mm: let mm_find_pmd fix buggy race with THP fault
[deliverable/linux.git] / mm / shmem.c
... / ...
CommitLineData
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/ramfs.h>
29#include <linux/pagemap.h>
30#include <linux/file.h>
31#include <linux/mm.h>
32#include <linux/export.h>
33#include <linux/swap.h>
34#include <linux/aio.h>
35
36static struct vfsmount *shm_mnt;
37
38#ifdef CONFIG_SHMEM
39/*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45#include <linux/xattr.h>
46#include <linux/exportfs.h>
47#include <linux/posix_acl.h>
48#include <linux/posix_acl_xattr.h>
49#include <linux/mman.h>
50#include <linux/string.h>
51#include <linux/slab.h>
52#include <linux/backing-dev.h>
53#include <linux/shmem_fs.h>
54#include <linux/writeback.h>
55#include <linux/blkdev.h>
56#include <linux/pagevec.h>
57#include <linux/percpu_counter.h>
58#include <linux/falloc.h>
59#include <linux/splice.h>
60#include <linux/security.h>
61#include <linux/swapops.h>
62#include <linux/mempolicy.h>
63#include <linux/namei.h>
64#include <linux/ctype.h>
65#include <linux/migrate.h>
66#include <linux/highmem.h>
67#include <linux/seq_file.h>
68#include <linux/magic.h>
69
70#include <asm/uaccess.h>
71#include <asm/pgtable.h>
72
73#define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
74#define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76/* Pretend that each entry is of this size in directory's i_size */
77#define BOGO_DIRENT_SIZE 20
78
79/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80#define SHORT_SYMLINK_LEN 128
81
82/*
83 * shmem_fallocate and shmem_writepage communicate via inode->i_private
84 * (with i_mutex making sure that it has only one user at a time):
85 * we would prefer not to enlarge the shmem inode just for that.
86 */
87struct shmem_falloc {
88 pgoff_t start; /* start of range currently being fallocated */
89 pgoff_t next; /* the next page offset to be fallocated */
90 pgoff_t nr_falloced; /* how many new pages have been fallocated */
91 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
92};
93
94/* Flag allocation requirements to shmem_getpage */
95enum sgp_type {
96 SGP_READ, /* don't exceed i_size, don't allocate page */
97 SGP_CACHE, /* don't exceed i_size, may allocate page */
98 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
99 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
100 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
101};
102
103#ifdef CONFIG_TMPFS
104static unsigned long shmem_default_max_blocks(void)
105{
106 return totalram_pages / 2;
107}
108
109static unsigned long shmem_default_max_inodes(void)
110{
111 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
112}
113#endif
114
115static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
116static int shmem_replace_page(struct page **pagep, gfp_t gfp,
117 struct shmem_inode_info *info, pgoff_t index);
118static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
119 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
120
121static inline int shmem_getpage(struct inode *inode, pgoff_t index,
122 struct page **pagep, enum sgp_type sgp, int *fault_type)
123{
124 return shmem_getpage_gfp(inode, index, pagep, sgp,
125 mapping_gfp_mask(inode->i_mapping), fault_type);
126}
127
128static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
129{
130 return sb->s_fs_info;
131}
132
133/*
134 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
135 * for shared memory and for shared anonymous (/dev/zero) mappings
136 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
137 * consistent with the pre-accounting of private mappings ...
138 */
139static inline int shmem_acct_size(unsigned long flags, loff_t size)
140{
141 return (flags & VM_NORESERVE) ?
142 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
143}
144
145static inline void shmem_unacct_size(unsigned long flags, loff_t size)
146{
147 if (!(flags & VM_NORESERVE))
148 vm_unacct_memory(VM_ACCT(size));
149}
150
151/*
152 * ... whereas tmpfs objects are accounted incrementally as
153 * pages are allocated, in order to allow huge sparse files.
154 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
155 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
156 */
157static inline int shmem_acct_block(unsigned long flags)
158{
159 return (flags & VM_NORESERVE) ?
160 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
161}
162
163static inline void shmem_unacct_blocks(unsigned long flags, long pages)
164{
165 if (flags & VM_NORESERVE)
166 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
167}
168
169static const struct super_operations shmem_ops;
170static const struct address_space_operations shmem_aops;
171static const struct file_operations shmem_file_operations;
172static const struct inode_operations shmem_inode_operations;
173static const struct inode_operations shmem_dir_inode_operations;
174static const struct inode_operations shmem_special_inode_operations;
175static const struct vm_operations_struct shmem_vm_ops;
176
177static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
178 .ra_pages = 0, /* No readahead */
179 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
180};
181
182static LIST_HEAD(shmem_swaplist);
183static DEFINE_MUTEX(shmem_swaplist_mutex);
184
185static int shmem_reserve_inode(struct super_block *sb)
186{
187 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
188 if (sbinfo->max_inodes) {
189 spin_lock(&sbinfo->stat_lock);
190 if (!sbinfo->free_inodes) {
191 spin_unlock(&sbinfo->stat_lock);
192 return -ENOSPC;
193 }
194 sbinfo->free_inodes--;
195 spin_unlock(&sbinfo->stat_lock);
196 }
197 return 0;
198}
199
200static void shmem_free_inode(struct super_block *sb)
201{
202 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
203 if (sbinfo->max_inodes) {
204 spin_lock(&sbinfo->stat_lock);
205 sbinfo->free_inodes++;
206 spin_unlock(&sbinfo->stat_lock);
207 }
208}
209
210/**
211 * shmem_recalc_inode - recalculate the block usage of an inode
212 * @inode: inode to recalc
213 *
214 * We have to calculate the free blocks since the mm can drop
215 * undirtied hole pages behind our back.
216 *
217 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
218 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
219 *
220 * It has to be called with the spinlock held.
221 */
222static void shmem_recalc_inode(struct inode *inode)
223{
224 struct shmem_inode_info *info = SHMEM_I(inode);
225 long freed;
226
227 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
228 if (freed > 0) {
229 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
230 if (sbinfo->max_blocks)
231 percpu_counter_add(&sbinfo->used_blocks, -freed);
232 info->alloced -= freed;
233 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
234 shmem_unacct_blocks(info->flags, freed);
235 }
236}
237
238/*
239 * Replace item expected in radix tree by a new item, while holding tree lock.
240 */
241static int shmem_radix_tree_replace(struct address_space *mapping,
242 pgoff_t index, void *expected, void *replacement)
243{
244 void **pslot;
245 void *item;
246
247 VM_BUG_ON(!expected);
248 VM_BUG_ON(!replacement);
249 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
250 if (!pslot)
251 return -ENOENT;
252 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
253 if (item != expected)
254 return -ENOENT;
255 radix_tree_replace_slot(pslot, replacement);
256 return 0;
257}
258
259/*
260 * Sometimes, before we decide whether to proceed or to fail, we must check
261 * that an entry was not already brought back from swap by a racing thread.
262 *
263 * Checking page is not enough: by the time a SwapCache page is locked, it
264 * might be reused, and again be SwapCache, using the same swap as before.
265 */
266static bool shmem_confirm_swap(struct address_space *mapping,
267 pgoff_t index, swp_entry_t swap)
268{
269 void *item;
270
271 rcu_read_lock();
272 item = radix_tree_lookup(&mapping->page_tree, index);
273 rcu_read_unlock();
274 return item == swp_to_radix_entry(swap);
275}
276
277/*
278 * Like add_to_page_cache_locked, but error if expected item has gone.
279 */
280static int shmem_add_to_page_cache(struct page *page,
281 struct address_space *mapping,
282 pgoff_t index, gfp_t gfp, void *expected)
283{
284 int error;
285
286 VM_BUG_ON_PAGE(!PageLocked(page), page);
287 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
288
289 page_cache_get(page);
290 page->mapping = mapping;
291 page->index = index;
292
293 spin_lock_irq(&mapping->tree_lock);
294 if (!expected)
295 error = radix_tree_insert(&mapping->page_tree, index, page);
296 else
297 error = shmem_radix_tree_replace(mapping, index, expected,
298 page);
299 if (!error) {
300 mapping->nrpages++;
301 __inc_zone_page_state(page, NR_FILE_PAGES);
302 __inc_zone_page_state(page, NR_SHMEM);
303 spin_unlock_irq(&mapping->tree_lock);
304 } else {
305 page->mapping = NULL;
306 spin_unlock_irq(&mapping->tree_lock);
307 page_cache_release(page);
308 }
309 return error;
310}
311
312/*
313 * Like delete_from_page_cache, but substitutes swap for page.
314 */
315static void shmem_delete_from_page_cache(struct page *page, void *radswap)
316{
317 struct address_space *mapping = page->mapping;
318 int error;
319
320 spin_lock_irq(&mapping->tree_lock);
321 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
322 page->mapping = NULL;
323 mapping->nrpages--;
324 __dec_zone_page_state(page, NR_FILE_PAGES);
325 __dec_zone_page_state(page, NR_SHMEM);
326 spin_unlock_irq(&mapping->tree_lock);
327 page_cache_release(page);
328 BUG_ON(error);
329}
330
331/*
332 * Remove swap entry from radix tree, free the swap and its page cache.
333 */
334static int shmem_free_swap(struct address_space *mapping,
335 pgoff_t index, void *radswap)
336{
337 void *old;
338
339 spin_lock_irq(&mapping->tree_lock);
340 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
341 spin_unlock_irq(&mapping->tree_lock);
342 if (old != radswap)
343 return -ENOENT;
344 free_swap_and_cache(radix_to_swp_entry(radswap));
345 return 0;
346}
347
348/*
349 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
350 */
351void shmem_unlock_mapping(struct address_space *mapping)
352{
353 struct pagevec pvec;
354 pgoff_t indices[PAGEVEC_SIZE];
355 pgoff_t index = 0;
356
357 pagevec_init(&pvec, 0);
358 /*
359 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
360 */
361 while (!mapping_unevictable(mapping)) {
362 /*
363 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
364 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
365 */
366 pvec.nr = find_get_entries(mapping, index,
367 PAGEVEC_SIZE, pvec.pages, indices);
368 if (!pvec.nr)
369 break;
370 index = indices[pvec.nr - 1] + 1;
371 pagevec_remove_exceptionals(&pvec);
372 check_move_unevictable_pages(pvec.pages, pvec.nr);
373 pagevec_release(&pvec);
374 cond_resched();
375 }
376}
377
378/*
379 * Remove range of pages and swap entries from radix tree, and free them.
380 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
381 */
382static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
383 bool unfalloc)
384{
385 struct address_space *mapping = inode->i_mapping;
386 struct shmem_inode_info *info = SHMEM_I(inode);
387 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
388 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
389 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
390 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
391 struct pagevec pvec;
392 pgoff_t indices[PAGEVEC_SIZE];
393 long nr_swaps_freed = 0;
394 pgoff_t index;
395 int i;
396
397 if (lend == -1)
398 end = -1; /* unsigned, so actually very big */
399
400 pagevec_init(&pvec, 0);
401 index = start;
402 while (index < end) {
403 pvec.nr = find_get_entries(mapping, index,
404 min(end - index, (pgoff_t)PAGEVEC_SIZE),
405 pvec.pages, indices);
406 if (!pvec.nr)
407 break;
408 mem_cgroup_uncharge_start();
409 for (i = 0; i < pagevec_count(&pvec); i++) {
410 struct page *page = pvec.pages[i];
411
412 index = indices[i];
413 if (index >= end)
414 break;
415
416 if (radix_tree_exceptional_entry(page)) {
417 if (unfalloc)
418 continue;
419 nr_swaps_freed += !shmem_free_swap(mapping,
420 index, page);
421 continue;
422 }
423
424 if (!trylock_page(page))
425 continue;
426 if (!unfalloc || !PageUptodate(page)) {
427 if (page->mapping == mapping) {
428 VM_BUG_ON_PAGE(PageWriteback(page), page);
429 truncate_inode_page(mapping, page);
430 }
431 }
432 unlock_page(page);
433 }
434 pagevec_remove_exceptionals(&pvec);
435 pagevec_release(&pvec);
436 mem_cgroup_uncharge_end();
437 cond_resched();
438 index++;
439 }
440
441 if (partial_start) {
442 struct page *page = NULL;
443 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
444 if (page) {
445 unsigned int top = PAGE_CACHE_SIZE;
446 if (start > end) {
447 top = partial_end;
448 partial_end = 0;
449 }
450 zero_user_segment(page, partial_start, top);
451 set_page_dirty(page);
452 unlock_page(page);
453 page_cache_release(page);
454 }
455 }
456 if (partial_end) {
457 struct page *page = NULL;
458 shmem_getpage(inode, end, &page, SGP_READ, NULL);
459 if (page) {
460 zero_user_segment(page, 0, partial_end);
461 set_page_dirty(page);
462 unlock_page(page);
463 page_cache_release(page);
464 }
465 }
466 if (start >= end)
467 return;
468
469 index = start;
470 for ( ; ; ) {
471 cond_resched();
472
473 pvec.nr = find_get_entries(mapping, index,
474 min(end - index, (pgoff_t)PAGEVEC_SIZE),
475 pvec.pages, indices);
476 if (!pvec.nr) {
477 if (index == start || unfalloc)
478 break;
479 index = start;
480 continue;
481 }
482 if ((index == start || unfalloc) && indices[0] >= end) {
483 pagevec_remove_exceptionals(&pvec);
484 pagevec_release(&pvec);
485 break;
486 }
487 mem_cgroup_uncharge_start();
488 for (i = 0; i < pagevec_count(&pvec); i++) {
489 struct page *page = pvec.pages[i];
490
491 index = indices[i];
492 if (index >= end)
493 break;
494
495 if (radix_tree_exceptional_entry(page)) {
496 if (unfalloc)
497 continue;
498 nr_swaps_freed += !shmem_free_swap(mapping,
499 index, page);
500 continue;
501 }
502
503 lock_page(page);
504 if (!unfalloc || !PageUptodate(page)) {
505 if (page->mapping == mapping) {
506 VM_BUG_ON_PAGE(PageWriteback(page), page);
507 truncate_inode_page(mapping, page);
508 }
509 }
510 unlock_page(page);
511 }
512 pagevec_remove_exceptionals(&pvec);
513 pagevec_release(&pvec);
514 mem_cgroup_uncharge_end();
515 index++;
516 }
517
518 spin_lock(&info->lock);
519 info->swapped -= nr_swaps_freed;
520 shmem_recalc_inode(inode);
521 spin_unlock(&info->lock);
522}
523
524void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
525{
526 shmem_undo_range(inode, lstart, lend, false);
527 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
528}
529EXPORT_SYMBOL_GPL(shmem_truncate_range);
530
531static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
532{
533 struct inode *inode = dentry->d_inode;
534 int error;
535
536 error = inode_change_ok(inode, attr);
537 if (error)
538 return error;
539
540 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
541 loff_t oldsize = inode->i_size;
542 loff_t newsize = attr->ia_size;
543
544 if (newsize != oldsize) {
545 i_size_write(inode, newsize);
546 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
547 }
548 if (newsize < oldsize) {
549 loff_t holebegin = round_up(newsize, PAGE_SIZE);
550 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
551 shmem_truncate_range(inode, newsize, (loff_t)-1);
552 /* unmap again to remove racily COWed private pages */
553 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
554 }
555 }
556
557 setattr_copy(inode, attr);
558 if (attr->ia_valid & ATTR_MODE)
559 error = posix_acl_chmod(inode, inode->i_mode);
560 return error;
561}
562
563static void shmem_evict_inode(struct inode *inode)
564{
565 struct shmem_inode_info *info = SHMEM_I(inode);
566
567 if (inode->i_mapping->a_ops == &shmem_aops) {
568 shmem_unacct_size(info->flags, inode->i_size);
569 inode->i_size = 0;
570 shmem_truncate_range(inode, 0, (loff_t)-1);
571 if (!list_empty(&info->swaplist)) {
572 mutex_lock(&shmem_swaplist_mutex);
573 list_del_init(&info->swaplist);
574 mutex_unlock(&shmem_swaplist_mutex);
575 }
576 } else
577 kfree(info->symlink);
578
579 simple_xattrs_free(&info->xattrs);
580 WARN_ON(inode->i_blocks);
581 shmem_free_inode(inode->i_sb);
582 clear_inode(inode);
583}
584
585/*
586 * If swap found in inode, free it and move page from swapcache to filecache.
587 */
588static int shmem_unuse_inode(struct shmem_inode_info *info,
589 swp_entry_t swap, struct page **pagep)
590{
591 struct address_space *mapping = info->vfs_inode.i_mapping;
592 void *radswap;
593 pgoff_t index;
594 gfp_t gfp;
595 int error = 0;
596
597 radswap = swp_to_radix_entry(swap);
598 index = radix_tree_locate_item(&mapping->page_tree, radswap);
599 if (index == -1)
600 return 0;
601
602 /*
603 * Move _head_ to start search for next from here.
604 * But be careful: shmem_evict_inode checks list_empty without taking
605 * mutex, and there's an instant in list_move_tail when info->swaplist
606 * would appear empty, if it were the only one on shmem_swaplist.
607 */
608 if (shmem_swaplist.next != &info->swaplist)
609 list_move_tail(&shmem_swaplist, &info->swaplist);
610
611 gfp = mapping_gfp_mask(mapping);
612 if (shmem_should_replace_page(*pagep, gfp)) {
613 mutex_unlock(&shmem_swaplist_mutex);
614 error = shmem_replace_page(pagep, gfp, info, index);
615 mutex_lock(&shmem_swaplist_mutex);
616 /*
617 * We needed to drop mutex to make that restrictive page
618 * allocation, but the inode might have been freed while we
619 * dropped it: although a racing shmem_evict_inode() cannot
620 * complete without emptying the radix_tree, our page lock
621 * on this swapcache page is not enough to prevent that -
622 * free_swap_and_cache() of our swap entry will only
623 * trylock_page(), removing swap from radix_tree whatever.
624 *
625 * We must not proceed to shmem_add_to_page_cache() if the
626 * inode has been freed, but of course we cannot rely on
627 * inode or mapping or info to check that. However, we can
628 * safely check if our swap entry is still in use (and here
629 * it can't have got reused for another page): if it's still
630 * in use, then the inode cannot have been freed yet, and we
631 * can safely proceed (if it's no longer in use, that tells
632 * nothing about the inode, but we don't need to unuse swap).
633 */
634 if (!page_swapcount(*pagep))
635 error = -ENOENT;
636 }
637
638 /*
639 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
640 * but also to hold up shmem_evict_inode(): so inode cannot be freed
641 * beneath us (pagelock doesn't help until the page is in pagecache).
642 */
643 if (!error)
644 error = shmem_add_to_page_cache(*pagep, mapping, index,
645 GFP_NOWAIT, radswap);
646 if (error != -ENOMEM) {
647 /*
648 * Truncation and eviction use free_swap_and_cache(), which
649 * only does trylock page: if we raced, best clean up here.
650 */
651 delete_from_swap_cache(*pagep);
652 set_page_dirty(*pagep);
653 if (!error) {
654 spin_lock(&info->lock);
655 info->swapped--;
656 spin_unlock(&info->lock);
657 swap_free(swap);
658 }
659 error = 1; /* not an error, but entry was found */
660 }
661 return error;
662}
663
664/*
665 * Search through swapped inodes to find and replace swap by page.
666 */
667int shmem_unuse(swp_entry_t swap, struct page *page)
668{
669 struct list_head *this, *next;
670 struct shmem_inode_info *info;
671 int found = 0;
672 int error = 0;
673
674 /*
675 * There's a faint possibility that swap page was replaced before
676 * caller locked it: caller will come back later with the right page.
677 */
678 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
679 goto out;
680
681 /*
682 * Charge page using GFP_KERNEL while we can wait, before taking
683 * the shmem_swaplist_mutex which might hold up shmem_writepage().
684 * Charged back to the user (not to caller) when swap account is used.
685 */
686 error = mem_cgroup_charge_file(page, current->mm, GFP_KERNEL);
687 if (error)
688 goto out;
689 /* No radix_tree_preload: swap entry keeps a place for page in tree */
690
691 mutex_lock(&shmem_swaplist_mutex);
692 list_for_each_safe(this, next, &shmem_swaplist) {
693 info = list_entry(this, struct shmem_inode_info, swaplist);
694 if (info->swapped)
695 found = shmem_unuse_inode(info, swap, &page);
696 else
697 list_del_init(&info->swaplist);
698 cond_resched();
699 if (found)
700 break;
701 }
702 mutex_unlock(&shmem_swaplist_mutex);
703
704 if (found < 0)
705 error = found;
706out:
707 unlock_page(page);
708 page_cache_release(page);
709 return error;
710}
711
712/*
713 * Move the page from the page cache to the swap cache.
714 */
715static int shmem_writepage(struct page *page, struct writeback_control *wbc)
716{
717 struct shmem_inode_info *info;
718 struct address_space *mapping;
719 struct inode *inode;
720 swp_entry_t swap;
721 pgoff_t index;
722
723 BUG_ON(!PageLocked(page));
724 mapping = page->mapping;
725 index = page->index;
726 inode = mapping->host;
727 info = SHMEM_I(inode);
728 if (info->flags & VM_LOCKED)
729 goto redirty;
730 if (!total_swap_pages)
731 goto redirty;
732
733 /*
734 * shmem_backing_dev_info's capabilities prevent regular writeback or
735 * sync from ever calling shmem_writepage; but a stacking filesystem
736 * might use ->writepage of its underlying filesystem, in which case
737 * tmpfs should write out to swap only in response to memory pressure,
738 * and not for the writeback threads or sync.
739 */
740 if (!wbc->for_reclaim) {
741 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
742 goto redirty;
743 }
744
745 /*
746 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
747 * value into swapfile.c, the only way we can correctly account for a
748 * fallocated page arriving here is now to initialize it and write it.
749 *
750 * That's okay for a page already fallocated earlier, but if we have
751 * not yet completed the fallocation, then (a) we want to keep track
752 * of this page in case we have to undo it, and (b) it may not be a
753 * good idea to continue anyway, once we're pushing into swap. So
754 * reactivate the page, and let shmem_fallocate() quit when too many.
755 */
756 if (!PageUptodate(page)) {
757 if (inode->i_private) {
758 struct shmem_falloc *shmem_falloc;
759 spin_lock(&inode->i_lock);
760 shmem_falloc = inode->i_private;
761 if (shmem_falloc &&
762 index >= shmem_falloc->start &&
763 index < shmem_falloc->next)
764 shmem_falloc->nr_unswapped++;
765 else
766 shmem_falloc = NULL;
767 spin_unlock(&inode->i_lock);
768 if (shmem_falloc)
769 goto redirty;
770 }
771 clear_highpage(page);
772 flush_dcache_page(page);
773 SetPageUptodate(page);
774 }
775
776 swap = get_swap_page();
777 if (!swap.val)
778 goto redirty;
779
780 /*
781 * Add inode to shmem_unuse()'s list of swapped-out inodes,
782 * if it's not already there. Do it now before the page is
783 * moved to swap cache, when its pagelock no longer protects
784 * the inode from eviction. But don't unlock the mutex until
785 * we've incremented swapped, because shmem_unuse_inode() will
786 * prune a !swapped inode from the swaplist under this mutex.
787 */
788 mutex_lock(&shmem_swaplist_mutex);
789 if (list_empty(&info->swaplist))
790 list_add_tail(&info->swaplist, &shmem_swaplist);
791
792 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
793 swap_shmem_alloc(swap);
794 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
795
796 spin_lock(&info->lock);
797 info->swapped++;
798 shmem_recalc_inode(inode);
799 spin_unlock(&info->lock);
800
801 mutex_unlock(&shmem_swaplist_mutex);
802 BUG_ON(page_mapped(page));
803 swap_writepage(page, wbc);
804 return 0;
805 }
806
807 mutex_unlock(&shmem_swaplist_mutex);
808 swapcache_free(swap, NULL);
809redirty:
810 set_page_dirty(page);
811 if (wbc->for_reclaim)
812 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
813 unlock_page(page);
814 return 0;
815}
816
817#ifdef CONFIG_NUMA
818#ifdef CONFIG_TMPFS
819static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
820{
821 char buffer[64];
822
823 if (!mpol || mpol->mode == MPOL_DEFAULT)
824 return; /* show nothing */
825
826 mpol_to_str(buffer, sizeof(buffer), mpol);
827
828 seq_printf(seq, ",mpol=%s", buffer);
829}
830
831static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
832{
833 struct mempolicy *mpol = NULL;
834 if (sbinfo->mpol) {
835 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
836 mpol = sbinfo->mpol;
837 mpol_get(mpol);
838 spin_unlock(&sbinfo->stat_lock);
839 }
840 return mpol;
841}
842#endif /* CONFIG_TMPFS */
843
844static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
845 struct shmem_inode_info *info, pgoff_t index)
846{
847 struct vm_area_struct pvma;
848 struct page *page;
849
850 /* Create a pseudo vma that just contains the policy */
851 pvma.vm_start = 0;
852 /* Bias interleave by inode number to distribute better across nodes */
853 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
854 pvma.vm_ops = NULL;
855 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
856
857 page = swapin_readahead(swap, gfp, &pvma, 0);
858
859 /* Drop reference taken by mpol_shared_policy_lookup() */
860 mpol_cond_put(pvma.vm_policy);
861
862 return page;
863}
864
865static struct page *shmem_alloc_page(gfp_t gfp,
866 struct shmem_inode_info *info, pgoff_t index)
867{
868 struct vm_area_struct pvma;
869 struct page *page;
870
871 /* Create a pseudo vma that just contains the policy */
872 pvma.vm_start = 0;
873 /* Bias interleave by inode number to distribute better across nodes */
874 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
875 pvma.vm_ops = NULL;
876 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
877
878 page = alloc_page_vma(gfp, &pvma, 0);
879
880 /* Drop reference taken by mpol_shared_policy_lookup() */
881 mpol_cond_put(pvma.vm_policy);
882
883 return page;
884}
885#else /* !CONFIG_NUMA */
886#ifdef CONFIG_TMPFS
887static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
888{
889}
890#endif /* CONFIG_TMPFS */
891
892static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
893 struct shmem_inode_info *info, pgoff_t index)
894{
895 return swapin_readahead(swap, gfp, NULL, 0);
896}
897
898static inline struct page *shmem_alloc_page(gfp_t gfp,
899 struct shmem_inode_info *info, pgoff_t index)
900{
901 return alloc_page(gfp);
902}
903#endif /* CONFIG_NUMA */
904
905#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
906static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
907{
908 return NULL;
909}
910#endif
911
912/*
913 * When a page is moved from swapcache to shmem filecache (either by the
914 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
915 * shmem_unuse_inode()), it may have been read in earlier from swap, in
916 * ignorance of the mapping it belongs to. If that mapping has special
917 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
918 * we may need to copy to a suitable page before moving to filecache.
919 *
920 * In a future release, this may well be extended to respect cpuset and
921 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
922 * but for now it is a simple matter of zone.
923 */
924static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
925{
926 return page_zonenum(page) > gfp_zone(gfp);
927}
928
929static int shmem_replace_page(struct page **pagep, gfp_t gfp,
930 struct shmem_inode_info *info, pgoff_t index)
931{
932 struct page *oldpage, *newpage;
933 struct address_space *swap_mapping;
934 pgoff_t swap_index;
935 int error;
936
937 oldpage = *pagep;
938 swap_index = page_private(oldpage);
939 swap_mapping = page_mapping(oldpage);
940
941 /*
942 * We have arrived here because our zones are constrained, so don't
943 * limit chance of success by further cpuset and node constraints.
944 */
945 gfp &= ~GFP_CONSTRAINT_MASK;
946 newpage = shmem_alloc_page(gfp, info, index);
947 if (!newpage)
948 return -ENOMEM;
949
950 page_cache_get(newpage);
951 copy_highpage(newpage, oldpage);
952 flush_dcache_page(newpage);
953
954 __set_page_locked(newpage);
955 SetPageUptodate(newpage);
956 SetPageSwapBacked(newpage);
957 set_page_private(newpage, swap_index);
958 SetPageSwapCache(newpage);
959
960 /*
961 * Our caller will very soon move newpage out of swapcache, but it's
962 * a nice clean interface for us to replace oldpage by newpage there.
963 */
964 spin_lock_irq(&swap_mapping->tree_lock);
965 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
966 newpage);
967 if (!error) {
968 __inc_zone_page_state(newpage, NR_FILE_PAGES);
969 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
970 }
971 spin_unlock_irq(&swap_mapping->tree_lock);
972
973 if (unlikely(error)) {
974 /*
975 * Is this possible? I think not, now that our callers check
976 * both PageSwapCache and page_private after getting page lock;
977 * but be defensive. Reverse old to newpage for clear and free.
978 */
979 oldpage = newpage;
980 } else {
981 mem_cgroup_replace_page_cache(oldpage, newpage);
982 lru_cache_add_anon(newpage);
983 *pagep = newpage;
984 }
985
986 ClearPageSwapCache(oldpage);
987 set_page_private(oldpage, 0);
988
989 unlock_page(oldpage);
990 page_cache_release(oldpage);
991 page_cache_release(oldpage);
992 return error;
993}
994
995/*
996 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
997 *
998 * If we allocate a new one we do not mark it dirty. That's up to the
999 * vm. If we swap it in we mark it dirty since we also free the swap
1000 * entry since a page cannot live in both the swap and page cache
1001 */
1002static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1003 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1004{
1005 struct address_space *mapping = inode->i_mapping;
1006 struct shmem_inode_info *info;
1007 struct shmem_sb_info *sbinfo;
1008 struct page *page;
1009 swp_entry_t swap;
1010 int error;
1011 int once = 0;
1012 int alloced = 0;
1013
1014 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1015 return -EFBIG;
1016repeat:
1017 swap.val = 0;
1018 page = find_lock_entry(mapping, index);
1019 if (radix_tree_exceptional_entry(page)) {
1020 swap = radix_to_swp_entry(page);
1021 page = NULL;
1022 }
1023
1024 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1025 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1026 error = -EINVAL;
1027 goto failed;
1028 }
1029
1030 /* fallocated page? */
1031 if (page && !PageUptodate(page)) {
1032 if (sgp != SGP_READ)
1033 goto clear;
1034 unlock_page(page);
1035 page_cache_release(page);
1036 page = NULL;
1037 }
1038 if (page || (sgp == SGP_READ && !swap.val)) {
1039 *pagep = page;
1040 return 0;
1041 }
1042
1043 /*
1044 * Fast cache lookup did not find it:
1045 * bring it back from swap or allocate.
1046 */
1047 info = SHMEM_I(inode);
1048 sbinfo = SHMEM_SB(inode->i_sb);
1049
1050 if (swap.val) {
1051 /* Look it up and read it in.. */
1052 page = lookup_swap_cache(swap);
1053 if (!page) {
1054 /* here we actually do the io */
1055 if (fault_type)
1056 *fault_type |= VM_FAULT_MAJOR;
1057 page = shmem_swapin(swap, gfp, info, index);
1058 if (!page) {
1059 error = -ENOMEM;
1060 goto failed;
1061 }
1062 }
1063
1064 /* We have to do this with page locked to prevent races */
1065 lock_page(page);
1066 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1067 !shmem_confirm_swap(mapping, index, swap)) {
1068 error = -EEXIST; /* try again */
1069 goto unlock;
1070 }
1071 if (!PageUptodate(page)) {
1072 error = -EIO;
1073 goto failed;
1074 }
1075 wait_on_page_writeback(page);
1076
1077 if (shmem_should_replace_page(page, gfp)) {
1078 error = shmem_replace_page(&page, gfp, info, index);
1079 if (error)
1080 goto failed;
1081 }
1082
1083 error = mem_cgroup_charge_file(page, current->mm,
1084 gfp & GFP_RECLAIM_MASK);
1085 if (!error) {
1086 error = shmem_add_to_page_cache(page, mapping, index,
1087 gfp, swp_to_radix_entry(swap));
1088 /*
1089 * We already confirmed swap under page lock, and make
1090 * no memory allocation here, so usually no possibility
1091 * of error; but free_swap_and_cache() only trylocks a
1092 * page, so it is just possible that the entry has been
1093 * truncated or holepunched since swap was confirmed.
1094 * shmem_undo_range() will have done some of the
1095 * unaccounting, now delete_from_swap_cache() will do
1096 * the rest (including mem_cgroup_uncharge_swapcache).
1097 * Reset swap.val? No, leave it so "failed" goes back to
1098 * "repeat": reading a hole and writing should succeed.
1099 */
1100 if (error)
1101 delete_from_swap_cache(page);
1102 }
1103 if (error)
1104 goto failed;
1105
1106 spin_lock(&info->lock);
1107 info->swapped--;
1108 shmem_recalc_inode(inode);
1109 spin_unlock(&info->lock);
1110
1111 delete_from_swap_cache(page);
1112 set_page_dirty(page);
1113 swap_free(swap);
1114
1115 } else {
1116 if (shmem_acct_block(info->flags)) {
1117 error = -ENOSPC;
1118 goto failed;
1119 }
1120 if (sbinfo->max_blocks) {
1121 if (percpu_counter_compare(&sbinfo->used_blocks,
1122 sbinfo->max_blocks) >= 0) {
1123 error = -ENOSPC;
1124 goto unacct;
1125 }
1126 percpu_counter_inc(&sbinfo->used_blocks);
1127 }
1128
1129 page = shmem_alloc_page(gfp, info, index);
1130 if (!page) {
1131 error = -ENOMEM;
1132 goto decused;
1133 }
1134
1135 __SetPageSwapBacked(page);
1136 __set_page_locked(page);
1137 error = mem_cgroup_charge_file(page, current->mm,
1138 gfp & GFP_RECLAIM_MASK);
1139 if (error)
1140 goto decused;
1141 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1142 if (!error) {
1143 error = shmem_add_to_page_cache(page, mapping, index,
1144 gfp, NULL);
1145 radix_tree_preload_end();
1146 }
1147 if (error) {
1148 mem_cgroup_uncharge_cache_page(page);
1149 goto decused;
1150 }
1151 lru_cache_add_anon(page);
1152
1153 spin_lock(&info->lock);
1154 info->alloced++;
1155 inode->i_blocks += BLOCKS_PER_PAGE;
1156 shmem_recalc_inode(inode);
1157 spin_unlock(&info->lock);
1158 alloced = true;
1159
1160 /*
1161 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1162 */
1163 if (sgp == SGP_FALLOC)
1164 sgp = SGP_WRITE;
1165clear:
1166 /*
1167 * Let SGP_WRITE caller clear ends if write does not fill page;
1168 * but SGP_FALLOC on a page fallocated earlier must initialize
1169 * it now, lest undo on failure cancel our earlier guarantee.
1170 */
1171 if (sgp != SGP_WRITE) {
1172 clear_highpage(page);
1173 flush_dcache_page(page);
1174 SetPageUptodate(page);
1175 }
1176 if (sgp == SGP_DIRTY)
1177 set_page_dirty(page);
1178 }
1179
1180 /* Perhaps the file has been truncated since we checked */
1181 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1182 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1183 error = -EINVAL;
1184 if (alloced)
1185 goto trunc;
1186 else
1187 goto failed;
1188 }
1189 *pagep = page;
1190 return 0;
1191
1192 /*
1193 * Error recovery.
1194 */
1195trunc:
1196 info = SHMEM_I(inode);
1197 ClearPageDirty(page);
1198 delete_from_page_cache(page);
1199 spin_lock(&info->lock);
1200 info->alloced--;
1201 inode->i_blocks -= BLOCKS_PER_PAGE;
1202 spin_unlock(&info->lock);
1203decused:
1204 sbinfo = SHMEM_SB(inode->i_sb);
1205 if (sbinfo->max_blocks)
1206 percpu_counter_add(&sbinfo->used_blocks, -1);
1207unacct:
1208 shmem_unacct_blocks(info->flags, 1);
1209failed:
1210 if (swap.val && error != -EINVAL &&
1211 !shmem_confirm_swap(mapping, index, swap))
1212 error = -EEXIST;
1213unlock:
1214 if (page) {
1215 unlock_page(page);
1216 page_cache_release(page);
1217 }
1218 if (error == -ENOSPC && !once++) {
1219 info = SHMEM_I(inode);
1220 spin_lock(&info->lock);
1221 shmem_recalc_inode(inode);
1222 spin_unlock(&info->lock);
1223 goto repeat;
1224 }
1225 if (error == -EEXIST) /* from above or from radix_tree_insert */
1226 goto repeat;
1227 return error;
1228}
1229
1230static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1231{
1232 struct inode *inode = file_inode(vma->vm_file);
1233 int error;
1234 int ret = VM_FAULT_LOCKED;
1235
1236 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1237 if (error)
1238 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1239
1240 if (ret & VM_FAULT_MAJOR) {
1241 count_vm_event(PGMAJFAULT);
1242 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1243 }
1244 return ret;
1245}
1246
1247#ifdef CONFIG_NUMA
1248static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1249{
1250 struct inode *inode = file_inode(vma->vm_file);
1251 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1252}
1253
1254static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1255 unsigned long addr)
1256{
1257 struct inode *inode = file_inode(vma->vm_file);
1258 pgoff_t index;
1259
1260 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1261 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1262}
1263#endif
1264
1265int shmem_lock(struct file *file, int lock, struct user_struct *user)
1266{
1267 struct inode *inode = file_inode(file);
1268 struct shmem_inode_info *info = SHMEM_I(inode);
1269 int retval = -ENOMEM;
1270
1271 spin_lock(&info->lock);
1272 if (lock && !(info->flags & VM_LOCKED)) {
1273 if (!user_shm_lock(inode->i_size, user))
1274 goto out_nomem;
1275 info->flags |= VM_LOCKED;
1276 mapping_set_unevictable(file->f_mapping);
1277 }
1278 if (!lock && (info->flags & VM_LOCKED) && user) {
1279 user_shm_unlock(inode->i_size, user);
1280 info->flags &= ~VM_LOCKED;
1281 mapping_clear_unevictable(file->f_mapping);
1282 }
1283 retval = 0;
1284
1285out_nomem:
1286 spin_unlock(&info->lock);
1287 return retval;
1288}
1289
1290static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1291{
1292 file_accessed(file);
1293 vma->vm_ops = &shmem_vm_ops;
1294 return 0;
1295}
1296
1297static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1298 umode_t mode, dev_t dev, unsigned long flags)
1299{
1300 struct inode *inode;
1301 struct shmem_inode_info *info;
1302 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1303
1304 if (shmem_reserve_inode(sb))
1305 return NULL;
1306
1307 inode = new_inode(sb);
1308 if (inode) {
1309 inode->i_ino = get_next_ino();
1310 inode_init_owner(inode, dir, mode);
1311 inode->i_blocks = 0;
1312 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1313 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1314 inode->i_generation = get_seconds();
1315 info = SHMEM_I(inode);
1316 memset(info, 0, (char *)inode - (char *)info);
1317 spin_lock_init(&info->lock);
1318 info->flags = flags & VM_NORESERVE;
1319 INIT_LIST_HEAD(&info->swaplist);
1320 simple_xattrs_init(&info->xattrs);
1321 cache_no_acl(inode);
1322
1323 switch (mode & S_IFMT) {
1324 default:
1325 inode->i_op = &shmem_special_inode_operations;
1326 init_special_inode(inode, mode, dev);
1327 break;
1328 case S_IFREG:
1329 inode->i_mapping->a_ops = &shmem_aops;
1330 inode->i_op = &shmem_inode_operations;
1331 inode->i_fop = &shmem_file_operations;
1332 mpol_shared_policy_init(&info->policy,
1333 shmem_get_sbmpol(sbinfo));
1334 break;
1335 case S_IFDIR:
1336 inc_nlink(inode);
1337 /* Some things misbehave if size == 0 on a directory */
1338 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1339 inode->i_op = &shmem_dir_inode_operations;
1340 inode->i_fop = &simple_dir_operations;
1341 break;
1342 case S_IFLNK:
1343 /*
1344 * Must not load anything in the rbtree,
1345 * mpol_free_shared_policy will not be called.
1346 */
1347 mpol_shared_policy_init(&info->policy, NULL);
1348 break;
1349 }
1350 } else
1351 shmem_free_inode(sb);
1352 return inode;
1353}
1354
1355bool shmem_mapping(struct address_space *mapping)
1356{
1357 return mapping->backing_dev_info == &shmem_backing_dev_info;
1358}
1359
1360#ifdef CONFIG_TMPFS
1361static const struct inode_operations shmem_symlink_inode_operations;
1362static const struct inode_operations shmem_short_symlink_operations;
1363
1364#ifdef CONFIG_TMPFS_XATTR
1365static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1366#else
1367#define shmem_initxattrs NULL
1368#endif
1369
1370static int
1371shmem_write_begin(struct file *file, struct address_space *mapping,
1372 loff_t pos, unsigned len, unsigned flags,
1373 struct page **pagep, void **fsdata)
1374{
1375 int ret;
1376 struct inode *inode = mapping->host;
1377 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1378 ret = shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1379 if (ret == 0 && *pagep)
1380 init_page_accessed(*pagep);
1381 return ret;
1382}
1383
1384static int
1385shmem_write_end(struct file *file, struct address_space *mapping,
1386 loff_t pos, unsigned len, unsigned copied,
1387 struct page *page, void *fsdata)
1388{
1389 struct inode *inode = mapping->host;
1390
1391 if (pos + copied > inode->i_size)
1392 i_size_write(inode, pos + copied);
1393
1394 if (!PageUptodate(page)) {
1395 if (copied < PAGE_CACHE_SIZE) {
1396 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1397 zero_user_segments(page, 0, from,
1398 from + copied, PAGE_CACHE_SIZE);
1399 }
1400 SetPageUptodate(page);
1401 }
1402 set_page_dirty(page);
1403 unlock_page(page);
1404 page_cache_release(page);
1405
1406 return copied;
1407}
1408
1409static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1410{
1411 struct file *file = iocb->ki_filp;
1412 struct inode *inode = file_inode(file);
1413 struct address_space *mapping = inode->i_mapping;
1414 pgoff_t index;
1415 unsigned long offset;
1416 enum sgp_type sgp = SGP_READ;
1417 int error = 0;
1418 ssize_t retval = 0;
1419 loff_t *ppos = &iocb->ki_pos;
1420
1421 /*
1422 * Might this read be for a stacking filesystem? Then when reading
1423 * holes of a sparse file, we actually need to allocate those pages,
1424 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1425 */
1426 if (segment_eq(get_fs(), KERNEL_DS))
1427 sgp = SGP_DIRTY;
1428
1429 index = *ppos >> PAGE_CACHE_SHIFT;
1430 offset = *ppos & ~PAGE_CACHE_MASK;
1431
1432 for (;;) {
1433 struct page *page = NULL;
1434 pgoff_t end_index;
1435 unsigned long nr, ret;
1436 loff_t i_size = i_size_read(inode);
1437
1438 end_index = i_size >> PAGE_CACHE_SHIFT;
1439 if (index > end_index)
1440 break;
1441 if (index == end_index) {
1442 nr = i_size & ~PAGE_CACHE_MASK;
1443 if (nr <= offset)
1444 break;
1445 }
1446
1447 error = shmem_getpage(inode, index, &page, sgp, NULL);
1448 if (error) {
1449 if (error == -EINVAL)
1450 error = 0;
1451 break;
1452 }
1453 if (page)
1454 unlock_page(page);
1455
1456 /*
1457 * We must evaluate after, since reads (unlike writes)
1458 * are called without i_mutex protection against truncate
1459 */
1460 nr = PAGE_CACHE_SIZE;
1461 i_size = i_size_read(inode);
1462 end_index = i_size >> PAGE_CACHE_SHIFT;
1463 if (index == end_index) {
1464 nr = i_size & ~PAGE_CACHE_MASK;
1465 if (nr <= offset) {
1466 if (page)
1467 page_cache_release(page);
1468 break;
1469 }
1470 }
1471 nr -= offset;
1472
1473 if (page) {
1474 /*
1475 * If users can be writing to this page using arbitrary
1476 * virtual addresses, take care about potential aliasing
1477 * before reading the page on the kernel side.
1478 */
1479 if (mapping_writably_mapped(mapping))
1480 flush_dcache_page(page);
1481 /*
1482 * Mark the page accessed if we read the beginning.
1483 */
1484 if (!offset)
1485 mark_page_accessed(page);
1486 } else {
1487 page = ZERO_PAGE(0);
1488 page_cache_get(page);
1489 }
1490
1491 /*
1492 * Ok, we have the page, and it's up-to-date, so
1493 * now we can copy it to user space...
1494 */
1495 ret = copy_page_to_iter(page, offset, nr, to);
1496 retval += ret;
1497 offset += ret;
1498 index += offset >> PAGE_CACHE_SHIFT;
1499 offset &= ~PAGE_CACHE_MASK;
1500
1501 page_cache_release(page);
1502 if (!iov_iter_count(to))
1503 break;
1504 if (ret < nr) {
1505 error = -EFAULT;
1506 break;
1507 }
1508 cond_resched();
1509 }
1510
1511 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1512 file_accessed(file);
1513 return retval ? retval : error;
1514}
1515
1516static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1517 struct pipe_inode_info *pipe, size_t len,
1518 unsigned int flags)
1519{
1520 struct address_space *mapping = in->f_mapping;
1521 struct inode *inode = mapping->host;
1522 unsigned int loff, nr_pages, req_pages;
1523 struct page *pages[PIPE_DEF_BUFFERS];
1524 struct partial_page partial[PIPE_DEF_BUFFERS];
1525 struct page *page;
1526 pgoff_t index, end_index;
1527 loff_t isize, left;
1528 int error, page_nr;
1529 struct splice_pipe_desc spd = {
1530 .pages = pages,
1531 .partial = partial,
1532 .nr_pages_max = PIPE_DEF_BUFFERS,
1533 .flags = flags,
1534 .ops = &page_cache_pipe_buf_ops,
1535 .spd_release = spd_release_page,
1536 };
1537
1538 isize = i_size_read(inode);
1539 if (unlikely(*ppos >= isize))
1540 return 0;
1541
1542 left = isize - *ppos;
1543 if (unlikely(left < len))
1544 len = left;
1545
1546 if (splice_grow_spd(pipe, &spd))
1547 return -ENOMEM;
1548
1549 index = *ppos >> PAGE_CACHE_SHIFT;
1550 loff = *ppos & ~PAGE_CACHE_MASK;
1551 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1552 nr_pages = min(req_pages, spd.nr_pages_max);
1553
1554 spd.nr_pages = find_get_pages_contig(mapping, index,
1555 nr_pages, spd.pages);
1556 index += spd.nr_pages;
1557 error = 0;
1558
1559 while (spd.nr_pages < nr_pages) {
1560 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1561 if (error)
1562 break;
1563 unlock_page(page);
1564 spd.pages[spd.nr_pages++] = page;
1565 index++;
1566 }
1567
1568 index = *ppos >> PAGE_CACHE_SHIFT;
1569 nr_pages = spd.nr_pages;
1570 spd.nr_pages = 0;
1571
1572 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1573 unsigned int this_len;
1574
1575 if (!len)
1576 break;
1577
1578 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1579 page = spd.pages[page_nr];
1580
1581 if (!PageUptodate(page) || page->mapping != mapping) {
1582 error = shmem_getpage(inode, index, &page,
1583 SGP_CACHE, NULL);
1584 if (error)
1585 break;
1586 unlock_page(page);
1587 page_cache_release(spd.pages[page_nr]);
1588 spd.pages[page_nr] = page;
1589 }
1590
1591 isize = i_size_read(inode);
1592 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1593 if (unlikely(!isize || index > end_index))
1594 break;
1595
1596 if (end_index == index) {
1597 unsigned int plen;
1598
1599 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1600 if (plen <= loff)
1601 break;
1602
1603 this_len = min(this_len, plen - loff);
1604 len = this_len;
1605 }
1606
1607 spd.partial[page_nr].offset = loff;
1608 spd.partial[page_nr].len = this_len;
1609 len -= this_len;
1610 loff = 0;
1611 spd.nr_pages++;
1612 index++;
1613 }
1614
1615 while (page_nr < nr_pages)
1616 page_cache_release(spd.pages[page_nr++]);
1617
1618 if (spd.nr_pages)
1619 error = splice_to_pipe(pipe, &spd);
1620
1621 splice_shrink_spd(&spd);
1622
1623 if (error > 0) {
1624 *ppos += error;
1625 file_accessed(in);
1626 }
1627 return error;
1628}
1629
1630/*
1631 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1632 */
1633static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1634 pgoff_t index, pgoff_t end, int whence)
1635{
1636 struct page *page;
1637 struct pagevec pvec;
1638 pgoff_t indices[PAGEVEC_SIZE];
1639 bool done = false;
1640 int i;
1641
1642 pagevec_init(&pvec, 0);
1643 pvec.nr = 1; /* start small: we may be there already */
1644 while (!done) {
1645 pvec.nr = find_get_entries(mapping, index,
1646 pvec.nr, pvec.pages, indices);
1647 if (!pvec.nr) {
1648 if (whence == SEEK_DATA)
1649 index = end;
1650 break;
1651 }
1652 for (i = 0; i < pvec.nr; i++, index++) {
1653 if (index < indices[i]) {
1654 if (whence == SEEK_HOLE) {
1655 done = true;
1656 break;
1657 }
1658 index = indices[i];
1659 }
1660 page = pvec.pages[i];
1661 if (page && !radix_tree_exceptional_entry(page)) {
1662 if (!PageUptodate(page))
1663 page = NULL;
1664 }
1665 if (index >= end ||
1666 (page && whence == SEEK_DATA) ||
1667 (!page && whence == SEEK_HOLE)) {
1668 done = true;
1669 break;
1670 }
1671 }
1672 pagevec_remove_exceptionals(&pvec);
1673 pagevec_release(&pvec);
1674 pvec.nr = PAGEVEC_SIZE;
1675 cond_resched();
1676 }
1677 return index;
1678}
1679
1680static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1681{
1682 struct address_space *mapping = file->f_mapping;
1683 struct inode *inode = mapping->host;
1684 pgoff_t start, end;
1685 loff_t new_offset;
1686
1687 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1688 return generic_file_llseek_size(file, offset, whence,
1689 MAX_LFS_FILESIZE, i_size_read(inode));
1690 mutex_lock(&inode->i_mutex);
1691 /* We're holding i_mutex so we can access i_size directly */
1692
1693 if (offset < 0)
1694 offset = -EINVAL;
1695 else if (offset >= inode->i_size)
1696 offset = -ENXIO;
1697 else {
1698 start = offset >> PAGE_CACHE_SHIFT;
1699 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1700 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1701 new_offset <<= PAGE_CACHE_SHIFT;
1702 if (new_offset > offset) {
1703 if (new_offset < inode->i_size)
1704 offset = new_offset;
1705 else if (whence == SEEK_DATA)
1706 offset = -ENXIO;
1707 else
1708 offset = inode->i_size;
1709 }
1710 }
1711
1712 if (offset >= 0)
1713 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1714 mutex_unlock(&inode->i_mutex);
1715 return offset;
1716}
1717
1718static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1719 loff_t len)
1720{
1721 struct inode *inode = file_inode(file);
1722 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1723 struct shmem_falloc shmem_falloc;
1724 pgoff_t start, index, end;
1725 int error;
1726
1727 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1728 return -EOPNOTSUPP;
1729
1730 mutex_lock(&inode->i_mutex);
1731
1732 if (mode & FALLOC_FL_PUNCH_HOLE) {
1733 struct address_space *mapping = file->f_mapping;
1734 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1735 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1736
1737 if ((u64)unmap_end > (u64)unmap_start)
1738 unmap_mapping_range(mapping, unmap_start,
1739 1 + unmap_end - unmap_start, 0);
1740 shmem_truncate_range(inode, offset, offset + len - 1);
1741 /* No need to unmap again: hole-punching leaves COWed pages */
1742 error = 0;
1743 goto out;
1744 }
1745
1746 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1747 error = inode_newsize_ok(inode, offset + len);
1748 if (error)
1749 goto out;
1750
1751 start = offset >> PAGE_CACHE_SHIFT;
1752 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1753 /* Try to avoid a swapstorm if len is impossible to satisfy */
1754 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1755 error = -ENOSPC;
1756 goto out;
1757 }
1758
1759 shmem_falloc.start = start;
1760 shmem_falloc.next = start;
1761 shmem_falloc.nr_falloced = 0;
1762 shmem_falloc.nr_unswapped = 0;
1763 spin_lock(&inode->i_lock);
1764 inode->i_private = &shmem_falloc;
1765 spin_unlock(&inode->i_lock);
1766
1767 for (index = start; index < end; index++) {
1768 struct page *page;
1769
1770 /*
1771 * Good, the fallocate(2) manpage permits EINTR: we may have
1772 * been interrupted because we are using up too much memory.
1773 */
1774 if (signal_pending(current))
1775 error = -EINTR;
1776 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1777 error = -ENOMEM;
1778 else
1779 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1780 NULL);
1781 if (error) {
1782 /* Remove the !PageUptodate pages we added */
1783 shmem_undo_range(inode,
1784 (loff_t)start << PAGE_CACHE_SHIFT,
1785 (loff_t)index << PAGE_CACHE_SHIFT, true);
1786 goto undone;
1787 }
1788
1789 /*
1790 * Inform shmem_writepage() how far we have reached.
1791 * No need for lock or barrier: we have the page lock.
1792 */
1793 shmem_falloc.next++;
1794 if (!PageUptodate(page))
1795 shmem_falloc.nr_falloced++;
1796
1797 /*
1798 * If !PageUptodate, leave it that way so that freeable pages
1799 * can be recognized if we need to rollback on error later.
1800 * But set_page_dirty so that memory pressure will swap rather
1801 * than free the pages we are allocating (and SGP_CACHE pages
1802 * might still be clean: we now need to mark those dirty too).
1803 */
1804 set_page_dirty(page);
1805 unlock_page(page);
1806 page_cache_release(page);
1807 cond_resched();
1808 }
1809
1810 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1811 i_size_write(inode, offset + len);
1812 inode->i_ctime = CURRENT_TIME;
1813undone:
1814 spin_lock(&inode->i_lock);
1815 inode->i_private = NULL;
1816 spin_unlock(&inode->i_lock);
1817out:
1818 mutex_unlock(&inode->i_mutex);
1819 return error;
1820}
1821
1822static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1823{
1824 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1825
1826 buf->f_type = TMPFS_MAGIC;
1827 buf->f_bsize = PAGE_CACHE_SIZE;
1828 buf->f_namelen = NAME_MAX;
1829 if (sbinfo->max_blocks) {
1830 buf->f_blocks = sbinfo->max_blocks;
1831 buf->f_bavail =
1832 buf->f_bfree = sbinfo->max_blocks -
1833 percpu_counter_sum(&sbinfo->used_blocks);
1834 }
1835 if (sbinfo->max_inodes) {
1836 buf->f_files = sbinfo->max_inodes;
1837 buf->f_ffree = sbinfo->free_inodes;
1838 }
1839 /* else leave those fields 0 like simple_statfs */
1840 return 0;
1841}
1842
1843/*
1844 * File creation. Allocate an inode, and we're done..
1845 */
1846static int
1847shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1848{
1849 struct inode *inode;
1850 int error = -ENOSPC;
1851
1852 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1853 if (inode) {
1854 error = simple_acl_create(dir, inode);
1855 if (error)
1856 goto out_iput;
1857 error = security_inode_init_security(inode, dir,
1858 &dentry->d_name,
1859 shmem_initxattrs, NULL);
1860 if (error && error != -EOPNOTSUPP)
1861 goto out_iput;
1862
1863 error = 0;
1864 dir->i_size += BOGO_DIRENT_SIZE;
1865 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1866 d_instantiate(dentry, inode);
1867 dget(dentry); /* Extra count - pin the dentry in core */
1868 }
1869 return error;
1870out_iput:
1871 iput(inode);
1872 return error;
1873}
1874
1875static int
1876shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1877{
1878 struct inode *inode;
1879 int error = -ENOSPC;
1880
1881 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1882 if (inode) {
1883 error = security_inode_init_security(inode, dir,
1884 NULL,
1885 shmem_initxattrs, NULL);
1886 if (error && error != -EOPNOTSUPP)
1887 goto out_iput;
1888 error = simple_acl_create(dir, inode);
1889 if (error)
1890 goto out_iput;
1891 d_tmpfile(dentry, inode);
1892 }
1893 return error;
1894out_iput:
1895 iput(inode);
1896 return error;
1897}
1898
1899static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1900{
1901 int error;
1902
1903 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1904 return error;
1905 inc_nlink(dir);
1906 return 0;
1907}
1908
1909static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1910 bool excl)
1911{
1912 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1913}
1914
1915/*
1916 * Link a file..
1917 */
1918static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1919{
1920 struct inode *inode = old_dentry->d_inode;
1921 int ret;
1922
1923 /*
1924 * No ordinary (disk based) filesystem counts links as inodes;
1925 * but each new link needs a new dentry, pinning lowmem, and
1926 * tmpfs dentries cannot be pruned until they are unlinked.
1927 */
1928 ret = shmem_reserve_inode(inode->i_sb);
1929 if (ret)
1930 goto out;
1931
1932 dir->i_size += BOGO_DIRENT_SIZE;
1933 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1934 inc_nlink(inode);
1935 ihold(inode); /* New dentry reference */
1936 dget(dentry); /* Extra pinning count for the created dentry */
1937 d_instantiate(dentry, inode);
1938out:
1939 return ret;
1940}
1941
1942static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1943{
1944 struct inode *inode = dentry->d_inode;
1945
1946 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1947 shmem_free_inode(inode->i_sb);
1948
1949 dir->i_size -= BOGO_DIRENT_SIZE;
1950 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1951 drop_nlink(inode);
1952 dput(dentry); /* Undo the count from "create" - this does all the work */
1953 return 0;
1954}
1955
1956static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1957{
1958 if (!simple_empty(dentry))
1959 return -ENOTEMPTY;
1960
1961 drop_nlink(dentry->d_inode);
1962 drop_nlink(dir);
1963 return shmem_unlink(dir, dentry);
1964}
1965
1966/*
1967 * The VFS layer already does all the dentry stuff for rename,
1968 * we just have to decrement the usage count for the target if
1969 * it exists so that the VFS layer correctly free's it when it
1970 * gets overwritten.
1971 */
1972static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1973{
1974 struct inode *inode = old_dentry->d_inode;
1975 int they_are_dirs = S_ISDIR(inode->i_mode);
1976
1977 if (!simple_empty(new_dentry))
1978 return -ENOTEMPTY;
1979
1980 if (new_dentry->d_inode) {
1981 (void) shmem_unlink(new_dir, new_dentry);
1982 if (they_are_dirs)
1983 drop_nlink(old_dir);
1984 } else if (they_are_dirs) {
1985 drop_nlink(old_dir);
1986 inc_nlink(new_dir);
1987 }
1988
1989 old_dir->i_size -= BOGO_DIRENT_SIZE;
1990 new_dir->i_size += BOGO_DIRENT_SIZE;
1991 old_dir->i_ctime = old_dir->i_mtime =
1992 new_dir->i_ctime = new_dir->i_mtime =
1993 inode->i_ctime = CURRENT_TIME;
1994 return 0;
1995}
1996
1997static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1998{
1999 int error;
2000 int len;
2001 struct inode *inode;
2002 struct page *page;
2003 char *kaddr;
2004 struct shmem_inode_info *info;
2005
2006 len = strlen(symname) + 1;
2007 if (len > PAGE_CACHE_SIZE)
2008 return -ENAMETOOLONG;
2009
2010 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2011 if (!inode)
2012 return -ENOSPC;
2013
2014 error = security_inode_init_security(inode, dir, &dentry->d_name,
2015 shmem_initxattrs, NULL);
2016 if (error) {
2017 if (error != -EOPNOTSUPP) {
2018 iput(inode);
2019 return error;
2020 }
2021 error = 0;
2022 }
2023
2024 info = SHMEM_I(inode);
2025 inode->i_size = len-1;
2026 if (len <= SHORT_SYMLINK_LEN) {
2027 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2028 if (!info->symlink) {
2029 iput(inode);
2030 return -ENOMEM;
2031 }
2032 inode->i_op = &shmem_short_symlink_operations;
2033 } else {
2034 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2035 if (error) {
2036 iput(inode);
2037 return error;
2038 }
2039 inode->i_mapping->a_ops = &shmem_aops;
2040 inode->i_op = &shmem_symlink_inode_operations;
2041 kaddr = kmap_atomic(page);
2042 memcpy(kaddr, symname, len);
2043 kunmap_atomic(kaddr);
2044 SetPageUptodate(page);
2045 set_page_dirty(page);
2046 unlock_page(page);
2047 page_cache_release(page);
2048 }
2049 dir->i_size += BOGO_DIRENT_SIZE;
2050 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2051 d_instantiate(dentry, inode);
2052 dget(dentry);
2053 return 0;
2054}
2055
2056static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2057{
2058 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2059 return NULL;
2060}
2061
2062static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2063{
2064 struct page *page = NULL;
2065 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2066 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2067 if (page)
2068 unlock_page(page);
2069 return page;
2070}
2071
2072static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2073{
2074 if (!IS_ERR(nd_get_link(nd))) {
2075 struct page *page = cookie;
2076 kunmap(page);
2077 mark_page_accessed(page);
2078 page_cache_release(page);
2079 }
2080}
2081
2082#ifdef CONFIG_TMPFS_XATTR
2083/*
2084 * Superblocks without xattr inode operations may get some security.* xattr
2085 * support from the LSM "for free". As soon as we have any other xattrs
2086 * like ACLs, we also need to implement the security.* handlers at
2087 * filesystem level, though.
2088 */
2089
2090/*
2091 * Callback for security_inode_init_security() for acquiring xattrs.
2092 */
2093static int shmem_initxattrs(struct inode *inode,
2094 const struct xattr *xattr_array,
2095 void *fs_info)
2096{
2097 struct shmem_inode_info *info = SHMEM_I(inode);
2098 const struct xattr *xattr;
2099 struct simple_xattr *new_xattr;
2100 size_t len;
2101
2102 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2103 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2104 if (!new_xattr)
2105 return -ENOMEM;
2106
2107 len = strlen(xattr->name) + 1;
2108 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2109 GFP_KERNEL);
2110 if (!new_xattr->name) {
2111 kfree(new_xattr);
2112 return -ENOMEM;
2113 }
2114
2115 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2116 XATTR_SECURITY_PREFIX_LEN);
2117 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2118 xattr->name, len);
2119
2120 simple_xattr_list_add(&info->xattrs, new_xattr);
2121 }
2122
2123 return 0;
2124}
2125
2126static const struct xattr_handler *shmem_xattr_handlers[] = {
2127#ifdef CONFIG_TMPFS_POSIX_ACL
2128 &posix_acl_access_xattr_handler,
2129 &posix_acl_default_xattr_handler,
2130#endif
2131 NULL
2132};
2133
2134static int shmem_xattr_validate(const char *name)
2135{
2136 struct { const char *prefix; size_t len; } arr[] = {
2137 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2138 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2139 };
2140 int i;
2141
2142 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2143 size_t preflen = arr[i].len;
2144 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2145 if (!name[preflen])
2146 return -EINVAL;
2147 return 0;
2148 }
2149 }
2150 return -EOPNOTSUPP;
2151}
2152
2153static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2154 void *buffer, size_t size)
2155{
2156 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2157 int err;
2158
2159 /*
2160 * If this is a request for a synthetic attribute in the system.*
2161 * namespace use the generic infrastructure to resolve a handler
2162 * for it via sb->s_xattr.
2163 */
2164 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2165 return generic_getxattr(dentry, name, buffer, size);
2166
2167 err = shmem_xattr_validate(name);
2168 if (err)
2169 return err;
2170
2171 return simple_xattr_get(&info->xattrs, name, buffer, size);
2172}
2173
2174static int shmem_setxattr(struct dentry *dentry, const char *name,
2175 const void *value, size_t size, int flags)
2176{
2177 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2178 int err;
2179
2180 /*
2181 * If this is a request for a synthetic attribute in the system.*
2182 * namespace use the generic infrastructure to resolve a handler
2183 * for it via sb->s_xattr.
2184 */
2185 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2186 return generic_setxattr(dentry, name, value, size, flags);
2187
2188 err = shmem_xattr_validate(name);
2189 if (err)
2190 return err;
2191
2192 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2193}
2194
2195static int shmem_removexattr(struct dentry *dentry, const char *name)
2196{
2197 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2198 int err;
2199
2200 /*
2201 * If this is a request for a synthetic attribute in the system.*
2202 * namespace use the generic infrastructure to resolve a handler
2203 * for it via sb->s_xattr.
2204 */
2205 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2206 return generic_removexattr(dentry, name);
2207
2208 err = shmem_xattr_validate(name);
2209 if (err)
2210 return err;
2211
2212 return simple_xattr_remove(&info->xattrs, name);
2213}
2214
2215static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2216{
2217 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2218 return simple_xattr_list(&info->xattrs, buffer, size);
2219}
2220#endif /* CONFIG_TMPFS_XATTR */
2221
2222static const struct inode_operations shmem_short_symlink_operations = {
2223 .readlink = generic_readlink,
2224 .follow_link = shmem_follow_short_symlink,
2225#ifdef CONFIG_TMPFS_XATTR
2226 .setxattr = shmem_setxattr,
2227 .getxattr = shmem_getxattr,
2228 .listxattr = shmem_listxattr,
2229 .removexattr = shmem_removexattr,
2230#endif
2231};
2232
2233static const struct inode_operations shmem_symlink_inode_operations = {
2234 .readlink = generic_readlink,
2235 .follow_link = shmem_follow_link,
2236 .put_link = shmem_put_link,
2237#ifdef CONFIG_TMPFS_XATTR
2238 .setxattr = shmem_setxattr,
2239 .getxattr = shmem_getxattr,
2240 .listxattr = shmem_listxattr,
2241 .removexattr = shmem_removexattr,
2242#endif
2243};
2244
2245static struct dentry *shmem_get_parent(struct dentry *child)
2246{
2247 return ERR_PTR(-ESTALE);
2248}
2249
2250static int shmem_match(struct inode *ino, void *vfh)
2251{
2252 __u32 *fh = vfh;
2253 __u64 inum = fh[2];
2254 inum = (inum << 32) | fh[1];
2255 return ino->i_ino == inum && fh[0] == ino->i_generation;
2256}
2257
2258static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2259 struct fid *fid, int fh_len, int fh_type)
2260{
2261 struct inode *inode;
2262 struct dentry *dentry = NULL;
2263 u64 inum;
2264
2265 if (fh_len < 3)
2266 return NULL;
2267
2268 inum = fid->raw[2];
2269 inum = (inum << 32) | fid->raw[1];
2270
2271 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2272 shmem_match, fid->raw);
2273 if (inode) {
2274 dentry = d_find_alias(inode);
2275 iput(inode);
2276 }
2277
2278 return dentry;
2279}
2280
2281static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2282 struct inode *parent)
2283{
2284 if (*len < 3) {
2285 *len = 3;
2286 return FILEID_INVALID;
2287 }
2288
2289 if (inode_unhashed(inode)) {
2290 /* Unfortunately insert_inode_hash is not idempotent,
2291 * so as we hash inodes here rather than at creation
2292 * time, we need a lock to ensure we only try
2293 * to do it once
2294 */
2295 static DEFINE_SPINLOCK(lock);
2296 spin_lock(&lock);
2297 if (inode_unhashed(inode))
2298 __insert_inode_hash(inode,
2299 inode->i_ino + inode->i_generation);
2300 spin_unlock(&lock);
2301 }
2302
2303 fh[0] = inode->i_generation;
2304 fh[1] = inode->i_ino;
2305 fh[2] = ((__u64)inode->i_ino) >> 32;
2306
2307 *len = 3;
2308 return 1;
2309}
2310
2311static const struct export_operations shmem_export_ops = {
2312 .get_parent = shmem_get_parent,
2313 .encode_fh = shmem_encode_fh,
2314 .fh_to_dentry = shmem_fh_to_dentry,
2315};
2316
2317static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2318 bool remount)
2319{
2320 char *this_char, *value, *rest;
2321 struct mempolicy *mpol = NULL;
2322 uid_t uid;
2323 gid_t gid;
2324
2325 while (options != NULL) {
2326 this_char = options;
2327 for (;;) {
2328 /*
2329 * NUL-terminate this option: unfortunately,
2330 * mount options form a comma-separated list,
2331 * but mpol's nodelist may also contain commas.
2332 */
2333 options = strchr(options, ',');
2334 if (options == NULL)
2335 break;
2336 options++;
2337 if (!isdigit(*options)) {
2338 options[-1] = '\0';
2339 break;
2340 }
2341 }
2342 if (!*this_char)
2343 continue;
2344 if ((value = strchr(this_char,'=')) != NULL) {
2345 *value++ = 0;
2346 } else {
2347 printk(KERN_ERR
2348 "tmpfs: No value for mount option '%s'\n",
2349 this_char);
2350 goto error;
2351 }
2352
2353 if (!strcmp(this_char,"size")) {
2354 unsigned long long size;
2355 size = memparse(value,&rest);
2356 if (*rest == '%') {
2357 size <<= PAGE_SHIFT;
2358 size *= totalram_pages;
2359 do_div(size, 100);
2360 rest++;
2361 }
2362 if (*rest)
2363 goto bad_val;
2364 sbinfo->max_blocks =
2365 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2366 } else if (!strcmp(this_char,"nr_blocks")) {
2367 sbinfo->max_blocks = memparse(value, &rest);
2368 if (*rest)
2369 goto bad_val;
2370 } else if (!strcmp(this_char,"nr_inodes")) {
2371 sbinfo->max_inodes = memparse(value, &rest);
2372 if (*rest)
2373 goto bad_val;
2374 } else if (!strcmp(this_char,"mode")) {
2375 if (remount)
2376 continue;
2377 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2378 if (*rest)
2379 goto bad_val;
2380 } else if (!strcmp(this_char,"uid")) {
2381 if (remount)
2382 continue;
2383 uid = simple_strtoul(value, &rest, 0);
2384 if (*rest)
2385 goto bad_val;
2386 sbinfo->uid = make_kuid(current_user_ns(), uid);
2387 if (!uid_valid(sbinfo->uid))
2388 goto bad_val;
2389 } else if (!strcmp(this_char,"gid")) {
2390 if (remount)
2391 continue;
2392 gid = simple_strtoul(value, &rest, 0);
2393 if (*rest)
2394 goto bad_val;
2395 sbinfo->gid = make_kgid(current_user_ns(), gid);
2396 if (!gid_valid(sbinfo->gid))
2397 goto bad_val;
2398 } else if (!strcmp(this_char,"mpol")) {
2399 mpol_put(mpol);
2400 mpol = NULL;
2401 if (mpol_parse_str(value, &mpol))
2402 goto bad_val;
2403 } else {
2404 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2405 this_char);
2406 goto error;
2407 }
2408 }
2409 sbinfo->mpol = mpol;
2410 return 0;
2411
2412bad_val:
2413 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2414 value, this_char);
2415error:
2416 mpol_put(mpol);
2417 return 1;
2418
2419}
2420
2421static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2422{
2423 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2424 struct shmem_sb_info config = *sbinfo;
2425 unsigned long inodes;
2426 int error = -EINVAL;
2427
2428 config.mpol = NULL;
2429 if (shmem_parse_options(data, &config, true))
2430 return error;
2431
2432 spin_lock(&sbinfo->stat_lock);
2433 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2434 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2435 goto out;
2436 if (config.max_inodes < inodes)
2437 goto out;
2438 /*
2439 * Those tests disallow limited->unlimited while any are in use;
2440 * but we must separately disallow unlimited->limited, because
2441 * in that case we have no record of how much is already in use.
2442 */
2443 if (config.max_blocks && !sbinfo->max_blocks)
2444 goto out;
2445 if (config.max_inodes && !sbinfo->max_inodes)
2446 goto out;
2447
2448 error = 0;
2449 sbinfo->max_blocks = config.max_blocks;
2450 sbinfo->max_inodes = config.max_inodes;
2451 sbinfo->free_inodes = config.max_inodes - inodes;
2452
2453 /*
2454 * Preserve previous mempolicy unless mpol remount option was specified.
2455 */
2456 if (config.mpol) {
2457 mpol_put(sbinfo->mpol);
2458 sbinfo->mpol = config.mpol; /* transfers initial ref */
2459 }
2460out:
2461 spin_unlock(&sbinfo->stat_lock);
2462 return error;
2463}
2464
2465static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2466{
2467 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2468
2469 if (sbinfo->max_blocks != shmem_default_max_blocks())
2470 seq_printf(seq, ",size=%luk",
2471 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2472 if (sbinfo->max_inodes != shmem_default_max_inodes())
2473 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2474 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2475 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2476 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2477 seq_printf(seq, ",uid=%u",
2478 from_kuid_munged(&init_user_ns, sbinfo->uid));
2479 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2480 seq_printf(seq, ",gid=%u",
2481 from_kgid_munged(&init_user_ns, sbinfo->gid));
2482 shmem_show_mpol(seq, sbinfo->mpol);
2483 return 0;
2484}
2485#endif /* CONFIG_TMPFS */
2486
2487static void shmem_put_super(struct super_block *sb)
2488{
2489 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2490
2491 percpu_counter_destroy(&sbinfo->used_blocks);
2492 mpol_put(sbinfo->mpol);
2493 kfree(sbinfo);
2494 sb->s_fs_info = NULL;
2495}
2496
2497int shmem_fill_super(struct super_block *sb, void *data, int silent)
2498{
2499 struct inode *inode;
2500 struct shmem_sb_info *sbinfo;
2501 int err = -ENOMEM;
2502
2503 /* Round up to L1_CACHE_BYTES to resist false sharing */
2504 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2505 L1_CACHE_BYTES), GFP_KERNEL);
2506 if (!sbinfo)
2507 return -ENOMEM;
2508
2509 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2510 sbinfo->uid = current_fsuid();
2511 sbinfo->gid = current_fsgid();
2512 sb->s_fs_info = sbinfo;
2513
2514#ifdef CONFIG_TMPFS
2515 /*
2516 * Per default we only allow half of the physical ram per
2517 * tmpfs instance, limiting inodes to one per page of lowmem;
2518 * but the internal instance is left unlimited.
2519 */
2520 if (!(sb->s_flags & MS_KERNMOUNT)) {
2521 sbinfo->max_blocks = shmem_default_max_blocks();
2522 sbinfo->max_inodes = shmem_default_max_inodes();
2523 if (shmem_parse_options(data, sbinfo, false)) {
2524 err = -EINVAL;
2525 goto failed;
2526 }
2527 } else {
2528 sb->s_flags |= MS_NOUSER;
2529 }
2530 sb->s_export_op = &shmem_export_ops;
2531 sb->s_flags |= MS_NOSEC;
2532#else
2533 sb->s_flags |= MS_NOUSER;
2534#endif
2535
2536 spin_lock_init(&sbinfo->stat_lock);
2537 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2538 goto failed;
2539 sbinfo->free_inodes = sbinfo->max_inodes;
2540
2541 sb->s_maxbytes = MAX_LFS_FILESIZE;
2542 sb->s_blocksize = PAGE_CACHE_SIZE;
2543 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2544 sb->s_magic = TMPFS_MAGIC;
2545 sb->s_op = &shmem_ops;
2546 sb->s_time_gran = 1;
2547#ifdef CONFIG_TMPFS_XATTR
2548 sb->s_xattr = shmem_xattr_handlers;
2549#endif
2550#ifdef CONFIG_TMPFS_POSIX_ACL
2551 sb->s_flags |= MS_POSIXACL;
2552#endif
2553
2554 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2555 if (!inode)
2556 goto failed;
2557 inode->i_uid = sbinfo->uid;
2558 inode->i_gid = sbinfo->gid;
2559 sb->s_root = d_make_root(inode);
2560 if (!sb->s_root)
2561 goto failed;
2562 return 0;
2563
2564failed:
2565 shmem_put_super(sb);
2566 return err;
2567}
2568
2569static struct kmem_cache *shmem_inode_cachep;
2570
2571static struct inode *shmem_alloc_inode(struct super_block *sb)
2572{
2573 struct shmem_inode_info *info;
2574 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2575 if (!info)
2576 return NULL;
2577 return &info->vfs_inode;
2578}
2579
2580static void shmem_destroy_callback(struct rcu_head *head)
2581{
2582 struct inode *inode = container_of(head, struct inode, i_rcu);
2583 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2584}
2585
2586static void shmem_destroy_inode(struct inode *inode)
2587{
2588 if (S_ISREG(inode->i_mode))
2589 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2590 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2591}
2592
2593static void shmem_init_inode(void *foo)
2594{
2595 struct shmem_inode_info *info = foo;
2596 inode_init_once(&info->vfs_inode);
2597}
2598
2599static int shmem_init_inodecache(void)
2600{
2601 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2602 sizeof(struct shmem_inode_info),
2603 0, SLAB_PANIC, shmem_init_inode);
2604 return 0;
2605}
2606
2607static void shmem_destroy_inodecache(void)
2608{
2609 kmem_cache_destroy(shmem_inode_cachep);
2610}
2611
2612static const struct address_space_operations shmem_aops = {
2613 .writepage = shmem_writepage,
2614 .set_page_dirty = __set_page_dirty_no_writeback,
2615#ifdef CONFIG_TMPFS
2616 .write_begin = shmem_write_begin,
2617 .write_end = shmem_write_end,
2618#endif
2619 .migratepage = migrate_page,
2620 .error_remove_page = generic_error_remove_page,
2621};
2622
2623static const struct file_operations shmem_file_operations = {
2624 .mmap = shmem_mmap,
2625#ifdef CONFIG_TMPFS
2626 .llseek = shmem_file_llseek,
2627 .read = new_sync_read,
2628 .write = new_sync_write,
2629 .read_iter = shmem_file_read_iter,
2630 .write_iter = generic_file_write_iter,
2631 .fsync = noop_fsync,
2632 .splice_read = shmem_file_splice_read,
2633 .splice_write = iter_file_splice_write,
2634 .fallocate = shmem_fallocate,
2635#endif
2636};
2637
2638static const struct inode_operations shmem_inode_operations = {
2639 .setattr = shmem_setattr,
2640#ifdef CONFIG_TMPFS_XATTR
2641 .setxattr = shmem_setxattr,
2642 .getxattr = shmem_getxattr,
2643 .listxattr = shmem_listxattr,
2644 .removexattr = shmem_removexattr,
2645 .set_acl = simple_set_acl,
2646#endif
2647};
2648
2649static const struct inode_operations shmem_dir_inode_operations = {
2650#ifdef CONFIG_TMPFS
2651 .create = shmem_create,
2652 .lookup = simple_lookup,
2653 .link = shmem_link,
2654 .unlink = shmem_unlink,
2655 .symlink = shmem_symlink,
2656 .mkdir = shmem_mkdir,
2657 .rmdir = shmem_rmdir,
2658 .mknod = shmem_mknod,
2659 .rename = shmem_rename,
2660 .tmpfile = shmem_tmpfile,
2661#endif
2662#ifdef CONFIG_TMPFS_XATTR
2663 .setxattr = shmem_setxattr,
2664 .getxattr = shmem_getxattr,
2665 .listxattr = shmem_listxattr,
2666 .removexattr = shmem_removexattr,
2667#endif
2668#ifdef CONFIG_TMPFS_POSIX_ACL
2669 .setattr = shmem_setattr,
2670 .set_acl = simple_set_acl,
2671#endif
2672};
2673
2674static const struct inode_operations shmem_special_inode_operations = {
2675#ifdef CONFIG_TMPFS_XATTR
2676 .setxattr = shmem_setxattr,
2677 .getxattr = shmem_getxattr,
2678 .listxattr = shmem_listxattr,
2679 .removexattr = shmem_removexattr,
2680#endif
2681#ifdef CONFIG_TMPFS_POSIX_ACL
2682 .setattr = shmem_setattr,
2683 .set_acl = simple_set_acl,
2684#endif
2685};
2686
2687static const struct super_operations shmem_ops = {
2688 .alloc_inode = shmem_alloc_inode,
2689 .destroy_inode = shmem_destroy_inode,
2690#ifdef CONFIG_TMPFS
2691 .statfs = shmem_statfs,
2692 .remount_fs = shmem_remount_fs,
2693 .show_options = shmem_show_options,
2694#endif
2695 .evict_inode = shmem_evict_inode,
2696 .drop_inode = generic_delete_inode,
2697 .put_super = shmem_put_super,
2698};
2699
2700static const struct vm_operations_struct shmem_vm_ops = {
2701 .fault = shmem_fault,
2702 .map_pages = filemap_map_pages,
2703#ifdef CONFIG_NUMA
2704 .set_policy = shmem_set_policy,
2705 .get_policy = shmem_get_policy,
2706#endif
2707 .remap_pages = generic_file_remap_pages,
2708};
2709
2710static struct dentry *shmem_mount(struct file_system_type *fs_type,
2711 int flags, const char *dev_name, void *data)
2712{
2713 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2714}
2715
2716static struct file_system_type shmem_fs_type = {
2717 .owner = THIS_MODULE,
2718 .name = "tmpfs",
2719 .mount = shmem_mount,
2720 .kill_sb = kill_litter_super,
2721 .fs_flags = FS_USERNS_MOUNT,
2722};
2723
2724int __init shmem_init(void)
2725{
2726 int error;
2727
2728 /* If rootfs called this, don't re-init */
2729 if (shmem_inode_cachep)
2730 return 0;
2731
2732 error = bdi_init(&shmem_backing_dev_info);
2733 if (error)
2734 goto out4;
2735
2736 error = shmem_init_inodecache();
2737 if (error)
2738 goto out3;
2739
2740 error = register_filesystem(&shmem_fs_type);
2741 if (error) {
2742 printk(KERN_ERR "Could not register tmpfs\n");
2743 goto out2;
2744 }
2745
2746 shm_mnt = kern_mount(&shmem_fs_type);
2747 if (IS_ERR(shm_mnt)) {
2748 error = PTR_ERR(shm_mnt);
2749 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2750 goto out1;
2751 }
2752 return 0;
2753
2754out1:
2755 unregister_filesystem(&shmem_fs_type);
2756out2:
2757 shmem_destroy_inodecache();
2758out3:
2759 bdi_destroy(&shmem_backing_dev_info);
2760out4:
2761 shm_mnt = ERR_PTR(error);
2762 return error;
2763}
2764
2765#else /* !CONFIG_SHMEM */
2766
2767/*
2768 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2769 *
2770 * This is intended for small system where the benefits of the full
2771 * shmem code (swap-backed and resource-limited) are outweighed by
2772 * their complexity. On systems without swap this code should be
2773 * effectively equivalent, but much lighter weight.
2774 */
2775
2776static struct file_system_type shmem_fs_type = {
2777 .name = "tmpfs",
2778 .mount = ramfs_mount,
2779 .kill_sb = kill_litter_super,
2780 .fs_flags = FS_USERNS_MOUNT,
2781};
2782
2783int __init shmem_init(void)
2784{
2785 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2786
2787 shm_mnt = kern_mount(&shmem_fs_type);
2788 BUG_ON(IS_ERR(shm_mnt));
2789
2790 return 0;
2791}
2792
2793int shmem_unuse(swp_entry_t swap, struct page *page)
2794{
2795 return 0;
2796}
2797
2798int shmem_lock(struct file *file, int lock, struct user_struct *user)
2799{
2800 return 0;
2801}
2802
2803void shmem_unlock_mapping(struct address_space *mapping)
2804{
2805}
2806
2807void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2808{
2809 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2810}
2811EXPORT_SYMBOL_GPL(shmem_truncate_range);
2812
2813#define shmem_vm_ops generic_file_vm_ops
2814#define shmem_file_operations ramfs_file_operations
2815#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2816#define shmem_acct_size(flags, size) 0
2817#define shmem_unacct_size(flags, size) do {} while (0)
2818
2819#endif /* CONFIG_SHMEM */
2820
2821/* common code */
2822
2823static struct dentry_operations anon_ops = {
2824 .d_dname = simple_dname
2825};
2826
2827static struct file *__shmem_file_setup(const char *name, loff_t size,
2828 unsigned long flags, unsigned int i_flags)
2829{
2830 struct file *res;
2831 struct inode *inode;
2832 struct path path;
2833 struct super_block *sb;
2834 struct qstr this;
2835
2836 if (IS_ERR(shm_mnt))
2837 return ERR_CAST(shm_mnt);
2838
2839 if (size < 0 || size > MAX_LFS_FILESIZE)
2840 return ERR_PTR(-EINVAL);
2841
2842 if (shmem_acct_size(flags, size))
2843 return ERR_PTR(-ENOMEM);
2844
2845 res = ERR_PTR(-ENOMEM);
2846 this.name = name;
2847 this.len = strlen(name);
2848 this.hash = 0; /* will go */
2849 sb = shm_mnt->mnt_sb;
2850 path.dentry = d_alloc_pseudo(sb, &this);
2851 if (!path.dentry)
2852 goto put_memory;
2853 d_set_d_op(path.dentry, &anon_ops);
2854 path.mnt = mntget(shm_mnt);
2855
2856 res = ERR_PTR(-ENOSPC);
2857 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2858 if (!inode)
2859 goto put_dentry;
2860
2861 inode->i_flags |= i_flags;
2862 d_instantiate(path.dentry, inode);
2863 inode->i_size = size;
2864 clear_nlink(inode); /* It is unlinked */
2865 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2866 if (IS_ERR(res))
2867 goto put_dentry;
2868
2869 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2870 &shmem_file_operations);
2871 if (IS_ERR(res))
2872 goto put_dentry;
2873
2874 return res;
2875
2876put_dentry:
2877 path_put(&path);
2878put_memory:
2879 shmem_unacct_size(flags, size);
2880 return res;
2881}
2882
2883/**
2884 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2885 * kernel internal. There will be NO LSM permission checks against the
2886 * underlying inode. So users of this interface must do LSM checks at a
2887 * higher layer. The one user is the big_key implementation. LSM checks
2888 * are provided at the key level rather than the inode level.
2889 * @name: name for dentry (to be seen in /proc/<pid>/maps
2890 * @size: size to be set for the file
2891 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2892 */
2893struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2894{
2895 return __shmem_file_setup(name, size, flags, S_PRIVATE);
2896}
2897
2898/**
2899 * shmem_file_setup - get an unlinked file living in tmpfs
2900 * @name: name for dentry (to be seen in /proc/<pid>/maps
2901 * @size: size to be set for the file
2902 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2903 */
2904struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2905{
2906 return __shmem_file_setup(name, size, flags, 0);
2907}
2908EXPORT_SYMBOL_GPL(shmem_file_setup);
2909
2910/**
2911 * shmem_zero_setup - setup a shared anonymous mapping
2912 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2913 */
2914int shmem_zero_setup(struct vm_area_struct *vma)
2915{
2916 struct file *file;
2917 loff_t size = vma->vm_end - vma->vm_start;
2918
2919 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2920 if (IS_ERR(file))
2921 return PTR_ERR(file);
2922
2923 if (vma->vm_file)
2924 fput(vma->vm_file);
2925 vma->vm_file = file;
2926 vma->vm_ops = &shmem_vm_ops;
2927 return 0;
2928}
2929
2930/**
2931 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2932 * @mapping: the page's address_space
2933 * @index: the page index
2934 * @gfp: the page allocator flags to use if allocating
2935 *
2936 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2937 * with any new page allocations done using the specified allocation flags.
2938 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2939 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2940 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2941 *
2942 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2943 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2944 */
2945struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2946 pgoff_t index, gfp_t gfp)
2947{
2948#ifdef CONFIG_SHMEM
2949 struct inode *inode = mapping->host;
2950 struct page *page;
2951 int error;
2952
2953 BUG_ON(mapping->a_ops != &shmem_aops);
2954 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2955 if (error)
2956 page = ERR_PTR(error);
2957 else
2958 unlock_page(page);
2959 return page;
2960#else
2961 /*
2962 * The tiny !SHMEM case uses ramfs without swap
2963 */
2964 return read_cache_page_gfp(mapping, index, gfp);
2965#endif
2966}
2967EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 0.7187 seconds and 5 git commands to generate.