slob: Rework #ifdeffery in slab.h
[deliverable/linux.git] / mm / slab.c
... / ...
CommitLineData
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89#include <linux/slab.h>
90#include <linux/mm.h>
91#include <linux/poison.h>
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
97#include <linux/cpuset.h>
98#include <linux/proc_fs.h>
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
106#include <linux/string.h>
107#include <linux/uaccess.h>
108#include <linux/nodemask.h>
109#include <linux/kmemleak.h>
110#include <linux/mempolicy.h>
111#include <linux/mutex.h>
112#include <linux/fault-inject.h>
113#include <linux/rtmutex.h>
114#include <linux/reciprocal_div.h>
115#include <linux/debugobjects.h>
116#include <linux/kmemcheck.h>
117#include <linux/memory.h>
118#include <linux/prefetch.h>
119
120#include <net/sock.h>
121
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
126#include <trace/events/kmem.h>
127
128#include "internal.h"
129
130#include "slab.h"
131
132/*
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
160/*
161 * true if a page was allocated from pfmemalloc reserves for network-based
162 * swap
163 */
164static bool pfmemalloc_active __read_mostly;
165
166/*
167 * kmem_bufctl_t:
168 *
169 * Bufctl's are used for linking objs within a slab
170 * linked offsets.
171 *
172 * This implementation relies on "struct page" for locating the cache &
173 * slab an object belongs to.
174 * This allows the bufctl structure to be small (one int), but limits
175 * the number of objects a slab (not a cache) can contain when off-slab
176 * bufctls are used. The limit is the size of the largest general cache
177 * that does not use off-slab slabs.
178 * For 32bit archs with 4 kB pages, is this 56.
179 * This is not serious, as it is only for large objects, when it is unwise
180 * to have too many per slab.
181 * Note: This limit can be raised by introducing a general cache whose size
182 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
183 */
184
185typedef unsigned int kmem_bufctl_t;
186#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
187#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
188#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
189#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
190
191/*
192 * struct slab_rcu
193 *
194 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
195 * arrange for kmem_freepages to be called via RCU. This is useful if
196 * we need to approach a kernel structure obliquely, from its address
197 * obtained without the usual locking. We can lock the structure to
198 * stabilize it and check it's still at the given address, only if we
199 * can be sure that the memory has not been meanwhile reused for some
200 * other kind of object (which our subsystem's lock might corrupt).
201 *
202 * rcu_read_lock before reading the address, then rcu_read_unlock after
203 * taking the spinlock within the structure expected at that address.
204 */
205struct slab_rcu {
206 struct rcu_head head;
207 struct kmem_cache *cachep;
208 void *addr;
209};
210
211/*
212 * struct slab
213 *
214 * Manages the objs in a slab. Placed either at the beginning of mem allocated
215 * for a slab, or allocated from an general cache.
216 * Slabs are chained into three list: fully used, partial, fully free slabs.
217 */
218struct slab {
219 union {
220 struct {
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
227 };
228 struct slab_rcu __slab_cover_slab_rcu;
229 };
230};
231
232/*
233 * struct array_cache
234 *
235 * Purpose:
236 * - LIFO ordering, to hand out cache-warm objects from _alloc
237 * - reduce the number of linked list operations
238 * - reduce spinlock operations
239 *
240 * The limit is stored in the per-cpu structure to reduce the data cache
241 * footprint.
242 *
243 */
244struct array_cache {
245 unsigned int avail;
246 unsigned int limit;
247 unsigned int batchcount;
248 unsigned int touched;
249 spinlock_t lock;
250 void *entry[]; /*
251 * Must have this definition in here for the proper
252 * alignment of array_cache. Also simplifies accessing
253 * the entries.
254 *
255 * Entries should not be directly dereferenced as
256 * entries belonging to slabs marked pfmemalloc will
257 * have the lower bits set SLAB_OBJ_PFMEMALLOC
258 */
259};
260
261#define SLAB_OBJ_PFMEMALLOC 1
262static inline bool is_obj_pfmemalloc(void *objp)
263{
264 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
265}
266
267static inline void set_obj_pfmemalloc(void **objp)
268{
269 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
270 return;
271}
272
273static inline void clear_obj_pfmemalloc(void **objp)
274{
275 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
276}
277
278/*
279 * bootstrap: The caches do not work without cpuarrays anymore, but the
280 * cpuarrays are allocated from the generic caches...
281 */
282#define BOOT_CPUCACHE_ENTRIES 1
283struct arraycache_init {
284 struct array_cache cache;
285 void *entries[BOOT_CPUCACHE_ENTRIES];
286};
287
288/*
289 * Need this for bootstrapping a per node allocator.
290 */
291#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
292static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
293#define CACHE_CACHE 0
294#define SIZE_AC MAX_NUMNODES
295#define SIZE_NODE (2 * MAX_NUMNODES)
296
297static int drain_freelist(struct kmem_cache *cache,
298 struct kmem_cache_node *n, int tofree);
299static void free_block(struct kmem_cache *cachep, void **objpp, int len,
300 int node);
301static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
302static void cache_reap(struct work_struct *unused);
303
304static int slab_early_init = 1;
305
306#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
307#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
308
309static void kmem_cache_node_init(struct kmem_cache_node *parent)
310{
311 INIT_LIST_HEAD(&parent->slabs_full);
312 INIT_LIST_HEAD(&parent->slabs_partial);
313 INIT_LIST_HEAD(&parent->slabs_free);
314 parent->shared = NULL;
315 parent->alien = NULL;
316 parent->colour_next = 0;
317 spin_lock_init(&parent->list_lock);
318 parent->free_objects = 0;
319 parent->free_touched = 0;
320}
321
322#define MAKE_LIST(cachep, listp, slab, nodeid) \
323 do { \
324 INIT_LIST_HEAD(listp); \
325 list_splice(&(cachep->node[nodeid]->slab), listp); \
326 } while (0)
327
328#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
329 do { \
330 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
331 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
332 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
333 } while (0)
334
335#define CFLGS_OFF_SLAB (0x80000000UL)
336#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
337
338#define BATCHREFILL_LIMIT 16
339/*
340 * Optimization question: fewer reaps means less probability for unnessary
341 * cpucache drain/refill cycles.
342 *
343 * OTOH the cpuarrays can contain lots of objects,
344 * which could lock up otherwise freeable slabs.
345 */
346#define REAPTIMEOUT_CPUC (2*HZ)
347#define REAPTIMEOUT_LIST3 (4*HZ)
348
349#if STATS
350#define STATS_INC_ACTIVE(x) ((x)->num_active++)
351#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
352#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
353#define STATS_INC_GROWN(x) ((x)->grown++)
354#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
355#define STATS_SET_HIGH(x) \
356 do { \
357 if ((x)->num_active > (x)->high_mark) \
358 (x)->high_mark = (x)->num_active; \
359 } while (0)
360#define STATS_INC_ERR(x) ((x)->errors++)
361#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
362#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
363#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
364#define STATS_SET_FREEABLE(x, i) \
365 do { \
366 if ((x)->max_freeable < i) \
367 (x)->max_freeable = i; \
368 } while (0)
369#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
370#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
371#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
372#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
373#else
374#define STATS_INC_ACTIVE(x) do { } while (0)
375#define STATS_DEC_ACTIVE(x) do { } while (0)
376#define STATS_INC_ALLOCED(x) do { } while (0)
377#define STATS_INC_GROWN(x) do { } while (0)
378#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
379#define STATS_SET_HIGH(x) do { } while (0)
380#define STATS_INC_ERR(x) do { } while (0)
381#define STATS_INC_NODEALLOCS(x) do { } while (0)
382#define STATS_INC_NODEFREES(x) do { } while (0)
383#define STATS_INC_ACOVERFLOW(x) do { } while (0)
384#define STATS_SET_FREEABLE(x, i) do { } while (0)
385#define STATS_INC_ALLOCHIT(x) do { } while (0)
386#define STATS_INC_ALLOCMISS(x) do { } while (0)
387#define STATS_INC_FREEHIT(x) do { } while (0)
388#define STATS_INC_FREEMISS(x) do { } while (0)
389#endif
390
391#if DEBUG
392
393/*
394 * memory layout of objects:
395 * 0 : objp
396 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
397 * the end of an object is aligned with the end of the real
398 * allocation. Catches writes behind the end of the allocation.
399 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
400 * redzone word.
401 * cachep->obj_offset: The real object.
402 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
403 * cachep->size - 1* BYTES_PER_WORD: last caller address
404 * [BYTES_PER_WORD long]
405 */
406static int obj_offset(struct kmem_cache *cachep)
407{
408 return cachep->obj_offset;
409}
410
411static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
412{
413 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
414 return (unsigned long long*) (objp + obj_offset(cachep) -
415 sizeof(unsigned long long));
416}
417
418static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
419{
420 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
421 if (cachep->flags & SLAB_STORE_USER)
422 return (unsigned long long *)(objp + cachep->size -
423 sizeof(unsigned long long) -
424 REDZONE_ALIGN);
425 return (unsigned long long *) (objp + cachep->size -
426 sizeof(unsigned long long));
427}
428
429static void **dbg_userword(struct kmem_cache *cachep, void *objp)
430{
431 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
432 return (void **)(objp + cachep->size - BYTES_PER_WORD);
433}
434
435#else
436
437#define obj_offset(x) 0
438#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
439#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
440#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
441
442#endif
443
444/*
445 * Do not go above this order unless 0 objects fit into the slab or
446 * overridden on the command line.
447 */
448#define SLAB_MAX_ORDER_HI 1
449#define SLAB_MAX_ORDER_LO 0
450static int slab_max_order = SLAB_MAX_ORDER_LO;
451static bool slab_max_order_set __initdata;
452
453static inline struct kmem_cache *virt_to_cache(const void *obj)
454{
455 struct page *page = virt_to_head_page(obj);
456 return page->slab_cache;
457}
458
459static inline struct slab *virt_to_slab(const void *obj)
460{
461 struct page *page = virt_to_head_page(obj);
462
463 VM_BUG_ON(!PageSlab(page));
464 return page->slab_page;
465}
466
467static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
468 unsigned int idx)
469{
470 return slab->s_mem + cache->size * idx;
471}
472
473/*
474 * We want to avoid an expensive divide : (offset / cache->size)
475 * Using the fact that size is a constant for a particular cache,
476 * we can replace (offset / cache->size) by
477 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
478 */
479static inline unsigned int obj_to_index(const struct kmem_cache *cache,
480 const struct slab *slab, void *obj)
481{
482 u32 offset = (obj - slab->s_mem);
483 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
484}
485
486static struct arraycache_init initarray_generic =
487 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
488
489/* internal cache of cache description objs */
490static struct kmem_cache kmem_cache_boot = {
491 .batchcount = 1,
492 .limit = BOOT_CPUCACHE_ENTRIES,
493 .shared = 1,
494 .size = sizeof(struct kmem_cache),
495 .name = "kmem_cache",
496};
497
498#define BAD_ALIEN_MAGIC 0x01020304ul
499
500#ifdef CONFIG_LOCKDEP
501
502/*
503 * Slab sometimes uses the kmalloc slabs to store the slab headers
504 * for other slabs "off slab".
505 * The locking for this is tricky in that it nests within the locks
506 * of all other slabs in a few places; to deal with this special
507 * locking we put on-slab caches into a separate lock-class.
508 *
509 * We set lock class for alien array caches which are up during init.
510 * The lock annotation will be lost if all cpus of a node goes down and
511 * then comes back up during hotplug
512 */
513static struct lock_class_key on_slab_l3_key;
514static struct lock_class_key on_slab_alc_key;
515
516static struct lock_class_key debugobj_l3_key;
517static struct lock_class_key debugobj_alc_key;
518
519static void slab_set_lock_classes(struct kmem_cache *cachep,
520 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
521 int q)
522{
523 struct array_cache **alc;
524 struct kmem_cache_node *n;
525 int r;
526
527 n = cachep->node[q];
528 if (!n)
529 return;
530
531 lockdep_set_class(&n->list_lock, l3_key);
532 alc = n->alien;
533 /*
534 * FIXME: This check for BAD_ALIEN_MAGIC
535 * should go away when common slab code is taught to
536 * work even without alien caches.
537 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
538 * for alloc_alien_cache,
539 */
540 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
541 return;
542 for_each_node(r) {
543 if (alc[r])
544 lockdep_set_class(&alc[r]->lock, alc_key);
545 }
546}
547
548static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
549{
550 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
551}
552
553static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
554{
555 int node;
556
557 for_each_online_node(node)
558 slab_set_debugobj_lock_classes_node(cachep, node);
559}
560
561static void init_node_lock_keys(int q)
562{
563 int i;
564
565 if (slab_state < UP)
566 return;
567
568 for (i = 1; i < PAGE_SHIFT + MAX_ORDER; i++) {
569 struct kmem_cache_node *n;
570 struct kmem_cache *cache = kmalloc_caches[i];
571
572 if (!cache)
573 continue;
574
575 n = cache->node[q];
576 if (!n || OFF_SLAB(cache))
577 continue;
578
579 slab_set_lock_classes(cache, &on_slab_l3_key,
580 &on_slab_alc_key, q);
581 }
582}
583
584static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
585{
586 if (!cachep->node[q])
587 return;
588
589 slab_set_lock_classes(cachep, &on_slab_l3_key,
590 &on_slab_alc_key, q);
591}
592
593static inline void on_slab_lock_classes(struct kmem_cache *cachep)
594{
595 int node;
596
597 VM_BUG_ON(OFF_SLAB(cachep));
598 for_each_node(node)
599 on_slab_lock_classes_node(cachep, node);
600}
601
602static inline void init_lock_keys(void)
603{
604 int node;
605
606 for_each_node(node)
607 init_node_lock_keys(node);
608}
609#else
610static void init_node_lock_keys(int q)
611{
612}
613
614static inline void init_lock_keys(void)
615{
616}
617
618static inline void on_slab_lock_classes(struct kmem_cache *cachep)
619{
620}
621
622static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
623{
624}
625
626static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
627{
628}
629
630static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
631{
632}
633#endif
634
635static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
636
637static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
638{
639 return cachep->array[smp_processor_id()];
640}
641
642static size_t slab_mgmt_size(size_t nr_objs, size_t align)
643{
644 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
645}
646
647/*
648 * Calculate the number of objects and left-over bytes for a given buffer size.
649 */
650static void cache_estimate(unsigned long gfporder, size_t buffer_size,
651 size_t align, int flags, size_t *left_over,
652 unsigned int *num)
653{
654 int nr_objs;
655 size_t mgmt_size;
656 size_t slab_size = PAGE_SIZE << gfporder;
657
658 /*
659 * The slab management structure can be either off the slab or
660 * on it. For the latter case, the memory allocated for a
661 * slab is used for:
662 *
663 * - The struct slab
664 * - One kmem_bufctl_t for each object
665 * - Padding to respect alignment of @align
666 * - @buffer_size bytes for each object
667 *
668 * If the slab management structure is off the slab, then the
669 * alignment will already be calculated into the size. Because
670 * the slabs are all pages aligned, the objects will be at the
671 * correct alignment when allocated.
672 */
673 if (flags & CFLGS_OFF_SLAB) {
674 mgmt_size = 0;
675 nr_objs = slab_size / buffer_size;
676
677 if (nr_objs > SLAB_LIMIT)
678 nr_objs = SLAB_LIMIT;
679 } else {
680 /*
681 * Ignore padding for the initial guess. The padding
682 * is at most @align-1 bytes, and @buffer_size is at
683 * least @align. In the worst case, this result will
684 * be one greater than the number of objects that fit
685 * into the memory allocation when taking the padding
686 * into account.
687 */
688 nr_objs = (slab_size - sizeof(struct slab)) /
689 (buffer_size + sizeof(kmem_bufctl_t));
690
691 /*
692 * This calculated number will be either the right
693 * amount, or one greater than what we want.
694 */
695 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
696 > slab_size)
697 nr_objs--;
698
699 if (nr_objs > SLAB_LIMIT)
700 nr_objs = SLAB_LIMIT;
701
702 mgmt_size = slab_mgmt_size(nr_objs, align);
703 }
704 *num = nr_objs;
705 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
706}
707
708#if DEBUG
709#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
710
711static void __slab_error(const char *function, struct kmem_cache *cachep,
712 char *msg)
713{
714 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
715 function, cachep->name, msg);
716 dump_stack();
717 add_taint(TAINT_BAD_PAGE);
718}
719#endif
720
721/*
722 * By default on NUMA we use alien caches to stage the freeing of
723 * objects allocated from other nodes. This causes massive memory
724 * inefficiencies when using fake NUMA setup to split memory into a
725 * large number of small nodes, so it can be disabled on the command
726 * line
727 */
728
729static int use_alien_caches __read_mostly = 1;
730static int __init noaliencache_setup(char *s)
731{
732 use_alien_caches = 0;
733 return 1;
734}
735__setup("noaliencache", noaliencache_setup);
736
737static int __init slab_max_order_setup(char *str)
738{
739 get_option(&str, &slab_max_order);
740 slab_max_order = slab_max_order < 0 ? 0 :
741 min(slab_max_order, MAX_ORDER - 1);
742 slab_max_order_set = true;
743
744 return 1;
745}
746__setup("slab_max_order=", slab_max_order_setup);
747
748#ifdef CONFIG_NUMA
749/*
750 * Special reaping functions for NUMA systems called from cache_reap().
751 * These take care of doing round robin flushing of alien caches (containing
752 * objects freed on different nodes from which they were allocated) and the
753 * flushing of remote pcps by calling drain_node_pages.
754 */
755static DEFINE_PER_CPU(unsigned long, slab_reap_node);
756
757static void init_reap_node(int cpu)
758{
759 int node;
760
761 node = next_node(cpu_to_mem(cpu), node_online_map);
762 if (node == MAX_NUMNODES)
763 node = first_node(node_online_map);
764
765 per_cpu(slab_reap_node, cpu) = node;
766}
767
768static void next_reap_node(void)
769{
770 int node = __this_cpu_read(slab_reap_node);
771
772 node = next_node(node, node_online_map);
773 if (unlikely(node >= MAX_NUMNODES))
774 node = first_node(node_online_map);
775 __this_cpu_write(slab_reap_node, node);
776}
777
778#else
779#define init_reap_node(cpu) do { } while (0)
780#define next_reap_node(void) do { } while (0)
781#endif
782
783/*
784 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
785 * via the workqueue/eventd.
786 * Add the CPU number into the expiration time to minimize the possibility of
787 * the CPUs getting into lockstep and contending for the global cache chain
788 * lock.
789 */
790static void __cpuinit start_cpu_timer(int cpu)
791{
792 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
793
794 /*
795 * When this gets called from do_initcalls via cpucache_init(),
796 * init_workqueues() has already run, so keventd will be setup
797 * at that time.
798 */
799 if (keventd_up() && reap_work->work.func == NULL) {
800 init_reap_node(cpu);
801 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
802 schedule_delayed_work_on(cpu, reap_work,
803 __round_jiffies_relative(HZ, cpu));
804 }
805}
806
807static struct array_cache *alloc_arraycache(int node, int entries,
808 int batchcount, gfp_t gfp)
809{
810 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
811 struct array_cache *nc = NULL;
812
813 nc = kmalloc_node(memsize, gfp, node);
814 /*
815 * The array_cache structures contain pointers to free object.
816 * However, when such objects are allocated or transferred to another
817 * cache the pointers are not cleared and they could be counted as
818 * valid references during a kmemleak scan. Therefore, kmemleak must
819 * not scan such objects.
820 */
821 kmemleak_no_scan(nc);
822 if (nc) {
823 nc->avail = 0;
824 nc->limit = entries;
825 nc->batchcount = batchcount;
826 nc->touched = 0;
827 spin_lock_init(&nc->lock);
828 }
829 return nc;
830}
831
832static inline bool is_slab_pfmemalloc(struct slab *slabp)
833{
834 struct page *page = virt_to_page(slabp->s_mem);
835
836 return PageSlabPfmemalloc(page);
837}
838
839/* Clears pfmemalloc_active if no slabs have pfmalloc set */
840static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
841 struct array_cache *ac)
842{
843 struct kmem_cache_node *n = cachep->node[numa_mem_id()];
844 struct slab *slabp;
845 unsigned long flags;
846
847 if (!pfmemalloc_active)
848 return;
849
850 spin_lock_irqsave(&n->list_lock, flags);
851 list_for_each_entry(slabp, &n->slabs_full, list)
852 if (is_slab_pfmemalloc(slabp))
853 goto out;
854
855 list_for_each_entry(slabp, &n->slabs_partial, list)
856 if (is_slab_pfmemalloc(slabp))
857 goto out;
858
859 list_for_each_entry(slabp, &n->slabs_free, list)
860 if (is_slab_pfmemalloc(slabp))
861 goto out;
862
863 pfmemalloc_active = false;
864out:
865 spin_unlock_irqrestore(&n->list_lock, flags);
866}
867
868static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
869 gfp_t flags, bool force_refill)
870{
871 int i;
872 void *objp = ac->entry[--ac->avail];
873
874 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
875 if (unlikely(is_obj_pfmemalloc(objp))) {
876 struct kmem_cache_node *n;
877
878 if (gfp_pfmemalloc_allowed(flags)) {
879 clear_obj_pfmemalloc(&objp);
880 return objp;
881 }
882
883 /* The caller cannot use PFMEMALLOC objects, find another one */
884 for (i = 0; i < ac->avail; i++) {
885 /* If a !PFMEMALLOC object is found, swap them */
886 if (!is_obj_pfmemalloc(ac->entry[i])) {
887 objp = ac->entry[i];
888 ac->entry[i] = ac->entry[ac->avail];
889 ac->entry[ac->avail] = objp;
890 return objp;
891 }
892 }
893
894 /*
895 * If there are empty slabs on the slabs_free list and we are
896 * being forced to refill the cache, mark this one !pfmemalloc.
897 */
898 n = cachep->node[numa_mem_id()];
899 if (!list_empty(&n->slabs_free) && force_refill) {
900 struct slab *slabp = virt_to_slab(objp);
901 ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
902 clear_obj_pfmemalloc(&objp);
903 recheck_pfmemalloc_active(cachep, ac);
904 return objp;
905 }
906
907 /* No !PFMEMALLOC objects available */
908 ac->avail++;
909 objp = NULL;
910 }
911
912 return objp;
913}
914
915static inline void *ac_get_obj(struct kmem_cache *cachep,
916 struct array_cache *ac, gfp_t flags, bool force_refill)
917{
918 void *objp;
919
920 if (unlikely(sk_memalloc_socks()))
921 objp = __ac_get_obj(cachep, ac, flags, force_refill);
922 else
923 objp = ac->entry[--ac->avail];
924
925 return objp;
926}
927
928static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
929 void *objp)
930{
931 if (unlikely(pfmemalloc_active)) {
932 /* Some pfmemalloc slabs exist, check if this is one */
933 struct page *page = virt_to_head_page(objp);
934 if (PageSlabPfmemalloc(page))
935 set_obj_pfmemalloc(&objp);
936 }
937
938 return objp;
939}
940
941static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
942 void *objp)
943{
944 if (unlikely(sk_memalloc_socks()))
945 objp = __ac_put_obj(cachep, ac, objp);
946
947 ac->entry[ac->avail++] = objp;
948}
949
950/*
951 * Transfer objects in one arraycache to another.
952 * Locking must be handled by the caller.
953 *
954 * Return the number of entries transferred.
955 */
956static int transfer_objects(struct array_cache *to,
957 struct array_cache *from, unsigned int max)
958{
959 /* Figure out how many entries to transfer */
960 int nr = min3(from->avail, max, to->limit - to->avail);
961
962 if (!nr)
963 return 0;
964
965 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
966 sizeof(void *) *nr);
967
968 from->avail -= nr;
969 to->avail += nr;
970 return nr;
971}
972
973#ifndef CONFIG_NUMA
974
975#define drain_alien_cache(cachep, alien) do { } while (0)
976#define reap_alien(cachep, n) do { } while (0)
977
978static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
979{
980 return (struct array_cache **)BAD_ALIEN_MAGIC;
981}
982
983static inline void free_alien_cache(struct array_cache **ac_ptr)
984{
985}
986
987static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
988{
989 return 0;
990}
991
992static inline void *alternate_node_alloc(struct kmem_cache *cachep,
993 gfp_t flags)
994{
995 return NULL;
996}
997
998static inline void *____cache_alloc_node(struct kmem_cache *cachep,
999 gfp_t flags, int nodeid)
1000{
1001 return NULL;
1002}
1003
1004#else /* CONFIG_NUMA */
1005
1006static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1007static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1008
1009static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1010{
1011 struct array_cache **ac_ptr;
1012 int memsize = sizeof(void *) * nr_node_ids;
1013 int i;
1014
1015 if (limit > 1)
1016 limit = 12;
1017 ac_ptr = kzalloc_node(memsize, gfp, node);
1018 if (ac_ptr) {
1019 for_each_node(i) {
1020 if (i == node || !node_online(i))
1021 continue;
1022 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1023 if (!ac_ptr[i]) {
1024 for (i--; i >= 0; i--)
1025 kfree(ac_ptr[i]);
1026 kfree(ac_ptr);
1027 return NULL;
1028 }
1029 }
1030 }
1031 return ac_ptr;
1032}
1033
1034static void free_alien_cache(struct array_cache **ac_ptr)
1035{
1036 int i;
1037
1038 if (!ac_ptr)
1039 return;
1040 for_each_node(i)
1041 kfree(ac_ptr[i]);
1042 kfree(ac_ptr);
1043}
1044
1045static void __drain_alien_cache(struct kmem_cache *cachep,
1046 struct array_cache *ac, int node)
1047{
1048 struct kmem_cache_node *n = cachep->node[node];
1049
1050 if (ac->avail) {
1051 spin_lock(&n->list_lock);
1052 /*
1053 * Stuff objects into the remote nodes shared array first.
1054 * That way we could avoid the overhead of putting the objects
1055 * into the free lists and getting them back later.
1056 */
1057 if (n->shared)
1058 transfer_objects(n->shared, ac, ac->limit);
1059
1060 free_block(cachep, ac->entry, ac->avail, node);
1061 ac->avail = 0;
1062 spin_unlock(&n->list_lock);
1063 }
1064}
1065
1066/*
1067 * Called from cache_reap() to regularly drain alien caches round robin.
1068 */
1069static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
1070{
1071 int node = __this_cpu_read(slab_reap_node);
1072
1073 if (n->alien) {
1074 struct array_cache *ac = n->alien[node];
1075
1076 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1077 __drain_alien_cache(cachep, ac, node);
1078 spin_unlock_irq(&ac->lock);
1079 }
1080 }
1081}
1082
1083static void drain_alien_cache(struct kmem_cache *cachep,
1084 struct array_cache **alien)
1085{
1086 int i = 0;
1087 struct array_cache *ac;
1088 unsigned long flags;
1089
1090 for_each_online_node(i) {
1091 ac = alien[i];
1092 if (ac) {
1093 spin_lock_irqsave(&ac->lock, flags);
1094 __drain_alien_cache(cachep, ac, i);
1095 spin_unlock_irqrestore(&ac->lock, flags);
1096 }
1097 }
1098}
1099
1100static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1101{
1102 struct slab *slabp = virt_to_slab(objp);
1103 int nodeid = slabp->nodeid;
1104 struct kmem_cache_node *n;
1105 struct array_cache *alien = NULL;
1106 int node;
1107
1108 node = numa_mem_id();
1109
1110 /*
1111 * Make sure we are not freeing a object from another node to the array
1112 * cache on this cpu.
1113 */
1114 if (likely(slabp->nodeid == node))
1115 return 0;
1116
1117 n = cachep->node[node];
1118 STATS_INC_NODEFREES(cachep);
1119 if (n->alien && n->alien[nodeid]) {
1120 alien = n->alien[nodeid];
1121 spin_lock(&alien->lock);
1122 if (unlikely(alien->avail == alien->limit)) {
1123 STATS_INC_ACOVERFLOW(cachep);
1124 __drain_alien_cache(cachep, alien, nodeid);
1125 }
1126 ac_put_obj(cachep, alien, objp);
1127 spin_unlock(&alien->lock);
1128 } else {
1129 spin_lock(&(cachep->node[nodeid])->list_lock);
1130 free_block(cachep, &objp, 1, nodeid);
1131 spin_unlock(&(cachep->node[nodeid])->list_lock);
1132 }
1133 return 1;
1134}
1135#endif
1136
1137/*
1138 * Allocates and initializes node for a node on each slab cache, used for
1139 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
1140 * will be allocated off-node since memory is not yet online for the new node.
1141 * When hotplugging memory or a cpu, existing node are not replaced if
1142 * already in use.
1143 *
1144 * Must hold slab_mutex.
1145 */
1146static int init_cache_node_node(int node)
1147{
1148 struct kmem_cache *cachep;
1149 struct kmem_cache_node *n;
1150 const int memsize = sizeof(struct kmem_cache_node);
1151
1152 list_for_each_entry(cachep, &slab_caches, list) {
1153 /*
1154 * Set up the size64 kmemlist for cpu before we can
1155 * begin anything. Make sure some other cpu on this
1156 * node has not already allocated this
1157 */
1158 if (!cachep->node[node]) {
1159 n = kmalloc_node(memsize, GFP_KERNEL, node);
1160 if (!n)
1161 return -ENOMEM;
1162 kmem_cache_node_init(n);
1163 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1164 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1165
1166 /*
1167 * The l3s don't come and go as CPUs come and
1168 * go. slab_mutex is sufficient
1169 * protection here.
1170 */
1171 cachep->node[node] = n;
1172 }
1173
1174 spin_lock_irq(&cachep->node[node]->list_lock);
1175 cachep->node[node]->free_limit =
1176 (1 + nr_cpus_node(node)) *
1177 cachep->batchcount + cachep->num;
1178 spin_unlock_irq(&cachep->node[node]->list_lock);
1179 }
1180 return 0;
1181}
1182
1183static void __cpuinit cpuup_canceled(long cpu)
1184{
1185 struct kmem_cache *cachep;
1186 struct kmem_cache_node *n = NULL;
1187 int node = cpu_to_mem(cpu);
1188 const struct cpumask *mask = cpumask_of_node(node);
1189
1190 list_for_each_entry(cachep, &slab_caches, list) {
1191 struct array_cache *nc;
1192 struct array_cache *shared;
1193 struct array_cache **alien;
1194
1195 /* cpu is dead; no one can alloc from it. */
1196 nc = cachep->array[cpu];
1197 cachep->array[cpu] = NULL;
1198 n = cachep->node[node];
1199
1200 if (!n)
1201 goto free_array_cache;
1202
1203 spin_lock_irq(&n->list_lock);
1204
1205 /* Free limit for this kmem_cache_node */
1206 n->free_limit -= cachep->batchcount;
1207 if (nc)
1208 free_block(cachep, nc->entry, nc->avail, node);
1209
1210 if (!cpumask_empty(mask)) {
1211 spin_unlock_irq(&n->list_lock);
1212 goto free_array_cache;
1213 }
1214
1215 shared = n->shared;
1216 if (shared) {
1217 free_block(cachep, shared->entry,
1218 shared->avail, node);
1219 n->shared = NULL;
1220 }
1221
1222 alien = n->alien;
1223 n->alien = NULL;
1224
1225 spin_unlock_irq(&n->list_lock);
1226
1227 kfree(shared);
1228 if (alien) {
1229 drain_alien_cache(cachep, alien);
1230 free_alien_cache(alien);
1231 }
1232free_array_cache:
1233 kfree(nc);
1234 }
1235 /*
1236 * In the previous loop, all the objects were freed to
1237 * the respective cache's slabs, now we can go ahead and
1238 * shrink each nodelist to its limit.
1239 */
1240 list_for_each_entry(cachep, &slab_caches, list) {
1241 n = cachep->node[node];
1242 if (!n)
1243 continue;
1244 drain_freelist(cachep, n, n->free_objects);
1245 }
1246}
1247
1248static int __cpuinit cpuup_prepare(long cpu)
1249{
1250 struct kmem_cache *cachep;
1251 struct kmem_cache_node *n = NULL;
1252 int node = cpu_to_mem(cpu);
1253 int err;
1254
1255 /*
1256 * We need to do this right in the beginning since
1257 * alloc_arraycache's are going to use this list.
1258 * kmalloc_node allows us to add the slab to the right
1259 * kmem_cache_node and not this cpu's kmem_cache_node
1260 */
1261 err = init_cache_node_node(node);
1262 if (err < 0)
1263 goto bad;
1264
1265 /*
1266 * Now we can go ahead with allocating the shared arrays and
1267 * array caches
1268 */
1269 list_for_each_entry(cachep, &slab_caches, list) {
1270 struct array_cache *nc;
1271 struct array_cache *shared = NULL;
1272 struct array_cache **alien = NULL;
1273
1274 nc = alloc_arraycache(node, cachep->limit,
1275 cachep->batchcount, GFP_KERNEL);
1276 if (!nc)
1277 goto bad;
1278 if (cachep->shared) {
1279 shared = alloc_arraycache(node,
1280 cachep->shared * cachep->batchcount,
1281 0xbaadf00d, GFP_KERNEL);
1282 if (!shared) {
1283 kfree(nc);
1284 goto bad;
1285 }
1286 }
1287 if (use_alien_caches) {
1288 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1289 if (!alien) {
1290 kfree(shared);
1291 kfree(nc);
1292 goto bad;
1293 }
1294 }
1295 cachep->array[cpu] = nc;
1296 n = cachep->node[node];
1297 BUG_ON(!n);
1298
1299 spin_lock_irq(&n->list_lock);
1300 if (!n->shared) {
1301 /*
1302 * We are serialised from CPU_DEAD or
1303 * CPU_UP_CANCELLED by the cpucontrol lock
1304 */
1305 n->shared = shared;
1306 shared = NULL;
1307 }
1308#ifdef CONFIG_NUMA
1309 if (!n->alien) {
1310 n->alien = alien;
1311 alien = NULL;
1312 }
1313#endif
1314 spin_unlock_irq(&n->list_lock);
1315 kfree(shared);
1316 free_alien_cache(alien);
1317 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1318 slab_set_debugobj_lock_classes_node(cachep, node);
1319 else if (!OFF_SLAB(cachep) &&
1320 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1321 on_slab_lock_classes_node(cachep, node);
1322 }
1323 init_node_lock_keys(node);
1324
1325 return 0;
1326bad:
1327 cpuup_canceled(cpu);
1328 return -ENOMEM;
1329}
1330
1331static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1332 unsigned long action, void *hcpu)
1333{
1334 long cpu = (long)hcpu;
1335 int err = 0;
1336
1337 switch (action) {
1338 case CPU_UP_PREPARE:
1339 case CPU_UP_PREPARE_FROZEN:
1340 mutex_lock(&slab_mutex);
1341 err = cpuup_prepare(cpu);
1342 mutex_unlock(&slab_mutex);
1343 break;
1344 case CPU_ONLINE:
1345 case CPU_ONLINE_FROZEN:
1346 start_cpu_timer(cpu);
1347 break;
1348#ifdef CONFIG_HOTPLUG_CPU
1349 case CPU_DOWN_PREPARE:
1350 case CPU_DOWN_PREPARE_FROZEN:
1351 /*
1352 * Shutdown cache reaper. Note that the slab_mutex is
1353 * held so that if cache_reap() is invoked it cannot do
1354 * anything expensive but will only modify reap_work
1355 * and reschedule the timer.
1356 */
1357 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1358 /* Now the cache_reaper is guaranteed to be not running. */
1359 per_cpu(slab_reap_work, cpu).work.func = NULL;
1360 break;
1361 case CPU_DOWN_FAILED:
1362 case CPU_DOWN_FAILED_FROZEN:
1363 start_cpu_timer(cpu);
1364 break;
1365 case CPU_DEAD:
1366 case CPU_DEAD_FROZEN:
1367 /*
1368 * Even if all the cpus of a node are down, we don't free the
1369 * kmem_cache_node of any cache. This to avoid a race between
1370 * cpu_down, and a kmalloc allocation from another cpu for
1371 * memory from the node of the cpu going down. The node
1372 * structure is usually allocated from kmem_cache_create() and
1373 * gets destroyed at kmem_cache_destroy().
1374 */
1375 /* fall through */
1376#endif
1377 case CPU_UP_CANCELED:
1378 case CPU_UP_CANCELED_FROZEN:
1379 mutex_lock(&slab_mutex);
1380 cpuup_canceled(cpu);
1381 mutex_unlock(&slab_mutex);
1382 break;
1383 }
1384 return notifier_from_errno(err);
1385}
1386
1387static struct notifier_block __cpuinitdata cpucache_notifier = {
1388 &cpuup_callback, NULL, 0
1389};
1390
1391#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1392/*
1393 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1394 * Returns -EBUSY if all objects cannot be drained so that the node is not
1395 * removed.
1396 *
1397 * Must hold slab_mutex.
1398 */
1399static int __meminit drain_cache_node_node(int node)
1400{
1401 struct kmem_cache *cachep;
1402 int ret = 0;
1403
1404 list_for_each_entry(cachep, &slab_caches, list) {
1405 struct kmem_cache_node *n;
1406
1407 n = cachep->node[node];
1408 if (!n)
1409 continue;
1410
1411 drain_freelist(cachep, n, n->free_objects);
1412
1413 if (!list_empty(&n->slabs_full) ||
1414 !list_empty(&n->slabs_partial)) {
1415 ret = -EBUSY;
1416 break;
1417 }
1418 }
1419 return ret;
1420}
1421
1422static int __meminit slab_memory_callback(struct notifier_block *self,
1423 unsigned long action, void *arg)
1424{
1425 struct memory_notify *mnb = arg;
1426 int ret = 0;
1427 int nid;
1428
1429 nid = mnb->status_change_nid;
1430 if (nid < 0)
1431 goto out;
1432
1433 switch (action) {
1434 case MEM_GOING_ONLINE:
1435 mutex_lock(&slab_mutex);
1436 ret = init_cache_node_node(nid);
1437 mutex_unlock(&slab_mutex);
1438 break;
1439 case MEM_GOING_OFFLINE:
1440 mutex_lock(&slab_mutex);
1441 ret = drain_cache_node_node(nid);
1442 mutex_unlock(&slab_mutex);
1443 break;
1444 case MEM_ONLINE:
1445 case MEM_OFFLINE:
1446 case MEM_CANCEL_ONLINE:
1447 case MEM_CANCEL_OFFLINE:
1448 break;
1449 }
1450out:
1451 return notifier_from_errno(ret);
1452}
1453#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1454
1455/*
1456 * swap the static kmem_cache_node with kmalloced memory
1457 */
1458static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1459 int nodeid)
1460{
1461 struct kmem_cache_node *ptr;
1462
1463 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1464 BUG_ON(!ptr);
1465
1466 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1467 /*
1468 * Do not assume that spinlocks can be initialized via memcpy:
1469 */
1470 spin_lock_init(&ptr->list_lock);
1471
1472 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1473 cachep->node[nodeid] = ptr;
1474}
1475
1476/*
1477 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1478 * size of kmem_cache_node.
1479 */
1480static void __init set_up_node(struct kmem_cache *cachep, int index)
1481{
1482 int node;
1483
1484 for_each_online_node(node) {
1485 cachep->node[node] = &init_kmem_cache_node[index + node];
1486 cachep->node[node]->next_reap = jiffies +
1487 REAPTIMEOUT_LIST3 +
1488 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1489 }
1490}
1491
1492/*
1493 * The memory after the last cpu cache pointer is used for the
1494 * the node pointer.
1495 */
1496static void setup_node_pointer(struct kmem_cache *cachep)
1497{
1498 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
1499}
1500
1501/*
1502 * Initialisation. Called after the page allocator have been initialised and
1503 * before smp_init().
1504 */
1505void __init kmem_cache_init(void)
1506{
1507 int i;
1508
1509 kmem_cache = &kmem_cache_boot;
1510 setup_node_pointer(kmem_cache);
1511
1512 if (num_possible_nodes() == 1)
1513 use_alien_caches = 0;
1514
1515 for (i = 0; i < NUM_INIT_LISTS; i++)
1516 kmem_cache_node_init(&init_kmem_cache_node[i]);
1517
1518 set_up_node(kmem_cache, CACHE_CACHE);
1519
1520 /*
1521 * Fragmentation resistance on low memory - only use bigger
1522 * page orders on machines with more than 32MB of memory if
1523 * not overridden on the command line.
1524 */
1525 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1526 slab_max_order = SLAB_MAX_ORDER_HI;
1527
1528 /* Bootstrap is tricky, because several objects are allocated
1529 * from caches that do not exist yet:
1530 * 1) initialize the kmem_cache cache: it contains the struct
1531 * kmem_cache structures of all caches, except kmem_cache itself:
1532 * kmem_cache is statically allocated.
1533 * Initially an __init data area is used for the head array and the
1534 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1535 * array at the end of the bootstrap.
1536 * 2) Create the first kmalloc cache.
1537 * The struct kmem_cache for the new cache is allocated normally.
1538 * An __init data area is used for the head array.
1539 * 3) Create the remaining kmalloc caches, with minimally sized
1540 * head arrays.
1541 * 4) Replace the __init data head arrays for kmem_cache and the first
1542 * kmalloc cache with kmalloc allocated arrays.
1543 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1544 * the other cache's with kmalloc allocated memory.
1545 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1546 */
1547
1548 /* 1) create the kmem_cache */
1549
1550 /*
1551 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1552 */
1553 create_boot_cache(kmem_cache, "kmem_cache",
1554 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1555 nr_node_ids * sizeof(struct kmem_cache_node *),
1556 SLAB_HWCACHE_ALIGN);
1557 list_add(&kmem_cache->list, &slab_caches);
1558
1559 /* 2+3) create the kmalloc caches */
1560
1561 /*
1562 * Initialize the caches that provide memory for the array cache and the
1563 * kmem_cache_node structures first. Without this, further allocations will
1564 * bug.
1565 */
1566
1567 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1568 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1569
1570 if (INDEX_AC != INDEX_NODE)
1571 kmalloc_caches[INDEX_NODE] =
1572 create_kmalloc_cache("kmalloc-node",
1573 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1574
1575 slab_early_init = 0;
1576
1577 /* 4) Replace the bootstrap head arrays */
1578 {
1579 struct array_cache *ptr;
1580
1581 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1582
1583 memcpy(ptr, cpu_cache_get(kmem_cache),
1584 sizeof(struct arraycache_init));
1585 /*
1586 * Do not assume that spinlocks can be initialized via memcpy:
1587 */
1588 spin_lock_init(&ptr->lock);
1589
1590 kmem_cache->array[smp_processor_id()] = ptr;
1591
1592 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1593
1594 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
1595 != &initarray_generic.cache);
1596 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
1597 sizeof(struct arraycache_init));
1598 /*
1599 * Do not assume that spinlocks can be initialized via memcpy:
1600 */
1601 spin_lock_init(&ptr->lock);
1602
1603 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1604 }
1605 /* 5) Replace the bootstrap kmem_cache_node */
1606 {
1607 int nid;
1608
1609 for_each_online_node(nid) {
1610 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1611
1612 init_list(kmalloc_caches[INDEX_AC],
1613 &init_kmem_cache_node[SIZE_AC + nid], nid);
1614
1615 if (INDEX_AC != INDEX_NODE) {
1616 init_list(kmalloc_caches[INDEX_NODE],
1617 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1618 }
1619 }
1620 }
1621
1622 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1623}
1624
1625void __init kmem_cache_init_late(void)
1626{
1627 struct kmem_cache *cachep;
1628
1629 slab_state = UP;
1630
1631 /* 6) resize the head arrays to their final sizes */
1632 mutex_lock(&slab_mutex);
1633 list_for_each_entry(cachep, &slab_caches, list)
1634 if (enable_cpucache(cachep, GFP_NOWAIT))
1635 BUG();
1636 mutex_unlock(&slab_mutex);
1637
1638 /* Annotate slab for lockdep -- annotate the malloc caches */
1639 init_lock_keys();
1640
1641 /* Done! */
1642 slab_state = FULL;
1643
1644 /*
1645 * Register a cpu startup notifier callback that initializes
1646 * cpu_cache_get for all new cpus
1647 */
1648 register_cpu_notifier(&cpucache_notifier);
1649
1650#ifdef CONFIG_NUMA
1651 /*
1652 * Register a memory hotplug callback that initializes and frees
1653 * node.
1654 */
1655 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1656#endif
1657
1658 /*
1659 * The reap timers are started later, with a module init call: That part
1660 * of the kernel is not yet operational.
1661 */
1662}
1663
1664static int __init cpucache_init(void)
1665{
1666 int cpu;
1667
1668 /*
1669 * Register the timers that return unneeded pages to the page allocator
1670 */
1671 for_each_online_cpu(cpu)
1672 start_cpu_timer(cpu);
1673
1674 /* Done! */
1675 slab_state = FULL;
1676 return 0;
1677}
1678__initcall(cpucache_init);
1679
1680static noinline void
1681slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1682{
1683 struct kmem_cache_node *n;
1684 struct slab *slabp;
1685 unsigned long flags;
1686 int node;
1687
1688 printk(KERN_WARNING
1689 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1690 nodeid, gfpflags);
1691 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1692 cachep->name, cachep->size, cachep->gfporder);
1693
1694 for_each_online_node(node) {
1695 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1696 unsigned long active_slabs = 0, num_slabs = 0;
1697
1698 n = cachep->node[node];
1699 if (!n)
1700 continue;
1701
1702 spin_lock_irqsave(&n->list_lock, flags);
1703 list_for_each_entry(slabp, &n->slabs_full, list) {
1704 active_objs += cachep->num;
1705 active_slabs++;
1706 }
1707 list_for_each_entry(slabp, &n->slabs_partial, list) {
1708 active_objs += slabp->inuse;
1709 active_slabs++;
1710 }
1711 list_for_each_entry(slabp, &n->slabs_free, list)
1712 num_slabs++;
1713
1714 free_objects += n->free_objects;
1715 spin_unlock_irqrestore(&n->list_lock, flags);
1716
1717 num_slabs += active_slabs;
1718 num_objs = num_slabs * cachep->num;
1719 printk(KERN_WARNING
1720 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1721 node, active_slabs, num_slabs, active_objs, num_objs,
1722 free_objects);
1723 }
1724}
1725
1726/*
1727 * Interface to system's page allocator. No need to hold the cache-lock.
1728 *
1729 * If we requested dmaable memory, we will get it. Even if we
1730 * did not request dmaable memory, we might get it, but that
1731 * would be relatively rare and ignorable.
1732 */
1733static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1734{
1735 struct page *page;
1736 int nr_pages;
1737 int i;
1738
1739#ifndef CONFIG_MMU
1740 /*
1741 * Nommu uses slab's for process anonymous memory allocations, and thus
1742 * requires __GFP_COMP to properly refcount higher order allocations
1743 */
1744 flags |= __GFP_COMP;
1745#endif
1746
1747 flags |= cachep->allocflags;
1748 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1749 flags |= __GFP_RECLAIMABLE;
1750
1751 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1752 if (!page) {
1753 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1754 slab_out_of_memory(cachep, flags, nodeid);
1755 return NULL;
1756 }
1757
1758 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1759 if (unlikely(page->pfmemalloc))
1760 pfmemalloc_active = true;
1761
1762 nr_pages = (1 << cachep->gfporder);
1763 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1764 add_zone_page_state(page_zone(page),
1765 NR_SLAB_RECLAIMABLE, nr_pages);
1766 else
1767 add_zone_page_state(page_zone(page),
1768 NR_SLAB_UNRECLAIMABLE, nr_pages);
1769 for (i = 0; i < nr_pages; i++) {
1770 __SetPageSlab(page + i);
1771
1772 if (page->pfmemalloc)
1773 SetPageSlabPfmemalloc(page + i);
1774 }
1775 memcg_bind_pages(cachep, cachep->gfporder);
1776
1777 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1778 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1779
1780 if (cachep->ctor)
1781 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1782 else
1783 kmemcheck_mark_unallocated_pages(page, nr_pages);
1784 }
1785
1786 return page_address(page);
1787}
1788
1789/*
1790 * Interface to system's page release.
1791 */
1792static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1793{
1794 unsigned long i = (1 << cachep->gfporder);
1795 struct page *page = virt_to_page(addr);
1796 const unsigned long nr_freed = i;
1797
1798 kmemcheck_free_shadow(page, cachep->gfporder);
1799
1800 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1801 sub_zone_page_state(page_zone(page),
1802 NR_SLAB_RECLAIMABLE, nr_freed);
1803 else
1804 sub_zone_page_state(page_zone(page),
1805 NR_SLAB_UNRECLAIMABLE, nr_freed);
1806 while (i--) {
1807 BUG_ON(!PageSlab(page));
1808 __ClearPageSlabPfmemalloc(page);
1809 __ClearPageSlab(page);
1810 page++;
1811 }
1812
1813 memcg_release_pages(cachep, cachep->gfporder);
1814 if (current->reclaim_state)
1815 current->reclaim_state->reclaimed_slab += nr_freed;
1816 free_memcg_kmem_pages((unsigned long)addr, cachep->gfporder);
1817}
1818
1819static void kmem_rcu_free(struct rcu_head *head)
1820{
1821 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1822 struct kmem_cache *cachep = slab_rcu->cachep;
1823
1824 kmem_freepages(cachep, slab_rcu->addr);
1825 if (OFF_SLAB(cachep))
1826 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1827}
1828
1829#if DEBUG
1830
1831#ifdef CONFIG_DEBUG_PAGEALLOC
1832static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1833 unsigned long caller)
1834{
1835 int size = cachep->object_size;
1836
1837 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1838
1839 if (size < 5 * sizeof(unsigned long))
1840 return;
1841
1842 *addr++ = 0x12345678;
1843 *addr++ = caller;
1844 *addr++ = smp_processor_id();
1845 size -= 3 * sizeof(unsigned long);
1846 {
1847 unsigned long *sptr = &caller;
1848 unsigned long svalue;
1849
1850 while (!kstack_end(sptr)) {
1851 svalue = *sptr++;
1852 if (kernel_text_address(svalue)) {
1853 *addr++ = svalue;
1854 size -= sizeof(unsigned long);
1855 if (size <= sizeof(unsigned long))
1856 break;
1857 }
1858 }
1859
1860 }
1861 *addr++ = 0x87654321;
1862}
1863#endif
1864
1865static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1866{
1867 int size = cachep->object_size;
1868 addr = &((char *)addr)[obj_offset(cachep)];
1869
1870 memset(addr, val, size);
1871 *(unsigned char *)(addr + size - 1) = POISON_END;
1872}
1873
1874static void dump_line(char *data, int offset, int limit)
1875{
1876 int i;
1877 unsigned char error = 0;
1878 int bad_count = 0;
1879
1880 printk(KERN_ERR "%03x: ", offset);
1881 for (i = 0; i < limit; i++) {
1882 if (data[offset + i] != POISON_FREE) {
1883 error = data[offset + i];
1884 bad_count++;
1885 }
1886 }
1887 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1888 &data[offset], limit, 1);
1889
1890 if (bad_count == 1) {
1891 error ^= POISON_FREE;
1892 if (!(error & (error - 1))) {
1893 printk(KERN_ERR "Single bit error detected. Probably "
1894 "bad RAM.\n");
1895#ifdef CONFIG_X86
1896 printk(KERN_ERR "Run memtest86+ or a similar memory "
1897 "test tool.\n");
1898#else
1899 printk(KERN_ERR "Run a memory test tool.\n");
1900#endif
1901 }
1902 }
1903}
1904#endif
1905
1906#if DEBUG
1907
1908static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1909{
1910 int i, size;
1911 char *realobj;
1912
1913 if (cachep->flags & SLAB_RED_ZONE) {
1914 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1915 *dbg_redzone1(cachep, objp),
1916 *dbg_redzone2(cachep, objp));
1917 }
1918
1919 if (cachep->flags & SLAB_STORE_USER) {
1920 printk(KERN_ERR "Last user: [<%p>]",
1921 *dbg_userword(cachep, objp));
1922 print_symbol("(%s)",
1923 (unsigned long)*dbg_userword(cachep, objp));
1924 printk("\n");
1925 }
1926 realobj = (char *)objp + obj_offset(cachep);
1927 size = cachep->object_size;
1928 for (i = 0; i < size && lines; i += 16, lines--) {
1929 int limit;
1930 limit = 16;
1931 if (i + limit > size)
1932 limit = size - i;
1933 dump_line(realobj, i, limit);
1934 }
1935}
1936
1937static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1938{
1939 char *realobj;
1940 int size, i;
1941 int lines = 0;
1942
1943 realobj = (char *)objp + obj_offset(cachep);
1944 size = cachep->object_size;
1945
1946 for (i = 0; i < size; i++) {
1947 char exp = POISON_FREE;
1948 if (i == size - 1)
1949 exp = POISON_END;
1950 if (realobj[i] != exp) {
1951 int limit;
1952 /* Mismatch ! */
1953 /* Print header */
1954 if (lines == 0) {
1955 printk(KERN_ERR
1956 "Slab corruption (%s): %s start=%p, len=%d\n",
1957 print_tainted(), cachep->name, realobj, size);
1958 print_objinfo(cachep, objp, 0);
1959 }
1960 /* Hexdump the affected line */
1961 i = (i / 16) * 16;
1962 limit = 16;
1963 if (i + limit > size)
1964 limit = size - i;
1965 dump_line(realobj, i, limit);
1966 i += 16;
1967 lines++;
1968 /* Limit to 5 lines */
1969 if (lines > 5)
1970 break;
1971 }
1972 }
1973 if (lines != 0) {
1974 /* Print some data about the neighboring objects, if they
1975 * exist:
1976 */
1977 struct slab *slabp = virt_to_slab(objp);
1978 unsigned int objnr;
1979
1980 objnr = obj_to_index(cachep, slabp, objp);
1981 if (objnr) {
1982 objp = index_to_obj(cachep, slabp, objnr - 1);
1983 realobj = (char *)objp + obj_offset(cachep);
1984 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1985 realobj, size);
1986 print_objinfo(cachep, objp, 2);
1987 }
1988 if (objnr + 1 < cachep->num) {
1989 objp = index_to_obj(cachep, slabp, objnr + 1);
1990 realobj = (char *)objp + obj_offset(cachep);
1991 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1992 realobj, size);
1993 print_objinfo(cachep, objp, 2);
1994 }
1995 }
1996}
1997#endif
1998
1999#if DEBUG
2000static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2001{
2002 int i;
2003 for (i = 0; i < cachep->num; i++) {
2004 void *objp = index_to_obj(cachep, slabp, i);
2005
2006 if (cachep->flags & SLAB_POISON) {
2007#ifdef CONFIG_DEBUG_PAGEALLOC
2008 if (cachep->size % PAGE_SIZE == 0 &&
2009 OFF_SLAB(cachep))
2010 kernel_map_pages(virt_to_page(objp),
2011 cachep->size / PAGE_SIZE, 1);
2012 else
2013 check_poison_obj(cachep, objp);
2014#else
2015 check_poison_obj(cachep, objp);
2016#endif
2017 }
2018 if (cachep->flags & SLAB_RED_ZONE) {
2019 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2020 slab_error(cachep, "start of a freed object "
2021 "was overwritten");
2022 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2023 slab_error(cachep, "end of a freed object "
2024 "was overwritten");
2025 }
2026 }
2027}
2028#else
2029static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2030{
2031}
2032#endif
2033
2034/**
2035 * slab_destroy - destroy and release all objects in a slab
2036 * @cachep: cache pointer being destroyed
2037 * @slabp: slab pointer being destroyed
2038 *
2039 * Destroy all the objs in a slab, and release the mem back to the system.
2040 * Before calling the slab must have been unlinked from the cache. The
2041 * cache-lock is not held/needed.
2042 */
2043static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2044{
2045 void *addr = slabp->s_mem - slabp->colouroff;
2046
2047 slab_destroy_debugcheck(cachep, slabp);
2048 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2049 struct slab_rcu *slab_rcu;
2050
2051 slab_rcu = (struct slab_rcu *)slabp;
2052 slab_rcu->cachep = cachep;
2053 slab_rcu->addr = addr;
2054 call_rcu(&slab_rcu->head, kmem_rcu_free);
2055 } else {
2056 kmem_freepages(cachep, addr);
2057 if (OFF_SLAB(cachep))
2058 kmem_cache_free(cachep->slabp_cache, slabp);
2059 }
2060}
2061
2062/**
2063 * calculate_slab_order - calculate size (page order) of slabs
2064 * @cachep: pointer to the cache that is being created
2065 * @size: size of objects to be created in this cache.
2066 * @align: required alignment for the objects.
2067 * @flags: slab allocation flags
2068 *
2069 * Also calculates the number of objects per slab.
2070 *
2071 * This could be made much more intelligent. For now, try to avoid using
2072 * high order pages for slabs. When the gfp() functions are more friendly
2073 * towards high-order requests, this should be changed.
2074 */
2075static size_t calculate_slab_order(struct kmem_cache *cachep,
2076 size_t size, size_t align, unsigned long flags)
2077{
2078 unsigned long offslab_limit;
2079 size_t left_over = 0;
2080 int gfporder;
2081
2082 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2083 unsigned int num;
2084 size_t remainder;
2085
2086 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2087 if (!num)
2088 continue;
2089
2090 if (flags & CFLGS_OFF_SLAB) {
2091 /*
2092 * Max number of objs-per-slab for caches which
2093 * use off-slab slabs. Needed to avoid a possible
2094 * looping condition in cache_grow().
2095 */
2096 offslab_limit = size - sizeof(struct slab);
2097 offslab_limit /= sizeof(kmem_bufctl_t);
2098
2099 if (num > offslab_limit)
2100 break;
2101 }
2102
2103 /* Found something acceptable - save it away */
2104 cachep->num = num;
2105 cachep->gfporder = gfporder;
2106 left_over = remainder;
2107
2108 /*
2109 * A VFS-reclaimable slab tends to have most allocations
2110 * as GFP_NOFS and we really don't want to have to be allocating
2111 * higher-order pages when we are unable to shrink dcache.
2112 */
2113 if (flags & SLAB_RECLAIM_ACCOUNT)
2114 break;
2115
2116 /*
2117 * Large number of objects is good, but very large slabs are
2118 * currently bad for the gfp()s.
2119 */
2120 if (gfporder >= slab_max_order)
2121 break;
2122
2123 /*
2124 * Acceptable internal fragmentation?
2125 */
2126 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2127 break;
2128 }
2129 return left_over;
2130}
2131
2132static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2133{
2134 if (slab_state >= FULL)
2135 return enable_cpucache(cachep, gfp);
2136
2137 if (slab_state == DOWN) {
2138 /*
2139 * Note: Creation of first cache (kmem_cache).
2140 * The setup_node is taken care
2141 * of by the caller of __kmem_cache_create
2142 */
2143 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2144 slab_state = PARTIAL;
2145 } else if (slab_state == PARTIAL) {
2146 /*
2147 * Note: the second kmem_cache_create must create the cache
2148 * that's used by kmalloc(24), otherwise the creation of
2149 * further caches will BUG().
2150 */
2151 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2152
2153 /*
2154 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2155 * the second cache, then we need to set up all its node/,
2156 * otherwise the creation of further caches will BUG().
2157 */
2158 set_up_node(cachep, SIZE_AC);
2159 if (INDEX_AC == INDEX_NODE)
2160 slab_state = PARTIAL_NODE;
2161 else
2162 slab_state = PARTIAL_ARRAYCACHE;
2163 } else {
2164 /* Remaining boot caches */
2165 cachep->array[smp_processor_id()] =
2166 kmalloc(sizeof(struct arraycache_init), gfp);
2167
2168 if (slab_state == PARTIAL_ARRAYCACHE) {
2169 set_up_node(cachep, SIZE_NODE);
2170 slab_state = PARTIAL_NODE;
2171 } else {
2172 int node;
2173 for_each_online_node(node) {
2174 cachep->node[node] =
2175 kmalloc_node(sizeof(struct kmem_cache_node),
2176 gfp, node);
2177 BUG_ON(!cachep->node[node]);
2178 kmem_cache_node_init(cachep->node[node]);
2179 }
2180 }
2181 }
2182 cachep->node[numa_mem_id()]->next_reap =
2183 jiffies + REAPTIMEOUT_LIST3 +
2184 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2185
2186 cpu_cache_get(cachep)->avail = 0;
2187 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2188 cpu_cache_get(cachep)->batchcount = 1;
2189 cpu_cache_get(cachep)->touched = 0;
2190 cachep->batchcount = 1;
2191 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2192 return 0;
2193}
2194
2195/**
2196 * __kmem_cache_create - Create a cache.
2197 * @cachep: cache management descriptor
2198 * @flags: SLAB flags
2199 *
2200 * Returns a ptr to the cache on success, NULL on failure.
2201 * Cannot be called within a int, but can be interrupted.
2202 * The @ctor is run when new pages are allocated by the cache.
2203 *
2204 * The flags are
2205 *
2206 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2207 * to catch references to uninitialised memory.
2208 *
2209 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2210 * for buffer overruns.
2211 *
2212 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2213 * cacheline. This can be beneficial if you're counting cycles as closely
2214 * as davem.
2215 */
2216int
2217__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2218{
2219 size_t left_over, slab_size, ralign;
2220 gfp_t gfp;
2221 int err;
2222 size_t size = cachep->size;
2223
2224#if DEBUG
2225#if FORCED_DEBUG
2226 /*
2227 * Enable redzoning and last user accounting, except for caches with
2228 * large objects, if the increased size would increase the object size
2229 * above the next power of two: caches with object sizes just above a
2230 * power of two have a significant amount of internal fragmentation.
2231 */
2232 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2233 2 * sizeof(unsigned long long)))
2234 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2235 if (!(flags & SLAB_DESTROY_BY_RCU))
2236 flags |= SLAB_POISON;
2237#endif
2238 if (flags & SLAB_DESTROY_BY_RCU)
2239 BUG_ON(flags & SLAB_POISON);
2240#endif
2241
2242 /*
2243 * Check that size is in terms of words. This is needed to avoid
2244 * unaligned accesses for some archs when redzoning is used, and makes
2245 * sure any on-slab bufctl's are also correctly aligned.
2246 */
2247 if (size & (BYTES_PER_WORD - 1)) {
2248 size += (BYTES_PER_WORD - 1);
2249 size &= ~(BYTES_PER_WORD - 1);
2250 }
2251
2252 /*
2253 * Redzoning and user store require word alignment or possibly larger.
2254 * Note this will be overridden by architecture or caller mandated
2255 * alignment if either is greater than BYTES_PER_WORD.
2256 */
2257 if (flags & SLAB_STORE_USER)
2258 ralign = BYTES_PER_WORD;
2259
2260 if (flags & SLAB_RED_ZONE) {
2261 ralign = REDZONE_ALIGN;
2262 /* If redzoning, ensure that the second redzone is suitably
2263 * aligned, by adjusting the object size accordingly. */
2264 size += REDZONE_ALIGN - 1;
2265 size &= ~(REDZONE_ALIGN - 1);
2266 }
2267
2268 /* 3) caller mandated alignment */
2269 if (ralign < cachep->align) {
2270 ralign = cachep->align;
2271 }
2272 /* disable debug if necessary */
2273 if (ralign > __alignof__(unsigned long long))
2274 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2275 /*
2276 * 4) Store it.
2277 */
2278 cachep->align = ralign;
2279
2280 if (slab_is_available())
2281 gfp = GFP_KERNEL;
2282 else
2283 gfp = GFP_NOWAIT;
2284
2285 setup_node_pointer(cachep);
2286#if DEBUG
2287
2288 /*
2289 * Both debugging options require word-alignment which is calculated
2290 * into align above.
2291 */
2292 if (flags & SLAB_RED_ZONE) {
2293 /* add space for red zone words */
2294 cachep->obj_offset += sizeof(unsigned long long);
2295 size += 2 * sizeof(unsigned long long);
2296 }
2297 if (flags & SLAB_STORE_USER) {
2298 /* user store requires one word storage behind the end of
2299 * the real object. But if the second red zone needs to be
2300 * aligned to 64 bits, we must allow that much space.
2301 */
2302 if (flags & SLAB_RED_ZONE)
2303 size += REDZONE_ALIGN;
2304 else
2305 size += BYTES_PER_WORD;
2306 }
2307#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2308 if (size >= kmalloc_size(INDEX_NODE + 1)
2309 && cachep->object_size > cache_line_size()
2310 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2311 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2312 size = PAGE_SIZE;
2313 }
2314#endif
2315#endif
2316
2317 /*
2318 * Determine if the slab management is 'on' or 'off' slab.
2319 * (bootstrapping cannot cope with offslab caches so don't do
2320 * it too early on. Always use on-slab management when
2321 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2322 */
2323 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2324 !(flags & SLAB_NOLEAKTRACE))
2325 /*
2326 * Size is large, assume best to place the slab management obj
2327 * off-slab (should allow better packing of objs).
2328 */
2329 flags |= CFLGS_OFF_SLAB;
2330
2331 size = ALIGN(size, cachep->align);
2332
2333 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2334
2335 if (!cachep->num)
2336 return -E2BIG;
2337
2338 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2339 + sizeof(struct slab), cachep->align);
2340
2341 /*
2342 * If the slab has been placed off-slab, and we have enough space then
2343 * move it on-slab. This is at the expense of any extra colouring.
2344 */
2345 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2346 flags &= ~CFLGS_OFF_SLAB;
2347 left_over -= slab_size;
2348 }
2349
2350 if (flags & CFLGS_OFF_SLAB) {
2351 /* really off slab. No need for manual alignment */
2352 slab_size =
2353 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2354
2355#ifdef CONFIG_PAGE_POISONING
2356 /* If we're going to use the generic kernel_map_pages()
2357 * poisoning, then it's going to smash the contents of
2358 * the redzone and userword anyhow, so switch them off.
2359 */
2360 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2361 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2362#endif
2363 }
2364
2365 cachep->colour_off = cache_line_size();
2366 /* Offset must be a multiple of the alignment. */
2367 if (cachep->colour_off < cachep->align)
2368 cachep->colour_off = cachep->align;
2369 cachep->colour = left_over / cachep->colour_off;
2370 cachep->slab_size = slab_size;
2371 cachep->flags = flags;
2372 cachep->allocflags = 0;
2373 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2374 cachep->allocflags |= GFP_DMA;
2375 cachep->size = size;
2376 cachep->reciprocal_buffer_size = reciprocal_value(size);
2377
2378 if (flags & CFLGS_OFF_SLAB) {
2379 cachep->slabp_cache = kmalloc_slab(slab_size, 0u);
2380 /*
2381 * This is a possibility for one of the malloc_sizes caches.
2382 * But since we go off slab only for object size greater than
2383 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2384 * this should not happen at all.
2385 * But leave a BUG_ON for some lucky dude.
2386 */
2387 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2388 }
2389
2390 err = setup_cpu_cache(cachep, gfp);
2391 if (err) {
2392 __kmem_cache_shutdown(cachep);
2393 return err;
2394 }
2395
2396 if (flags & SLAB_DEBUG_OBJECTS) {
2397 /*
2398 * Would deadlock through slab_destroy()->call_rcu()->
2399 * debug_object_activate()->kmem_cache_alloc().
2400 */
2401 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2402
2403 slab_set_debugobj_lock_classes(cachep);
2404 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2405 on_slab_lock_classes(cachep);
2406
2407 return 0;
2408}
2409
2410#if DEBUG
2411static void check_irq_off(void)
2412{
2413 BUG_ON(!irqs_disabled());
2414}
2415
2416static void check_irq_on(void)
2417{
2418 BUG_ON(irqs_disabled());
2419}
2420
2421static void check_spinlock_acquired(struct kmem_cache *cachep)
2422{
2423#ifdef CONFIG_SMP
2424 check_irq_off();
2425 assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
2426#endif
2427}
2428
2429static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2430{
2431#ifdef CONFIG_SMP
2432 check_irq_off();
2433 assert_spin_locked(&cachep->node[node]->list_lock);
2434#endif
2435}
2436
2437#else
2438#define check_irq_off() do { } while(0)
2439#define check_irq_on() do { } while(0)
2440#define check_spinlock_acquired(x) do { } while(0)
2441#define check_spinlock_acquired_node(x, y) do { } while(0)
2442#endif
2443
2444static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2445 struct array_cache *ac,
2446 int force, int node);
2447
2448static void do_drain(void *arg)
2449{
2450 struct kmem_cache *cachep = arg;
2451 struct array_cache *ac;
2452 int node = numa_mem_id();
2453
2454 check_irq_off();
2455 ac = cpu_cache_get(cachep);
2456 spin_lock(&cachep->node[node]->list_lock);
2457 free_block(cachep, ac->entry, ac->avail, node);
2458 spin_unlock(&cachep->node[node]->list_lock);
2459 ac->avail = 0;
2460}
2461
2462static void drain_cpu_caches(struct kmem_cache *cachep)
2463{
2464 struct kmem_cache_node *n;
2465 int node;
2466
2467 on_each_cpu(do_drain, cachep, 1);
2468 check_irq_on();
2469 for_each_online_node(node) {
2470 n = cachep->node[node];
2471 if (n && n->alien)
2472 drain_alien_cache(cachep, n->alien);
2473 }
2474
2475 for_each_online_node(node) {
2476 n = cachep->node[node];
2477 if (n)
2478 drain_array(cachep, n, n->shared, 1, node);
2479 }
2480}
2481
2482/*
2483 * Remove slabs from the list of free slabs.
2484 * Specify the number of slabs to drain in tofree.
2485 *
2486 * Returns the actual number of slabs released.
2487 */
2488static int drain_freelist(struct kmem_cache *cache,
2489 struct kmem_cache_node *n, int tofree)
2490{
2491 struct list_head *p;
2492 int nr_freed;
2493 struct slab *slabp;
2494
2495 nr_freed = 0;
2496 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2497
2498 spin_lock_irq(&n->list_lock);
2499 p = n->slabs_free.prev;
2500 if (p == &n->slabs_free) {
2501 spin_unlock_irq(&n->list_lock);
2502 goto out;
2503 }
2504
2505 slabp = list_entry(p, struct slab, list);
2506#if DEBUG
2507 BUG_ON(slabp->inuse);
2508#endif
2509 list_del(&slabp->list);
2510 /*
2511 * Safe to drop the lock. The slab is no longer linked
2512 * to the cache.
2513 */
2514 n->free_objects -= cache->num;
2515 spin_unlock_irq(&n->list_lock);
2516 slab_destroy(cache, slabp);
2517 nr_freed++;
2518 }
2519out:
2520 return nr_freed;
2521}
2522
2523/* Called with slab_mutex held to protect against cpu hotplug */
2524static int __cache_shrink(struct kmem_cache *cachep)
2525{
2526 int ret = 0, i = 0;
2527 struct kmem_cache_node *n;
2528
2529 drain_cpu_caches(cachep);
2530
2531 check_irq_on();
2532 for_each_online_node(i) {
2533 n = cachep->node[i];
2534 if (!n)
2535 continue;
2536
2537 drain_freelist(cachep, n, n->free_objects);
2538
2539 ret += !list_empty(&n->slabs_full) ||
2540 !list_empty(&n->slabs_partial);
2541 }
2542 return (ret ? 1 : 0);
2543}
2544
2545/**
2546 * kmem_cache_shrink - Shrink a cache.
2547 * @cachep: The cache to shrink.
2548 *
2549 * Releases as many slabs as possible for a cache.
2550 * To help debugging, a zero exit status indicates all slabs were released.
2551 */
2552int kmem_cache_shrink(struct kmem_cache *cachep)
2553{
2554 int ret;
2555 BUG_ON(!cachep || in_interrupt());
2556
2557 get_online_cpus();
2558 mutex_lock(&slab_mutex);
2559 ret = __cache_shrink(cachep);
2560 mutex_unlock(&slab_mutex);
2561 put_online_cpus();
2562 return ret;
2563}
2564EXPORT_SYMBOL(kmem_cache_shrink);
2565
2566int __kmem_cache_shutdown(struct kmem_cache *cachep)
2567{
2568 int i;
2569 struct kmem_cache_node *n;
2570 int rc = __cache_shrink(cachep);
2571
2572 if (rc)
2573 return rc;
2574
2575 for_each_online_cpu(i)
2576 kfree(cachep->array[i]);
2577
2578 /* NUMA: free the node structures */
2579 for_each_online_node(i) {
2580 n = cachep->node[i];
2581 if (n) {
2582 kfree(n->shared);
2583 free_alien_cache(n->alien);
2584 kfree(n);
2585 }
2586 }
2587 return 0;
2588}
2589
2590/*
2591 * Get the memory for a slab management obj.
2592 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2593 * always come from malloc_sizes caches. The slab descriptor cannot
2594 * come from the same cache which is getting created because,
2595 * when we are searching for an appropriate cache for these
2596 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2597 * If we are creating a malloc_sizes cache here it would not be visible to
2598 * kmem_find_general_cachep till the initialization is complete.
2599 * Hence we cannot have slabp_cache same as the original cache.
2600 */
2601static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2602 int colour_off, gfp_t local_flags,
2603 int nodeid)
2604{
2605 struct slab *slabp;
2606
2607 if (OFF_SLAB(cachep)) {
2608 /* Slab management obj is off-slab. */
2609 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2610 local_flags, nodeid);
2611 /*
2612 * If the first object in the slab is leaked (it's allocated
2613 * but no one has a reference to it), we want to make sure
2614 * kmemleak does not treat the ->s_mem pointer as a reference
2615 * to the object. Otherwise we will not report the leak.
2616 */
2617 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2618 local_flags);
2619 if (!slabp)
2620 return NULL;
2621 } else {
2622 slabp = objp + colour_off;
2623 colour_off += cachep->slab_size;
2624 }
2625 slabp->inuse = 0;
2626 slabp->colouroff = colour_off;
2627 slabp->s_mem = objp + colour_off;
2628 slabp->nodeid = nodeid;
2629 slabp->free = 0;
2630 return slabp;
2631}
2632
2633static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2634{
2635 return (kmem_bufctl_t *) (slabp + 1);
2636}
2637
2638static void cache_init_objs(struct kmem_cache *cachep,
2639 struct slab *slabp)
2640{
2641 int i;
2642
2643 for (i = 0; i < cachep->num; i++) {
2644 void *objp = index_to_obj(cachep, slabp, i);
2645#if DEBUG
2646 /* need to poison the objs? */
2647 if (cachep->flags & SLAB_POISON)
2648 poison_obj(cachep, objp, POISON_FREE);
2649 if (cachep->flags & SLAB_STORE_USER)
2650 *dbg_userword(cachep, objp) = NULL;
2651
2652 if (cachep->flags & SLAB_RED_ZONE) {
2653 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2654 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2655 }
2656 /*
2657 * Constructors are not allowed to allocate memory from the same
2658 * cache which they are a constructor for. Otherwise, deadlock.
2659 * They must also be threaded.
2660 */
2661 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2662 cachep->ctor(objp + obj_offset(cachep));
2663
2664 if (cachep->flags & SLAB_RED_ZONE) {
2665 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2666 slab_error(cachep, "constructor overwrote the"
2667 " end of an object");
2668 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2669 slab_error(cachep, "constructor overwrote the"
2670 " start of an object");
2671 }
2672 if ((cachep->size % PAGE_SIZE) == 0 &&
2673 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2674 kernel_map_pages(virt_to_page(objp),
2675 cachep->size / PAGE_SIZE, 0);
2676#else
2677 if (cachep->ctor)
2678 cachep->ctor(objp);
2679#endif
2680 slab_bufctl(slabp)[i] = i + 1;
2681 }
2682 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2683}
2684
2685static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2686{
2687 if (CONFIG_ZONE_DMA_FLAG) {
2688 if (flags & GFP_DMA)
2689 BUG_ON(!(cachep->allocflags & GFP_DMA));
2690 else
2691 BUG_ON(cachep->allocflags & GFP_DMA);
2692 }
2693}
2694
2695static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2696 int nodeid)
2697{
2698 void *objp = index_to_obj(cachep, slabp, slabp->free);
2699 kmem_bufctl_t next;
2700
2701 slabp->inuse++;
2702 next = slab_bufctl(slabp)[slabp->free];
2703#if DEBUG
2704 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2705 WARN_ON(slabp->nodeid != nodeid);
2706#endif
2707 slabp->free = next;
2708
2709 return objp;
2710}
2711
2712static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2713 void *objp, int nodeid)
2714{
2715 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2716
2717#if DEBUG
2718 /* Verify that the slab belongs to the intended node */
2719 WARN_ON(slabp->nodeid != nodeid);
2720
2721 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2722 printk(KERN_ERR "slab: double free detected in cache "
2723 "'%s', objp %p\n", cachep->name, objp);
2724 BUG();
2725 }
2726#endif
2727 slab_bufctl(slabp)[objnr] = slabp->free;
2728 slabp->free = objnr;
2729 slabp->inuse--;
2730}
2731
2732/*
2733 * Map pages beginning at addr to the given cache and slab. This is required
2734 * for the slab allocator to be able to lookup the cache and slab of a
2735 * virtual address for kfree, ksize, and slab debugging.
2736 */
2737static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2738 void *addr)
2739{
2740 int nr_pages;
2741 struct page *page;
2742
2743 page = virt_to_page(addr);
2744
2745 nr_pages = 1;
2746 if (likely(!PageCompound(page)))
2747 nr_pages <<= cache->gfporder;
2748
2749 do {
2750 page->slab_cache = cache;
2751 page->slab_page = slab;
2752 page++;
2753 } while (--nr_pages);
2754}
2755
2756/*
2757 * Grow (by 1) the number of slabs within a cache. This is called by
2758 * kmem_cache_alloc() when there are no active objs left in a cache.
2759 */
2760static int cache_grow(struct kmem_cache *cachep,
2761 gfp_t flags, int nodeid, void *objp)
2762{
2763 struct slab *slabp;
2764 size_t offset;
2765 gfp_t local_flags;
2766 struct kmem_cache_node *n;
2767
2768 /*
2769 * Be lazy and only check for valid flags here, keeping it out of the
2770 * critical path in kmem_cache_alloc().
2771 */
2772 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2773 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2774
2775 /* Take the node list lock to change the colour_next on this node */
2776 check_irq_off();
2777 n = cachep->node[nodeid];
2778 spin_lock(&n->list_lock);
2779
2780 /* Get colour for the slab, and cal the next value. */
2781 offset = n->colour_next;
2782 n->colour_next++;
2783 if (n->colour_next >= cachep->colour)
2784 n->colour_next = 0;
2785 spin_unlock(&n->list_lock);
2786
2787 offset *= cachep->colour_off;
2788
2789 if (local_flags & __GFP_WAIT)
2790 local_irq_enable();
2791
2792 /*
2793 * The test for missing atomic flag is performed here, rather than
2794 * the more obvious place, simply to reduce the critical path length
2795 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2796 * will eventually be caught here (where it matters).
2797 */
2798 kmem_flagcheck(cachep, flags);
2799
2800 /*
2801 * Get mem for the objs. Attempt to allocate a physical page from
2802 * 'nodeid'.
2803 */
2804 if (!objp)
2805 objp = kmem_getpages(cachep, local_flags, nodeid);
2806 if (!objp)
2807 goto failed;
2808
2809 /* Get slab management. */
2810 slabp = alloc_slabmgmt(cachep, objp, offset,
2811 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2812 if (!slabp)
2813 goto opps1;
2814
2815 slab_map_pages(cachep, slabp, objp);
2816
2817 cache_init_objs(cachep, slabp);
2818
2819 if (local_flags & __GFP_WAIT)
2820 local_irq_disable();
2821 check_irq_off();
2822 spin_lock(&n->list_lock);
2823
2824 /* Make slab active. */
2825 list_add_tail(&slabp->list, &(n->slabs_free));
2826 STATS_INC_GROWN(cachep);
2827 n->free_objects += cachep->num;
2828 spin_unlock(&n->list_lock);
2829 return 1;
2830opps1:
2831 kmem_freepages(cachep, objp);
2832failed:
2833 if (local_flags & __GFP_WAIT)
2834 local_irq_disable();
2835 return 0;
2836}
2837
2838#if DEBUG
2839
2840/*
2841 * Perform extra freeing checks:
2842 * - detect bad pointers.
2843 * - POISON/RED_ZONE checking
2844 */
2845static void kfree_debugcheck(const void *objp)
2846{
2847 if (!virt_addr_valid(objp)) {
2848 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2849 (unsigned long)objp);
2850 BUG();
2851 }
2852}
2853
2854static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2855{
2856 unsigned long long redzone1, redzone2;
2857
2858 redzone1 = *dbg_redzone1(cache, obj);
2859 redzone2 = *dbg_redzone2(cache, obj);
2860
2861 /*
2862 * Redzone is ok.
2863 */
2864 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2865 return;
2866
2867 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2868 slab_error(cache, "double free detected");
2869 else
2870 slab_error(cache, "memory outside object was overwritten");
2871
2872 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2873 obj, redzone1, redzone2);
2874}
2875
2876static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2877 unsigned long caller)
2878{
2879 struct page *page;
2880 unsigned int objnr;
2881 struct slab *slabp;
2882
2883 BUG_ON(virt_to_cache(objp) != cachep);
2884
2885 objp -= obj_offset(cachep);
2886 kfree_debugcheck(objp);
2887 page = virt_to_head_page(objp);
2888
2889 slabp = page->slab_page;
2890
2891 if (cachep->flags & SLAB_RED_ZONE) {
2892 verify_redzone_free(cachep, objp);
2893 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2894 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2895 }
2896 if (cachep->flags & SLAB_STORE_USER)
2897 *dbg_userword(cachep, objp) = (void *)caller;
2898
2899 objnr = obj_to_index(cachep, slabp, objp);
2900
2901 BUG_ON(objnr >= cachep->num);
2902 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2903
2904#ifdef CONFIG_DEBUG_SLAB_LEAK
2905 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2906#endif
2907 if (cachep->flags & SLAB_POISON) {
2908#ifdef CONFIG_DEBUG_PAGEALLOC
2909 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2910 store_stackinfo(cachep, objp, caller);
2911 kernel_map_pages(virt_to_page(objp),
2912 cachep->size / PAGE_SIZE, 0);
2913 } else {
2914 poison_obj(cachep, objp, POISON_FREE);
2915 }
2916#else
2917 poison_obj(cachep, objp, POISON_FREE);
2918#endif
2919 }
2920 return objp;
2921}
2922
2923static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2924{
2925 kmem_bufctl_t i;
2926 int entries = 0;
2927
2928 /* Check slab's freelist to see if this obj is there. */
2929 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2930 entries++;
2931 if (entries > cachep->num || i >= cachep->num)
2932 goto bad;
2933 }
2934 if (entries != cachep->num - slabp->inuse) {
2935bad:
2936 printk(KERN_ERR "slab: Internal list corruption detected in "
2937 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
2938 cachep->name, cachep->num, slabp, slabp->inuse,
2939 print_tainted());
2940 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
2941 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
2942 1);
2943 BUG();
2944 }
2945}
2946#else
2947#define kfree_debugcheck(x) do { } while(0)
2948#define cache_free_debugcheck(x,objp,z) (objp)
2949#define check_slabp(x,y) do { } while(0)
2950#endif
2951
2952static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2953 bool force_refill)
2954{
2955 int batchcount;
2956 struct kmem_cache_node *n;
2957 struct array_cache *ac;
2958 int node;
2959
2960 check_irq_off();
2961 node = numa_mem_id();
2962 if (unlikely(force_refill))
2963 goto force_grow;
2964retry:
2965 ac = cpu_cache_get(cachep);
2966 batchcount = ac->batchcount;
2967 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2968 /*
2969 * If there was little recent activity on this cache, then
2970 * perform only a partial refill. Otherwise we could generate
2971 * refill bouncing.
2972 */
2973 batchcount = BATCHREFILL_LIMIT;
2974 }
2975 n = cachep->node[node];
2976
2977 BUG_ON(ac->avail > 0 || !n);
2978 spin_lock(&n->list_lock);
2979
2980 /* See if we can refill from the shared array */
2981 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2982 n->shared->touched = 1;
2983 goto alloc_done;
2984 }
2985
2986 while (batchcount > 0) {
2987 struct list_head *entry;
2988 struct slab *slabp;
2989 /* Get slab alloc is to come from. */
2990 entry = n->slabs_partial.next;
2991 if (entry == &n->slabs_partial) {
2992 n->free_touched = 1;
2993 entry = n->slabs_free.next;
2994 if (entry == &n->slabs_free)
2995 goto must_grow;
2996 }
2997
2998 slabp = list_entry(entry, struct slab, list);
2999 check_slabp(cachep, slabp);
3000 check_spinlock_acquired(cachep);
3001
3002 /*
3003 * The slab was either on partial or free list so
3004 * there must be at least one object available for
3005 * allocation.
3006 */
3007 BUG_ON(slabp->inuse >= cachep->num);
3008
3009 while (slabp->inuse < cachep->num && batchcount--) {
3010 STATS_INC_ALLOCED(cachep);
3011 STATS_INC_ACTIVE(cachep);
3012 STATS_SET_HIGH(cachep);
3013
3014 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3015 node));
3016 }
3017 check_slabp(cachep, slabp);
3018
3019 /* move slabp to correct slabp list: */
3020 list_del(&slabp->list);
3021 if (slabp->free == BUFCTL_END)
3022 list_add(&slabp->list, &n->slabs_full);
3023 else
3024 list_add(&slabp->list, &n->slabs_partial);
3025 }
3026
3027must_grow:
3028 n->free_objects -= ac->avail;
3029alloc_done:
3030 spin_unlock(&n->list_lock);
3031
3032 if (unlikely(!ac->avail)) {
3033 int x;
3034force_grow:
3035 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3036
3037 /* cache_grow can reenable interrupts, then ac could change. */
3038 ac = cpu_cache_get(cachep);
3039 node = numa_mem_id();
3040
3041 /* no objects in sight? abort */
3042 if (!x && (ac->avail == 0 || force_refill))
3043 return NULL;
3044
3045 if (!ac->avail) /* objects refilled by interrupt? */
3046 goto retry;
3047 }
3048 ac->touched = 1;
3049
3050 return ac_get_obj(cachep, ac, flags, force_refill);
3051}
3052
3053static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3054 gfp_t flags)
3055{
3056 might_sleep_if(flags & __GFP_WAIT);
3057#if DEBUG
3058 kmem_flagcheck(cachep, flags);
3059#endif
3060}
3061
3062#if DEBUG
3063static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3064 gfp_t flags, void *objp, unsigned long caller)
3065{
3066 if (!objp)
3067 return objp;
3068 if (cachep->flags & SLAB_POISON) {
3069#ifdef CONFIG_DEBUG_PAGEALLOC
3070 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3071 kernel_map_pages(virt_to_page(objp),
3072 cachep->size / PAGE_SIZE, 1);
3073 else
3074 check_poison_obj(cachep, objp);
3075#else
3076 check_poison_obj(cachep, objp);
3077#endif
3078 poison_obj(cachep, objp, POISON_INUSE);
3079 }
3080 if (cachep->flags & SLAB_STORE_USER)
3081 *dbg_userword(cachep, objp) = (void *)caller;
3082
3083 if (cachep->flags & SLAB_RED_ZONE) {
3084 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3085 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3086 slab_error(cachep, "double free, or memory outside"
3087 " object was overwritten");
3088 printk(KERN_ERR
3089 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3090 objp, *dbg_redzone1(cachep, objp),
3091 *dbg_redzone2(cachep, objp));
3092 }
3093 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3094 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3095 }
3096#ifdef CONFIG_DEBUG_SLAB_LEAK
3097 {
3098 struct slab *slabp;
3099 unsigned objnr;
3100
3101 slabp = virt_to_head_page(objp)->slab_page;
3102 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3103 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3104 }
3105#endif
3106 objp += obj_offset(cachep);
3107 if (cachep->ctor && cachep->flags & SLAB_POISON)
3108 cachep->ctor(objp);
3109 if (ARCH_SLAB_MINALIGN &&
3110 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3111 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3112 objp, (int)ARCH_SLAB_MINALIGN);
3113 }
3114 return objp;
3115}
3116#else
3117#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3118#endif
3119
3120static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3121{
3122 if (cachep == kmem_cache)
3123 return false;
3124
3125 return should_failslab(cachep->object_size, flags, cachep->flags);
3126}
3127
3128static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3129{
3130 void *objp;
3131 struct array_cache *ac;
3132 bool force_refill = false;
3133
3134 check_irq_off();
3135
3136 ac = cpu_cache_get(cachep);
3137 if (likely(ac->avail)) {
3138 ac->touched = 1;
3139 objp = ac_get_obj(cachep, ac, flags, false);
3140
3141 /*
3142 * Allow for the possibility all avail objects are not allowed
3143 * by the current flags
3144 */
3145 if (objp) {
3146 STATS_INC_ALLOCHIT(cachep);
3147 goto out;
3148 }
3149 force_refill = true;
3150 }
3151
3152 STATS_INC_ALLOCMISS(cachep);
3153 objp = cache_alloc_refill(cachep, flags, force_refill);
3154 /*
3155 * the 'ac' may be updated by cache_alloc_refill(),
3156 * and kmemleak_erase() requires its correct value.
3157 */
3158 ac = cpu_cache_get(cachep);
3159
3160out:
3161 /*
3162 * To avoid a false negative, if an object that is in one of the
3163 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3164 * treat the array pointers as a reference to the object.
3165 */
3166 if (objp)
3167 kmemleak_erase(&ac->entry[ac->avail]);
3168 return objp;
3169}
3170
3171#ifdef CONFIG_NUMA
3172/*
3173 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3174 *
3175 * If we are in_interrupt, then process context, including cpusets and
3176 * mempolicy, may not apply and should not be used for allocation policy.
3177 */
3178static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3179{
3180 int nid_alloc, nid_here;
3181
3182 if (in_interrupt() || (flags & __GFP_THISNODE))
3183 return NULL;
3184 nid_alloc = nid_here = numa_mem_id();
3185 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3186 nid_alloc = cpuset_slab_spread_node();
3187 else if (current->mempolicy)
3188 nid_alloc = slab_node();
3189 if (nid_alloc != nid_here)
3190 return ____cache_alloc_node(cachep, flags, nid_alloc);
3191 return NULL;
3192}
3193
3194/*
3195 * Fallback function if there was no memory available and no objects on a
3196 * certain node and fall back is permitted. First we scan all the
3197 * available node for available objects. If that fails then we
3198 * perform an allocation without specifying a node. This allows the page
3199 * allocator to do its reclaim / fallback magic. We then insert the
3200 * slab into the proper nodelist and then allocate from it.
3201 */
3202static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3203{
3204 struct zonelist *zonelist;
3205 gfp_t local_flags;
3206 struct zoneref *z;
3207 struct zone *zone;
3208 enum zone_type high_zoneidx = gfp_zone(flags);
3209 void *obj = NULL;
3210 int nid;
3211 unsigned int cpuset_mems_cookie;
3212
3213 if (flags & __GFP_THISNODE)
3214 return NULL;
3215
3216 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3217
3218retry_cpuset:
3219 cpuset_mems_cookie = get_mems_allowed();
3220 zonelist = node_zonelist(slab_node(), flags);
3221
3222retry:
3223 /*
3224 * Look through allowed nodes for objects available
3225 * from existing per node queues.
3226 */
3227 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3228 nid = zone_to_nid(zone);
3229
3230 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3231 cache->node[nid] &&
3232 cache->node[nid]->free_objects) {
3233 obj = ____cache_alloc_node(cache,
3234 flags | GFP_THISNODE, nid);
3235 if (obj)
3236 break;
3237 }
3238 }
3239
3240 if (!obj) {
3241 /*
3242 * This allocation will be performed within the constraints
3243 * of the current cpuset / memory policy requirements.
3244 * We may trigger various forms of reclaim on the allowed
3245 * set and go into memory reserves if necessary.
3246 */
3247 if (local_flags & __GFP_WAIT)
3248 local_irq_enable();
3249 kmem_flagcheck(cache, flags);
3250 obj = kmem_getpages(cache, local_flags, numa_mem_id());
3251 if (local_flags & __GFP_WAIT)
3252 local_irq_disable();
3253 if (obj) {
3254 /*
3255 * Insert into the appropriate per node queues
3256 */
3257 nid = page_to_nid(virt_to_page(obj));
3258 if (cache_grow(cache, flags, nid, obj)) {
3259 obj = ____cache_alloc_node(cache,
3260 flags | GFP_THISNODE, nid);
3261 if (!obj)
3262 /*
3263 * Another processor may allocate the
3264 * objects in the slab since we are
3265 * not holding any locks.
3266 */
3267 goto retry;
3268 } else {
3269 /* cache_grow already freed obj */
3270 obj = NULL;
3271 }
3272 }
3273 }
3274
3275 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3276 goto retry_cpuset;
3277 return obj;
3278}
3279
3280/*
3281 * A interface to enable slab creation on nodeid
3282 */
3283static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3284 int nodeid)
3285{
3286 struct list_head *entry;
3287 struct slab *slabp;
3288 struct kmem_cache_node *n;
3289 void *obj;
3290 int x;
3291
3292 VM_BUG_ON(nodeid > num_online_nodes());
3293 n = cachep->node[nodeid];
3294 BUG_ON(!n);
3295
3296retry:
3297 check_irq_off();
3298 spin_lock(&n->list_lock);
3299 entry = n->slabs_partial.next;
3300 if (entry == &n->slabs_partial) {
3301 n->free_touched = 1;
3302 entry = n->slabs_free.next;
3303 if (entry == &n->slabs_free)
3304 goto must_grow;
3305 }
3306
3307 slabp = list_entry(entry, struct slab, list);
3308 check_spinlock_acquired_node(cachep, nodeid);
3309 check_slabp(cachep, slabp);
3310
3311 STATS_INC_NODEALLOCS(cachep);
3312 STATS_INC_ACTIVE(cachep);
3313 STATS_SET_HIGH(cachep);
3314
3315 BUG_ON(slabp->inuse == cachep->num);
3316
3317 obj = slab_get_obj(cachep, slabp, nodeid);
3318 check_slabp(cachep, slabp);
3319 n->free_objects--;
3320 /* move slabp to correct slabp list: */
3321 list_del(&slabp->list);
3322
3323 if (slabp->free == BUFCTL_END)
3324 list_add(&slabp->list, &n->slabs_full);
3325 else
3326 list_add(&slabp->list, &n->slabs_partial);
3327
3328 spin_unlock(&n->list_lock);
3329 goto done;
3330
3331must_grow:
3332 spin_unlock(&n->list_lock);
3333 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3334 if (x)
3335 goto retry;
3336
3337 return fallback_alloc(cachep, flags);
3338
3339done:
3340 return obj;
3341}
3342
3343static __always_inline void *
3344slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3345 unsigned long caller)
3346{
3347 unsigned long save_flags;
3348 void *ptr;
3349 int slab_node = numa_mem_id();
3350
3351 flags &= gfp_allowed_mask;
3352
3353 lockdep_trace_alloc(flags);
3354
3355 if (slab_should_failslab(cachep, flags))
3356 return NULL;
3357
3358 cachep = memcg_kmem_get_cache(cachep, flags);
3359
3360 cache_alloc_debugcheck_before(cachep, flags);
3361 local_irq_save(save_flags);
3362
3363 if (nodeid == NUMA_NO_NODE)
3364 nodeid = slab_node;
3365
3366 if (unlikely(!cachep->node[nodeid])) {
3367 /* Node not bootstrapped yet */
3368 ptr = fallback_alloc(cachep, flags);
3369 goto out;
3370 }
3371
3372 if (nodeid == slab_node) {
3373 /*
3374 * Use the locally cached objects if possible.
3375 * However ____cache_alloc does not allow fallback
3376 * to other nodes. It may fail while we still have
3377 * objects on other nodes available.
3378 */
3379 ptr = ____cache_alloc(cachep, flags);
3380 if (ptr)
3381 goto out;
3382 }
3383 /* ___cache_alloc_node can fall back to other nodes */
3384 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3385 out:
3386 local_irq_restore(save_flags);
3387 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3388 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3389 flags);
3390
3391 if (likely(ptr))
3392 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3393
3394 if (unlikely((flags & __GFP_ZERO) && ptr))
3395 memset(ptr, 0, cachep->object_size);
3396
3397 return ptr;
3398}
3399
3400static __always_inline void *
3401__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3402{
3403 void *objp;
3404
3405 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3406 objp = alternate_node_alloc(cache, flags);
3407 if (objp)
3408 goto out;
3409 }
3410 objp = ____cache_alloc(cache, flags);
3411
3412 /*
3413 * We may just have run out of memory on the local node.
3414 * ____cache_alloc_node() knows how to locate memory on other nodes
3415 */
3416 if (!objp)
3417 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3418
3419 out:
3420 return objp;
3421}
3422#else
3423
3424static __always_inline void *
3425__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3426{
3427 return ____cache_alloc(cachep, flags);
3428}
3429
3430#endif /* CONFIG_NUMA */
3431
3432static __always_inline void *
3433slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3434{
3435 unsigned long save_flags;
3436 void *objp;
3437
3438 flags &= gfp_allowed_mask;
3439
3440 lockdep_trace_alloc(flags);
3441
3442 if (slab_should_failslab(cachep, flags))
3443 return NULL;
3444
3445 cachep = memcg_kmem_get_cache(cachep, flags);
3446
3447 cache_alloc_debugcheck_before(cachep, flags);
3448 local_irq_save(save_flags);
3449 objp = __do_cache_alloc(cachep, flags);
3450 local_irq_restore(save_flags);
3451 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3452 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3453 flags);
3454 prefetchw(objp);
3455
3456 if (likely(objp))
3457 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3458
3459 if (unlikely((flags & __GFP_ZERO) && objp))
3460 memset(objp, 0, cachep->object_size);
3461
3462 return objp;
3463}
3464
3465/*
3466 * Caller needs to acquire correct kmem_list's list_lock
3467 */
3468static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3469 int node)
3470{
3471 int i;
3472 struct kmem_cache_node *n;
3473
3474 for (i = 0; i < nr_objects; i++) {
3475 void *objp;
3476 struct slab *slabp;
3477
3478 clear_obj_pfmemalloc(&objpp[i]);
3479 objp = objpp[i];
3480
3481 slabp = virt_to_slab(objp);
3482 n = cachep->node[node];
3483 list_del(&slabp->list);
3484 check_spinlock_acquired_node(cachep, node);
3485 check_slabp(cachep, slabp);
3486 slab_put_obj(cachep, slabp, objp, node);
3487 STATS_DEC_ACTIVE(cachep);
3488 n->free_objects++;
3489 check_slabp(cachep, slabp);
3490
3491 /* fixup slab chains */
3492 if (slabp->inuse == 0) {
3493 if (n->free_objects > n->free_limit) {
3494 n->free_objects -= cachep->num;
3495 /* No need to drop any previously held
3496 * lock here, even if we have a off-slab slab
3497 * descriptor it is guaranteed to come from
3498 * a different cache, refer to comments before
3499 * alloc_slabmgmt.
3500 */
3501 slab_destroy(cachep, slabp);
3502 } else {
3503 list_add(&slabp->list, &n->slabs_free);
3504 }
3505 } else {
3506 /* Unconditionally move a slab to the end of the
3507 * partial list on free - maximum time for the
3508 * other objects to be freed, too.
3509 */
3510 list_add_tail(&slabp->list, &n->slabs_partial);
3511 }
3512 }
3513}
3514
3515static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3516{
3517 int batchcount;
3518 struct kmem_cache_node *n;
3519 int node = numa_mem_id();
3520
3521 batchcount = ac->batchcount;
3522#if DEBUG
3523 BUG_ON(!batchcount || batchcount > ac->avail);
3524#endif
3525 check_irq_off();
3526 n = cachep->node[node];
3527 spin_lock(&n->list_lock);
3528 if (n->shared) {
3529 struct array_cache *shared_array = n->shared;
3530 int max = shared_array->limit - shared_array->avail;
3531 if (max) {
3532 if (batchcount > max)
3533 batchcount = max;
3534 memcpy(&(shared_array->entry[shared_array->avail]),
3535 ac->entry, sizeof(void *) * batchcount);
3536 shared_array->avail += batchcount;
3537 goto free_done;
3538 }
3539 }
3540
3541 free_block(cachep, ac->entry, batchcount, node);
3542free_done:
3543#if STATS
3544 {
3545 int i = 0;
3546 struct list_head *p;
3547
3548 p = n->slabs_free.next;
3549 while (p != &(n->slabs_free)) {
3550 struct slab *slabp;
3551
3552 slabp = list_entry(p, struct slab, list);
3553 BUG_ON(slabp->inuse);
3554
3555 i++;
3556 p = p->next;
3557 }
3558 STATS_SET_FREEABLE(cachep, i);
3559 }
3560#endif
3561 spin_unlock(&n->list_lock);
3562 ac->avail -= batchcount;
3563 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3564}
3565
3566/*
3567 * Release an obj back to its cache. If the obj has a constructed state, it must
3568 * be in this state _before_ it is released. Called with disabled ints.
3569 */
3570static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3571 unsigned long caller)
3572{
3573 struct array_cache *ac = cpu_cache_get(cachep);
3574
3575 check_irq_off();
3576 kmemleak_free_recursive(objp, cachep->flags);
3577 objp = cache_free_debugcheck(cachep, objp, caller);
3578
3579 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3580
3581 /*
3582 * Skip calling cache_free_alien() when the platform is not numa.
3583 * This will avoid cache misses that happen while accessing slabp (which
3584 * is per page memory reference) to get nodeid. Instead use a global
3585 * variable to skip the call, which is mostly likely to be present in
3586 * the cache.
3587 */
3588 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3589 return;
3590
3591 if (likely(ac->avail < ac->limit)) {
3592 STATS_INC_FREEHIT(cachep);
3593 } else {
3594 STATS_INC_FREEMISS(cachep);
3595 cache_flusharray(cachep, ac);
3596 }
3597
3598 ac_put_obj(cachep, ac, objp);
3599}
3600
3601/**
3602 * kmem_cache_alloc - Allocate an object
3603 * @cachep: The cache to allocate from.
3604 * @flags: See kmalloc().
3605 *
3606 * Allocate an object from this cache. The flags are only relevant
3607 * if the cache has no available objects.
3608 */
3609void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3610{
3611 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3612
3613 trace_kmem_cache_alloc(_RET_IP_, ret,
3614 cachep->object_size, cachep->size, flags);
3615
3616 return ret;
3617}
3618EXPORT_SYMBOL(kmem_cache_alloc);
3619
3620#ifdef CONFIG_TRACING
3621void *
3622kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3623{
3624 void *ret;
3625
3626 ret = slab_alloc(cachep, flags, _RET_IP_);
3627
3628 trace_kmalloc(_RET_IP_, ret,
3629 size, cachep->size, flags);
3630 return ret;
3631}
3632EXPORT_SYMBOL(kmem_cache_alloc_trace);
3633#endif
3634
3635#ifdef CONFIG_NUMA
3636/**
3637 * kmem_cache_alloc_node - Allocate an object on the specified node
3638 * @cachep: The cache to allocate from.
3639 * @flags: See kmalloc().
3640 * @nodeid: node number of the target node.
3641 *
3642 * Identical to kmem_cache_alloc but it will allocate memory on the given
3643 * node, which can improve the performance for cpu bound structures.
3644 *
3645 * Fallback to other node is possible if __GFP_THISNODE is not set.
3646 */
3647void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3648{
3649 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3650
3651 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3652 cachep->object_size, cachep->size,
3653 flags, nodeid);
3654
3655 return ret;
3656}
3657EXPORT_SYMBOL(kmem_cache_alloc_node);
3658
3659#ifdef CONFIG_TRACING
3660void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3661 gfp_t flags,
3662 int nodeid,
3663 size_t size)
3664{
3665 void *ret;
3666
3667 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3668
3669 trace_kmalloc_node(_RET_IP_, ret,
3670 size, cachep->size,
3671 flags, nodeid);
3672 return ret;
3673}
3674EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3675#endif
3676
3677static __always_inline void *
3678__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3679{
3680 struct kmem_cache *cachep;
3681
3682 cachep = kmalloc_slab(size, flags);
3683 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3684 return cachep;
3685 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3686}
3687
3688#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3689void *__kmalloc_node(size_t size, gfp_t flags, int node)
3690{
3691 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3692}
3693EXPORT_SYMBOL(__kmalloc_node);
3694
3695void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3696 int node, unsigned long caller)
3697{
3698 return __do_kmalloc_node(size, flags, node, caller);
3699}
3700EXPORT_SYMBOL(__kmalloc_node_track_caller);
3701#else
3702void *__kmalloc_node(size_t size, gfp_t flags, int node)
3703{
3704 return __do_kmalloc_node(size, flags, node, 0);
3705}
3706EXPORT_SYMBOL(__kmalloc_node);
3707#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3708#endif /* CONFIG_NUMA */
3709
3710/**
3711 * __do_kmalloc - allocate memory
3712 * @size: how many bytes of memory are required.
3713 * @flags: the type of memory to allocate (see kmalloc).
3714 * @caller: function caller for debug tracking of the caller
3715 */
3716static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3717 unsigned long caller)
3718{
3719 struct kmem_cache *cachep;
3720 void *ret;
3721
3722 /* If you want to save a few bytes .text space: replace
3723 * __ with kmem_.
3724 * Then kmalloc uses the uninlined functions instead of the inline
3725 * functions.
3726 */
3727 cachep = kmalloc_slab(size, flags);
3728 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3729 return cachep;
3730 ret = slab_alloc(cachep, flags, caller);
3731
3732 trace_kmalloc(caller, ret,
3733 size, cachep->size, flags);
3734
3735 return ret;
3736}
3737
3738
3739#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3740void *__kmalloc(size_t size, gfp_t flags)
3741{
3742 return __do_kmalloc(size, flags, _RET_IP_);
3743}
3744EXPORT_SYMBOL(__kmalloc);
3745
3746void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3747{
3748 return __do_kmalloc(size, flags, caller);
3749}
3750EXPORT_SYMBOL(__kmalloc_track_caller);
3751
3752#else
3753void *__kmalloc(size_t size, gfp_t flags)
3754{
3755 return __do_kmalloc(size, flags, 0);
3756}
3757EXPORT_SYMBOL(__kmalloc);
3758#endif
3759
3760/**
3761 * kmem_cache_free - Deallocate an object
3762 * @cachep: The cache the allocation was from.
3763 * @objp: The previously allocated object.
3764 *
3765 * Free an object which was previously allocated from this
3766 * cache.
3767 */
3768void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3769{
3770 unsigned long flags;
3771 cachep = cache_from_obj(cachep, objp);
3772 if (!cachep)
3773 return;
3774
3775 local_irq_save(flags);
3776 debug_check_no_locks_freed(objp, cachep->object_size);
3777 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3778 debug_check_no_obj_freed(objp, cachep->object_size);
3779 __cache_free(cachep, objp, _RET_IP_);
3780 local_irq_restore(flags);
3781
3782 trace_kmem_cache_free(_RET_IP_, objp);
3783}
3784EXPORT_SYMBOL(kmem_cache_free);
3785
3786/**
3787 * kfree - free previously allocated memory
3788 * @objp: pointer returned by kmalloc.
3789 *
3790 * If @objp is NULL, no operation is performed.
3791 *
3792 * Don't free memory not originally allocated by kmalloc()
3793 * or you will run into trouble.
3794 */
3795void kfree(const void *objp)
3796{
3797 struct kmem_cache *c;
3798 unsigned long flags;
3799
3800 trace_kfree(_RET_IP_, objp);
3801
3802 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3803 return;
3804 local_irq_save(flags);
3805 kfree_debugcheck(objp);
3806 c = virt_to_cache(objp);
3807 debug_check_no_locks_freed(objp, c->object_size);
3808
3809 debug_check_no_obj_freed(objp, c->object_size);
3810 __cache_free(c, (void *)objp, _RET_IP_);
3811 local_irq_restore(flags);
3812}
3813EXPORT_SYMBOL(kfree);
3814
3815/*
3816 * This initializes kmem_cache_node or resizes various caches for all nodes.
3817 */
3818static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3819{
3820 int node;
3821 struct kmem_cache_node *n;
3822 struct array_cache *new_shared;
3823 struct array_cache **new_alien = NULL;
3824
3825 for_each_online_node(node) {
3826
3827 if (use_alien_caches) {
3828 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3829 if (!new_alien)
3830 goto fail;
3831 }
3832
3833 new_shared = NULL;
3834 if (cachep->shared) {
3835 new_shared = alloc_arraycache(node,
3836 cachep->shared*cachep->batchcount,
3837 0xbaadf00d, gfp);
3838 if (!new_shared) {
3839 free_alien_cache(new_alien);
3840 goto fail;
3841 }
3842 }
3843
3844 n = cachep->node[node];
3845 if (n) {
3846 struct array_cache *shared = n->shared;
3847
3848 spin_lock_irq(&n->list_lock);
3849
3850 if (shared)
3851 free_block(cachep, shared->entry,
3852 shared->avail, node);
3853
3854 n->shared = new_shared;
3855 if (!n->alien) {
3856 n->alien = new_alien;
3857 new_alien = NULL;
3858 }
3859 n->free_limit = (1 + nr_cpus_node(node)) *
3860 cachep->batchcount + cachep->num;
3861 spin_unlock_irq(&n->list_lock);
3862 kfree(shared);
3863 free_alien_cache(new_alien);
3864 continue;
3865 }
3866 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3867 if (!n) {
3868 free_alien_cache(new_alien);
3869 kfree(new_shared);
3870 goto fail;
3871 }
3872
3873 kmem_cache_node_init(n);
3874 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3875 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3876 n->shared = new_shared;
3877 n->alien = new_alien;
3878 n->free_limit = (1 + nr_cpus_node(node)) *
3879 cachep->batchcount + cachep->num;
3880 cachep->node[node] = n;
3881 }
3882 return 0;
3883
3884fail:
3885 if (!cachep->list.next) {
3886 /* Cache is not active yet. Roll back what we did */
3887 node--;
3888 while (node >= 0) {
3889 if (cachep->node[node]) {
3890 n = cachep->node[node];
3891
3892 kfree(n->shared);
3893 free_alien_cache(n->alien);
3894 kfree(n);
3895 cachep->node[node] = NULL;
3896 }
3897 node--;
3898 }
3899 }
3900 return -ENOMEM;
3901}
3902
3903struct ccupdate_struct {
3904 struct kmem_cache *cachep;
3905 struct array_cache *new[0];
3906};
3907
3908static void do_ccupdate_local(void *info)
3909{
3910 struct ccupdate_struct *new = info;
3911 struct array_cache *old;
3912
3913 check_irq_off();
3914 old = cpu_cache_get(new->cachep);
3915
3916 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3917 new->new[smp_processor_id()] = old;
3918}
3919
3920/* Always called with the slab_mutex held */
3921static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3922 int batchcount, int shared, gfp_t gfp)
3923{
3924 struct ccupdate_struct *new;
3925 int i;
3926
3927 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3928 gfp);
3929 if (!new)
3930 return -ENOMEM;
3931
3932 for_each_online_cpu(i) {
3933 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3934 batchcount, gfp);
3935 if (!new->new[i]) {
3936 for (i--; i >= 0; i--)
3937 kfree(new->new[i]);
3938 kfree(new);
3939 return -ENOMEM;
3940 }
3941 }
3942 new->cachep = cachep;
3943
3944 on_each_cpu(do_ccupdate_local, (void *)new, 1);
3945
3946 check_irq_on();
3947 cachep->batchcount = batchcount;
3948 cachep->limit = limit;
3949 cachep->shared = shared;
3950
3951 for_each_online_cpu(i) {
3952 struct array_cache *ccold = new->new[i];
3953 if (!ccold)
3954 continue;
3955 spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3956 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3957 spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3958 kfree(ccold);
3959 }
3960 kfree(new);
3961 return alloc_kmemlist(cachep, gfp);
3962}
3963
3964static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3965 int batchcount, int shared, gfp_t gfp)
3966{
3967 int ret;
3968 struct kmem_cache *c = NULL;
3969 int i = 0;
3970
3971 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3972
3973 if (slab_state < FULL)
3974 return ret;
3975
3976 if ((ret < 0) || !is_root_cache(cachep))
3977 return ret;
3978
3979 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
3980 for_each_memcg_cache_index(i) {
3981 c = cache_from_memcg(cachep, i);
3982 if (c)
3983 /* return value determined by the parent cache only */
3984 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3985 }
3986
3987 return ret;
3988}
3989
3990/* Called with slab_mutex held always */
3991static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3992{
3993 int err;
3994 int limit = 0;
3995 int shared = 0;
3996 int batchcount = 0;
3997
3998 if (!is_root_cache(cachep)) {
3999 struct kmem_cache *root = memcg_root_cache(cachep);
4000 limit = root->limit;
4001 shared = root->shared;
4002 batchcount = root->batchcount;
4003 }
4004
4005 if (limit && shared && batchcount)
4006 goto skip_setup;
4007 /*
4008 * The head array serves three purposes:
4009 * - create a LIFO ordering, i.e. return objects that are cache-warm
4010 * - reduce the number of spinlock operations.
4011 * - reduce the number of linked list operations on the slab and
4012 * bufctl chains: array operations are cheaper.
4013 * The numbers are guessed, we should auto-tune as described by
4014 * Bonwick.
4015 */
4016 if (cachep->size > 131072)
4017 limit = 1;
4018 else if (cachep->size > PAGE_SIZE)
4019 limit = 8;
4020 else if (cachep->size > 1024)
4021 limit = 24;
4022 else if (cachep->size > 256)
4023 limit = 54;
4024 else
4025 limit = 120;
4026
4027 /*
4028 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4029 * allocation behaviour: Most allocs on one cpu, most free operations
4030 * on another cpu. For these cases, an efficient object passing between
4031 * cpus is necessary. This is provided by a shared array. The array
4032 * replaces Bonwick's magazine layer.
4033 * On uniprocessor, it's functionally equivalent (but less efficient)
4034 * to a larger limit. Thus disabled by default.
4035 */
4036 shared = 0;
4037 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
4038 shared = 8;
4039
4040#if DEBUG
4041 /*
4042 * With debugging enabled, large batchcount lead to excessively long
4043 * periods with disabled local interrupts. Limit the batchcount
4044 */
4045 if (limit > 32)
4046 limit = 32;
4047#endif
4048 batchcount = (limit + 1) / 2;
4049skip_setup:
4050 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
4051 if (err)
4052 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4053 cachep->name, -err);
4054 return err;
4055}
4056
4057/*
4058 * Drain an array if it contains any elements taking the node lock only if
4059 * necessary. Note that the node listlock also protects the array_cache
4060 * if drain_array() is used on the shared array.
4061 */
4062static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4063 struct array_cache *ac, int force, int node)
4064{
4065 int tofree;
4066
4067 if (!ac || !ac->avail)
4068 return;
4069 if (ac->touched && !force) {
4070 ac->touched = 0;
4071 } else {
4072 spin_lock_irq(&n->list_lock);
4073 if (ac->avail) {
4074 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4075 if (tofree > ac->avail)
4076 tofree = (ac->avail + 1) / 2;
4077 free_block(cachep, ac->entry, tofree, node);
4078 ac->avail -= tofree;
4079 memmove(ac->entry, &(ac->entry[tofree]),
4080 sizeof(void *) * ac->avail);
4081 }
4082 spin_unlock_irq(&n->list_lock);
4083 }
4084}
4085
4086/**
4087 * cache_reap - Reclaim memory from caches.
4088 * @w: work descriptor
4089 *
4090 * Called from workqueue/eventd every few seconds.
4091 * Purpose:
4092 * - clear the per-cpu caches for this CPU.
4093 * - return freeable pages to the main free memory pool.
4094 *
4095 * If we cannot acquire the cache chain mutex then just give up - we'll try
4096 * again on the next iteration.
4097 */
4098static void cache_reap(struct work_struct *w)
4099{
4100 struct kmem_cache *searchp;
4101 struct kmem_cache_node *n;
4102 int node = numa_mem_id();
4103 struct delayed_work *work = to_delayed_work(w);
4104
4105 if (!mutex_trylock(&slab_mutex))
4106 /* Give up. Setup the next iteration. */
4107 goto out;
4108
4109 list_for_each_entry(searchp, &slab_caches, list) {
4110 check_irq_on();
4111
4112 /*
4113 * We only take the node lock if absolutely necessary and we
4114 * have established with reasonable certainty that
4115 * we can do some work if the lock was obtained.
4116 */
4117 n = searchp->node[node];
4118
4119 reap_alien(searchp, n);
4120
4121 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
4122
4123 /*
4124 * These are racy checks but it does not matter
4125 * if we skip one check or scan twice.
4126 */
4127 if (time_after(n->next_reap, jiffies))
4128 goto next;
4129
4130 n->next_reap = jiffies + REAPTIMEOUT_LIST3;
4131
4132 drain_array(searchp, n, n->shared, 0, node);
4133
4134 if (n->free_touched)
4135 n->free_touched = 0;
4136 else {
4137 int freed;
4138
4139 freed = drain_freelist(searchp, n, (n->free_limit +
4140 5 * searchp->num - 1) / (5 * searchp->num));
4141 STATS_ADD_REAPED(searchp, freed);
4142 }
4143next:
4144 cond_resched();
4145 }
4146 check_irq_on();
4147 mutex_unlock(&slab_mutex);
4148 next_reap_node();
4149out:
4150 /* Set up the next iteration */
4151 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4152}
4153
4154#ifdef CONFIG_SLABINFO
4155void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4156{
4157 struct slab *slabp;
4158 unsigned long active_objs;
4159 unsigned long num_objs;
4160 unsigned long active_slabs = 0;
4161 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4162 const char *name;
4163 char *error = NULL;
4164 int node;
4165 struct kmem_cache_node *n;
4166
4167 active_objs = 0;
4168 num_slabs = 0;
4169 for_each_online_node(node) {
4170 n = cachep->node[node];
4171 if (!n)
4172 continue;
4173
4174 check_irq_on();
4175 spin_lock_irq(&n->list_lock);
4176
4177 list_for_each_entry(slabp, &n->slabs_full, list) {
4178 if (slabp->inuse != cachep->num && !error)
4179 error = "slabs_full accounting error";
4180 active_objs += cachep->num;
4181 active_slabs++;
4182 }
4183 list_for_each_entry(slabp, &n->slabs_partial, list) {
4184 if (slabp->inuse == cachep->num && !error)
4185 error = "slabs_partial inuse accounting error";
4186 if (!slabp->inuse && !error)
4187 error = "slabs_partial/inuse accounting error";
4188 active_objs += slabp->inuse;
4189 active_slabs++;
4190 }
4191 list_for_each_entry(slabp, &n->slabs_free, list) {
4192 if (slabp->inuse && !error)
4193 error = "slabs_free/inuse accounting error";
4194 num_slabs++;
4195 }
4196 free_objects += n->free_objects;
4197 if (n->shared)
4198 shared_avail += n->shared->avail;
4199
4200 spin_unlock_irq(&n->list_lock);
4201 }
4202 num_slabs += active_slabs;
4203 num_objs = num_slabs * cachep->num;
4204 if (num_objs - active_objs != free_objects && !error)
4205 error = "free_objects accounting error";
4206
4207 name = cachep->name;
4208 if (error)
4209 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4210
4211 sinfo->active_objs = active_objs;
4212 sinfo->num_objs = num_objs;
4213 sinfo->active_slabs = active_slabs;
4214 sinfo->num_slabs = num_slabs;
4215 sinfo->shared_avail = shared_avail;
4216 sinfo->limit = cachep->limit;
4217 sinfo->batchcount = cachep->batchcount;
4218 sinfo->shared = cachep->shared;
4219 sinfo->objects_per_slab = cachep->num;
4220 sinfo->cache_order = cachep->gfporder;
4221}
4222
4223void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4224{
4225#if STATS
4226 { /* node stats */
4227 unsigned long high = cachep->high_mark;
4228 unsigned long allocs = cachep->num_allocations;
4229 unsigned long grown = cachep->grown;
4230 unsigned long reaped = cachep->reaped;
4231 unsigned long errors = cachep->errors;
4232 unsigned long max_freeable = cachep->max_freeable;
4233 unsigned long node_allocs = cachep->node_allocs;
4234 unsigned long node_frees = cachep->node_frees;
4235 unsigned long overflows = cachep->node_overflow;
4236
4237 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4238 "%4lu %4lu %4lu %4lu %4lu",
4239 allocs, high, grown,
4240 reaped, errors, max_freeable, node_allocs,
4241 node_frees, overflows);
4242 }
4243 /* cpu stats */
4244 {
4245 unsigned long allochit = atomic_read(&cachep->allochit);
4246 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4247 unsigned long freehit = atomic_read(&cachep->freehit);
4248 unsigned long freemiss = atomic_read(&cachep->freemiss);
4249
4250 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4251 allochit, allocmiss, freehit, freemiss);
4252 }
4253#endif
4254}
4255
4256#define MAX_SLABINFO_WRITE 128
4257/**
4258 * slabinfo_write - Tuning for the slab allocator
4259 * @file: unused
4260 * @buffer: user buffer
4261 * @count: data length
4262 * @ppos: unused
4263 */
4264ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4265 size_t count, loff_t *ppos)
4266{
4267 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4268 int limit, batchcount, shared, res;
4269 struct kmem_cache *cachep;
4270
4271 if (count > MAX_SLABINFO_WRITE)
4272 return -EINVAL;
4273 if (copy_from_user(&kbuf, buffer, count))
4274 return -EFAULT;
4275 kbuf[MAX_SLABINFO_WRITE] = '\0';
4276
4277 tmp = strchr(kbuf, ' ');
4278 if (!tmp)
4279 return -EINVAL;
4280 *tmp = '\0';
4281 tmp++;
4282 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4283 return -EINVAL;
4284
4285 /* Find the cache in the chain of caches. */
4286 mutex_lock(&slab_mutex);
4287 res = -EINVAL;
4288 list_for_each_entry(cachep, &slab_caches, list) {
4289 if (!strcmp(cachep->name, kbuf)) {
4290 if (limit < 1 || batchcount < 1 ||
4291 batchcount > limit || shared < 0) {
4292 res = 0;
4293 } else {
4294 res = do_tune_cpucache(cachep, limit,
4295 batchcount, shared,
4296 GFP_KERNEL);
4297 }
4298 break;
4299 }
4300 }
4301 mutex_unlock(&slab_mutex);
4302 if (res >= 0)
4303 res = count;
4304 return res;
4305}
4306
4307#ifdef CONFIG_DEBUG_SLAB_LEAK
4308
4309static void *leaks_start(struct seq_file *m, loff_t *pos)
4310{
4311 mutex_lock(&slab_mutex);
4312 return seq_list_start(&slab_caches, *pos);
4313}
4314
4315static inline int add_caller(unsigned long *n, unsigned long v)
4316{
4317 unsigned long *p;
4318 int l;
4319 if (!v)
4320 return 1;
4321 l = n[1];
4322 p = n + 2;
4323 while (l) {
4324 int i = l/2;
4325 unsigned long *q = p + 2 * i;
4326 if (*q == v) {
4327 q[1]++;
4328 return 1;
4329 }
4330 if (*q > v) {
4331 l = i;
4332 } else {
4333 p = q + 2;
4334 l -= i + 1;
4335 }
4336 }
4337 if (++n[1] == n[0])
4338 return 0;
4339 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4340 p[0] = v;
4341 p[1] = 1;
4342 return 1;
4343}
4344
4345static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4346{
4347 void *p;
4348 int i;
4349 if (n[0] == n[1])
4350 return;
4351 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4352 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4353 continue;
4354 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4355 return;
4356 }
4357}
4358
4359static void show_symbol(struct seq_file *m, unsigned long address)
4360{
4361#ifdef CONFIG_KALLSYMS
4362 unsigned long offset, size;
4363 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4364
4365 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4366 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4367 if (modname[0])
4368 seq_printf(m, " [%s]", modname);
4369 return;
4370 }
4371#endif
4372 seq_printf(m, "%p", (void *)address);
4373}
4374
4375static int leaks_show(struct seq_file *m, void *p)
4376{
4377 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4378 struct slab *slabp;
4379 struct kmem_cache_node *n;
4380 const char *name;
4381 unsigned long *x = m->private;
4382 int node;
4383 int i;
4384
4385 if (!(cachep->flags & SLAB_STORE_USER))
4386 return 0;
4387 if (!(cachep->flags & SLAB_RED_ZONE))
4388 return 0;
4389
4390 /* OK, we can do it */
4391
4392 x[1] = 0;
4393
4394 for_each_online_node(node) {
4395 n = cachep->node[node];
4396 if (!n)
4397 continue;
4398
4399 check_irq_on();
4400 spin_lock_irq(&n->list_lock);
4401
4402 list_for_each_entry(slabp, &n->slabs_full, list)
4403 handle_slab(x, cachep, slabp);
4404 list_for_each_entry(slabp, &n->slabs_partial, list)
4405 handle_slab(x, cachep, slabp);
4406 spin_unlock_irq(&n->list_lock);
4407 }
4408 name = cachep->name;
4409 if (x[0] == x[1]) {
4410 /* Increase the buffer size */
4411 mutex_unlock(&slab_mutex);
4412 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4413 if (!m->private) {
4414 /* Too bad, we are really out */
4415 m->private = x;
4416 mutex_lock(&slab_mutex);
4417 return -ENOMEM;
4418 }
4419 *(unsigned long *)m->private = x[0] * 2;
4420 kfree(x);
4421 mutex_lock(&slab_mutex);
4422 /* Now make sure this entry will be retried */
4423 m->count = m->size;
4424 return 0;
4425 }
4426 for (i = 0; i < x[1]; i++) {
4427 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4428 show_symbol(m, x[2*i+2]);
4429 seq_putc(m, '\n');
4430 }
4431
4432 return 0;
4433}
4434
4435static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4436{
4437 return seq_list_next(p, &slab_caches, pos);
4438}
4439
4440static void s_stop(struct seq_file *m, void *p)
4441{
4442 mutex_unlock(&slab_mutex);
4443}
4444
4445static const struct seq_operations slabstats_op = {
4446 .start = leaks_start,
4447 .next = s_next,
4448 .stop = s_stop,
4449 .show = leaks_show,
4450};
4451
4452static int slabstats_open(struct inode *inode, struct file *file)
4453{
4454 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4455 int ret = -ENOMEM;
4456 if (n) {
4457 ret = seq_open(file, &slabstats_op);
4458 if (!ret) {
4459 struct seq_file *m = file->private_data;
4460 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4461 m->private = n;
4462 n = NULL;
4463 }
4464 kfree(n);
4465 }
4466 return ret;
4467}
4468
4469static const struct file_operations proc_slabstats_operations = {
4470 .open = slabstats_open,
4471 .read = seq_read,
4472 .llseek = seq_lseek,
4473 .release = seq_release_private,
4474};
4475#endif
4476
4477static int __init slab_proc_init(void)
4478{
4479#ifdef CONFIG_DEBUG_SLAB_LEAK
4480 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4481#endif
4482 return 0;
4483}
4484module_init(slab_proc_init);
4485#endif
4486
4487/**
4488 * ksize - get the actual amount of memory allocated for a given object
4489 * @objp: Pointer to the object
4490 *
4491 * kmalloc may internally round up allocations and return more memory
4492 * than requested. ksize() can be used to determine the actual amount of
4493 * memory allocated. The caller may use this additional memory, even though
4494 * a smaller amount of memory was initially specified with the kmalloc call.
4495 * The caller must guarantee that objp points to a valid object previously
4496 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4497 * must not be freed during the duration of the call.
4498 */
4499size_t ksize(const void *objp)
4500{
4501 BUG_ON(!objp);
4502 if (unlikely(objp == ZERO_SIZE_PTR))
4503 return 0;
4504
4505 return virt_to_cache(objp)->object_size;
4506}
4507EXPORT_SYMBOL(ksize);
This page took 0.03806 seconds and 5 git commands to generate.