memcg: fix hierarchical reclaim
[deliverable/linux.git] / mm / memcontrol.c
... / ...
CommitLineData
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
23#include <linux/mm.h>
24#include <linux/pagemap.h>
25#include <linux/smp.h>
26#include <linux/page-flags.h>
27#include <linux/backing-dev.h>
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
30#include <linux/mutex.h>
31#include <linux/slab.h>
32#include <linux/swap.h>
33#include <linux/spinlock.h>
34#include <linux/fs.h>
35#include <linux/seq_file.h>
36#include <linux/vmalloc.h>
37#include <linux/mm_inline.h>
38#include <linux/page_cgroup.h>
39#include "internal.h"
40
41#include <asm/uaccess.h>
42
43struct cgroup_subsys mem_cgroup_subsys __read_mostly;
44#define MEM_CGROUP_RECLAIM_RETRIES 5
45
46#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48int do_swap_account __read_mostly;
49static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50#else
51#define do_swap_account (0)
52#endif
53
54static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */
55
56/*
57 * Statistics for memory cgroup.
58 */
59enum mem_cgroup_stat_index {
60 /*
61 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
62 */
63 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
64 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
65 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
66 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
67
68 MEM_CGROUP_STAT_NSTATS,
69};
70
71struct mem_cgroup_stat_cpu {
72 s64 count[MEM_CGROUP_STAT_NSTATS];
73} ____cacheline_aligned_in_smp;
74
75struct mem_cgroup_stat {
76 struct mem_cgroup_stat_cpu cpustat[0];
77};
78
79/*
80 * For accounting under irq disable, no need for increment preempt count.
81 */
82static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
83 enum mem_cgroup_stat_index idx, int val)
84{
85 stat->count[idx] += val;
86}
87
88static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
89 enum mem_cgroup_stat_index idx)
90{
91 int cpu;
92 s64 ret = 0;
93 for_each_possible_cpu(cpu)
94 ret += stat->cpustat[cpu].count[idx];
95 return ret;
96}
97
98/*
99 * per-zone information in memory controller.
100 */
101struct mem_cgroup_per_zone {
102 /*
103 * spin_lock to protect the per cgroup LRU
104 */
105 struct list_head lists[NR_LRU_LISTS];
106 unsigned long count[NR_LRU_LISTS];
107
108 struct zone_reclaim_stat reclaim_stat;
109};
110/* Macro for accessing counter */
111#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
112
113struct mem_cgroup_per_node {
114 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
115};
116
117struct mem_cgroup_lru_info {
118 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
119};
120
121/*
122 * The memory controller data structure. The memory controller controls both
123 * page cache and RSS per cgroup. We would eventually like to provide
124 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
125 * to help the administrator determine what knobs to tune.
126 *
127 * TODO: Add a water mark for the memory controller. Reclaim will begin when
128 * we hit the water mark. May be even add a low water mark, such that
129 * no reclaim occurs from a cgroup at it's low water mark, this is
130 * a feature that will be implemented much later in the future.
131 */
132struct mem_cgroup {
133 struct cgroup_subsys_state css;
134 /*
135 * the counter to account for memory usage
136 */
137 struct res_counter res;
138 /*
139 * the counter to account for mem+swap usage.
140 */
141 struct res_counter memsw;
142 /*
143 * Per cgroup active and inactive list, similar to the
144 * per zone LRU lists.
145 */
146 struct mem_cgroup_lru_info info;
147
148 /*
149 protect against reclaim related member.
150 */
151 spinlock_t reclaim_param_lock;
152
153 int prev_priority; /* for recording reclaim priority */
154
155 /*
156 * While reclaiming in a hiearchy, we cache the last child we
157 * reclaimed from. Protected by hierarchy_mutex
158 */
159 struct mem_cgroup *last_scanned_child;
160 /*
161 * Should the accounting and control be hierarchical, per subtree?
162 */
163 bool use_hierarchy;
164 unsigned long last_oom_jiffies;
165 atomic_t refcnt;
166
167 unsigned int swappiness;
168
169 /*
170 * statistics. This must be placed at the end of memcg.
171 */
172 struct mem_cgroup_stat stat;
173};
174
175enum charge_type {
176 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
177 MEM_CGROUP_CHARGE_TYPE_MAPPED,
178 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
179 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
180 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
181 NR_CHARGE_TYPE,
182};
183
184/* only for here (for easy reading.) */
185#define PCGF_CACHE (1UL << PCG_CACHE)
186#define PCGF_USED (1UL << PCG_USED)
187#define PCGF_LOCK (1UL << PCG_LOCK)
188static const unsigned long
189pcg_default_flags[NR_CHARGE_TYPE] = {
190 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
191 PCGF_USED | PCGF_LOCK, /* Anon */
192 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
193 0, /* FORCE */
194};
195
196/* for encoding cft->private value on file */
197#define _MEM (0)
198#define _MEMSWAP (1)
199#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
200#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
201#define MEMFILE_ATTR(val) ((val) & 0xffff)
202
203static void mem_cgroup_get(struct mem_cgroup *mem);
204static void mem_cgroup_put(struct mem_cgroup *mem);
205
206static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
207 struct page_cgroup *pc,
208 bool charge)
209{
210 int val = (charge)? 1 : -1;
211 struct mem_cgroup_stat *stat = &mem->stat;
212 struct mem_cgroup_stat_cpu *cpustat;
213 int cpu = get_cpu();
214
215 cpustat = &stat->cpustat[cpu];
216 if (PageCgroupCache(pc))
217 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
218 else
219 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
220
221 if (charge)
222 __mem_cgroup_stat_add_safe(cpustat,
223 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
224 else
225 __mem_cgroup_stat_add_safe(cpustat,
226 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
227 put_cpu();
228}
229
230static struct mem_cgroup_per_zone *
231mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
232{
233 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
234}
235
236static struct mem_cgroup_per_zone *
237page_cgroup_zoneinfo(struct page_cgroup *pc)
238{
239 struct mem_cgroup *mem = pc->mem_cgroup;
240 int nid = page_cgroup_nid(pc);
241 int zid = page_cgroup_zid(pc);
242
243 if (!mem)
244 return NULL;
245
246 return mem_cgroup_zoneinfo(mem, nid, zid);
247}
248
249static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
250 enum lru_list idx)
251{
252 int nid, zid;
253 struct mem_cgroup_per_zone *mz;
254 u64 total = 0;
255
256 for_each_online_node(nid)
257 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
258 mz = mem_cgroup_zoneinfo(mem, nid, zid);
259 total += MEM_CGROUP_ZSTAT(mz, idx);
260 }
261 return total;
262}
263
264static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
265{
266 return container_of(cgroup_subsys_state(cont,
267 mem_cgroup_subsys_id), struct mem_cgroup,
268 css);
269}
270
271struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
272{
273 /*
274 * mm_update_next_owner() may clear mm->owner to NULL
275 * if it races with swapoff, page migration, etc.
276 * So this can be called with p == NULL.
277 */
278 if (unlikely(!p))
279 return NULL;
280
281 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
282 struct mem_cgroup, css);
283}
284
285static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
286{
287 struct mem_cgroup *mem = NULL;
288 /*
289 * Because we have no locks, mm->owner's may be being moved to other
290 * cgroup. We use css_tryget() here even if this looks
291 * pessimistic (rather than adding locks here).
292 */
293 rcu_read_lock();
294 do {
295 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
296 if (unlikely(!mem))
297 break;
298 } while (!css_tryget(&mem->css));
299 rcu_read_unlock();
300 return mem;
301}
302
303static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
304{
305 if (!mem)
306 return true;
307 return css_is_removed(&mem->css);
308}
309
310/*
311 * Following LRU functions are allowed to be used without PCG_LOCK.
312 * Operations are called by routine of global LRU independently from memcg.
313 * What we have to take care of here is validness of pc->mem_cgroup.
314 *
315 * Changes to pc->mem_cgroup happens when
316 * 1. charge
317 * 2. moving account
318 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
319 * It is added to LRU before charge.
320 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
321 * When moving account, the page is not on LRU. It's isolated.
322 */
323
324void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
325{
326 struct page_cgroup *pc;
327 struct mem_cgroup *mem;
328 struct mem_cgroup_per_zone *mz;
329
330 if (mem_cgroup_disabled())
331 return;
332 pc = lookup_page_cgroup(page);
333 /* can happen while we handle swapcache. */
334 if (list_empty(&pc->lru) || !pc->mem_cgroup)
335 return;
336 /*
337 * We don't check PCG_USED bit. It's cleared when the "page" is finally
338 * removed from global LRU.
339 */
340 mz = page_cgroup_zoneinfo(pc);
341 mem = pc->mem_cgroup;
342 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
343 list_del_init(&pc->lru);
344 return;
345}
346
347void mem_cgroup_del_lru(struct page *page)
348{
349 mem_cgroup_del_lru_list(page, page_lru(page));
350}
351
352void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
353{
354 struct mem_cgroup_per_zone *mz;
355 struct page_cgroup *pc;
356
357 if (mem_cgroup_disabled())
358 return;
359
360 pc = lookup_page_cgroup(page);
361 /*
362 * Used bit is set without atomic ops but after smp_wmb().
363 * For making pc->mem_cgroup visible, insert smp_rmb() here.
364 */
365 smp_rmb();
366 /* unused page is not rotated. */
367 if (!PageCgroupUsed(pc))
368 return;
369 mz = page_cgroup_zoneinfo(pc);
370 list_move(&pc->lru, &mz->lists[lru]);
371}
372
373void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
374{
375 struct page_cgroup *pc;
376 struct mem_cgroup_per_zone *mz;
377
378 if (mem_cgroup_disabled())
379 return;
380 pc = lookup_page_cgroup(page);
381 /*
382 * Used bit is set without atomic ops but after smp_wmb().
383 * For making pc->mem_cgroup visible, insert smp_rmb() here.
384 */
385 smp_rmb();
386 if (!PageCgroupUsed(pc))
387 return;
388
389 mz = page_cgroup_zoneinfo(pc);
390 MEM_CGROUP_ZSTAT(mz, lru) += 1;
391 list_add(&pc->lru, &mz->lists[lru]);
392}
393
394/*
395 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
396 * lru because the page may.be reused after it's fully uncharged (because of
397 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
398 * it again. This function is only used to charge SwapCache. It's done under
399 * lock_page and expected that zone->lru_lock is never held.
400 */
401static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
402{
403 unsigned long flags;
404 struct zone *zone = page_zone(page);
405 struct page_cgroup *pc = lookup_page_cgroup(page);
406
407 spin_lock_irqsave(&zone->lru_lock, flags);
408 /*
409 * Forget old LRU when this page_cgroup is *not* used. This Used bit
410 * is guarded by lock_page() because the page is SwapCache.
411 */
412 if (!PageCgroupUsed(pc))
413 mem_cgroup_del_lru_list(page, page_lru(page));
414 spin_unlock_irqrestore(&zone->lru_lock, flags);
415}
416
417static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
418{
419 unsigned long flags;
420 struct zone *zone = page_zone(page);
421 struct page_cgroup *pc = lookup_page_cgroup(page);
422
423 spin_lock_irqsave(&zone->lru_lock, flags);
424 /* link when the page is linked to LRU but page_cgroup isn't */
425 if (PageLRU(page) && list_empty(&pc->lru))
426 mem_cgroup_add_lru_list(page, page_lru(page));
427 spin_unlock_irqrestore(&zone->lru_lock, flags);
428}
429
430
431void mem_cgroup_move_lists(struct page *page,
432 enum lru_list from, enum lru_list to)
433{
434 if (mem_cgroup_disabled())
435 return;
436 mem_cgroup_del_lru_list(page, from);
437 mem_cgroup_add_lru_list(page, to);
438}
439
440int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
441{
442 int ret;
443
444 task_lock(task);
445 ret = task->mm && mm_match_cgroup(task->mm, mem);
446 task_unlock(task);
447 return ret;
448}
449
450/*
451 * Calculate mapped_ratio under memory controller. This will be used in
452 * vmscan.c for deteremining we have to reclaim mapped pages.
453 */
454int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
455{
456 long total, rss;
457
458 /*
459 * usage is recorded in bytes. But, here, we assume the number of
460 * physical pages can be represented by "long" on any arch.
461 */
462 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
463 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
464 return (int)((rss * 100L) / total);
465}
466
467/*
468 * prev_priority control...this will be used in memory reclaim path.
469 */
470int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
471{
472 int prev_priority;
473
474 spin_lock(&mem->reclaim_param_lock);
475 prev_priority = mem->prev_priority;
476 spin_unlock(&mem->reclaim_param_lock);
477
478 return prev_priority;
479}
480
481void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
482{
483 spin_lock(&mem->reclaim_param_lock);
484 if (priority < mem->prev_priority)
485 mem->prev_priority = priority;
486 spin_unlock(&mem->reclaim_param_lock);
487}
488
489void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
490{
491 spin_lock(&mem->reclaim_param_lock);
492 mem->prev_priority = priority;
493 spin_unlock(&mem->reclaim_param_lock);
494}
495
496static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
497{
498 unsigned long active;
499 unsigned long inactive;
500 unsigned long gb;
501 unsigned long inactive_ratio;
502
503 inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON);
504 active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON);
505
506 gb = (inactive + active) >> (30 - PAGE_SHIFT);
507 if (gb)
508 inactive_ratio = int_sqrt(10 * gb);
509 else
510 inactive_ratio = 1;
511
512 if (present_pages) {
513 present_pages[0] = inactive;
514 present_pages[1] = active;
515 }
516
517 return inactive_ratio;
518}
519
520int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
521{
522 unsigned long active;
523 unsigned long inactive;
524 unsigned long present_pages[2];
525 unsigned long inactive_ratio;
526
527 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
528
529 inactive = present_pages[0];
530 active = present_pages[1];
531
532 if (inactive * inactive_ratio < active)
533 return 1;
534
535 return 0;
536}
537
538unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
539 struct zone *zone,
540 enum lru_list lru)
541{
542 int nid = zone->zone_pgdat->node_id;
543 int zid = zone_idx(zone);
544 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
545
546 return MEM_CGROUP_ZSTAT(mz, lru);
547}
548
549struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
550 struct zone *zone)
551{
552 int nid = zone->zone_pgdat->node_id;
553 int zid = zone_idx(zone);
554 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
555
556 return &mz->reclaim_stat;
557}
558
559struct zone_reclaim_stat *
560mem_cgroup_get_reclaim_stat_from_page(struct page *page)
561{
562 struct page_cgroup *pc;
563 struct mem_cgroup_per_zone *mz;
564
565 if (mem_cgroup_disabled())
566 return NULL;
567
568 pc = lookup_page_cgroup(page);
569 /*
570 * Used bit is set without atomic ops but after smp_wmb().
571 * For making pc->mem_cgroup visible, insert smp_rmb() here.
572 */
573 smp_rmb();
574 if (!PageCgroupUsed(pc))
575 return NULL;
576
577 mz = page_cgroup_zoneinfo(pc);
578 if (!mz)
579 return NULL;
580
581 return &mz->reclaim_stat;
582}
583
584unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
585 struct list_head *dst,
586 unsigned long *scanned, int order,
587 int mode, struct zone *z,
588 struct mem_cgroup *mem_cont,
589 int active, int file)
590{
591 unsigned long nr_taken = 0;
592 struct page *page;
593 unsigned long scan;
594 LIST_HEAD(pc_list);
595 struct list_head *src;
596 struct page_cgroup *pc, *tmp;
597 int nid = z->zone_pgdat->node_id;
598 int zid = zone_idx(z);
599 struct mem_cgroup_per_zone *mz;
600 int lru = LRU_FILE * !!file + !!active;
601
602 BUG_ON(!mem_cont);
603 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
604 src = &mz->lists[lru];
605
606 scan = 0;
607 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
608 if (scan >= nr_to_scan)
609 break;
610
611 page = pc->page;
612 if (unlikely(!PageCgroupUsed(pc)))
613 continue;
614 if (unlikely(!PageLRU(page)))
615 continue;
616
617 scan++;
618 if (__isolate_lru_page(page, mode, file) == 0) {
619 list_move(&page->lru, dst);
620 nr_taken++;
621 }
622 }
623
624 *scanned = scan;
625 return nr_taken;
626}
627
628#define mem_cgroup_from_res_counter(counter, member) \
629 container_of(counter, struct mem_cgroup, member)
630
631/*
632 * This routine finds the DFS walk successor. This routine should be
633 * called with hierarchy_mutex held
634 */
635static struct mem_cgroup *
636__mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
637{
638 struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
639
640 curr_cgroup = curr->css.cgroup;
641 root_cgroup = root_mem->css.cgroup;
642
643 if (!list_empty(&curr_cgroup->children)) {
644 /*
645 * Walk down to children
646 */
647 cgroup = list_entry(curr_cgroup->children.next,
648 struct cgroup, sibling);
649 curr = mem_cgroup_from_cont(cgroup);
650 goto done;
651 }
652
653visit_parent:
654 if (curr_cgroup == root_cgroup) {
655 /* caller handles NULL case */
656 curr = NULL;
657 goto done;
658 }
659
660 /*
661 * Goto next sibling
662 */
663 if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
664 cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
665 sibling);
666 curr = mem_cgroup_from_cont(cgroup);
667 goto done;
668 }
669
670 /*
671 * Go up to next parent and next parent's sibling if need be
672 */
673 curr_cgroup = curr_cgroup->parent;
674 goto visit_parent;
675
676done:
677 return curr;
678}
679
680/*
681 * Visit the first child (need not be the first child as per the ordering
682 * of the cgroup list, since we track last_scanned_child) of @mem and use
683 * that to reclaim free pages from.
684 */
685static struct mem_cgroup *
686mem_cgroup_get_next_node(struct mem_cgroup *root_mem)
687{
688 struct cgroup *cgroup;
689 struct mem_cgroup *orig, *next;
690 bool obsolete;
691
692 /*
693 * Scan all children under the mem_cgroup mem
694 */
695 mutex_lock(&mem_cgroup_subsys.hierarchy_mutex);
696
697 orig = root_mem->last_scanned_child;
698 obsolete = mem_cgroup_is_obsolete(orig);
699
700 if (list_empty(&root_mem->css.cgroup->children)) {
701 /*
702 * root_mem might have children before and last_scanned_child
703 * may point to one of them. We put it later.
704 */
705 if (orig)
706 VM_BUG_ON(!obsolete);
707 next = NULL;
708 goto done;
709 }
710
711 if (!orig || obsolete) {
712 cgroup = list_first_entry(&root_mem->css.cgroup->children,
713 struct cgroup, sibling);
714 next = mem_cgroup_from_cont(cgroup);
715 } else
716 next = __mem_cgroup_get_next_node(orig, root_mem);
717
718done:
719 if (next)
720 mem_cgroup_get(next);
721 root_mem->last_scanned_child = next;
722 if (orig)
723 mem_cgroup_put(orig);
724 mutex_unlock(&mem_cgroup_subsys.hierarchy_mutex);
725 return (next) ? next : root_mem;
726}
727
728static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
729{
730 if (do_swap_account) {
731 if (res_counter_check_under_limit(&mem->res) &&
732 res_counter_check_under_limit(&mem->memsw))
733 return true;
734 } else
735 if (res_counter_check_under_limit(&mem->res))
736 return true;
737 return false;
738}
739
740static unsigned int get_swappiness(struct mem_cgroup *memcg)
741{
742 struct cgroup *cgrp = memcg->css.cgroup;
743 unsigned int swappiness;
744
745 /* root ? */
746 if (cgrp->parent == NULL)
747 return vm_swappiness;
748
749 spin_lock(&memcg->reclaim_param_lock);
750 swappiness = memcg->swappiness;
751 spin_unlock(&memcg->reclaim_param_lock);
752
753 return swappiness;
754}
755
756/*
757 * Dance down the hierarchy if needed to reclaim memory. We remember the
758 * last child we reclaimed from, so that we don't end up penalizing
759 * one child extensively based on its position in the children list.
760 *
761 * root_mem is the original ancestor that we've been reclaim from.
762 */
763static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
764 gfp_t gfp_mask, bool noswap)
765{
766 struct mem_cgroup *next_mem;
767 int ret = 0;
768
769 /*
770 * Reclaim unconditionally and don't check for return value.
771 * We need to reclaim in the current group and down the tree.
772 * One might think about checking for children before reclaiming,
773 * but there might be left over accounting, even after children
774 * have left.
775 */
776 ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap,
777 get_swappiness(root_mem));
778 if (mem_cgroup_check_under_limit(root_mem))
779 return 0;
780 if (!root_mem->use_hierarchy)
781 return ret;
782
783 next_mem = mem_cgroup_get_next_node(root_mem);
784
785 while (next_mem != root_mem) {
786 if (mem_cgroup_is_obsolete(next_mem)) {
787 next_mem = mem_cgroup_get_next_node(root_mem);
788 continue;
789 }
790 ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap,
791 get_swappiness(next_mem));
792 if (mem_cgroup_check_under_limit(root_mem))
793 return 0;
794 next_mem = mem_cgroup_get_next_node(root_mem);
795 }
796 return ret;
797}
798
799bool mem_cgroup_oom_called(struct task_struct *task)
800{
801 bool ret = false;
802 struct mem_cgroup *mem;
803 struct mm_struct *mm;
804
805 rcu_read_lock();
806 mm = task->mm;
807 if (!mm)
808 mm = &init_mm;
809 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
810 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
811 ret = true;
812 rcu_read_unlock();
813 return ret;
814}
815/*
816 * Unlike exported interface, "oom" parameter is added. if oom==true,
817 * oom-killer can be invoked.
818 */
819static int __mem_cgroup_try_charge(struct mm_struct *mm,
820 gfp_t gfp_mask, struct mem_cgroup **memcg,
821 bool oom)
822{
823 struct mem_cgroup *mem, *mem_over_limit;
824 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
825 struct res_counter *fail_res;
826
827 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
828 /* Don't account this! */
829 *memcg = NULL;
830 return 0;
831 }
832
833 /*
834 * We always charge the cgroup the mm_struct belongs to.
835 * The mm_struct's mem_cgroup changes on task migration if the
836 * thread group leader migrates. It's possible that mm is not
837 * set, if so charge the init_mm (happens for pagecache usage).
838 */
839 mem = *memcg;
840 if (likely(!mem)) {
841 mem = try_get_mem_cgroup_from_mm(mm);
842 *memcg = mem;
843 } else {
844 css_get(&mem->css);
845 }
846 if (unlikely(!mem))
847 return 0;
848
849 VM_BUG_ON(mem_cgroup_is_obsolete(mem));
850
851 while (1) {
852 int ret;
853 bool noswap = false;
854
855 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
856 if (likely(!ret)) {
857 if (!do_swap_account)
858 break;
859 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
860 &fail_res);
861 if (likely(!ret))
862 break;
863 /* mem+swap counter fails */
864 res_counter_uncharge(&mem->res, PAGE_SIZE);
865 noswap = true;
866 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
867 memsw);
868 } else
869 /* mem counter fails */
870 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
871 res);
872
873 if (!(gfp_mask & __GFP_WAIT))
874 goto nomem;
875
876 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
877 noswap);
878
879 /*
880 * try_to_free_mem_cgroup_pages() might not give us a full
881 * picture of reclaim. Some pages are reclaimed and might be
882 * moved to swap cache or just unmapped from the cgroup.
883 * Check the limit again to see if the reclaim reduced the
884 * current usage of the cgroup before giving up
885 *
886 */
887 if (mem_cgroup_check_under_limit(mem_over_limit))
888 continue;
889
890 if (!nr_retries--) {
891 if (oom) {
892 mutex_lock(&memcg_tasklist);
893 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
894 mutex_unlock(&memcg_tasklist);
895 mem_over_limit->last_oom_jiffies = jiffies;
896 }
897 goto nomem;
898 }
899 }
900 return 0;
901nomem:
902 css_put(&mem->css);
903 return -ENOMEM;
904}
905
906static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
907{
908 struct mem_cgroup *mem;
909 swp_entry_t ent;
910
911 if (!PageSwapCache(page))
912 return NULL;
913
914 ent.val = page_private(page);
915 mem = lookup_swap_cgroup(ent);
916 if (!mem)
917 return NULL;
918 if (!css_tryget(&mem->css))
919 return NULL;
920 return mem;
921}
922
923/*
924 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
925 * USED state. If already USED, uncharge and return.
926 */
927
928static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
929 struct page_cgroup *pc,
930 enum charge_type ctype)
931{
932 /* try_charge() can return NULL to *memcg, taking care of it. */
933 if (!mem)
934 return;
935
936 lock_page_cgroup(pc);
937 if (unlikely(PageCgroupUsed(pc))) {
938 unlock_page_cgroup(pc);
939 res_counter_uncharge(&mem->res, PAGE_SIZE);
940 if (do_swap_account)
941 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
942 css_put(&mem->css);
943 return;
944 }
945 pc->mem_cgroup = mem;
946 smp_wmb();
947 pc->flags = pcg_default_flags[ctype];
948
949 mem_cgroup_charge_statistics(mem, pc, true);
950
951 unlock_page_cgroup(pc);
952}
953
954/**
955 * mem_cgroup_move_account - move account of the page
956 * @pc: page_cgroup of the page.
957 * @from: mem_cgroup which the page is moved from.
958 * @to: mem_cgroup which the page is moved to. @from != @to.
959 *
960 * The caller must confirm following.
961 * - page is not on LRU (isolate_page() is useful.)
962 *
963 * returns 0 at success,
964 * returns -EBUSY when lock is busy or "pc" is unstable.
965 *
966 * This function does "uncharge" from old cgroup but doesn't do "charge" to
967 * new cgroup. It should be done by a caller.
968 */
969
970static int mem_cgroup_move_account(struct page_cgroup *pc,
971 struct mem_cgroup *from, struct mem_cgroup *to)
972{
973 struct mem_cgroup_per_zone *from_mz, *to_mz;
974 int nid, zid;
975 int ret = -EBUSY;
976
977 VM_BUG_ON(from == to);
978 VM_BUG_ON(PageLRU(pc->page));
979
980 nid = page_cgroup_nid(pc);
981 zid = page_cgroup_zid(pc);
982 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
983 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
984
985 if (!trylock_page_cgroup(pc))
986 return ret;
987
988 if (!PageCgroupUsed(pc))
989 goto out;
990
991 if (pc->mem_cgroup != from)
992 goto out;
993
994 res_counter_uncharge(&from->res, PAGE_SIZE);
995 mem_cgroup_charge_statistics(from, pc, false);
996 if (do_swap_account)
997 res_counter_uncharge(&from->memsw, PAGE_SIZE);
998 css_put(&from->css);
999
1000 css_get(&to->css);
1001 pc->mem_cgroup = to;
1002 mem_cgroup_charge_statistics(to, pc, true);
1003 ret = 0;
1004out:
1005 unlock_page_cgroup(pc);
1006 return ret;
1007}
1008
1009/*
1010 * move charges to its parent.
1011 */
1012
1013static int mem_cgroup_move_parent(struct page_cgroup *pc,
1014 struct mem_cgroup *child,
1015 gfp_t gfp_mask)
1016{
1017 struct page *page = pc->page;
1018 struct cgroup *cg = child->css.cgroup;
1019 struct cgroup *pcg = cg->parent;
1020 struct mem_cgroup *parent;
1021 int ret;
1022
1023 /* Is ROOT ? */
1024 if (!pcg)
1025 return -EINVAL;
1026
1027
1028 parent = mem_cgroup_from_cont(pcg);
1029
1030
1031 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1032 if (ret || !parent)
1033 return ret;
1034
1035 if (!get_page_unless_zero(page)) {
1036 ret = -EBUSY;
1037 goto uncharge;
1038 }
1039
1040 ret = isolate_lru_page(page);
1041
1042 if (ret)
1043 goto cancel;
1044
1045 ret = mem_cgroup_move_account(pc, child, parent);
1046
1047 putback_lru_page(page);
1048 if (!ret) {
1049 put_page(page);
1050 /* drop extra refcnt by try_charge() */
1051 css_put(&parent->css);
1052 return 0;
1053 }
1054
1055cancel:
1056 put_page(page);
1057uncharge:
1058 /* drop extra refcnt by try_charge() */
1059 css_put(&parent->css);
1060 /* uncharge if move fails */
1061 res_counter_uncharge(&parent->res, PAGE_SIZE);
1062 if (do_swap_account)
1063 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1064 return ret;
1065}
1066
1067/*
1068 * Charge the memory controller for page usage.
1069 * Return
1070 * 0 if the charge was successful
1071 * < 0 if the cgroup is over its limit
1072 */
1073static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1074 gfp_t gfp_mask, enum charge_type ctype,
1075 struct mem_cgroup *memcg)
1076{
1077 struct mem_cgroup *mem;
1078 struct page_cgroup *pc;
1079 int ret;
1080
1081 pc = lookup_page_cgroup(page);
1082 /* can happen at boot */
1083 if (unlikely(!pc))
1084 return 0;
1085 prefetchw(pc);
1086
1087 mem = memcg;
1088 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1089 if (ret || !mem)
1090 return ret;
1091
1092 __mem_cgroup_commit_charge(mem, pc, ctype);
1093 return 0;
1094}
1095
1096int mem_cgroup_newpage_charge(struct page *page,
1097 struct mm_struct *mm, gfp_t gfp_mask)
1098{
1099 if (mem_cgroup_disabled())
1100 return 0;
1101 if (PageCompound(page))
1102 return 0;
1103 /*
1104 * If already mapped, we don't have to account.
1105 * If page cache, page->mapping has address_space.
1106 * But page->mapping may have out-of-use anon_vma pointer,
1107 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1108 * is NULL.
1109 */
1110 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1111 return 0;
1112 if (unlikely(!mm))
1113 mm = &init_mm;
1114 return mem_cgroup_charge_common(page, mm, gfp_mask,
1115 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1116}
1117
1118int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1119 gfp_t gfp_mask)
1120{
1121 struct mem_cgroup *mem = NULL;
1122 int ret;
1123
1124 if (mem_cgroup_disabled())
1125 return 0;
1126 if (PageCompound(page))
1127 return 0;
1128 /*
1129 * Corner case handling. This is called from add_to_page_cache()
1130 * in usual. But some FS (shmem) precharges this page before calling it
1131 * and call add_to_page_cache() with GFP_NOWAIT.
1132 *
1133 * For GFP_NOWAIT case, the page may be pre-charged before calling
1134 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1135 * charge twice. (It works but has to pay a bit larger cost.)
1136 * And when the page is SwapCache, it should take swap information
1137 * into account. This is under lock_page() now.
1138 */
1139 if (!(gfp_mask & __GFP_WAIT)) {
1140 struct page_cgroup *pc;
1141
1142
1143 pc = lookup_page_cgroup(page);
1144 if (!pc)
1145 return 0;
1146 lock_page_cgroup(pc);
1147 if (PageCgroupUsed(pc)) {
1148 unlock_page_cgroup(pc);
1149 return 0;
1150 }
1151 unlock_page_cgroup(pc);
1152 }
1153
1154 if (do_swap_account && PageSwapCache(page)) {
1155 mem = try_get_mem_cgroup_from_swapcache(page);
1156 if (mem)
1157 mm = NULL;
1158 else
1159 mem = NULL;
1160 /* SwapCache may be still linked to LRU now. */
1161 mem_cgroup_lru_del_before_commit_swapcache(page);
1162 }
1163
1164 if (unlikely(!mm && !mem))
1165 mm = &init_mm;
1166
1167 if (page_is_file_cache(page))
1168 return mem_cgroup_charge_common(page, mm, gfp_mask,
1169 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1170
1171 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1172 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1173 if (mem)
1174 css_put(&mem->css);
1175 if (PageSwapCache(page))
1176 mem_cgroup_lru_add_after_commit_swapcache(page);
1177
1178 if (do_swap_account && !ret && PageSwapCache(page)) {
1179 swp_entry_t ent = {.val = page_private(page)};
1180 /* avoid double counting */
1181 mem = swap_cgroup_record(ent, NULL);
1182 if (mem) {
1183 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1184 mem_cgroup_put(mem);
1185 }
1186 }
1187 return ret;
1188}
1189
1190/*
1191 * While swap-in, try_charge -> commit or cancel, the page is locked.
1192 * And when try_charge() successfully returns, one refcnt to memcg without
1193 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1194 * "commit()" or removed by "cancel()"
1195 */
1196int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1197 struct page *page,
1198 gfp_t mask, struct mem_cgroup **ptr)
1199{
1200 struct mem_cgroup *mem;
1201 int ret;
1202
1203 if (mem_cgroup_disabled())
1204 return 0;
1205
1206 if (!do_swap_account)
1207 goto charge_cur_mm;
1208 /*
1209 * A racing thread's fault, or swapoff, may have already updated
1210 * the pte, and even removed page from swap cache: return success
1211 * to go on to do_swap_page()'s pte_same() test, which should fail.
1212 */
1213 if (!PageSwapCache(page))
1214 return 0;
1215 mem = try_get_mem_cgroup_from_swapcache(page);
1216 if (!mem)
1217 goto charge_cur_mm;
1218 *ptr = mem;
1219 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1220 /* drop extra refcnt from tryget */
1221 css_put(&mem->css);
1222 return ret;
1223charge_cur_mm:
1224 if (unlikely(!mm))
1225 mm = &init_mm;
1226 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1227}
1228
1229void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1230{
1231 struct page_cgroup *pc;
1232
1233 if (mem_cgroup_disabled())
1234 return;
1235 if (!ptr)
1236 return;
1237 pc = lookup_page_cgroup(page);
1238 mem_cgroup_lru_del_before_commit_swapcache(page);
1239 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1240 mem_cgroup_lru_add_after_commit_swapcache(page);
1241 /*
1242 * Now swap is on-memory. This means this page may be
1243 * counted both as mem and swap....double count.
1244 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1245 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1246 * may call delete_from_swap_cache() before reach here.
1247 */
1248 if (do_swap_account && PageSwapCache(page)) {
1249 swp_entry_t ent = {.val = page_private(page)};
1250 struct mem_cgroup *memcg;
1251 memcg = swap_cgroup_record(ent, NULL);
1252 if (memcg) {
1253 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1254 mem_cgroup_put(memcg);
1255 }
1256
1257 }
1258 /* add this page(page_cgroup) to the LRU we want. */
1259
1260}
1261
1262void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1263{
1264 if (mem_cgroup_disabled())
1265 return;
1266 if (!mem)
1267 return;
1268 res_counter_uncharge(&mem->res, PAGE_SIZE);
1269 if (do_swap_account)
1270 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1271 css_put(&mem->css);
1272}
1273
1274
1275/*
1276 * uncharge if !page_mapped(page)
1277 */
1278static struct mem_cgroup *
1279__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1280{
1281 struct page_cgroup *pc;
1282 struct mem_cgroup *mem = NULL;
1283 struct mem_cgroup_per_zone *mz;
1284
1285 if (mem_cgroup_disabled())
1286 return NULL;
1287
1288 if (PageSwapCache(page))
1289 return NULL;
1290
1291 /*
1292 * Check if our page_cgroup is valid
1293 */
1294 pc = lookup_page_cgroup(page);
1295 if (unlikely(!pc || !PageCgroupUsed(pc)))
1296 return NULL;
1297
1298 lock_page_cgroup(pc);
1299
1300 mem = pc->mem_cgroup;
1301
1302 if (!PageCgroupUsed(pc))
1303 goto unlock_out;
1304
1305 switch (ctype) {
1306 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1307 if (page_mapped(page))
1308 goto unlock_out;
1309 break;
1310 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1311 if (!PageAnon(page)) { /* Shared memory */
1312 if (page->mapping && !page_is_file_cache(page))
1313 goto unlock_out;
1314 } else if (page_mapped(page)) /* Anon */
1315 goto unlock_out;
1316 break;
1317 default:
1318 break;
1319 }
1320
1321 res_counter_uncharge(&mem->res, PAGE_SIZE);
1322 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1323 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1324
1325 mem_cgroup_charge_statistics(mem, pc, false);
1326 ClearPageCgroupUsed(pc);
1327 /*
1328 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1329 * freed from LRU. This is safe because uncharged page is expected not
1330 * to be reused (freed soon). Exception is SwapCache, it's handled by
1331 * special functions.
1332 */
1333
1334 mz = page_cgroup_zoneinfo(pc);
1335 unlock_page_cgroup(pc);
1336
1337 /* at swapout, this memcg will be accessed to record to swap */
1338 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1339 css_put(&mem->css);
1340
1341 return mem;
1342
1343unlock_out:
1344 unlock_page_cgroup(pc);
1345 return NULL;
1346}
1347
1348void mem_cgroup_uncharge_page(struct page *page)
1349{
1350 /* early check. */
1351 if (page_mapped(page))
1352 return;
1353 if (page->mapping && !PageAnon(page))
1354 return;
1355 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1356}
1357
1358void mem_cgroup_uncharge_cache_page(struct page *page)
1359{
1360 VM_BUG_ON(page_mapped(page));
1361 VM_BUG_ON(page->mapping);
1362 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1363}
1364
1365/*
1366 * called from __delete_from_swap_cache() and drop "page" account.
1367 * memcg information is recorded to swap_cgroup of "ent"
1368 */
1369void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1370{
1371 struct mem_cgroup *memcg;
1372
1373 memcg = __mem_cgroup_uncharge_common(page,
1374 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1375 /* record memcg information */
1376 if (do_swap_account && memcg) {
1377 swap_cgroup_record(ent, memcg);
1378 mem_cgroup_get(memcg);
1379 }
1380 if (memcg)
1381 css_put(&memcg->css);
1382}
1383
1384#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1385/*
1386 * called from swap_entry_free(). remove record in swap_cgroup and
1387 * uncharge "memsw" account.
1388 */
1389void mem_cgroup_uncharge_swap(swp_entry_t ent)
1390{
1391 struct mem_cgroup *memcg;
1392
1393 if (!do_swap_account)
1394 return;
1395
1396 memcg = swap_cgroup_record(ent, NULL);
1397 if (memcg) {
1398 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1399 mem_cgroup_put(memcg);
1400 }
1401}
1402#endif
1403
1404/*
1405 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1406 * page belongs to.
1407 */
1408int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1409{
1410 struct page_cgroup *pc;
1411 struct mem_cgroup *mem = NULL;
1412 int ret = 0;
1413
1414 if (mem_cgroup_disabled())
1415 return 0;
1416
1417 pc = lookup_page_cgroup(page);
1418 lock_page_cgroup(pc);
1419 if (PageCgroupUsed(pc)) {
1420 mem = pc->mem_cgroup;
1421 css_get(&mem->css);
1422 }
1423 unlock_page_cgroup(pc);
1424
1425 if (mem) {
1426 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
1427 css_put(&mem->css);
1428 }
1429 *ptr = mem;
1430 return ret;
1431}
1432
1433/* remove redundant charge if migration failed*/
1434void mem_cgroup_end_migration(struct mem_cgroup *mem,
1435 struct page *oldpage, struct page *newpage)
1436{
1437 struct page *target, *unused;
1438 struct page_cgroup *pc;
1439 enum charge_type ctype;
1440
1441 if (!mem)
1442 return;
1443
1444 /* at migration success, oldpage->mapping is NULL. */
1445 if (oldpage->mapping) {
1446 target = oldpage;
1447 unused = NULL;
1448 } else {
1449 target = newpage;
1450 unused = oldpage;
1451 }
1452
1453 if (PageAnon(target))
1454 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1455 else if (page_is_file_cache(target))
1456 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1457 else
1458 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1459
1460 /* unused page is not on radix-tree now. */
1461 if (unused)
1462 __mem_cgroup_uncharge_common(unused, ctype);
1463
1464 pc = lookup_page_cgroup(target);
1465 /*
1466 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1467 * So, double-counting is effectively avoided.
1468 */
1469 __mem_cgroup_commit_charge(mem, pc, ctype);
1470
1471 /*
1472 * Both of oldpage and newpage are still under lock_page().
1473 * Then, we don't have to care about race in radix-tree.
1474 * But we have to be careful that this page is unmapped or not.
1475 *
1476 * There is a case for !page_mapped(). At the start of
1477 * migration, oldpage was mapped. But now, it's zapped.
1478 * But we know *target* page is not freed/reused under us.
1479 * mem_cgroup_uncharge_page() does all necessary checks.
1480 */
1481 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1482 mem_cgroup_uncharge_page(target);
1483}
1484
1485/*
1486 * A call to try to shrink memory usage under specified resource controller.
1487 * This is typically used for page reclaiming for shmem for reducing side
1488 * effect of page allocation from shmem, which is used by some mem_cgroup.
1489 */
1490int mem_cgroup_shrink_usage(struct page *page,
1491 struct mm_struct *mm,
1492 gfp_t gfp_mask)
1493{
1494 struct mem_cgroup *mem = NULL;
1495 int progress = 0;
1496 int retry = MEM_CGROUP_RECLAIM_RETRIES;
1497
1498 if (mem_cgroup_disabled())
1499 return 0;
1500 if (page)
1501 mem = try_get_mem_cgroup_from_swapcache(page);
1502 if (!mem && mm)
1503 mem = try_get_mem_cgroup_from_mm(mm);
1504 if (unlikely(!mem))
1505 return 0;
1506
1507 do {
1508 progress = mem_cgroup_hierarchical_reclaim(mem, gfp_mask, true);
1509 progress += mem_cgroup_check_under_limit(mem);
1510 } while (!progress && --retry);
1511
1512 css_put(&mem->css);
1513 if (!retry)
1514 return -ENOMEM;
1515 return 0;
1516}
1517
1518static DEFINE_MUTEX(set_limit_mutex);
1519
1520static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1521 unsigned long long val)
1522{
1523
1524 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1525 int progress;
1526 u64 memswlimit;
1527 int ret = 0;
1528
1529 while (retry_count) {
1530 if (signal_pending(current)) {
1531 ret = -EINTR;
1532 break;
1533 }
1534 /*
1535 * Rather than hide all in some function, I do this in
1536 * open coded manner. You see what this really does.
1537 * We have to guarantee mem->res.limit < mem->memsw.limit.
1538 */
1539 mutex_lock(&set_limit_mutex);
1540 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1541 if (memswlimit < val) {
1542 ret = -EINVAL;
1543 mutex_unlock(&set_limit_mutex);
1544 break;
1545 }
1546 ret = res_counter_set_limit(&memcg->res, val);
1547 mutex_unlock(&set_limit_mutex);
1548
1549 if (!ret)
1550 break;
1551
1552 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1553 false);
1554 if (!progress) retry_count--;
1555 }
1556
1557 return ret;
1558}
1559
1560int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1561 unsigned long long val)
1562{
1563 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1564 u64 memlimit, oldusage, curusage;
1565 int ret;
1566
1567 if (!do_swap_account)
1568 return -EINVAL;
1569
1570 while (retry_count) {
1571 if (signal_pending(current)) {
1572 ret = -EINTR;
1573 break;
1574 }
1575 /*
1576 * Rather than hide all in some function, I do this in
1577 * open coded manner. You see what this really does.
1578 * We have to guarantee mem->res.limit < mem->memsw.limit.
1579 */
1580 mutex_lock(&set_limit_mutex);
1581 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1582 if (memlimit > val) {
1583 ret = -EINVAL;
1584 mutex_unlock(&set_limit_mutex);
1585 break;
1586 }
1587 ret = res_counter_set_limit(&memcg->memsw, val);
1588 mutex_unlock(&set_limit_mutex);
1589
1590 if (!ret)
1591 break;
1592
1593 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1594 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true);
1595 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1596 if (curusage >= oldusage)
1597 retry_count--;
1598 }
1599 return ret;
1600}
1601
1602/*
1603 * This routine traverse page_cgroup in given list and drop them all.
1604 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1605 */
1606static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1607 int node, int zid, enum lru_list lru)
1608{
1609 struct zone *zone;
1610 struct mem_cgroup_per_zone *mz;
1611 struct page_cgroup *pc, *busy;
1612 unsigned long flags, loop;
1613 struct list_head *list;
1614 int ret = 0;
1615
1616 zone = &NODE_DATA(node)->node_zones[zid];
1617 mz = mem_cgroup_zoneinfo(mem, node, zid);
1618 list = &mz->lists[lru];
1619
1620 loop = MEM_CGROUP_ZSTAT(mz, lru);
1621 /* give some margin against EBUSY etc...*/
1622 loop += 256;
1623 busy = NULL;
1624 while (loop--) {
1625 ret = 0;
1626 spin_lock_irqsave(&zone->lru_lock, flags);
1627 if (list_empty(list)) {
1628 spin_unlock_irqrestore(&zone->lru_lock, flags);
1629 break;
1630 }
1631 pc = list_entry(list->prev, struct page_cgroup, lru);
1632 if (busy == pc) {
1633 list_move(&pc->lru, list);
1634 busy = 0;
1635 spin_unlock_irqrestore(&zone->lru_lock, flags);
1636 continue;
1637 }
1638 spin_unlock_irqrestore(&zone->lru_lock, flags);
1639
1640 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1641 if (ret == -ENOMEM)
1642 break;
1643
1644 if (ret == -EBUSY || ret == -EINVAL) {
1645 /* found lock contention or "pc" is obsolete. */
1646 busy = pc;
1647 cond_resched();
1648 } else
1649 busy = NULL;
1650 }
1651
1652 if (!ret && !list_empty(list))
1653 return -EBUSY;
1654 return ret;
1655}
1656
1657/*
1658 * make mem_cgroup's charge to be 0 if there is no task.
1659 * This enables deleting this mem_cgroup.
1660 */
1661static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1662{
1663 int ret;
1664 int node, zid, shrink;
1665 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1666 struct cgroup *cgrp = mem->css.cgroup;
1667
1668 css_get(&mem->css);
1669
1670 shrink = 0;
1671 /* should free all ? */
1672 if (free_all)
1673 goto try_to_free;
1674move_account:
1675 while (mem->res.usage > 0) {
1676 ret = -EBUSY;
1677 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1678 goto out;
1679 ret = -EINTR;
1680 if (signal_pending(current))
1681 goto out;
1682 /* This is for making all *used* pages to be on LRU. */
1683 lru_add_drain_all();
1684 ret = 0;
1685 for_each_node_state(node, N_POSSIBLE) {
1686 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1687 enum lru_list l;
1688 for_each_lru(l) {
1689 ret = mem_cgroup_force_empty_list(mem,
1690 node, zid, l);
1691 if (ret)
1692 break;
1693 }
1694 }
1695 if (ret)
1696 break;
1697 }
1698 /* it seems parent cgroup doesn't have enough mem */
1699 if (ret == -ENOMEM)
1700 goto try_to_free;
1701 cond_resched();
1702 }
1703 ret = 0;
1704out:
1705 css_put(&mem->css);
1706 return ret;
1707
1708try_to_free:
1709 /* returns EBUSY if there is a task or if we come here twice. */
1710 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1711 ret = -EBUSY;
1712 goto out;
1713 }
1714 /* we call try-to-free pages for make this cgroup empty */
1715 lru_add_drain_all();
1716 /* try to free all pages in this cgroup */
1717 shrink = 1;
1718 while (nr_retries && mem->res.usage > 0) {
1719 int progress;
1720
1721 if (signal_pending(current)) {
1722 ret = -EINTR;
1723 goto out;
1724 }
1725 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1726 false, get_swappiness(mem));
1727 if (!progress) {
1728 nr_retries--;
1729 /* maybe some writeback is necessary */
1730 congestion_wait(WRITE, HZ/10);
1731 }
1732
1733 }
1734 lru_add_drain();
1735 /* try move_account...there may be some *locked* pages. */
1736 if (mem->res.usage)
1737 goto move_account;
1738 ret = 0;
1739 goto out;
1740}
1741
1742int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1743{
1744 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1745}
1746
1747
1748static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1749{
1750 return mem_cgroup_from_cont(cont)->use_hierarchy;
1751}
1752
1753static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1754 u64 val)
1755{
1756 int retval = 0;
1757 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1758 struct cgroup *parent = cont->parent;
1759 struct mem_cgroup *parent_mem = NULL;
1760
1761 if (parent)
1762 parent_mem = mem_cgroup_from_cont(parent);
1763
1764 cgroup_lock();
1765 /*
1766 * If parent's use_hiearchy is set, we can't make any modifications
1767 * in the child subtrees. If it is unset, then the change can
1768 * occur, provided the current cgroup has no children.
1769 *
1770 * For the root cgroup, parent_mem is NULL, we allow value to be
1771 * set if there are no children.
1772 */
1773 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1774 (val == 1 || val == 0)) {
1775 if (list_empty(&cont->children))
1776 mem->use_hierarchy = val;
1777 else
1778 retval = -EBUSY;
1779 } else
1780 retval = -EINVAL;
1781 cgroup_unlock();
1782
1783 return retval;
1784}
1785
1786static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
1787{
1788 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1789 u64 val = 0;
1790 int type, name;
1791
1792 type = MEMFILE_TYPE(cft->private);
1793 name = MEMFILE_ATTR(cft->private);
1794 switch (type) {
1795 case _MEM:
1796 val = res_counter_read_u64(&mem->res, name);
1797 break;
1798 case _MEMSWAP:
1799 if (do_swap_account)
1800 val = res_counter_read_u64(&mem->memsw, name);
1801 break;
1802 default:
1803 BUG();
1804 break;
1805 }
1806 return val;
1807}
1808/*
1809 * The user of this function is...
1810 * RES_LIMIT.
1811 */
1812static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1813 const char *buffer)
1814{
1815 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1816 int type, name;
1817 unsigned long long val;
1818 int ret;
1819
1820 type = MEMFILE_TYPE(cft->private);
1821 name = MEMFILE_ATTR(cft->private);
1822 switch (name) {
1823 case RES_LIMIT:
1824 /* This function does all necessary parse...reuse it */
1825 ret = res_counter_memparse_write_strategy(buffer, &val);
1826 if (ret)
1827 break;
1828 if (type == _MEM)
1829 ret = mem_cgroup_resize_limit(memcg, val);
1830 else
1831 ret = mem_cgroup_resize_memsw_limit(memcg, val);
1832 break;
1833 default:
1834 ret = -EINVAL; /* should be BUG() ? */
1835 break;
1836 }
1837 return ret;
1838}
1839
1840static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
1841 unsigned long long *mem_limit, unsigned long long *memsw_limit)
1842{
1843 struct cgroup *cgroup;
1844 unsigned long long min_limit, min_memsw_limit, tmp;
1845
1846 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1847 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1848 cgroup = memcg->css.cgroup;
1849 if (!memcg->use_hierarchy)
1850 goto out;
1851
1852 while (cgroup->parent) {
1853 cgroup = cgroup->parent;
1854 memcg = mem_cgroup_from_cont(cgroup);
1855 if (!memcg->use_hierarchy)
1856 break;
1857 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
1858 min_limit = min(min_limit, tmp);
1859 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1860 min_memsw_limit = min(min_memsw_limit, tmp);
1861 }
1862out:
1863 *mem_limit = min_limit;
1864 *memsw_limit = min_memsw_limit;
1865 return;
1866}
1867
1868static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
1869{
1870 struct mem_cgroup *mem;
1871 int type, name;
1872
1873 mem = mem_cgroup_from_cont(cont);
1874 type = MEMFILE_TYPE(event);
1875 name = MEMFILE_ATTR(event);
1876 switch (name) {
1877 case RES_MAX_USAGE:
1878 if (type == _MEM)
1879 res_counter_reset_max(&mem->res);
1880 else
1881 res_counter_reset_max(&mem->memsw);
1882 break;
1883 case RES_FAILCNT:
1884 if (type == _MEM)
1885 res_counter_reset_failcnt(&mem->res);
1886 else
1887 res_counter_reset_failcnt(&mem->memsw);
1888 break;
1889 }
1890 return 0;
1891}
1892
1893static const struct mem_cgroup_stat_desc {
1894 const char *msg;
1895 u64 unit;
1896} mem_cgroup_stat_desc[] = {
1897 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1898 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
1899 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1900 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
1901};
1902
1903static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1904 struct cgroup_map_cb *cb)
1905{
1906 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1907 struct mem_cgroup_stat *stat = &mem_cont->stat;
1908 int i;
1909
1910 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1911 s64 val;
1912
1913 val = mem_cgroup_read_stat(stat, i);
1914 val *= mem_cgroup_stat_desc[i].unit;
1915 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
1916 }
1917 /* showing # of active pages */
1918 {
1919 unsigned long active_anon, inactive_anon;
1920 unsigned long active_file, inactive_file;
1921 unsigned long unevictable;
1922
1923 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1924 LRU_INACTIVE_ANON);
1925 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1926 LRU_ACTIVE_ANON);
1927 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1928 LRU_INACTIVE_FILE);
1929 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1930 LRU_ACTIVE_FILE);
1931 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1932 LRU_UNEVICTABLE);
1933
1934 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1935 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1936 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1937 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
1938 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1939
1940 }
1941 {
1942 unsigned long long limit, memsw_limit;
1943 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
1944 cb->fill(cb, "hierarchical_memory_limit", limit);
1945 if (do_swap_account)
1946 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
1947 }
1948
1949#ifdef CONFIG_DEBUG_VM
1950 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
1951
1952 {
1953 int nid, zid;
1954 struct mem_cgroup_per_zone *mz;
1955 unsigned long recent_rotated[2] = {0, 0};
1956 unsigned long recent_scanned[2] = {0, 0};
1957
1958 for_each_online_node(nid)
1959 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1960 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1961
1962 recent_rotated[0] +=
1963 mz->reclaim_stat.recent_rotated[0];
1964 recent_rotated[1] +=
1965 mz->reclaim_stat.recent_rotated[1];
1966 recent_scanned[0] +=
1967 mz->reclaim_stat.recent_scanned[0];
1968 recent_scanned[1] +=
1969 mz->reclaim_stat.recent_scanned[1];
1970 }
1971 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
1972 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
1973 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
1974 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
1975 }
1976#endif
1977
1978 return 0;
1979}
1980
1981static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
1982{
1983 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1984
1985 return get_swappiness(memcg);
1986}
1987
1988static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
1989 u64 val)
1990{
1991 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1992 struct mem_cgroup *parent;
1993 if (val > 100)
1994 return -EINVAL;
1995
1996 if (cgrp->parent == NULL)
1997 return -EINVAL;
1998
1999 parent = mem_cgroup_from_cont(cgrp->parent);
2000 /* If under hierarchy, only empty-root can set this value */
2001 if ((parent->use_hierarchy) ||
2002 (memcg->use_hierarchy && !list_empty(&cgrp->children)))
2003 return -EINVAL;
2004
2005 spin_lock(&memcg->reclaim_param_lock);
2006 memcg->swappiness = val;
2007 spin_unlock(&memcg->reclaim_param_lock);
2008
2009 return 0;
2010}
2011
2012
2013static struct cftype mem_cgroup_files[] = {
2014 {
2015 .name = "usage_in_bytes",
2016 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2017 .read_u64 = mem_cgroup_read,
2018 },
2019 {
2020 .name = "max_usage_in_bytes",
2021 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2022 .trigger = mem_cgroup_reset,
2023 .read_u64 = mem_cgroup_read,
2024 },
2025 {
2026 .name = "limit_in_bytes",
2027 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2028 .write_string = mem_cgroup_write,
2029 .read_u64 = mem_cgroup_read,
2030 },
2031 {
2032 .name = "failcnt",
2033 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2034 .trigger = mem_cgroup_reset,
2035 .read_u64 = mem_cgroup_read,
2036 },
2037 {
2038 .name = "stat",
2039 .read_map = mem_control_stat_show,
2040 },
2041 {
2042 .name = "force_empty",
2043 .trigger = mem_cgroup_force_empty_write,
2044 },
2045 {
2046 .name = "use_hierarchy",
2047 .write_u64 = mem_cgroup_hierarchy_write,
2048 .read_u64 = mem_cgroup_hierarchy_read,
2049 },
2050 {
2051 .name = "swappiness",
2052 .read_u64 = mem_cgroup_swappiness_read,
2053 .write_u64 = mem_cgroup_swappiness_write,
2054 },
2055};
2056
2057#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2058static struct cftype memsw_cgroup_files[] = {
2059 {
2060 .name = "memsw.usage_in_bytes",
2061 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2062 .read_u64 = mem_cgroup_read,
2063 },
2064 {
2065 .name = "memsw.max_usage_in_bytes",
2066 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2067 .trigger = mem_cgroup_reset,
2068 .read_u64 = mem_cgroup_read,
2069 },
2070 {
2071 .name = "memsw.limit_in_bytes",
2072 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2073 .write_string = mem_cgroup_write,
2074 .read_u64 = mem_cgroup_read,
2075 },
2076 {
2077 .name = "memsw.failcnt",
2078 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2079 .trigger = mem_cgroup_reset,
2080 .read_u64 = mem_cgroup_read,
2081 },
2082};
2083
2084static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2085{
2086 if (!do_swap_account)
2087 return 0;
2088 return cgroup_add_files(cont, ss, memsw_cgroup_files,
2089 ARRAY_SIZE(memsw_cgroup_files));
2090};
2091#else
2092static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2093{
2094 return 0;
2095}
2096#endif
2097
2098static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2099{
2100 struct mem_cgroup_per_node *pn;
2101 struct mem_cgroup_per_zone *mz;
2102 enum lru_list l;
2103 int zone, tmp = node;
2104 /*
2105 * This routine is called against possible nodes.
2106 * But it's BUG to call kmalloc() against offline node.
2107 *
2108 * TODO: this routine can waste much memory for nodes which will
2109 * never be onlined. It's better to use memory hotplug callback
2110 * function.
2111 */
2112 if (!node_state(node, N_NORMAL_MEMORY))
2113 tmp = -1;
2114 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2115 if (!pn)
2116 return 1;
2117
2118 mem->info.nodeinfo[node] = pn;
2119 memset(pn, 0, sizeof(*pn));
2120
2121 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2122 mz = &pn->zoneinfo[zone];
2123 for_each_lru(l)
2124 INIT_LIST_HEAD(&mz->lists[l]);
2125 }
2126 return 0;
2127}
2128
2129static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2130{
2131 kfree(mem->info.nodeinfo[node]);
2132}
2133
2134static int mem_cgroup_size(void)
2135{
2136 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2137 return sizeof(struct mem_cgroup) + cpustat_size;
2138}
2139
2140static struct mem_cgroup *mem_cgroup_alloc(void)
2141{
2142 struct mem_cgroup *mem;
2143 int size = mem_cgroup_size();
2144
2145 if (size < PAGE_SIZE)
2146 mem = kmalloc(size, GFP_KERNEL);
2147 else
2148 mem = vmalloc(size);
2149
2150 if (mem)
2151 memset(mem, 0, size);
2152 return mem;
2153}
2154
2155/*
2156 * At destroying mem_cgroup, references from swap_cgroup can remain.
2157 * (scanning all at force_empty is too costly...)
2158 *
2159 * Instead of clearing all references at force_empty, we remember
2160 * the number of reference from swap_cgroup and free mem_cgroup when
2161 * it goes down to 0.
2162 *
2163 * Removal of cgroup itself succeeds regardless of refs from swap.
2164 */
2165
2166static void __mem_cgroup_free(struct mem_cgroup *mem)
2167{
2168 int node;
2169
2170 for_each_node_state(node, N_POSSIBLE)
2171 free_mem_cgroup_per_zone_info(mem, node);
2172
2173 if (mem_cgroup_size() < PAGE_SIZE)
2174 kfree(mem);
2175 else
2176 vfree(mem);
2177}
2178
2179static void mem_cgroup_get(struct mem_cgroup *mem)
2180{
2181 atomic_inc(&mem->refcnt);
2182}
2183
2184static void mem_cgroup_put(struct mem_cgroup *mem)
2185{
2186 if (atomic_dec_and_test(&mem->refcnt))
2187 __mem_cgroup_free(mem);
2188}
2189
2190
2191#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2192static void __init enable_swap_cgroup(void)
2193{
2194 if (!mem_cgroup_disabled() && really_do_swap_account)
2195 do_swap_account = 1;
2196}
2197#else
2198static void __init enable_swap_cgroup(void)
2199{
2200}
2201#endif
2202
2203static struct cgroup_subsys_state *
2204mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2205{
2206 struct mem_cgroup *mem, *parent;
2207 int node;
2208
2209 mem = mem_cgroup_alloc();
2210 if (!mem)
2211 return ERR_PTR(-ENOMEM);
2212
2213 for_each_node_state(node, N_POSSIBLE)
2214 if (alloc_mem_cgroup_per_zone_info(mem, node))
2215 goto free_out;
2216 /* root ? */
2217 if (cont->parent == NULL) {
2218 enable_swap_cgroup();
2219 parent = NULL;
2220 } else {
2221 parent = mem_cgroup_from_cont(cont->parent);
2222 mem->use_hierarchy = parent->use_hierarchy;
2223 }
2224
2225 if (parent && parent->use_hierarchy) {
2226 res_counter_init(&mem->res, &parent->res);
2227 res_counter_init(&mem->memsw, &parent->memsw);
2228 } else {
2229 res_counter_init(&mem->res, NULL);
2230 res_counter_init(&mem->memsw, NULL);
2231 }
2232 mem->last_scanned_child = NULL;
2233 spin_lock_init(&mem->reclaim_param_lock);
2234
2235 if (parent)
2236 mem->swappiness = get_swappiness(parent);
2237 atomic_set(&mem->refcnt, 1);
2238 return &mem->css;
2239free_out:
2240 __mem_cgroup_free(mem);
2241 return ERR_PTR(-ENOMEM);
2242}
2243
2244static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2245 struct cgroup *cont)
2246{
2247 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2248 mem_cgroup_force_empty(mem, false);
2249}
2250
2251static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2252 struct cgroup *cont)
2253{
2254 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2255 struct mem_cgroup *last_scanned_child = mem->last_scanned_child;
2256
2257 if (last_scanned_child) {
2258 VM_BUG_ON(!mem_cgroup_is_obsolete(last_scanned_child));
2259 mem_cgroup_put(last_scanned_child);
2260 }
2261 mem_cgroup_put(mem);
2262}
2263
2264static int mem_cgroup_populate(struct cgroup_subsys *ss,
2265 struct cgroup *cont)
2266{
2267 int ret;
2268
2269 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2270 ARRAY_SIZE(mem_cgroup_files));
2271
2272 if (!ret)
2273 ret = register_memsw_files(cont, ss);
2274 return ret;
2275}
2276
2277static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2278 struct cgroup *cont,
2279 struct cgroup *old_cont,
2280 struct task_struct *p)
2281{
2282 mutex_lock(&memcg_tasklist);
2283 /*
2284 * FIXME: It's better to move charges of this process from old
2285 * memcg to new memcg. But it's just on TODO-List now.
2286 */
2287 mutex_unlock(&memcg_tasklist);
2288}
2289
2290struct cgroup_subsys mem_cgroup_subsys = {
2291 .name = "memory",
2292 .subsys_id = mem_cgroup_subsys_id,
2293 .create = mem_cgroup_create,
2294 .pre_destroy = mem_cgroup_pre_destroy,
2295 .destroy = mem_cgroup_destroy,
2296 .populate = mem_cgroup_populate,
2297 .attach = mem_cgroup_move_task,
2298 .early_init = 0,
2299};
2300
2301#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2302
2303static int __init disable_swap_account(char *s)
2304{
2305 really_do_swap_account = 0;
2306 return 1;
2307}
2308__setup("noswapaccount", disable_swap_account);
2309#endif
This page took 0.03101 seconds and 5 git commands to generate.