oom: move oom_killer_enable()/oom_killer_disable to where they belong
[deliverable/linux.git] / mm / page_alloc.c
... / ...
CommitLineData
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/kernel.h>
26#include <linux/kmemcheck.h>
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/slab.h>
32#include <linux/oom.h>
33#include <linux/notifier.h>
34#include <linux/topology.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
38#include <linux/memory_hotplug.h>
39#include <linux/nodemask.h>
40#include <linux/vmalloc.h>
41#include <linux/mempolicy.h>
42#include <linux/stop_machine.h>
43#include <linux/sort.h>
44#include <linux/pfn.h>
45#include <linux/backing-dev.h>
46#include <linux/fault-inject.h>
47#include <linux/page-isolation.h>
48#include <linux/page_cgroup.h>
49#include <linux/debugobjects.h>
50#include <linux/kmemleak.h>
51#include <trace/events/kmem.h>
52
53#include <asm/tlbflush.h>
54#include <asm/div64.h>
55#include "internal.h"
56
57/*
58 * Array of node states.
59 */
60nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
61 [N_POSSIBLE] = NODE_MASK_ALL,
62 [N_ONLINE] = { { [0] = 1UL } },
63#ifndef CONFIG_NUMA
64 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
65#ifdef CONFIG_HIGHMEM
66 [N_HIGH_MEMORY] = { { [0] = 1UL } },
67#endif
68 [N_CPU] = { { [0] = 1UL } },
69#endif /* NUMA */
70};
71EXPORT_SYMBOL(node_states);
72
73unsigned long totalram_pages __read_mostly;
74unsigned long totalreserve_pages __read_mostly;
75unsigned long highest_memmap_pfn __read_mostly;
76int percpu_pagelist_fraction;
77gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
78
79#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
80int pageblock_order __read_mostly;
81#endif
82
83static void __free_pages_ok(struct page *page, unsigned int order);
84
85/*
86 * results with 256, 32 in the lowmem_reserve sysctl:
87 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
88 * 1G machine -> (16M dma, 784M normal, 224M high)
89 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
90 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
91 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
92 *
93 * TBD: should special case ZONE_DMA32 machines here - in those we normally
94 * don't need any ZONE_NORMAL reservation
95 */
96int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
97#ifdef CONFIG_ZONE_DMA
98 256,
99#endif
100#ifdef CONFIG_ZONE_DMA32
101 256,
102#endif
103#ifdef CONFIG_HIGHMEM
104 32,
105#endif
106 32,
107};
108
109EXPORT_SYMBOL(totalram_pages);
110
111static char * const zone_names[MAX_NR_ZONES] = {
112#ifdef CONFIG_ZONE_DMA
113 "DMA",
114#endif
115#ifdef CONFIG_ZONE_DMA32
116 "DMA32",
117#endif
118 "Normal",
119#ifdef CONFIG_HIGHMEM
120 "HighMem",
121#endif
122 "Movable",
123};
124
125int min_free_kbytes = 1024;
126
127static unsigned long __meminitdata nr_kernel_pages;
128static unsigned long __meminitdata nr_all_pages;
129static unsigned long __meminitdata dma_reserve;
130
131#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
132 /*
133 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
134 * ranges of memory (RAM) that may be registered with add_active_range().
135 * Ranges passed to add_active_range() will be merged if possible
136 * so the number of times add_active_range() can be called is
137 * related to the number of nodes and the number of holes
138 */
139 #ifdef CONFIG_MAX_ACTIVE_REGIONS
140 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
141 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
142 #else
143 #if MAX_NUMNODES >= 32
144 /* If there can be many nodes, allow up to 50 holes per node */
145 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
146 #else
147 /* By default, allow up to 256 distinct regions */
148 #define MAX_ACTIVE_REGIONS 256
149 #endif
150 #endif
151
152 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
153 static int __meminitdata nr_nodemap_entries;
154 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
155 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
156 static unsigned long __initdata required_kernelcore;
157 static unsigned long __initdata required_movablecore;
158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
159
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 int movable_zone;
162 EXPORT_SYMBOL(movable_zone);
163#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164
165#if MAX_NUMNODES > 1
166int nr_node_ids __read_mostly = MAX_NUMNODES;
167int nr_online_nodes __read_mostly = 1;
168EXPORT_SYMBOL(nr_node_ids);
169EXPORT_SYMBOL(nr_online_nodes);
170#endif
171
172int page_group_by_mobility_disabled __read_mostly;
173
174static void set_pageblock_migratetype(struct page *page, int migratetype)
175{
176
177 if (unlikely(page_group_by_mobility_disabled))
178 migratetype = MIGRATE_UNMOVABLE;
179
180 set_pageblock_flags_group(page, (unsigned long)migratetype,
181 PB_migrate, PB_migrate_end);
182}
183
184bool oom_killer_disabled __read_mostly;
185
186#ifdef CONFIG_DEBUG_VM
187static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
188{
189 int ret = 0;
190 unsigned seq;
191 unsigned long pfn = page_to_pfn(page);
192
193 do {
194 seq = zone_span_seqbegin(zone);
195 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
196 ret = 1;
197 else if (pfn < zone->zone_start_pfn)
198 ret = 1;
199 } while (zone_span_seqretry(zone, seq));
200
201 return ret;
202}
203
204static int page_is_consistent(struct zone *zone, struct page *page)
205{
206 if (!pfn_valid_within(page_to_pfn(page)))
207 return 0;
208 if (zone != page_zone(page))
209 return 0;
210
211 return 1;
212}
213/*
214 * Temporary debugging check for pages not lying within a given zone.
215 */
216static int bad_range(struct zone *zone, struct page *page)
217{
218 if (page_outside_zone_boundaries(zone, page))
219 return 1;
220 if (!page_is_consistent(zone, page))
221 return 1;
222
223 return 0;
224}
225#else
226static inline int bad_range(struct zone *zone, struct page *page)
227{
228 return 0;
229}
230#endif
231
232static void bad_page(struct page *page)
233{
234 static unsigned long resume;
235 static unsigned long nr_shown;
236 static unsigned long nr_unshown;
237
238 /*
239 * Allow a burst of 60 reports, then keep quiet for that minute;
240 * or allow a steady drip of one report per second.
241 */
242 if (nr_shown == 60) {
243 if (time_before(jiffies, resume)) {
244 nr_unshown++;
245 goto out;
246 }
247 if (nr_unshown) {
248 printk(KERN_ALERT
249 "BUG: Bad page state: %lu messages suppressed\n",
250 nr_unshown);
251 nr_unshown = 0;
252 }
253 nr_shown = 0;
254 }
255 if (nr_shown++ == 0)
256 resume = jiffies + 60 * HZ;
257
258 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
259 current->comm, page_to_pfn(page));
260 printk(KERN_ALERT
261 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
262 page, (void *)page->flags, page_count(page),
263 page_mapcount(page), page->mapping, page->index);
264
265 dump_stack();
266out:
267 /* Leave bad fields for debug, except PageBuddy could make trouble */
268 __ClearPageBuddy(page);
269 add_taint(TAINT_BAD_PAGE);
270}
271
272/*
273 * Higher-order pages are called "compound pages". They are structured thusly:
274 *
275 * The first PAGE_SIZE page is called the "head page".
276 *
277 * The remaining PAGE_SIZE pages are called "tail pages".
278 *
279 * All pages have PG_compound set. All pages have their ->private pointing at
280 * the head page (even the head page has this).
281 *
282 * The first tail page's ->lru.next holds the address of the compound page's
283 * put_page() function. Its ->lru.prev holds the order of allocation.
284 * This usage means that zero-order pages may not be compound.
285 */
286
287static void free_compound_page(struct page *page)
288{
289 __free_pages_ok(page, compound_order(page));
290}
291
292void prep_compound_page(struct page *page, unsigned long order)
293{
294 int i;
295 int nr_pages = 1 << order;
296
297 set_compound_page_dtor(page, free_compound_page);
298 set_compound_order(page, order);
299 __SetPageHead(page);
300 for (i = 1; i < nr_pages; i++) {
301 struct page *p = page + i;
302
303 __SetPageTail(p);
304 p->first_page = page;
305 }
306}
307
308static int destroy_compound_page(struct page *page, unsigned long order)
309{
310 int i;
311 int nr_pages = 1 << order;
312 int bad = 0;
313
314 if (unlikely(compound_order(page) != order) ||
315 unlikely(!PageHead(page))) {
316 bad_page(page);
317 bad++;
318 }
319
320 __ClearPageHead(page);
321
322 for (i = 1; i < nr_pages; i++) {
323 struct page *p = page + i;
324
325 if (unlikely(!PageTail(p) || (p->first_page != page))) {
326 bad_page(page);
327 bad++;
328 }
329 __ClearPageTail(p);
330 }
331
332 return bad;
333}
334
335static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
336{
337 int i;
338
339 /*
340 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
341 * and __GFP_HIGHMEM from hard or soft interrupt context.
342 */
343 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
344 for (i = 0; i < (1 << order); i++)
345 clear_highpage(page + i);
346}
347
348static inline void set_page_order(struct page *page, int order)
349{
350 set_page_private(page, order);
351 __SetPageBuddy(page);
352}
353
354static inline void rmv_page_order(struct page *page)
355{
356 __ClearPageBuddy(page);
357 set_page_private(page, 0);
358}
359
360/*
361 * Locate the struct page for both the matching buddy in our
362 * pair (buddy1) and the combined O(n+1) page they form (page).
363 *
364 * 1) Any buddy B1 will have an order O twin B2 which satisfies
365 * the following equation:
366 * B2 = B1 ^ (1 << O)
367 * For example, if the starting buddy (buddy2) is #8 its order
368 * 1 buddy is #10:
369 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
370 *
371 * 2) Any buddy B will have an order O+1 parent P which
372 * satisfies the following equation:
373 * P = B & ~(1 << O)
374 *
375 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
376 */
377static inline struct page *
378__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
379{
380 unsigned long buddy_idx = page_idx ^ (1 << order);
381
382 return page + (buddy_idx - page_idx);
383}
384
385static inline unsigned long
386__find_combined_index(unsigned long page_idx, unsigned int order)
387{
388 return (page_idx & ~(1 << order));
389}
390
391/*
392 * This function checks whether a page is free && is the buddy
393 * we can do coalesce a page and its buddy if
394 * (a) the buddy is not in a hole &&
395 * (b) the buddy is in the buddy system &&
396 * (c) a page and its buddy have the same order &&
397 * (d) a page and its buddy are in the same zone.
398 *
399 * For recording whether a page is in the buddy system, we use PG_buddy.
400 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
401 *
402 * For recording page's order, we use page_private(page).
403 */
404static inline int page_is_buddy(struct page *page, struct page *buddy,
405 int order)
406{
407 if (!pfn_valid_within(page_to_pfn(buddy)))
408 return 0;
409
410 if (page_zone_id(page) != page_zone_id(buddy))
411 return 0;
412
413 if (PageBuddy(buddy) && page_order(buddy) == order) {
414 VM_BUG_ON(page_count(buddy) != 0);
415 return 1;
416 }
417 return 0;
418}
419
420/*
421 * Freeing function for a buddy system allocator.
422 *
423 * The concept of a buddy system is to maintain direct-mapped table
424 * (containing bit values) for memory blocks of various "orders".
425 * The bottom level table contains the map for the smallest allocatable
426 * units of memory (here, pages), and each level above it describes
427 * pairs of units from the levels below, hence, "buddies".
428 * At a high level, all that happens here is marking the table entry
429 * at the bottom level available, and propagating the changes upward
430 * as necessary, plus some accounting needed to play nicely with other
431 * parts of the VM system.
432 * At each level, we keep a list of pages, which are heads of continuous
433 * free pages of length of (1 << order) and marked with PG_buddy. Page's
434 * order is recorded in page_private(page) field.
435 * So when we are allocating or freeing one, we can derive the state of the
436 * other. That is, if we allocate a small block, and both were
437 * free, the remainder of the region must be split into blocks.
438 * If a block is freed, and its buddy is also free, then this
439 * triggers coalescing into a block of larger size.
440 *
441 * -- wli
442 */
443
444static inline void __free_one_page(struct page *page,
445 struct zone *zone, unsigned int order,
446 int migratetype)
447{
448 unsigned long page_idx;
449
450 if (unlikely(PageCompound(page)))
451 if (unlikely(destroy_compound_page(page, order)))
452 return;
453
454 VM_BUG_ON(migratetype == -1);
455
456 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
457
458 VM_BUG_ON(page_idx & ((1 << order) - 1));
459 VM_BUG_ON(bad_range(zone, page));
460
461 while (order < MAX_ORDER-1) {
462 unsigned long combined_idx;
463 struct page *buddy;
464
465 buddy = __page_find_buddy(page, page_idx, order);
466 if (!page_is_buddy(page, buddy, order))
467 break;
468
469 /* Our buddy is free, merge with it and move up one order. */
470 list_del(&buddy->lru);
471 zone->free_area[order].nr_free--;
472 rmv_page_order(buddy);
473 combined_idx = __find_combined_index(page_idx, order);
474 page = page + (combined_idx - page_idx);
475 page_idx = combined_idx;
476 order++;
477 }
478 set_page_order(page, order);
479 list_add(&page->lru,
480 &zone->free_area[order].free_list[migratetype]);
481 zone->free_area[order].nr_free++;
482}
483
484#ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
485/*
486 * free_page_mlock() -- clean up attempts to free and mlocked() page.
487 * Page should not be on lru, so no need to fix that up.
488 * free_pages_check() will verify...
489 */
490static inline void free_page_mlock(struct page *page)
491{
492 __dec_zone_page_state(page, NR_MLOCK);
493 __count_vm_event(UNEVICTABLE_MLOCKFREED);
494}
495#else
496static void free_page_mlock(struct page *page) { }
497#endif
498
499static inline int free_pages_check(struct page *page)
500{
501 if (unlikely(page_mapcount(page) |
502 (page->mapping != NULL) |
503 (atomic_read(&page->_count) != 0) |
504 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
505 bad_page(page);
506 return 1;
507 }
508 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
509 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
510 return 0;
511}
512
513/*
514 * Frees a list of pages.
515 * Assumes all pages on list are in same zone, and of same order.
516 * count is the number of pages to free.
517 *
518 * If the zone was previously in an "all pages pinned" state then look to
519 * see if this freeing clears that state.
520 *
521 * And clear the zone's pages_scanned counter, to hold off the "all pages are
522 * pinned" detection logic.
523 */
524static void free_pages_bulk(struct zone *zone, int count,
525 struct list_head *list, int order)
526{
527 spin_lock(&zone->lock);
528 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
529 zone->pages_scanned = 0;
530
531 __mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
532 while (count--) {
533 struct page *page;
534
535 VM_BUG_ON(list_empty(list));
536 page = list_entry(list->prev, struct page, lru);
537 /* have to delete it as __free_one_page list manipulates */
538 list_del(&page->lru);
539 trace_mm_page_pcpu_drain(page, order, page_private(page));
540 __free_one_page(page, zone, order, page_private(page));
541 }
542 spin_unlock(&zone->lock);
543}
544
545static void free_one_page(struct zone *zone, struct page *page, int order,
546 int migratetype)
547{
548 spin_lock(&zone->lock);
549 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
550 zone->pages_scanned = 0;
551
552 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
553 __free_one_page(page, zone, order, migratetype);
554 spin_unlock(&zone->lock);
555}
556
557static void __free_pages_ok(struct page *page, unsigned int order)
558{
559 unsigned long flags;
560 int i;
561 int bad = 0;
562 int wasMlocked = __TestClearPageMlocked(page);
563
564 kmemcheck_free_shadow(page, order);
565
566 for (i = 0 ; i < (1 << order) ; ++i)
567 bad += free_pages_check(page + i);
568 if (bad)
569 return;
570
571 if (!PageHighMem(page)) {
572 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
573 debug_check_no_obj_freed(page_address(page),
574 PAGE_SIZE << order);
575 }
576 arch_free_page(page, order);
577 kernel_map_pages(page, 1 << order, 0);
578
579 local_irq_save(flags);
580 if (unlikely(wasMlocked))
581 free_page_mlock(page);
582 __count_vm_events(PGFREE, 1 << order);
583 free_one_page(page_zone(page), page, order,
584 get_pageblock_migratetype(page));
585 local_irq_restore(flags);
586}
587
588/*
589 * permit the bootmem allocator to evade page validation on high-order frees
590 */
591void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
592{
593 if (order == 0) {
594 __ClearPageReserved(page);
595 set_page_count(page, 0);
596 set_page_refcounted(page);
597 __free_page(page);
598 } else {
599 int loop;
600
601 prefetchw(page);
602 for (loop = 0; loop < BITS_PER_LONG; loop++) {
603 struct page *p = &page[loop];
604
605 if (loop + 1 < BITS_PER_LONG)
606 prefetchw(p + 1);
607 __ClearPageReserved(p);
608 set_page_count(p, 0);
609 }
610
611 set_page_refcounted(page);
612 __free_pages(page, order);
613 }
614}
615
616
617/*
618 * The order of subdivision here is critical for the IO subsystem.
619 * Please do not alter this order without good reasons and regression
620 * testing. Specifically, as large blocks of memory are subdivided,
621 * the order in which smaller blocks are delivered depends on the order
622 * they're subdivided in this function. This is the primary factor
623 * influencing the order in which pages are delivered to the IO
624 * subsystem according to empirical testing, and this is also justified
625 * by considering the behavior of a buddy system containing a single
626 * large block of memory acted on by a series of small allocations.
627 * This behavior is a critical factor in sglist merging's success.
628 *
629 * -- wli
630 */
631static inline void expand(struct zone *zone, struct page *page,
632 int low, int high, struct free_area *area,
633 int migratetype)
634{
635 unsigned long size = 1 << high;
636
637 while (high > low) {
638 area--;
639 high--;
640 size >>= 1;
641 VM_BUG_ON(bad_range(zone, &page[size]));
642 list_add(&page[size].lru, &area->free_list[migratetype]);
643 area->nr_free++;
644 set_page_order(&page[size], high);
645 }
646}
647
648/*
649 * This page is about to be returned from the page allocator
650 */
651static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
652{
653 if (unlikely(page_mapcount(page) |
654 (page->mapping != NULL) |
655 (atomic_read(&page->_count) != 0) |
656 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
657 bad_page(page);
658 return 1;
659 }
660
661 set_page_private(page, 0);
662 set_page_refcounted(page);
663
664 arch_alloc_page(page, order);
665 kernel_map_pages(page, 1 << order, 1);
666
667 if (gfp_flags & __GFP_ZERO)
668 prep_zero_page(page, order, gfp_flags);
669
670 if (order && (gfp_flags & __GFP_COMP))
671 prep_compound_page(page, order);
672
673 return 0;
674}
675
676/*
677 * Go through the free lists for the given migratetype and remove
678 * the smallest available page from the freelists
679 */
680static inline
681struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
682 int migratetype)
683{
684 unsigned int current_order;
685 struct free_area * area;
686 struct page *page;
687
688 /* Find a page of the appropriate size in the preferred list */
689 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
690 area = &(zone->free_area[current_order]);
691 if (list_empty(&area->free_list[migratetype]))
692 continue;
693
694 page = list_entry(area->free_list[migratetype].next,
695 struct page, lru);
696 list_del(&page->lru);
697 rmv_page_order(page);
698 area->nr_free--;
699 expand(zone, page, order, current_order, area, migratetype);
700 return page;
701 }
702
703 return NULL;
704}
705
706
707/*
708 * This array describes the order lists are fallen back to when
709 * the free lists for the desirable migrate type are depleted
710 */
711static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
712 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
713 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
714 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
715 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
716};
717
718/*
719 * Move the free pages in a range to the free lists of the requested type.
720 * Note that start_page and end_pages are not aligned on a pageblock
721 * boundary. If alignment is required, use move_freepages_block()
722 */
723static int move_freepages(struct zone *zone,
724 struct page *start_page, struct page *end_page,
725 int migratetype)
726{
727 struct page *page;
728 unsigned long order;
729 int pages_moved = 0;
730
731#ifndef CONFIG_HOLES_IN_ZONE
732 /*
733 * page_zone is not safe to call in this context when
734 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
735 * anyway as we check zone boundaries in move_freepages_block().
736 * Remove at a later date when no bug reports exist related to
737 * grouping pages by mobility
738 */
739 BUG_ON(page_zone(start_page) != page_zone(end_page));
740#endif
741
742 for (page = start_page; page <= end_page;) {
743 /* Make sure we are not inadvertently changing nodes */
744 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
745
746 if (!pfn_valid_within(page_to_pfn(page))) {
747 page++;
748 continue;
749 }
750
751 if (!PageBuddy(page)) {
752 page++;
753 continue;
754 }
755
756 order = page_order(page);
757 list_del(&page->lru);
758 list_add(&page->lru,
759 &zone->free_area[order].free_list[migratetype]);
760 page += 1 << order;
761 pages_moved += 1 << order;
762 }
763
764 return pages_moved;
765}
766
767static int move_freepages_block(struct zone *zone, struct page *page,
768 int migratetype)
769{
770 unsigned long start_pfn, end_pfn;
771 struct page *start_page, *end_page;
772
773 start_pfn = page_to_pfn(page);
774 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
775 start_page = pfn_to_page(start_pfn);
776 end_page = start_page + pageblock_nr_pages - 1;
777 end_pfn = start_pfn + pageblock_nr_pages - 1;
778
779 /* Do not cross zone boundaries */
780 if (start_pfn < zone->zone_start_pfn)
781 start_page = page;
782 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
783 return 0;
784
785 return move_freepages(zone, start_page, end_page, migratetype);
786}
787
788static void change_pageblock_range(struct page *pageblock_page,
789 int start_order, int migratetype)
790{
791 int nr_pageblocks = 1 << (start_order - pageblock_order);
792
793 while (nr_pageblocks--) {
794 set_pageblock_migratetype(pageblock_page, migratetype);
795 pageblock_page += pageblock_nr_pages;
796 }
797}
798
799/* Remove an element from the buddy allocator from the fallback list */
800static inline struct page *
801__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
802{
803 struct free_area * area;
804 int current_order;
805 struct page *page;
806 int migratetype, i;
807
808 /* Find the largest possible block of pages in the other list */
809 for (current_order = MAX_ORDER-1; current_order >= order;
810 --current_order) {
811 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
812 migratetype = fallbacks[start_migratetype][i];
813
814 /* MIGRATE_RESERVE handled later if necessary */
815 if (migratetype == MIGRATE_RESERVE)
816 continue;
817
818 area = &(zone->free_area[current_order]);
819 if (list_empty(&area->free_list[migratetype]))
820 continue;
821
822 page = list_entry(area->free_list[migratetype].next,
823 struct page, lru);
824 area->nr_free--;
825
826 /*
827 * If breaking a large block of pages, move all free
828 * pages to the preferred allocation list. If falling
829 * back for a reclaimable kernel allocation, be more
830 * agressive about taking ownership of free pages
831 */
832 if (unlikely(current_order >= (pageblock_order >> 1)) ||
833 start_migratetype == MIGRATE_RECLAIMABLE ||
834 page_group_by_mobility_disabled) {
835 unsigned long pages;
836 pages = move_freepages_block(zone, page,
837 start_migratetype);
838
839 /* Claim the whole block if over half of it is free */
840 if (pages >= (1 << (pageblock_order-1)) ||
841 page_group_by_mobility_disabled)
842 set_pageblock_migratetype(page,
843 start_migratetype);
844
845 migratetype = start_migratetype;
846 }
847
848 /* Remove the page from the freelists */
849 list_del(&page->lru);
850 rmv_page_order(page);
851
852 /* Take ownership for orders >= pageblock_order */
853 if (current_order >= pageblock_order)
854 change_pageblock_range(page, current_order,
855 start_migratetype);
856
857 expand(zone, page, order, current_order, area, migratetype);
858
859 trace_mm_page_alloc_extfrag(page, order, current_order,
860 start_migratetype, migratetype);
861
862 return page;
863 }
864 }
865
866 return NULL;
867}
868
869/*
870 * Do the hard work of removing an element from the buddy allocator.
871 * Call me with the zone->lock already held.
872 */
873static struct page *__rmqueue(struct zone *zone, unsigned int order,
874 int migratetype)
875{
876 struct page *page;
877
878retry_reserve:
879 page = __rmqueue_smallest(zone, order, migratetype);
880
881 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
882 page = __rmqueue_fallback(zone, order, migratetype);
883
884 /*
885 * Use MIGRATE_RESERVE rather than fail an allocation. goto
886 * is used because __rmqueue_smallest is an inline function
887 * and we want just one call site
888 */
889 if (!page) {
890 migratetype = MIGRATE_RESERVE;
891 goto retry_reserve;
892 }
893 }
894
895 trace_mm_page_alloc_zone_locked(page, order, migratetype);
896 return page;
897}
898
899/*
900 * Obtain a specified number of elements from the buddy allocator, all under
901 * a single hold of the lock, for efficiency. Add them to the supplied list.
902 * Returns the number of new pages which were placed at *list.
903 */
904static int rmqueue_bulk(struct zone *zone, unsigned int order,
905 unsigned long count, struct list_head *list,
906 int migratetype, int cold)
907{
908 int i;
909
910 spin_lock(&zone->lock);
911 for (i = 0; i < count; ++i) {
912 struct page *page = __rmqueue(zone, order, migratetype);
913 if (unlikely(page == NULL))
914 break;
915
916 /*
917 * Split buddy pages returned by expand() are received here
918 * in physical page order. The page is added to the callers and
919 * list and the list head then moves forward. From the callers
920 * perspective, the linked list is ordered by page number in
921 * some conditions. This is useful for IO devices that can
922 * merge IO requests if the physical pages are ordered
923 * properly.
924 */
925 if (likely(cold == 0))
926 list_add(&page->lru, list);
927 else
928 list_add_tail(&page->lru, list);
929 set_page_private(page, migratetype);
930 list = &page->lru;
931 }
932 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
933 spin_unlock(&zone->lock);
934 return i;
935}
936
937#ifdef CONFIG_NUMA
938/*
939 * Called from the vmstat counter updater to drain pagesets of this
940 * currently executing processor on remote nodes after they have
941 * expired.
942 *
943 * Note that this function must be called with the thread pinned to
944 * a single processor.
945 */
946void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
947{
948 unsigned long flags;
949 int to_drain;
950
951 local_irq_save(flags);
952 if (pcp->count >= pcp->batch)
953 to_drain = pcp->batch;
954 else
955 to_drain = pcp->count;
956 free_pages_bulk(zone, to_drain, &pcp->list, 0);
957 pcp->count -= to_drain;
958 local_irq_restore(flags);
959}
960#endif
961
962/*
963 * Drain pages of the indicated processor.
964 *
965 * The processor must either be the current processor and the
966 * thread pinned to the current processor or a processor that
967 * is not online.
968 */
969static void drain_pages(unsigned int cpu)
970{
971 unsigned long flags;
972 struct zone *zone;
973
974 for_each_populated_zone(zone) {
975 struct per_cpu_pageset *pset;
976 struct per_cpu_pages *pcp;
977
978 pset = zone_pcp(zone, cpu);
979
980 pcp = &pset->pcp;
981 local_irq_save(flags);
982 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
983 pcp->count = 0;
984 local_irq_restore(flags);
985 }
986}
987
988/*
989 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
990 */
991void drain_local_pages(void *arg)
992{
993 drain_pages(smp_processor_id());
994}
995
996/*
997 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
998 */
999void drain_all_pages(void)
1000{
1001 on_each_cpu(drain_local_pages, NULL, 1);
1002}
1003
1004#ifdef CONFIG_HIBERNATION
1005
1006void mark_free_pages(struct zone *zone)
1007{
1008 unsigned long pfn, max_zone_pfn;
1009 unsigned long flags;
1010 int order, t;
1011 struct list_head *curr;
1012
1013 if (!zone->spanned_pages)
1014 return;
1015
1016 spin_lock_irqsave(&zone->lock, flags);
1017
1018 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1019 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1020 if (pfn_valid(pfn)) {
1021 struct page *page = pfn_to_page(pfn);
1022
1023 if (!swsusp_page_is_forbidden(page))
1024 swsusp_unset_page_free(page);
1025 }
1026
1027 for_each_migratetype_order(order, t) {
1028 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1029 unsigned long i;
1030
1031 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1032 for (i = 0; i < (1UL << order); i++)
1033 swsusp_set_page_free(pfn_to_page(pfn + i));
1034 }
1035 }
1036 spin_unlock_irqrestore(&zone->lock, flags);
1037}
1038#endif /* CONFIG_PM */
1039
1040/*
1041 * Free a 0-order page
1042 */
1043static void free_hot_cold_page(struct page *page, int cold)
1044{
1045 struct zone *zone = page_zone(page);
1046 struct per_cpu_pages *pcp;
1047 unsigned long flags;
1048 int wasMlocked = __TestClearPageMlocked(page);
1049
1050 kmemcheck_free_shadow(page, 0);
1051
1052 if (PageAnon(page))
1053 page->mapping = NULL;
1054 if (free_pages_check(page))
1055 return;
1056
1057 if (!PageHighMem(page)) {
1058 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1059 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1060 }
1061 arch_free_page(page, 0);
1062 kernel_map_pages(page, 1, 0);
1063
1064 pcp = &zone_pcp(zone, get_cpu())->pcp;
1065 set_page_private(page, get_pageblock_migratetype(page));
1066 local_irq_save(flags);
1067 if (unlikely(wasMlocked))
1068 free_page_mlock(page);
1069 __count_vm_event(PGFREE);
1070
1071 if (cold)
1072 list_add_tail(&page->lru, &pcp->list);
1073 else
1074 list_add(&page->lru, &pcp->list);
1075 pcp->count++;
1076 if (pcp->count >= pcp->high) {
1077 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1078 pcp->count -= pcp->batch;
1079 }
1080 local_irq_restore(flags);
1081 put_cpu();
1082}
1083
1084void free_hot_page(struct page *page)
1085{
1086 trace_mm_page_free_direct(page, 0);
1087 free_hot_cold_page(page, 0);
1088}
1089
1090/*
1091 * split_page takes a non-compound higher-order page, and splits it into
1092 * n (1<<order) sub-pages: page[0..n]
1093 * Each sub-page must be freed individually.
1094 *
1095 * Note: this is probably too low level an operation for use in drivers.
1096 * Please consult with lkml before using this in your driver.
1097 */
1098void split_page(struct page *page, unsigned int order)
1099{
1100 int i;
1101
1102 VM_BUG_ON(PageCompound(page));
1103 VM_BUG_ON(!page_count(page));
1104
1105#ifdef CONFIG_KMEMCHECK
1106 /*
1107 * Split shadow pages too, because free(page[0]) would
1108 * otherwise free the whole shadow.
1109 */
1110 if (kmemcheck_page_is_tracked(page))
1111 split_page(virt_to_page(page[0].shadow), order);
1112#endif
1113
1114 for (i = 1; i < (1 << order); i++)
1115 set_page_refcounted(page + i);
1116}
1117
1118/*
1119 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1120 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1121 * or two.
1122 */
1123static inline
1124struct page *buffered_rmqueue(struct zone *preferred_zone,
1125 struct zone *zone, int order, gfp_t gfp_flags,
1126 int migratetype)
1127{
1128 unsigned long flags;
1129 struct page *page;
1130 int cold = !!(gfp_flags & __GFP_COLD);
1131 int cpu;
1132
1133again:
1134 cpu = get_cpu();
1135 if (likely(order == 0)) {
1136 struct per_cpu_pages *pcp;
1137
1138 pcp = &zone_pcp(zone, cpu)->pcp;
1139 local_irq_save(flags);
1140 if (!pcp->count) {
1141 pcp->count = rmqueue_bulk(zone, 0,
1142 pcp->batch, &pcp->list,
1143 migratetype, cold);
1144 if (unlikely(!pcp->count))
1145 goto failed;
1146 }
1147
1148 /* Find a page of the appropriate migrate type */
1149 if (cold) {
1150 list_for_each_entry_reverse(page, &pcp->list, lru)
1151 if (page_private(page) == migratetype)
1152 break;
1153 } else {
1154 list_for_each_entry(page, &pcp->list, lru)
1155 if (page_private(page) == migratetype)
1156 break;
1157 }
1158
1159 /* Allocate more to the pcp list if necessary */
1160 if (unlikely(&page->lru == &pcp->list)) {
1161 int get_one_page = 0;
1162
1163 pcp->count += rmqueue_bulk(zone, 0,
1164 pcp->batch, &pcp->list,
1165 migratetype, cold);
1166 list_for_each_entry(page, &pcp->list, lru) {
1167 if (get_pageblock_migratetype(page) !=
1168 MIGRATE_ISOLATE) {
1169 get_one_page = 1;
1170 break;
1171 }
1172 }
1173 if (!get_one_page)
1174 goto failed;
1175 }
1176
1177 list_del(&page->lru);
1178 pcp->count--;
1179 } else {
1180 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1181 /*
1182 * __GFP_NOFAIL is not to be used in new code.
1183 *
1184 * All __GFP_NOFAIL callers should be fixed so that they
1185 * properly detect and handle allocation failures.
1186 *
1187 * We most definitely don't want callers attempting to
1188 * allocate greater than order-1 page units with
1189 * __GFP_NOFAIL.
1190 */
1191 WARN_ON_ONCE(order > 1);
1192 }
1193 spin_lock_irqsave(&zone->lock, flags);
1194 page = __rmqueue(zone, order, migratetype);
1195 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1196 spin_unlock(&zone->lock);
1197 if (!page)
1198 goto failed;
1199 }
1200
1201 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1202 zone_statistics(preferred_zone, zone);
1203 local_irq_restore(flags);
1204 put_cpu();
1205
1206 VM_BUG_ON(bad_range(zone, page));
1207 if (prep_new_page(page, order, gfp_flags))
1208 goto again;
1209 return page;
1210
1211failed:
1212 local_irq_restore(flags);
1213 put_cpu();
1214 return NULL;
1215}
1216
1217/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1218#define ALLOC_WMARK_MIN WMARK_MIN
1219#define ALLOC_WMARK_LOW WMARK_LOW
1220#define ALLOC_WMARK_HIGH WMARK_HIGH
1221#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1222
1223/* Mask to get the watermark bits */
1224#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1225
1226#define ALLOC_HARDER 0x10 /* try to alloc harder */
1227#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1228#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1229
1230#ifdef CONFIG_FAIL_PAGE_ALLOC
1231
1232static struct fail_page_alloc_attr {
1233 struct fault_attr attr;
1234
1235 u32 ignore_gfp_highmem;
1236 u32 ignore_gfp_wait;
1237 u32 min_order;
1238
1239#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1240
1241 struct dentry *ignore_gfp_highmem_file;
1242 struct dentry *ignore_gfp_wait_file;
1243 struct dentry *min_order_file;
1244
1245#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1246
1247} fail_page_alloc = {
1248 .attr = FAULT_ATTR_INITIALIZER,
1249 .ignore_gfp_wait = 1,
1250 .ignore_gfp_highmem = 1,
1251 .min_order = 1,
1252};
1253
1254static int __init setup_fail_page_alloc(char *str)
1255{
1256 return setup_fault_attr(&fail_page_alloc.attr, str);
1257}
1258__setup("fail_page_alloc=", setup_fail_page_alloc);
1259
1260static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1261{
1262 if (order < fail_page_alloc.min_order)
1263 return 0;
1264 if (gfp_mask & __GFP_NOFAIL)
1265 return 0;
1266 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1267 return 0;
1268 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1269 return 0;
1270
1271 return should_fail(&fail_page_alloc.attr, 1 << order);
1272}
1273
1274#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1275
1276static int __init fail_page_alloc_debugfs(void)
1277{
1278 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1279 struct dentry *dir;
1280 int err;
1281
1282 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1283 "fail_page_alloc");
1284 if (err)
1285 return err;
1286 dir = fail_page_alloc.attr.dentries.dir;
1287
1288 fail_page_alloc.ignore_gfp_wait_file =
1289 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1290 &fail_page_alloc.ignore_gfp_wait);
1291
1292 fail_page_alloc.ignore_gfp_highmem_file =
1293 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1294 &fail_page_alloc.ignore_gfp_highmem);
1295 fail_page_alloc.min_order_file =
1296 debugfs_create_u32("min-order", mode, dir,
1297 &fail_page_alloc.min_order);
1298
1299 if (!fail_page_alloc.ignore_gfp_wait_file ||
1300 !fail_page_alloc.ignore_gfp_highmem_file ||
1301 !fail_page_alloc.min_order_file) {
1302 err = -ENOMEM;
1303 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1304 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1305 debugfs_remove(fail_page_alloc.min_order_file);
1306 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1307 }
1308
1309 return err;
1310}
1311
1312late_initcall(fail_page_alloc_debugfs);
1313
1314#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1315
1316#else /* CONFIG_FAIL_PAGE_ALLOC */
1317
1318static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1319{
1320 return 0;
1321}
1322
1323#endif /* CONFIG_FAIL_PAGE_ALLOC */
1324
1325/*
1326 * Return 1 if free pages are above 'mark'. This takes into account the order
1327 * of the allocation.
1328 */
1329int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1330 int classzone_idx, int alloc_flags)
1331{
1332 /* free_pages my go negative - that's OK */
1333 long min = mark;
1334 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1335 int o;
1336
1337 if (alloc_flags & ALLOC_HIGH)
1338 min -= min / 2;
1339 if (alloc_flags & ALLOC_HARDER)
1340 min -= min / 4;
1341
1342 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1343 return 0;
1344 for (o = 0; o < order; o++) {
1345 /* At the next order, this order's pages become unavailable */
1346 free_pages -= z->free_area[o].nr_free << o;
1347
1348 /* Require fewer higher order pages to be free */
1349 min >>= 1;
1350
1351 if (free_pages <= min)
1352 return 0;
1353 }
1354 return 1;
1355}
1356
1357#ifdef CONFIG_NUMA
1358/*
1359 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1360 * skip over zones that are not allowed by the cpuset, or that have
1361 * been recently (in last second) found to be nearly full. See further
1362 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1363 * that have to skip over a lot of full or unallowed zones.
1364 *
1365 * If the zonelist cache is present in the passed in zonelist, then
1366 * returns a pointer to the allowed node mask (either the current
1367 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1368 *
1369 * If the zonelist cache is not available for this zonelist, does
1370 * nothing and returns NULL.
1371 *
1372 * If the fullzones BITMAP in the zonelist cache is stale (more than
1373 * a second since last zap'd) then we zap it out (clear its bits.)
1374 *
1375 * We hold off even calling zlc_setup, until after we've checked the
1376 * first zone in the zonelist, on the theory that most allocations will
1377 * be satisfied from that first zone, so best to examine that zone as
1378 * quickly as we can.
1379 */
1380static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1381{
1382 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1383 nodemask_t *allowednodes; /* zonelist_cache approximation */
1384
1385 zlc = zonelist->zlcache_ptr;
1386 if (!zlc)
1387 return NULL;
1388
1389 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1390 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1391 zlc->last_full_zap = jiffies;
1392 }
1393
1394 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1395 &cpuset_current_mems_allowed :
1396 &node_states[N_HIGH_MEMORY];
1397 return allowednodes;
1398}
1399
1400/*
1401 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1402 * if it is worth looking at further for free memory:
1403 * 1) Check that the zone isn't thought to be full (doesn't have its
1404 * bit set in the zonelist_cache fullzones BITMAP).
1405 * 2) Check that the zones node (obtained from the zonelist_cache
1406 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1407 * Return true (non-zero) if zone is worth looking at further, or
1408 * else return false (zero) if it is not.
1409 *
1410 * This check -ignores- the distinction between various watermarks,
1411 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1412 * found to be full for any variation of these watermarks, it will
1413 * be considered full for up to one second by all requests, unless
1414 * we are so low on memory on all allowed nodes that we are forced
1415 * into the second scan of the zonelist.
1416 *
1417 * In the second scan we ignore this zonelist cache and exactly
1418 * apply the watermarks to all zones, even it is slower to do so.
1419 * We are low on memory in the second scan, and should leave no stone
1420 * unturned looking for a free page.
1421 */
1422static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1423 nodemask_t *allowednodes)
1424{
1425 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1426 int i; /* index of *z in zonelist zones */
1427 int n; /* node that zone *z is on */
1428
1429 zlc = zonelist->zlcache_ptr;
1430 if (!zlc)
1431 return 1;
1432
1433 i = z - zonelist->_zonerefs;
1434 n = zlc->z_to_n[i];
1435
1436 /* This zone is worth trying if it is allowed but not full */
1437 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1438}
1439
1440/*
1441 * Given 'z' scanning a zonelist, set the corresponding bit in
1442 * zlc->fullzones, so that subsequent attempts to allocate a page
1443 * from that zone don't waste time re-examining it.
1444 */
1445static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1446{
1447 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1448 int i; /* index of *z in zonelist zones */
1449
1450 zlc = zonelist->zlcache_ptr;
1451 if (!zlc)
1452 return;
1453
1454 i = z - zonelist->_zonerefs;
1455
1456 set_bit(i, zlc->fullzones);
1457}
1458
1459#else /* CONFIG_NUMA */
1460
1461static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1462{
1463 return NULL;
1464}
1465
1466static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1467 nodemask_t *allowednodes)
1468{
1469 return 1;
1470}
1471
1472static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1473{
1474}
1475#endif /* CONFIG_NUMA */
1476
1477/*
1478 * get_page_from_freelist goes through the zonelist trying to allocate
1479 * a page.
1480 */
1481static struct page *
1482get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1483 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1484 struct zone *preferred_zone, int migratetype)
1485{
1486 struct zoneref *z;
1487 struct page *page = NULL;
1488 int classzone_idx;
1489 struct zone *zone;
1490 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1491 int zlc_active = 0; /* set if using zonelist_cache */
1492 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1493
1494 classzone_idx = zone_idx(preferred_zone);
1495zonelist_scan:
1496 /*
1497 * Scan zonelist, looking for a zone with enough free.
1498 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1499 */
1500 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1501 high_zoneidx, nodemask) {
1502 if (NUMA_BUILD && zlc_active &&
1503 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1504 continue;
1505 if ((alloc_flags & ALLOC_CPUSET) &&
1506 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1507 goto try_next_zone;
1508
1509 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1510 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1511 unsigned long mark;
1512 int ret;
1513
1514 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1515 if (zone_watermark_ok(zone, order, mark,
1516 classzone_idx, alloc_flags))
1517 goto try_this_zone;
1518
1519 if (zone_reclaim_mode == 0)
1520 goto this_zone_full;
1521
1522 ret = zone_reclaim(zone, gfp_mask, order);
1523 switch (ret) {
1524 case ZONE_RECLAIM_NOSCAN:
1525 /* did not scan */
1526 goto try_next_zone;
1527 case ZONE_RECLAIM_FULL:
1528 /* scanned but unreclaimable */
1529 goto this_zone_full;
1530 default:
1531 /* did we reclaim enough */
1532 if (!zone_watermark_ok(zone, order, mark,
1533 classzone_idx, alloc_flags))
1534 goto this_zone_full;
1535 }
1536 }
1537
1538try_this_zone:
1539 page = buffered_rmqueue(preferred_zone, zone, order,
1540 gfp_mask, migratetype);
1541 if (page)
1542 break;
1543this_zone_full:
1544 if (NUMA_BUILD)
1545 zlc_mark_zone_full(zonelist, z);
1546try_next_zone:
1547 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1548 /*
1549 * we do zlc_setup after the first zone is tried but only
1550 * if there are multiple nodes make it worthwhile
1551 */
1552 allowednodes = zlc_setup(zonelist, alloc_flags);
1553 zlc_active = 1;
1554 did_zlc_setup = 1;
1555 }
1556 }
1557
1558 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1559 /* Disable zlc cache for second zonelist scan */
1560 zlc_active = 0;
1561 goto zonelist_scan;
1562 }
1563 return page;
1564}
1565
1566static inline int
1567should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1568 unsigned long pages_reclaimed)
1569{
1570 /* Do not loop if specifically requested */
1571 if (gfp_mask & __GFP_NORETRY)
1572 return 0;
1573
1574 /*
1575 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1576 * means __GFP_NOFAIL, but that may not be true in other
1577 * implementations.
1578 */
1579 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1580 return 1;
1581
1582 /*
1583 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1584 * specified, then we retry until we no longer reclaim any pages
1585 * (above), or we've reclaimed an order of pages at least as
1586 * large as the allocation's order. In both cases, if the
1587 * allocation still fails, we stop retrying.
1588 */
1589 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1590 return 1;
1591
1592 /*
1593 * Don't let big-order allocations loop unless the caller
1594 * explicitly requests that.
1595 */
1596 if (gfp_mask & __GFP_NOFAIL)
1597 return 1;
1598
1599 return 0;
1600}
1601
1602static inline struct page *
1603__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1604 struct zonelist *zonelist, enum zone_type high_zoneidx,
1605 nodemask_t *nodemask, struct zone *preferred_zone,
1606 int migratetype)
1607{
1608 struct page *page;
1609
1610 /* Acquire the OOM killer lock for the zones in zonelist */
1611 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1612 schedule_timeout_uninterruptible(1);
1613 return NULL;
1614 }
1615
1616 /*
1617 * Go through the zonelist yet one more time, keep very high watermark
1618 * here, this is only to catch a parallel oom killing, we must fail if
1619 * we're still under heavy pressure.
1620 */
1621 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1622 order, zonelist, high_zoneidx,
1623 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1624 preferred_zone, migratetype);
1625 if (page)
1626 goto out;
1627
1628 /* The OOM killer will not help higher order allocs */
1629 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
1630 goto out;
1631
1632 /* Exhausted what can be done so it's blamo time */
1633 out_of_memory(zonelist, gfp_mask, order);
1634
1635out:
1636 clear_zonelist_oom(zonelist, gfp_mask);
1637 return page;
1638}
1639
1640/* The really slow allocator path where we enter direct reclaim */
1641static inline struct page *
1642__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1643 struct zonelist *zonelist, enum zone_type high_zoneidx,
1644 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1645 int migratetype, unsigned long *did_some_progress)
1646{
1647 struct page *page = NULL;
1648 struct reclaim_state reclaim_state;
1649 struct task_struct *p = current;
1650
1651 cond_resched();
1652
1653 /* We now go into synchronous reclaim */
1654 cpuset_memory_pressure_bump();
1655 p->flags |= PF_MEMALLOC;
1656 lockdep_set_current_reclaim_state(gfp_mask);
1657 reclaim_state.reclaimed_slab = 0;
1658 p->reclaim_state = &reclaim_state;
1659
1660 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1661
1662 p->reclaim_state = NULL;
1663 lockdep_clear_current_reclaim_state();
1664 p->flags &= ~PF_MEMALLOC;
1665
1666 cond_resched();
1667
1668 if (order != 0)
1669 drain_all_pages();
1670
1671 if (likely(*did_some_progress))
1672 page = get_page_from_freelist(gfp_mask, nodemask, order,
1673 zonelist, high_zoneidx,
1674 alloc_flags, preferred_zone,
1675 migratetype);
1676 return page;
1677}
1678
1679/*
1680 * This is called in the allocator slow-path if the allocation request is of
1681 * sufficient urgency to ignore watermarks and take other desperate measures
1682 */
1683static inline struct page *
1684__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1685 struct zonelist *zonelist, enum zone_type high_zoneidx,
1686 nodemask_t *nodemask, struct zone *preferred_zone,
1687 int migratetype)
1688{
1689 struct page *page;
1690
1691 do {
1692 page = get_page_from_freelist(gfp_mask, nodemask, order,
1693 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1694 preferred_zone, migratetype);
1695
1696 if (!page && gfp_mask & __GFP_NOFAIL)
1697 congestion_wait(BLK_RW_ASYNC, HZ/50);
1698 } while (!page && (gfp_mask & __GFP_NOFAIL));
1699
1700 return page;
1701}
1702
1703static inline
1704void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1705 enum zone_type high_zoneidx)
1706{
1707 struct zoneref *z;
1708 struct zone *zone;
1709
1710 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1711 wakeup_kswapd(zone, order);
1712}
1713
1714static inline int
1715gfp_to_alloc_flags(gfp_t gfp_mask)
1716{
1717 struct task_struct *p = current;
1718 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1719 const gfp_t wait = gfp_mask & __GFP_WAIT;
1720
1721 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1722 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1723
1724 /*
1725 * The caller may dip into page reserves a bit more if the caller
1726 * cannot run direct reclaim, or if the caller has realtime scheduling
1727 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1728 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1729 */
1730 alloc_flags |= (gfp_mask & __GFP_HIGH);
1731
1732 if (!wait) {
1733 alloc_flags |= ALLOC_HARDER;
1734 /*
1735 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1736 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1737 */
1738 alloc_flags &= ~ALLOC_CPUSET;
1739 } else if (unlikely(rt_task(p)))
1740 alloc_flags |= ALLOC_HARDER;
1741
1742 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1743 if (!in_interrupt() &&
1744 ((p->flags & PF_MEMALLOC) ||
1745 unlikely(test_thread_flag(TIF_MEMDIE))))
1746 alloc_flags |= ALLOC_NO_WATERMARKS;
1747 }
1748
1749 return alloc_flags;
1750}
1751
1752static inline struct page *
1753__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1754 struct zonelist *zonelist, enum zone_type high_zoneidx,
1755 nodemask_t *nodemask, struct zone *preferred_zone,
1756 int migratetype)
1757{
1758 const gfp_t wait = gfp_mask & __GFP_WAIT;
1759 struct page *page = NULL;
1760 int alloc_flags;
1761 unsigned long pages_reclaimed = 0;
1762 unsigned long did_some_progress;
1763 struct task_struct *p = current;
1764
1765 /*
1766 * In the slowpath, we sanity check order to avoid ever trying to
1767 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1768 * be using allocators in order of preference for an area that is
1769 * too large.
1770 */
1771 if (order >= MAX_ORDER) {
1772 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1773 return NULL;
1774 }
1775
1776 /*
1777 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1778 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1779 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1780 * using a larger set of nodes after it has established that the
1781 * allowed per node queues are empty and that nodes are
1782 * over allocated.
1783 */
1784 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1785 goto nopage;
1786
1787 wake_all_kswapd(order, zonelist, high_zoneidx);
1788
1789restart:
1790 /*
1791 * OK, we're below the kswapd watermark and have kicked background
1792 * reclaim. Now things get more complex, so set up alloc_flags according
1793 * to how we want to proceed.
1794 */
1795 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1796
1797 /* This is the last chance, in general, before the goto nopage. */
1798 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1799 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1800 preferred_zone, migratetype);
1801 if (page)
1802 goto got_pg;
1803
1804rebalance:
1805 /* Allocate without watermarks if the context allows */
1806 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1807 page = __alloc_pages_high_priority(gfp_mask, order,
1808 zonelist, high_zoneidx, nodemask,
1809 preferred_zone, migratetype);
1810 if (page)
1811 goto got_pg;
1812 }
1813
1814 /* Atomic allocations - we can't balance anything */
1815 if (!wait)
1816 goto nopage;
1817
1818 /* Avoid recursion of direct reclaim */
1819 if (p->flags & PF_MEMALLOC)
1820 goto nopage;
1821
1822 /* Avoid allocations with no watermarks from looping endlessly */
1823 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1824 goto nopage;
1825
1826 /* Try direct reclaim and then allocating */
1827 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1828 zonelist, high_zoneidx,
1829 nodemask,
1830 alloc_flags, preferred_zone,
1831 migratetype, &did_some_progress);
1832 if (page)
1833 goto got_pg;
1834
1835 /*
1836 * If we failed to make any progress reclaiming, then we are
1837 * running out of options and have to consider going OOM
1838 */
1839 if (!did_some_progress) {
1840 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1841 if (oom_killer_disabled)
1842 goto nopage;
1843 page = __alloc_pages_may_oom(gfp_mask, order,
1844 zonelist, high_zoneidx,
1845 nodemask, preferred_zone,
1846 migratetype);
1847 if (page)
1848 goto got_pg;
1849
1850 /*
1851 * The OOM killer does not trigger for high-order
1852 * ~__GFP_NOFAIL allocations so if no progress is being
1853 * made, there are no other options and retrying is
1854 * unlikely to help.
1855 */
1856 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1857 !(gfp_mask & __GFP_NOFAIL))
1858 goto nopage;
1859
1860 goto restart;
1861 }
1862 }
1863
1864 /* Check if we should retry the allocation */
1865 pages_reclaimed += did_some_progress;
1866 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1867 /* Wait for some write requests to complete then retry */
1868 congestion_wait(BLK_RW_ASYNC, HZ/50);
1869 goto rebalance;
1870 }
1871
1872nopage:
1873 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1874 printk(KERN_WARNING "%s: page allocation failure."
1875 " order:%d, mode:0x%x\n",
1876 p->comm, order, gfp_mask);
1877 dump_stack();
1878 show_mem();
1879 }
1880 return page;
1881got_pg:
1882 if (kmemcheck_enabled)
1883 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1884 return page;
1885
1886}
1887
1888/*
1889 * This is the 'heart' of the zoned buddy allocator.
1890 */
1891struct page *
1892__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1893 struct zonelist *zonelist, nodemask_t *nodemask)
1894{
1895 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1896 struct zone *preferred_zone;
1897 struct page *page;
1898 int migratetype = allocflags_to_migratetype(gfp_mask);
1899
1900 gfp_mask &= gfp_allowed_mask;
1901
1902 lockdep_trace_alloc(gfp_mask);
1903
1904 might_sleep_if(gfp_mask & __GFP_WAIT);
1905
1906 if (should_fail_alloc_page(gfp_mask, order))
1907 return NULL;
1908
1909 /*
1910 * Check the zones suitable for the gfp_mask contain at least one
1911 * valid zone. It's possible to have an empty zonelist as a result
1912 * of GFP_THISNODE and a memoryless node
1913 */
1914 if (unlikely(!zonelist->_zonerefs->zone))
1915 return NULL;
1916
1917 /* The preferred zone is used for statistics later */
1918 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1919 if (!preferred_zone)
1920 return NULL;
1921
1922 /* First allocation attempt */
1923 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1924 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1925 preferred_zone, migratetype);
1926 if (unlikely(!page))
1927 page = __alloc_pages_slowpath(gfp_mask, order,
1928 zonelist, high_zoneidx, nodemask,
1929 preferred_zone, migratetype);
1930
1931 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
1932 return page;
1933}
1934EXPORT_SYMBOL(__alloc_pages_nodemask);
1935
1936/*
1937 * Common helper functions.
1938 */
1939unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1940{
1941 struct page *page;
1942
1943 /*
1944 * __get_free_pages() returns a 32-bit address, which cannot represent
1945 * a highmem page
1946 */
1947 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1948
1949 page = alloc_pages(gfp_mask, order);
1950 if (!page)
1951 return 0;
1952 return (unsigned long) page_address(page);
1953}
1954EXPORT_SYMBOL(__get_free_pages);
1955
1956unsigned long get_zeroed_page(gfp_t gfp_mask)
1957{
1958 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1959}
1960EXPORT_SYMBOL(get_zeroed_page);
1961
1962void __pagevec_free(struct pagevec *pvec)
1963{
1964 int i = pagevec_count(pvec);
1965
1966 while (--i >= 0) {
1967 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
1968 free_hot_cold_page(pvec->pages[i], pvec->cold);
1969 }
1970}
1971
1972void __free_pages(struct page *page, unsigned int order)
1973{
1974 if (put_page_testzero(page)) {
1975 trace_mm_page_free_direct(page, order);
1976 if (order == 0)
1977 free_hot_page(page);
1978 else
1979 __free_pages_ok(page, order);
1980 }
1981}
1982
1983EXPORT_SYMBOL(__free_pages);
1984
1985void free_pages(unsigned long addr, unsigned int order)
1986{
1987 if (addr != 0) {
1988 VM_BUG_ON(!virt_addr_valid((void *)addr));
1989 __free_pages(virt_to_page((void *)addr), order);
1990 }
1991}
1992
1993EXPORT_SYMBOL(free_pages);
1994
1995/**
1996 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1997 * @size: the number of bytes to allocate
1998 * @gfp_mask: GFP flags for the allocation
1999 *
2000 * This function is similar to alloc_pages(), except that it allocates the
2001 * minimum number of pages to satisfy the request. alloc_pages() can only
2002 * allocate memory in power-of-two pages.
2003 *
2004 * This function is also limited by MAX_ORDER.
2005 *
2006 * Memory allocated by this function must be released by free_pages_exact().
2007 */
2008void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2009{
2010 unsigned int order = get_order(size);
2011 unsigned long addr;
2012
2013 addr = __get_free_pages(gfp_mask, order);
2014 if (addr) {
2015 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2016 unsigned long used = addr + PAGE_ALIGN(size);
2017
2018 split_page(virt_to_page((void *)addr), order);
2019 while (used < alloc_end) {
2020 free_page(used);
2021 used += PAGE_SIZE;
2022 }
2023 }
2024
2025 return (void *)addr;
2026}
2027EXPORT_SYMBOL(alloc_pages_exact);
2028
2029/**
2030 * free_pages_exact - release memory allocated via alloc_pages_exact()
2031 * @virt: the value returned by alloc_pages_exact.
2032 * @size: size of allocation, same value as passed to alloc_pages_exact().
2033 *
2034 * Release the memory allocated by a previous call to alloc_pages_exact.
2035 */
2036void free_pages_exact(void *virt, size_t size)
2037{
2038 unsigned long addr = (unsigned long)virt;
2039 unsigned long end = addr + PAGE_ALIGN(size);
2040
2041 while (addr < end) {
2042 free_page(addr);
2043 addr += PAGE_SIZE;
2044 }
2045}
2046EXPORT_SYMBOL(free_pages_exact);
2047
2048static unsigned int nr_free_zone_pages(int offset)
2049{
2050 struct zoneref *z;
2051 struct zone *zone;
2052
2053 /* Just pick one node, since fallback list is circular */
2054 unsigned int sum = 0;
2055
2056 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2057
2058 for_each_zone_zonelist(zone, z, zonelist, offset) {
2059 unsigned long size = zone->present_pages;
2060 unsigned long high = high_wmark_pages(zone);
2061 if (size > high)
2062 sum += size - high;
2063 }
2064
2065 return sum;
2066}
2067
2068/*
2069 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2070 */
2071unsigned int nr_free_buffer_pages(void)
2072{
2073 return nr_free_zone_pages(gfp_zone(GFP_USER));
2074}
2075EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2076
2077/*
2078 * Amount of free RAM allocatable within all zones
2079 */
2080unsigned int nr_free_pagecache_pages(void)
2081{
2082 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2083}
2084
2085static inline void show_node(struct zone *zone)
2086{
2087 if (NUMA_BUILD)
2088 printk("Node %d ", zone_to_nid(zone));
2089}
2090
2091void si_meminfo(struct sysinfo *val)
2092{
2093 val->totalram = totalram_pages;
2094 val->sharedram = 0;
2095 val->freeram = global_page_state(NR_FREE_PAGES);
2096 val->bufferram = nr_blockdev_pages();
2097 val->totalhigh = totalhigh_pages;
2098 val->freehigh = nr_free_highpages();
2099 val->mem_unit = PAGE_SIZE;
2100}
2101
2102EXPORT_SYMBOL(si_meminfo);
2103
2104#ifdef CONFIG_NUMA
2105void si_meminfo_node(struct sysinfo *val, int nid)
2106{
2107 pg_data_t *pgdat = NODE_DATA(nid);
2108
2109 val->totalram = pgdat->node_present_pages;
2110 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2111#ifdef CONFIG_HIGHMEM
2112 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2113 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2114 NR_FREE_PAGES);
2115#else
2116 val->totalhigh = 0;
2117 val->freehigh = 0;
2118#endif
2119 val->mem_unit = PAGE_SIZE;
2120}
2121#endif
2122
2123#define K(x) ((x) << (PAGE_SHIFT-10))
2124
2125/*
2126 * Show free area list (used inside shift_scroll-lock stuff)
2127 * We also calculate the percentage fragmentation. We do this by counting the
2128 * memory on each free list with the exception of the first item on the list.
2129 */
2130void show_free_areas(void)
2131{
2132 int cpu;
2133 struct zone *zone;
2134
2135 for_each_populated_zone(zone) {
2136 show_node(zone);
2137 printk("%s per-cpu:\n", zone->name);
2138
2139 for_each_online_cpu(cpu) {
2140 struct per_cpu_pageset *pageset;
2141
2142 pageset = zone_pcp(zone, cpu);
2143
2144 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2145 cpu, pageset->pcp.high,
2146 pageset->pcp.batch, pageset->pcp.count);
2147 }
2148 }
2149
2150 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2151 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2152 " unevictable:%lu"
2153 " dirty:%lu writeback:%lu unstable:%lu buffer:%lu\n"
2154 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2155 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2156 global_page_state(NR_ACTIVE_ANON),
2157 global_page_state(NR_INACTIVE_ANON),
2158 global_page_state(NR_ISOLATED_ANON),
2159 global_page_state(NR_ACTIVE_FILE),
2160 global_page_state(NR_INACTIVE_FILE),
2161 global_page_state(NR_ISOLATED_FILE),
2162 global_page_state(NR_UNEVICTABLE),
2163 global_page_state(NR_FILE_DIRTY),
2164 global_page_state(NR_WRITEBACK),
2165 global_page_state(NR_UNSTABLE_NFS),
2166 nr_blockdev_pages(),
2167 global_page_state(NR_FREE_PAGES),
2168 global_page_state(NR_SLAB_RECLAIMABLE),
2169 global_page_state(NR_SLAB_UNRECLAIMABLE),
2170 global_page_state(NR_FILE_MAPPED),
2171 global_page_state(NR_SHMEM),
2172 global_page_state(NR_PAGETABLE),
2173 global_page_state(NR_BOUNCE));
2174
2175 for_each_populated_zone(zone) {
2176 int i;
2177
2178 show_node(zone);
2179 printk("%s"
2180 " free:%lukB"
2181 " min:%lukB"
2182 " low:%lukB"
2183 " high:%lukB"
2184 " active_anon:%lukB"
2185 " inactive_anon:%lukB"
2186 " active_file:%lukB"
2187 " inactive_file:%lukB"
2188 " unevictable:%lukB"
2189 " isolated(anon):%lukB"
2190 " isolated(file):%lukB"
2191 " present:%lukB"
2192 " mlocked:%lukB"
2193 " dirty:%lukB"
2194 " writeback:%lukB"
2195 " mapped:%lukB"
2196 " shmem:%lukB"
2197 " slab_reclaimable:%lukB"
2198 " slab_unreclaimable:%lukB"
2199 " kernel_stack:%lukB"
2200 " pagetables:%lukB"
2201 " unstable:%lukB"
2202 " bounce:%lukB"
2203 " writeback_tmp:%lukB"
2204 " pages_scanned:%lu"
2205 " all_unreclaimable? %s"
2206 "\n",
2207 zone->name,
2208 K(zone_page_state(zone, NR_FREE_PAGES)),
2209 K(min_wmark_pages(zone)),
2210 K(low_wmark_pages(zone)),
2211 K(high_wmark_pages(zone)),
2212 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2213 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2214 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2215 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2216 K(zone_page_state(zone, NR_UNEVICTABLE)),
2217 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2218 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2219 K(zone->present_pages),
2220 K(zone_page_state(zone, NR_MLOCK)),
2221 K(zone_page_state(zone, NR_FILE_DIRTY)),
2222 K(zone_page_state(zone, NR_WRITEBACK)),
2223 K(zone_page_state(zone, NR_FILE_MAPPED)),
2224 K(zone_page_state(zone, NR_SHMEM)),
2225 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2226 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2227 zone_page_state(zone, NR_KERNEL_STACK) *
2228 THREAD_SIZE / 1024,
2229 K(zone_page_state(zone, NR_PAGETABLE)),
2230 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2231 K(zone_page_state(zone, NR_BOUNCE)),
2232 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2233 zone->pages_scanned,
2234 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
2235 );
2236 printk("lowmem_reserve[]:");
2237 for (i = 0; i < MAX_NR_ZONES; i++)
2238 printk(" %lu", zone->lowmem_reserve[i]);
2239 printk("\n");
2240 }
2241
2242 for_each_populated_zone(zone) {
2243 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2244
2245 show_node(zone);
2246 printk("%s: ", zone->name);
2247
2248 spin_lock_irqsave(&zone->lock, flags);
2249 for (order = 0; order < MAX_ORDER; order++) {
2250 nr[order] = zone->free_area[order].nr_free;
2251 total += nr[order] << order;
2252 }
2253 spin_unlock_irqrestore(&zone->lock, flags);
2254 for (order = 0; order < MAX_ORDER; order++)
2255 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2256 printk("= %lukB\n", K(total));
2257 }
2258
2259 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2260
2261 show_swap_cache_info();
2262}
2263
2264static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2265{
2266 zoneref->zone = zone;
2267 zoneref->zone_idx = zone_idx(zone);
2268}
2269
2270/*
2271 * Builds allocation fallback zone lists.
2272 *
2273 * Add all populated zones of a node to the zonelist.
2274 */
2275static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2276 int nr_zones, enum zone_type zone_type)
2277{
2278 struct zone *zone;
2279
2280 BUG_ON(zone_type >= MAX_NR_ZONES);
2281 zone_type++;
2282
2283 do {
2284 zone_type--;
2285 zone = pgdat->node_zones + zone_type;
2286 if (populated_zone(zone)) {
2287 zoneref_set_zone(zone,
2288 &zonelist->_zonerefs[nr_zones++]);
2289 check_highest_zone(zone_type);
2290 }
2291
2292 } while (zone_type);
2293 return nr_zones;
2294}
2295
2296
2297/*
2298 * zonelist_order:
2299 * 0 = automatic detection of better ordering.
2300 * 1 = order by ([node] distance, -zonetype)
2301 * 2 = order by (-zonetype, [node] distance)
2302 *
2303 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2304 * the same zonelist. So only NUMA can configure this param.
2305 */
2306#define ZONELIST_ORDER_DEFAULT 0
2307#define ZONELIST_ORDER_NODE 1
2308#define ZONELIST_ORDER_ZONE 2
2309
2310/* zonelist order in the kernel.
2311 * set_zonelist_order() will set this to NODE or ZONE.
2312 */
2313static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2314static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2315
2316
2317#ifdef CONFIG_NUMA
2318/* The value user specified ....changed by config */
2319static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2320/* string for sysctl */
2321#define NUMA_ZONELIST_ORDER_LEN 16
2322char numa_zonelist_order[16] = "default";
2323
2324/*
2325 * interface for configure zonelist ordering.
2326 * command line option "numa_zonelist_order"
2327 * = "[dD]efault - default, automatic configuration.
2328 * = "[nN]ode - order by node locality, then by zone within node
2329 * = "[zZ]one - order by zone, then by locality within zone
2330 */
2331
2332static int __parse_numa_zonelist_order(char *s)
2333{
2334 if (*s == 'd' || *s == 'D') {
2335 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2336 } else if (*s == 'n' || *s == 'N') {
2337 user_zonelist_order = ZONELIST_ORDER_NODE;
2338 } else if (*s == 'z' || *s == 'Z') {
2339 user_zonelist_order = ZONELIST_ORDER_ZONE;
2340 } else {
2341 printk(KERN_WARNING
2342 "Ignoring invalid numa_zonelist_order value: "
2343 "%s\n", s);
2344 return -EINVAL;
2345 }
2346 return 0;
2347}
2348
2349static __init int setup_numa_zonelist_order(char *s)
2350{
2351 if (s)
2352 return __parse_numa_zonelist_order(s);
2353 return 0;
2354}
2355early_param("numa_zonelist_order", setup_numa_zonelist_order);
2356
2357/*
2358 * sysctl handler for numa_zonelist_order
2359 */
2360int numa_zonelist_order_handler(ctl_table *table, int write,
2361 struct file *file, void __user *buffer, size_t *length,
2362 loff_t *ppos)
2363{
2364 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2365 int ret;
2366
2367 if (write)
2368 strncpy(saved_string, (char*)table->data,
2369 NUMA_ZONELIST_ORDER_LEN);
2370 ret = proc_dostring(table, write, file, buffer, length, ppos);
2371 if (ret)
2372 return ret;
2373 if (write) {
2374 int oldval = user_zonelist_order;
2375 if (__parse_numa_zonelist_order((char*)table->data)) {
2376 /*
2377 * bogus value. restore saved string
2378 */
2379 strncpy((char*)table->data, saved_string,
2380 NUMA_ZONELIST_ORDER_LEN);
2381 user_zonelist_order = oldval;
2382 } else if (oldval != user_zonelist_order)
2383 build_all_zonelists();
2384 }
2385 return 0;
2386}
2387
2388
2389#define MAX_NODE_LOAD (nr_online_nodes)
2390static int node_load[MAX_NUMNODES];
2391
2392/**
2393 * find_next_best_node - find the next node that should appear in a given node's fallback list
2394 * @node: node whose fallback list we're appending
2395 * @used_node_mask: nodemask_t of already used nodes
2396 *
2397 * We use a number of factors to determine which is the next node that should
2398 * appear on a given node's fallback list. The node should not have appeared
2399 * already in @node's fallback list, and it should be the next closest node
2400 * according to the distance array (which contains arbitrary distance values
2401 * from each node to each node in the system), and should also prefer nodes
2402 * with no CPUs, since presumably they'll have very little allocation pressure
2403 * on them otherwise.
2404 * It returns -1 if no node is found.
2405 */
2406static int find_next_best_node(int node, nodemask_t *used_node_mask)
2407{
2408 int n, val;
2409 int min_val = INT_MAX;
2410 int best_node = -1;
2411 const struct cpumask *tmp = cpumask_of_node(0);
2412
2413 /* Use the local node if we haven't already */
2414 if (!node_isset(node, *used_node_mask)) {
2415 node_set(node, *used_node_mask);
2416 return node;
2417 }
2418
2419 for_each_node_state(n, N_HIGH_MEMORY) {
2420
2421 /* Don't want a node to appear more than once */
2422 if (node_isset(n, *used_node_mask))
2423 continue;
2424
2425 /* Use the distance array to find the distance */
2426 val = node_distance(node, n);
2427
2428 /* Penalize nodes under us ("prefer the next node") */
2429 val += (n < node);
2430
2431 /* Give preference to headless and unused nodes */
2432 tmp = cpumask_of_node(n);
2433 if (!cpumask_empty(tmp))
2434 val += PENALTY_FOR_NODE_WITH_CPUS;
2435
2436 /* Slight preference for less loaded node */
2437 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2438 val += node_load[n];
2439
2440 if (val < min_val) {
2441 min_val = val;
2442 best_node = n;
2443 }
2444 }
2445
2446 if (best_node >= 0)
2447 node_set(best_node, *used_node_mask);
2448
2449 return best_node;
2450}
2451
2452
2453/*
2454 * Build zonelists ordered by node and zones within node.
2455 * This results in maximum locality--normal zone overflows into local
2456 * DMA zone, if any--but risks exhausting DMA zone.
2457 */
2458static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2459{
2460 int j;
2461 struct zonelist *zonelist;
2462
2463 zonelist = &pgdat->node_zonelists[0];
2464 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2465 ;
2466 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2467 MAX_NR_ZONES - 1);
2468 zonelist->_zonerefs[j].zone = NULL;
2469 zonelist->_zonerefs[j].zone_idx = 0;
2470}
2471
2472/*
2473 * Build gfp_thisnode zonelists
2474 */
2475static void build_thisnode_zonelists(pg_data_t *pgdat)
2476{
2477 int j;
2478 struct zonelist *zonelist;
2479
2480 zonelist = &pgdat->node_zonelists[1];
2481 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2482 zonelist->_zonerefs[j].zone = NULL;
2483 zonelist->_zonerefs[j].zone_idx = 0;
2484}
2485
2486/*
2487 * Build zonelists ordered by zone and nodes within zones.
2488 * This results in conserving DMA zone[s] until all Normal memory is
2489 * exhausted, but results in overflowing to remote node while memory
2490 * may still exist in local DMA zone.
2491 */
2492static int node_order[MAX_NUMNODES];
2493
2494static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2495{
2496 int pos, j, node;
2497 int zone_type; /* needs to be signed */
2498 struct zone *z;
2499 struct zonelist *zonelist;
2500
2501 zonelist = &pgdat->node_zonelists[0];
2502 pos = 0;
2503 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2504 for (j = 0; j < nr_nodes; j++) {
2505 node = node_order[j];
2506 z = &NODE_DATA(node)->node_zones[zone_type];
2507 if (populated_zone(z)) {
2508 zoneref_set_zone(z,
2509 &zonelist->_zonerefs[pos++]);
2510 check_highest_zone(zone_type);
2511 }
2512 }
2513 }
2514 zonelist->_zonerefs[pos].zone = NULL;
2515 zonelist->_zonerefs[pos].zone_idx = 0;
2516}
2517
2518static int default_zonelist_order(void)
2519{
2520 int nid, zone_type;
2521 unsigned long low_kmem_size,total_size;
2522 struct zone *z;
2523 int average_size;
2524 /*
2525 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2526 * If they are really small and used heavily, the system can fall
2527 * into OOM very easily.
2528 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2529 */
2530 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2531 low_kmem_size = 0;
2532 total_size = 0;
2533 for_each_online_node(nid) {
2534 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2535 z = &NODE_DATA(nid)->node_zones[zone_type];
2536 if (populated_zone(z)) {
2537 if (zone_type < ZONE_NORMAL)
2538 low_kmem_size += z->present_pages;
2539 total_size += z->present_pages;
2540 }
2541 }
2542 }
2543 if (!low_kmem_size || /* there are no DMA area. */
2544 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2545 return ZONELIST_ORDER_NODE;
2546 /*
2547 * look into each node's config.
2548 * If there is a node whose DMA/DMA32 memory is very big area on
2549 * local memory, NODE_ORDER may be suitable.
2550 */
2551 average_size = total_size /
2552 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2553 for_each_online_node(nid) {
2554 low_kmem_size = 0;
2555 total_size = 0;
2556 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2557 z = &NODE_DATA(nid)->node_zones[zone_type];
2558 if (populated_zone(z)) {
2559 if (zone_type < ZONE_NORMAL)
2560 low_kmem_size += z->present_pages;
2561 total_size += z->present_pages;
2562 }
2563 }
2564 if (low_kmem_size &&
2565 total_size > average_size && /* ignore small node */
2566 low_kmem_size > total_size * 70/100)
2567 return ZONELIST_ORDER_NODE;
2568 }
2569 return ZONELIST_ORDER_ZONE;
2570}
2571
2572static void set_zonelist_order(void)
2573{
2574 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2575 current_zonelist_order = default_zonelist_order();
2576 else
2577 current_zonelist_order = user_zonelist_order;
2578}
2579
2580static void build_zonelists(pg_data_t *pgdat)
2581{
2582 int j, node, load;
2583 enum zone_type i;
2584 nodemask_t used_mask;
2585 int local_node, prev_node;
2586 struct zonelist *zonelist;
2587 int order = current_zonelist_order;
2588
2589 /* initialize zonelists */
2590 for (i = 0; i < MAX_ZONELISTS; i++) {
2591 zonelist = pgdat->node_zonelists + i;
2592 zonelist->_zonerefs[0].zone = NULL;
2593 zonelist->_zonerefs[0].zone_idx = 0;
2594 }
2595
2596 /* NUMA-aware ordering of nodes */
2597 local_node = pgdat->node_id;
2598 load = nr_online_nodes;
2599 prev_node = local_node;
2600 nodes_clear(used_mask);
2601
2602 memset(node_order, 0, sizeof(node_order));
2603 j = 0;
2604
2605 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2606 int distance = node_distance(local_node, node);
2607
2608 /*
2609 * If another node is sufficiently far away then it is better
2610 * to reclaim pages in a zone before going off node.
2611 */
2612 if (distance > RECLAIM_DISTANCE)
2613 zone_reclaim_mode = 1;
2614
2615 /*
2616 * We don't want to pressure a particular node.
2617 * So adding penalty to the first node in same
2618 * distance group to make it round-robin.
2619 */
2620 if (distance != node_distance(local_node, prev_node))
2621 node_load[node] = load;
2622
2623 prev_node = node;
2624 load--;
2625 if (order == ZONELIST_ORDER_NODE)
2626 build_zonelists_in_node_order(pgdat, node);
2627 else
2628 node_order[j++] = node; /* remember order */
2629 }
2630
2631 if (order == ZONELIST_ORDER_ZONE) {
2632 /* calculate node order -- i.e., DMA last! */
2633 build_zonelists_in_zone_order(pgdat, j);
2634 }
2635
2636 build_thisnode_zonelists(pgdat);
2637}
2638
2639/* Construct the zonelist performance cache - see further mmzone.h */
2640static void build_zonelist_cache(pg_data_t *pgdat)
2641{
2642 struct zonelist *zonelist;
2643 struct zonelist_cache *zlc;
2644 struct zoneref *z;
2645
2646 zonelist = &pgdat->node_zonelists[0];
2647 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2648 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2649 for (z = zonelist->_zonerefs; z->zone; z++)
2650 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2651}
2652
2653
2654#else /* CONFIG_NUMA */
2655
2656static void set_zonelist_order(void)
2657{
2658 current_zonelist_order = ZONELIST_ORDER_ZONE;
2659}
2660
2661static void build_zonelists(pg_data_t *pgdat)
2662{
2663 int node, local_node;
2664 enum zone_type j;
2665 struct zonelist *zonelist;
2666
2667 local_node = pgdat->node_id;
2668
2669 zonelist = &pgdat->node_zonelists[0];
2670 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2671
2672 /*
2673 * Now we build the zonelist so that it contains the zones
2674 * of all the other nodes.
2675 * We don't want to pressure a particular node, so when
2676 * building the zones for node N, we make sure that the
2677 * zones coming right after the local ones are those from
2678 * node N+1 (modulo N)
2679 */
2680 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2681 if (!node_online(node))
2682 continue;
2683 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2684 MAX_NR_ZONES - 1);
2685 }
2686 for (node = 0; node < local_node; node++) {
2687 if (!node_online(node))
2688 continue;
2689 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2690 MAX_NR_ZONES - 1);
2691 }
2692
2693 zonelist->_zonerefs[j].zone = NULL;
2694 zonelist->_zonerefs[j].zone_idx = 0;
2695}
2696
2697/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2698static void build_zonelist_cache(pg_data_t *pgdat)
2699{
2700 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2701}
2702
2703#endif /* CONFIG_NUMA */
2704
2705/* return values int ....just for stop_machine() */
2706static int __build_all_zonelists(void *dummy)
2707{
2708 int nid;
2709
2710#ifdef CONFIG_NUMA
2711 memset(node_load, 0, sizeof(node_load));
2712#endif
2713 for_each_online_node(nid) {
2714 pg_data_t *pgdat = NODE_DATA(nid);
2715
2716 build_zonelists(pgdat);
2717 build_zonelist_cache(pgdat);
2718 }
2719 return 0;
2720}
2721
2722void build_all_zonelists(void)
2723{
2724 set_zonelist_order();
2725
2726 if (system_state == SYSTEM_BOOTING) {
2727 __build_all_zonelists(NULL);
2728 mminit_verify_zonelist();
2729 cpuset_init_current_mems_allowed();
2730 } else {
2731 /* we have to stop all cpus to guarantee there is no user
2732 of zonelist */
2733 stop_machine(__build_all_zonelists, NULL, NULL);
2734 /* cpuset refresh routine should be here */
2735 }
2736 vm_total_pages = nr_free_pagecache_pages();
2737 /*
2738 * Disable grouping by mobility if the number of pages in the
2739 * system is too low to allow the mechanism to work. It would be
2740 * more accurate, but expensive to check per-zone. This check is
2741 * made on memory-hotadd so a system can start with mobility
2742 * disabled and enable it later
2743 */
2744 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2745 page_group_by_mobility_disabled = 1;
2746 else
2747 page_group_by_mobility_disabled = 0;
2748
2749 printk("Built %i zonelists in %s order, mobility grouping %s. "
2750 "Total pages: %ld\n",
2751 nr_online_nodes,
2752 zonelist_order_name[current_zonelist_order],
2753 page_group_by_mobility_disabled ? "off" : "on",
2754 vm_total_pages);
2755#ifdef CONFIG_NUMA
2756 printk("Policy zone: %s\n", zone_names[policy_zone]);
2757#endif
2758}
2759
2760/*
2761 * Helper functions to size the waitqueue hash table.
2762 * Essentially these want to choose hash table sizes sufficiently
2763 * large so that collisions trying to wait on pages are rare.
2764 * But in fact, the number of active page waitqueues on typical
2765 * systems is ridiculously low, less than 200. So this is even
2766 * conservative, even though it seems large.
2767 *
2768 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2769 * waitqueues, i.e. the size of the waitq table given the number of pages.
2770 */
2771#define PAGES_PER_WAITQUEUE 256
2772
2773#ifndef CONFIG_MEMORY_HOTPLUG
2774static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2775{
2776 unsigned long size = 1;
2777
2778 pages /= PAGES_PER_WAITQUEUE;
2779
2780 while (size < pages)
2781 size <<= 1;
2782
2783 /*
2784 * Once we have dozens or even hundreds of threads sleeping
2785 * on IO we've got bigger problems than wait queue collision.
2786 * Limit the size of the wait table to a reasonable size.
2787 */
2788 size = min(size, 4096UL);
2789
2790 return max(size, 4UL);
2791}
2792#else
2793/*
2794 * A zone's size might be changed by hot-add, so it is not possible to determine
2795 * a suitable size for its wait_table. So we use the maximum size now.
2796 *
2797 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2798 *
2799 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2800 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2801 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2802 *
2803 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2804 * or more by the traditional way. (See above). It equals:
2805 *
2806 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2807 * ia64(16K page size) : = ( 8G + 4M)byte.
2808 * powerpc (64K page size) : = (32G +16M)byte.
2809 */
2810static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2811{
2812 return 4096UL;
2813}
2814#endif
2815
2816/*
2817 * This is an integer logarithm so that shifts can be used later
2818 * to extract the more random high bits from the multiplicative
2819 * hash function before the remainder is taken.
2820 */
2821static inline unsigned long wait_table_bits(unsigned long size)
2822{
2823 return ffz(~size);
2824}
2825
2826#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2827
2828/*
2829 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2830 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2831 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2832 * higher will lead to a bigger reserve which will get freed as contiguous
2833 * blocks as reclaim kicks in
2834 */
2835static void setup_zone_migrate_reserve(struct zone *zone)
2836{
2837 unsigned long start_pfn, pfn, end_pfn;
2838 struct page *page;
2839 unsigned long block_migratetype;
2840 int reserve;
2841
2842 /* Get the start pfn, end pfn and the number of blocks to reserve */
2843 start_pfn = zone->zone_start_pfn;
2844 end_pfn = start_pfn + zone->spanned_pages;
2845 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2846 pageblock_order;
2847
2848 /*
2849 * Reserve blocks are generally in place to help high-order atomic
2850 * allocations that are short-lived. A min_free_kbytes value that
2851 * would result in more than 2 reserve blocks for atomic allocations
2852 * is assumed to be in place to help anti-fragmentation for the
2853 * future allocation of hugepages at runtime.
2854 */
2855 reserve = min(2, reserve);
2856
2857 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2858 if (!pfn_valid(pfn))
2859 continue;
2860 page = pfn_to_page(pfn);
2861
2862 /* Watch out for overlapping nodes */
2863 if (page_to_nid(page) != zone_to_nid(zone))
2864 continue;
2865
2866 /* Blocks with reserved pages will never free, skip them. */
2867 if (PageReserved(page))
2868 continue;
2869
2870 block_migratetype = get_pageblock_migratetype(page);
2871
2872 /* If this block is reserved, account for it */
2873 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2874 reserve--;
2875 continue;
2876 }
2877
2878 /* Suitable for reserving if this block is movable */
2879 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2880 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2881 move_freepages_block(zone, page, MIGRATE_RESERVE);
2882 reserve--;
2883 continue;
2884 }
2885
2886 /*
2887 * If the reserve is met and this is a previous reserved block,
2888 * take it back
2889 */
2890 if (block_migratetype == MIGRATE_RESERVE) {
2891 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2892 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2893 }
2894 }
2895}
2896
2897/*
2898 * Initially all pages are reserved - free ones are freed
2899 * up by free_all_bootmem() once the early boot process is
2900 * done. Non-atomic initialization, single-pass.
2901 */
2902void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2903 unsigned long start_pfn, enum memmap_context context)
2904{
2905 struct page *page;
2906 unsigned long end_pfn = start_pfn + size;
2907 unsigned long pfn;
2908 struct zone *z;
2909
2910 if (highest_memmap_pfn < end_pfn - 1)
2911 highest_memmap_pfn = end_pfn - 1;
2912
2913 z = &NODE_DATA(nid)->node_zones[zone];
2914 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2915 /*
2916 * There can be holes in boot-time mem_map[]s
2917 * handed to this function. They do not
2918 * exist on hotplugged memory.
2919 */
2920 if (context == MEMMAP_EARLY) {
2921 if (!early_pfn_valid(pfn))
2922 continue;
2923 if (!early_pfn_in_nid(pfn, nid))
2924 continue;
2925 }
2926 page = pfn_to_page(pfn);
2927 set_page_links(page, zone, nid, pfn);
2928 mminit_verify_page_links(page, zone, nid, pfn);
2929 init_page_count(page);
2930 reset_page_mapcount(page);
2931 SetPageReserved(page);
2932 /*
2933 * Mark the block movable so that blocks are reserved for
2934 * movable at startup. This will force kernel allocations
2935 * to reserve their blocks rather than leaking throughout
2936 * the address space during boot when many long-lived
2937 * kernel allocations are made. Later some blocks near
2938 * the start are marked MIGRATE_RESERVE by
2939 * setup_zone_migrate_reserve()
2940 *
2941 * bitmap is created for zone's valid pfn range. but memmap
2942 * can be created for invalid pages (for alignment)
2943 * check here not to call set_pageblock_migratetype() against
2944 * pfn out of zone.
2945 */
2946 if ((z->zone_start_pfn <= pfn)
2947 && (pfn < z->zone_start_pfn + z->spanned_pages)
2948 && !(pfn & (pageblock_nr_pages - 1)))
2949 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2950
2951 INIT_LIST_HEAD(&page->lru);
2952#ifdef WANT_PAGE_VIRTUAL
2953 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2954 if (!is_highmem_idx(zone))
2955 set_page_address(page, __va(pfn << PAGE_SHIFT));
2956#endif
2957 }
2958}
2959
2960static void __meminit zone_init_free_lists(struct zone *zone)
2961{
2962 int order, t;
2963 for_each_migratetype_order(order, t) {
2964 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2965 zone->free_area[order].nr_free = 0;
2966 }
2967}
2968
2969#ifndef __HAVE_ARCH_MEMMAP_INIT
2970#define memmap_init(size, nid, zone, start_pfn) \
2971 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2972#endif
2973
2974static int zone_batchsize(struct zone *zone)
2975{
2976#ifdef CONFIG_MMU
2977 int batch;
2978
2979 /*
2980 * The per-cpu-pages pools are set to around 1000th of the
2981 * size of the zone. But no more than 1/2 of a meg.
2982 *
2983 * OK, so we don't know how big the cache is. So guess.
2984 */
2985 batch = zone->present_pages / 1024;
2986 if (batch * PAGE_SIZE > 512 * 1024)
2987 batch = (512 * 1024) / PAGE_SIZE;
2988 batch /= 4; /* We effectively *= 4 below */
2989 if (batch < 1)
2990 batch = 1;
2991
2992 /*
2993 * Clamp the batch to a 2^n - 1 value. Having a power
2994 * of 2 value was found to be more likely to have
2995 * suboptimal cache aliasing properties in some cases.
2996 *
2997 * For example if 2 tasks are alternately allocating
2998 * batches of pages, one task can end up with a lot
2999 * of pages of one half of the possible page colors
3000 * and the other with pages of the other colors.
3001 */
3002 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3003
3004 return batch;
3005
3006#else
3007 /* The deferral and batching of frees should be suppressed under NOMMU
3008 * conditions.
3009 *
3010 * The problem is that NOMMU needs to be able to allocate large chunks
3011 * of contiguous memory as there's no hardware page translation to
3012 * assemble apparent contiguous memory from discontiguous pages.
3013 *
3014 * Queueing large contiguous runs of pages for batching, however,
3015 * causes the pages to actually be freed in smaller chunks. As there
3016 * can be a significant delay between the individual batches being
3017 * recycled, this leads to the once large chunks of space being
3018 * fragmented and becoming unavailable for high-order allocations.
3019 */
3020 return 0;
3021#endif
3022}
3023
3024static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3025{
3026 struct per_cpu_pages *pcp;
3027
3028 memset(p, 0, sizeof(*p));
3029
3030 pcp = &p->pcp;
3031 pcp->count = 0;
3032 pcp->high = 6 * batch;
3033 pcp->batch = max(1UL, 1 * batch);
3034 INIT_LIST_HEAD(&pcp->list);
3035}
3036
3037/*
3038 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3039 * to the value high for the pageset p.
3040 */
3041
3042static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3043 unsigned long high)
3044{
3045 struct per_cpu_pages *pcp;
3046
3047 pcp = &p->pcp;
3048 pcp->high = high;
3049 pcp->batch = max(1UL, high/4);
3050 if ((high/4) > (PAGE_SHIFT * 8))
3051 pcp->batch = PAGE_SHIFT * 8;
3052}
3053
3054
3055#ifdef CONFIG_NUMA
3056/*
3057 * Boot pageset table. One per cpu which is going to be used for all
3058 * zones and all nodes. The parameters will be set in such a way
3059 * that an item put on a list will immediately be handed over to
3060 * the buddy list. This is safe since pageset manipulation is done
3061 * with interrupts disabled.
3062 *
3063 * Some NUMA counter updates may also be caught by the boot pagesets.
3064 *
3065 * The boot_pagesets must be kept even after bootup is complete for
3066 * unused processors and/or zones. They do play a role for bootstrapping
3067 * hotplugged processors.
3068 *
3069 * zoneinfo_show() and maybe other functions do
3070 * not check if the processor is online before following the pageset pointer.
3071 * Other parts of the kernel may not check if the zone is available.
3072 */
3073static struct per_cpu_pageset boot_pageset[NR_CPUS];
3074
3075/*
3076 * Dynamically allocate memory for the
3077 * per cpu pageset array in struct zone.
3078 */
3079static int __cpuinit process_zones(int cpu)
3080{
3081 struct zone *zone, *dzone;
3082 int node = cpu_to_node(cpu);
3083
3084 node_set_state(node, N_CPU); /* this node has a cpu */
3085
3086 for_each_populated_zone(zone) {
3087 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
3088 GFP_KERNEL, node);
3089 if (!zone_pcp(zone, cpu))
3090 goto bad;
3091
3092 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
3093
3094 if (percpu_pagelist_fraction)
3095 setup_pagelist_highmark(zone_pcp(zone, cpu),
3096 (zone->present_pages / percpu_pagelist_fraction));
3097 }
3098
3099 return 0;
3100bad:
3101 for_each_zone(dzone) {
3102 if (!populated_zone(dzone))
3103 continue;
3104 if (dzone == zone)
3105 break;
3106 kfree(zone_pcp(dzone, cpu));
3107 zone_pcp(dzone, cpu) = &boot_pageset[cpu];
3108 }
3109 return -ENOMEM;
3110}
3111
3112static inline void free_zone_pagesets(int cpu)
3113{
3114 struct zone *zone;
3115
3116 for_each_zone(zone) {
3117 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3118
3119 /* Free per_cpu_pageset if it is slab allocated */
3120 if (pset != &boot_pageset[cpu])
3121 kfree(pset);
3122 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3123 }
3124}
3125
3126static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3127 unsigned long action,
3128 void *hcpu)
3129{
3130 int cpu = (long)hcpu;
3131 int ret = NOTIFY_OK;
3132
3133 switch (action) {
3134 case CPU_UP_PREPARE:
3135 case CPU_UP_PREPARE_FROZEN:
3136 if (process_zones(cpu))
3137 ret = NOTIFY_BAD;
3138 break;
3139 case CPU_UP_CANCELED:
3140 case CPU_UP_CANCELED_FROZEN:
3141 case CPU_DEAD:
3142 case CPU_DEAD_FROZEN:
3143 free_zone_pagesets(cpu);
3144 break;
3145 default:
3146 break;
3147 }
3148 return ret;
3149}
3150
3151static struct notifier_block __cpuinitdata pageset_notifier =
3152 { &pageset_cpuup_callback, NULL, 0 };
3153
3154void __init setup_per_cpu_pageset(void)
3155{
3156 int err;
3157
3158 /* Initialize per_cpu_pageset for cpu 0.
3159 * A cpuup callback will do this for every cpu
3160 * as it comes online
3161 */
3162 err = process_zones(smp_processor_id());
3163 BUG_ON(err);
3164 register_cpu_notifier(&pageset_notifier);
3165}
3166
3167#endif
3168
3169static noinline __init_refok
3170int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3171{
3172 int i;
3173 struct pglist_data *pgdat = zone->zone_pgdat;
3174 size_t alloc_size;
3175
3176 /*
3177 * The per-page waitqueue mechanism uses hashed waitqueues
3178 * per zone.
3179 */
3180 zone->wait_table_hash_nr_entries =
3181 wait_table_hash_nr_entries(zone_size_pages);
3182 zone->wait_table_bits =
3183 wait_table_bits(zone->wait_table_hash_nr_entries);
3184 alloc_size = zone->wait_table_hash_nr_entries
3185 * sizeof(wait_queue_head_t);
3186
3187 if (!slab_is_available()) {
3188 zone->wait_table = (wait_queue_head_t *)
3189 alloc_bootmem_node(pgdat, alloc_size);
3190 } else {
3191 /*
3192 * This case means that a zone whose size was 0 gets new memory
3193 * via memory hot-add.
3194 * But it may be the case that a new node was hot-added. In
3195 * this case vmalloc() will not be able to use this new node's
3196 * memory - this wait_table must be initialized to use this new
3197 * node itself as well.
3198 * To use this new node's memory, further consideration will be
3199 * necessary.
3200 */
3201 zone->wait_table = vmalloc(alloc_size);
3202 }
3203 if (!zone->wait_table)
3204 return -ENOMEM;
3205
3206 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3207 init_waitqueue_head(zone->wait_table + i);
3208
3209 return 0;
3210}
3211
3212static int __zone_pcp_update(void *data)
3213{
3214 struct zone *zone = data;
3215 int cpu;
3216 unsigned long batch = zone_batchsize(zone), flags;
3217
3218 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3219 struct per_cpu_pageset *pset;
3220 struct per_cpu_pages *pcp;
3221
3222 pset = zone_pcp(zone, cpu);
3223 pcp = &pset->pcp;
3224
3225 local_irq_save(flags);
3226 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
3227 setup_pageset(pset, batch);
3228 local_irq_restore(flags);
3229 }
3230 return 0;
3231}
3232
3233void zone_pcp_update(struct zone *zone)
3234{
3235 stop_machine(__zone_pcp_update, zone, NULL);
3236}
3237
3238static __meminit void zone_pcp_init(struct zone *zone)
3239{
3240 int cpu;
3241 unsigned long batch = zone_batchsize(zone);
3242
3243 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3244#ifdef CONFIG_NUMA
3245 /* Early boot. Slab allocator not functional yet */
3246 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3247 setup_pageset(&boot_pageset[cpu],0);
3248#else
3249 setup_pageset(zone_pcp(zone,cpu), batch);
3250#endif
3251 }
3252 if (zone->present_pages)
3253 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3254 zone->name, zone->present_pages, batch);
3255}
3256
3257__meminit int init_currently_empty_zone(struct zone *zone,
3258 unsigned long zone_start_pfn,
3259 unsigned long size,
3260 enum memmap_context context)
3261{
3262 struct pglist_data *pgdat = zone->zone_pgdat;
3263 int ret;
3264 ret = zone_wait_table_init(zone, size);
3265 if (ret)
3266 return ret;
3267 pgdat->nr_zones = zone_idx(zone) + 1;
3268
3269 zone->zone_start_pfn = zone_start_pfn;
3270
3271 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3272 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3273 pgdat->node_id,
3274 (unsigned long)zone_idx(zone),
3275 zone_start_pfn, (zone_start_pfn + size));
3276
3277 zone_init_free_lists(zone);
3278
3279 return 0;
3280}
3281
3282#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3283/*
3284 * Basic iterator support. Return the first range of PFNs for a node
3285 * Note: nid == MAX_NUMNODES returns first region regardless of node
3286 */
3287static int __meminit first_active_region_index_in_nid(int nid)
3288{
3289 int i;
3290
3291 for (i = 0; i < nr_nodemap_entries; i++)
3292 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3293 return i;
3294
3295 return -1;
3296}
3297
3298/*
3299 * Basic iterator support. Return the next active range of PFNs for a node
3300 * Note: nid == MAX_NUMNODES returns next region regardless of node
3301 */
3302static int __meminit next_active_region_index_in_nid(int index, int nid)
3303{
3304 for (index = index + 1; index < nr_nodemap_entries; index++)
3305 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3306 return index;
3307
3308 return -1;
3309}
3310
3311#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3312/*
3313 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3314 * Architectures may implement their own version but if add_active_range()
3315 * was used and there are no special requirements, this is a convenient
3316 * alternative
3317 */
3318int __meminit __early_pfn_to_nid(unsigned long pfn)
3319{
3320 int i;
3321
3322 for (i = 0; i < nr_nodemap_entries; i++) {
3323 unsigned long start_pfn = early_node_map[i].start_pfn;
3324 unsigned long end_pfn = early_node_map[i].end_pfn;
3325
3326 if (start_pfn <= pfn && pfn < end_pfn)
3327 return early_node_map[i].nid;
3328 }
3329 /* This is a memory hole */
3330 return -1;
3331}
3332#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3333
3334int __meminit early_pfn_to_nid(unsigned long pfn)
3335{
3336 int nid;
3337
3338 nid = __early_pfn_to_nid(pfn);
3339 if (nid >= 0)
3340 return nid;
3341 /* just returns 0 */
3342 return 0;
3343}
3344
3345#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3346bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3347{
3348 int nid;
3349
3350 nid = __early_pfn_to_nid(pfn);
3351 if (nid >= 0 && nid != node)
3352 return false;
3353 return true;
3354}
3355#endif
3356
3357/* Basic iterator support to walk early_node_map[] */
3358#define for_each_active_range_index_in_nid(i, nid) \
3359 for (i = first_active_region_index_in_nid(nid); i != -1; \
3360 i = next_active_region_index_in_nid(i, nid))
3361
3362/**
3363 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3364 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3365 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3366 *
3367 * If an architecture guarantees that all ranges registered with
3368 * add_active_ranges() contain no holes and may be freed, this
3369 * this function may be used instead of calling free_bootmem() manually.
3370 */
3371void __init free_bootmem_with_active_regions(int nid,
3372 unsigned long max_low_pfn)
3373{
3374 int i;
3375
3376 for_each_active_range_index_in_nid(i, nid) {
3377 unsigned long size_pages = 0;
3378 unsigned long end_pfn = early_node_map[i].end_pfn;
3379
3380 if (early_node_map[i].start_pfn >= max_low_pfn)
3381 continue;
3382
3383 if (end_pfn > max_low_pfn)
3384 end_pfn = max_low_pfn;
3385
3386 size_pages = end_pfn - early_node_map[i].start_pfn;
3387 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3388 PFN_PHYS(early_node_map[i].start_pfn),
3389 size_pages << PAGE_SHIFT);
3390 }
3391}
3392
3393void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3394{
3395 int i;
3396 int ret;
3397
3398 for_each_active_range_index_in_nid(i, nid) {
3399 ret = work_fn(early_node_map[i].start_pfn,
3400 early_node_map[i].end_pfn, data);
3401 if (ret)
3402 break;
3403 }
3404}
3405/**
3406 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3407 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3408 *
3409 * If an architecture guarantees that all ranges registered with
3410 * add_active_ranges() contain no holes and may be freed, this
3411 * function may be used instead of calling memory_present() manually.
3412 */
3413void __init sparse_memory_present_with_active_regions(int nid)
3414{
3415 int i;
3416
3417 for_each_active_range_index_in_nid(i, nid)
3418 memory_present(early_node_map[i].nid,
3419 early_node_map[i].start_pfn,
3420 early_node_map[i].end_pfn);
3421}
3422
3423/**
3424 * get_pfn_range_for_nid - Return the start and end page frames for a node
3425 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3426 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3427 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3428 *
3429 * It returns the start and end page frame of a node based on information
3430 * provided by an arch calling add_active_range(). If called for a node
3431 * with no available memory, a warning is printed and the start and end
3432 * PFNs will be 0.
3433 */
3434void __meminit get_pfn_range_for_nid(unsigned int nid,
3435 unsigned long *start_pfn, unsigned long *end_pfn)
3436{
3437 int i;
3438 *start_pfn = -1UL;
3439 *end_pfn = 0;
3440
3441 for_each_active_range_index_in_nid(i, nid) {
3442 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3443 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3444 }
3445
3446 if (*start_pfn == -1UL)
3447 *start_pfn = 0;
3448}
3449
3450/*
3451 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3452 * assumption is made that zones within a node are ordered in monotonic
3453 * increasing memory addresses so that the "highest" populated zone is used
3454 */
3455static void __init find_usable_zone_for_movable(void)
3456{
3457 int zone_index;
3458 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3459 if (zone_index == ZONE_MOVABLE)
3460 continue;
3461
3462 if (arch_zone_highest_possible_pfn[zone_index] >
3463 arch_zone_lowest_possible_pfn[zone_index])
3464 break;
3465 }
3466
3467 VM_BUG_ON(zone_index == -1);
3468 movable_zone = zone_index;
3469}
3470
3471/*
3472 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3473 * because it is sized independant of architecture. Unlike the other zones,
3474 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3475 * in each node depending on the size of each node and how evenly kernelcore
3476 * is distributed. This helper function adjusts the zone ranges
3477 * provided by the architecture for a given node by using the end of the
3478 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3479 * zones within a node are in order of monotonic increases memory addresses
3480 */
3481static void __meminit adjust_zone_range_for_zone_movable(int nid,
3482 unsigned long zone_type,
3483 unsigned long node_start_pfn,
3484 unsigned long node_end_pfn,
3485 unsigned long *zone_start_pfn,
3486 unsigned long *zone_end_pfn)
3487{
3488 /* Only adjust if ZONE_MOVABLE is on this node */
3489 if (zone_movable_pfn[nid]) {
3490 /* Size ZONE_MOVABLE */
3491 if (zone_type == ZONE_MOVABLE) {
3492 *zone_start_pfn = zone_movable_pfn[nid];
3493 *zone_end_pfn = min(node_end_pfn,
3494 arch_zone_highest_possible_pfn[movable_zone]);
3495
3496 /* Adjust for ZONE_MOVABLE starting within this range */
3497 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3498 *zone_end_pfn > zone_movable_pfn[nid]) {
3499 *zone_end_pfn = zone_movable_pfn[nid];
3500
3501 /* Check if this whole range is within ZONE_MOVABLE */
3502 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3503 *zone_start_pfn = *zone_end_pfn;
3504 }
3505}
3506
3507/*
3508 * Return the number of pages a zone spans in a node, including holes
3509 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3510 */
3511static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3512 unsigned long zone_type,
3513 unsigned long *ignored)
3514{
3515 unsigned long node_start_pfn, node_end_pfn;
3516 unsigned long zone_start_pfn, zone_end_pfn;
3517
3518 /* Get the start and end of the node and zone */
3519 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3520 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3521 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3522 adjust_zone_range_for_zone_movable(nid, zone_type,
3523 node_start_pfn, node_end_pfn,
3524 &zone_start_pfn, &zone_end_pfn);
3525
3526 /* Check that this node has pages within the zone's required range */
3527 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3528 return 0;
3529
3530 /* Move the zone boundaries inside the node if necessary */
3531 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3532 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3533
3534 /* Return the spanned pages */
3535 return zone_end_pfn - zone_start_pfn;
3536}
3537
3538/*
3539 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3540 * then all holes in the requested range will be accounted for.
3541 */
3542static unsigned long __meminit __absent_pages_in_range(int nid,
3543 unsigned long range_start_pfn,
3544 unsigned long range_end_pfn)
3545{
3546 int i = 0;
3547 unsigned long prev_end_pfn = 0, hole_pages = 0;
3548 unsigned long start_pfn;
3549
3550 /* Find the end_pfn of the first active range of pfns in the node */
3551 i = first_active_region_index_in_nid(nid);
3552 if (i == -1)
3553 return 0;
3554
3555 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3556
3557 /* Account for ranges before physical memory on this node */
3558 if (early_node_map[i].start_pfn > range_start_pfn)
3559 hole_pages = prev_end_pfn - range_start_pfn;
3560
3561 /* Find all holes for the zone within the node */
3562 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3563
3564 /* No need to continue if prev_end_pfn is outside the zone */
3565 if (prev_end_pfn >= range_end_pfn)
3566 break;
3567
3568 /* Make sure the end of the zone is not within the hole */
3569 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3570 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3571
3572 /* Update the hole size cound and move on */
3573 if (start_pfn > range_start_pfn) {
3574 BUG_ON(prev_end_pfn > start_pfn);
3575 hole_pages += start_pfn - prev_end_pfn;
3576 }
3577 prev_end_pfn = early_node_map[i].end_pfn;
3578 }
3579
3580 /* Account for ranges past physical memory on this node */
3581 if (range_end_pfn > prev_end_pfn)
3582 hole_pages += range_end_pfn -
3583 max(range_start_pfn, prev_end_pfn);
3584
3585 return hole_pages;
3586}
3587
3588/**
3589 * absent_pages_in_range - Return number of page frames in holes within a range
3590 * @start_pfn: The start PFN to start searching for holes
3591 * @end_pfn: The end PFN to stop searching for holes
3592 *
3593 * It returns the number of pages frames in memory holes within a range.
3594 */
3595unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3596 unsigned long end_pfn)
3597{
3598 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3599}
3600
3601/* Return the number of page frames in holes in a zone on a node */
3602static unsigned long __meminit zone_absent_pages_in_node(int nid,
3603 unsigned long zone_type,
3604 unsigned long *ignored)
3605{
3606 unsigned long node_start_pfn, node_end_pfn;
3607 unsigned long zone_start_pfn, zone_end_pfn;
3608
3609 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3610 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3611 node_start_pfn);
3612 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3613 node_end_pfn);
3614
3615 adjust_zone_range_for_zone_movable(nid, zone_type,
3616 node_start_pfn, node_end_pfn,
3617 &zone_start_pfn, &zone_end_pfn);
3618 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3619}
3620
3621#else
3622static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3623 unsigned long zone_type,
3624 unsigned long *zones_size)
3625{
3626 return zones_size[zone_type];
3627}
3628
3629static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3630 unsigned long zone_type,
3631 unsigned long *zholes_size)
3632{
3633 if (!zholes_size)
3634 return 0;
3635
3636 return zholes_size[zone_type];
3637}
3638
3639#endif
3640
3641static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3642 unsigned long *zones_size, unsigned long *zholes_size)
3643{
3644 unsigned long realtotalpages, totalpages = 0;
3645 enum zone_type i;
3646
3647 for (i = 0; i < MAX_NR_ZONES; i++)
3648 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3649 zones_size);
3650 pgdat->node_spanned_pages = totalpages;
3651
3652 realtotalpages = totalpages;
3653 for (i = 0; i < MAX_NR_ZONES; i++)
3654 realtotalpages -=
3655 zone_absent_pages_in_node(pgdat->node_id, i,
3656 zholes_size);
3657 pgdat->node_present_pages = realtotalpages;
3658 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3659 realtotalpages);
3660}
3661
3662#ifndef CONFIG_SPARSEMEM
3663/*
3664 * Calculate the size of the zone->blockflags rounded to an unsigned long
3665 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3666 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3667 * round what is now in bits to nearest long in bits, then return it in
3668 * bytes.
3669 */
3670static unsigned long __init usemap_size(unsigned long zonesize)
3671{
3672 unsigned long usemapsize;
3673
3674 usemapsize = roundup(zonesize, pageblock_nr_pages);
3675 usemapsize = usemapsize >> pageblock_order;
3676 usemapsize *= NR_PAGEBLOCK_BITS;
3677 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3678
3679 return usemapsize / 8;
3680}
3681
3682static void __init setup_usemap(struct pglist_data *pgdat,
3683 struct zone *zone, unsigned long zonesize)
3684{
3685 unsigned long usemapsize = usemap_size(zonesize);
3686 zone->pageblock_flags = NULL;
3687 if (usemapsize)
3688 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3689}
3690#else
3691static void inline setup_usemap(struct pglist_data *pgdat,
3692 struct zone *zone, unsigned long zonesize) {}
3693#endif /* CONFIG_SPARSEMEM */
3694
3695#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3696
3697/* Return a sensible default order for the pageblock size. */
3698static inline int pageblock_default_order(void)
3699{
3700 if (HPAGE_SHIFT > PAGE_SHIFT)
3701 return HUGETLB_PAGE_ORDER;
3702
3703 return MAX_ORDER-1;
3704}
3705
3706/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3707static inline void __init set_pageblock_order(unsigned int order)
3708{
3709 /* Check that pageblock_nr_pages has not already been setup */
3710 if (pageblock_order)
3711 return;
3712
3713 /*
3714 * Assume the largest contiguous order of interest is a huge page.
3715 * This value may be variable depending on boot parameters on IA64
3716 */
3717 pageblock_order = order;
3718}
3719#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3720
3721/*
3722 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3723 * and pageblock_default_order() are unused as pageblock_order is set
3724 * at compile-time. See include/linux/pageblock-flags.h for the values of
3725 * pageblock_order based on the kernel config
3726 */
3727static inline int pageblock_default_order(unsigned int order)
3728{
3729 return MAX_ORDER-1;
3730}
3731#define set_pageblock_order(x) do {} while (0)
3732
3733#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3734
3735/*
3736 * Set up the zone data structures:
3737 * - mark all pages reserved
3738 * - mark all memory queues empty
3739 * - clear the memory bitmaps
3740 */
3741static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3742 unsigned long *zones_size, unsigned long *zholes_size)
3743{
3744 enum zone_type j;
3745 int nid = pgdat->node_id;
3746 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3747 int ret;
3748
3749 pgdat_resize_init(pgdat);
3750 pgdat->nr_zones = 0;
3751 init_waitqueue_head(&pgdat->kswapd_wait);
3752 pgdat->kswapd_max_order = 0;
3753 pgdat_page_cgroup_init(pgdat);
3754
3755 for (j = 0; j < MAX_NR_ZONES; j++) {
3756 struct zone *zone = pgdat->node_zones + j;
3757 unsigned long size, realsize, memmap_pages;
3758 enum lru_list l;
3759
3760 size = zone_spanned_pages_in_node(nid, j, zones_size);
3761 realsize = size - zone_absent_pages_in_node(nid, j,
3762 zholes_size);
3763
3764 /*
3765 * Adjust realsize so that it accounts for how much memory
3766 * is used by this zone for memmap. This affects the watermark
3767 * and per-cpu initialisations
3768 */
3769 memmap_pages =
3770 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3771 if (realsize >= memmap_pages) {
3772 realsize -= memmap_pages;
3773 if (memmap_pages)
3774 printk(KERN_DEBUG
3775 " %s zone: %lu pages used for memmap\n",
3776 zone_names[j], memmap_pages);
3777 } else
3778 printk(KERN_WARNING
3779 " %s zone: %lu pages exceeds realsize %lu\n",
3780 zone_names[j], memmap_pages, realsize);
3781
3782 /* Account for reserved pages */
3783 if (j == 0 && realsize > dma_reserve) {
3784 realsize -= dma_reserve;
3785 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3786 zone_names[0], dma_reserve);
3787 }
3788
3789 if (!is_highmem_idx(j))
3790 nr_kernel_pages += realsize;
3791 nr_all_pages += realsize;
3792
3793 zone->spanned_pages = size;
3794 zone->present_pages = realsize;
3795#ifdef CONFIG_NUMA
3796 zone->node = nid;
3797 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3798 / 100;
3799 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3800#endif
3801 zone->name = zone_names[j];
3802 spin_lock_init(&zone->lock);
3803 spin_lock_init(&zone->lru_lock);
3804 zone_seqlock_init(zone);
3805 zone->zone_pgdat = pgdat;
3806
3807 zone->prev_priority = DEF_PRIORITY;
3808
3809 zone_pcp_init(zone);
3810 for_each_lru(l) {
3811 INIT_LIST_HEAD(&zone->lru[l].list);
3812 zone->lru[l].nr_saved_scan = 0;
3813 }
3814 zone->reclaim_stat.recent_rotated[0] = 0;
3815 zone->reclaim_stat.recent_rotated[1] = 0;
3816 zone->reclaim_stat.recent_scanned[0] = 0;
3817 zone->reclaim_stat.recent_scanned[1] = 0;
3818 zap_zone_vm_stats(zone);
3819 zone->flags = 0;
3820 if (!size)
3821 continue;
3822
3823 set_pageblock_order(pageblock_default_order());
3824 setup_usemap(pgdat, zone, size);
3825 ret = init_currently_empty_zone(zone, zone_start_pfn,
3826 size, MEMMAP_EARLY);
3827 BUG_ON(ret);
3828 memmap_init(size, nid, j, zone_start_pfn);
3829 zone_start_pfn += size;
3830 }
3831}
3832
3833static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3834{
3835 /* Skip empty nodes */
3836 if (!pgdat->node_spanned_pages)
3837 return;
3838
3839#ifdef CONFIG_FLAT_NODE_MEM_MAP
3840 /* ia64 gets its own node_mem_map, before this, without bootmem */
3841 if (!pgdat->node_mem_map) {
3842 unsigned long size, start, end;
3843 struct page *map;
3844
3845 /*
3846 * The zone's endpoints aren't required to be MAX_ORDER
3847 * aligned but the node_mem_map endpoints must be in order
3848 * for the buddy allocator to function correctly.
3849 */
3850 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3851 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3852 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3853 size = (end - start) * sizeof(struct page);
3854 map = alloc_remap(pgdat->node_id, size);
3855 if (!map)
3856 map = alloc_bootmem_node(pgdat, size);
3857 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3858 }
3859#ifndef CONFIG_NEED_MULTIPLE_NODES
3860 /*
3861 * With no DISCONTIG, the global mem_map is just set as node 0's
3862 */
3863 if (pgdat == NODE_DATA(0)) {
3864 mem_map = NODE_DATA(0)->node_mem_map;
3865#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3866 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3867 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3868#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3869 }
3870#endif
3871#endif /* CONFIG_FLAT_NODE_MEM_MAP */
3872}
3873
3874void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3875 unsigned long node_start_pfn, unsigned long *zholes_size)
3876{
3877 pg_data_t *pgdat = NODE_DATA(nid);
3878
3879 pgdat->node_id = nid;
3880 pgdat->node_start_pfn = node_start_pfn;
3881 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3882
3883 alloc_node_mem_map(pgdat);
3884#ifdef CONFIG_FLAT_NODE_MEM_MAP
3885 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3886 nid, (unsigned long)pgdat,
3887 (unsigned long)pgdat->node_mem_map);
3888#endif
3889
3890 free_area_init_core(pgdat, zones_size, zholes_size);
3891}
3892
3893#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3894
3895#if MAX_NUMNODES > 1
3896/*
3897 * Figure out the number of possible node ids.
3898 */
3899static void __init setup_nr_node_ids(void)
3900{
3901 unsigned int node;
3902 unsigned int highest = 0;
3903
3904 for_each_node_mask(node, node_possible_map)
3905 highest = node;
3906 nr_node_ids = highest + 1;
3907}
3908#else
3909static inline void setup_nr_node_ids(void)
3910{
3911}
3912#endif
3913
3914/**
3915 * add_active_range - Register a range of PFNs backed by physical memory
3916 * @nid: The node ID the range resides on
3917 * @start_pfn: The start PFN of the available physical memory
3918 * @end_pfn: The end PFN of the available physical memory
3919 *
3920 * These ranges are stored in an early_node_map[] and later used by
3921 * free_area_init_nodes() to calculate zone sizes and holes. If the
3922 * range spans a memory hole, it is up to the architecture to ensure
3923 * the memory is not freed by the bootmem allocator. If possible
3924 * the range being registered will be merged with existing ranges.
3925 */
3926void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3927 unsigned long end_pfn)
3928{
3929 int i;
3930
3931 mminit_dprintk(MMINIT_TRACE, "memory_register",
3932 "Entering add_active_range(%d, %#lx, %#lx) "
3933 "%d entries of %d used\n",
3934 nid, start_pfn, end_pfn,
3935 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3936
3937 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3938
3939 /* Merge with existing active regions if possible */
3940 for (i = 0; i < nr_nodemap_entries; i++) {
3941 if (early_node_map[i].nid != nid)
3942 continue;
3943
3944 /* Skip if an existing region covers this new one */
3945 if (start_pfn >= early_node_map[i].start_pfn &&
3946 end_pfn <= early_node_map[i].end_pfn)
3947 return;
3948
3949 /* Merge forward if suitable */
3950 if (start_pfn <= early_node_map[i].end_pfn &&
3951 end_pfn > early_node_map[i].end_pfn) {
3952 early_node_map[i].end_pfn = end_pfn;
3953 return;
3954 }
3955
3956 /* Merge backward if suitable */
3957 if (start_pfn < early_node_map[i].end_pfn &&
3958 end_pfn >= early_node_map[i].start_pfn) {
3959 early_node_map[i].start_pfn = start_pfn;
3960 return;
3961 }
3962 }
3963
3964 /* Check that early_node_map is large enough */
3965 if (i >= MAX_ACTIVE_REGIONS) {
3966 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3967 MAX_ACTIVE_REGIONS);
3968 return;
3969 }
3970
3971 early_node_map[i].nid = nid;
3972 early_node_map[i].start_pfn = start_pfn;
3973 early_node_map[i].end_pfn = end_pfn;
3974 nr_nodemap_entries = i + 1;
3975}
3976
3977/**
3978 * remove_active_range - Shrink an existing registered range of PFNs
3979 * @nid: The node id the range is on that should be shrunk
3980 * @start_pfn: The new PFN of the range
3981 * @end_pfn: The new PFN of the range
3982 *
3983 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3984 * The map is kept near the end physical page range that has already been
3985 * registered. This function allows an arch to shrink an existing registered
3986 * range.
3987 */
3988void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3989 unsigned long end_pfn)
3990{
3991 int i, j;
3992 int removed = 0;
3993
3994 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3995 nid, start_pfn, end_pfn);
3996
3997 /* Find the old active region end and shrink */
3998 for_each_active_range_index_in_nid(i, nid) {
3999 if (early_node_map[i].start_pfn >= start_pfn &&
4000 early_node_map[i].end_pfn <= end_pfn) {
4001 /* clear it */
4002 early_node_map[i].start_pfn = 0;
4003 early_node_map[i].end_pfn = 0;
4004 removed = 1;
4005 continue;
4006 }
4007 if (early_node_map[i].start_pfn < start_pfn &&
4008 early_node_map[i].end_pfn > start_pfn) {
4009 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4010 early_node_map[i].end_pfn = start_pfn;
4011 if (temp_end_pfn > end_pfn)
4012 add_active_range(nid, end_pfn, temp_end_pfn);
4013 continue;
4014 }
4015 if (early_node_map[i].start_pfn >= start_pfn &&
4016 early_node_map[i].end_pfn > end_pfn &&
4017 early_node_map[i].start_pfn < end_pfn) {
4018 early_node_map[i].start_pfn = end_pfn;
4019 continue;
4020 }
4021 }
4022
4023 if (!removed)
4024 return;
4025
4026 /* remove the blank ones */
4027 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4028 if (early_node_map[i].nid != nid)
4029 continue;
4030 if (early_node_map[i].end_pfn)
4031 continue;
4032 /* we found it, get rid of it */
4033 for (j = i; j < nr_nodemap_entries - 1; j++)
4034 memcpy(&early_node_map[j], &early_node_map[j+1],
4035 sizeof(early_node_map[j]));
4036 j = nr_nodemap_entries - 1;
4037 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4038 nr_nodemap_entries--;
4039 }
4040}
4041
4042/**
4043 * remove_all_active_ranges - Remove all currently registered regions
4044 *
4045 * During discovery, it may be found that a table like SRAT is invalid
4046 * and an alternative discovery method must be used. This function removes
4047 * all currently registered regions.
4048 */
4049void __init remove_all_active_ranges(void)
4050{
4051 memset(early_node_map, 0, sizeof(early_node_map));
4052 nr_nodemap_entries = 0;
4053}
4054
4055/* Compare two active node_active_regions */
4056static int __init cmp_node_active_region(const void *a, const void *b)
4057{
4058 struct node_active_region *arange = (struct node_active_region *)a;
4059 struct node_active_region *brange = (struct node_active_region *)b;
4060
4061 /* Done this way to avoid overflows */
4062 if (arange->start_pfn > brange->start_pfn)
4063 return 1;
4064 if (arange->start_pfn < brange->start_pfn)
4065 return -1;
4066
4067 return 0;
4068}
4069
4070/* sort the node_map by start_pfn */
4071static void __init sort_node_map(void)
4072{
4073 sort(early_node_map, (size_t)nr_nodemap_entries,
4074 sizeof(struct node_active_region),
4075 cmp_node_active_region, NULL);
4076}
4077
4078/* Find the lowest pfn for a node */
4079static unsigned long __init find_min_pfn_for_node(int nid)
4080{
4081 int i;
4082 unsigned long min_pfn = ULONG_MAX;
4083
4084 /* Assuming a sorted map, the first range found has the starting pfn */
4085 for_each_active_range_index_in_nid(i, nid)
4086 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4087
4088 if (min_pfn == ULONG_MAX) {
4089 printk(KERN_WARNING
4090 "Could not find start_pfn for node %d\n", nid);
4091 return 0;
4092 }
4093
4094 return min_pfn;
4095}
4096
4097/**
4098 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4099 *
4100 * It returns the minimum PFN based on information provided via
4101 * add_active_range().
4102 */
4103unsigned long __init find_min_pfn_with_active_regions(void)
4104{
4105 return find_min_pfn_for_node(MAX_NUMNODES);
4106}
4107
4108/*
4109 * early_calculate_totalpages()
4110 * Sum pages in active regions for movable zone.
4111 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4112 */
4113static unsigned long __init early_calculate_totalpages(void)
4114{
4115 int i;
4116 unsigned long totalpages = 0;
4117
4118 for (i = 0; i < nr_nodemap_entries; i++) {
4119 unsigned long pages = early_node_map[i].end_pfn -
4120 early_node_map[i].start_pfn;
4121 totalpages += pages;
4122 if (pages)
4123 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4124 }
4125 return totalpages;
4126}
4127
4128/*
4129 * Find the PFN the Movable zone begins in each node. Kernel memory
4130 * is spread evenly between nodes as long as the nodes have enough
4131 * memory. When they don't, some nodes will have more kernelcore than
4132 * others
4133 */
4134static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4135{
4136 int i, nid;
4137 unsigned long usable_startpfn;
4138 unsigned long kernelcore_node, kernelcore_remaining;
4139 /* save the state before borrow the nodemask */
4140 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4141 unsigned long totalpages = early_calculate_totalpages();
4142 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4143
4144 /*
4145 * If movablecore was specified, calculate what size of
4146 * kernelcore that corresponds so that memory usable for
4147 * any allocation type is evenly spread. If both kernelcore
4148 * and movablecore are specified, then the value of kernelcore
4149 * will be used for required_kernelcore if it's greater than
4150 * what movablecore would have allowed.
4151 */
4152 if (required_movablecore) {
4153 unsigned long corepages;
4154
4155 /*
4156 * Round-up so that ZONE_MOVABLE is at least as large as what
4157 * was requested by the user
4158 */
4159 required_movablecore =
4160 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4161 corepages = totalpages - required_movablecore;
4162
4163 required_kernelcore = max(required_kernelcore, corepages);
4164 }
4165
4166 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4167 if (!required_kernelcore)
4168 goto out;
4169
4170 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4171 find_usable_zone_for_movable();
4172 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4173
4174restart:
4175 /* Spread kernelcore memory as evenly as possible throughout nodes */
4176 kernelcore_node = required_kernelcore / usable_nodes;
4177 for_each_node_state(nid, N_HIGH_MEMORY) {
4178 /*
4179 * Recalculate kernelcore_node if the division per node
4180 * now exceeds what is necessary to satisfy the requested
4181 * amount of memory for the kernel
4182 */
4183 if (required_kernelcore < kernelcore_node)
4184 kernelcore_node = required_kernelcore / usable_nodes;
4185
4186 /*
4187 * As the map is walked, we track how much memory is usable
4188 * by the kernel using kernelcore_remaining. When it is
4189 * 0, the rest of the node is usable by ZONE_MOVABLE
4190 */
4191 kernelcore_remaining = kernelcore_node;
4192
4193 /* Go through each range of PFNs within this node */
4194 for_each_active_range_index_in_nid(i, nid) {
4195 unsigned long start_pfn, end_pfn;
4196 unsigned long size_pages;
4197
4198 start_pfn = max(early_node_map[i].start_pfn,
4199 zone_movable_pfn[nid]);
4200 end_pfn = early_node_map[i].end_pfn;
4201 if (start_pfn >= end_pfn)
4202 continue;
4203
4204 /* Account for what is only usable for kernelcore */
4205 if (start_pfn < usable_startpfn) {
4206 unsigned long kernel_pages;
4207 kernel_pages = min(end_pfn, usable_startpfn)
4208 - start_pfn;
4209
4210 kernelcore_remaining -= min(kernel_pages,
4211 kernelcore_remaining);
4212 required_kernelcore -= min(kernel_pages,
4213 required_kernelcore);
4214
4215 /* Continue if range is now fully accounted */
4216 if (end_pfn <= usable_startpfn) {
4217
4218 /*
4219 * Push zone_movable_pfn to the end so
4220 * that if we have to rebalance
4221 * kernelcore across nodes, we will
4222 * not double account here
4223 */
4224 zone_movable_pfn[nid] = end_pfn;
4225 continue;
4226 }
4227 start_pfn = usable_startpfn;
4228 }
4229
4230 /*
4231 * The usable PFN range for ZONE_MOVABLE is from
4232 * start_pfn->end_pfn. Calculate size_pages as the
4233 * number of pages used as kernelcore
4234 */
4235 size_pages = end_pfn - start_pfn;
4236 if (size_pages > kernelcore_remaining)
4237 size_pages = kernelcore_remaining;
4238 zone_movable_pfn[nid] = start_pfn + size_pages;
4239
4240 /*
4241 * Some kernelcore has been met, update counts and
4242 * break if the kernelcore for this node has been
4243 * satisified
4244 */
4245 required_kernelcore -= min(required_kernelcore,
4246 size_pages);
4247 kernelcore_remaining -= size_pages;
4248 if (!kernelcore_remaining)
4249 break;
4250 }
4251 }
4252
4253 /*
4254 * If there is still required_kernelcore, we do another pass with one
4255 * less node in the count. This will push zone_movable_pfn[nid] further
4256 * along on the nodes that still have memory until kernelcore is
4257 * satisified
4258 */
4259 usable_nodes--;
4260 if (usable_nodes && required_kernelcore > usable_nodes)
4261 goto restart;
4262
4263 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4264 for (nid = 0; nid < MAX_NUMNODES; nid++)
4265 zone_movable_pfn[nid] =
4266 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4267
4268out:
4269 /* restore the node_state */
4270 node_states[N_HIGH_MEMORY] = saved_node_state;
4271}
4272
4273/* Any regular memory on that node ? */
4274static void check_for_regular_memory(pg_data_t *pgdat)
4275{
4276#ifdef CONFIG_HIGHMEM
4277 enum zone_type zone_type;
4278
4279 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4280 struct zone *zone = &pgdat->node_zones[zone_type];
4281 if (zone->present_pages)
4282 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4283 }
4284#endif
4285}
4286
4287/**
4288 * free_area_init_nodes - Initialise all pg_data_t and zone data
4289 * @max_zone_pfn: an array of max PFNs for each zone
4290 *
4291 * This will call free_area_init_node() for each active node in the system.
4292 * Using the page ranges provided by add_active_range(), the size of each
4293 * zone in each node and their holes is calculated. If the maximum PFN
4294 * between two adjacent zones match, it is assumed that the zone is empty.
4295 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4296 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4297 * starts where the previous one ended. For example, ZONE_DMA32 starts
4298 * at arch_max_dma_pfn.
4299 */
4300void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4301{
4302 unsigned long nid;
4303 int i;
4304
4305 /* Sort early_node_map as initialisation assumes it is sorted */
4306 sort_node_map();
4307
4308 /* Record where the zone boundaries are */
4309 memset(arch_zone_lowest_possible_pfn, 0,
4310 sizeof(arch_zone_lowest_possible_pfn));
4311 memset(arch_zone_highest_possible_pfn, 0,
4312 sizeof(arch_zone_highest_possible_pfn));
4313 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4314 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4315 for (i = 1; i < MAX_NR_ZONES; i++) {
4316 if (i == ZONE_MOVABLE)
4317 continue;
4318 arch_zone_lowest_possible_pfn[i] =
4319 arch_zone_highest_possible_pfn[i-1];
4320 arch_zone_highest_possible_pfn[i] =
4321 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4322 }
4323 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4324 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4325
4326 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4327 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4328 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4329
4330 /* Print out the zone ranges */
4331 printk("Zone PFN ranges:\n");
4332 for (i = 0; i < MAX_NR_ZONES; i++) {
4333 if (i == ZONE_MOVABLE)
4334 continue;
4335 printk(" %-8s %0#10lx -> %0#10lx\n",
4336 zone_names[i],
4337 arch_zone_lowest_possible_pfn[i],
4338 arch_zone_highest_possible_pfn[i]);
4339 }
4340
4341 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4342 printk("Movable zone start PFN for each node\n");
4343 for (i = 0; i < MAX_NUMNODES; i++) {
4344 if (zone_movable_pfn[i])
4345 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4346 }
4347
4348 /* Print out the early_node_map[] */
4349 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4350 for (i = 0; i < nr_nodemap_entries; i++)
4351 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4352 early_node_map[i].start_pfn,
4353 early_node_map[i].end_pfn);
4354
4355 /* Initialise every node */
4356 mminit_verify_pageflags_layout();
4357 setup_nr_node_ids();
4358 for_each_online_node(nid) {
4359 pg_data_t *pgdat = NODE_DATA(nid);
4360 free_area_init_node(nid, NULL,
4361 find_min_pfn_for_node(nid), NULL);
4362
4363 /* Any memory on that node */
4364 if (pgdat->node_present_pages)
4365 node_set_state(nid, N_HIGH_MEMORY);
4366 check_for_regular_memory(pgdat);
4367 }
4368}
4369
4370static int __init cmdline_parse_core(char *p, unsigned long *core)
4371{
4372 unsigned long long coremem;
4373 if (!p)
4374 return -EINVAL;
4375
4376 coremem = memparse(p, &p);
4377 *core = coremem >> PAGE_SHIFT;
4378
4379 /* Paranoid check that UL is enough for the coremem value */
4380 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4381
4382 return 0;
4383}
4384
4385/*
4386 * kernelcore=size sets the amount of memory for use for allocations that
4387 * cannot be reclaimed or migrated.
4388 */
4389static int __init cmdline_parse_kernelcore(char *p)
4390{
4391 return cmdline_parse_core(p, &required_kernelcore);
4392}
4393
4394/*
4395 * movablecore=size sets the amount of memory for use for allocations that
4396 * can be reclaimed or migrated.
4397 */
4398static int __init cmdline_parse_movablecore(char *p)
4399{
4400 return cmdline_parse_core(p, &required_movablecore);
4401}
4402
4403early_param("kernelcore", cmdline_parse_kernelcore);
4404early_param("movablecore", cmdline_parse_movablecore);
4405
4406#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4407
4408/**
4409 * set_dma_reserve - set the specified number of pages reserved in the first zone
4410 * @new_dma_reserve: The number of pages to mark reserved
4411 *
4412 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4413 * In the DMA zone, a significant percentage may be consumed by kernel image
4414 * and other unfreeable allocations which can skew the watermarks badly. This
4415 * function may optionally be used to account for unfreeable pages in the
4416 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4417 * smaller per-cpu batchsize.
4418 */
4419void __init set_dma_reserve(unsigned long new_dma_reserve)
4420{
4421 dma_reserve = new_dma_reserve;
4422}
4423
4424#ifndef CONFIG_NEED_MULTIPLE_NODES
4425struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4426EXPORT_SYMBOL(contig_page_data);
4427#endif
4428
4429void __init free_area_init(unsigned long *zones_size)
4430{
4431 free_area_init_node(0, zones_size,
4432 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4433}
4434
4435static int page_alloc_cpu_notify(struct notifier_block *self,
4436 unsigned long action, void *hcpu)
4437{
4438 int cpu = (unsigned long)hcpu;
4439
4440 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4441 drain_pages(cpu);
4442
4443 /*
4444 * Spill the event counters of the dead processor
4445 * into the current processors event counters.
4446 * This artificially elevates the count of the current
4447 * processor.
4448 */
4449 vm_events_fold_cpu(cpu);
4450
4451 /*
4452 * Zero the differential counters of the dead processor
4453 * so that the vm statistics are consistent.
4454 *
4455 * This is only okay since the processor is dead and cannot
4456 * race with what we are doing.
4457 */
4458 refresh_cpu_vm_stats(cpu);
4459 }
4460 return NOTIFY_OK;
4461}
4462
4463void __init page_alloc_init(void)
4464{
4465 hotcpu_notifier(page_alloc_cpu_notify, 0);
4466}
4467
4468/*
4469 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4470 * or min_free_kbytes changes.
4471 */
4472static void calculate_totalreserve_pages(void)
4473{
4474 struct pglist_data *pgdat;
4475 unsigned long reserve_pages = 0;
4476 enum zone_type i, j;
4477
4478 for_each_online_pgdat(pgdat) {
4479 for (i = 0; i < MAX_NR_ZONES; i++) {
4480 struct zone *zone = pgdat->node_zones + i;
4481 unsigned long max = 0;
4482
4483 /* Find valid and maximum lowmem_reserve in the zone */
4484 for (j = i; j < MAX_NR_ZONES; j++) {
4485 if (zone->lowmem_reserve[j] > max)
4486 max = zone->lowmem_reserve[j];
4487 }
4488
4489 /* we treat the high watermark as reserved pages. */
4490 max += high_wmark_pages(zone);
4491
4492 if (max > zone->present_pages)
4493 max = zone->present_pages;
4494 reserve_pages += max;
4495 }
4496 }
4497 totalreserve_pages = reserve_pages;
4498}
4499
4500/*
4501 * setup_per_zone_lowmem_reserve - called whenever
4502 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4503 * has a correct pages reserved value, so an adequate number of
4504 * pages are left in the zone after a successful __alloc_pages().
4505 */
4506static void setup_per_zone_lowmem_reserve(void)
4507{
4508 struct pglist_data *pgdat;
4509 enum zone_type j, idx;
4510
4511 for_each_online_pgdat(pgdat) {
4512 for (j = 0; j < MAX_NR_ZONES; j++) {
4513 struct zone *zone = pgdat->node_zones + j;
4514 unsigned long present_pages = zone->present_pages;
4515
4516 zone->lowmem_reserve[j] = 0;
4517
4518 idx = j;
4519 while (idx) {
4520 struct zone *lower_zone;
4521
4522 idx--;
4523
4524 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4525 sysctl_lowmem_reserve_ratio[idx] = 1;
4526
4527 lower_zone = pgdat->node_zones + idx;
4528 lower_zone->lowmem_reserve[j] = present_pages /
4529 sysctl_lowmem_reserve_ratio[idx];
4530 present_pages += lower_zone->present_pages;
4531 }
4532 }
4533 }
4534
4535 /* update totalreserve_pages */
4536 calculate_totalreserve_pages();
4537}
4538
4539/**
4540 * setup_per_zone_wmarks - called when min_free_kbytes changes
4541 * or when memory is hot-{added|removed}
4542 *
4543 * Ensures that the watermark[min,low,high] values for each zone are set
4544 * correctly with respect to min_free_kbytes.
4545 */
4546void setup_per_zone_wmarks(void)
4547{
4548 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4549 unsigned long lowmem_pages = 0;
4550 struct zone *zone;
4551 unsigned long flags;
4552
4553 /* Calculate total number of !ZONE_HIGHMEM pages */
4554 for_each_zone(zone) {
4555 if (!is_highmem(zone))
4556 lowmem_pages += zone->present_pages;
4557 }
4558
4559 for_each_zone(zone) {
4560 u64 tmp;
4561
4562 spin_lock_irqsave(&zone->lock, flags);
4563 tmp = (u64)pages_min * zone->present_pages;
4564 do_div(tmp, lowmem_pages);
4565 if (is_highmem(zone)) {
4566 /*
4567 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4568 * need highmem pages, so cap pages_min to a small
4569 * value here.
4570 *
4571 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4572 * deltas controls asynch page reclaim, and so should
4573 * not be capped for highmem.
4574 */
4575 int min_pages;
4576
4577 min_pages = zone->present_pages / 1024;
4578 if (min_pages < SWAP_CLUSTER_MAX)
4579 min_pages = SWAP_CLUSTER_MAX;
4580 if (min_pages > 128)
4581 min_pages = 128;
4582 zone->watermark[WMARK_MIN] = min_pages;
4583 } else {
4584 /*
4585 * If it's a lowmem zone, reserve a number of pages
4586 * proportionate to the zone's size.
4587 */
4588 zone->watermark[WMARK_MIN] = tmp;
4589 }
4590
4591 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4592 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4593 setup_zone_migrate_reserve(zone);
4594 spin_unlock_irqrestore(&zone->lock, flags);
4595 }
4596
4597 /* update totalreserve_pages */
4598 calculate_totalreserve_pages();
4599}
4600
4601/*
4602 * The inactive anon list should be small enough that the VM never has to
4603 * do too much work, but large enough that each inactive page has a chance
4604 * to be referenced again before it is swapped out.
4605 *
4606 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4607 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4608 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4609 * the anonymous pages are kept on the inactive list.
4610 *
4611 * total target max
4612 * memory ratio inactive anon
4613 * -------------------------------------
4614 * 10MB 1 5MB
4615 * 100MB 1 50MB
4616 * 1GB 3 250MB
4617 * 10GB 10 0.9GB
4618 * 100GB 31 3GB
4619 * 1TB 101 10GB
4620 * 10TB 320 32GB
4621 */
4622void calculate_zone_inactive_ratio(struct zone *zone)
4623{
4624 unsigned int gb, ratio;
4625
4626 /* Zone size in gigabytes */
4627 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4628 if (gb)
4629 ratio = int_sqrt(10 * gb);
4630 else
4631 ratio = 1;
4632
4633 zone->inactive_ratio = ratio;
4634}
4635
4636static void __init setup_per_zone_inactive_ratio(void)
4637{
4638 struct zone *zone;
4639
4640 for_each_zone(zone)
4641 calculate_zone_inactive_ratio(zone);
4642}
4643
4644/*
4645 * Initialise min_free_kbytes.
4646 *
4647 * For small machines we want it small (128k min). For large machines
4648 * we want it large (64MB max). But it is not linear, because network
4649 * bandwidth does not increase linearly with machine size. We use
4650 *
4651 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4652 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4653 *
4654 * which yields
4655 *
4656 * 16MB: 512k
4657 * 32MB: 724k
4658 * 64MB: 1024k
4659 * 128MB: 1448k
4660 * 256MB: 2048k
4661 * 512MB: 2896k
4662 * 1024MB: 4096k
4663 * 2048MB: 5792k
4664 * 4096MB: 8192k
4665 * 8192MB: 11584k
4666 * 16384MB: 16384k
4667 */
4668static int __init init_per_zone_wmark_min(void)
4669{
4670 unsigned long lowmem_kbytes;
4671
4672 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4673
4674 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4675 if (min_free_kbytes < 128)
4676 min_free_kbytes = 128;
4677 if (min_free_kbytes > 65536)
4678 min_free_kbytes = 65536;
4679 setup_per_zone_wmarks();
4680 setup_per_zone_lowmem_reserve();
4681 setup_per_zone_inactive_ratio();
4682 return 0;
4683}
4684module_init(init_per_zone_wmark_min)
4685
4686/*
4687 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4688 * that we can call two helper functions whenever min_free_kbytes
4689 * changes.
4690 */
4691int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4692 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4693{
4694 proc_dointvec(table, write, file, buffer, length, ppos);
4695 if (write)
4696 setup_per_zone_wmarks();
4697 return 0;
4698}
4699
4700#ifdef CONFIG_NUMA
4701int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4702 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4703{
4704 struct zone *zone;
4705 int rc;
4706
4707 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4708 if (rc)
4709 return rc;
4710
4711 for_each_zone(zone)
4712 zone->min_unmapped_pages = (zone->present_pages *
4713 sysctl_min_unmapped_ratio) / 100;
4714 return 0;
4715}
4716
4717int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4718 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4719{
4720 struct zone *zone;
4721 int rc;
4722
4723 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4724 if (rc)
4725 return rc;
4726
4727 for_each_zone(zone)
4728 zone->min_slab_pages = (zone->present_pages *
4729 sysctl_min_slab_ratio) / 100;
4730 return 0;
4731}
4732#endif
4733
4734/*
4735 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4736 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4737 * whenever sysctl_lowmem_reserve_ratio changes.
4738 *
4739 * The reserve ratio obviously has absolutely no relation with the
4740 * minimum watermarks. The lowmem reserve ratio can only make sense
4741 * if in function of the boot time zone sizes.
4742 */
4743int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4744 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4745{
4746 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4747 setup_per_zone_lowmem_reserve();
4748 return 0;
4749}
4750
4751/*
4752 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4753 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4754 * can have before it gets flushed back to buddy allocator.
4755 */
4756
4757int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4758 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4759{
4760 struct zone *zone;
4761 unsigned int cpu;
4762 int ret;
4763
4764 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4765 if (!write || (ret == -EINVAL))
4766 return ret;
4767 for_each_populated_zone(zone) {
4768 for_each_online_cpu(cpu) {
4769 unsigned long high;
4770 high = zone->present_pages / percpu_pagelist_fraction;
4771 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4772 }
4773 }
4774 return 0;
4775}
4776
4777int hashdist = HASHDIST_DEFAULT;
4778
4779#ifdef CONFIG_NUMA
4780static int __init set_hashdist(char *str)
4781{
4782 if (!str)
4783 return 0;
4784 hashdist = simple_strtoul(str, &str, 0);
4785 return 1;
4786}
4787__setup("hashdist=", set_hashdist);
4788#endif
4789
4790/*
4791 * allocate a large system hash table from bootmem
4792 * - it is assumed that the hash table must contain an exact power-of-2
4793 * quantity of entries
4794 * - limit is the number of hash buckets, not the total allocation size
4795 */
4796void *__init alloc_large_system_hash(const char *tablename,
4797 unsigned long bucketsize,
4798 unsigned long numentries,
4799 int scale,
4800 int flags,
4801 unsigned int *_hash_shift,
4802 unsigned int *_hash_mask,
4803 unsigned long limit)
4804{
4805 unsigned long long max = limit;
4806 unsigned long log2qty, size;
4807 void *table = NULL;
4808
4809 /* allow the kernel cmdline to have a say */
4810 if (!numentries) {
4811 /* round applicable memory size up to nearest megabyte */
4812 numentries = nr_kernel_pages;
4813 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4814 numentries >>= 20 - PAGE_SHIFT;
4815 numentries <<= 20 - PAGE_SHIFT;
4816
4817 /* limit to 1 bucket per 2^scale bytes of low memory */
4818 if (scale > PAGE_SHIFT)
4819 numentries >>= (scale - PAGE_SHIFT);
4820 else
4821 numentries <<= (PAGE_SHIFT - scale);
4822
4823 /* Make sure we've got at least a 0-order allocation.. */
4824 if (unlikely(flags & HASH_SMALL)) {
4825 /* Makes no sense without HASH_EARLY */
4826 WARN_ON(!(flags & HASH_EARLY));
4827 if (!(numentries >> *_hash_shift)) {
4828 numentries = 1UL << *_hash_shift;
4829 BUG_ON(!numentries);
4830 }
4831 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4832 numentries = PAGE_SIZE / bucketsize;
4833 }
4834 numentries = roundup_pow_of_two(numentries);
4835
4836 /* limit allocation size to 1/16 total memory by default */
4837 if (max == 0) {
4838 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4839 do_div(max, bucketsize);
4840 }
4841
4842 if (numentries > max)
4843 numentries = max;
4844
4845 log2qty = ilog2(numentries);
4846
4847 do {
4848 size = bucketsize << log2qty;
4849 if (flags & HASH_EARLY)
4850 table = alloc_bootmem_nopanic(size);
4851 else if (hashdist)
4852 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4853 else {
4854 /*
4855 * If bucketsize is not a power-of-two, we may free
4856 * some pages at the end of hash table which
4857 * alloc_pages_exact() automatically does
4858 */
4859 if (get_order(size) < MAX_ORDER) {
4860 table = alloc_pages_exact(size, GFP_ATOMIC);
4861 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4862 }
4863 }
4864 } while (!table && size > PAGE_SIZE && --log2qty);
4865
4866 if (!table)
4867 panic("Failed to allocate %s hash table\n", tablename);
4868
4869 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4870 tablename,
4871 (1U << log2qty),
4872 ilog2(size) - PAGE_SHIFT,
4873 size);
4874
4875 if (_hash_shift)
4876 *_hash_shift = log2qty;
4877 if (_hash_mask)
4878 *_hash_mask = (1 << log2qty) - 1;
4879
4880 return table;
4881}
4882
4883/* Return a pointer to the bitmap storing bits affecting a block of pages */
4884static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4885 unsigned long pfn)
4886{
4887#ifdef CONFIG_SPARSEMEM
4888 return __pfn_to_section(pfn)->pageblock_flags;
4889#else
4890 return zone->pageblock_flags;
4891#endif /* CONFIG_SPARSEMEM */
4892}
4893
4894static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4895{
4896#ifdef CONFIG_SPARSEMEM
4897 pfn &= (PAGES_PER_SECTION-1);
4898 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4899#else
4900 pfn = pfn - zone->zone_start_pfn;
4901 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4902#endif /* CONFIG_SPARSEMEM */
4903}
4904
4905/**
4906 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4907 * @page: The page within the block of interest
4908 * @start_bitidx: The first bit of interest to retrieve
4909 * @end_bitidx: The last bit of interest
4910 * returns pageblock_bits flags
4911 */
4912unsigned long get_pageblock_flags_group(struct page *page,
4913 int start_bitidx, int end_bitidx)
4914{
4915 struct zone *zone;
4916 unsigned long *bitmap;
4917 unsigned long pfn, bitidx;
4918 unsigned long flags = 0;
4919 unsigned long value = 1;
4920
4921 zone = page_zone(page);
4922 pfn = page_to_pfn(page);
4923 bitmap = get_pageblock_bitmap(zone, pfn);
4924 bitidx = pfn_to_bitidx(zone, pfn);
4925
4926 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4927 if (test_bit(bitidx + start_bitidx, bitmap))
4928 flags |= value;
4929
4930 return flags;
4931}
4932
4933/**
4934 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4935 * @page: The page within the block of interest
4936 * @start_bitidx: The first bit of interest
4937 * @end_bitidx: The last bit of interest
4938 * @flags: The flags to set
4939 */
4940void set_pageblock_flags_group(struct page *page, unsigned long flags,
4941 int start_bitidx, int end_bitidx)
4942{
4943 struct zone *zone;
4944 unsigned long *bitmap;
4945 unsigned long pfn, bitidx;
4946 unsigned long value = 1;
4947
4948 zone = page_zone(page);
4949 pfn = page_to_pfn(page);
4950 bitmap = get_pageblock_bitmap(zone, pfn);
4951 bitidx = pfn_to_bitidx(zone, pfn);
4952 VM_BUG_ON(pfn < zone->zone_start_pfn);
4953 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4954
4955 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4956 if (flags & value)
4957 __set_bit(bitidx + start_bitidx, bitmap);
4958 else
4959 __clear_bit(bitidx + start_bitidx, bitmap);
4960}
4961
4962/*
4963 * This is designed as sub function...plz see page_isolation.c also.
4964 * set/clear page block's type to be ISOLATE.
4965 * page allocater never alloc memory from ISOLATE block.
4966 */
4967
4968int set_migratetype_isolate(struct page *page)
4969{
4970 struct zone *zone;
4971 unsigned long flags;
4972 int ret = -EBUSY;
4973 int zone_idx;
4974
4975 zone = page_zone(page);
4976 zone_idx = zone_idx(zone);
4977 spin_lock_irqsave(&zone->lock, flags);
4978 /*
4979 * In future, more migrate types will be able to be isolation target.
4980 */
4981 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE &&
4982 zone_idx != ZONE_MOVABLE)
4983 goto out;
4984 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4985 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4986 ret = 0;
4987out:
4988 spin_unlock_irqrestore(&zone->lock, flags);
4989 if (!ret)
4990 drain_all_pages();
4991 return ret;
4992}
4993
4994void unset_migratetype_isolate(struct page *page)
4995{
4996 struct zone *zone;
4997 unsigned long flags;
4998 zone = page_zone(page);
4999 spin_lock_irqsave(&zone->lock, flags);
5000 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5001 goto out;
5002 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5003 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5004out:
5005 spin_unlock_irqrestore(&zone->lock, flags);
5006}
5007
5008#ifdef CONFIG_MEMORY_HOTREMOVE
5009/*
5010 * All pages in the range must be isolated before calling this.
5011 */
5012void
5013__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5014{
5015 struct page *page;
5016 struct zone *zone;
5017 int order, i;
5018 unsigned long pfn;
5019 unsigned long flags;
5020 /* find the first valid pfn */
5021 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5022 if (pfn_valid(pfn))
5023 break;
5024 if (pfn == end_pfn)
5025 return;
5026 zone = page_zone(pfn_to_page(pfn));
5027 spin_lock_irqsave(&zone->lock, flags);
5028 pfn = start_pfn;
5029 while (pfn < end_pfn) {
5030 if (!pfn_valid(pfn)) {
5031 pfn++;
5032 continue;
5033 }
5034 page = pfn_to_page(pfn);
5035 BUG_ON(page_count(page));
5036 BUG_ON(!PageBuddy(page));
5037 order = page_order(page);
5038#ifdef CONFIG_DEBUG_VM
5039 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5040 pfn, 1 << order, end_pfn);
5041#endif
5042 list_del(&page->lru);
5043 rmv_page_order(page);
5044 zone->free_area[order].nr_free--;
5045 __mod_zone_page_state(zone, NR_FREE_PAGES,
5046 - (1UL << order));
5047 for (i = 0; i < (1 << order); i++)
5048 SetPageReserved((page+i));
5049 pfn += (1 << order);
5050 }
5051 spin_unlock_irqrestore(&zone->lock, flags);
5052}
5053#endif
This page took 0.041829 seconds and 5 git commands to generate.