mm: remove useless rcu lock-unlock from mapping_tagged()
[deliverable/linux.git] / mm / memory.c
... / ...
CommitLineData
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/ksm.h>
49#include <linux/rmap.h>
50#include <linux/module.h>
51#include <linux/delayacct.h>
52#include <linux/init.h>
53#include <linux/writeback.h>
54#include <linux/memcontrol.h>
55#include <linux/mmu_notifier.h>
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
59#include <linux/gfp.h>
60
61#include <asm/io.h>
62#include <asm/pgalloc.h>
63#include <asm/uaccess.h>
64#include <asm/tlb.h>
65#include <asm/tlbflush.h>
66#include <asm/pgtable.h>
67
68#include "internal.h"
69
70#ifndef CONFIG_NEED_MULTIPLE_NODES
71/* use the per-pgdat data instead for discontigmem - mbligh */
72unsigned long max_mapnr;
73struct page *mem_map;
74
75EXPORT_SYMBOL(max_mapnr);
76EXPORT_SYMBOL(mem_map);
77#endif
78
79unsigned long num_physpages;
80/*
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
86 */
87void * high_memory;
88
89EXPORT_SYMBOL(num_physpages);
90EXPORT_SYMBOL(high_memory);
91
92/*
93 * Randomize the address space (stacks, mmaps, brk, etc.).
94 *
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
97 */
98int randomize_va_space __read_mostly =
99#ifdef CONFIG_COMPAT_BRK
100 1;
101#else
102 2;
103#endif
104
105static int __init disable_randmaps(char *s)
106{
107 randomize_va_space = 0;
108 return 1;
109}
110__setup("norandmaps", disable_randmaps);
111
112unsigned long zero_pfn __read_mostly;
113unsigned long highest_memmap_pfn __read_mostly;
114
115/*
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 */
118static int __init init_zero_pfn(void)
119{
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
122}
123core_initcall(init_zero_pfn);
124
125
126#if defined(SPLIT_RSS_COUNTING)
127
128static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
129{
130 int i;
131
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (task->rss_stat.count[i]) {
134 add_mm_counter(mm, i, task->rss_stat.count[i]);
135 task->rss_stat.count[i] = 0;
136 }
137 }
138 task->rss_stat.events = 0;
139}
140
141static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142{
143 struct task_struct *task = current;
144
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
149}
150#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153/* sync counter once per 64 page faults */
154#define TASK_RSS_EVENTS_THRESH (64)
155static void check_sync_rss_stat(struct task_struct *task)
156{
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 __sync_task_rss_stat(task, task->mm);
161}
162
163unsigned long get_mm_counter(struct mm_struct *mm, int member)
164{
165 long val = 0;
166
167 /*
168 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 * The caller must guarantee task->mm is not invalid.
170 */
171 val = atomic_long_read(&mm->rss_stat.count[member]);
172 /*
173 * counter is updated in asynchronous manner and may go to minus.
174 * But it's never be expected number for users.
175 */
176 if (val < 0)
177 return 0;
178 return (unsigned long)val;
179}
180
181void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
182{
183 __sync_task_rss_stat(task, mm);
184}
185#else /* SPLIT_RSS_COUNTING */
186
187#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
189
190static void check_sync_rss_stat(struct task_struct *task)
191{
192}
193
194#endif /* SPLIT_RSS_COUNTING */
195
196#ifdef HAVE_GENERIC_MMU_GATHER
197
198static int tlb_next_batch(struct mmu_gather *tlb)
199{
200 struct mmu_gather_batch *batch;
201
202 batch = tlb->active;
203 if (batch->next) {
204 tlb->active = batch->next;
205 return 1;
206 }
207
208 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
209 if (!batch)
210 return 0;
211
212 batch->next = NULL;
213 batch->nr = 0;
214 batch->max = MAX_GATHER_BATCH;
215
216 tlb->active->next = batch;
217 tlb->active = batch;
218
219 return 1;
220}
221
222/* tlb_gather_mmu
223 * Called to initialize an (on-stack) mmu_gather structure for page-table
224 * tear-down from @mm. The @fullmm argument is used when @mm is without
225 * users and we're going to destroy the full address space (exit/execve).
226 */
227void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
228{
229 tlb->mm = mm;
230
231 tlb->fullmm = fullmm;
232 tlb->need_flush = 0;
233 tlb->fast_mode = (num_possible_cpus() == 1);
234 tlb->local.next = NULL;
235 tlb->local.nr = 0;
236 tlb->local.max = ARRAY_SIZE(tlb->__pages);
237 tlb->active = &tlb->local;
238
239#ifdef CONFIG_HAVE_RCU_TABLE_FREE
240 tlb->batch = NULL;
241#endif
242}
243
244void tlb_flush_mmu(struct mmu_gather *tlb)
245{
246 struct mmu_gather_batch *batch;
247
248 if (!tlb->need_flush)
249 return;
250 tlb->need_flush = 0;
251 tlb_flush(tlb);
252#ifdef CONFIG_HAVE_RCU_TABLE_FREE
253 tlb_table_flush(tlb);
254#endif
255
256 if (tlb_fast_mode(tlb))
257 return;
258
259 for (batch = &tlb->local; batch; batch = batch->next) {
260 free_pages_and_swap_cache(batch->pages, batch->nr);
261 batch->nr = 0;
262 }
263 tlb->active = &tlb->local;
264}
265
266/* tlb_finish_mmu
267 * Called at the end of the shootdown operation to free up any resources
268 * that were required.
269 */
270void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
271{
272 struct mmu_gather_batch *batch, *next;
273
274 tlb_flush_mmu(tlb);
275
276 /* keep the page table cache within bounds */
277 check_pgt_cache();
278
279 for (batch = tlb->local.next; batch; batch = next) {
280 next = batch->next;
281 free_pages((unsigned long)batch, 0);
282 }
283 tlb->local.next = NULL;
284}
285
286/* __tlb_remove_page
287 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288 * handling the additional races in SMP caused by other CPUs caching valid
289 * mappings in their TLBs. Returns the number of free page slots left.
290 * When out of page slots we must call tlb_flush_mmu().
291 */
292int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
293{
294 struct mmu_gather_batch *batch;
295
296 tlb->need_flush = 1;
297
298 if (tlb_fast_mode(tlb)) {
299 free_page_and_swap_cache(page);
300 return 1; /* avoid calling tlb_flush_mmu() */
301 }
302
303 batch = tlb->active;
304 batch->pages[batch->nr++] = page;
305 if (batch->nr == batch->max) {
306 if (!tlb_next_batch(tlb))
307 return 0;
308 batch = tlb->active;
309 }
310 VM_BUG_ON(batch->nr > batch->max);
311
312 return batch->max - batch->nr;
313}
314
315#endif /* HAVE_GENERIC_MMU_GATHER */
316
317#ifdef CONFIG_HAVE_RCU_TABLE_FREE
318
319/*
320 * See the comment near struct mmu_table_batch.
321 */
322
323static void tlb_remove_table_smp_sync(void *arg)
324{
325 /* Simply deliver the interrupt */
326}
327
328static void tlb_remove_table_one(void *table)
329{
330 /*
331 * This isn't an RCU grace period and hence the page-tables cannot be
332 * assumed to be actually RCU-freed.
333 *
334 * It is however sufficient for software page-table walkers that rely on
335 * IRQ disabling. See the comment near struct mmu_table_batch.
336 */
337 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
338 __tlb_remove_table(table);
339}
340
341static void tlb_remove_table_rcu(struct rcu_head *head)
342{
343 struct mmu_table_batch *batch;
344 int i;
345
346 batch = container_of(head, struct mmu_table_batch, rcu);
347
348 for (i = 0; i < batch->nr; i++)
349 __tlb_remove_table(batch->tables[i]);
350
351 free_page((unsigned long)batch);
352}
353
354void tlb_table_flush(struct mmu_gather *tlb)
355{
356 struct mmu_table_batch **batch = &tlb->batch;
357
358 if (*batch) {
359 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
360 *batch = NULL;
361 }
362}
363
364void tlb_remove_table(struct mmu_gather *tlb, void *table)
365{
366 struct mmu_table_batch **batch = &tlb->batch;
367
368 tlb->need_flush = 1;
369
370 /*
371 * When there's less then two users of this mm there cannot be a
372 * concurrent page-table walk.
373 */
374 if (atomic_read(&tlb->mm->mm_users) < 2) {
375 __tlb_remove_table(table);
376 return;
377 }
378
379 if (*batch == NULL) {
380 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
381 if (*batch == NULL) {
382 tlb_remove_table_one(table);
383 return;
384 }
385 (*batch)->nr = 0;
386 }
387 (*batch)->tables[(*batch)->nr++] = table;
388 if ((*batch)->nr == MAX_TABLE_BATCH)
389 tlb_table_flush(tlb);
390}
391
392#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
393
394/*
395 * If a p?d_bad entry is found while walking page tables, report
396 * the error, before resetting entry to p?d_none. Usually (but
397 * very seldom) called out from the p?d_none_or_clear_bad macros.
398 */
399
400void pgd_clear_bad(pgd_t *pgd)
401{
402 pgd_ERROR(*pgd);
403 pgd_clear(pgd);
404}
405
406void pud_clear_bad(pud_t *pud)
407{
408 pud_ERROR(*pud);
409 pud_clear(pud);
410}
411
412void pmd_clear_bad(pmd_t *pmd)
413{
414 pmd_ERROR(*pmd);
415 pmd_clear(pmd);
416}
417
418/*
419 * Note: this doesn't free the actual pages themselves. That
420 * has been handled earlier when unmapping all the memory regions.
421 */
422static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
423 unsigned long addr)
424{
425 pgtable_t token = pmd_pgtable(*pmd);
426 pmd_clear(pmd);
427 pte_free_tlb(tlb, token, addr);
428 tlb->mm->nr_ptes--;
429}
430
431static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
432 unsigned long addr, unsigned long end,
433 unsigned long floor, unsigned long ceiling)
434{
435 pmd_t *pmd;
436 unsigned long next;
437 unsigned long start;
438
439 start = addr;
440 pmd = pmd_offset(pud, addr);
441 do {
442 next = pmd_addr_end(addr, end);
443 if (pmd_none_or_clear_bad(pmd))
444 continue;
445 free_pte_range(tlb, pmd, addr);
446 } while (pmd++, addr = next, addr != end);
447
448 start &= PUD_MASK;
449 if (start < floor)
450 return;
451 if (ceiling) {
452 ceiling &= PUD_MASK;
453 if (!ceiling)
454 return;
455 }
456 if (end - 1 > ceiling - 1)
457 return;
458
459 pmd = pmd_offset(pud, start);
460 pud_clear(pud);
461 pmd_free_tlb(tlb, pmd, start);
462}
463
464static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
465 unsigned long addr, unsigned long end,
466 unsigned long floor, unsigned long ceiling)
467{
468 pud_t *pud;
469 unsigned long next;
470 unsigned long start;
471
472 start = addr;
473 pud = pud_offset(pgd, addr);
474 do {
475 next = pud_addr_end(addr, end);
476 if (pud_none_or_clear_bad(pud))
477 continue;
478 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
479 } while (pud++, addr = next, addr != end);
480
481 start &= PGDIR_MASK;
482 if (start < floor)
483 return;
484 if (ceiling) {
485 ceiling &= PGDIR_MASK;
486 if (!ceiling)
487 return;
488 }
489 if (end - 1 > ceiling - 1)
490 return;
491
492 pud = pud_offset(pgd, start);
493 pgd_clear(pgd);
494 pud_free_tlb(tlb, pud, start);
495}
496
497/*
498 * This function frees user-level page tables of a process.
499 *
500 * Must be called with pagetable lock held.
501 */
502void free_pgd_range(struct mmu_gather *tlb,
503 unsigned long addr, unsigned long end,
504 unsigned long floor, unsigned long ceiling)
505{
506 pgd_t *pgd;
507 unsigned long next;
508
509 /*
510 * The next few lines have given us lots of grief...
511 *
512 * Why are we testing PMD* at this top level? Because often
513 * there will be no work to do at all, and we'd prefer not to
514 * go all the way down to the bottom just to discover that.
515 *
516 * Why all these "- 1"s? Because 0 represents both the bottom
517 * of the address space and the top of it (using -1 for the
518 * top wouldn't help much: the masks would do the wrong thing).
519 * The rule is that addr 0 and floor 0 refer to the bottom of
520 * the address space, but end 0 and ceiling 0 refer to the top
521 * Comparisons need to use "end - 1" and "ceiling - 1" (though
522 * that end 0 case should be mythical).
523 *
524 * Wherever addr is brought up or ceiling brought down, we must
525 * be careful to reject "the opposite 0" before it confuses the
526 * subsequent tests. But what about where end is brought down
527 * by PMD_SIZE below? no, end can't go down to 0 there.
528 *
529 * Whereas we round start (addr) and ceiling down, by different
530 * masks at different levels, in order to test whether a table
531 * now has no other vmas using it, so can be freed, we don't
532 * bother to round floor or end up - the tests don't need that.
533 */
534
535 addr &= PMD_MASK;
536 if (addr < floor) {
537 addr += PMD_SIZE;
538 if (!addr)
539 return;
540 }
541 if (ceiling) {
542 ceiling &= PMD_MASK;
543 if (!ceiling)
544 return;
545 }
546 if (end - 1 > ceiling - 1)
547 end -= PMD_SIZE;
548 if (addr > end - 1)
549 return;
550
551 pgd = pgd_offset(tlb->mm, addr);
552 do {
553 next = pgd_addr_end(addr, end);
554 if (pgd_none_or_clear_bad(pgd))
555 continue;
556 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
557 } while (pgd++, addr = next, addr != end);
558}
559
560void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
561 unsigned long floor, unsigned long ceiling)
562{
563 while (vma) {
564 struct vm_area_struct *next = vma->vm_next;
565 unsigned long addr = vma->vm_start;
566
567 /*
568 * Hide vma from rmap and truncate_pagecache before freeing
569 * pgtables
570 */
571 unlink_anon_vmas(vma);
572 unlink_file_vma(vma);
573
574 if (is_vm_hugetlb_page(vma)) {
575 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
576 floor, next? next->vm_start: ceiling);
577 } else {
578 /*
579 * Optimization: gather nearby vmas into one call down
580 */
581 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
582 && !is_vm_hugetlb_page(next)) {
583 vma = next;
584 next = vma->vm_next;
585 unlink_anon_vmas(vma);
586 unlink_file_vma(vma);
587 }
588 free_pgd_range(tlb, addr, vma->vm_end,
589 floor, next? next->vm_start: ceiling);
590 }
591 vma = next;
592 }
593}
594
595int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
596 pmd_t *pmd, unsigned long address)
597{
598 pgtable_t new = pte_alloc_one(mm, address);
599 int wait_split_huge_page;
600 if (!new)
601 return -ENOMEM;
602
603 /*
604 * Ensure all pte setup (eg. pte page lock and page clearing) are
605 * visible before the pte is made visible to other CPUs by being
606 * put into page tables.
607 *
608 * The other side of the story is the pointer chasing in the page
609 * table walking code (when walking the page table without locking;
610 * ie. most of the time). Fortunately, these data accesses consist
611 * of a chain of data-dependent loads, meaning most CPUs (alpha
612 * being the notable exception) will already guarantee loads are
613 * seen in-order. See the alpha page table accessors for the
614 * smp_read_barrier_depends() barriers in page table walking code.
615 */
616 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
617
618 spin_lock(&mm->page_table_lock);
619 wait_split_huge_page = 0;
620 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
621 mm->nr_ptes++;
622 pmd_populate(mm, pmd, new);
623 new = NULL;
624 } else if (unlikely(pmd_trans_splitting(*pmd)))
625 wait_split_huge_page = 1;
626 spin_unlock(&mm->page_table_lock);
627 if (new)
628 pte_free(mm, new);
629 if (wait_split_huge_page)
630 wait_split_huge_page(vma->anon_vma, pmd);
631 return 0;
632}
633
634int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
635{
636 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
637 if (!new)
638 return -ENOMEM;
639
640 smp_wmb(); /* See comment in __pte_alloc */
641
642 spin_lock(&init_mm.page_table_lock);
643 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
644 pmd_populate_kernel(&init_mm, pmd, new);
645 new = NULL;
646 } else
647 VM_BUG_ON(pmd_trans_splitting(*pmd));
648 spin_unlock(&init_mm.page_table_lock);
649 if (new)
650 pte_free_kernel(&init_mm, new);
651 return 0;
652}
653
654static inline void init_rss_vec(int *rss)
655{
656 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
657}
658
659static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
660{
661 int i;
662
663 if (current->mm == mm)
664 sync_mm_rss(current, mm);
665 for (i = 0; i < NR_MM_COUNTERS; i++)
666 if (rss[i])
667 add_mm_counter(mm, i, rss[i]);
668}
669
670/*
671 * This function is called to print an error when a bad pte
672 * is found. For example, we might have a PFN-mapped pte in
673 * a region that doesn't allow it.
674 *
675 * The calling function must still handle the error.
676 */
677static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
678 pte_t pte, struct page *page)
679{
680 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
681 pud_t *pud = pud_offset(pgd, addr);
682 pmd_t *pmd = pmd_offset(pud, addr);
683 struct address_space *mapping;
684 pgoff_t index;
685 static unsigned long resume;
686 static unsigned long nr_shown;
687 static unsigned long nr_unshown;
688
689 /*
690 * Allow a burst of 60 reports, then keep quiet for that minute;
691 * or allow a steady drip of one report per second.
692 */
693 if (nr_shown == 60) {
694 if (time_before(jiffies, resume)) {
695 nr_unshown++;
696 return;
697 }
698 if (nr_unshown) {
699 printk(KERN_ALERT
700 "BUG: Bad page map: %lu messages suppressed\n",
701 nr_unshown);
702 nr_unshown = 0;
703 }
704 nr_shown = 0;
705 }
706 if (nr_shown++ == 0)
707 resume = jiffies + 60 * HZ;
708
709 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
710 index = linear_page_index(vma, addr);
711
712 printk(KERN_ALERT
713 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
714 current->comm,
715 (long long)pte_val(pte), (long long)pmd_val(*pmd));
716 if (page)
717 dump_page(page);
718 printk(KERN_ALERT
719 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
720 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
721 /*
722 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
723 */
724 if (vma->vm_ops)
725 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
726 (unsigned long)vma->vm_ops->fault);
727 if (vma->vm_file && vma->vm_file->f_op)
728 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
729 (unsigned long)vma->vm_file->f_op->mmap);
730 dump_stack();
731 add_taint(TAINT_BAD_PAGE);
732}
733
734static inline int is_cow_mapping(vm_flags_t flags)
735{
736 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
737}
738
739#ifndef is_zero_pfn
740static inline int is_zero_pfn(unsigned long pfn)
741{
742 return pfn == zero_pfn;
743}
744#endif
745
746#ifndef my_zero_pfn
747static inline unsigned long my_zero_pfn(unsigned long addr)
748{
749 return zero_pfn;
750}
751#endif
752
753/*
754 * vm_normal_page -- This function gets the "struct page" associated with a pte.
755 *
756 * "Special" mappings do not wish to be associated with a "struct page" (either
757 * it doesn't exist, or it exists but they don't want to touch it). In this
758 * case, NULL is returned here. "Normal" mappings do have a struct page.
759 *
760 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
761 * pte bit, in which case this function is trivial. Secondly, an architecture
762 * may not have a spare pte bit, which requires a more complicated scheme,
763 * described below.
764 *
765 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
766 * special mapping (even if there are underlying and valid "struct pages").
767 * COWed pages of a VM_PFNMAP are always normal.
768 *
769 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
770 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
771 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
772 * mapping will always honor the rule
773 *
774 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
775 *
776 * And for normal mappings this is false.
777 *
778 * This restricts such mappings to be a linear translation from virtual address
779 * to pfn. To get around this restriction, we allow arbitrary mappings so long
780 * as the vma is not a COW mapping; in that case, we know that all ptes are
781 * special (because none can have been COWed).
782 *
783 *
784 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
785 *
786 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
787 * page" backing, however the difference is that _all_ pages with a struct
788 * page (that is, those where pfn_valid is true) are refcounted and considered
789 * normal pages by the VM. The disadvantage is that pages are refcounted
790 * (which can be slower and simply not an option for some PFNMAP users). The
791 * advantage is that we don't have to follow the strict linearity rule of
792 * PFNMAP mappings in order to support COWable mappings.
793 *
794 */
795#ifdef __HAVE_ARCH_PTE_SPECIAL
796# define HAVE_PTE_SPECIAL 1
797#else
798# define HAVE_PTE_SPECIAL 0
799#endif
800struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
801 pte_t pte)
802{
803 unsigned long pfn = pte_pfn(pte);
804
805 if (HAVE_PTE_SPECIAL) {
806 if (likely(!pte_special(pte)))
807 goto check_pfn;
808 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
809 return NULL;
810 if (!is_zero_pfn(pfn))
811 print_bad_pte(vma, addr, pte, NULL);
812 return NULL;
813 }
814
815 /* !HAVE_PTE_SPECIAL case follows: */
816
817 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
818 if (vma->vm_flags & VM_MIXEDMAP) {
819 if (!pfn_valid(pfn))
820 return NULL;
821 goto out;
822 } else {
823 unsigned long off;
824 off = (addr - vma->vm_start) >> PAGE_SHIFT;
825 if (pfn == vma->vm_pgoff + off)
826 return NULL;
827 if (!is_cow_mapping(vma->vm_flags))
828 return NULL;
829 }
830 }
831
832 if (is_zero_pfn(pfn))
833 return NULL;
834check_pfn:
835 if (unlikely(pfn > highest_memmap_pfn)) {
836 print_bad_pte(vma, addr, pte, NULL);
837 return NULL;
838 }
839
840 /*
841 * NOTE! We still have PageReserved() pages in the page tables.
842 * eg. VDSO mappings can cause them to exist.
843 */
844out:
845 return pfn_to_page(pfn);
846}
847
848/*
849 * copy one vm_area from one task to the other. Assumes the page tables
850 * already present in the new task to be cleared in the whole range
851 * covered by this vma.
852 */
853
854static inline unsigned long
855copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
856 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
857 unsigned long addr, int *rss)
858{
859 unsigned long vm_flags = vma->vm_flags;
860 pte_t pte = *src_pte;
861 struct page *page;
862
863 /* pte contains position in swap or file, so copy. */
864 if (unlikely(!pte_present(pte))) {
865 if (!pte_file(pte)) {
866 swp_entry_t entry = pte_to_swp_entry(pte);
867
868 if (swap_duplicate(entry) < 0)
869 return entry.val;
870
871 /* make sure dst_mm is on swapoff's mmlist. */
872 if (unlikely(list_empty(&dst_mm->mmlist))) {
873 spin_lock(&mmlist_lock);
874 if (list_empty(&dst_mm->mmlist))
875 list_add(&dst_mm->mmlist,
876 &src_mm->mmlist);
877 spin_unlock(&mmlist_lock);
878 }
879 if (likely(!non_swap_entry(entry)))
880 rss[MM_SWAPENTS]++;
881 else if (is_write_migration_entry(entry) &&
882 is_cow_mapping(vm_flags)) {
883 /*
884 * COW mappings require pages in both parent
885 * and child to be set to read.
886 */
887 make_migration_entry_read(&entry);
888 pte = swp_entry_to_pte(entry);
889 set_pte_at(src_mm, addr, src_pte, pte);
890 }
891 }
892 goto out_set_pte;
893 }
894
895 /*
896 * If it's a COW mapping, write protect it both
897 * in the parent and the child
898 */
899 if (is_cow_mapping(vm_flags)) {
900 ptep_set_wrprotect(src_mm, addr, src_pte);
901 pte = pte_wrprotect(pte);
902 }
903
904 /*
905 * If it's a shared mapping, mark it clean in
906 * the child
907 */
908 if (vm_flags & VM_SHARED)
909 pte = pte_mkclean(pte);
910 pte = pte_mkold(pte);
911
912 page = vm_normal_page(vma, addr, pte);
913 if (page) {
914 get_page(page);
915 page_dup_rmap(page);
916 if (PageAnon(page))
917 rss[MM_ANONPAGES]++;
918 else
919 rss[MM_FILEPAGES]++;
920 }
921
922out_set_pte:
923 set_pte_at(dst_mm, addr, dst_pte, pte);
924 return 0;
925}
926
927int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
928 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
929 unsigned long addr, unsigned long end)
930{
931 pte_t *orig_src_pte, *orig_dst_pte;
932 pte_t *src_pte, *dst_pte;
933 spinlock_t *src_ptl, *dst_ptl;
934 int progress = 0;
935 int rss[NR_MM_COUNTERS];
936 swp_entry_t entry = (swp_entry_t){0};
937
938again:
939 init_rss_vec(rss);
940
941 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
942 if (!dst_pte)
943 return -ENOMEM;
944 src_pte = pte_offset_map(src_pmd, addr);
945 src_ptl = pte_lockptr(src_mm, src_pmd);
946 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
947 orig_src_pte = src_pte;
948 orig_dst_pte = dst_pte;
949 arch_enter_lazy_mmu_mode();
950
951 do {
952 /*
953 * We are holding two locks at this point - either of them
954 * could generate latencies in another task on another CPU.
955 */
956 if (progress >= 32) {
957 progress = 0;
958 if (need_resched() ||
959 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
960 break;
961 }
962 if (pte_none(*src_pte)) {
963 progress++;
964 continue;
965 }
966 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
967 vma, addr, rss);
968 if (entry.val)
969 break;
970 progress += 8;
971 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
972
973 arch_leave_lazy_mmu_mode();
974 spin_unlock(src_ptl);
975 pte_unmap(orig_src_pte);
976 add_mm_rss_vec(dst_mm, rss);
977 pte_unmap_unlock(orig_dst_pte, dst_ptl);
978 cond_resched();
979
980 if (entry.val) {
981 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
982 return -ENOMEM;
983 progress = 0;
984 }
985 if (addr != end)
986 goto again;
987 return 0;
988}
989
990static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
991 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
992 unsigned long addr, unsigned long end)
993{
994 pmd_t *src_pmd, *dst_pmd;
995 unsigned long next;
996
997 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
998 if (!dst_pmd)
999 return -ENOMEM;
1000 src_pmd = pmd_offset(src_pud, addr);
1001 do {
1002 next = pmd_addr_end(addr, end);
1003 if (pmd_trans_huge(*src_pmd)) {
1004 int err;
1005 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1006 err = copy_huge_pmd(dst_mm, src_mm,
1007 dst_pmd, src_pmd, addr, vma);
1008 if (err == -ENOMEM)
1009 return -ENOMEM;
1010 if (!err)
1011 continue;
1012 /* fall through */
1013 }
1014 if (pmd_none_or_clear_bad(src_pmd))
1015 continue;
1016 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1017 vma, addr, next))
1018 return -ENOMEM;
1019 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1020 return 0;
1021}
1022
1023static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1024 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1025 unsigned long addr, unsigned long end)
1026{
1027 pud_t *src_pud, *dst_pud;
1028 unsigned long next;
1029
1030 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1031 if (!dst_pud)
1032 return -ENOMEM;
1033 src_pud = pud_offset(src_pgd, addr);
1034 do {
1035 next = pud_addr_end(addr, end);
1036 if (pud_none_or_clear_bad(src_pud))
1037 continue;
1038 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1039 vma, addr, next))
1040 return -ENOMEM;
1041 } while (dst_pud++, src_pud++, addr = next, addr != end);
1042 return 0;
1043}
1044
1045int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1046 struct vm_area_struct *vma)
1047{
1048 pgd_t *src_pgd, *dst_pgd;
1049 unsigned long next;
1050 unsigned long addr = vma->vm_start;
1051 unsigned long end = vma->vm_end;
1052 int ret;
1053
1054 /*
1055 * Don't copy ptes where a page fault will fill them correctly.
1056 * Fork becomes much lighter when there are big shared or private
1057 * readonly mappings. The tradeoff is that copy_page_range is more
1058 * efficient than faulting.
1059 */
1060 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1061 if (!vma->anon_vma)
1062 return 0;
1063 }
1064
1065 if (is_vm_hugetlb_page(vma))
1066 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1067
1068 if (unlikely(is_pfn_mapping(vma))) {
1069 /*
1070 * We do not free on error cases below as remove_vma
1071 * gets called on error from higher level routine
1072 */
1073 ret = track_pfn_vma_copy(vma);
1074 if (ret)
1075 return ret;
1076 }
1077
1078 /*
1079 * We need to invalidate the secondary MMU mappings only when
1080 * there could be a permission downgrade on the ptes of the
1081 * parent mm. And a permission downgrade will only happen if
1082 * is_cow_mapping() returns true.
1083 */
1084 if (is_cow_mapping(vma->vm_flags))
1085 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1086
1087 ret = 0;
1088 dst_pgd = pgd_offset(dst_mm, addr);
1089 src_pgd = pgd_offset(src_mm, addr);
1090 do {
1091 next = pgd_addr_end(addr, end);
1092 if (pgd_none_or_clear_bad(src_pgd))
1093 continue;
1094 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1095 vma, addr, next))) {
1096 ret = -ENOMEM;
1097 break;
1098 }
1099 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1100
1101 if (is_cow_mapping(vma->vm_flags))
1102 mmu_notifier_invalidate_range_end(src_mm,
1103 vma->vm_start, end);
1104 return ret;
1105}
1106
1107static unsigned long zap_pte_range(struct mmu_gather *tlb,
1108 struct vm_area_struct *vma, pmd_t *pmd,
1109 unsigned long addr, unsigned long end,
1110 struct zap_details *details)
1111{
1112 struct mm_struct *mm = tlb->mm;
1113 int force_flush = 0;
1114 int rss[NR_MM_COUNTERS];
1115 spinlock_t *ptl;
1116 pte_t *start_pte;
1117 pte_t *pte;
1118
1119again:
1120 init_rss_vec(rss);
1121 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1122 pte = start_pte;
1123 arch_enter_lazy_mmu_mode();
1124 do {
1125 pte_t ptent = *pte;
1126 if (pte_none(ptent)) {
1127 continue;
1128 }
1129
1130 if (pte_present(ptent)) {
1131 struct page *page;
1132
1133 page = vm_normal_page(vma, addr, ptent);
1134 if (unlikely(details) && page) {
1135 /*
1136 * unmap_shared_mapping_pages() wants to
1137 * invalidate cache without truncating:
1138 * unmap shared but keep private pages.
1139 */
1140 if (details->check_mapping &&
1141 details->check_mapping != page->mapping)
1142 continue;
1143 /*
1144 * Each page->index must be checked when
1145 * invalidating or truncating nonlinear.
1146 */
1147 if (details->nonlinear_vma &&
1148 (page->index < details->first_index ||
1149 page->index > details->last_index))
1150 continue;
1151 }
1152 ptent = ptep_get_and_clear_full(mm, addr, pte,
1153 tlb->fullmm);
1154 tlb_remove_tlb_entry(tlb, pte, addr);
1155 if (unlikely(!page))
1156 continue;
1157 if (unlikely(details) && details->nonlinear_vma
1158 && linear_page_index(details->nonlinear_vma,
1159 addr) != page->index)
1160 set_pte_at(mm, addr, pte,
1161 pgoff_to_pte(page->index));
1162 if (PageAnon(page))
1163 rss[MM_ANONPAGES]--;
1164 else {
1165 if (pte_dirty(ptent))
1166 set_page_dirty(page);
1167 if (pte_young(ptent) &&
1168 likely(!VM_SequentialReadHint(vma)))
1169 mark_page_accessed(page);
1170 rss[MM_FILEPAGES]--;
1171 }
1172 page_remove_rmap(page);
1173 if (unlikely(page_mapcount(page) < 0))
1174 print_bad_pte(vma, addr, ptent, page);
1175 force_flush = !__tlb_remove_page(tlb, page);
1176 if (force_flush)
1177 break;
1178 continue;
1179 }
1180 /*
1181 * If details->check_mapping, we leave swap entries;
1182 * if details->nonlinear_vma, we leave file entries.
1183 */
1184 if (unlikely(details))
1185 continue;
1186 if (pte_file(ptent)) {
1187 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1188 print_bad_pte(vma, addr, ptent, NULL);
1189 } else {
1190 swp_entry_t entry = pte_to_swp_entry(ptent);
1191
1192 if (!non_swap_entry(entry))
1193 rss[MM_SWAPENTS]--;
1194 if (unlikely(!free_swap_and_cache(entry)))
1195 print_bad_pte(vma, addr, ptent, NULL);
1196 }
1197 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1198 } while (pte++, addr += PAGE_SIZE, addr != end);
1199
1200 add_mm_rss_vec(mm, rss);
1201 arch_leave_lazy_mmu_mode();
1202 pte_unmap_unlock(start_pte, ptl);
1203
1204 /*
1205 * mmu_gather ran out of room to batch pages, we break out of
1206 * the PTE lock to avoid doing the potential expensive TLB invalidate
1207 * and page-free while holding it.
1208 */
1209 if (force_flush) {
1210 force_flush = 0;
1211 tlb_flush_mmu(tlb);
1212 if (addr != end)
1213 goto again;
1214 }
1215
1216 return addr;
1217}
1218
1219static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1220 struct vm_area_struct *vma, pud_t *pud,
1221 unsigned long addr, unsigned long end,
1222 struct zap_details *details)
1223{
1224 pmd_t *pmd;
1225 unsigned long next;
1226
1227 pmd = pmd_offset(pud, addr);
1228 do {
1229 next = pmd_addr_end(addr, end);
1230 if (pmd_trans_huge(*pmd)) {
1231 if (next-addr != HPAGE_PMD_SIZE) {
1232 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1233 split_huge_page_pmd(vma->vm_mm, pmd);
1234 } else if (zap_huge_pmd(tlb, vma, pmd))
1235 continue;
1236 /* fall through */
1237 }
1238 if (pmd_none_or_clear_bad(pmd))
1239 continue;
1240 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1241 cond_resched();
1242 } while (pmd++, addr = next, addr != end);
1243
1244 return addr;
1245}
1246
1247static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1248 struct vm_area_struct *vma, pgd_t *pgd,
1249 unsigned long addr, unsigned long end,
1250 struct zap_details *details)
1251{
1252 pud_t *pud;
1253 unsigned long next;
1254
1255 pud = pud_offset(pgd, addr);
1256 do {
1257 next = pud_addr_end(addr, end);
1258 if (pud_none_or_clear_bad(pud))
1259 continue;
1260 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1261 } while (pud++, addr = next, addr != end);
1262
1263 return addr;
1264}
1265
1266static unsigned long unmap_page_range(struct mmu_gather *tlb,
1267 struct vm_area_struct *vma,
1268 unsigned long addr, unsigned long end,
1269 struct zap_details *details)
1270{
1271 pgd_t *pgd;
1272 unsigned long next;
1273
1274 if (details && !details->check_mapping && !details->nonlinear_vma)
1275 details = NULL;
1276
1277 BUG_ON(addr >= end);
1278 mem_cgroup_uncharge_start();
1279 tlb_start_vma(tlb, vma);
1280 pgd = pgd_offset(vma->vm_mm, addr);
1281 do {
1282 next = pgd_addr_end(addr, end);
1283 if (pgd_none_or_clear_bad(pgd))
1284 continue;
1285 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1286 } while (pgd++, addr = next, addr != end);
1287 tlb_end_vma(tlb, vma);
1288 mem_cgroup_uncharge_end();
1289
1290 return addr;
1291}
1292
1293/**
1294 * unmap_vmas - unmap a range of memory covered by a list of vma's
1295 * @tlb: address of the caller's struct mmu_gather
1296 * @vma: the starting vma
1297 * @start_addr: virtual address at which to start unmapping
1298 * @end_addr: virtual address at which to end unmapping
1299 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1300 * @details: details of nonlinear truncation or shared cache invalidation
1301 *
1302 * Returns the end address of the unmapping (restart addr if interrupted).
1303 *
1304 * Unmap all pages in the vma list.
1305 *
1306 * Only addresses between `start' and `end' will be unmapped.
1307 *
1308 * The VMA list must be sorted in ascending virtual address order.
1309 *
1310 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1311 * range after unmap_vmas() returns. So the only responsibility here is to
1312 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1313 * drops the lock and schedules.
1314 */
1315unsigned long unmap_vmas(struct mmu_gather *tlb,
1316 struct vm_area_struct *vma, unsigned long start_addr,
1317 unsigned long end_addr, unsigned long *nr_accounted,
1318 struct zap_details *details)
1319{
1320 unsigned long start = start_addr;
1321 struct mm_struct *mm = vma->vm_mm;
1322
1323 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1324 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1325 unsigned long end;
1326
1327 start = max(vma->vm_start, start_addr);
1328 if (start >= vma->vm_end)
1329 continue;
1330 end = min(vma->vm_end, end_addr);
1331 if (end <= vma->vm_start)
1332 continue;
1333
1334 if (vma->vm_flags & VM_ACCOUNT)
1335 *nr_accounted += (end - start) >> PAGE_SHIFT;
1336
1337 if (unlikely(is_pfn_mapping(vma)))
1338 untrack_pfn_vma(vma, 0, 0);
1339
1340 while (start != end) {
1341 if (unlikely(is_vm_hugetlb_page(vma))) {
1342 /*
1343 * It is undesirable to test vma->vm_file as it
1344 * should be non-null for valid hugetlb area.
1345 * However, vm_file will be NULL in the error
1346 * cleanup path of do_mmap_pgoff. When
1347 * hugetlbfs ->mmap method fails,
1348 * do_mmap_pgoff() nullifies vma->vm_file
1349 * before calling this function to clean up.
1350 * Since no pte has actually been setup, it is
1351 * safe to do nothing in this case.
1352 */
1353 if (vma->vm_file)
1354 unmap_hugepage_range(vma, start, end, NULL);
1355
1356 start = end;
1357 } else
1358 start = unmap_page_range(tlb, vma, start, end, details);
1359 }
1360 }
1361
1362 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1363 return start; /* which is now the end (or restart) address */
1364}
1365
1366/**
1367 * zap_page_range - remove user pages in a given range
1368 * @vma: vm_area_struct holding the applicable pages
1369 * @address: starting address of pages to zap
1370 * @size: number of bytes to zap
1371 * @details: details of nonlinear truncation or shared cache invalidation
1372 */
1373unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1374 unsigned long size, struct zap_details *details)
1375{
1376 struct mm_struct *mm = vma->vm_mm;
1377 struct mmu_gather tlb;
1378 unsigned long end = address + size;
1379 unsigned long nr_accounted = 0;
1380
1381 lru_add_drain();
1382 tlb_gather_mmu(&tlb, mm, 0);
1383 update_hiwater_rss(mm);
1384 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1385 tlb_finish_mmu(&tlb, address, end);
1386 return end;
1387}
1388
1389/**
1390 * zap_vma_ptes - remove ptes mapping the vma
1391 * @vma: vm_area_struct holding ptes to be zapped
1392 * @address: starting address of pages to zap
1393 * @size: number of bytes to zap
1394 *
1395 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1396 *
1397 * The entire address range must be fully contained within the vma.
1398 *
1399 * Returns 0 if successful.
1400 */
1401int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1402 unsigned long size)
1403{
1404 if (address < vma->vm_start || address + size > vma->vm_end ||
1405 !(vma->vm_flags & VM_PFNMAP))
1406 return -1;
1407 zap_page_range(vma, address, size, NULL);
1408 return 0;
1409}
1410EXPORT_SYMBOL_GPL(zap_vma_ptes);
1411
1412/**
1413 * follow_page - look up a page descriptor from a user-virtual address
1414 * @vma: vm_area_struct mapping @address
1415 * @address: virtual address to look up
1416 * @flags: flags modifying lookup behaviour
1417 *
1418 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1419 *
1420 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1421 * an error pointer if there is a mapping to something not represented
1422 * by a page descriptor (see also vm_normal_page()).
1423 */
1424struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1425 unsigned int flags)
1426{
1427 pgd_t *pgd;
1428 pud_t *pud;
1429 pmd_t *pmd;
1430 pte_t *ptep, pte;
1431 spinlock_t *ptl;
1432 struct page *page;
1433 struct mm_struct *mm = vma->vm_mm;
1434
1435 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1436 if (!IS_ERR(page)) {
1437 BUG_ON(flags & FOLL_GET);
1438 goto out;
1439 }
1440
1441 page = NULL;
1442 pgd = pgd_offset(mm, address);
1443 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1444 goto no_page_table;
1445
1446 pud = pud_offset(pgd, address);
1447 if (pud_none(*pud))
1448 goto no_page_table;
1449 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1450 BUG_ON(flags & FOLL_GET);
1451 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1452 goto out;
1453 }
1454 if (unlikely(pud_bad(*pud)))
1455 goto no_page_table;
1456
1457 pmd = pmd_offset(pud, address);
1458 if (pmd_none(*pmd))
1459 goto no_page_table;
1460 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1461 BUG_ON(flags & FOLL_GET);
1462 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1463 goto out;
1464 }
1465 if (pmd_trans_huge(*pmd)) {
1466 if (flags & FOLL_SPLIT) {
1467 split_huge_page_pmd(mm, pmd);
1468 goto split_fallthrough;
1469 }
1470 spin_lock(&mm->page_table_lock);
1471 if (likely(pmd_trans_huge(*pmd))) {
1472 if (unlikely(pmd_trans_splitting(*pmd))) {
1473 spin_unlock(&mm->page_table_lock);
1474 wait_split_huge_page(vma->anon_vma, pmd);
1475 } else {
1476 page = follow_trans_huge_pmd(mm, address,
1477 pmd, flags);
1478 spin_unlock(&mm->page_table_lock);
1479 goto out;
1480 }
1481 } else
1482 spin_unlock(&mm->page_table_lock);
1483 /* fall through */
1484 }
1485split_fallthrough:
1486 if (unlikely(pmd_bad(*pmd)))
1487 goto no_page_table;
1488
1489 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1490
1491 pte = *ptep;
1492 if (!pte_present(pte))
1493 goto no_page;
1494 if ((flags & FOLL_WRITE) && !pte_write(pte))
1495 goto unlock;
1496
1497 page = vm_normal_page(vma, address, pte);
1498 if (unlikely(!page)) {
1499 if ((flags & FOLL_DUMP) ||
1500 !is_zero_pfn(pte_pfn(pte)))
1501 goto bad_page;
1502 page = pte_page(pte);
1503 }
1504
1505 if (flags & FOLL_GET)
1506 get_page(page);
1507 if (flags & FOLL_TOUCH) {
1508 if ((flags & FOLL_WRITE) &&
1509 !pte_dirty(pte) && !PageDirty(page))
1510 set_page_dirty(page);
1511 /*
1512 * pte_mkyoung() would be more correct here, but atomic care
1513 * is needed to avoid losing the dirty bit: it is easier to use
1514 * mark_page_accessed().
1515 */
1516 mark_page_accessed(page);
1517 }
1518 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1519 /*
1520 * The preliminary mapping check is mainly to avoid the
1521 * pointless overhead of lock_page on the ZERO_PAGE
1522 * which might bounce very badly if there is contention.
1523 *
1524 * If the page is already locked, we don't need to
1525 * handle it now - vmscan will handle it later if and
1526 * when it attempts to reclaim the page.
1527 */
1528 if (page->mapping && trylock_page(page)) {
1529 lru_add_drain(); /* push cached pages to LRU */
1530 /*
1531 * Because we lock page here and migration is
1532 * blocked by the pte's page reference, we need
1533 * only check for file-cache page truncation.
1534 */
1535 if (page->mapping)
1536 mlock_vma_page(page);
1537 unlock_page(page);
1538 }
1539 }
1540unlock:
1541 pte_unmap_unlock(ptep, ptl);
1542out:
1543 return page;
1544
1545bad_page:
1546 pte_unmap_unlock(ptep, ptl);
1547 return ERR_PTR(-EFAULT);
1548
1549no_page:
1550 pte_unmap_unlock(ptep, ptl);
1551 if (!pte_none(pte))
1552 return page;
1553
1554no_page_table:
1555 /*
1556 * When core dumping an enormous anonymous area that nobody
1557 * has touched so far, we don't want to allocate unnecessary pages or
1558 * page tables. Return error instead of NULL to skip handle_mm_fault,
1559 * then get_dump_page() will return NULL to leave a hole in the dump.
1560 * But we can only make this optimization where a hole would surely
1561 * be zero-filled if handle_mm_fault() actually did handle it.
1562 */
1563 if ((flags & FOLL_DUMP) &&
1564 (!vma->vm_ops || !vma->vm_ops->fault))
1565 return ERR_PTR(-EFAULT);
1566 return page;
1567}
1568
1569static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1570{
1571 return stack_guard_page_start(vma, addr) ||
1572 stack_guard_page_end(vma, addr+PAGE_SIZE);
1573}
1574
1575/**
1576 * __get_user_pages() - pin user pages in memory
1577 * @tsk: task_struct of target task
1578 * @mm: mm_struct of target mm
1579 * @start: starting user address
1580 * @nr_pages: number of pages from start to pin
1581 * @gup_flags: flags modifying pin behaviour
1582 * @pages: array that receives pointers to the pages pinned.
1583 * Should be at least nr_pages long. Or NULL, if caller
1584 * only intends to ensure the pages are faulted in.
1585 * @vmas: array of pointers to vmas corresponding to each page.
1586 * Or NULL if the caller does not require them.
1587 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1588 *
1589 * Returns number of pages pinned. This may be fewer than the number
1590 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1591 * were pinned, returns -errno. Each page returned must be released
1592 * with a put_page() call when it is finished with. vmas will only
1593 * remain valid while mmap_sem is held.
1594 *
1595 * Must be called with mmap_sem held for read or write.
1596 *
1597 * __get_user_pages walks a process's page tables and takes a reference to
1598 * each struct page that each user address corresponds to at a given
1599 * instant. That is, it takes the page that would be accessed if a user
1600 * thread accesses the given user virtual address at that instant.
1601 *
1602 * This does not guarantee that the page exists in the user mappings when
1603 * __get_user_pages returns, and there may even be a completely different
1604 * page there in some cases (eg. if mmapped pagecache has been invalidated
1605 * and subsequently re faulted). However it does guarantee that the page
1606 * won't be freed completely. And mostly callers simply care that the page
1607 * contains data that was valid *at some point in time*. Typically, an IO
1608 * or similar operation cannot guarantee anything stronger anyway because
1609 * locks can't be held over the syscall boundary.
1610 *
1611 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1612 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1613 * appropriate) must be called after the page is finished with, and
1614 * before put_page is called.
1615 *
1616 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1617 * or mmap_sem contention, and if waiting is needed to pin all pages,
1618 * *@nonblocking will be set to 0.
1619 *
1620 * In most cases, get_user_pages or get_user_pages_fast should be used
1621 * instead of __get_user_pages. __get_user_pages should be used only if
1622 * you need some special @gup_flags.
1623 */
1624int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1625 unsigned long start, int nr_pages, unsigned int gup_flags,
1626 struct page **pages, struct vm_area_struct **vmas,
1627 int *nonblocking)
1628{
1629 int i;
1630 unsigned long vm_flags;
1631
1632 if (nr_pages <= 0)
1633 return 0;
1634
1635 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1636
1637 /*
1638 * Require read or write permissions.
1639 * If FOLL_FORCE is set, we only require the "MAY" flags.
1640 */
1641 vm_flags = (gup_flags & FOLL_WRITE) ?
1642 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1643 vm_flags &= (gup_flags & FOLL_FORCE) ?
1644 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1645 i = 0;
1646
1647 do {
1648 struct vm_area_struct *vma;
1649
1650 vma = find_extend_vma(mm, start);
1651 if (!vma && in_gate_area(mm, start)) {
1652 unsigned long pg = start & PAGE_MASK;
1653 pgd_t *pgd;
1654 pud_t *pud;
1655 pmd_t *pmd;
1656 pte_t *pte;
1657
1658 /* user gate pages are read-only */
1659 if (gup_flags & FOLL_WRITE)
1660 return i ? : -EFAULT;
1661 if (pg > TASK_SIZE)
1662 pgd = pgd_offset_k(pg);
1663 else
1664 pgd = pgd_offset_gate(mm, pg);
1665 BUG_ON(pgd_none(*pgd));
1666 pud = pud_offset(pgd, pg);
1667 BUG_ON(pud_none(*pud));
1668 pmd = pmd_offset(pud, pg);
1669 if (pmd_none(*pmd))
1670 return i ? : -EFAULT;
1671 VM_BUG_ON(pmd_trans_huge(*pmd));
1672 pte = pte_offset_map(pmd, pg);
1673 if (pte_none(*pte)) {
1674 pte_unmap(pte);
1675 return i ? : -EFAULT;
1676 }
1677 vma = get_gate_vma(mm);
1678 if (pages) {
1679 struct page *page;
1680
1681 page = vm_normal_page(vma, start, *pte);
1682 if (!page) {
1683 if (!(gup_flags & FOLL_DUMP) &&
1684 is_zero_pfn(pte_pfn(*pte)))
1685 page = pte_page(*pte);
1686 else {
1687 pte_unmap(pte);
1688 return i ? : -EFAULT;
1689 }
1690 }
1691 pages[i] = page;
1692 get_page(page);
1693 }
1694 pte_unmap(pte);
1695 goto next_page;
1696 }
1697
1698 if (!vma ||
1699 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1700 !(vm_flags & vma->vm_flags))
1701 return i ? : -EFAULT;
1702
1703 if (is_vm_hugetlb_page(vma)) {
1704 i = follow_hugetlb_page(mm, vma, pages, vmas,
1705 &start, &nr_pages, i, gup_flags);
1706 continue;
1707 }
1708
1709 do {
1710 struct page *page;
1711 unsigned int foll_flags = gup_flags;
1712
1713 /*
1714 * If we have a pending SIGKILL, don't keep faulting
1715 * pages and potentially allocating memory.
1716 */
1717 if (unlikely(fatal_signal_pending(current)))
1718 return i ? i : -ERESTARTSYS;
1719
1720 cond_resched();
1721 while (!(page = follow_page(vma, start, foll_flags))) {
1722 int ret;
1723 unsigned int fault_flags = 0;
1724
1725 /* For mlock, just skip the stack guard page. */
1726 if (foll_flags & FOLL_MLOCK) {
1727 if (stack_guard_page(vma, start))
1728 goto next_page;
1729 }
1730 if (foll_flags & FOLL_WRITE)
1731 fault_flags |= FAULT_FLAG_WRITE;
1732 if (nonblocking)
1733 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1734 if (foll_flags & FOLL_NOWAIT)
1735 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1736
1737 ret = handle_mm_fault(mm, vma, start,
1738 fault_flags);
1739
1740 if (ret & VM_FAULT_ERROR) {
1741 if (ret & VM_FAULT_OOM)
1742 return i ? i : -ENOMEM;
1743 if (ret & (VM_FAULT_HWPOISON |
1744 VM_FAULT_HWPOISON_LARGE)) {
1745 if (i)
1746 return i;
1747 else if (gup_flags & FOLL_HWPOISON)
1748 return -EHWPOISON;
1749 else
1750 return -EFAULT;
1751 }
1752 if (ret & VM_FAULT_SIGBUS)
1753 return i ? i : -EFAULT;
1754 BUG();
1755 }
1756
1757 if (tsk) {
1758 if (ret & VM_FAULT_MAJOR)
1759 tsk->maj_flt++;
1760 else
1761 tsk->min_flt++;
1762 }
1763
1764 if (ret & VM_FAULT_RETRY) {
1765 if (nonblocking)
1766 *nonblocking = 0;
1767 return i;
1768 }
1769
1770 /*
1771 * The VM_FAULT_WRITE bit tells us that
1772 * do_wp_page has broken COW when necessary,
1773 * even if maybe_mkwrite decided not to set
1774 * pte_write. We can thus safely do subsequent
1775 * page lookups as if they were reads. But only
1776 * do so when looping for pte_write is futile:
1777 * in some cases userspace may also be wanting
1778 * to write to the gotten user page, which a
1779 * read fault here might prevent (a readonly
1780 * page might get reCOWed by userspace write).
1781 */
1782 if ((ret & VM_FAULT_WRITE) &&
1783 !(vma->vm_flags & VM_WRITE))
1784 foll_flags &= ~FOLL_WRITE;
1785
1786 cond_resched();
1787 }
1788 if (IS_ERR(page))
1789 return i ? i : PTR_ERR(page);
1790 if (pages) {
1791 pages[i] = page;
1792
1793 flush_anon_page(vma, page, start);
1794 flush_dcache_page(page);
1795 }
1796next_page:
1797 if (vmas)
1798 vmas[i] = vma;
1799 i++;
1800 start += PAGE_SIZE;
1801 nr_pages--;
1802 } while (nr_pages && start < vma->vm_end);
1803 } while (nr_pages);
1804 return i;
1805}
1806EXPORT_SYMBOL(__get_user_pages);
1807
1808/**
1809 * get_user_pages() - pin user pages in memory
1810 * @tsk: the task_struct to use for page fault accounting, or
1811 * NULL if faults are not to be recorded.
1812 * @mm: mm_struct of target mm
1813 * @start: starting user address
1814 * @nr_pages: number of pages from start to pin
1815 * @write: whether pages will be written to by the caller
1816 * @force: whether to force write access even if user mapping is
1817 * readonly. This will result in the page being COWed even
1818 * in MAP_SHARED mappings. You do not want this.
1819 * @pages: array that receives pointers to the pages pinned.
1820 * Should be at least nr_pages long. Or NULL, if caller
1821 * only intends to ensure the pages are faulted in.
1822 * @vmas: array of pointers to vmas corresponding to each page.
1823 * Or NULL if the caller does not require them.
1824 *
1825 * Returns number of pages pinned. This may be fewer than the number
1826 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1827 * were pinned, returns -errno. Each page returned must be released
1828 * with a put_page() call when it is finished with. vmas will only
1829 * remain valid while mmap_sem is held.
1830 *
1831 * Must be called with mmap_sem held for read or write.
1832 *
1833 * get_user_pages walks a process's page tables and takes a reference to
1834 * each struct page that each user address corresponds to at a given
1835 * instant. That is, it takes the page that would be accessed if a user
1836 * thread accesses the given user virtual address at that instant.
1837 *
1838 * This does not guarantee that the page exists in the user mappings when
1839 * get_user_pages returns, and there may even be a completely different
1840 * page there in some cases (eg. if mmapped pagecache has been invalidated
1841 * and subsequently re faulted). However it does guarantee that the page
1842 * won't be freed completely. And mostly callers simply care that the page
1843 * contains data that was valid *at some point in time*. Typically, an IO
1844 * or similar operation cannot guarantee anything stronger anyway because
1845 * locks can't be held over the syscall boundary.
1846 *
1847 * If write=0, the page must not be written to. If the page is written to,
1848 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1849 * after the page is finished with, and before put_page is called.
1850 *
1851 * get_user_pages is typically used for fewer-copy IO operations, to get a
1852 * handle on the memory by some means other than accesses via the user virtual
1853 * addresses. The pages may be submitted for DMA to devices or accessed via
1854 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1855 * use the correct cache flushing APIs.
1856 *
1857 * See also get_user_pages_fast, for performance critical applications.
1858 */
1859int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1860 unsigned long start, int nr_pages, int write, int force,
1861 struct page **pages, struct vm_area_struct **vmas)
1862{
1863 int flags = FOLL_TOUCH;
1864
1865 if (pages)
1866 flags |= FOLL_GET;
1867 if (write)
1868 flags |= FOLL_WRITE;
1869 if (force)
1870 flags |= FOLL_FORCE;
1871
1872 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1873 NULL);
1874}
1875EXPORT_SYMBOL(get_user_pages);
1876
1877/**
1878 * get_dump_page() - pin user page in memory while writing it to core dump
1879 * @addr: user address
1880 *
1881 * Returns struct page pointer of user page pinned for dump,
1882 * to be freed afterwards by page_cache_release() or put_page().
1883 *
1884 * Returns NULL on any kind of failure - a hole must then be inserted into
1885 * the corefile, to preserve alignment with its headers; and also returns
1886 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1887 * allowing a hole to be left in the corefile to save diskspace.
1888 *
1889 * Called without mmap_sem, but after all other threads have been killed.
1890 */
1891#ifdef CONFIG_ELF_CORE
1892struct page *get_dump_page(unsigned long addr)
1893{
1894 struct vm_area_struct *vma;
1895 struct page *page;
1896
1897 if (__get_user_pages(current, current->mm, addr, 1,
1898 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1899 NULL) < 1)
1900 return NULL;
1901 flush_cache_page(vma, addr, page_to_pfn(page));
1902 return page;
1903}
1904#endif /* CONFIG_ELF_CORE */
1905
1906pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1907 spinlock_t **ptl)
1908{
1909 pgd_t * pgd = pgd_offset(mm, addr);
1910 pud_t * pud = pud_alloc(mm, pgd, addr);
1911 if (pud) {
1912 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1913 if (pmd) {
1914 VM_BUG_ON(pmd_trans_huge(*pmd));
1915 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1916 }
1917 }
1918 return NULL;
1919}
1920
1921/*
1922 * This is the old fallback for page remapping.
1923 *
1924 * For historical reasons, it only allows reserved pages. Only
1925 * old drivers should use this, and they needed to mark their
1926 * pages reserved for the old functions anyway.
1927 */
1928static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1929 struct page *page, pgprot_t prot)
1930{
1931 struct mm_struct *mm = vma->vm_mm;
1932 int retval;
1933 pte_t *pte;
1934 spinlock_t *ptl;
1935
1936 retval = -EINVAL;
1937 if (PageAnon(page))
1938 goto out;
1939 retval = -ENOMEM;
1940 flush_dcache_page(page);
1941 pte = get_locked_pte(mm, addr, &ptl);
1942 if (!pte)
1943 goto out;
1944 retval = -EBUSY;
1945 if (!pte_none(*pte))
1946 goto out_unlock;
1947
1948 /* Ok, finally just insert the thing.. */
1949 get_page(page);
1950 inc_mm_counter_fast(mm, MM_FILEPAGES);
1951 page_add_file_rmap(page);
1952 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1953
1954 retval = 0;
1955 pte_unmap_unlock(pte, ptl);
1956 return retval;
1957out_unlock:
1958 pte_unmap_unlock(pte, ptl);
1959out:
1960 return retval;
1961}
1962
1963/**
1964 * vm_insert_page - insert single page into user vma
1965 * @vma: user vma to map to
1966 * @addr: target user address of this page
1967 * @page: source kernel page
1968 *
1969 * This allows drivers to insert individual pages they've allocated
1970 * into a user vma.
1971 *
1972 * The page has to be a nice clean _individual_ kernel allocation.
1973 * If you allocate a compound page, you need to have marked it as
1974 * such (__GFP_COMP), or manually just split the page up yourself
1975 * (see split_page()).
1976 *
1977 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1978 * took an arbitrary page protection parameter. This doesn't allow
1979 * that. Your vma protection will have to be set up correctly, which
1980 * means that if you want a shared writable mapping, you'd better
1981 * ask for a shared writable mapping!
1982 *
1983 * The page does not need to be reserved.
1984 */
1985int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1986 struct page *page)
1987{
1988 if (addr < vma->vm_start || addr >= vma->vm_end)
1989 return -EFAULT;
1990 if (!page_count(page))
1991 return -EINVAL;
1992 vma->vm_flags |= VM_INSERTPAGE;
1993 return insert_page(vma, addr, page, vma->vm_page_prot);
1994}
1995EXPORT_SYMBOL(vm_insert_page);
1996
1997static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1998 unsigned long pfn, pgprot_t prot)
1999{
2000 struct mm_struct *mm = vma->vm_mm;
2001 int retval;
2002 pte_t *pte, entry;
2003 spinlock_t *ptl;
2004
2005 retval = -ENOMEM;
2006 pte = get_locked_pte(mm, addr, &ptl);
2007 if (!pte)
2008 goto out;
2009 retval = -EBUSY;
2010 if (!pte_none(*pte))
2011 goto out_unlock;
2012
2013 /* Ok, finally just insert the thing.. */
2014 entry = pte_mkspecial(pfn_pte(pfn, prot));
2015 set_pte_at(mm, addr, pte, entry);
2016 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2017
2018 retval = 0;
2019out_unlock:
2020 pte_unmap_unlock(pte, ptl);
2021out:
2022 return retval;
2023}
2024
2025/**
2026 * vm_insert_pfn - insert single pfn into user vma
2027 * @vma: user vma to map to
2028 * @addr: target user address of this page
2029 * @pfn: source kernel pfn
2030 *
2031 * Similar to vm_inert_page, this allows drivers to insert individual pages
2032 * they've allocated into a user vma. Same comments apply.
2033 *
2034 * This function should only be called from a vm_ops->fault handler, and
2035 * in that case the handler should return NULL.
2036 *
2037 * vma cannot be a COW mapping.
2038 *
2039 * As this is called only for pages that do not currently exist, we
2040 * do not need to flush old virtual caches or the TLB.
2041 */
2042int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2043 unsigned long pfn)
2044{
2045 int ret;
2046 pgprot_t pgprot = vma->vm_page_prot;
2047 /*
2048 * Technically, architectures with pte_special can avoid all these
2049 * restrictions (same for remap_pfn_range). However we would like
2050 * consistency in testing and feature parity among all, so we should
2051 * try to keep these invariants in place for everybody.
2052 */
2053 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2054 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2055 (VM_PFNMAP|VM_MIXEDMAP));
2056 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2057 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2058
2059 if (addr < vma->vm_start || addr >= vma->vm_end)
2060 return -EFAULT;
2061 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2062 return -EINVAL;
2063
2064 ret = insert_pfn(vma, addr, pfn, pgprot);
2065
2066 if (ret)
2067 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2068
2069 return ret;
2070}
2071EXPORT_SYMBOL(vm_insert_pfn);
2072
2073int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2074 unsigned long pfn)
2075{
2076 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2077
2078 if (addr < vma->vm_start || addr >= vma->vm_end)
2079 return -EFAULT;
2080
2081 /*
2082 * If we don't have pte special, then we have to use the pfn_valid()
2083 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2084 * refcount the page if pfn_valid is true (hence insert_page rather
2085 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2086 * without pte special, it would there be refcounted as a normal page.
2087 */
2088 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2089 struct page *page;
2090
2091 page = pfn_to_page(pfn);
2092 return insert_page(vma, addr, page, vma->vm_page_prot);
2093 }
2094 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2095}
2096EXPORT_SYMBOL(vm_insert_mixed);
2097
2098/*
2099 * maps a range of physical memory into the requested pages. the old
2100 * mappings are removed. any references to nonexistent pages results
2101 * in null mappings (currently treated as "copy-on-access")
2102 */
2103static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2104 unsigned long addr, unsigned long end,
2105 unsigned long pfn, pgprot_t prot)
2106{
2107 pte_t *pte;
2108 spinlock_t *ptl;
2109
2110 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2111 if (!pte)
2112 return -ENOMEM;
2113 arch_enter_lazy_mmu_mode();
2114 do {
2115 BUG_ON(!pte_none(*pte));
2116 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2117 pfn++;
2118 } while (pte++, addr += PAGE_SIZE, addr != end);
2119 arch_leave_lazy_mmu_mode();
2120 pte_unmap_unlock(pte - 1, ptl);
2121 return 0;
2122}
2123
2124static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2125 unsigned long addr, unsigned long end,
2126 unsigned long pfn, pgprot_t prot)
2127{
2128 pmd_t *pmd;
2129 unsigned long next;
2130
2131 pfn -= addr >> PAGE_SHIFT;
2132 pmd = pmd_alloc(mm, pud, addr);
2133 if (!pmd)
2134 return -ENOMEM;
2135 VM_BUG_ON(pmd_trans_huge(*pmd));
2136 do {
2137 next = pmd_addr_end(addr, end);
2138 if (remap_pte_range(mm, pmd, addr, next,
2139 pfn + (addr >> PAGE_SHIFT), prot))
2140 return -ENOMEM;
2141 } while (pmd++, addr = next, addr != end);
2142 return 0;
2143}
2144
2145static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2146 unsigned long addr, unsigned long end,
2147 unsigned long pfn, pgprot_t prot)
2148{
2149 pud_t *pud;
2150 unsigned long next;
2151
2152 pfn -= addr >> PAGE_SHIFT;
2153 pud = pud_alloc(mm, pgd, addr);
2154 if (!pud)
2155 return -ENOMEM;
2156 do {
2157 next = pud_addr_end(addr, end);
2158 if (remap_pmd_range(mm, pud, addr, next,
2159 pfn + (addr >> PAGE_SHIFT), prot))
2160 return -ENOMEM;
2161 } while (pud++, addr = next, addr != end);
2162 return 0;
2163}
2164
2165/**
2166 * remap_pfn_range - remap kernel memory to userspace
2167 * @vma: user vma to map to
2168 * @addr: target user address to start at
2169 * @pfn: physical address of kernel memory
2170 * @size: size of map area
2171 * @prot: page protection flags for this mapping
2172 *
2173 * Note: this is only safe if the mm semaphore is held when called.
2174 */
2175int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2176 unsigned long pfn, unsigned long size, pgprot_t prot)
2177{
2178 pgd_t *pgd;
2179 unsigned long next;
2180 unsigned long end = addr + PAGE_ALIGN(size);
2181 struct mm_struct *mm = vma->vm_mm;
2182 int err;
2183
2184 /*
2185 * Physically remapped pages are special. Tell the
2186 * rest of the world about it:
2187 * VM_IO tells people not to look at these pages
2188 * (accesses can have side effects).
2189 * VM_RESERVED is specified all over the place, because
2190 * in 2.4 it kept swapout's vma scan off this vma; but
2191 * in 2.6 the LRU scan won't even find its pages, so this
2192 * flag means no more than count its pages in reserved_vm,
2193 * and omit it from core dump, even when VM_IO turned off.
2194 * VM_PFNMAP tells the core MM that the base pages are just
2195 * raw PFN mappings, and do not have a "struct page" associated
2196 * with them.
2197 *
2198 * There's a horrible special case to handle copy-on-write
2199 * behaviour that some programs depend on. We mark the "original"
2200 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2201 */
2202 if (addr == vma->vm_start && end == vma->vm_end) {
2203 vma->vm_pgoff = pfn;
2204 vma->vm_flags |= VM_PFN_AT_MMAP;
2205 } else if (is_cow_mapping(vma->vm_flags))
2206 return -EINVAL;
2207
2208 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2209
2210 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2211 if (err) {
2212 /*
2213 * To indicate that track_pfn related cleanup is not
2214 * needed from higher level routine calling unmap_vmas
2215 */
2216 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2217 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2218 return -EINVAL;
2219 }
2220
2221 BUG_ON(addr >= end);
2222 pfn -= addr >> PAGE_SHIFT;
2223 pgd = pgd_offset(mm, addr);
2224 flush_cache_range(vma, addr, end);
2225 do {
2226 next = pgd_addr_end(addr, end);
2227 err = remap_pud_range(mm, pgd, addr, next,
2228 pfn + (addr >> PAGE_SHIFT), prot);
2229 if (err)
2230 break;
2231 } while (pgd++, addr = next, addr != end);
2232
2233 if (err)
2234 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2235
2236 return err;
2237}
2238EXPORT_SYMBOL(remap_pfn_range);
2239
2240static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2241 unsigned long addr, unsigned long end,
2242 pte_fn_t fn, void *data)
2243{
2244 pte_t *pte;
2245 int err;
2246 pgtable_t token;
2247 spinlock_t *uninitialized_var(ptl);
2248
2249 pte = (mm == &init_mm) ?
2250 pte_alloc_kernel(pmd, addr) :
2251 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2252 if (!pte)
2253 return -ENOMEM;
2254
2255 BUG_ON(pmd_huge(*pmd));
2256
2257 arch_enter_lazy_mmu_mode();
2258
2259 token = pmd_pgtable(*pmd);
2260
2261 do {
2262 err = fn(pte++, token, addr, data);
2263 if (err)
2264 break;
2265 } while (addr += PAGE_SIZE, addr != end);
2266
2267 arch_leave_lazy_mmu_mode();
2268
2269 if (mm != &init_mm)
2270 pte_unmap_unlock(pte-1, ptl);
2271 return err;
2272}
2273
2274static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2275 unsigned long addr, unsigned long end,
2276 pte_fn_t fn, void *data)
2277{
2278 pmd_t *pmd;
2279 unsigned long next;
2280 int err;
2281
2282 BUG_ON(pud_huge(*pud));
2283
2284 pmd = pmd_alloc(mm, pud, addr);
2285 if (!pmd)
2286 return -ENOMEM;
2287 do {
2288 next = pmd_addr_end(addr, end);
2289 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2290 if (err)
2291 break;
2292 } while (pmd++, addr = next, addr != end);
2293 return err;
2294}
2295
2296static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2297 unsigned long addr, unsigned long end,
2298 pte_fn_t fn, void *data)
2299{
2300 pud_t *pud;
2301 unsigned long next;
2302 int err;
2303
2304 pud = pud_alloc(mm, pgd, addr);
2305 if (!pud)
2306 return -ENOMEM;
2307 do {
2308 next = pud_addr_end(addr, end);
2309 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2310 if (err)
2311 break;
2312 } while (pud++, addr = next, addr != end);
2313 return err;
2314}
2315
2316/*
2317 * Scan a region of virtual memory, filling in page tables as necessary
2318 * and calling a provided function on each leaf page table.
2319 */
2320int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2321 unsigned long size, pte_fn_t fn, void *data)
2322{
2323 pgd_t *pgd;
2324 unsigned long next;
2325 unsigned long end = addr + size;
2326 int err;
2327
2328 BUG_ON(addr >= end);
2329 pgd = pgd_offset(mm, addr);
2330 do {
2331 next = pgd_addr_end(addr, end);
2332 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2333 if (err)
2334 break;
2335 } while (pgd++, addr = next, addr != end);
2336
2337 return err;
2338}
2339EXPORT_SYMBOL_GPL(apply_to_page_range);
2340
2341/*
2342 * handle_pte_fault chooses page fault handler according to an entry
2343 * which was read non-atomically. Before making any commitment, on
2344 * those architectures or configurations (e.g. i386 with PAE) which
2345 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2346 * must check under lock before unmapping the pte and proceeding
2347 * (but do_wp_page is only called after already making such a check;
2348 * and do_anonymous_page can safely check later on).
2349 */
2350static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2351 pte_t *page_table, pte_t orig_pte)
2352{
2353 int same = 1;
2354#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2355 if (sizeof(pte_t) > sizeof(unsigned long)) {
2356 spinlock_t *ptl = pte_lockptr(mm, pmd);
2357 spin_lock(ptl);
2358 same = pte_same(*page_table, orig_pte);
2359 spin_unlock(ptl);
2360 }
2361#endif
2362 pte_unmap(page_table);
2363 return same;
2364}
2365
2366static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2367{
2368 /*
2369 * If the source page was a PFN mapping, we don't have
2370 * a "struct page" for it. We do a best-effort copy by
2371 * just copying from the original user address. If that
2372 * fails, we just zero-fill it. Live with it.
2373 */
2374 if (unlikely(!src)) {
2375 void *kaddr = kmap_atomic(dst, KM_USER0);
2376 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2377
2378 /*
2379 * This really shouldn't fail, because the page is there
2380 * in the page tables. But it might just be unreadable,
2381 * in which case we just give up and fill the result with
2382 * zeroes.
2383 */
2384 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2385 clear_page(kaddr);
2386 kunmap_atomic(kaddr, KM_USER0);
2387 flush_dcache_page(dst);
2388 } else
2389 copy_user_highpage(dst, src, va, vma);
2390}
2391
2392/*
2393 * This routine handles present pages, when users try to write
2394 * to a shared page. It is done by copying the page to a new address
2395 * and decrementing the shared-page counter for the old page.
2396 *
2397 * Note that this routine assumes that the protection checks have been
2398 * done by the caller (the low-level page fault routine in most cases).
2399 * Thus we can safely just mark it writable once we've done any necessary
2400 * COW.
2401 *
2402 * We also mark the page dirty at this point even though the page will
2403 * change only once the write actually happens. This avoids a few races,
2404 * and potentially makes it more efficient.
2405 *
2406 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2407 * but allow concurrent faults), with pte both mapped and locked.
2408 * We return with mmap_sem still held, but pte unmapped and unlocked.
2409 */
2410static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2411 unsigned long address, pte_t *page_table, pmd_t *pmd,
2412 spinlock_t *ptl, pte_t orig_pte)
2413 __releases(ptl)
2414{
2415 struct page *old_page, *new_page;
2416 pte_t entry;
2417 int ret = 0;
2418 int page_mkwrite = 0;
2419 struct page *dirty_page = NULL;
2420
2421 old_page = vm_normal_page(vma, address, orig_pte);
2422 if (!old_page) {
2423 /*
2424 * VM_MIXEDMAP !pfn_valid() case
2425 *
2426 * We should not cow pages in a shared writeable mapping.
2427 * Just mark the pages writable as we can't do any dirty
2428 * accounting on raw pfn maps.
2429 */
2430 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2431 (VM_WRITE|VM_SHARED))
2432 goto reuse;
2433 goto gotten;
2434 }
2435
2436 /*
2437 * Take out anonymous pages first, anonymous shared vmas are
2438 * not dirty accountable.
2439 */
2440 if (PageAnon(old_page) && !PageKsm(old_page)) {
2441 if (!trylock_page(old_page)) {
2442 page_cache_get(old_page);
2443 pte_unmap_unlock(page_table, ptl);
2444 lock_page(old_page);
2445 page_table = pte_offset_map_lock(mm, pmd, address,
2446 &ptl);
2447 if (!pte_same(*page_table, orig_pte)) {
2448 unlock_page(old_page);
2449 goto unlock;
2450 }
2451 page_cache_release(old_page);
2452 }
2453 if (reuse_swap_page(old_page)) {
2454 /*
2455 * The page is all ours. Move it to our anon_vma so
2456 * the rmap code will not search our parent or siblings.
2457 * Protected against the rmap code by the page lock.
2458 */
2459 page_move_anon_rmap(old_page, vma, address);
2460 unlock_page(old_page);
2461 goto reuse;
2462 }
2463 unlock_page(old_page);
2464 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2465 (VM_WRITE|VM_SHARED))) {
2466 /*
2467 * Only catch write-faults on shared writable pages,
2468 * read-only shared pages can get COWed by
2469 * get_user_pages(.write=1, .force=1).
2470 */
2471 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2472 struct vm_fault vmf;
2473 int tmp;
2474
2475 vmf.virtual_address = (void __user *)(address &
2476 PAGE_MASK);
2477 vmf.pgoff = old_page->index;
2478 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2479 vmf.page = old_page;
2480
2481 /*
2482 * Notify the address space that the page is about to
2483 * become writable so that it can prohibit this or wait
2484 * for the page to get into an appropriate state.
2485 *
2486 * We do this without the lock held, so that it can
2487 * sleep if it needs to.
2488 */
2489 page_cache_get(old_page);
2490 pte_unmap_unlock(page_table, ptl);
2491
2492 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2493 if (unlikely(tmp &
2494 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2495 ret = tmp;
2496 goto unwritable_page;
2497 }
2498 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2499 lock_page(old_page);
2500 if (!old_page->mapping) {
2501 ret = 0; /* retry the fault */
2502 unlock_page(old_page);
2503 goto unwritable_page;
2504 }
2505 } else
2506 VM_BUG_ON(!PageLocked(old_page));
2507
2508 /*
2509 * Since we dropped the lock we need to revalidate
2510 * the PTE as someone else may have changed it. If
2511 * they did, we just return, as we can count on the
2512 * MMU to tell us if they didn't also make it writable.
2513 */
2514 page_table = pte_offset_map_lock(mm, pmd, address,
2515 &ptl);
2516 if (!pte_same(*page_table, orig_pte)) {
2517 unlock_page(old_page);
2518 goto unlock;
2519 }
2520
2521 page_mkwrite = 1;
2522 }
2523 dirty_page = old_page;
2524 get_page(dirty_page);
2525
2526reuse:
2527 flush_cache_page(vma, address, pte_pfn(orig_pte));
2528 entry = pte_mkyoung(orig_pte);
2529 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2530 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2531 update_mmu_cache(vma, address, page_table);
2532 pte_unmap_unlock(page_table, ptl);
2533 ret |= VM_FAULT_WRITE;
2534
2535 if (!dirty_page)
2536 return ret;
2537
2538 /*
2539 * Yes, Virginia, this is actually required to prevent a race
2540 * with clear_page_dirty_for_io() from clearing the page dirty
2541 * bit after it clear all dirty ptes, but before a racing
2542 * do_wp_page installs a dirty pte.
2543 *
2544 * __do_fault is protected similarly.
2545 */
2546 if (!page_mkwrite) {
2547 wait_on_page_locked(dirty_page);
2548 set_page_dirty_balance(dirty_page, page_mkwrite);
2549 }
2550 put_page(dirty_page);
2551 if (page_mkwrite) {
2552 struct address_space *mapping = dirty_page->mapping;
2553
2554 set_page_dirty(dirty_page);
2555 unlock_page(dirty_page);
2556 page_cache_release(dirty_page);
2557 if (mapping) {
2558 /*
2559 * Some device drivers do not set page.mapping
2560 * but still dirty their pages
2561 */
2562 balance_dirty_pages_ratelimited(mapping);
2563 }
2564 }
2565
2566 /* file_update_time outside page_lock */
2567 if (vma->vm_file)
2568 file_update_time(vma->vm_file);
2569
2570 return ret;
2571 }
2572
2573 /*
2574 * Ok, we need to copy. Oh, well..
2575 */
2576 page_cache_get(old_page);
2577gotten:
2578 pte_unmap_unlock(page_table, ptl);
2579
2580 if (unlikely(anon_vma_prepare(vma)))
2581 goto oom;
2582
2583 if (is_zero_pfn(pte_pfn(orig_pte))) {
2584 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2585 if (!new_page)
2586 goto oom;
2587 } else {
2588 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2589 if (!new_page)
2590 goto oom;
2591 cow_user_page(new_page, old_page, address, vma);
2592 }
2593 __SetPageUptodate(new_page);
2594
2595 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2596 goto oom_free_new;
2597
2598 /*
2599 * Re-check the pte - we dropped the lock
2600 */
2601 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2602 if (likely(pte_same(*page_table, orig_pte))) {
2603 if (old_page) {
2604 if (!PageAnon(old_page)) {
2605 dec_mm_counter_fast(mm, MM_FILEPAGES);
2606 inc_mm_counter_fast(mm, MM_ANONPAGES);
2607 }
2608 } else
2609 inc_mm_counter_fast(mm, MM_ANONPAGES);
2610 flush_cache_page(vma, address, pte_pfn(orig_pte));
2611 entry = mk_pte(new_page, vma->vm_page_prot);
2612 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2613 /*
2614 * Clear the pte entry and flush it first, before updating the
2615 * pte with the new entry. This will avoid a race condition
2616 * seen in the presence of one thread doing SMC and another
2617 * thread doing COW.
2618 */
2619 ptep_clear_flush(vma, address, page_table);
2620 page_add_new_anon_rmap(new_page, vma, address);
2621 /*
2622 * We call the notify macro here because, when using secondary
2623 * mmu page tables (such as kvm shadow page tables), we want the
2624 * new page to be mapped directly into the secondary page table.
2625 */
2626 set_pte_at_notify(mm, address, page_table, entry);
2627 update_mmu_cache(vma, address, page_table);
2628 if (old_page) {
2629 /*
2630 * Only after switching the pte to the new page may
2631 * we remove the mapcount here. Otherwise another
2632 * process may come and find the rmap count decremented
2633 * before the pte is switched to the new page, and
2634 * "reuse" the old page writing into it while our pte
2635 * here still points into it and can be read by other
2636 * threads.
2637 *
2638 * The critical issue is to order this
2639 * page_remove_rmap with the ptp_clear_flush above.
2640 * Those stores are ordered by (if nothing else,)
2641 * the barrier present in the atomic_add_negative
2642 * in page_remove_rmap.
2643 *
2644 * Then the TLB flush in ptep_clear_flush ensures that
2645 * no process can access the old page before the
2646 * decremented mapcount is visible. And the old page
2647 * cannot be reused until after the decremented
2648 * mapcount is visible. So transitively, TLBs to
2649 * old page will be flushed before it can be reused.
2650 */
2651 page_remove_rmap(old_page);
2652 }
2653
2654 /* Free the old page.. */
2655 new_page = old_page;
2656 ret |= VM_FAULT_WRITE;
2657 } else
2658 mem_cgroup_uncharge_page(new_page);
2659
2660 if (new_page)
2661 page_cache_release(new_page);
2662unlock:
2663 pte_unmap_unlock(page_table, ptl);
2664 if (old_page) {
2665 /*
2666 * Don't let another task, with possibly unlocked vma,
2667 * keep the mlocked page.
2668 */
2669 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2670 lock_page(old_page); /* LRU manipulation */
2671 munlock_vma_page(old_page);
2672 unlock_page(old_page);
2673 }
2674 page_cache_release(old_page);
2675 }
2676 return ret;
2677oom_free_new:
2678 page_cache_release(new_page);
2679oom:
2680 if (old_page) {
2681 if (page_mkwrite) {
2682 unlock_page(old_page);
2683 page_cache_release(old_page);
2684 }
2685 page_cache_release(old_page);
2686 }
2687 return VM_FAULT_OOM;
2688
2689unwritable_page:
2690 page_cache_release(old_page);
2691 return ret;
2692}
2693
2694static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2695 unsigned long start_addr, unsigned long end_addr,
2696 struct zap_details *details)
2697{
2698 zap_page_range(vma, start_addr, end_addr - start_addr, details);
2699}
2700
2701static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2702 struct zap_details *details)
2703{
2704 struct vm_area_struct *vma;
2705 struct prio_tree_iter iter;
2706 pgoff_t vba, vea, zba, zea;
2707
2708 vma_prio_tree_foreach(vma, &iter, root,
2709 details->first_index, details->last_index) {
2710
2711 vba = vma->vm_pgoff;
2712 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2713 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2714 zba = details->first_index;
2715 if (zba < vba)
2716 zba = vba;
2717 zea = details->last_index;
2718 if (zea > vea)
2719 zea = vea;
2720
2721 unmap_mapping_range_vma(vma,
2722 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2723 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2724 details);
2725 }
2726}
2727
2728static inline void unmap_mapping_range_list(struct list_head *head,
2729 struct zap_details *details)
2730{
2731 struct vm_area_struct *vma;
2732
2733 /*
2734 * In nonlinear VMAs there is no correspondence between virtual address
2735 * offset and file offset. So we must perform an exhaustive search
2736 * across *all* the pages in each nonlinear VMA, not just the pages
2737 * whose virtual address lies outside the file truncation point.
2738 */
2739 list_for_each_entry(vma, head, shared.vm_set.list) {
2740 details->nonlinear_vma = vma;
2741 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2742 }
2743}
2744
2745/**
2746 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2747 * @mapping: the address space containing mmaps to be unmapped.
2748 * @holebegin: byte in first page to unmap, relative to the start of
2749 * the underlying file. This will be rounded down to a PAGE_SIZE
2750 * boundary. Note that this is different from truncate_pagecache(), which
2751 * must keep the partial page. In contrast, we must get rid of
2752 * partial pages.
2753 * @holelen: size of prospective hole in bytes. This will be rounded
2754 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2755 * end of the file.
2756 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2757 * but 0 when invalidating pagecache, don't throw away private data.
2758 */
2759void unmap_mapping_range(struct address_space *mapping,
2760 loff_t const holebegin, loff_t const holelen, int even_cows)
2761{
2762 struct zap_details details;
2763 pgoff_t hba = holebegin >> PAGE_SHIFT;
2764 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2765
2766 /* Check for overflow. */
2767 if (sizeof(holelen) > sizeof(hlen)) {
2768 long long holeend =
2769 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2770 if (holeend & ~(long long)ULONG_MAX)
2771 hlen = ULONG_MAX - hba + 1;
2772 }
2773
2774 details.check_mapping = even_cows? NULL: mapping;
2775 details.nonlinear_vma = NULL;
2776 details.first_index = hba;
2777 details.last_index = hba + hlen - 1;
2778 if (details.last_index < details.first_index)
2779 details.last_index = ULONG_MAX;
2780
2781
2782 mutex_lock(&mapping->i_mmap_mutex);
2783 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2784 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2785 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2786 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2787 mutex_unlock(&mapping->i_mmap_mutex);
2788}
2789EXPORT_SYMBOL(unmap_mapping_range);
2790
2791/*
2792 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2793 * but allow concurrent faults), and pte mapped but not yet locked.
2794 * We return with mmap_sem still held, but pte unmapped and unlocked.
2795 */
2796static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2797 unsigned long address, pte_t *page_table, pmd_t *pmd,
2798 unsigned int flags, pte_t orig_pte)
2799{
2800 spinlock_t *ptl;
2801 struct page *page, *swapcache = NULL;
2802 swp_entry_t entry;
2803 pte_t pte;
2804 int locked;
2805 struct mem_cgroup *ptr;
2806 int exclusive = 0;
2807 int ret = 0;
2808
2809 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2810 goto out;
2811
2812 entry = pte_to_swp_entry(orig_pte);
2813 if (unlikely(non_swap_entry(entry))) {
2814 if (is_migration_entry(entry)) {
2815 migration_entry_wait(mm, pmd, address);
2816 } else if (is_hwpoison_entry(entry)) {
2817 ret = VM_FAULT_HWPOISON;
2818 } else {
2819 print_bad_pte(vma, address, orig_pte, NULL);
2820 ret = VM_FAULT_SIGBUS;
2821 }
2822 goto out;
2823 }
2824 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2825 page = lookup_swap_cache(entry);
2826 if (!page) {
2827 grab_swap_token(mm); /* Contend for token _before_ read-in */
2828 page = swapin_readahead(entry,
2829 GFP_HIGHUSER_MOVABLE, vma, address);
2830 if (!page) {
2831 /*
2832 * Back out if somebody else faulted in this pte
2833 * while we released the pte lock.
2834 */
2835 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2836 if (likely(pte_same(*page_table, orig_pte)))
2837 ret = VM_FAULT_OOM;
2838 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2839 goto unlock;
2840 }
2841
2842 /* Had to read the page from swap area: Major fault */
2843 ret = VM_FAULT_MAJOR;
2844 count_vm_event(PGMAJFAULT);
2845 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2846 } else if (PageHWPoison(page)) {
2847 /*
2848 * hwpoisoned dirty swapcache pages are kept for killing
2849 * owner processes (which may be unknown at hwpoison time)
2850 */
2851 ret = VM_FAULT_HWPOISON;
2852 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2853 goto out_release;
2854 }
2855
2856 locked = lock_page_or_retry(page, mm, flags);
2857 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2858 if (!locked) {
2859 ret |= VM_FAULT_RETRY;
2860 goto out_release;
2861 }
2862
2863 /*
2864 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2865 * release the swapcache from under us. The page pin, and pte_same
2866 * test below, are not enough to exclude that. Even if it is still
2867 * swapcache, we need to check that the page's swap has not changed.
2868 */
2869 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2870 goto out_page;
2871
2872 if (ksm_might_need_to_copy(page, vma, address)) {
2873 swapcache = page;
2874 page = ksm_does_need_to_copy(page, vma, address);
2875
2876 if (unlikely(!page)) {
2877 ret = VM_FAULT_OOM;
2878 page = swapcache;
2879 swapcache = NULL;
2880 goto out_page;
2881 }
2882 }
2883
2884 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2885 ret = VM_FAULT_OOM;
2886 goto out_page;
2887 }
2888
2889 /*
2890 * Back out if somebody else already faulted in this pte.
2891 */
2892 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2893 if (unlikely(!pte_same(*page_table, orig_pte)))
2894 goto out_nomap;
2895
2896 if (unlikely(!PageUptodate(page))) {
2897 ret = VM_FAULT_SIGBUS;
2898 goto out_nomap;
2899 }
2900
2901 /*
2902 * The page isn't present yet, go ahead with the fault.
2903 *
2904 * Be careful about the sequence of operations here.
2905 * To get its accounting right, reuse_swap_page() must be called
2906 * while the page is counted on swap but not yet in mapcount i.e.
2907 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2908 * must be called after the swap_free(), or it will never succeed.
2909 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2910 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2911 * in page->private. In this case, a record in swap_cgroup is silently
2912 * discarded at swap_free().
2913 */
2914
2915 inc_mm_counter_fast(mm, MM_ANONPAGES);
2916 dec_mm_counter_fast(mm, MM_SWAPENTS);
2917 pte = mk_pte(page, vma->vm_page_prot);
2918 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2919 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2920 flags &= ~FAULT_FLAG_WRITE;
2921 ret |= VM_FAULT_WRITE;
2922 exclusive = 1;
2923 }
2924 flush_icache_page(vma, page);
2925 set_pte_at(mm, address, page_table, pte);
2926 do_page_add_anon_rmap(page, vma, address, exclusive);
2927 /* It's better to call commit-charge after rmap is established */
2928 mem_cgroup_commit_charge_swapin(page, ptr);
2929
2930 swap_free(entry);
2931 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2932 try_to_free_swap(page);
2933 unlock_page(page);
2934 if (swapcache) {
2935 /*
2936 * Hold the lock to avoid the swap entry to be reused
2937 * until we take the PT lock for the pte_same() check
2938 * (to avoid false positives from pte_same). For
2939 * further safety release the lock after the swap_free
2940 * so that the swap count won't change under a
2941 * parallel locked swapcache.
2942 */
2943 unlock_page(swapcache);
2944 page_cache_release(swapcache);
2945 }
2946
2947 if (flags & FAULT_FLAG_WRITE) {
2948 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2949 if (ret & VM_FAULT_ERROR)
2950 ret &= VM_FAULT_ERROR;
2951 goto out;
2952 }
2953
2954 /* No need to invalidate - it was non-present before */
2955 update_mmu_cache(vma, address, page_table);
2956unlock:
2957 pte_unmap_unlock(page_table, ptl);
2958out:
2959 return ret;
2960out_nomap:
2961 mem_cgroup_cancel_charge_swapin(ptr);
2962 pte_unmap_unlock(page_table, ptl);
2963out_page:
2964 unlock_page(page);
2965out_release:
2966 page_cache_release(page);
2967 if (swapcache) {
2968 unlock_page(swapcache);
2969 page_cache_release(swapcache);
2970 }
2971 return ret;
2972}
2973
2974/*
2975 * This is like a special single-page "expand_{down|up}wards()",
2976 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2977 * doesn't hit another vma.
2978 */
2979static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2980{
2981 address &= PAGE_MASK;
2982 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2983 struct vm_area_struct *prev = vma->vm_prev;
2984
2985 /*
2986 * Is there a mapping abutting this one below?
2987 *
2988 * That's only ok if it's the same stack mapping
2989 * that has gotten split..
2990 */
2991 if (prev && prev->vm_end == address)
2992 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2993
2994 expand_downwards(vma, address - PAGE_SIZE);
2995 }
2996 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2997 struct vm_area_struct *next = vma->vm_next;
2998
2999 /* As VM_GROWSDOWN but s/below/above/ */
3000 if (next && next->vm_start == address + PAGE_SIZE)
3001 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3002
3003 expand_upwards(vma, address + PAGE_SIZE);
3004 }
3005 return 0;
3006}
3007
3008/*
3009 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3010 * but allow concurrent faults), and pte mapped but not yet locked.
3011 * We return with mmap_sem still held, but pte unmapped and unlocked.
3012 */
3013static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3014 unsigned long address, pte_t *page_table, pmd_t *pmd,
3015 unsigned int flags)
3016{
3017 struct page *page;
3018 spinlock_t *ptl;
3019 pte_t entry;
3020
3021 pte_unmap(page_table);
3022
3023 /* Check if we need to add a guard page to the stack */
3024 if (check_stack_guard_page(vma, address) < 0)
3025 return VM_FAULT_SIGBUS;
3026
3027 /* Use the zero-page for reads */
3028 if (!(flags & FAULT_FLAG_WRITE)) {
3029 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3030 vma->vm_page_prot));
3031 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3032 if (!pte_none(*page_table))
3033 goto unlock;
3034 goto setpte;
3035 }
3036
3037 /* Allocate our own private page. */
3038 if (unlikely(anon_vma_prepare(vma)))
3039 goto oom;
3040 page = alloc_zeroed_user_highpage_movable(vma, address);
3041 if (!page)
3042 goto oom;
3043 __SetPageUptodate(page);
3044
3045 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3046 goto oom_free_page;
3047
3048 entry = mk_pte(page, vma->vm_page_prot);
3049 if (vma->vm_flags & VM_WRITE)
3050 entry = pte_mkwrite(pte_mkdirty(entry));
3051
3052 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3053 if (!pte_none(*page_table))
3054 goto release;
3055
3056 inc_mm_counter_fast(mm, MM_ANONPAGES);
3057 page_add_new_anon_rmap(page, vma, address);
3058setpte:
3059 set_pte_at(mm, address, page_table, entry);
3060
3061 /* No need to invalidate - it was non-present before */
3062 update_mmu_cache(vma, address, page_table);
3063unlock:
3064 pte_unmap_unlock(page_table, ptl);
3065 return 0;
3066release:
3067 mem_cgroup_uncharge_page(page);
3068 page_cache_release(page);
3069 goto unlock;
3070oom_free_page:
3071 page_cache_release(page);
3072oom:
3073 return VM_FAULT_OOM;
3074}
3075
3076/*
3077 * __do_fault() tries to create a new page mapping. It aggressively
3078 * tries to share with existing pages, but makes a separate copy if
3079 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3080 * the next page fault.
3081 *
3082 * As this is called only for pages that do not currently exist, we
3083 * do not need to flush old virtual caches or the TLB.
3084 *
3085 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3086 * but allow concurrent faults), and pte neither mapped nor locked.
3087 * We return with mmap_sem still held, but pte unmapped and unlocked.
3088 */
3089static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3090 unsigned long address, pmd_t *pmd,
3091 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3092{
3093 pte_t *page_table;
3094 spinlock_t *ptl;
3095 struct page *page;
3096 struct page *cow_page;
3097 pte_t entry;
3098 int anon = 0;
3099 struct page *dirty_page = NULL;
3100 struct vm_fault vmf;
3101 int ret;
3102 int page_mkwrite = 0;
3103
3104 /*
3105 * If we do COW later, allocate page befor taking lock_page()
3106 * on the file cache page. This will reduce lock holding time.
3107 */
3108 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3109
3110 if (unlikely(anon_vma_prepare(vma)))
3111 return VM_FAULT_OOM;
3112
3113 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3114 if (!cow_page)
3115 return VM_FAULT_OOM;
3116
3117 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3118 page_cache_release(cow_page);
3119 return VM_FAULT_OOM;
3120 }
3121 } else
3122 cow_page = NULL;
3123
3124 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3125 vmf.pgoff = pgoff;
3126 vmf.flags = flags;
3127 vmf.page = NULL;
3128
3129 ret = vma->vm_ops->fault(vma, &vmf);
3130 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3131 VM_FAULT_RETRY)))
3132 goto uncharge_out;
3133
3134 if (unlikely(PageHWPoison(vmf.page))) {
3135 if (ret & VM_FAULT_LOCKED)
3136 unlock_page(vmf.page);
3137 ret = VM_FAULT_HWPOISON;
3138 goto uncharge_out;
3139 }
3140
3141 /*
3142 * For consistency in subsequent calls, make the faulted page always
3143 * locked.
3144 */
3145 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3146 lock_page(vmf.page);
3147 else
3148 VM_BUG_ON(!PageLocked(vmf.page));
3149
3150 /*
3151 * Should we do an early C-O-W break?
3152 */
3153 page = vmf.page;
3154 if (flags & FAULT_FLAG_WRITE) {
3155 if (!(vma->vm_flags & VM_SHARED)) {
3156 page = cow_page;
3157 anon = 1;
3158 copy_user_highpage(page, vmf.page, address, vma);
3159 __SetPageUptodate(page);
3160 } else {
3161 /*
3162 * If the page will be shareable, see if the backing
3163 * address space wants to know that the page is about
3164 * to become writable
3165 */
3166 if (vma->vm_ops->page_mkwrite) {
3167 int tmp;
3168
3169 unlock_page(page);
3170 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3171 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3172 if (unlikely(tmp &
3173 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3174 ret = tmp;
3175 goto unwritable_page;
3176 }
3177 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3178 lock_page(page);
3179 if (!page->mapping) {
3180 ret = 0; /* retry the fault */
3181 unlock_page(page);
3182 goto unwritable_page;
3183 }
3184 } else
3185 VM_BUG_ON(!PageLocked(page));
3186 page_mkwrite = 1;
3187 }
3188 }
3189
3190 }
3191
3192 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3193
3194 /*
3195 * This silly early PAGE_DIRTY setting removes a race
3196 * due to the bad i386 page protection. But it's valid
3197 * for other architectures too.
3198 *
3199 * Note that if FAULT_FLAG_WRITE is set, we either now have
3200 * an exclusive copy of the page, or this is a shared mapping,
3201 * so we can make it writable and dirty to avoid having to
3202 * handle that later.
3203 */
3204 /* Only go through if we didn't race with anybody else... */
3205 if (likely(pte_same(*page_table, orig_pte))) {
3206 flush_icache_page(vma, page);
3207 entry = mk_pte(page, vma->vm_page_prot);
3208 if (flags & FAULT_FLAG_WRITE)
3209 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3210 if (anon) {
3211 inc_mm_counter_fast(mm, MM_ANONPAGES);
3212 page_add_new_anon_rmap(page, vma, address);
3213 } else {
3214 inc_mm_counter_fast(mm, MM_FILEPAGES);
3215 page_add_file_rmap(page);
3216 if (flags & FAULT_FLAG_WRITE) {
3217 dirty_page = page;
3218 get_page(dirty_page);
3219 }
3220 }
3221 set_pte_at(mm, address, page_table, entry);
3222
3223 /* no need to invalidate: a not-present page won't be cached */
3224 update_mmu_cache(vma, address, page_table);
3225 } else {
3226 if (cow_page)
3227 mem_cgroup_uncharge_page(cow_page);
3228 if (anon)
3229 page_cache_release(page);
3230 else
3231 anon = 1; /* no anon but release faulted_page */
3232 }
3233
3234 pte_unmap_unlock(page_table, ptl);
3235
3236 if (dirty_page) {
3237 struct address_space *mapping = page->mapping;
3238
3239 if (set_page_dirty(dirty_page))
3240 page_mkwrite = 1;
3241 unlock_page(dirty_page);
3242 put_page(dirty_page);
3243 if (page_mkwrite && mapping) {
3244 /*
3245 * Some device drivers do not set page.mapping but still
3246 * dirty their pages
3247 */
3248 balance_dirty_pages_ratelimited(mapping);
3249 }
3250
3251 /* file_update_time outside page_lock */
3252 if (vma->vm_file)
3253 file_update_time(vma->vm_file);
3254 } else {
3255 unlock_page(vmf.page);
3256 if (anon)
3257 page_cache_release(vmf.page);
3258 }
3259
3260 return ret;
3261
3262unwritable_page:
3263 page_cache_release(page);
3264 return ret;
3265uncharge_out:
3266 /* fs's fault handler get error */
3267 if (cow_page) {
3268 mem_cgroup_uncharge_page(cow_page);
3269 page_cache_release(cow_page);
3270 }
3271 return ret;
3272}
3273
3274static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3275 unsigned long address, pte_t *page_table, pmd_t *pmd,
3276 unsigned int flags, pte_t orig_pte)
3277{
3278 pgoff_t pgoff = (((address & PAGE_MASK)
3279 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3280
3281 pte_unmap(page_table);
3282 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3283}
3284
3285/*
3286 * Fault of a previously existing named mapping. Repopulate the pte
3287 * from the encoded file_pte if possible. This enables swappable
3288 * nonlinear vmas.
3289 *
3290 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3291 * but allow concurrent faults), and pte mapped but not yet locked.
3292 * We return with mmap_sem still held, but pte unmapped and unlocked.
3293 */
3294static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3295 unsigned long address, pte_t *page_table, pmd_t *pmd,
3296 unsigned int flags, pte_t orig_pte)
3297{
3298 pgoff_t pgoff;
3299
3300 flags |= FAULT_FLAG_NONLINEAR;
3301
3302 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3303 return 0;
3304
3305 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3306 /*
3307 * Page table corrupted: show pte and kill process.
3308 */
3309 print_bad_pte(vma, address, orig_pte, NULL);
3310 return VM_FAULT_SIGBUS;
3311 }
3312
3313 pgoff = pte_to_pgoff(orig_pte);
3314 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3315}
3316
3317/*
3318 * These routines also need to handle stuff like marking pages dirty
3319 * and/or accessed for architectures that don't do it in hardware (most
3320 * RISC architectures). The early dirtying is also good on the i386.
3321 *
3322 * There is also a hook called "update_mmu_cache()" that architectures
3323 * with external mmu caches can use to update those (ie the Sparc or
3324 * PowerPC hashed page tables that act as extended TLBs).
3325 *
3326 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3327 * but allow concurrent faults), and pte mapped but not yet locked.
3328 * We return with mmap_sem still held, but pte unmapped and unlocked.
3329 */
3330int handle_pte_fault(struct mm_struct *mm,
3331 struct vm_area_struct *vma, unsigned long address,
3332 pte_t *pte, pmd_t *pmd, unsigned int flags)
3333{
3334 pte_t entry;
3335 spinlock_t *ptl;
3336
3337 entry = *pte;
3338 if (!pte_present(entry)) {
3339 if (pte_none(entry)) {
3340 if (vma->vm_ops) {
3341 if (likely(vma->vm_ops->fault))
3342 return do_linear_fault(mm, vma, address,
3343 pte, pmd, flags, entry);
3344 }
3345 return do_anonymous_page(mm, vma, address,
3346 pte, pmd, flags);
3347 }
3348 if (pte_file(entry))
3349 return do_nonlinear_fault(mm, vma, address,
3350 pte, pmd, flags, entry);
3351 return do_swap_page(mm, vma, address,
3352 pte, pmd, flags, entry);
3353 }
3354
3355 ptl = pte_lockptr(mm, pmd);
3356 spin_lock(ptl);
3357 if (unlikely(!pte_same(*pte, entry)))
3358 goto unlock;
3359 if (flags & FAULT_FLAG_WRITE) {
3360 if (!pte_write(entry))
3361 return do_wp_page(mm, vma, address,
3362 pte, pmd, ptl, entry);
3363 entry = pte_mkdirty(entry);
3364 }
3365 entry = pte_mkyoung(entry);
3366 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3367 update_mmu_cache(vma, address, pte);
3368 } else {
3369 /*
3370 * This is needed only for protection faults but the arch code
3371 * is not yet telling us if this is a protection fault or not.
3372 * This still avoids useless tlb flushes for .text page faults
3373 * with threads.
3374 */
3375 if (flags & FAULT_FLAG_WRITE)
3376 flush_tlb_fix_spurious_fault(vma, address);
3377 }
3378unlock:
3379 pte_unmap_unlock(pte, ptl);
3380 return 0;
3381}
3382
3383/*
3384 * By the time we get here, we already hold the mm semaphore
3385 */
3386int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3387 unsigned long address, unsigned int flags)
3388{
3389 pgd_t *pgd;
3390 pud_t *pud;
3391 pmd_t *pmd;
3392 pte_t *pte;
3393
3394 __set_current_state(TASK_RUNNING);
3395
3396 count_vm_event(PGFAULT);
3397 mem_cgroup_count_vm_event(mm, PGFAULT);
3398
3399 /* do counter updates before entering really critical section. */
3400 check_sync_rss_stat(current);
3401
3402 if (unlikely(is_vm_hugetlb_page(vma)))
3403 return hugetlb_fault(mm, vma, address, flags);
3404
3405 pgd = pgd_offset(mm, address);
3406 pud = pud_alloc(mm, pgd, address);
3407 if (!pud)
3408 return VM_FAULT_OOM;
3409 pmd = pmd_alloc(mm, pud, address);
3410 if (!pmd)
3411 return VM_FAULT_OOM;
3412 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3413 if (!vma->vm_ops)
3414 return do_huge_pmd_anonymous_page(mm, vma, address,
3415 pmd, flags);
3416 } else {
3417 pmd_t orig_pmd = *pmd;
3418 barrier();
3419 if (pmd_trans_huge(orig_pmd)) {
3420 if (flags & FAULT_FLAG_WRITE &&
3421 !pmd_write(orig_pmd) &&
3422 !pmd_trans_splitting(orig_pmd))
3423 return do_huge_pmd_wp_page(mm, vma, address,
3424 pmd, orig_pmd);
3425 return 0;
3426 }
3427 }
3428
3429 /*
3430 * Use __pte_alloc instead of pte_alloc_map, because we can't
3431 * run pte_offset_map on the pmd, if an huge pmd could
3432 * materialize from under us from a different thread.
3433 */
3434 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3435 return VM_FAULT_OOM;
3436 /* if an huge pmd materialized from under us just retry later */
3437 if (unlikely(pmd_trans_huge(*pmd)))
3438 return 0;
3439 /*
3440 * A regular pmd is established and it can't morph into a huge pmd
3441 * from under us anymore at this point because we hold the mmap_sem
3442 * read mode and khugepaged takes it in write mode. So now it's
3443 * safe to run pte_offset_map().
3444 */
3445 pte = pte_offset_map(pmd, address);
3446
3447 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3448}
3449
3450#ifndef __PAGETABLE_PUD_FOLDED
3451/*
3452 * Allocate page upper directory.
3453 * We've already handled the fast-path in-line.
3454 */
3455int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3456{
3457 pud_t *new = pud_alloc_one(mm, address);
3458 if (!new)
3459 return -ENOMEM;
3460
3461 smp_wmb(); /* See comment in __pte_alloc */
3462
3463 spin_lock(&mm->page_table_lock);
3464 if (pgd_present(*pgd)) /* Another has populated it */
3465 pud_free(mm, new);
3466 else
3467 pgd_populate(mm, pgd, new);
3468 spin_unlock(&mm->page_table_lock);
3469 return 0;
3470}
3471#endif /* __PAGETABLE_PUD_FOLDED */
3472
3473#ifndef __PAGETABLE_PMD_FOLDED
3474/*
3475 * Allocate page middle directory.
3476 * We've already handled the fast-path in-line.
3477 */
3478int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3479{
3480 pmd_t *new = pmd_alloc_one(mm, address);
3481 if (!new)
3482 return -ENOMEM;
3483
3484 smp_wmb(); /* See comment in __pte_alloc */
3485
3486 spin_lock(&mm->page_table_lock);
3487#ifndef __ARCH_HAS_4LEVEL_HACK
3488 if (pud_present(*pud)) /* Another has populated it */
3489 pmd_free(mm, new);
3490 else
3491 pud_populate(mm, pud, new);
3492#else
3493 if (pgd_present(*pud)) /* Another has populated it */
3494 pmd_free(mm, new);
3495 else
3496 pgd_populate(mm, pud, new);
3497#endif /* __ARCH_HAS_4LEVEL_HACK */
3498 spin_unlock(&mm->page_table_lock);
3499 return 0;
3500}
3501#endif /* __PAGETABLE_PMD_FOLDED */
3502
3503int make_pages_present(unsigned long addr, unsigned long end)
3504{
3505 int ret, len, write;
3506 struct vm_area_struct * vma;
3507
3508 vma = find_vma(current->mm, addr);
3509 if (!vma)
3510 return -ENOMEM;
3511 /*
3512 * We want to touch writable mappings with a write fault in order
3513 * to break COW, except for shared mappings because these don't COW
3514 * and we would not want to dirty them for nothing.
3515 */
3516 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3517 BUG_ON(addr >= end);
3518 BUG_ON(end > vma->vm_end);
3519 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3520 ret = get_user_pages(current, current->mm, addr,
3521 len, write, 0, NULL, NULL);
3522 if (ret < 0)
3523 return ret;
3524 return ret == len ? 0 : -EFAULT;
3525}
3526
3527#if !defined(__HAVE_ARCH_GATE_AREA)
3528
3529#if defined(AT_SYSINFO_EHDR)
3530static struct vm_area_struct gate_vma;
3531
3532static int __init gate_vma_init(void)
3533{
3534 gate_vma.vm_mm = NULL;
3535 gate_vma.vm_start = FIXADDR_USER_START;
3536 gate_vma.vm_end = FIXADDR_USER_END;
3537 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3538 gate_vma.vm_page_prot = __P101;
3539 /*
3540 * Make sure the vDSO gets into every core dump.
3541 * Dumping its contents makes post-mortem fully interpretable later
3542 * without matching up the same kernel and hardware config to see
3543 * what PC values meant.
3544 */
3545 gate_vma.vm_flags |= VM_ALWAYSDUMP;
3546 return 0;
3547}
3548__initcall(gate_vma_init);
3549#endif
3550
3551struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3552{
3553#ifdef AT_SYSINFO_EHDR
3554 return &gate_vma;
3555#else
3556 return NULL;
3557#endif
3558}
3559
3560int in_gate_area_no_mm(unsigned long addr)
3561{
3562#ifdef AT_SYSINFO_EHDR
3563 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3564 return 1;
3565#endif
3566 return 0;
3567}
3568
3569#endif /* __HAVE_ARCH_GATE_AREA */
3570
3571static int __follow_pte(struct mm_struct *mm, unsigned long address,
3572 pte_t **ptepp, spinlock_t **ptlp)
3573{
3574 pgd_t *pgd;
3575 pud_t *pud;
3576 pmd_t *pmd;
3577 pte_t *ptep;
3578
3579 pgd = pgd_offset(mm, address);
3580 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3581 goto out;
3582
3583 pud = pud_offset(pgd, address);
3584 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3585 goto out;
3586
3587 pmd = pmd_offset(pud, address);
3588 VM_BUG_ON(pmd_trans_huge(*pmd));
3589 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3590 goto out;
3591
3592 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3593 if (pmd_huge(*pmd))
3594 goto out;
3595
3596 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3597 if (!ptep)
3598 goto out;
3599 if (!pte_present(*ptep))
3600 goto unlock;
3601 *ptepp = ptep;
3602 return 0;
3603unlock:
3604 pte_unmap_unlock(ptep, *ptlp);
3605out:
3606 return -EINVAL;
3607}
3608
3609static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3610 pte_t **ptepp, spinlock_t **ptlp)
3611{
3612 int res;
3613
3614 /* (void) is needed to make gcc happy */
3615 (void) __cond_lock(*ptlp,
3616 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3617 return res;
3618}
3619
3620/**
3621 * follow_pfn - look up PFN at a user virtual address
3622 * @vma: memory mapping
3623 * @address: user virtual address
3624 * @pfn: location to store found PFN
3625 *
3626 * Only IO mappings and raw PFN mappings are allowed.
3627 *
3628 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3629 */
3630int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3631 unsigned long *pfn)
3632{
3633 int ret = -EINVAL;
3634 spinlock_t *ptl;
3635 pte_t *ptep;
3636
3637 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3638 return ret;
3639
3640 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3641 if (ret)
3642 return ret;
3643 *pfn = pte_pfn(*ptep);
3644 pte_unmap_unlock(ptep, ptl);
3645 return 0;
3646}
3647EXPORT_SYMBOL(follow_pfn);
3648
3649#ifdef CONFIG_HAVE_IOREMAP_PROT
3650int follow_phys(struct vm_area_struct *vma,
3651 unsigned long address, unsigned int flags,
3652 unsigned long *prot, resource_size_t *phys)
3653{
3654 int ret = -EINVAL;
3655 pte_t *ptep, pte;
3656 spinlock_t *ptl;
3657
3658 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3659 goto out;
3660
3661 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3662 goto out;
3663 pte = *ptep;
3664
3665 if ((flags & FOLL_WRITE) && !pte_write(pte))
3666 goto unlock;
3667
3668 *prot = pgprot_val(pte_pgprot(pte));
3669 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3670
3671 ret = 0;
3672unlock:
3673 pte_unmap_unlock(ptep, ptl);
3674out:
3675 return ret;
3676}
3677
3678int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3679 void *buf, int len, int write)
3680{
3681 resource_size_t phys_addr;
3682 unsigned long prot = 0;
3683 void __iomem *maddr;
3684 int offset = addr & (PAGE_SIZE-1);
3685
3686 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3687 return -EINVAL;
3688
3689 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3690 if (write)
3691 memcpy_toio(maddr + offset, buf, len);
3692 else
3693 memcpy_fromio(buf, maddr + offset, len);
3694 iounmap(maddr);
3695
3696 return len;
3697}
3698#endif
3699
3700/*
3701 * Access another process' address space as given in mm. If non-NULL, use the
3702 * given task for page fault accounting.
3703 */
3704static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3705 unsigned long addr, void *buf, int len, int write)
3706{
3707 struct vm_area_struct *vma;
3708 void *old_buf = buf;
3709
3710 down_read(&mm->mmap_sem);
3711 /* ignore errors, just check how much was successfully transferred */
3712 while (len) {
3713 int bytes, ret, offset;
3714 void *maddr;
3715 struct page *page = NULL;
3716
3717 ret = get_user_pages(tsk, mm, addr, 1,
3718 write, 1, &page, &vma);
3719 if (ret <= 0) {
3720 /*
3721 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3722 * we can access using slightly different code.
3723 */
3724#ifdef CONFIG_HAVE_IOREMAP_PROT
3725 vma = find_vma(mm, addr);
3726 if (!vma || vma->vm_start > addr)
3727 break;
3728 if (vma->vm_ops && vma->vm_ops->access)
3729 ret = vma->vm_ops->access(vma, addr, buf,
3730 len, write);
3731 if (ret <= 0)
3732#endif
3733 break;
3734 bytes = ret;
3735 } else {
3736 bytes = len;
3737 offset = addr & (PAGE_SIZE-1);
3738 if (bytes > PAGE_SIZE-offset)
3739 bytes = PAGE_SIZE-offset;
3740
3741 maddr = kmap(page);
3742 if (write) {
3743 copy_to_user_page(vma, page, addr,
3744 maddr + offset, buf, bytes);
3745 set_page_dirty_lock(page);
3746 } else {
3747 copy_from_user_page(vma, page, addr,
3748 buf, maddr + offset, bytes);
3749 }
3750 kunmap(page);
3751 page_cache_release(page);
3752 }
3753 len -= bytes;
3754 buf += bytes;
3755 addr += bytes;
3756 }
3757 up_read(&mm->mmap_sem);
3758
3759 return buf - old_buf;
3760}
3761
3762/**
3763 * access_remote_vm - access another process' address space
3764 * @mm: the mm_struct of the target address space
3765 * @addr: start address to access
3766 * @buf: source or destination buffer
3767 * @len: number of bytes to transfer
3768 * @write: whether the access is a write
3769 *
3770 * The caller must hold a reference on @mm.
3771 */
3772int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3773 void *buf, int len, int write)
3774{
3775 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3776}
3777
3778/*
3779 * Access another process' address space.
3780 * Source/target buffer must be kernel space,
3781 * Do not walk the page table directly, use get_user_pages
3782 */
3783int access_process_vm(struct task_struct *tsk, unsigned long addr,
3784 void *buf, int len, int write)
3785{
3786 struct mm_struct *mm;
3787 int ret;
3788
3789 mm = get_task_mm(tsk);
3790 if (!mm)
3791 return 0;
3792
3793 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3794 mmput(mm);
3795
3796 return ret;
3797}
3798
3799/*
3800 * Print the name of a VMA.
3801 */
3802void print_vma_addr(char *prefix, unsigned long ip)
3803{
3804 struct mm_struct *mm = current->mm;
3805 struct vm_area_struct *vma;
3806
3807 /*
3808 * Do not print if we are in atomic
3809 * contexts (in exception stacks, etc.):
3810 */
3811 if (preempt_count())
3812 return;
3813
3814 down_read(&mm->mmap_sem);
3815 vma = find_vma(mm, ip);
3816 if (vma && vma->vm_file) {
3817 struct file *f = vma->vm_file;
3818 char *buf = (char *)__get_free_page(GFP_KERNEL);
3819 if (buf) {
3820 char *p, *s;
3821
3822 p = d_path(&f->f_path, buf, PAGE_SIZE);
3823 if (IS_ERR(p))
3824 p = "?";
3825 s = strrchr(p, '/');
3826 if (s)
3827 p = s+1;
3828 printk("%s%s[%lx+%lx]", prefix, p,
3829 vma->vm_start,
3830 vma->vm_end - vma->vm_start);
3831 free_page((unsigned long)buf);
3832 }
3833 }
3834 up_read(&current->mm->mmap_sem);
3835}
3836
3837#ifdef CONFIG_PROVE_LOCKING
3838void might_fault(void)
3839{
3840 /*
3841 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3842 * holding the mmap_sem, this is safe because kernel memory doesn't
3843 * get paged out, therefore we'll never actually fault, and the
3844 * below annotations will generate false positives.
3845 */
3846 if (segment_eq(get_fs(), KERNEL_DS))
3847 return;
3848
3849 might_sleep();
3850 /*
3851 * it would be nicer only to annotate paths which are not under
3852 * pagefault_disable, however that requires a larger audit and
3853 * providing helpers like get_user_atomic.
3854 */
3855 if (!in_atomic() && current->mm)
3856 might_lock_read(&current->mm->mmap_sem);
3857}
3858EXPORT_SYMBOL(might_fault);
3859#endif
3860
3861#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3862static void clear_gigantic_page(struct page *page,
3863 unsigned long addr,
3864 unsigned int pages_per_huge_page)
3865{
3866 int i;
3867 struct page *p = page;
3868
3869 might_sleep();
3870 for (i = 0; i < pages_per_huge_page;
3871 i++, p = mem_map_next(p, page, i)) {
3872 cond_resched();
3873 clear_user_highpage(p, addr + i * PAGE_SIZE);
3874 }
3875}
3876void clear_huge_page(struct page *page,
3877 unsigned long addr, unsigned int pages_per_huge_page)
3878{
3879 int i;
3880
3881 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3882 clear_gigantic_page(page, addr, pages_per_huge_page);
3883 return;
3884 }
3885
3886 might_sleep();
3887 for (i = 0; i < pages_per_huge_page; i++) {
3888 cond_resched();
3889 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3890 }
3891}
3892
3893static void copy_user_gigantic_page(struct page *dst, struct page *src,
3894 unsigned long addr,
3895 struct vm_area_struct *vma,
3896 unsigned int pages_per_huge_page)
3897{
3898 int i;
3899 struct page *dst_base = dst;
3900 struct page *src_base = src;
3901
3902 for (i = 0; i < pages_per_huge_page; ) {
3903 cond_resched();
3904 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3905
3906 i++;
3907 dst = mem_map_next(dst, dst_base, i);
3908 src = mem_map_next(src, src_base, i);
3909 }
3910}
3911
3912void copy_user_huge_page(struct page *dst, struct page *src,
3913 unsigned long addr, struct vm_area_struct *vma,
3914 unsigned int pages_per_huge_page)
3915{
3916 int i;
3917
3918 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3919 copy_user_gigantic_page(dst, src, addr, vma,
3920 pages_per_huge_page);
3921 return;
3922 }
3923
3924 might_sleep();
3925 for (i = 0; i < pages_per_huge_page; i++) {
3926 cond_resched();
3927 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3928 }
3929}
3930#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
This page took 0.037105 seconds and 5 git commands to generate.