg: the memory cgroup
1377 *
1378 * Returns the maximum amount of memory @mem can be charged with, in
1379 * pages.
1380 */
1381static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1382{
1383 unsigned long margin = 0;
1384 unsigned long count;
1385 unsigned long limit;
1386
1387 count = page_counter_read(&memcg->memory);
1388 limit = ACCESS_ONCE(memcg->memory.limit);
1389 if (count < limit)
1390 margin = limit - count;
1391
1392 if (do_swap_account) {
1393 count = page_counter_read(&memcg->memsw);
1394 limit = ACCESS_ONCE(memcg->memsw.limit);
1395 if (count <= limit)
1396 margin = min(margin, limit - count);
1397 }
1398
1399 return margin;
1400}
1401
1402int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1403{
1404 /* root ? */
1405 if (mem_cgroup_disabled() || !memcg->css.parent)
1406 return vm_swappiness;
1407
1408 return memcg->swappiness;
1409}
1410
1411/*
1412 * A routine for checking "mem" is under move_account() or not.
1413 *
1414 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1415 * moving cgroups. This is for waiting at high-memory pressure
1416 * caused by "move".
1417 */
1418static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1419{
1420 struct mem_cgroup *from;
1421 struct mem_cgroup *to;
1422 bool ret = false;
1423 /*
1424 * Unlike task_move routines, we access mc.to, mc.from not under
1425 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1426 */
1427 spin_lock(&mc.lock);
1428 from = mc.from;
1429 to = mc.to;
1430 if (!from)
1431 goto unlock;
1432
1433 ret = mem_cgroup_is_descendant(from, memcg) ||
1434 mem_cgroup_is_descendant(to, memcg);
1435unlock:
1436 spin_unlock(&mc.lock);
1437 return ret;
1438}
1439
1440static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1441{
1442 if (mc.moving_task && current != mc.moving_task) {
1443 if (mem_cgroup_under_move(memcg)) {
1444 DEFINE_WAIT(wait);
1445 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1446 /* moving charge context might have finished. */
1447 if (mc.moving_task)
1448 schedule();
1449 finish_wait(&mc.waitq, &wait);
1450 return true;
1451 }
1452 }
1453 return false;
1454}
1455
1456#define K(x) ((x) << (PAGE_SHIFT-10))
1457/**
1458 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1459 * @memcg: The memory cgroup that went over limit
1460 * @p: Task that is going to be killed
1461 *
1462 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1463 * enabled
1464 */
1465void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1466{
1467 /* oom_info_lock ensures that parallel ooms do not interleave */
1468 static DEFINE_MUTEX(oom_info_lock);
1469 struct mem_cgroup *iter;
1470 unsigned int i;
1471
1472 if (!p)
1473 return;
1474
1475 mutex_lock(&oom_info_lock);
1476 rcu_read_lock();
1477
1478 pr_info("Task in ");
1479 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1480 pr_info(" killed as a result of limit of ");
1481 pr_cont_cgroup_path(memcg->css.cgroup);
1482 pr_info("\n");
1483
1484 rcu_read_unlock();
1485
1486 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1487 K((u64)page_counter_read(&memcg->memory)),
1488 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1489 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1490 K((u64)page_counter_read(&memcg->memsw)),
1491 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1492 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1493 K((u64)page_counter_read(&memcg->kmem)),
1494 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1495
1496 for_each_mem_cgroup_tree(iter, memcg) {
1497 pr_info("Memory cgroup stats for ");
1498 pr_cont_cgroup_path(iter->css.cgroup);
1499 pr_cont(":");
1500
1501 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1502 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1503 continue;
1504 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1505 K(mem_cgroup_read_stat(iter, i)));
1506 }
1507
1508 for (i = 0; i < NR_LRU_LISTS; i++)
1509 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1510 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1511
1512 pr_cont("\n");
1513 }
1514 mutex_unlock(&oom_info_lock);
1515}
1516
1517/*
1518 * This function returns the number of memcg under hierarchy tree. Returns
1519 * 1(self count) if no children.
1520 */
1521static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1522{
1523 int num = 0;
1524 struct mem_cgroup *iter;
1525
1526 for_each_mem_cgroup_tree(iter, memcg)
1527 num++;
1528 return num;
1529}
1530
1531/*
1532 * Return the memory (and swap, if configured) limit for a memcg.
1533 */
1534static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1535{
1536 unsigned long limit;
1537
1538 limit = memcg->memory.limit;
1539 if (mem_cgroup_swappiness(memcg)) {
1540 unsigned long memsw_limit;
1541
1542 memsw_limit = memcg->memsw.limit;
1543 limit = min(limit + total_swap_pages, memsw_limit);
1544 }
1545 return limit;
1546}
1547
1548static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1549 int order)
1550{
1551 struct mem_cgroup *iter;
1552 unsigned long chosen_points = 0;
1553 unsigned long totalpages;
1554 unsigned int points = 0;
1555 struct task_struct *chosen = NULL;
1556
1557 /*
1558 * If current has a pending SIGKILL or is exiting, then automatically
1559 * select it. The goal is to allow it to allocate so that it may
1560 * quickly exit and free its memory.
1561 */
1562 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1563 set_thread_flag(TIF_MEMDIE);
1564 return;
1565 }
1566
1567 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1568 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1569 for_each_mem_cgroup_tree(iter, memcg) {
1570 struct css_task_iter it;
1571 struct task_struct *task;
1572
1573 css_task_iter_start(&iter->css, &it);
1574 while ((task = css_task_iter_next(&it))) {
1575 switch (oom_scan_process_thread(task, totalpages, NULL,
1576 false)) {
1577 case OOM_SCAN_SELECT:
1578 if (chosen)
1579 put_task_struct(chosen);
1580 chosen = task;
1581 chosen_points = ULONG_MAX;
1582 get_task_struct(chosen);
1583 /* fall through */
1584 case OOM_SCAN_CONTINUE:
1585 continue;
1586 case OOM_SCAN_ABORT:
1587 css_task_iter_end(&it);
1588 mem_cgroup_iter_break(memcg, iter);
1589 if (chosen)
1590 put_task_struct(chosen);
1591 return;
1592 case OOM_SCAN_OK:
1593 break;
1594 };
1595 points = oom_badness(task, memcg, NULL, totalpages);
1596 if (!points || points < chosen_points)
1597 continue;
1598 /* Prefer thread group leaders for display purposes */
1599 if (points == chosen_points &&
1600 thread_group_leader(chosen))
1601 continue;
1602
1603 if (chosen)
1604 put_task_struct(chosen);
1605 chosen = task;
1606 chosen_points = points;
1607 get_task_struct(chosen);
1608 }
1609 css_task_iter_end(&it);
1610 }
1611
1612 if (!chosen)
1613 return;
1614 points = chosen_points * 1000 / totalpages;
1615 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1616 NULL, "Memory cgroup out of memory");
1617}
1618
1619/**
1620 * test_mem_cgroup_node_reclaimable
1621 * @memcg: the target memcg
1622 * @nid: the node ID to be checked.
1623 * @noswap : specify true here if the user wants flle only information.
1624 *
1625 * This function returns whether the specified memcg contains any
1626 * reclaimable pages on a node. Returns true if there are any reclaimable
1627 * pages in the node.
1628 */
1629static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1630 int nid, bool noswap)
1631{
1632 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1633 return true;
1634 if (noswap || !total_swap_pages)
1635 return false;
1636 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1637 return true;
1638 return false;
1639
1640}
1641#if MAX_NUMNODES > 1
1642
1643/*
1644 * Always updating the nodemask is not very good - even if we have an empty
1645 * list or the wrong list here, we can start from some node and traverse all
1646 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1647 *
1648 */
1649static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1650{
1651 int nid;
1652 /*
1653 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1654 * pagein/pageout changes since the last update.
1655 */
1656 if (!atomic_read(&memcg->numainfo_events))
1657 return;
1658 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1659 return;
1660
1661 /* make a nodemask where this memcg uses memory from */
1662 memcg->scan_nodes = node_states[N_MEMORY];
1663
1664 for_each_node_mask(nid, node_states[N_MEMORY]) {
1665
1666 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1667 node_clear(nid, memcg->scan_nodes);
1668 }
1669
1670 atomic_set(&memcg->numainfo_events, 0);
1671 atomic_set(&memcg->numainfo_updating, 0);
1672}
1673
1674/*
1675 * Selecting a node where we start reclaim from. Because what we need is just
1676 * reducing usage counter, start from anywhere is O,K. Considering
1677 * memory reclaim from current node, there are pros. and cons.
1678 *
1679 * Freeing memory from current node means freeing memory from a node which
1680 * we'll use or we've used. So, it may make LRU bad. And if several threads
1681 * hit limits, it will see a contention on a node. But freeing from remote
1682 * node means more costs for memory reclaim because of memory latency.
1683 *
1684 * Now, we use round-robin. Better algorithm is welcomed.
1685 */
1686int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1687{
1688 int node;
1689
1690 mem_cgroup_may_update_nodemask(memcg);
1691 node = memcg->last_scanned_node;
1692
1693 node = next_node(node, memcg->scan_nodes);
1694 if (node == MAX_NUMNODES)
1695 node = first_node(memcg->scan_nodes);
1696 /*
1697 * We call this when we hit limit, not when pages are added to LRU.
1698 * No LRU may hold pages because all pages are UNEVICTABLE or
1699 * memcg is too small and all pages are not on LRU. In that case,
1700 * we use curret node.
1701 */
1702 if (unlikely(node == MAX_NUMNODES))
1703 node = numa_node_id();
1704
1705 memcg->last_scanned_node = node;
1706 return node;
1707}
1708#else
1709int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1710{
1711 return 0;
1712}
1713#endif
1714
1715static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1716 struct zone *zone,
1717 gfp_t gfp_mask,
1718 unsigned long *total_scanned)
1719{
1720 struct mem_cgroup *victim = NULL;
1721 int total = 0;
1722 int loop = 0;
1723 unsigned long excess;
1724 unsigned long nr_scanned;
1725 struct mem_cgroup_reclaim_cookie reclaim = {
1726 .zone = zone,
1727 .priority = 0,
1728 };
1729
1730 excess = soft_limit_excess(root_memcg);
1731
1732 while (1) {
1733 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1734 if (!victim) {
1735 loop++;
1736 if (loop >= 2) {
1737 /*
1738 * If we have not been able to reclaim
1739 * anything, it might because there are
1740 * no reclaimable pages under this hierarchy
1741 */
1742 if (!total)
1743 break;
1744 /*
1745 * We want to do more targeted reclaim.
1746 * excess >> 2 is not to excessive so as to
1747 * reclaim too much, nor too less that we keep
1748 * coming back to reclaim from this cgroup
1749 */
1750 if (total >= (excess >> 2) ||
1751 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1752 break;
1753 }
1754 continue;
1755 }
1756 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1757 zone, &nr_scanned);
1758 *total_scanned += nr_scanned;
1759 if (!soft_limit_excess(root_memcg))
1760 break;
1761 }
1762 mem_cgroup_iter_break(root_memcg, victim);
1763 return total;
1764}
1765
1766#ifdef CONFIG_LOCKDEP
1767static struct lockdep_map memcg_oom_lock_dep_map = {
1768 .name = "memcg_oom_lock",
1769};
1770#endif
1771
1772static DEFINE_SPINLOCK(memcg_oom_lock);
1773
1774/*
1775 * Check OOM-Killer is already running under our hierarchy.
1776 * If someone is running, return false.
1777 */
1778static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1779{
1780 struct mem_cgroup *iter, *failed = NULL;
1781
1782 spin_lock(&memcg_oom_lock);
1783
1784 for_each_mem_cgroup_tree(iter, memcg) {
1785 if (iter->oom_lock) {
1786 /*
1787 * this subtree of our hierarchy is already locked
1788 * so we cannot give a lock.
1789 */
1790 failed = iter;
1791 mem_cgroup_iter_break(memcg, iter);
1792 break;
1793 } else
1794 iter->oom_lock = true;
1795 }
1796
1797 if (failed) {
1798 /*
1799 * OK, we failed to lock the whole subtree so we have
1800 * to clean up what we set up to the failing subtree
1801 */
1802 for_each_mem_cgroup_tree(iter, memcg) {
1803 if (iter == failed) {
1804 mem_cgroup_iter_break(memcg, iter);
1805 break;
1806 }
1807 iter->oom_lock = false;
1808 }
1809 } else
1810 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1811
1812 spin_unlock(&memcg_oom_lock);
1813
1814 return !failed;
1815}
1816
1817static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1818{
1819 struct mem_cgroup *iter;
1820
1821 spin_lock(&memcg_oom_lock);
1822 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1823 for_each_mem_cgroup_tree(iter, memcg)
1824 iter->oom_lock = false;
1825 spin_unlock(&memcg_oom_lock);
1826}
1827
1828static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1829{
1830 struct mem_cgroup *iter;
1831
1832 for_each_mem_cgroup_tree(iter, memcg)
1833 atomic_inc(&iter->under_oom);
1834}
1835
1836static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1837{
1838 struct mem_cgroup *iter;
1839
1840 /*
1841 * When a new child is created while the hierarchy is under oom,
1842 * mem_cgroup_oom_lock() may not be called. We have to use
1843 * atomic_add_unless() here.
1844 */
1845 for_each_mem_cgroup_tree(iter, memcg)
1846 atomic_add_unless(&iter->under_oom, -1, 0);
1847}
1848
1849static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1850
1851struct oom_wait_info {
1852 struct mem_cgroup *memcg;
1853 wait_queue_t wait;
1854};
1855
1856static int memcg_oom_wake_function(wait_queue_t *wait,
1857 unsigned mode, int sync, void *arg)
1858{
1859 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1860 struct mem_cgroup *oom_wait_memcg;
1861 struct oom_wait_info *oom_wait_info;
1862
1863 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1864 oom_wait_memcg = oom_wait_info->memcg;
1865
1866 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1867 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1868 return 0;
1869 return autoremove_wake_function(wait, mode, sync, arg);
1870}
1871
1872static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1873{
1874 atomic_inc(&memcg->oom_wakeups);
1875 /* for filtering, pass "memcg" as argument. */
1876 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1877}
1878
1879static void memcg_oom_recover(struct mem_cgroup *memcg)
1880{
1881 if (memcg && atomic_read(&memcg->under_oom))
1882 memcg_wakeup_oom(memcg);
1883}
1884
1885static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1886{
1887 if (!current->memcg_oom.may_oom)
1888 return;
1889 /*
1890 * We are in the middle of the charge context here, so we
1891 * don't want to block when potentially sitting on a callstack
1892 * that holds all kinds of filesystem and mm locks.
1893 *
1894 * Also, the caller may handle a failed allocation gracefully
1895 * (like optional page cache readahead) and so an OOM killer
1896 * invocation might not even be necessary.
1897 *
1898 * That's why we don't do anything here except remember the
1899 * OOM context and then deal with it at the end of the page
1900 * fault when the stack is unwound, the locks are released,
1901 * and when we know whether the fault was overall successful.
1902 */
1903 css_get(&memcg->css);
1904 current->memcg_oom.memcg = memcg;
1905 current->memcg_oom.gfp_mask = mask;
1906 current->memcg_oom.order = order;
1907}
1908
1909/**
1910 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1911 * @handle: actually kill/wait or just clean up the OOM state
1912 *
1913 * This has to be called at the end of a page fault if the memcg OOM
1914 * handler was enabled.
1915 *
1916 * Memcg supports userspace OOM handling where failed allocations must
1917 * sleep on a waitqueue until the userspace task resolves the
1918 * situation. Sleeping directly in the charge context with all kinds
1919 * of locks held is not a good idea, instead we remember an OOM state
1920 * in the task and mem_cgroup_oom_synchronize() has to be called at
1921 * the end of the page fault to complete the OOM handling.
1922 *
1923 * Returns %true if an ongoing memcg OOM situation was detected and
1924 * completed, %false otherwise.
1925 */
1926bool mem_cgroup_oom_synchronize(bool handle)
1927{
1928 struct mem_cgroup *memcg = current->memcg_oom.memcg;
1929 struct oom_wait_info owait;
1930 bool locked;
1931
1932 /* OOM is global, do not handle */
1933 if (!memcg)
1934 return false;
1935
1936 if (!handle)
1937 goto cleanup;
1938
1939 owait.memcg = memcg;
1940 owait.wait.flags = 0;
1941 owait.wait.func = memcg_oom_wake_function;
1942 owait.wait.private = current;
1943 INIT_LIST_HEAD(&owait.wait.task_list);
1944
1945 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1946 mem_cgroup_mark_under_oom(memcg);
1947
1948 locked = mem_cgroup_oom_trylock(memcg);
1949
1950 if (locked)
1951 mem_cgroup_oom_notify(memcg);
1952
1953 if (locked && !memcg->oom_kill_disable) {
1954 mem_cgroup_unmark_under_oom(memcg);
1955 finish_wait(&memcg_oom_waitq, &owait.wait);
1956 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1957 current->memcg_oom.order);
1958 } else {
1959 schedule();
1960 mem_cgroup_unmark_under_oom(memcg);
1961 finish_wait(&memcg_oom_waitq, &owait.wait);
1962 }
1963
1964 if (locked) {
1965 mem_cgroup_oom_unlock(memcg);
1966 /*
1967 * There is no guarantee that an OOM-lock contender
1968 * sees the wakeups triggered by the OOM kill
1969 * uncharges. Wake any sleepers explicitely.
1970 */
1971 memcg_oom_recover(memcg);
1972 }
1973cleanup:
1974 current->memcg_oom.memcg = NULL;
1975 css_put(&memcg->css);
1976 return true;
1977}
1978
1979/**
1980 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1981 * @page: page that is going to change accounted state
1982 * @locked: &memcg->move_lock slowpath was taken
1983 * @flags: IRQ-state flags for &memcg->move_lock
1984 *
1985 * This function must mark the beginning of an accounted page state
1986 * change to prevent double accounting when the page is concurrently
1987 * being moved to another memcg:
1988 *
1989 * memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
1990 * if (TestClearPageState(page))
1991 * mem_cgroup_update_page_stat(memcg, state, -1);
1992 * mem_cgroup_end_page_stat(memcg, locked, flags);
1993 *
1994 * The RCU lock is held throughout the transaction. The fast path can
1995 * get away without acquiring the memcg->move_lock (@locked is false)
1996 * because page moving starts with an RCU grace period.
1997 *
1998 * The RCU lock also protects the memcg from being freed when the page
1999 * state that is going to change is the only thing preventing the page
2000 * from being uncharged. E.g. end-writeback clearing PageWriteback(),
2001 * which allows migration to go ahead and uncharge the page before the
2002 * account transaction might be complete.
2003 */
2004struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
2005 bool *locked,
2006 unsigned long *flags)
2007{
2008 struct mem_cgroup *memcg;
2009
2010 rcu_read_lock();
2011
2012 if (mem_cgroup_disabled())
2013 return NULL;
2014again:
2015 memcg = page->mem_cgroup;
2016 if (unlikely(!memcg))
2017 return NULL;
2018
2019 *locked = false;
2020 if (atomic_read(&memcg->moving_account) <= 0)
2021 return memcg;
2022
2023 spin_lock_irqsave(&memcg->move_lock, *flags);
2024 if (memcg != page->mem_cgroup) {
2025 spin_unlock_irqrestore(&memcg->move_lock, *flags);
2026 goto again;
2027 }
2028 *locked = true;
2029
2030 return memcg;
2031}
2032
2033/**
2034 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2035 * @memcg: the memcg that was accounted against
2036 * @locked: value received from mem_cgroup_begin_page_stat()
2037 * @flags: value received from mem_cgroup_begin_page_stat()
2038 */
2039void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool *locked,
2040 unsigned long *flags)
2041{
2042 if (memcg && *locked)
2043 spin_unlock_irqrestore(&memcg->move_lock, *flags);
2044
2045 rcu_read_unlock();
2046}
2047
2048/**
2049 * mem_cgroup_update_page_stat - update page state statistics
2050 * @memcg: memcg to account against
2051 * @idx: page state item to account
2052 * @val: number of pages (positive or negative)
2053 *
2054 * See mem_cgroup_begin_page_stat() for locking requirements.
2055 */
2056void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
2057 enum mem_cgroup_stat_index idx, int val)
2058{
2059 VM_BUG_ON(!rcu_read_lock_held());
2060
2061 if (memcg)
2062 this_cpu_add(memcg->stat->count[idx], val);
2063}
2064
2065/*
2066 * size of first charge trial. "32" comes from vmscan.c's magic value.
2067 * TODO: maybe necessary to use big numbers in big irons.
2068 */
2069#define CHARGE_BATCH 32U
2070struct memcg_stock_pcp {
2071 struct mem_cgroup *cached; /* this never be root cgroup */
2072 unsigned int nr_pages;
2073 struct work_struct work;
2074 unsigned long flags;
2075#define FLUSHING_CACHED_CHARGE 0
2076};
2077static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2078static DEFINE_MUTEX(percpu_charge_mutex);
2079
2080/**
2081 * consume_stock: Try to consume stocked charge on this cpu.
2082 * @memcg: memcg to consume from.
2083 * @nr_pages: how many pages to charge.
2084 *
2085 * The charges will only happen if @memcg matches the current cpu's memcg
2086 * stock, and at least @nr_pages are available in that stock. Failure to
2087 * service an allocation will refill the stock.
2088 *
2089 * returns true if successful, false otherwise.
2090 */
2091static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2092{
2093 struct memcg_stock_pcp *stock;
2094 bool ret = false;
2095
2096 if (nr_pages > CHARGE_BATCH)
2097 return ret;
2098
2099 stock = &get_cpu_var(memcg_stock);
2100 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2101 stock->nr_pages -= nr_pages;
2102 ret = true;
2103 }
2104 put_cpu_var(memcg_stock);
2105 return ret;
2106}
2107
2108/*
2109 * Returns stocks cached in percpu and reset cached information.
2110 */
2111static void drain_stock(struct memcg_stock_pcp *stock)
2112{
2113 struct mem_cgroup *old = stock->cached;
2114
2115 if (stock->nr_pages) {
2116 page_counter_uncharge(&old->memory, stock->nr_pages);
2117 if (do_swap_account)
2118 page_counter_uncharge(&old->memsw, stock->nr_pages);
2119 css_put_many(&old->css, stock->nr_pages);
2120 stock->nr_pages = 0;
2121 }
2122 stock->cached = NULL;
2123}
2124
2125/*
2126 * This must be called under preempt disabled or must be called by
2127 * a thread which is pinned to local cpu.
2128 */
2129static void drain_local_stock(struct work_struct *dummy)
2130{
2131 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2132 drain_stock(stock);
2133 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2134}
2135
2136static void __init memcg_stock_init(void)
2137{
2138 int cpu;
2139
2140 for_each_possible_cpu(cpu) {
2141 struct memcg_stock_pcp *stock =
2142 &per_cpu(memcg_stock, cpu);
2143 INIT_WORK(&stock->work, drain_local_stock);
2144 }
2145}
2146
2147/*
2148 * Cache charges(val) to local per_cpu area.
2149 * This will be consumed by consume_stock() function, later.
2150 */
2151static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2152{
2153 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2154
2155 if (stock->cached != memcg) { /* reset if necessary */
2156 drain_stock(stock);
2157 stock->cached = memcg;
2158 }
2159 stock->nr_pages += nr_pages;
2160 put_cpu_var(memcg_stock);
2161}
2162
2163/*
2164 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2165 * of the hierarchy under it.
2166 */
2167static void drain_all_stock(struct mem_cgroup *root_memcg)
2168{
2169 int cpu, curcpu;
2170
2171 /* If someone's already draining, avoid adding running more workers. */
2172 if (!mutex_trylock(&percpu_charge_mutex))
2173 return;
2174 /* Notify other cpus that system-wide "drain" is running */
2175 get_online_cpus();
2176 curcpu = get_cpu();
2177 for_each_online_cpu(cpu) {
2178 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2179 struct mem_cgroup *memcg;
2180
2181 memcg = stock->cached;
2182 if (!memcg || !stock->nr_pages)
2183 continue;
2184 if (!mem_cgroup_is_descendant(memcg, root_memcg))
2185 continue;
2186 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2187 if (cpu == curcpu)
2188 drain_local_stock(&stock->work);
2189 else
2190 schedule_work_on(cpu, &stock->work);
2191 }
2192 }
2193 put_cpu();
2194 put_online_cpus();
2195 mutex_unlock(&percpu_charge_mutex);
2196}
2197
2198/*
2199 * This function drains percpu counter value from DEAD cpu and
2200 * move it to local cpu. Note that this function can be preempted.
2201 */
2202static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2203{
2204 int i;
2205
2206 spin_lock(&memcg->pcp_counter_lock);
2207 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2208 long x = per_cpu(memcg->stat->count[i], cpu);
2209
2210 per_cpu(memcg->stat->count[i], cpu) = 0;
2211 memcg->nocpu_base.count[i] += x;
2212 }
2213 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2214 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2215
2216 per_cpu(memcg->stat->events[i], cpu) = 0;
2217 memcg->nocpu_base.events[i] += x;
2218 }
2219 spin_unlock(&memcg->pcp_counter_lock);
2220}
2221
2222static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2223 unsigned long action,
2224 void *hcpu)
2225{
2226 int cpu = (unsigned long)hcpu;
2227 struct memcg_stock_pcp *stock;
2228 struct mem_cgroup *iter;
2229
2230 if (action == CPU_ONLINE)
2231 return NOTIFY_OK;
2232
2233 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2234 return NOTIFY_OK;
2235
2236 for_each_mem_cgroup(iter)
2237 mem_cgroup_drain_pcp_counter(iter, cpu);
2238
2239 stock = &per_cpu(memcg_stock, cpu);
2240 drain_stock(stock);
2241 return NOTIFY_OK;
2242}
2243
2244static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2245 unsigned int nr_pages)
2246{
2247 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2248 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2249 struct mem_cgroup *mem_over_limit;
2250 struct page_counter *counter;
2251 unsigned long nr_reclaimed;
2252 bool may_swap = true;
2253 bool drained = false;
2254 int ret = 0;
2255
2256 if (mem_cgroup_is_root(memcg))
2257 goto done;
2258retry:
2259 if (consume_stock(memcg, nr_pages))
2260 goto done;
2261
2262 if (!do_swap_account ||
2263 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2264 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2265 goto done_restock;
2266 if (do_swap_account)
2267 page_counter_uncharge(&memcg->memsw, batch);
2268 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2269 } else {
2270 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2271 may_swap = false;
2272 }
2273
2274 if (batch > nr_pages) {
2275 batch = nr_pages;
2276 goto retry;
2277 }
2278
2279 /*
2280 * Unlike in global OOM situations, memcg is not in a physical
2281 * memory shortage. Allow dying and OOM-killed tasks to
2282 * bypass the last charges so that they can exit quickly and
2283 * free their memory.
2284 */
2285 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2286 fatal_signal_pending(current) ||
2287 current->flags & PF_EXITING))
2288 goto bypass;
2289
2290 if (unlikely(task_in_memcg_oom(current)))
2291 goto nomem;
2292
2293 if (!(gfp_mask & __GFP_WAIT))
2294 goto nomem;
2295
2296 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2297 gfp_mask, may_swap);
2298
2299 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2300 goto retry;
2301
2302 if (!drained) {
2303 drain_all_stock(mem_over_limit);
2304 drained = true;
2305 goto retry;
2306 }
2307
2308 if (gfp_mask & __GFP_NORETRY)
2309 goto nomem;
2310 /*
2311 * Even though the limit is exceeded at this point, reclaim
2312 * may have been able to free some pages. Retry the charge
2313 * before killing the task.
2314 *
2315 * Only for regular pages, though: huge pages are rather
2316 * unlikely to succeed so close to the limit, and we fall back
2317 * to regular pages anyway in case of failure.
2318 */
2319 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2320 goto retry;
2321 /*
2322 * At task move, charge accounts can be doubly counted. So, it's
2323 * better to wait until the end of task_move if something is going on.
2324 */
2325 if (mem_cgroup_wait_acct_move(mem_over_limit))
2326 goto retry;
2327
2328 if (nr_retries--)
2329 goto retry;
2330
2331 if (gfp_mask & __GFP_NOFAIL)
2332 goto bypass;
2333
2334 if (fatal_signal_pending(current))
2335 goto bypass;
2336
2337 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2338nomem:
2339 if (!(gfp_mask & __GFP_NOFAIL))
2340 return -ENOMEM;
2341bypass:
2342 return -EINTR;
2343
2344done_restock:
2345 css_get_many(&memcg->css, batch);
2346 if (batch > nr_pages)
2347 refill_stock(memcg, batch - nr_pages);
2348done:
2349 return ret;
2350}
2351
2352static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2353{
2354 if (mem_cgroup_is_root(memcg))
2355 return;
2356
2357 page_counter_uncharge(&memcg->memory, nr_pages);
2358 if (do_swap_account)
2359 page_counter_uncharge(&memcg->memsw, nr_pages);
2360
2361 css_put_many(&memcg->css, nr_pages);
2362}
2363
2364/*
2365 * A helper function to get mem_cgroup from ID. must be called under
2366 * rcu_read_lock(). The caller is responsible for calling
2367 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2368 * refcnt from swap can be called against removed memcg.)
2369 */
2370static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2371{
2372 /* ID 0 is unused ID */
2373 if (!id)
2374 return NULL;
2375 return mem_cgroup_from_id(id);
2376}
2377
2378/*
2379 * try_get_mem_cgroup_from_page - look up page's memcg association
2380 * @page: the page
2381 *
2382 * Look up, get a css reference, and return the memcg that owns @page.
2383 *
2384 * The page must be locked to prevent racing with swap-in and page
2385 * cache charges. If coming from an unlocked page table, the caller
2386 * must ensure the page is on the LRU or this can race with charging.
2387 */
2388struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2389{
2390 struct mem_cgroup *memcg;
2391 unsigned short id;
2392 swp_entry_t ent;
2393
2394 VM_BUG_ON_PAGE(!PageLocked(page), page);
2395
2396 memcg = page->mem_cgroup;
2397 if (memcg) {
2398 if (!css_tryget_online(&memcg->css))
2399 memcg = NULL;
2400 } else if (PageSwapCache(page)) {
2401 ent.val = page_private(page);
2402 id = lookup_swap_cgroup_id(ent);
2403 rcu_read_lock();
2404 memcg = mem_cgroup_lookup(id);
2405 if (memcg && !css_tryget_online(&memcg->css))
2406 memcg = NULL;
2407 rcu_read_unlock();
2408 }
2409 return memcg;
2410}
2411
2412static void lock_page_lru(struct page *page, int *isolated)
2413{
2414 struct zone *zone = page_zone(page);
2415
2416 spin_lock_irq(&zone->lru_lock);
2417 if (PageLRU(page)) {
2418 struct lruvec *lruvec;
2419
2420 lruvec = mem_cgroup_page_lruvec(page, zone);
2421 ClearPageLRU(page);
2422 del_page_from_lru_list(page, lruvec, page_lru(page));
2423 *isolated = 1;
2424 } else
2425 *isolated = 0;
2426}
2427
2428static void unlock_page_lru(struct page *page, int isolated)
2429{
2430 struct zone *zone = page_zone(page);
2431
2432 if (isolated) {
2433 struct lruvec *lruvec;
2434
2435 lruvec = mem_cgroup_page_lruvec(page, zone);
2436 VM_BUG_ON_PAGE(PageLRU(page), page);
2437 SetPageLRU(page);
2438 add_page_to_lru_list(page, lruvec, page_lru(page));
2439 }
2440 spin_unlock_irq(&zone->lru_lock);
2441}
2442
2443static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2444 bool lrucare)
2445{
2446 int isolated;
2447
2448 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2449
2450 /*
2451 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2452 * may already be on some other mem_cgroup's LRU. Take care of it.
2453 */
2454 if (lrucare)
2455 lock_page_lru(page, &isolated);
2456
2457 /*
2458 * Nobody should be changing or seriously looking at
2459 * page->mem_cgroup at this point:
2460 *
2461 * - the page is uncharged
2462 *
2463 * - the page is off-LRU
2464 *
2465 * - an anonymous fault has exclusive page access, except for
2466 * a locked page table
2467 *
2468 * - a page cache insertion, a swapin fault, or a migration
2469 * have the page locked
2470 */
2471 page->mem_cgroup = memcg;
2472
2473 if (lrucare)
2474 unlock_page_lru(page, isolated);
2475}
2476
2477#ifdef CONFIG_MEMCG_KMEM
2478/*
2479 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2480 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2481 */
2482static DEFINE_MUTEX(memcg_slab_mutex);
2483
2484/*
2485 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2486 * in the memcg_cache_params struct.
2487 */
2488static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2489{
2490 struct kmem_cache *cachep;
2491
2492 VM_BUG_ON(p->is_root_cache);
2493 cachep = p->root_cache;
2494 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2495}
2496
2497static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2498 unsigned long nr_pages)
2499{
2500 struct page_counter *counter;
2501 int ret = 0;
2502
2503 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2504 if (ret < 0)
2505 return ret;
2506
2507 ret = try_charge(memcg, gfp, nr_pages);
2508 if (ret == -EINTR) {
2509 /*
2510 * try_charge() chose to bypass to root due to OOM kill or
2511 * fatal signal. Since our only options are to either fail
2512 * the allocation or charge it to this cgroup, do it as a
2513 * temporary condition. But we can't fail. From a kmem/slab
2514 * perspective, the cache has already been selected, by
2515 * mem_cgroup_kmem_get_cache(), so it is too late to change
2516 * our minds.
2517 *
2518 * This condition will only trigger if the task entered
2519 * memcg_charge_kmem in a sane state, but was OOM-killed
2520 * during try_charge() above. Tasks that were already dying
2521 * when the allocation triggers should have been already
2522 * directed to the root cgroup in memcontrol.h
2523 */
2524 page_counter_charge(&memcg->memory, nr_pages);
2525 if (do_swap_account)
2526 page_counter_charge(&memcg->memsw, nr_pages);
2527 css_get_many(&memcg->css, nr_pages);
2528 ret = 0;
2529 } else if (ret)
2530 page_counter_uncharge(&memcg->kmem, nr_pages);
2531
2532 return ret;
2533}
2534
2535static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
2536 unsigned long nr_pages)
2537{
2538 page_counter_uncharge(&memcg->memory, nr_pages);
2539 if (do_swap_account)
2540 page_counter_uncharge(&memcg->memsw, nr_pages);
2541
2542 page_counter_uncharge(&memcg->kmem, nr_pages);
2543
2544 css_put_many(&memcg->css, nr_pages);
2545}
2546
2547/*
2548 * helper for acessing a memcg's index. It will be used as an index in the
2549 * child cache array in kmem_cache, and also to derive its name. This function
2550 * will return -1 when this is not a kmem-limited memcg.
2551 */
2552int memcg_cache_id(struct mem_cgroup *memcg)
2553{
2554 return memcg ? memcg->kmemcg_id : -1;
2555}
2556
2557static int memcg_alloc_cache_id(void)
2558{
2559 int id, size;
2560 int err;
2561
2562 id = ida_simple_get(&kmem_limited_groups,
2563 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2564 if (id < 0)
2565 return id;
2566
2567 if (id < memcg_limited_groups_array_size)
2568 return id;
2569
2570 /*
2571 * There's no space for the new id in memcg_caches arrays,
2572 * so we have to grow them.
2573 */
2574
2575 size = 2 * (id + 1);
2576 if (size < MEMCG_CACHES_MIN_SIZE)
2577 size = MEMCG_CACHES_MIN_SIZE;
2578 else if (size > MEMCG_CACHES_MAX_SIZE)
2579 size = MEMCG_CACHES_MAX_SIZE;
2580
2581 mutex_lock(&memcg_slab_mutex);
2582 err = memcg_update_all_caches(size);
2583 mutex_unlock(&memcg_slab_mutex);
2584
2585 if (err) {
2586 ida_simple_remove(&kmem_limited_groups, id);
2587 return err;
2588 }
2589 return id;
2590}
2591
2592static void memcg_free_cache_id(int id)
2593{
2594 ida_simple_remove(&kmem_limited_groups, id);
2595}
2596
2597/*
2598 * We should update the current array size iff all caches updates succeed. This
2599 * can only be done from the slab side. The slab mutex needs to be held when
2600 * calling this.
2601 */
2602void memcg_update_array_size(int num)
2603{
2604 memcg_limited_groups_array_size = num;
2605}
2606
2607static void memcg_register_cache(struct mem_cgroup *memcg,
2608 struct kmem_cache *root_cache)
2609{
2610 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2611 memcg_slab_mutex */
2612 struct kmem_cache *cachep;
2613 int id;
2614
2615 lockdep_assert_held(&memcg_slab_mutex);
2616
2617 id = memcg_cache_id(memcg);
2618
2619 /*
2620 * Since per-memcg caches are created asynchronously on first
2621 * allocation (see memcg_kmem_get_cache()), several threads can try to
2622 * create the same cache, but only one of them may succeed.
2623 */
2624 if (cache_from_memcg_idx(root_cache, id))
2625 return;
2626
2627 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
2628 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2629 /*
2630 * If we could not create a memcg cache, do not complain, because
2631 * that's not critical at all as we can always proceed with the root
2632 * cache.
2633 */
2634 if (!cachep)
2635 return;
2636
2637 css_get(&memcg->css);
2638 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2639
2640 /*
2641 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2642 * barrier here to ensure nobody will see the kmem_cache partially
2643 * initialized.
2644 */
2645 smp_wmb();
2646
2647 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2648 root_cache->memcg_params->memcg_caches[id] = cachep;
2649}
2650
2651static void memcg_unregister_cache(struct kmem_cache *cachep)
2652{
2653 struct kmem_cache *root_cache;
2654 struct mem_cgroup *memcg;
2655 int id;
2656
2657 lockdep_assert_held(&memcg_slab_mutex);
2658
2659 BUG_ON(is_root_cache(cachep));
2660
2661 root_cache = cachep->memcg_params->root_cache;
2662 memcg = cachep->memcg_params->memcg;
2663 id = memcg_cache_id(memcg);
2664
2665 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
2666 root_cache->memcg_params->memcg_caches[id] = NULL;
2667
2668 list_del(&cachep->memcg_params->list);
2669
2670 kmem_cache_destroy(cachep);
2671
2672 /* drop the reference taken in memcg_register_cache */
2673 css_put(&memcg->css);
2674}
2675
2676int __memcg_cleanup_cache_params(struct kmem_cache *s)
2677{
2678 struct kmem_cache *c;
2679 int i, failed = 0;
2680
2681 mutex_lock(&memcg_slab_mutex);
2682 for_each_memcg_cache_index(i) {
2683 c = cache_from_memcg_idx(s, i);
2684 if (!c)
2685 continue;
2686
2687 memcg_unregister_cache(c);
2688
2689 if (cache_from_memcg_idx(s, i))
2690 failed++;
2691 }
2692 mutex_unlock(&memcg_slab_mutex);
2693 return failed;
2694}
2695
2696static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
2697{
2698 struct kmem_cache *cachep;
2699 struct memcg_cache_params *params, *tmp;
2700
2701 if (!memcg_kmem_is_active(memcg))
2702 return;
2703
2704 mutex_lock(&memcg_slab_mutex);
2705 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
2706 cachep = memcg_params_to_cache(params);
2707 kmem_cache_shrink(cachep);
2708 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
2709 memcg_unregister_cache(cachep);
2710 }
2711 mutex_unlock(&memcg_slab_mutex);
2712}
2713
2714struct memcg_register_cache_work {
2715 struct mem_cgroup *memcg;
2716 struct kmem_cache *cachep;
2717 struct work_struct work;
2718};
2719
2720static void memcg_register_cache_func(struct work_struct *w)
2721{
2722 struct memcg_register_cache_work *cw =
2723 container_of(w, struct memcg_register_cache_work, work);
2724 struct mem_cgroup *memcg = cw->memcg;
2725 struct kmem_cache *cachep = cw->cachep;
2726
2727 mutex_lock(&memcg_slab_mutex);
2728 memcg_register_cache(memcg, cachep);
2729 mutex_unlock(&memcg_slab_mutex);
2730
2731 css_put(&memcg->css);
2732 kfree(cw);
2733}
2734
2735/*
2736 * Enqueue the creation of a per-memcg kmem_cache.
2737 */
2738static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
2739 struct kmem_cache *cachep)
2740{
2741 struct memcg_register_cache_work *cw;
2742
2743 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2744 if (cw == NULL) {
2745 css_put(&memcg->css);
2746 return;
2747 }
2748
2749 cw->memcg = memcg;
2750 cw->cachep = cachep;
2751
2752 INIT_WORK(&cw->work, memcg_register_cache_func);
2753 schedule_work(&cw->work);
2754}
2755
2756static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
2757 struct kmem_cache *cachep)
2758{
2759 /*
2760 * We need to stop accounting when we kmalloc, because if the
2761 * corresponding kmalloc cache is not yet created, the first allocation
2762 * in __memcg_schedule_register_cache will recurse.
2763 *
2764 * However, it is better to enclose the whole function. Depending on
2765 * the debugging options enabled, INIT_WORK(), for instance, can
2766 * trigger an allocation. This too, will make us recurse. Because at
2767 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2768 * the safest choice is to do it like this, wrapping the whole function.
2769 */
2770 current->memcg_kmem_skip_account = 1;
2771 __memcg_schedule_register_cache(memcg, cachep);
2772 current->memcg_kmem_skip_account = 0;
2773}
2774
2775int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
2776{
2777 unsigned int nr_pages = 1 << order;
2778 int res;
2779
2780 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
2781 if (!res)
2782 atomic_add(nr_pages, &cachep->memcg_params->nr_pages);
2783 return res;
2784}
2785
2786void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
2787{
2788 unsigned int nr_pages = 1 << order;
2789
2790 memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
2791 atomic_sub(nr_pages, &cachep->memcg_params->nr_pages);
2792}
2793
2794/*
2795 * Return the kmem_cache we're supposed to use for a slab allocation.
2796 * We try to use the current memcg's version of the cache.
2797 *
2798 * If the cache does not exist yet, if we are the first user of it,
2799 * we either create it immediately, if possible, or create it asynchronously
2800 * in a workqueue.
2801 * In the latter case, we will let the current allocation go through with
2802 * the original cache.
2803 *
2804 * Can't be called in interrupt context or from kernel threads.
2805 * This function needs to be called with rcu_read_lock() held.
2806 */
2807struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
2808 gfp_t gfp)
2809{
2810 struct mem_cgroup *memcg;
2811 struct kmem_cache *memcg_cachep;
2812
2813 VM_BUG_ON(!cachep->memcg_params);
2814 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
2815
2816 if (current->memcg_kmem_skip_account)
2817 return cachep;
2818
2819 rcu_read_lock();
2820 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
2821
2822 if (!memcg_kmem_is_active(memcg))
2823 goto out;
2824
2825 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
2826 if (likely(memcg_cachep)) {
2827 cachep = memcg_cachep;
2828 goto out;
2829 }
2830
2831 /* The corresponding put will be done in the workqueue. */
2832 if (!css_tryget_online(&memcg->css))
2833 goto out;
2834 rcu_read_unlock();
2835
2836 /*
2837 * If we are in a safe context (can wait, and not in interrupt
2838 * context), we could be be predictable and return right away.
2839 * This would guarantee that the allocation being performed
2840 * already belongs in the new cache.
2841 *
2842 * However, there are some clashes that can arrive from locking.
2843 * For instance, because we acquire the slab_mutex while doing
2844 * memcg_create_kmem_cache, this means no further allocation
2845 * could happen with the slab_mutex held. So it's better to
2846 * defer everything.
2847 */
2848 memcg_schedule_register_cache(memcg, cachep);
2849 return cachep;
2850out:
2851 rcu_read_unlock();
2852 return cachep;
2853}
2854
2855/*
2856 * We need to verify if the allocation against current->mm->owner's memcg is
2857 * possible for the given order. But the page is not allocated yet, so we'll
2858 * need a further commit step to do the final arrangements.
2859 *
2860 * It is possible for the task to switch cgroups in this mean time, so at
2861 * commit time, we can't rely on task conversion any longer. We'll then use
2862 * the handle argument to return to the caller which cgroup we should commit
2863 * against. We could also return the memcg directly and avoid the pointer
2864 * passing, but a boolean return value gives better semantics considering
2865 * the compiled-out case as well.
2866 *
2867 * Returning true means the allocation is possible.
2868 */
2869bool
2870__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2871{
2872 struct mem_cgroup *memcg;
2873 int ret;
2874
2875 *_memcg = NULL;
2876
2877 memcg = get_mem_cgroup_from_mm(current->mm);
2878
2879 if (!memcg_kmem_is_active(memcg)) {
2880 css_put(&memcg->css);
2881 return true;
2882 }
2883
2884 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2885 if (!ret)
2886 *_memcg = memcg;
2887
2888 css_put(&memcg->css);
2889 return (ret == 0);
2890}
2891
2892void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2893 int order)
2894{
2895 VM_BUG_ON(mem_cgroup_is_root(memcg));
2896
2897 /* The page allocation failed. Revert */
2898 if (!page) {
2899 memcg_uncharge_kmem(memcg, 1 << order);
2900 return;
2901 }
2902 page->mem_cgroup = memcg;
2903}
2904
2905void __memcg_kmem_uncharge_pages(struct page *page, int order)
2906{
2907 struct mem_cgroup *memcg = page->mem_cgroup;
2908
2909 if (!memcg)
2910 return;
2911
2912 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2913
2914 memcg_uncharge_kmem(memcg, 1 << order);
2915 page->mem_cgroup = NULL;
2916}
2917#else
2918static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
2919{
2920}
2921#endif /* CONFIG_MEMCG_KMEM */
2922
2923#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2924
2925/*
2926 * Because tail pages are not marked as "used", set it. We're under
2927 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2928 * charge/uncharge will be never happen and move_account() is done under
2929 * compound_lock(), so we don't have to take care of races.
2930 */
2931void mem_cgroup_split_huge_fixup(struct page *head)
2932{
2933 int i;
2934
2935 if (mem_cgroup_disabled())
2936 return;
2937
2938 for (i = 1; i < HPAGE_PMD_NR; i++)
2939 head[i].mem_cgroup = head->mem_cgroup;
2940
2941 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2942 HPAGE_PMD_NR);
2943}
2944#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2945
2946/**
2947 * mem_cgroup_move_account - move account of the page
2948 * @page: the page
2949 * @nr_pages: number of regular pages (>1 for huge pages)
2950 * @from: mem_cgroup which the page is moved from.
2951 * @to: mem_cgroup which the page is moved to. @from != @to.
2952 *
2953 * The caller must confirm following.
2954 * - page is not on LRU (isolate_page() is useful.)
2955 * - compound_lock is held when nr_pages > 1
2956 *
2957 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2958 * from old cgroup.
2959 */
2960static int mem_cgroup_move_account(struct page *page,
2961 unsigned int nr_pages,
2962 struct mem_cgroup *from,
2963 struct mem_cgroup *to)
2964{
2965 unsigned long flags;
2966 int ret;
2967
2968 VM_BUG_ON(from == to);
2969 VM_BUG_ON_PAGE(PageLRU(page), page);
2970 /*
2971 * The page is isolated from LRU. So, collapse function
2972 * will not handle this page. But page splitting can happen.
2973 * Do this check under compound_page_lock(). The caller should
2974 * hold it.
2975 */
2976 ret = -EBUSY;
2977 if (nr_pages > 1 && !PageTransHuge(page))
2978 goto out;
2979
2980 /*
2981 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
2982 * of its source page while we change it: page migration takes
2983 * both pages off the LRU, but page cache replacement doesn't.
2984 */
2985 if (!trylock_page(page))
2986 goto out;
2987
2988 ret = -EINVAL;
2989 if (page->mem_cgroup != from)
2990 goto out_unlock;
2991
2992 spin_lock_irqsave(&from->move_lock, flags);
2993
2994 if (!PageAnon(page) && page_mapped(page)) {
2995 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
2996 nr_pages);
2997 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
2998 nr_pages);
2999 }
3000
3001 if (PageWriteback(page)) {
3002 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3003 nr_pages);
3004 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3005 nr_pages);
3006 }
3007
3008 /*
3009 * It is safe to change page->mem_cgroup here because the page
3010 * is referenced, charged, and isolated - we can't race with
3011 * uncharging, charging, migration, or LRU putback.
3012 */
3013
3014 /* caller should have done css_get */
3015 page->mem_cgroup = to;
3016 spin_unlock_irqrestore(&from->move_lock, flags);
3017
3018 ret = 0;
3019
3020 local_irq_disable();
3021 mem_cgroup_charge_statistics(to, page, nr_pages);
3022 memcg_check_events(to, page);
3023 mem_cgroup_charge_statistics(from, page, -nr_pages);
3024 memcg_check_events(from, page);
3025 local_irq_enable();
3026out_unlock:
3027 unlock_page(page);
3028out:
3029 return ret;
3030}
3031
3032#ifdef CONFIG_MEMCG_SWAP
3033static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3034 bool charge)
3035{
3036 int val = (charge) ? 1 : -1;
3037 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
3038}
3039
3040/**
3041 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3042 * @entry: swap entry to be moved
3043 * @from: mem_cgroup which the entry is moved from
3044 * @to: mem_cgroup which the entry is moved to
3045 *
3046 * It succeeds only when the swap_cgroup's record for this entry is the same
3047 * as the mem_cgroup's id of @from.
3048 *
3049 * Returns 0 on success, -EINVAL on failure.
3050 *
3051 * The caller must have charged to @to, IOW, called page_counter_charge() about
3052 * both res and memsw, and called css_get().
3053 */
3054static int mem_cgroup_move_swap_account(swp_entry_t entry,
3055 struct mem_cgroup *from, struct mem_cgroup *to)
3056{
3057 unsigned short old_id, new_id;
3058
3059 old_id = mem_cgroup_id(from);
3060 new_id = mem_cgroup_id(to);
3061
3062 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3063 mem_cgroup_swap_statistics(from, false);
3064 mem_cgroup_swap_statistics(to, true);
3065 /*
3066 * This function is only called from task migration context now.
3067 * It postpones page_counter and refcount handling till the end
3068 * of task migration(mem_cgroup_clear_mc()) for performance
3069 * improvement. But we cannot postpone css_get(to) because if
3070 * the process that has been moved to @to does swap-in, the
3071 * refcount of @to might be decreased to 0.
3072 *
3073 * We are in attach() phase, so the cgroup is guaranteed to be
3074 * alive, so we can just call css_get().
3075 */
3076 css_get(&to->css);
3077 return 0;
3078 }
3079 return -EINVAL;
3080}
3081#else
3082static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3083 struct mem_cgroup *from, struct mem_cgroup *to)
3084{
3085 return -EINVAL;
3086}
3087#endif
3088
3089static DEFINE_MUTEX(memcg_limit_mutex);
3090
3091static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3092 unsigned long limit)
3093{
3094 unsigned long curusage;
3095 unsigned long oldusage;
3096 bool enlarge = false;
3097 int retry_count;
3098 int ret;
3099
3100 /*
3101 * For keeping hierarchical_reclaim simple, how long we should retry
3102 * is depends on callers. We set our retry-count to be function
3103 * of # of children which we should visit in this loop.
3104 */
3105 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3106 mem_cgroup_count_children(memcg);
3107
3108 oldusage = page_counter_read(&memcg->memory);
3109
3110 do {
3111 if (signal_pending(current)) {
3112 ret = -EINTR;
3113 break;
3114 }
3115
3116 mutex_lock(&memcg_limit_mutex);
3117 if (limit > memcg->memsw.limit) {
3118 mutex_unlock(&memcg_limit_mutex);
3119 ret = -EINVAL;
3120 break;
3121 }
3122 if (limit > memcg->memory.limit)
3123 enlarge = true;
3124 ret = page_counter_limit(&memcg->memory, limit);
3125 mutex_unlock(&memcg_limit_mutex);
3126
3127 if (!ret)
3128 break;
3129
3130 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
3131
3132 curusage = page_counter_read(&memcg->memory);
3133 /* Usage is reduced ? */
3134 if (curusage >= oldusage)
3135 retry_count--;
3136 else
3137 oldusage = curusage;
3138 } while (retry_count);
3139
3140 if (!ret && enlarge)
3141 memcg_oom_recover(memcg);
3142
3143 return ret;
3144}
3145
3146static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3147 unsigned long limit)
3148{
3149 unsigned long curusage;
3150 unsigned long oldusage;
3151 bool enlarge = false;
3152 int retry_count;
3153 int ret;
3154
3155 /* see mem_cgroup_resize_res_limit */
3156 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3157 mem_cgroup_count_children(memcg);
3158
3159 oldusage = page_counter_read(&memcg->memsw);
3160
3161 do {
3162 if (signal_pending(current)) {
3163 ret = -EINTR;
3164 break;
3165 }
3166
3167 mutex_lock(&memcg_limit_mutex);
3168 if (limit < memcg->memory.limit) {
3169 mutex_unlock(&memcg_limit_mutex);
3170 ret = -EINVAL;
3171 break;
3172 }
3173 if (limit > memcg->memsw.limit)
3174 enlarge = true;
3175 ret = page_counter_limit(&memcg->memsw, limit);
3176 mutex_unlock(&memcg_limit_mutex);
3177
3178 if (!ret)
3179 break;
3180
3181 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3182
3183 curusage = page_counter_read(&memcg->memsw);
3184 /* Usage is reduced ? */
3185 if (curusage >= oldusage)
3186 retry_count--;
3187 else
3188 oldusage = curusage;
3189 } while (retry_count);
3190
3191 if (!ret && enlarge)
3192 memcg_oom_recover(memcg);
3193
3194 return ret;
3195}
3196
3197unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3198 gfp_t gfp_mask,
3199 unsigned long *total_scanned)
3200{
3201 unsigned long nr_reclaimed = 0;
3202 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3203 unsigned long reclaimed;
3204 int loop = 0;
3205 struct mem_cgroup_tree_per_zone *mctz;
3206 unsigned long excess;
3207 unsigned long nr_scanned;
3208
3209 if (order > 0)
3210 return 0;
3211
3212 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3213 /*
3214 * This loop can run a while, specially if mem_cgroup's continuously
3215 * keep exceeding their soft limit and putting the system under
3216 * pressure
3217 */
3218 do {
3219 if (next_mz)
3220 mz = next_mz;
3221 else
3222 mz = mem_cgroup_largest_soft_limit_node(mctz);
3223 if (!mz)
3224 break;
3225
3226 nr_scanned = 0;
3227 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3228 gfp_mask, &nr_scanned);
3229 nr_reclaimed += reclaimed;
3230 *total_scanned += nr_scanned;
3231 spin_lock_irq(&mctz->lock);
3232 __mem_cgroup_remove_exceeded(mz, mctz);
3233
3234 /*
3235 * If we failed to reclaim anything from this memory cgroup
3236 * it is time to move on to the next cgroup
3237 */
3238 next_mz = NULL;
3239 if (!reclaimed)
3240 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3241
3242 excess = soft_limit_excess(mz->memcg);
3243 /*
3244 * One school of thought says that we should not add
3245 * back the node to the tree if reclaim returns 0.
3246 * But our reclaim could return 0, simply because due
3247 * to priority we are exposing a smaller subset of
3248 * memory to reclaim from. Consider this as a longer
3249 * term TODO.
3250 */
3251 /* If excess == 0, no tree ops */
3252 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3253 spin_unlock_irq(&mctz->lock);
3254 css_put(&mz->memcg->css);
3255 loop++;
3256 /*
3257 * Could not reclaim anything and there are no more
3258 * mem cgroups to try or we seem to be looping without
3259 * reclaiming anything.
3260 */
3261 if (!nr_reclaimed &&
3262 (next_mz == NULL ||
3263 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3264 break;
3265 } while (!nr_reclaimed);
3266 if (next_mz)
3267 css_put(&next_mz->memcg->css);
3268 return nr_reclaimed;
3269}
3270
3271/*
3272 * Test whether @memcg has children, dead or alive. Note that this
3273 * function doesn't care whether @memcg has use_hierarchy enabled and
3274 * returns %true if there are child csses according to the cgroup
3275 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3276 */
3277static inline bool memcg_has_children(struct mem_cgroup *memcg)
3278{
3279 bool ret;
3280
3281 /*
3282 * The lock does not prevent addition or deletion of children, but
3283 * it prevents a new child from being initialized based on this
3284 * parent in css_online(), so it's enough to decide whether
3285 * hierarchically inherited attributes can still be changed or not.
3286 */
3287 lockdep_assert_held(&memcg_create_mutex);
3288
3289 rcu_read_lock();
3290 ret = css_next_child(NULL, &memcg->css);
3291 rcu_read_unlock();
3292 return ret;
3293}
3294
3295/*
3296 * Reclaims as many pages from the given memcg as possible and moves
3297 * the rest to the parent.
3298 *
3299 * Caller is responsible for holding css reference for memcg.
3300 */
3301static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3302{
3303 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3304
3305 /* we call try-to-free pages for make this cgroup empty */
3306 lru_add_drain_all();
3307 /* try to free all pages in this cgroup */
3308 while (nr_retries && page_counter_read(&memcg->memory)) {
3309 int progress;
3310
3311 if (signal_pending(current))
3312 return -EINTR;
3313
3314 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3315 GFP_KERNEL, true);
3316 if (!progress) {
3317 nr_retries--;
3318 /* maybe some writeback is necessary */
3319 congestion_wait(BLK_RW_ASYNC, HZ/10);
3320 }
3321
3322 }
3323
3324 return 0;
3325}
3326
3327static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3328 char *buf, size_t nbytes,
3329 loff_t off)
3330{
3331 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3332
3333 if (mem_cgroup_is_root(memcg))
3334 return -EINVAL;
3335 return mem_cgroup_force_empty(memcg) ?: nbytes;
3336}
3337
3338static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3339 struct cftype *cft)
3340{
3341 return mem_cgroup_from_css(css)->use_hierarchy;
3342}
3343
3344static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3345 struct cftype *cft, u64 val)
3346{
3347 int retval = 0;
3348 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3349 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3350
3351 mutex_lock(&memcg_create_mutex);
3352
3353 if (memcg->use_hierarchy == val)
3354 goto out;
3355
3356 /*
3357 * If parent's use_hierarchy is set, we can't make any modifications
3358 * in the child subtrees. If it is unset, then the change can
3359 * occur, provided the current cgroup has no children.
3360 *
3361 * For the root cgroup, parent_mem is NULL, we allow value to be
3362 * set if there are no children.
3363 */
3364 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3365 (val == 1 || val == 0)) {
3366 if (!memcg_has_children(memcg))
3367 memcg->use_hierarchy = val;
3368 else
3369 retval = -EBUSY;
3370 } else
3371 retval = -EINVAL;
3372
3373out:
3374 mutex_unlock(&memcg_create_mutex);
3375
3376 return retval;
3377}
3378
3379static unsigned long tree_stat(struct mem_cgroup *memcg,
3380 enum mem_cgroup_stat_index idx)
3381{
3382 struct mem_cgroup *iter;
3383 long val = 0;
3384
3385 /* Per-cpu values can be negative, use a signed accumulator */
3386 for_each_mem_cgroup_tree(iter, memcg)
3387 val += mem_cgroup_read_stat(iter, idx);
3388
3389 if (val < 0) /* race ? */
3390 val = 0;
3391 return val;
3392}
3393
3394static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3395{
3396 u64 val;
3397
3398 if (mem_cgroup_is_root(memcg)) {
3399 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3400 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3401 if (swap)
3402 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3403 } else {
3404 if (!swap)
3405 val = page_counter_read(&memcg->memory);
3406 else
3407 val = page_counter_read(&memcg->memsw);
3408 }
3409 return val << PAGE_SHIFT;
3410}
3411
3412enum {
3413 RES_USAGE,
3414 RES_LIMIT,
3415 RES_MAX_USAGE,
3416 RES_FAILCNT,
3417 RES_SOFT_LIMIT,
3418};
3419
3420static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3421 struct cftype *cft)
3422{
3423 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3424 struct page_counter *counter;
3425
3426 switch (MEMFILE_TYPE(cft->private)) {
3427 case _MEM:
3428 counter = &memcg->memory;
3429 break;
3430 case _MEMSWAP:
3431 counter = &memcg->memsw;
3432 break;
3433 case _KMEM:
3434 counter = &memcg->kmem;
3435 break;
3436 default:
3437 BUG();
3438 }
3439
3440 switch (MEMFILE_ATTR(cft->private)) {
3441 case RES_USAGE:
3442 if (counter == &memcg->memory)
3443 return mem_cgroup_usage(memcg, false);
3444 if (counter == &memcg->memsw)
3445 return mem_cgroup_usage(memcg, true);
3446 return (u64)page_counter_read(counter) * PAGE_SIZE;
3447 case RES_LIMIT:
3448 return (u64)counter->limit * PAGE_SIZE;
3449 case RES_MAX_USAGE:
3450 return (u64)counter->watermark * PAGE_SIZE;
3451 case RES_FAILCNT:
3452 return counter->failcnt;
3453 case RES_SOFT_LIMIT:
3454 return (u64)memcg->soft_limit * PAGE_SIZE;
3455 default:
3456 BUG();
3457 }
3458}
3459
3460#ifdef CONFIG_MEMCG_KMEM
3461static int memcg_activate_kmem(struct mem_cgroup *memcg,
3462 unsigned long nr_pages)
3463{
3464 int err = 0;
3465 int memcg_id;
3466
3467 if (memcg_kmem_is_active(memcg))
3468 return 0;
3469
3470 /*
3471 * For simplicity, we won't allow this to be disabled. It also can't
3472 * be changed if the cgroup has children already, or if tasks had
3473 * already joined.
3474 *
3475 * If tasks join before we set the limit, a person looking at
3476 * kmem.usage_in_bytes will have no way to determine when it took
3477 * place, which makes the value quite meaningless.
3478 *
3479 * After it first became limited, changes in the value of the limit are
3480 * of course permitted.
3481 */
3482 mutex_lock(&memcg_create_mutex);
3483 if (cgroup_has_tasks(memcg->css.cgroup) ||
3484 (memcg->use_hierarchy && memcg_has_children(memcg)))
3485 err = -EBUSY;
3486 mutex_unlock(&memcg_create_mutex);
3487 if (err)
3488 goto out;
3489
3490 memcg_id = memcg_alloc_cache_id();
3491 if (memcg_id < 0) {
3492 err = memcg_id;
3493 goto out;
3494 }
3495
3496 /*
3497 * We couldn't have accounted to this cgroup, because it hasn't got
3498 * activated yet, so this should succeed.
3499 */
3500 err = page_counter_limit(&memcg->kmem, nr_pages);
3501 VM_BUG_ON(err);
3502
3503 static_key_slow_inc(&memcg_kmem_enabled_key);
3504 /*
3505 * A memory cgroup is considered kmem-active as soon as it gets
3506 * kmemcg_id. Setting the id after enabling static branching will
3507 * guarantee no one starts accounting before all call sites are
3508 * patched.
3509 */
3510 memcg->kmemcg_id = memcg_id;
3511out:
3512 return err;
3513}
3514
3515static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3516 unsigned long limit)
3517{
3518 int ret;
3519
3520 mutex_lock(&memcg_limit_mutex);
3521 if (!memcg_kmem_is_active(memcg))
3522 ret = memcg_activate_kmem(memcg, limit);
3523 else
3524 ret = page_counter_limit(&memcg->kmem, limit);
3525 mutex_unlock(&memcg_limit_mutex);
3526 return ret;
3527}
3528
3529static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3530{
3531 int ret = 0;
3532 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3533
3534 if (!parent)
3535 return 0;
3536
3537 mutex_lock(&memcg_limit_mutex);
3538 /*
3539 * If the parent cgroup is not kmem-active now, it cannot be activated
3540 * after this point, because it has at least one child already.
3541 */
3542 if (memcg_kmem_is_active(parent))
3543 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3544 mutex_unlock(&memcg_limit_mutex);
3545 return ret;
3546}
3547#else
3548static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3549 unsigned long limit)
3550{
3551 return -EINVAL;
3552}
3553#endif /* CONFIG_MEMCG_KMEM */
3554
3555/*
3556 * The user of this function is...
3557 * RES_LIMIT.
3558 */
3559static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3560 char *buf, size_t nbytes, loff_t off)
3561{
3562 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3563 unsigned long nr_pages;
3564 int ret;
3565
3566 buf = strstrip(buf);
3567 ret = page_counter_memparse(buf, &nr_pages);
3568 if (ret)
3569 return ret;
3570
3571 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3572 case RES_LIMIT:
3573 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3574 ret = -EINVAL;
3575 break;
3576 }
3577 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3578 case _MEM:
3579 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3580 break;
3581 case _MEMSWAP:
3582 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3583 break;
3584 case _KMEM:
3585 ret = memcg_update_kmem_limit(memcg, nr_pages);
3586 break;
3587 }
3588 break;
3589 case RES_SOFT_LIMIT:
3590 memcg->soft_limit = nr_pages;
3591 ret = 0;
3592 break;
3593 }
3594 return ret ?: nbytes;
3595}
3596
3597static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3598 size_t nbytes, loff_t off)
3599{
3600 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3601 struct page_counter *counter;
3602
3603 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3604 case _MEM:
3605 counter = &memcg->memory;
3606 break;
3607 case _MEMSWAP:
3608 counter = &memcg->memsw;
3609 break;
3610 case _KMEM:
3611 counter = &memcg->kmem;
3612 break;
3613 default:
3614 BUG();
3615 }
3616
3617 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3618 case RES_MAX_USAGE:
3619 page_counter_reset_watermark(counter);
3620 break;
3621 case RES_FAILCNT:
3622 counter->failcnt = 0;
3623 break;
3624 default:
3625 BUG();
3626 }
3627
3628 return nbytes;
3629}
3630
3631static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3632 struct cftype *cft)
3633{
3634 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3635}
3636
3637#ifdef CONFIG_MMU
3638static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3639 struct cftype *cft, u64 val)
3640{
3641 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3642
3643 if (val >= (1 << NR_MOVE_TYPE))
3644 return -EINVAL;
3645
3646 /*
3647 * No kind of locking is needed in here, because ->can_attach() will
3648 * check this value once in the beginning of the process, and then carry
3649 * on with stale data. This means that changes to this value will only
3650 * affect task migrations starting after the change.
3651 */
3652 memcg->move_charge_at_immigrate = val;
3653 return 0;
3654}
3655#else
3656static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3657 struct cftype *cft, u64 val)
3658{
3659 return -ENOSYS;
3660}
3661#endif
3662
3663#ifdef CONFIG_NUMA
3664static int memcg_numa_stat_show(struct seq_file *m, void *v)
3665{
3666 struct numa_stat {
3667 const char *name;
3668 unsigned int lru_mask;
3669 };
3670
3671 static const struct numa_stat stats[] = {
3672 { "total", LRU_ALL },
3673 { "file", LRU_ALL_FILE },
3674 { "anon", LRU_ALL_ANON },
3675 { "unevictable", BIT(LRU_UNEVICTABLE) },
3676 };
3677 const struct numa_stat *stat;
3678 int nid;
3679 unsigned long nr;
3680 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3681
3682 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3683 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3684 seq_printf(m, "%s=%lu", stat->name, nr);
3685 for_each_node_state(nid, N_MEMORY) {
3686 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3687 stat->lru_mask);
3688 seq_printf(m, " N%d=%lu", nid, nr);
3689 }
3690 seq_putc(m, '\n');
3691 }
3692
3693 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3694 struct mem_cgroup *iter;
3695
3696 nr = 0;
3697 for_each_mem_cgroup_tree(iter, memcg)
3698 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3699 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3700 for_each_node_state(nid, N_MEMORY) {
3701 nr = 0;
3702 for_each_mem_cgroup_tree(iter, memcg)
3703 nr += mem_cgroup_node_nr_lru_pages(
3704 iter, nid, stat->lru_mask);
3705 seq_printf(m, " N%d=%lu", nid, nr);
3706 }
3707 seq_putc(m, '\n');
3708 }
3709
3710 return 0;
3711}
3712#endif /* CONFIG_NUMA */
3713
3714static inline void mem_cgroup_lru_names_not_uptodate(void)
3715{
3716 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3717}
3718
3719static int memcg_stat_show(struct seq_file *m, void *v)
3720{
3721 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3722 unsigned long memory, memsw;
3723 struct mem_cgroup *mi;
3724 unsigned int i;
3725
3726 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3727 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3728 continue;
3729 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3730 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3731 }
3732
3733 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3734 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3735 mem_cgroup_read_events(memcg, i));
3736
3737 for (i = 0; i < NR_LRU_LISTS; i++)
3738 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3739 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3740
3741 /* Hierarchical information */
3742 memory = memsw = PAGE_COUNTER_MAX;
3743 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3744 memory = min(memory, mi->memory.limit);
3745 memsw = min(memsw, mi->memsw.limit);
3746 }
3747 seq_printf(m, "hierarchical_memory_limit %llu\n",
3748 (u64)memory * PAGE_SIZE);
3749 if (do_swap_account)
3750 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3751 (u64)memsw * PAGE_SIZE);
3752
3753 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3754 long long val = 0;
3755
3756 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3757 continue;
3758 for_each_mem_cgroup_tree(mi, memcg)
3759 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3760 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3761 }
3762
3763 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3764 unsigned long long val = 0;
3765
3766 for_each_mem_cgroup_tree(mi, memcg)
3767 val += mem_cgroup_read_events(mi, i);
3768 seq_printf(m, "total_%s %llu\n",
3769 mem_cgroup_events_names[i], val);
3770 }
3771
3772 for (i = 0; i < NR_LRU_LISTS; i++) {
3773 unsigned long long val = 0;
3774
3775 for_each_mem_cgroup_tree(mi, memcg)
3776 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3777 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3778 }
3779
3780#ifdef CONFIG_DEBUG_VM
3781 {
3782 int nid, zid;
3783 struct mem_cgroup_per_zone *mz;
3784 struct zone_reclaim_stat *rstat;
3785 unsigned long recent_rotated[2] = {0, 0};
3786 unsigned long recent_scanned[2] = {0, 0};
3787
3788 for_each_online_node(nid)
3789 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3790 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3791 rstat = &mz->lruvec.reclaim_stat;
3792
3793 recent_rotated[0] += rstat->recent_rotated[0];
3794 recent_rotated[1] += rstat->recent_rotated[1];
3795 recent_scanned[0] += rstat->recent_scanned[0];
3796 recent_scanned[1] += rstat->recent_scanned[1];
3797 }
3798 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3799 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3800 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3801 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3802 }
3803#endif
3804
3805 return 0;
3806}
3807
3808static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3809 struct cftype *cft)
3810{
3811 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3812
3813 return mem_cgroup_swappiness(memcg);
3814}
3815
3816static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3817 struct cftype *cft, u64 val)
3818{
3819 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3820
3821 if (val > 100)
3822 return -EINVAL;
3823
3824 if (css->parent)
3825 memcg->swappiness = val;
3826 else
3827 vm_swappiness = val;
3828
3829 return 0;
3830}
3831
3832static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3833{
3834 struct mem_cgroup_threshold_ary *t;
3835 unsigned long usage;
3836 int i;
3837
3838 rcu_read_lock();
3839 if (!swap)
3840 t = rcu_dereference(memcg->thresholds.primary);
3841 else
3842 t = rcu_dereference(memcg->memsw_thresholds.primary);
3843
3844 if (!t)
3845 goto unlock;
3846
3847 usage = mem_cgroup_usage(memcg, swap);
3848
3849 /*
3850 * current_threshold points to threshold just below or equal to usage.
3851 * If it's not true, a threshold was crossed after last
3852 * call of __mem_cgroup_threshold().
3853 */
3854 i = t->current_threshold;
3855
3856 /*
3857 * Iterate backward over array of thresholds starting from
3858 * current_threshold and check if a threshold is crossed.
3859 * If none of thresholds below usage is crossed, we read
3860 * only one element of the array here.
3861 */
3862 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3863 eventfd_signal(t->entries[i].eventfd, 1);
3864
3865 /* i = current_threshold + 1 */
3866 i++;
3867
3868 /*
3869 * Iterate forward over array of thresholds starting from
3870 * current_threshold+1 and check if a threshold is crossed.
3871 * If none of thresholds above usage is crossed, we read
3872 * only one element of the array here.
3873 */
3874 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3875 eventfd_signal(t->entries[i].eventfd, 1);
3876
3877 /* Update current_threshold */
3878 t->current_threshold = i - 1;
3879unlock:
3880 rcu_read_unlock();
3881}
3882
3883static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3884{
3885 while (memcg) {
3886 __mem_cgroup_threshold(memcg, false);
3887 if (do_swap_account)
3888 __mem_cgroup_threshold(memcg, true);
3889
3890 memcg = parent_mem_cgroup(memcg);
3891 }
3892}
3893
3894static int compare_thresholds(const void *a, const void *b)
3895{
3896 const struct mem_cgroup_threshold *_a = a;
3897 const struct mem_cgroup_threshold *_b = b;
3898
3899 if (_a->threshold > _b->threshold)
3900 return 1;
3901
3902 if (_a->threshold < _b->threshold)
3903 return -1;
3904
3905 return 0;
3906}
3907
3908static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3909{
3910 struct mem_cgroup_eventfd_list *ev;
3911
3912 spin_lock(&memcg_oom_lock);
3913
3914 list_for_each_entry(ev, &memcg->oom_notify, list)
3915 eventfd_signal(ev->eventfd, 1);
3916
3917 spin_unlock(&memcg_oom_lock);
3918 return 0;
3919}
3920
3921static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3922{
3923 struct mem_cgroup *iter;
3924
3925 for_each_mem_cgroup_tree(iter, memcg)
3926 mem_cgroup_oom_notify_cb(iter);
3927}
3928
3929static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3930 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3931{
3932 struct mem_cgroup_thresholds *thresholds;
3933 struct mem_cgroup_threshold_ary *new;
3934 unsigned long threshold;
3935 unsigned long usage;
3936 int i, size, ret;
3937
3938 ret = page_counter_memparse(args, &threshold);
3939 if (ret)
3940 return ret;
3941
3942 mutex_lock(&memcg->thresholds_lock);
3943
3944 if (type == _MEM) {
3945 thresholds = &memcg->thresholds;
3946 usage = mem_cgroup_usage(memcg, false);
3947 } else if (type == _MEMSWAP) {
3948 thresholds = &memcg->memsw_thresholds;
3949 usage = mem_cgroup_usage(memcg, true);
3950 } else
3951 BUG();
3952
3953 /* Check if a threshold crossed before adding a new one */
3954 if (thresholds->primary)
3955 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3956
3957 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3958
3959 /* Allocate memory for new array of thresholds */
3960 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3961 GFP_KERNEL);
3962 if (!new) {
3963 ret = -ENOMEM;
3964 goto unlock;
3965 }
3966 new->size = size;
3967
3968 /* Copy thresholds (if any) to new array */
3969 if (thresholds->primary) {
3970 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3971 sizeof(struct mem_cgroup_threshold));
3972 }
3973
3974 /* Add new threshold */
3975 new->entries[size - 1].eventfd = eventfd;
3976 new->entries[size - 1].threshold = threshold;
3977
3978 /* Sort thresholds. Registering of new threshold isn't time-critical */
3979 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3980 compare_thresholds, NULL);
3981
3982 /* Find current threshold */
3983 new->current_threshold = -1;
3984 for (i = 0; i < size; i++) {
3985 if (new->entries[i].threshold <= usage) {
3986 /*
3987 * new->current_threshold will not be used until
3988 * rcu_assign_pointer(), so it's safe to increment
3989 * it here.
3990 */
3991 ++new->current_threshold;
3992 } else
3993 break;
3994 }
3995
3996 /* Free old spare buffer and save old primary buffer as spare */
3997 kfree(thresholds->spare);
3998 thresholds->spare = thresholds->primary;
3999
4000 rcu_assign_pointer(thresholds->primary, new);
4001
4002 /* To be sure that nobody uses thresholds */
4003 synchronize_rcu();
4004
4005unlock:
4006 mutex_unlock(&memcg->thresholds_lock);
4007
4008 return ret;
4009}
4010
4011static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4012 struct eventfd_ctx *eventfd, const char *args)
4013{
4014 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4015}
4016
4017static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4018 struct eventfd_ctx *eventfd, const char *args)
4019{
4020 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4021}
4022
4023static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4024 struct eventfd_ctx *eventfd, enum res_type type)
4025{
4026 struct mem_cgroup_thresholds *thresholds;
4027 struct mem_cgroup_threshold_ary *new;
4028 unsigned long usage;
4029 int i, j, size;
4030
4031 mutex_lock(&memcg->thresholds_lock);
4032
4033 if (type == _MEM) {
4034 thresholds = &memcg->thresholds;
4035 usage = mem_cgroup_usage(memcg, false);
4036 } else if (type == _MEMSWAP) {
4037 thresholds = &memcg->memsw_thresholds;
4038 usage = mem_cgroup_usage(memcg, true);
4039 } else
4040 BUG();
4041
4042 if (!thresholds->primary)
4043 goto unlock;
4044
4045 /* Check if a threshold crossed before removing */
4046 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4047
4048 /* Calculate new number of threshold */
4049 size = 0;
4050 for (i = 0; i < thresholds->primary->size; i++) {
4051 if (thresholds->primary->entries[i].eventfd != eventfd)
4052 size++;
4053 }
4054
4055 new = thresholds->spare;
4056
4057 /* Set thresholds array to NULL if we don't have thresholds */
4058 if (!size) {
4059 kfree(new);
4060 new = NULL;
4061 goto swap_buffers;
4062 }
4063
4064 new->size = size;
4065
4066 /* Copy thresholds and find current threshold */
4067 new->current_threshold = -1;
4068 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4069 if (thresholds->primary->entries[i].eventfd == eventfd)
4070 continue;
4071
4072 new->entries[j] = thresholds->primary->entries[i];
4073 if (new->entries[j].threshold <= usage) {
4074 /*
4075 * new->current_threshold will not be used
4076 * until rcu_assign_pointer(), so it's safe to increment
4077 * it here.
4078 */
4079 ++new->current_threshold;
4080 }
4081 j++;
4082 }
4083
4084swap_buffers:
4085 /* Swap primary and spare array */
4086 thresholds->spare = thresholds->primary;
4087 /* If all events are unregistered, free the spare array */
4088 if (!new) {
4089 kfree(thresholds->spare);
4090 thresholds->spare = NULL;
4091 }
4092
4093 rcu_assign_pointer(thresholds->primary, new);
4094
4095 /* To be sure that nobody uses thresholds */
4096 synchronize_rcu();
4097unlock:
4098 mutex_unlock(&memcg->thresholds_lock);
4099}
4100
4101static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4102 struct eventfd_ctx *eventfd)
4103{
4104 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4105}
4106
4107static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4108 struct eventfd_ctx *eventfd)
4109{
4110 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4111}
4112
4113static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4114 struct eventfd_ctx *eventfd, const char *args)
4115{
4116 struct mem_cgroup_eventfd_list *event;
4117
4118 event = kmalloc(sizeof(*event), GFP_KERNEL);
4119 if (!event)
4120 return -ENOMEM;
4121
4122 spin_lock(&memcg_oom_lock);
4123
4124 event->eventfd = eventfd;
4125 list_add(&event->list, &memcg->oom_notify);
4126
4127 /* already in OOM ? */
4128 if (atomic_read(&memcg->under_oom))
4129 eventfd_signal(eventfd, 1);
4130 spin_unlock(&memcg_oom_lock);
4131
4132 return 0;
4133}
4134
4135static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4136 struct eventfd_ctx *eventfd)
4137{
4138 struct mem_cgroup_eventfd_list *ev, *tmp;
4139
4140 spin_lock(&memcg_oom_lock);
4141
4142 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4143 if (ev->eventfd == eventfd) {
4144 list_del(&ev->list);
4145 kfree(ev);
4146 }
4147 }
4148
4149 spin_unlock(&memcg_oom_lock);
4150}
4151
4152static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4153{
4154 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4155
4156 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4157 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4158 return 0;
4159}
4160
4161static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4162 struct cftype *cft, u64 val)
4163{
4164 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4165
4166 /* cannot set to root cgroup and only 0 and 1 are allowed */
4167 if (!css->parent || !((val == 0) || (val == 1)))
4168 return -EINVAL;
4169
4170 memcg->oom_kill_disable = val;
4171 if (!val)
4172 memcg_oom_recover(memcg);
4173
4174 return 0;
4175}
4176
4177#ifdef CONFIG_MEMCG_KMEM
4178static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4179{
4180 int ret;
4181
4182 ret = memcg_propagate_kmem(memcg);
4183 if (ret)
4184 return ret;
4185
4186 return mem_cgroup_sockets_init(memcg, ss);
4187}
4188
4189static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4190{
4191 mem_cgroup_sockets_destroy(memcg);
4192}
4193#else
4194static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4195{
4196 return 0;
4197}
4198
4199static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4200{
4201}
4202#endif
4203
4204/*
4205 * DO NOT USE IN NEW FILES.
4206 *
4207 * "cgroup.event_control" implementation.
4208 *
4209 * This is way over-engineered. It tries to support fully configurable
4210 * events for each user. Such level of flexibility is completely
4211 * unnecessary especially in the light of the planned unified hierarchy.
4212 *
4213 * Please deprecate this and replace with something simpler if at all
4214 * possible.
4215 */
4216
4217/*
4218 * Unregister event and free resources.
4219 *
4220 * Gets called from workqueue.
4221 */
4222static void memcg_event_remove(struct work_struct *work)
4223{
4224 struct mem_cgroup_event *event =
4225 container_of(work, struct mem_cgroup_event, remove);
4226 struct mem_cgroup *memcg = event->memcg;
4227
4228 remove_wait_queue(event->wqh, &event->wait);
4229
4230 event->unregister_event(memcg, event->eventfd);
4231
4232 /* Notify userspace the event is going away. */
4233 eventfd_signal(event->eventfd, 1);
4234
4235 eventfd_ctx_put(event->eventfd);
4236 kfree(event);
4237 css_put(&memcg->css);
4238}
4239
4240/*
4241 * Gets called on POLLHUP on eventfd when user closes it.
4242 *
4243 * Called with wqh->lock held and interrupts disabled.
4244 */
4245static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4246 int sync, void *key)
4247{
4248 struct mem_cgroup_event *event =
4249 container_of(wait, struct mem_cgroup_event, wait);
4250 struct mem_cgroup *memcg = event->memcg;
4251 unsigned long flags = (unsigned long)key;
4252
4253 if (flags & POLLHUP) {
4254 /*
4255 * If the event has been detached at cgroup removal, we
4256 * can simply return knowing the other side will cleanup
4257 * for us.
4258 *
4259 * We can't race against event freeing since the other
4260 * side will require wqh->lock via remove_wait_queue(),
4261 * which we hold.
4262 */
4263 spin_lock(&memcg->event_list_lock);
4264 if (!list_empty(&event->list)) {
4265 list_del_init(&event->list);
4266 /*
4267 * We are in atomic context, but cgroup_event_remove()
4268 * may sleep, so we have to call it in workqueue.
4269 */
4270 schedule_work(&event->remove);
4271 }
4272 spin_unlock(&memcg->event_list_lock);
4273 }
4274
4275 return 0;
4276}
4277
4278static void memcg_event_ptable_queue_proc(struct file *file,
4279 wait_queue_head_t *wqh, poll_table *pt)
4280{
4281 struct mem_cgroup_event *event =
4282 container_of(pt, struct mem_cgroup_event, pt);
4283
4284 event->wqh = wqh;
4285 add_wait_queue(wqh, &event->wait);
4286}
4287
4288/*
4289 * DO NOT USE IN NEW FILES.
4290 *
4291 * Parse input and register new cgroup event handler.
4292 *
4293 * Input must be in format '<event_fd> <control_fd> <args>'.
4294 * Interpretation of args is defined by control file implementation.
4295 */
4296static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4297 char *buf, size_t nbytes, loff_t off)
4298{
4299 struct cgroup_subsys_state *css = of_css(of);
4300 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4301 struct mem_cgroup_event *event;
4302 struct cgroup_subsys_state *cfile_css;
4303 unsigned int efd, cfd;
4304 struct fd efile;
4305 struct fd cfile;
4306 const char *name;
4307 char *endp;
4308 int ret;
4309
4310 buf = strstrip(buf);
4311
4312 efd = simple_strtoul(buf, &endp, 10);
4313 if (*endp != ' ')
4314 return -EINVAL;
4315 buf = endp + 1;
4316
4317 cfd = simple_strtoul(buf, &endp, 10);
4318 if ((*endp != ' ') && (*endp != '\0'))
4319 return -EINVAL;
4320 buf = endp + 1;
4321
4322 event = kzalloc(sizeof(*event), GFP_KERNEL);
4323 if (!event)
4324 return -ENOMEM;
4325
4326 event->memcg = memcg;
4327 INIT_LIST_HEAD(&event->list);
4328 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4329 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4330 INIT_WORK(&event->remove, memcg_event_remove);
4331
4332 efile = fdget(efd);
4333 if (!efile.file) {
4334 ret = -EBADF;
4335 goto out_kfree;
4336 }
4337
4338 event->eventfd = eventfd_ctx_fileget(efile.file);
4339 if (IS_ERR(event->eventfd)) {
4340 ret = PTR_ERR(event->eventfd);
4341 goto out_put_efile;
4342 }
4343
4344 cfile = fdget(cfd);
4345 if (!cfile.file) {
4346 ret = -EBADF;
4347 goto out_put_eventfd;
4348 }
4349
4350 /* the process need read permission on control file */
4351 /* AV: shouldn't we check that it's been opened for read instead? */
4352 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4353 if (ret < 0)
4354 goto out_put_cfile;
4355
4356 /*
4357 * Determine the event callbacks and set them in @event. This used
4358 * to be done via struct cftype but cgroup core no longer knows
4359 * about these events. The following is crude but the whole thing
4360 * is for compatibility anyway.
4361 *
4362 * DO NOT ADD NEW FILES.
4363 */
4364 name = cfile.file->f_path.dentry->d_name.name;
4365
4366 if (!strcmp(name, "memory.usage_in_bytes")) {
4367 event->register_event = mem_cgroup_usage_register_event;
4368 event->unregister_event = mem_cgroup_usage_unregister_event;
4369 } else if (!strcmp(name, "memory.oom_control")) {
4370 event->register_event = mem_cgroup_oom_register_event;
4371 event->unregister_event = mem_cgroup_oom_unregister_event;
4372 } else if (!strcmp(name, "memory.pressure_level")) {
4373 event->register_event = vmpressure_register_event;
4374 event->unregister_event = vmpressure_unregister_event;
4375 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4376 event->register_event = memsw_cgroup_usage_register_event;
4377 event->unregister_event = memsw_cgroup_usage_unregister_event;
4378 } else {
4379 ret = -EINVAL;
4380 goto out_put_cfile;
4381 }
4382
4383 /*
4384 * Verify @cfile should belong to @css. Also, remaining events are
4385 * automatically removed on cgroup destruction but the removal is
4386 * asynchronous, so take an extra ref on @css.
4387 */
4388 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4389 &memory_cgrp_subsys);
4390 ret = -EINVAL;
4391 if (IS_ERR(cfile_css))
4392 goto out_put_cfile;
4393 if (cfile_css != css) {
4394 css_put(cfile_css);
4395 goto out_put_cfile;
4396 }
4397
4398 ret = event->register_event(memcg, event->eventfd, buf);
4399 if (ret)
4400 goto out_put_css;
4401
4402 efile.file->f_op->poll(efile.file, &event->pt);
4403
4404 spin_lock(&memcg->event_list_lock);
4405 list_add(&event->list, &memcg->event_list);
4406 spin_unlock(&memcg->event_list_lock);
4407
4408 fdput(cfile);
4409 fdput(efile);
4410
4411 return nbytes;
4412
4413out_put_css:
4414 css_put(css);
4415out_put_cfile:
4416 fdput(cfile);
4417out_put_eventfd:
4418 eventfd_ctx_put(event->eventfd);
4419out_put_efile:
4420 fdput(efile);
4421out_kfree:
4422 kfree(event);
4423
4424 return ret;
4425}
4426
4427static struct cftype mem_cgroup_files[] = {
4428 {
4429 .name = "usage_in_bytes",
4430 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4431 .read_u64 = mem_cgroup_read_u64,
4432 },
4433 {
4434 .name = "max_usage_in_bytes",
4435 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4436 .write = mem_cgroup_reset,
4437 .read_u64 = mem_cgroup_read_u64,
4438 },
4439 {
4440 .name = "limit_in_bytes",
4441 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4442 .write = mem_cgroup_write,
4443 .read_u64 = mem_cgroup_read_u64,
4444 },
4445 {
4446 .name = "soft_limit_in_bytes",
4447 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4448 .write = mem_cgroup_write,
4449 .read_u64 = mem_cgroup_read_u64,
4450 },
4451 {
4452 .name = "failcnt",
4453 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4454 .write = mem_cgroup_reset,
4455 .read_u64 = mem_cgroup_read_u64,
4456 },
4457 {
4458 .name = "stat",
4459 .seq_show = memcg_stat_show,
4460 },
4461 {
4462 .name = "force_empty",
4463 .write = mem_cgroup_force_empty_write,
4464 },
4465 {
4466 .name = "use_hierarchy",
4467 .write_u64 = mem_cgroup_hierarchy_write,
4468 .read_u64 = mem_cgroup_hierarchy_read,
4469 },
4470 {
4471 .name = "cgroup.event_control", /* XXX: for compat */
4472 .write = memcg_write_event_control,
4473 .flags = CFTYPE_NO_PREFIX,
4474 .mode = S_IWUGO,
4475 },
4476 {
4477 .name = "swappiness",
4478 .read_u64 = mem_cgroup_swappiness_read,
4479 .write_u64 = mem_cgroup_swappiness_write,
4480 },
4481 {
4482 .name = "move_charge_at_immigrate",
4483 .read_u64 = mem_cgroup_move_charge_read,
4484 .write_u64 = mem_cgroup_move_charge_write,
4485 },
4486 {
4487 .name = "oom_control",
4488 .seq_show = mem_cgroup_oom_control_read,
4489 .write_u64 = mem_cgroup_oom_control_write,
4490 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4491 },
4492 {
4493 .name = "pressure_level",
4494 },
4495#ifdef CONFIG_NUMA
4496 {
4497 .name = "numa_stat",
4498 .seq_show = memcg_numa_stat_show,
4499 },
4500#endif
4501#ifdef CONFIG_MEMCG_KMEM
4502 {
4503 .name = "kmem.limit_in_bytes",
4504 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4505 .write = mem_cgroup_write,
4506 .read_u64 = mem_cgroup_read_u64,
4507 },
4508 {
4509 .name = "kmem.usage_in_bytes",
4510 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4511 .read_u64 = mem_cgroup_read_u64,
4512 },
4513 {
4514 .name = "kmem.failcnt",
4515 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4516 .write = mem_cgroup_reset,
4517 .read_u64 = mem_cgroup_read_u64,
4518 },
4519 {
4520 .name = "kmem.max_usage_in_bytes",
4521 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4522 .write = mem_cgroup_reset,
4523 .read_u64 = mem_cgroup_read_u64,
4524 },
4525#ifdef CONFIG_SLABINFO
4526 {
4527 .name = "kmem.slabinfo",
4528 .seq_start = slab_start,
4529 .seq_next = slab_next,
4530 .seq_stop = slab_stop,
4531 .seq_show = memcg_slab_show,
4532 },
4533#endif
4534#endif
4535 { }, /* terminate */
4536};
4537
4538#ifdef CONFIG_MEMCG_SWAP
4539static struct cftype memsw_cgroup_files[] = {
4540 {
4541 .name = "memsw.usage_in_bytes",
4542 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4543 .read_u64 = mem_cgroup_read_u64,
4544 },
4545 {
4546 .name = "memsw.max_usage_in_bytes",
4547 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4548 .write = mem_cgroup_reset,
4549 .read_u64 = mem_cgroup_read_u64,
4550 },
4551 {
4552 .name = "memsw.limit_in_bytes",
4553 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4554 .write = mem_cgroup_write,
4555 .read_u64 = mem_cgroup_read_u64,
4556 },
4557 {
4558 .name = "memsw.failcnt",
4559 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4560 .write = mem_cgroup_reset,
4561 .read_u64 = mem_cgroup_read_u64,
4562 },
4563 { }, /* terminate */
4564};
4565#endif
4566static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4567{
4568 struct mem_cgroup_per_node *pn;
4569 struct mem_cgroup_per_zone *mz;
4570 int zone, tmp = node;
4571 /*
4572 * This routine is called against possible nodes.
4573 * But it's BUG to call kmalloc() against offline node.
4574 *
4575 * TODO: this routine can waste much memory for nodes which will
4576 * never be onlined. It's better to use memory hotplug callback
4577 * function.
4578 */
4579 if (!node_state(node, N_NORMAL_MEMORY))
4580 tmp = -1;
4581 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4582 if (!pn)
4583 return 1;
4584
4585 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4586 mz = &pn->zoneinfo[zone];
4587 lruvec_init(&mz->lruvec);
4588 mz->usage_in_excess = 0;
4589 mz->on_tree = false;
4590 mz->memcg = memcg;
4591 }
4592 memcg->nodeinfo[node] = pn;
4593 return 0;
4594}
4595
4596static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4597{
4598 kfree(memcg->nodeinfo[node]);
4599}
4600
4601static struct mem_cgroup *mem_cgroup_alloc(void)
4602{
4603 struct mem_cgroup *memcg;
4604 size_t size;
4605
4606 size = sizeof(struct mem_cgroup);
4607 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4608
4609 memcg = kzalloc(size, GFP_KERNEL);
4610 if (!memcg)
4611 return NULL;
4612
4613 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4614 if (!memcg->stat)
4615 goto out_free;
4616 spin_lock_init(&memcg->pcp_counter_lock);
4617 return memcg;
4618
4619out_free:
4620 kfree(memcg);
4621 return NULL;
4622}
4623
4624/*
4625 * At destroying mem_cgroup, references from swap_cgroup can remain.
4626 * (scanning all at force_empty is too costly...)
4627 *
4628 * Instead of clearing all references at force_empty, we remember
4629 * the number of reference from swap_cgroup and free mem_cgroup when
4630 * it goes down to 0.
4631 *
4632 * Removal of cgroup itself succeeds regardless of refs from swap.
4633 */
4634
4635static void __mem_cgroup_free(struct mem_cgroup *memcg)
4636{
4637 int node;
4638
4639 mem_cgroup_remove_from_trees(memcg);
4640
4641 for_each_node(node)
4642 free_mem_cgroup_per_zone_info(memcg, node);
4643
4644 free_percpu(memcg->stat);
4645
4646 disarm_static_keys(memcg);
4647 kfree(memcg);
4648}
4649
4650/*
4651 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4652 */
4653struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4654{
4655 if (!memcg->memory.parent)
4656 return NULL;
4657 return mem_cgroup_from_counter(memcg->memory.parent, memory);
4658}
4659EXPORT_SYMBOL(parent_mem_cgroup);
4660
4661static void __init mem_cgroup_soft_limit_tree_init(void)
4662{
4663 struct mem_cgroup_tree_per_node *rtpn;
4664 struct mem_cgroup_tree_per_zone *rtpz;
4665 int tmp, node, zone;
4666
4667 for_each_node(node) {
4668 tmp = node;
4669 if (!node_state(node, N_NORMAL_MEMORY))
4670 tmp = -1;
4671 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4672 BUG_ON(!rtpn);
4673
4674 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4675
4676 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4677 rtpz = &rtpn->rb_tree_per_zone[zone];
4678 rtpz->rb_root = RB_ROOT;
4679 spin_lock_init(&rtpz->lock);
4680 }
4681 }
4682}
4683
4684static struct cgroup_subsys_state * __ref
4685mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4686{
4687 struct mem_cgroup *memcg;
4688 long error = -ENOMEM;
4689 int node;
4690
4691 memcg = mem_cgroup_alloc();
4692 if (!memcg)
4693 return ERR_PTR(error);
4694
4695 for_each_node(node)
4696 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4697 goto free_out;
4698
4699 /* root ? */
4700 if (parent_css == NULL) {
4701 root_mem_cgroup = memcg;
4702 page_counter_init(&memcg->memory, NULL);
4703 page_counter_init(&memcg->memsw, NULL);
4704 page_counter_init(&memcg->kmem, NULL);
4705 }
4706
4707 memcg->last_scanned_node = MAX_NUMNODES;
4708 INIT_LIST_HEAD(&memcg->oom_notify);
4709 memcg->move_charge_at_immigrate = 0;
4710 mutex_init(&memcg->thresholds_lock);
4711 spin_lock_init(&memcg->move_lock);
4712 vmpressure_init(&memcg->vmpressure);
4713 INIT_LIST_HEAD(&memcg->event_list);
4714 spin_lock_init(&memcg->event_list_lock);
4715#ifdef CONFIG_MEMCG_KMEM
4716 memcg->kmemcg_id = -1;
4717 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
4718#endif
4719
4720 return &memcg->css;
4721
4722free_out:
4723 __mem_cgroup_free(memcg);
4724 return ERR_PTR(error);
4725}
4726
4727static int
4728mem_cgroup_css_online(struct cgroup_subsys_state *css)
4729{
4730 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4731 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4732 int ret;
4733
4734 if (css->id > MEM_CGROUP_ID_MAX)
4735 return -ENOSPC;
4736
4737 if (!parent)
4738 return 0;
4739
4740 mutex_lock(&memcg_create_mutex);
4741
4742 memcg->use_hierarchy = parent->use_hierarchy;
4743 memcg->oom_kill_disable = parent->oom_kill_disable;
4744 memcg->swappiness = mem_cgroup_swappiness(parent);
4745
4746 if (parent->use_hierarchy) {
4747 page_counter_init(&memcg->memory, &parent->memory);
4748 page_counter_init(&memcg->memsw, &parent->memsw);
4749 page_counter_init(&memcg->kmem, &parent->kmem);
4750
4751 /*
4752 * No need to take a reference to the parent because cgroup
4753 * core guarantees its existence.
4754 */
4755 } else {
4756 page_counter_init(&memcg->memory, NULL);
4757 page_counter_init(&memcg->memsw, NULL);
4758 page_counter_init(&memcg->kmem, NULL);
4759 /*
4760 * Deeper hierachy with use_hierarchy == false doesn't make
4761 * much sense so let cgroup subsystem know about this
4762 * unfortunate state in our controller.
4763 */
4764 if (parent != root_mem_cgroup)
4765 memory_cgrp_subsys.broken_hierarchy = true;
4766 }
4767 mutex_unlock(&memcg_create_mutex);
4768
4769 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4770 if (ret)
4771 return ret;
4772
4773 /*
4774 * Make sure the memcg is initialized: mem_cgroup_iter()
4775 * orders reading memcg->initialized against its callers
4776 * reading the memcg members.
4777 */
4778 smp_store_release(&memcg->initialized, 1);
4779
4780 return 0;
4781}
4782
4783static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4784{
4785 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4786 struct mem_cgroup_event *event, *tmp;
4787
4788 /*
4789 * Unregister events and notify userspace.
4790 * Notify userspace about cgroup removing only after rmdir of cgroup
4791 * directory to avoid race between userspace and kernelspace.
4792 */
4793 spin_lock(&memcg->event_list_lock);
4794 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4795 list_del_init(&event->list);
4796 schedule_work(&event->remove);
4797 }
4798 spin_unlock(&memcg->event_list_lock);
4799
4800 memcg_unregister_all_caches(memcg);
4801 vmpressure_cleanup(&memcg->vmpressure);
4802}
4803
4804static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4805{
4806 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4807
4808 memcg_destroy_kmem(memcg);
4809 __mem_cgroup_free(memcg);
4810}
4811
4812/**
4813 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4814 * @css: the target css
4815 *
4816 * Reset the states of the mem_cgroup associated with @css. This is
4817 * invoked when the userland requests disabling on the default hierarchy
4818 * but the memcg is pinned through dependency. The memcg should stop
4819 * applying policies and should revert to the vanilla state as it may be
4820 * made visible again.
4821 *
4822 * The current implementation only resets the essential configurations.
4823 * This needs to be expanded to cover all the visible parts.
4824 */
4825static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4826{
4827 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4828
4829 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4830 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4831 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4832 memcg->soft_limit = 0;
4833}
4834
4835#ifdef CONFIG_MMU
4836/* Handlers for move charge at task migration. */
4837static int mem_cgroup_do_precharge(unsigned long count)
4838{
4839 int ret;
4840
4841 /* Try a single bulk charge without reclaim first */
4842 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4843 if (!ret) {
4844 mc.precharge += count;
4845 return ret;
4846 }
4847 if (ret == -EINTR) {
4848 cancel_charge(root_mem_cgroup, count);
4849 return ret;
4850 }
4851
4852 /* Try charges one by one with reclaim */
4853 while (count--) {
4854 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4855 /*
4856 * In case of failure, any residual charges against
4857 * mc.to will be dropped by mem_cgroup_clear_mc()
4858 * later on. However, cancel any charges that are
4859 * bypassed to root right away or they'll be lost.
4860 */
4861 if (ret == -EINTR)
4862 cancel_charge(root_mem_cgroup, 1);
4863 if (ret)
4864 return ret;
4865 mc.precharge++;
4866 cond_resched();
4867 }
4868 return 0;
4869}
4870
4871/**
4872 * get_mctgt_type - get target type of moving charge
4873 * @vma: the vma the pte to be checked belongs
4874 * @addr: the address corresponding to the pte to be checked
4875 * @ptent: the pte to be checked
4876 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4877 *
4878 * Returns
4879 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4880 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4881 * move charge. if @target is not NULL, the page is stored in target->page
4882 * with extra refcnt got(Callers should handle it).
4883 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4884 * target for charge migration. if @target is not NULL, the entry is stored
4885 * in target->ent.
4886 *
4887 * Called with pte lock held.
4888 */
4889union mc_target {
4890 struct page *page;
4891 swp_entry_t ent;
4892};
4893
4894enum mc_target_type {
4895 MC_TARGET_NONE = 0,
4896 MC_TARGET_PAGE,
4897 MC_TARGET_SWAP,
4898};
4899
4900static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4901 unsigned long addr, pte_t ptent)
4902{
4903 struct page *page = vm_normal_page(vma, addr, ptent);
4904
4905 if (!page || !page_mapped(page))
4906 return NULL;
4907 if (PageAnon(page)) {
4908 /* we don't move shared anon */
4909 if (!move_anon())
4910 return NULL;
4911 } else if (!move_file())
4912 /* we ignore mapcount for file pages */
4913 return NULL;
4914 if (!get_page_unless_zero(page))
4915 return NULL;
4916
4917 return page;
4918}
4919
4920#ifdef CONFIG_SWAP
4921static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4922 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4923{
4924 struct page *page = NULL;
4925 swp_entry_t ent = pte_to_swp_entry(ptent);
4926
4927 if (!move_anon() || non_swap_entry(ent))
4928 return NULL;
4929 /*
4930 * Because lookup_swap_cache() updates some statistics counter,
4931 * we call find_get_page() with swapper_space directly.
4932 */
4933 page = find_get_page(swap_address_space(ent), ent.val);
4934 if (do_swap_account)
4935 entry->val = ent.val;
4936
4937 return page;
4938}
4939#else
4940static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4941 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4942{
4943 return NULL;
4944}
4945#endif
4946
4947static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4948 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4949{
4950 struct page *page = NULL;
4951 struct address_space *mapping;
4952 pgoff_t pgoff;
4953
4954 if (!vma->vm_file) /* anonymous vma */
4955 return NULL;
4956 if (!move_file())
4957 return NULL;
4958
4959 mapping = vma->vm_file->f_mapping;
4960 if (pte_none(ptent))
4961 pgoff = linear_page_index(vma, addr);
4962 else /* pte_file(ptent) is true */
4963 pgoff = pte_to_pgoff(ptent);
4964
4965 /* page is moved even if it's not RSS of this task(page-faulted). */
4966#ifdef CONFIG_SWAP
4967 /* shmem/tmpfs may report page out on swap: account for that too. */
4968 if (shmem_mapping(mapping)) {
4969 page = find_get_entry(mapping, pgoff);
4970 if (radix_tree_exceptional_entry(page)) {
4971 swp_entry_t swp = radix_to_swp_entry(page);
4972 if (do_swap_account)
4973 *entry = swp;
4974 page = find_get_page(swap_address_space(swp), swp.val);
4975 }
4976 } else
4977 page = find_get_page(mapping, pgoff);
4978#else
4979 page = find_get_page(mapping, pgoff);
4980#endif
4981 return page;
4982}
4983
4984static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4985 unsigned long addr, pte_t ptent, union mc_target *target)
4986{
4987 struct page *page = NULL;
4988 enum mc_target_type ret = MC_TARGET_NONE;
4989 swp_entry_t ent = { .val = 0 };
4990
4991 if (pte_present(ptent))
4992 page = mc_handle_present_pte(vma, addr, ptent);
4993 else if (is_swap_pte(ptent))
4994 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4995 else if (pte_none(ptent) || pte_file(ptent))
4996 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4997
4998 if (!page && !ent.val)
4999 return ret;
5000 if (page) {
5001 /*
5002 * Do only loose check w/o serialization.
5003 * mem_cgroup_move_account() checks the page is valid or
5004 * not under LRU exclusion.
5005 */
5006 if (page->mem_cgroup == mc.from) {
5007 ret = MC_TARGET_PAGE;
5008 if (target)
5009 target->page = page;
5010 }
5011 if (!ret || !target)
5012 put_page(page);
5013 }
5014 /* There is a swap entry and a page doesn't exist or isn't charged */
5015 if (ent.val && !ret &&
5016 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5017 ret = MC_TARGET_SWAP;
5018 if (target)
5019 target->ent = ent;
5020 }
5021 return ret;
5022}
5023
5024#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5025/*
5026 * We don't consider swapping or file mapped pages because THP does not
5027 * support them for now.
5028 * Caller should make sure that pmd_trans_huge(pmd) is true.
5029 */
5030static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5031 unsigned long addr, pmd_t pmd, union mc_target *target)
5032{
5033 struct page *page = NULL;
5034 enum mc_target_type ret = MC_TARGET_NONE;
5035
5036 page = pmd_page(pmd);
5037 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5038 if (!move_anon())
5039 return ret;
5040 if (page->mem_cgroup == mc.from) {
5041 ret = MC_TARGET_PAGE;
5042 if (target) {
5043 get_page(page);
5044 target->page = page;
5045 }
5046 }
5047 return ret;
5048}
5049#else
5050static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5051 unsigned long addr, pmd_t pmd, union mc_target *target)
5052{
5053 return MC_TARGET_NONE;
5054}
5055#endif
5056
5057static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5058 unsigned long addr, unsigned long end,
5059 struct mm_walk *walk)
5060{
5061 struct vm_area_struct *vma = walk->private;
5062 pte_t *pte;
5063 spinlock_t *ptl;
5064
5065 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5066 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5067 mc.precharge += HPAGE_PMD_NR;
5068 spin_unlock(ptl);
5069 return 0;
5070 }
5071
5072 if (pmd_trans_unstable(pmd))
5073 return 0;
5074 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5075 for (; addr != end; pte++, addr += PAGE_SIZE)
5076 if (get_mctgt_type(vma, addr, *pte, NULL))
5077 mc.precharge++; /* increment precharge temporarily */
5078 pte_unmap_unlock(pte - 1, ptl);
5079 cond_resched();
5080
5081 return 0;
5082}
5083
5084static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5085{
5086 unsigned long precharge;
5087 struct vm_area_struct *vma;
5088
5089 down_read(&mm->mmap_sem);
5090 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5091 struct mm_walk mem_cgroup_count_precharge_walk = {
5092 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5093 .mm = mm,
5094 .private = vma,
5095 };
5096 if (is_vm_hugetlb_page(vma))
5097 continue;
5098 walk_page_range(vma->vm_start, vma->vm_end,
5099 &mem_cgroup_count_precharge_walk);
5100 }
5101 up_read(&mm->mmap_sem);
5102
5103 precharge = mc.precharge;
5104 mc.precharge = 0;
5105
5106 return precharge;
5107}
5108
5109static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5110{
5111 unsigned long precharge = mem_cgroup_count_precharge(mm);
5112
5113 VM_BUG_ON(mc.moving_task);
5114 mc.moving_task = current;
5115 return mem_cgroup_do_precharge(precharge);
5116}
5117
5118/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5119static void __mem_cgroup_clear_mc(void)
5120{
5121 struct mem_cgroup *from = mc.from;
5122 struct mem_cgroup *to = mc.to;
5123
5124 /* we must uncharge all the leftover precharges from mc.to */
5125 if (mc.precharge) {
5126 cancel_charge(mc.to, mc.precharge);
5127 mc.precharge = 0;
5128 }
5129 /*
5130 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5131 * we must uncharge here.
5132 */
5133 if (mc.moved_charge) {
5134 cancel_charge(mc.from, mc.moved_charge);
5135 mc.moved_charge = 0;
5136 }
5137 /* we must fixup refcnts and charges */
5138 if (mc.moved_swap) {
5139 /* uncharge swap account from the old cgroup */
5140 if (!mem_cgroup_is_root(mc.from))
5141 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5142
5143 /*
5144 * we charged both to->memory and to->memsw, so we
5145 * should uncharge to->memory.
5146 */
5147 if (!mem_cgroup_is_root(mc.to))
5148 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5149
5150 css_put_many(&mc.from->css, mc.moved_swap);
5151
5152 /* we've already done css_get(mc.to) */
5153 mc.moved_swap = 0;
5154 }
5155 memcg_oom_recover(from);
5156 memcg_oom_recover(to);
5157 wake_up_all(&mc.waitq);
5158}
5159
5160static void mem_cgroup_clear_mc(void)
5161{
5162 /*
5163 * we must clear moving_task before waking up waiters at the end of
5164 * task migration.
5165 */
5166 mc.moving_task = NULL;
5167 __mem_cgroup_clear_mc();
5168 spin_lock(&mc.lock);
5169 mc.from = NULL;
5170 mc.to = NULL;
5171 spin_unlock(&mc.lock);
5172}
5173
5174static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5175 struct cgroup_taskset *tset)
5176{
5177 struct task_struct *p = cgroup_taskset_first(tset);
5178 int ret = 0;
5179 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5180 unsigned long move_charge_at_immigrate;
5181
5182 /*
5183 * We are now commited to this value whatever it is. Changes in this
5184 * tunable will only affect upcoming migrations, not the current one.
5185 * So we need to save it, and keep it going.
5186 */
5187 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
5188 if (move_charge_at_immigrate) {
5189 struct mm_struct *mm;
5190 struct mem_cgroup *from = mem_cgroup_from_task(p);
5191
5192 VM_BUG_ON(from == memcg);
5193
5194 mm = get_task_mm(p);
5195 if (!mm)
5196 return 0;
5197 /* We move charges only when we move a owner of the mm */
5198 if (mm->owner == p) {
5199 VM_BUG_ON(mc.from);
5200 VM_BUG_ON(mc.to);
5201 VM_BUG_ON(mc.precharge);
5202 VM_BUG_ON(mc.moved_charge);
5203 VM_BUG_ON(mc.moved_swap);
5204
5205 spin_lock(&mc.lock);
5206 mc.from = from;
5207 mc.to = memcg;
5208 mc.immigrate_flags = move_charge_at_immigrate;
5209 spin_unlock(&mc.lock);
5210 /* We set mc.moving_task later */
5211
5212 ret = mem_cgroup_precharge_mc(mm);
5213 if (ret)
5214 mem_cgroup_clear_mc();
5215 }
5216 mmput(mm);
5217 }
5218 return ret;
5219}
5220
5221static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5222 struct cgroup_taskset *tset)
5223{
5224 if (mc.to)
5225 mem_cgroup_clear_mc();
5226}
5227
5228static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5229 unsigned long addr, unsigned long end,
5230 struct mm_walk *walk)
5231{
5232 int ret = 0;
5233 struct vm_area_struct *vma = walk->private;
5234 pte_t *pte;
5235 spinlock_t *ptl;
5236 enum mc_target_type target_type;
5237 union mc_target target;
5238 struct page *page;
5239
5240 /*
5241 * We don't take compound_lock() here but no race with splitting thp
5242 * happens because:
5243 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5244 * under splitting, which means there's no concurrent thp split,
5245 * - if another thread runs into split_huge_page() just after we
5246 * entered this if-block, the thread must wait for page table lock
5247 * to be unlocked in __split_huge_page_splitting(), where the main
5248 * part of thp split is not executed yet.
5249 */
5250 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5251 if (mc.precharge < HPAGE_PMD_NR) {
5252 spin_unlock(ptl);
5253 return 0;
5254 }
5255 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5256 if (target_type == MC_TARGET_PAGE) {
5257 page = target.page;
5258 if (!isolate_lru_page(page)) {
5259 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5260 mc.from, mc.to)) {
5261 mc.precharge -= HPAGE_PMD_NR;
5262 mc.moved_charge += HPAGE_PMD_NR;
5263 }
5264 putback_lru_page(page);
5265 }
5266 put_page(page);
5267 }
5268 spin_unlock(ptl);
5269 return 0;
5270 }
5271
5272 if (pmd_trans_unstable(pmd))
5273 return 0;
5274retry:
5275 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5276 for (; addr != end; addr += PAGE_SIZE) {
5277 pte_t ptent = *(pte++);
5278 swp_entry_t ent;
5279
5280 if (!mc.precharge)
5281 break;
5282
5283 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5284 case MC_TARGET_PAGE:
5285 page = target.page;
5286 if (isolate_lru_page(page))
5287 goto put;
5288 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5289 mc.precharge--;
5290 /* we uncharge from mc.from later. */
5291 mc.moved_charge++;
5292 }
5293 putback_lru_page(page);
5294put: /* get_mctgt_type() gets the page */
5295 put_page(page);
5296 break;
5297 case MC_TARGET_SWAP:
5298 ent = target.ent;
5299 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5300 mc.precharge--;
5301 /* we fixup refcnts and charges later. */
5302 mc.moved_swap++;
5303 }
5304 break;
5305 default:
5306 break;
5307 }
5308 }
5309 pte_unmap_unlock(pte - 1, ptl);
5310 cond_resched();
5311
5312 if (addr != end) {
5313 /*
5314 * We have consumed all precharges we got in can_attach().
5315 * We try charge one by one, but don't do any additional
5316 * charges to mc.to if we have failed in charge once in attach()
5317 * phase.
5318 */
5319 ret = mem_cgroup_do_precharge(1);
5320 if (!ret)
5321 goto retry;
5322 }
5323
5324 return ret;
5325}
5326
5327static void mem_cgroup_move_charge(struct mm_struct *mm)
5328{
5329 struct vm_area_struct *vma;
5330
5331 lru_add_drain_all();
5332 /*
5333 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5334 * move_lock while we're moving its pages to another memcg.
5335 * Then wait for already started RCU-only updates to finish.
5336 */
5337 atomic_inc(&mc.from->moving_account);
5338 synchronize_rcu();
5339retry:
5340 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5341 /*
5342 * Someone who are holding the mmap_sem might be waiting in
5343 * waitq. So we cancel all extra charges, wake up all waiters,
5344 * and retry. Because we cancel precharges, we might not be able
5345 * to move enough charges, but moving charge is a best-effort
5346 * feature anyway, so it wouldn't be a big problem.
5347 */
5348 __mem_cgroup_clear_mc();
5349 cond_resched();
5350 goto retry;
5351 }
5352 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5353 int ret;
5354 struct mm_walk mem_cgroup_move_charge_walk = {
5355 .pmd_entry = mem_cgroup_move_charge_pte_range,
5356 .mm = mm,
5357 .private = vma,
5358 };
5359 if (is_vm_hugetlb_page(vma))
5360 continue;
5361 ret = walk_page_range(vma->vm_start, vma->vm_end,
5362 &mem_cgroup_move_charge_walk);
5363 if (ret)
5364 /*
5365 * means we have consumed all precharges and failed in
5366 * doing additional charge. Just abandon here.
5367 */
5368 break;
5369 }
5370 up_read(&mm->mmap_sem);
5371 atomic_dec(&mc.from->moving_account);
5372}
5373
5374static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5375 struct cgroup_taskset *tset)
5376{
5377 struct task_struct *p = cgroup_taskset_first(tset);
5378 struct mm_struct *mm = get_task_mm(p);
5379
5380 if (mm) {
5381 if (mc.to)
5382 mem_cgroup_move_charge(mm);
5383 mmput(mm);
5384 }
5385 if (mc.to)
5386 mem_cgroup_clear_mc();
5387}
5388#else /* !CONFIG_MMU */
5389static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5390 struct cgroup_taskset *tset)
5391{
5392 return 0;
5393}
5394static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5395 struct cgroup_taskset *tset)
5396{
5397}
5398static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5399 struct cgroup_taskset *tset)
5400{
5401}
5402#endif
5403
5404/*
5405 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5406 * to verify whether we're attached to the default hierarchy on each mount
5407 * attempt.
5408 */
5409static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5410{
5411 /*
5412 * use_hierarchy is forced on the default hierarchy. cgroup core
5413 * guarantees that @root doesn't have any children, so turning it
5414 * on for the root memcg is enough.
5415 */
5416 if (cgroup_on_dfl(root_css->cgroup))
5417 mem_cgroup_from_css(root_css)->use_hierarchy = true;
5418}
5419
5420struct cgroup_subsys memory_cgrp_subsys = {
5421 .css_alloc = mem_cgroup_css_alloc,
5422 .css_online = mem_cgroup_css_online,
5423 .css_offline = mem_cgroup_css_offline,
5424 .css_free = mem_cgroup_css_free,
5425 .css_reset = mem_cgroup_css_reset,
5426 .can_attach = mem_cgroup_can_attach,
5427 .cancel_attach = mem_cgroup_cancel_attach,
5428 .attach = mem_cgroup_move_task,
5429 .bind = mem_cgroup_bind,
5430 .legacy_cftypes = mem_cgroup_files,
5431 .early_init = 0,
5432};
5433
5434#ifdef CONFIG_MEMCG_SWAP
5435static int __init enable_swap_account(char *s)
5436{
5437 if (!strcmp(s, "1"))
5438 really_do_swap_account = 1;
5439 else if (!strcmp(s, "0"))
5440 really_do_swap_account = 0;
5441 return 1;
5442}
5443__setup("swapaccount=", enable_swap_account);
5444
5445static void __init memsw_file_init(void)
5446{
5447 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5448 memsw_cgroup_files));
5449}
5450
5451static void __init enable_swap_cgroup(void)
5452{
5453 if (!mem_cgroup_disabled() && really_do_swap_account) {
5454 do_swap_account = 1;
5455 memsw_file_init();
5456 }
5457}
5458
5459#else
5460static void __init enable_swap_cgroup(void)
5461{
5462}
5463#endif
5464
5465#ifdef CONFIG_MEMCG_SWAP
5466/**
5467 * mem_cgroup_swapout - transfer a memsw charge to swap
5468 * @page: page whose memsw charge to transfer
5469 * @entry: swap entry to move the charge to
5470 *
5471 * Transfer the memsw charge of @page to @entry.
5472 */
5473void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5474{
5475 struct mem_cgroup *memcg;
5476 unsigned short oldid;
5477
5478 VM_BUG_ON_PAGE(PageLRU(page), page);
5479 VM_BUG_ON_PAGE(page_count(page), page);
5480
5481 if (!do_swap_account)
5482 return;
5483
5484 memcg = page->mem_cgroup;
5485
5486 /* Readahead page, never charged */
5487 if (!memcg)
5488 return;
5489
5490 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5491 VM_BUG_ON_PAGE(oldid, page);
5492 mem_cgroup_swap_statistics(memcg, true);
5493
5494 page->mem_cgroup = NULL;
5495
5496 if (!mem_cgroup_is_root(memcg))
5497 page_counter_uncharge(&memcg->memory, 1);
5498
5499 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5500 VM_BUG_ON(!irqs_disabled());
5501
5502 mem_cgroup_charge_statistics(memcg, page, -1);
5503 memcg_check_events(memcg, page);
5504}
5505
5506/**
5507 * mem_cgroup_uncharge_swap - uncharge a swap entry
5508 * @entry: swap entry to uncharge
5509 *
5510 * Drop the memsw charge associated with @entry.
5511 */
5512void mem_cgroup_uncharge_swap(swp_entry_t entry)
5513{
5514 struct mem_cgroup *memcg;
5515 unsigned short id;
5516
5517 if (!do_swap_account)
5518 return;
5519
5520 id = swap_cgroup_record(entry, 0);
5521 rcu_read_lock();
5522 memcg = mem_cgroup_lookup(id);
5523 if (memcg) {
5524 if (!mem_cgroup_is_root(memcg))
5525 page_counter_uncharge(&memcg->memsw, 1);
5526 mem_cgroup_swap_statistics(memcg, false);
5527 css_put(&memcg->css);
5528 }
5529 rcu_read_unlock();
5530}
5531#endif
5532
5533/**
5534 * mem_cgroup_try_charge - try charging a page
5535 * @page: page to charge
5536 * @mm: mm context of the victim
5537 * @gfp_mask: reclaim mode
5538 * @memcgp: charged memcg return
5539 *
5540 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5541 * pages according to @gfp_mask if necessary.
5542 *
5543 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5544 * Otherwise, an error code is returned.
5545 *
5546 * After page->mapping has been set up, the caller must finalize the
5547 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5548 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5549 */
5550int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5551 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5552{
5553 struct mem_cgroup *memcg = NULL;
5554 unsigned int nr_pages = 1;
5555 int ret = 0;
5556
5557 if (mem_cgroup_disabled())
5558 goto out;
5559
5560 if (PageSwapCache(page)) {
5561 /*
5562 * Every swap fault against a single page tries to charge the
5563 * page, bail as early as possible. shmem_unuse() encounters
5564 * already charged pages, too. The USED bit is protected by
5565 * the page lock, which serializes swap cache removal, which
5566 * in turn serializes uncharging.
5567 */
5568 if (page->mem_cgroup)
5569 goto out;
5570 }
5571
5572 if (PageTransHuge(page)) {
5573 nr_pages <<= compound_order(page);
5574 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5575 }
5576
5577 if (do_swap_account && PageSwapCache(page))
5578 memcg = try_get_mem_cgroup_from_page(page);
5579 if (!memcg)
5580 memcg = get_mem_cgroup_from_mm(mm);
5581
5582 ret = try_charge(memcg, gfp_mask, nr_pages);
5583
5584 css_put(&memcg->css);
5585
5586 if (ret == -EINTR) {
5587 memcg = root_mem_cgroup;
5588 ret = 0;
5589 }
5590out:
5591 *memcgp = memcg;
5592 return ret;
5593}
5594
5595/**
5596 * mem_cgroup_commit_charge - commit a page charge
5597 * @page: page to charge
5598 * @memcg: memcg to charge the page to
5599 * @lrucare: page might be on LRU already
5600 *
5601 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5602 * after page->mapping has been set up. This must happen atomically
5603 * as part of the page instantiation, i.e. under the page table lock
5604 * for anonymous pages, under the page lock for page and swap cache.
5605 *
5606 * In addition, the page must not be on the LRU during the commit, to
5607 * prevent racing with task migration. If it might be, use @lrucare.
5608 *
5609 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5610 */
5611void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5612 bool lrucare)
5613{
5614 unsigned int nr_pages = 1;
5615
5616 VM_BUG_ON_PAGE(!page->mapping, page);
5617 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5618
5619 if (mem_cgroup_disabled())
5620 return;
5621 /*
5622 * Swap faults will attempt to charge the same page multiple
5623 * times. But reuse_swap_page() might have removed the page
5624 * from swapcache already, so we can't check PageSwapCache().
5625 */
5626 if (!memcg)
5627 return;
5628
5629 commit_charge(page, memcg, lrucare);
5630
5631 if (PageTransHuge(page)) {
5632 nr_pages <<= compound_order(page);
5633 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5634 }
5635
5636 local_irq_disable();
5637 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5638 memcg_check_events(memcg, page);
5639 local_irq_enable();
5640
5641 if (do_swap_account && PageSwapCache(page)) {
5642 swp_entry_t entry = { .val = page_private(page) };
5643 /*
5644 * The swap entry might not get freed for a long time,
5645 * let's not wait for it. The page already received a
5646 * memory+swap charge, drop the swap entry duplicate.
5647 */
5648 mem_cgroup_uncharge_swap(entry);
5649 }
5650}
5651
5652/**
5653 * mem_cgroup_cancel_charge - cancel a page charge
5654 * @page: page to charge
5655 * @memcg: memcg to charge the page to
5656 *
5657 * Cancel a charge transaction started by mem_cgroup_try_charge().
5658 */
5659void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5660{
5661 unsigned int nr_pages = 1;
5662
5663 if (mem_cgroup_disabled())
5664 return;
5665 /*
5666 * Swap faults will attempt to charge the same page multiple
5667 * times. But reuse_swap_page() might have removed the page
5668 * from swapcache already, so we can't check PageSwapCache().
5669 */
5670 if (!memcg)
5671 return;
5672
5673 if (PageTransHuge(page)) {
5674 nr_pages <<= compound_order(page);
5675 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5676 }
5677
5678 cancel_charge(memcg, nr_pages);
5679}
5680
5681static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5682 unsigned long nr_anon, unsigned long nr_file,
5683 unsigned long nr_huge, struct page *dummy_page)
5684{
5685 unsigned long nr_pages = nr_anon + nr_file;
5686 unsigned long flags;
5687
5688 if (!mem_cgroup_is_root(memcg)) {
5689 page_counter_uncharge(&memcg->memory, nr_pages);
5690 if (do_swap_account)
5691 page_counter_uncharge(&memcg->memsw, nr_pages);
5692 memcg_oom_recover(memcg);
5693 }
5694
5695 local_irq_save(flags);
5696 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5697 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5698 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5699 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5700 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5701 memcg_check_events(memcg, dummy_page);
5702 local_irq_restore(flags);
5703
5704 if (!mem_cgroup_is_root(memcg))
5705 css_put_many(&memcg->css, nr_pages);
5706}
5707
5708static void uncharge_list(struct list_head *page_list)
5709{
5710 struct mem_cgroup *memcg = NULL;
5711 unsigned long nr_anon = 0;
5712 unsigned long nr_file = 0;
5713 unsigned long nr_huge = 0;
5714 unsigned long pgpgout = 0;
5715 struct list_head *next;
5716 struct page *page;
5717
5718 next = page_list->next;
5719 do {
5720 unsigned int nr_pages = 1;
5721
5722 page = list_entry(next, struct page, lru);
5723 next = page->lru.next;
5724
5725 VM_BUG_ON_PAGE(PageLRU(page), page);
5726 VM_BUG_ON_PAGE(page_count(page), page);
5727
5728 if (!page->mem_cgroup)
5729 continue;
5730
5731 /*
5732 * Nobody should be changing or seriously looking at
5733 * page->mem_cgroup at this point, we have fully
5734 * exclusive access to the page.
5735 */
5736
5737 if (memcg != page->mem_cgroup) {
5738 if (memcg) {
5739 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5740 nr_huge, page);
5741 pgpgout = nr_anon = nr_file = nr_huge = 0;
5742 }
5743 memcg = page->mem_cgroup;
5744 }
5745
5746 if (PageTransHuge(page)) {
5747 nr_pages <<= compound_order(page);
5748 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5749 nr_huge += nr_pages;
5750 }
5751
5752 if (PageAnon(page))
5753 nr_anon += nr_pages;
5754 else
5755 nr_file += nr_pages;
5756
5757 page->mem_cgroup = NULL;
5758
5759 pgpgout++;
5760 } while (next != page_list);
5761
5762 if (memcg)
5763 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5764 nr_huge, page);
5765}
5766
5767/**
5768 * mem_cgroup_uncharge - uncharge a page
5769 * @page: page to uncharge
5770 *
5771 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5772 * mem_cgroup_commit_charge().
5773 */
5774void mem_cgroup_uncharge(struct page *page)
5775{
5776 if (mem_cgroup_disabled())
5777 return;
5778
5779 /* Don't touch page->lru of any random page, pre-check: */
5780 if (!page->mem_cgroup)
5781 return;
5782
5783 INIT_LIST_HEAD(&page->lru);
5784 uncharge_list(&page->lru);
5785}
5786
5787/**
5788 * mem_cgroup_uncharge_list - uncharge a list of page
5789 * @page_list: list of pages to uncharge
5790 *
5791 * Uncharge a list of pages previously charged with
5792 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5793 */
5794void mem_cgroup_uncharge_list(struct list_head *page_list)
5795{
5796 if (mem_cgroup_disabled())
5797 return;
5798
5799 if (!list_empty(page_list))
5800 uncharge_list(page_list);
5801}
5802
5803/**
5804 * mem_cgroup_migrate - migrate a charge to another page
5805 * @oldpage: currently charged page
5806 * @newpage: page to transfer the charge to
5807 * @lrucare: both pages might be on the LRU already
5808 *
5809 * Migrate the charge from @oldpage to @newpage.
5810 *
5811 * Both pages must be locked, @newpage->mapping must be set up.
5812 */
5813void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5814 bool lrucare)
5815{
5816 struct mem_cgroup *memcg;
5817 int isolated;
5818
5819 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5820 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5821 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5822 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5823 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5824 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5825 newpage);
5826
5827 if (mem_cgroup_disabled())
5828 return;
5829
5830 /* Page cache replacement: new page already charged? */
5831 if (newpage->mem_cgroup)
5832 return;
5833
5834 /*
5835 * Swapcache readahead pages can get migrated before being
5836 * charged, and migration from compaction can happen to an
5837 * uncharged page when the PFN walker finds a page that
5838 * reclaim just put back on the LRU but has not released yet.
5839 */
5840 memcg = oldpage->mem_cgroup;
5841 if (!memcg)
5842 return;
5843
5844 if (lrucare)
5845 lock_page_lru(oldpage, &isolated);
5846
5847 oldpage->mem_cgroup = NULL;
5848
5849 if (lrucare)
5850 unlock_page_lru(oldpage, isolated);
5851
5852 commit_charge(newpage, memcg, lrucare);
5853}
5854
5855/*
5856 * subsys_initcall() for memory controller.
5857 *
5858 * Some parts like hotcpu_notifier() have to be initialized from this context
5859 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5860 * everything that doesn't depend on a specific mem_cgroup structure should
5861 * be initialized from here.
5862 */
5863static int __init mem_cgroup_init(void)
5864{
5865 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5866 enable_swap_cgroup();
5867 mem_cgroup_soft_limit_tree_init();
5868 memcg_stock_init();
5869 return 0;
5870}
5871subsys_initcall(mem_cgroup_init);
This page took 0.042179 seconds and 5 git commands to generate.